JP4074217B2 - Lens protection member for laser processing machine and method for manufacturing the same - Google Patents

Lens protection member for laser processing machine and method for manufacturing the same Download PDF

Info

Publication number
JP4074217B2
JP4074217B2 JP2003112554A JP2003112554A JP4074217B2 JP 4074217 B2 JP4074217 B2 JP 4074217B2 JP 2003112554 A JP2003112554 A JP 2003112554A JP 2003112554 A JP2003112554 A JP 2003112554A JP 4074217 B2 JP4074217 B2 JP 4074217B2
Authority
JP
Japan
Prior art keywords
protection member
lens protection
diamond
laser beam
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003112554A
Other languages
Japanese (ja)
Other versions
JP2004317834A (en
Inventor
祥瑞 竹野
雅治 森安
祥雄 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003112554A priority Critical patent/JP4074217B2/en
Publication of JP2004317834A publication Critical patent/JP2004317834A/en
Application granted granted Critical
Publication of JP4074217B2 publication Critical patent/JP4074217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば炭酸ガスレーザ加工機の集光レンズを保護するレンズ保護部材及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に、炭酸ガスレーザ加工機等のレーザ加工機においては、加工時の発塵やスパッタリングによる汚染、損傷から集光レンズを保護するため、例えばプリント配線板等の被加工物と集光レンズとの間にレンズ保護部材(レンズ保護ウインドウ)が配置される。
従来のレンズ保護部材は、レーザ光を透過する平板状の基材の両面に反射防止膜(ARコート)を形成して構成されている。また、基材の材料としては、例えばZnSe又はGe等が用いられる。さらに、反射防止膜は、例えばThF、YF、ZnS、Ge及びZnSe等からなる多層膜により構成されている(例えば、非特許文献1参照)。
【0003】
【非特許文献1】
「レーザ加工機のビーム計測と光学部品の評価技術」平成3年3月、レーザ熱加工研究会ワーキンググループ発行、p.105及びp.121
【0004】
【発明が解決しようとする課題】
上記のような従来のレンズ保護部材では、酸に対して反応するThF、YF、ZnS及びZnSe等の材料が反射防止膜に使用されている。これに対して、エポキシ等の樹脂材料からなるプリント配線板を加工する際には、臭素等を含む粉塵やガスが発生するため、レーザ光出射側の反射防止膜が臭素酸等により腐食され、剥がれ易くなる。このように、レーザ光出射側の反射防止膜が剥がれてしまうと、例えば基材としてGeが使用されている場合、36%程度のレーザ光が反射され、被加工材には64%程度しか到達しなくなってしまう。また、反射したレーザ光が集光レンズやレーザ発振器に戻り、集光レンズやレーザ発振器内の光学部品が損傷する恐れがあった。
【0005】
この発明は、上記のような問題点を解決することを課題としてなされたものであり、レーザ光の反射率を低く抑えつつ耐腐食性を向上させることができるレーザ加工機のレンズ保護部材及びその製造方法を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係るレーザ加工機のレンズ保護部材は、レーザ光の入射面である第1面と、レーザ光の出射面であり被加工物に対向する第2面を有し、レーザ光を透過する平板状の基材、第1面上に形成され、レーザ光の反射を防止する反射防止膜、及び第2面上に直接形成されているダイヤモンドライクカーボン膜を備えている。
【0007】
【発明の実施の形態】
以下、この発明の実施の形態を図について説明する。
実施の形態1.
図1はこの発明の実施の形態1による赤外レーザ加工機の要部を示す構成図である。図において、レーザ発振器1は、例えばプリント配線板等の被加工物2に対向して配置される。レーザ発振器1と被加工物2との間には、集光レンズ3が配置されている。ここでは、レーザ発振器1から出射されるレーザ光6として、波長10.6μmの炭酸ガスレーザが用いられ、集光レンズ3としてはZnSe製の単レンズが用いられている。
【0008】
集光レンズ3と被加工物2との間には、レーザ光6を透過するとともに、加工時の発塵やスパッタリングによる汚染、損傷から集光レンズ3を保護するレーザ透過部材としてのレンズ保護部材4が配置されている。集光レンズ3及びレンズ保護部材4は、円筒状の鏡筒5内に保持されている。
【0009】
レンズ保護部材4は、平板状の基材7、反射防止膜8及びダイヤモンドライクカーボン膜9を有している。基材7は、互いに平行な第1面7a及び第2面7bを有し、例えばGe等のレーザ透過材料により構成されている。ここでは、第1面7aがレーザ光6の入射面、第2面7bがレーザ光6の出射面である。
【0010】
反射防止膜8は、例えば真空蒸着により第1面7a上に形成され、基材7に入射するレーザ光6の反射を防止する。また、反射防止膜8は、例えばYF、ZnS及びGeなど、屈折率の異なる複数の層からなる多層膜により構成されている。さらに、反射防止膜8におけるレーザ光6の反射率は、3%以下、特に1%以下が好適である。
【0011】
ダイヤモンドライクカーボン膜9は、例えばプラズマCVDにより第2面7b上に形成される。ダイヤモンドライクカーボンは、ダイヤモンドに準ずる硬さを有し、酸に対する耐腐食性に優れ、赤外域の光を透過する材料である。また、ダイヤモンドライクカーボン膜9におけるレーザ光6の反射率は、5%程度である。
【0012】
次に、図2は図1のレンズ保護部材4の製造方法を示す工程図である。まず、図2(a)に示すように、Geからなる円板状の基材7を用意する。次に、図2(b)に示すように、基材7の第1面7aを凸面形状に研磨加工するとともに、第2面7bを凹面形状に研磨加工する。凹面及び凸面の断面形状は、それぞれ非常に緩やかな円弧状であり、例えば厚さ5mm、直径105mmの基材7を用いた場合、周縁部に対する中央部の高さ又は深さが2〜3μm程度である。但し、理解を容易にするため、図2では研磨加工量を大きく描いている。
【0013】
次に、プラズマCVD等により第2面7b上にダイヤモンドライクカーボン膜9を形成する。ダイヤモンドライクカーボン膜9の厚さは、例えば約1μm程度である。このように成膜されたダイヤモンドライクカーボン膜9には、周囲へ拡がろうとするような内部応力が生じる。
【0014】
従って、ダイヤモンドライクカーボン膜9を基材7の片面に形成すると、ダイヤモンドライクカーボン膜9の内部応力により、基材7は、図2(c)に示すように平板状に変形され、第1面7a及び第2面7bが平面になる(平面度が高くなる)。逆に言えば、ダイヤモンドライクカーボン膜9の内部応力により第1面7a及び第2面7bが平面(使用に十分な平面度の平面)となるように、凹面形状及び凸面形状の加工を予め施しておく。
【0015】
この後、平面となった第1面7a上に、例えば真空蒸着等により反射防止膜8を形成する。このとき、反射防止膜8の内部応力は小さいため、基材7の変形は殆どなく、反射防止膜8の表面及びダイヤモンドライクカーボン膜9の表面の平面度(周縁部に対する中央部の高さ又は深さ)を0.7μm程度にすることができる。
【0016】
上記のようなレンズ保護部材4を用いた赤外レーザ加工機では、レンズ保護部材4の被加工物2に対向する面にダイヤモンドライクカーボン膜9が形成されているため、耐腐食性を向上させることができ、膜の剥がれによる反射率の低下を防止することができる。
【0017】
また、反射防止膜8におけるレーザ光6の反射率は1%程度であるのに対し、ダイヤモンドライクカーボン膜9の反射率は5%程度であるが、基材7の両面にダイヤモンドライクカーボン膜9を形成する場合に比べれば反射率を十分に低く抑えることができる。これにより、レーザ光6が集光レンズ3やレーザ発振器1に戻るのが十分に抑制され、比較的高価な集光レンズ3やレーザ発振器1内の光学部品等が損傷するのを防止することができる。
【0018】
さらに、ダイヤモンドライクカーボン膜9を形成する前に、第1面7aを凸面形状に研磨加工するとともに、第2面7bを凹面形状に研磨加工しておき、ダイヤモンドライクカーボン膜9の成膜後の内部応力を利用して基材7を変形させ、第1面7a及び第2面7bを平面としたので、片面のみにダイヤモンドライクカーボン膜9を形成したにも拘わらず、レーザ光6の波面に乱れが生じるのを防止することができ、加工品質の低下を防止することができる。
【0019】
ここで、実施の形態1のレンズ保護部材4を有する赤外レーザ加工機により、直径200μm、深さ100μm程度の穴をプリント配線板に加工したところ、レンズ保護部材4の歪みによる加工形状の崩れは見られず、良好な加工が可能であった。
【0020】
また、レンズ保護部材4をプリント配線板の近傍に配置し、レーザ出力を30Wとして、直径300μm、深さ150μm程度の穴をプリント配線板に連続加工(100時間程度)行った。このとき、ダイヤモンドライクカーボン膜9は大量の粉塵やガスに曝されるが、ダイヤモンドライクカーボン膜9に剥がれは見られず、また集光レンズ3やレーザ発振器1内の光学系の損傷も見られなかった。
【0021】
比較例1.
次に、図3は比較例1によるレンズ保護部材の製造方法を示す工程図である。比較例1では、図3(a)に示すような基材7として、直径105mm、厚さ5mmで、Geからなるものを用いた。また、第1面7a及び第2面7bは、0.4μm程度の平面度となるように予め加工しておいた。
【0022】
この後、基材7の第1面7a上にダイヤモンドライクカーボン膜9を形成した。これにより、基材7には、図3(b)に示すような変形が生じた。即ち、ダイヤモンドライクカーボン膜9の表面の平面度は、3μm程度となった。
【0023】
この後、基材7の第2面7b上にも、第1面7a側と同様に、ダイヤモンドライクカーボン膜9を形成した。これにより、基材7の変形が矯正され、ダイヤモンドライクカーボン膜の表面の平面度は、0.7μm程度となった。
【0024】
このようなレンズ保護部材を図1のレンズ保護部材4と置き換えて、直径200μm、深さ100μm程度の穴をプリント配線板に加工したところ、レンズ保護部材の歪みによる加工形状の崩れは見られず、良好な加工が可能であった。
【0025】
また、レンズ保護部材をプリント配線板の近傍に配置し、レーザ出力を30Wとして、直径300μm、深さ150μm程度の穴をプリント配線板に連続加工(100時間程度)行った。このとき、ダイヤモンドライクカーボン膜9は大量の粉塵やガスに曝されるが、ダイヤモンドライクカーボン膜9に剥がれは見られなかった。しかし、第1面7a側のダイヤモンドライクカーボン膜9からの反射光により、集光レンズ3やレーザ発振器1内の光学系の損傷が発生した。
【0026】
比較例2.
次に、図4は比較例2によるレンズ保護部材の製造方法を示す工程図である。比較例2では、図4(a)に示すような基材7として、直径105mm、厚さ5mmで、Geからなるものを用いた。また、第1面7a及び第2面7bは、0.4μm程度の平面度となるように予め加工しておいた。
【0027】
この後、図4(b)に示すように、第1面7a上に反射防止膜8を形成した。そして、さらに図4(c)に示すように、第2面7b上にも反射防止膜8を形成した。反射防止膜8の内部応力は、十分に小さいため、平面度の変化はなかった。
【0028】
このようなレンズ保護部材を図1のレンズ保護部材4と置き換えて、直径200μm、深さ100μm程度の穴をプリント配線板に加工したところ、レンズ保護部材の歪みによる加工形状の崩れは見られず、良好な加工が可能であった。
【0029】
また、レンズ保護部材をプリント配線板の近傍に配置し、レーザ出力を30Wとして、直径300μm、深さ150μm程度の穴をプリント配線板に連続加工(100時間程度)行った。このとき、反射防止膜8は大量の粉塵やガスに曝されるため、反射防止膜8に剥がれが見られた。そして、反射防止膜8が剥がれた部分からの反射光により、集光レンズ3に損傷が発生した。
【0030】
比較例3.
次に、図5は比較例3によるレンズ保護部材の製造方法を示す工程図である。比較例3では、図5(a)に示すような基材7として、直径105mm、厚さ5mmで、Geからなるものを用いた。また、第1面7a及び第2面7bは、0.4μm程度の平面度となるように予め加工しておいた。
【0031】
この後、図5(b)に示すように、基材7の第1面7a上に反射防止膜8を形成した。このとき、反射防止膜8の内部応力は小さいため、平面度の変化はなかった。この後、第2面7b上にダイヤモンドライクカーボン膜9を形成した。これにより、基材7には、図5(c)に示すような変形が生じた。即ち、反射防止膜8の表面及びダイヤモンドライクカーボン膜9の表面の平面度は、3.0μm程度となった。
【0032】
このようなレンズ保護部材を図1のレンズ保護部材4と置き換えて、直径200μm、深さ100μm程度の穴をプリント配線板に加工したところ、レンズ保護部材の歪みによる加工形状の崩れが見られ、良好な加工が行えなかった。
【0033】
このように、比較例1〜3のレンズ保護部材に比べて、本実施の形態1のレンズ保護部材4によれば、レーザ光6の反射率を低く抑えつつ耐腐食性を向上させることができ、しかもダイヤモンドライクカーボン膜9の内部応力による歪みも防止することができる。
【0034】
実施の形態2.
次に、図6はこの発明の実施の形態2によるレンズ保護部材の製造方法を示す工程図である。まず、図6(a)に示すように、Geからなる円板状の基材7を用意する。次に、図6(b)に示すように、基材7の第2面7bを凹面形状に研磨加工する。凹面の断面形状は、非常に緩やかな円弧状であり、例えば厚さ5mm、直径105mmの基材7を用いた場合、周縁部に対する中央部の高さ又は深さが2〜3μm程度である。但し、理解を容易にするため、図6では研磨加工量を大きく描いている。
【0035】
次に、プラズマCVD等により第2面7b上にダイヤモンドライクカーボン膜9を形成する。ダイヤモンドライクカーボン膜9の厚さは、例えば約1μm程度である。このように成膜されたダイヤモンドライクカーボン膜9には、周囲へ拡がろうとするような内部応力が生じる。
【0036】
従って、ダイヤモンドライクカーボン膜9を基材7の片面に形成すると、ダイヤモンドライクカーボン膜9の内部応力により、基材7は、図6(c)に示すように変形され、第2面7bが平面(使用に十分な平面度の平面)になる。これにより、ダイヤモンドライクカーボン膜9の表面の平面度は、0.7μm程度となる。
【0037】
この後、平面度が0.4μm程度になるように第1面7aを研磨加工する。そして、平面となった第1面7a上に、例えば真空蒸着等により反射防止膜8を形成する。このとき、反射防止膜8の内部応力は小さいため、基材7の変形は殆どなく、反射防止膜8及びダイヤモンドライクカーボン膜9の平面度は維持される。
【0038】
このようなレンズ保護部材を図1のレンズ保護部材4と置き換えて、直径200μm、深さ100μm程度の穴をプリント配線板に加工したところ、レンズ保護部材の歪みによる加工形状の崩れは見られず、良好な加工が可能であった。
【0039】
また、レンズ保護部材をプリント配線板の近傍に配置し、レーザ出力を30Wとして、直径300μm、深さ150μm程度の穴をプリント配線板に連続加工(100時間程度)行った。このとき、ダイヤモンドライクカーボン膜9は大量の粉塵やガスに曝されるが、ダイヤモンドライクカーボン膜9に剥がれは見られず、また集光レンズ3やレーザ発振器1内の光学系の損傷も見られなかった。
【0040】
さらに、実施の形態2で得られたレンズ保護部材を用いて、プリント配線板に直径60μm、深さ30μmの穴あけ加工を行ったところ、レンズ保護部材の歪みによる加工形状の崩れは見られず良好な加工が可能であった。
【0041】
このように、実施の形態2の製造方法によれば、レーザ光6の反射率を低く抑えつつ耐腐食性を向上させることができる。また、反射防止膜8側の平面度をより確実に高くすることができ、レンズ保護部材の歪みによる加工形状の崩れをより確実に防止することができる。
【0042】
なお、実施の形態1、2の製造方法において、ダイヤモンドライクカーボン膜を形成する第2面を凹面形状に加工する場合、その凹面形状の断面の曲率半径は、1500mm(直径100mmに対して平面度0.8μm)以上が好適であり、特に3000mm(直径100mmに対して平面度0.4μm)以上が望ましい。
また、実施の形態1、2では、レンズ保護部材について説明したが、レーザ透過部材はレンズ保護部材に限定されるものではなく、この発明は他の用途に用いられるレーザ透過部材にも適用できる。
【0043】
【発明の効果】
以上説明したように、この発明のレーザ加工機のレンズ保護部材は、基材の第1面上にレーザ光の反射を防止する反射防止膜を形成し、基材の第2面上にはダイヤモンドライクカーボン膜を形成したので、レーザ光の反射率を低く抑えつつ耐腐食性を向上させることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による赤外レーザ加工機の要部を示す構成図である。
【図2】 図1のレンズ保護部材の製造方法を示す工程図である。
【図3】 比較例1によるレンズ保護部材の製造方法を示す工程図である。
【図4】 比較例2によるレンズ保護部材の製造方法を示す工程図である。
【図5】 比較例3によるレンズ保護部材の製造方法を示す工程図である。
【図6】 この発明の実施の形態2によるレンズ保護部材の製造方法を示す工程図である。
【符号の説明】
4 レンズ保護部材(レーザ透過部材)、6 レーザ光、7 基材、7a 第1面、7b 第2面、8 反射防止膜、9 ダイヤモンドライクカーボン膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, a method of manufacturing a lens protecting member Zai及 patron to protect the condenser lens carbon dioxide gas laser processing machine.
[0002]
[Prior art]
In general, in a laser beam machine such as a carbon dioxide laser beam machine, in order to protect the condenser lens from dust generation, contamination by sputtering, and damage during processing, for example, between a workpiece such as a printed wiring board and the condenser lens. A lens protection member (lens protection window) is disposed on the screen.
A conventional lens protection member is configured by forming an antireflection film (AR coating) on both surfaces of a flat substrate that transmits laser light. Moreover, as a material of the base material, for example, ZnSe or Ge is used. Furthermore, the antireflection film is formed of a multilayer film made of, for example, ThF 4 , YF 4 , ZnS, Ge, ZnSe, or the like (for example, see Non-Patent Document 1).
[0003]
[Non-Patent Document 1]
"Laser beam measurement and optical component evaluation technology", March 1991, Laser Thermal Processing Study Group Working Group, p. 105 and p. 121
[0004]
[Problems to be solved by the invention]
In the conventional lens protection member as described above, a material such as ThF 4 , YF 4 , ZnS, and ZnSe that reacts with an acid is used for the antireflection film. In contrast, when processing a printed wiring board made of a resin material such as epoxy, dust and gas containing bromine and the like are generated, so the antireflection film on the laser light emission side is corroded by bromic acid, It becomes easy to peel off. As described above, when the antireflection film on the laser beam emitting side is peeled off, for example, when Ge is used as the base material, about 36% of the laser beam is reflected, and only about 64% reaches the workpiece. I will not. In addition, the reflected laser light returns to the condensing lens and the laser oscillator, and there is a possibility that the optical components in the condensing lens and the laser oscillator are damaged.
[0005]
The present invention has been made in order to solve the above-mentioned problems, and a lens protection member for a laser beam machine capable of improving corrosion resistance while keeping the reflectance of laser light low, and its It aims at obtaining a manufacturing method.
[0006]
[Means for Solving the Problems]
Lens protection member of the laser processing machine according to the invention includes a first surface which is the laser beam incident surface, an emitting surface of the laser light and a second surface opposite to the workpiece, transmits the laser beam And a diamond-like carbon film formed directly on the second surface. The antireflection film is formed on the first surface and prevents reflection of laser light.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a main part of an infrared laser beam machine according to Embodiment 1 of the present invention. In the figure, a laser oscillator 1 is disposed to face a workpiece 2 such as a printed wiring board. A condensing lens 3 is disposed between the laser oscillator 1 and the workpiece 2. Here, a carbon dioxide laser with a wavelength of 10.6 μm is used as the laser beam 6 emitted from the laser oscillator 1, and a single lens made of ZnSe is used as the condenser lens 3.
[0008]
A lens protection member as a laser transmitting member that transmits the laser beam 6 between the condenser lens 3 and the workpiece 2 and protects the condenser lens 3 from dust generation and contamination due to sputtering and damage during processing. 4 is arranged. The condenser lens 3 and the lens protection member 4 are held in a cylindrical barrel 5.
[0009]
The lens protection member 4 includes a flat substrate 7, an antireflection film 8, and a diamond-like carbon film 9. The base material 7 has a first surface 7a and a second surface 7b parallel to each other, and is made of a laser transmitting material such as Ge. Here, the first surface 7 a is an incident surface for the laser light 6, and the second surface 7 b is an emission surface for the laser light 6.
[0010]
The antireflection film 8 is formed on the first surface 7 a by, for example, vacuum deposition, and prevents reflection of the laser light 6 incident on the base material 7. The antireflection film 8 is formed of a multilayer film composed of a plurality of layers having different refractive indexes, such as YF 4 , ZnS, and Ge. Further, the reflectance of the laser beam 6 in the antireflection film 8 is preferably 3% or less, particularly preferably 1% or less.
[0011]
The diamond-like carbon film 9 is formed on the second surface 7b by, for example, plasma CVD. Diamond-like carbon is a material that has hardness similar to diamond, has excellent resistance to acid corrosion, and transmits light in the infrared region. Further, the reflectance of the laser beam 6 in the diamond-like carbon film 9 is about 5%.
[0012]
Next, FIG. 2 is a process diagram showing a manufacturing method of the lens protection member 4 of FIG. First, as shown in FIG. 2A, a disk-shaped substrate 7 made of Ge is prepared. Next, as shown in FIG. 2B, the first surface 7a of the substrate 7 is polished into a convex shape, and the second surface 7b is polished into a concave shape. The cross-sectional shapes of the concave surface and the convex surface are very gentle arc shapes. For example, when a substrate 7 having a thickness of 5 mm and a diameter of 105 mm is used, the height or depth of the central portion with respect to the peripheral portion is about 2 to 3 μm. It is. However, in order to facilitate understanding, in FIG. 2, the polishing amount is drawn large.
[0013]
Next, a diamond-like carbon film 9 is formed on the second surface 7b by plasma CVD or the like. The thickness of the diamond-like carbon film 9 is, for example, about 1 μm. In the diamond-like carbon film 9 thus formed, an internal stress that tends to spread to the periphery is generated.
[0014]
Therefore, when the diamond-like carbon film 9 is formed on one surface of the base material 7, the base material 7 is deformed into a flat plate shape as shown in FIG. 7a and the 2nd surface 7b become a plane (flatness becomes high). In other words, the concave surface and the convex surface are processed in advance so that the first surface 7a and the second surface 7b become flat (a flat surface with sufficient flatness for use) by the internal stress of the diamond-like carbon film 9. Keep it.
[0015]
Thereafter, the antireflection film 8 is formed on the flat first surface 7a by, for example, vacuum deposition. At this time, since the internal stress of the antireflection film 8 is small, there is almost no deformation of the base material 7, and the flatness of the surface of the antireflection film 8 and the surface of the diamond-like carbon film 9 (the height of the central portion relative to the peripheral portion or (Depth) can be set to about 0.7 μm.
[0016]
In the infrared laser processing machine using the lens protection member 4 as described above, the diamond-like carbon film 9 is formed on the surface of the lens protection member 4 facing the workpiece 2, thereby improving the corrosion resistance. It is possible to prevent a decrease in reflectance due to film peeling.
[0017]
Further, while the reflectance of the laser beam 6 in the antireflection film 8 is about 1%, the reflectance of the diamond-like carbon film 9 is about 5%, but the diamond-like carbon film 9 is formed on both surfaces of the substrate 7. The reflectance can be kept sufficiently low as compared with the case of forming. This sufficiently suppresses the laser light 6 from returning to the condensing lens 3 and the laser oscillator 1 and prevents damage to the relatively expensive condensing lens 3 and optical components in the laser oscillator 1. it can.
[0018]
Further, before the diamond-like carbon film 9 is formed, the first surface 7a is polished into a convex shape, and the second surface 7b is polished into a concave shape. Since the substrate 7 is deformed using internal stress and the first surface 7a and the second surface 7b are flat, the diamond-like carbon film 9 is formed only on one surface, but the wavefront of the laser beam 6 is Disturbance can be prevented from occurring, and deterioration in processing quality can be prevented.
[0019]
Here, when a hole having a diameter of about 200 μm and a depth of about 100 μm was processed on a printed wiring board by an infrared laser processing machine having the lens protection member 4 of Embodiment 1, the processing shape was lost due to distortion of the lens protection member 4. As a result, good processing was possible.
[0020]
Further, the lens protection member 4 was disposed in the vicinity of the printed wiring board, the laser output was set to 30 W, and a hole having a diameter of about 300 μm and a depth of about 150 μm was continuously processed (about 100 hours) on the printed wiring board. At this time, the diamond-like carbon film 9 is exposed to a large amount of dust and gas, but the diamond-like carbon film 9 is not peeled off, and the optical system in the condenser lens 3 and the laser oscillator 1 is also damaged. There wasn't.
[0021]
Comparative Example 1
Next, FIG. 3 is a process diagram showing a method for manufacturing a lens protection member according to Comparative Example 1. In Comparative Example 1, as the base material 7 as shown in FIG. 3A, a material having a diameter of 105 mm and a thickness of 5 mm and made of Ge was used. The first surface 7a and the second surface 7b were previously processed so as to have a flatness of about 0.4 μm.
[0022]
Thereafter, a diamond-like carbon film 9 was formed on the first surface 7 a of the substrate 7. Thereby, the base material 7 was deformed as shown in FIG. That is, the flatness of the surface of the diamond-like carbon film 9 was about 3 μm.
[0023]
Thereafter, a diamond-like carbon film 9 was also formed on the second surface 7b of the base material 7 in the same manner as the first surface 7a side. As a result, the deformation of the base material 7 was corrected, and the flatness of the surface of the diamond-like carbon film was about 0.7 μm.
[0024]
When such a lens protection member is replaced with the lens protection member 4 in FIG. 1 and a hole having a diameter of about 200 μm and a depth of about 100 μm is formed on a printed wiring board, the deformation of the processed shape due to distortion of the lens protection member is not seen. Good processing was possible.
[0025]
Further, the lens protection member was disposed in the vicinity of the printed wiring board, the laser output was set to 30 W, and a hole having a diameter of about 300 μm and a depth of about 150 μm was continuously processed (about 100 hours) on the printed wiring board. At this time, the diamond-like carbon film 9 was exposed to a large amount of dust and gas, but the diamond-like carbon film 9 was not peeled off. However, the reflected light from the diamond-like carbon film 9 on the first surface 7a side caused damage to the condensing lens 3 and the optical system in the laser oscillator 1.
[0026]
Comparative Example 2
Next, FIG. 4 is a process diagram showing a method for manufacturing a lens protection member according to Comparative Example 2. In Comparative Example 2, as the base material 7 as shown in FIG. 4A, a material having a diameter of 105 mm and a thickness of 5 mm and made of Ge was used. The first surface 7a and the second surface 7b were previously processed so as to have a flatness of about 0.4 μm.
[0027]
Thereafter, as shown in FIG. 4B, an antireflection film 8 was formed on the first surface 7a. Further, as shown in FIG. 4C, an antireflection film 8 was also formed on the second surface 7b. Since the internal stress of the antireflection film 8 was sufficiently small, there was no change in flatness.
[0028]
When such a lens protection member is replaced with the lens protection member 4 in FIG. 1 and a hole having a diameter of about 200 μm and a depth of about 100 μm is formed on a printed wiring board, the deformation of the processed shape due to distortion of the lens protection member is not seen. Good processing was possible.
[0029]
Further, the lens protection member was disposed in the vicinity of the printed wiring board, the laser output was set to 30 W, and a hole having a diameter of about 300 μm and a depth of about 150 μm was continuously processed (about 100 hours) on the printed wiring board. At this time, since the antireflection film 8 was exposed to a large amount of dust and gas, the antireflection film 8 was peeled off. And the condensing lens 3 was damaged by the reflected light from the part where the antireflection film 8 was peeled off.
[0030]
Comparative Example 3
Next, FIG. 5 is a process diagram showing a method for manufacturing a lens protection member according to Comparative Example 3. In Comparative Example 3, as the base material 7 as shown in FIG. 5A, a material having a diameter of 105 mm and a thickness of 5 mm and made of Ge was used. The first surface 7a and the second surface 7b were previously processed so as to have a flatness of about 0.4 μm.
[0031]
Thereafter, as shown in FIG. 5B, an antireflection film 8 was formed on the first surface 7 a of the substrate 7. At this time, since the internal stress of the antireflection film 8 was small, the flatness did not change. Thereafter, a diamond-like carbon film 9 was formed on the second surface 7b. As a result, the substrate 7 was deformed as shown in FIG. That is, the flatness of the surface of the antireflection film 8 and the surface of the diamond-like carbon film 9 was about 3.0 μm.
[0032]
When such a lens protection member is replaced with the lens protection member 4 in FIG. 1 and a hole having a diameter of about 200 μm and a depth of about 100 μm is processed on a printed wiring board, the processing shape is broken due to distortion of the lens protection member. Good processing could not be performed.
[0033]
Thus, according to the lens protection member 4 of the first embodiment, compared to the lens protection members of Comparative Examples 1 to 3, the corrosion resistance can be improved while keeping the reflectance of the laser light 6 low. Moreover, distortion due to internal stress of the diamond-like carbon film 9 can also be prevented.
[0034]
Embodiment 2. FIG.
Next, FIG. 6 is a process diagram showing a method for manufacturing a lens protection member according to Embodiment 2 of the present invention. First, as shown in FIG. 6A, a disk-shaped base material 7 made of Ge is prepared. Next, as shown in FIG. 6B, the second surface 7b of the substrate 7 is polished into a concave shape. The cross-sectional shape of the concave surface is a very gentle arc shape. For example, when the base material 7 having a thickness of 5 mm and a diameter of 105 mm is used, the height or depth of the central portion with respect to the peripheral portion is about 2 to 3 μm. However, for easy understanding, FIG. 6 shows a large amount of polishing.
[0035]
Next, a diamond-like carbon film 9 is formed on the second surface 7b by plasma CVD or the like. The thickness of the diamond-like carbon film 9 is, for example, about 1 μm. In the diamond-like carbon film 9 thus formed, an internal stress that tends to spread to the periphery is generated.
[0036]
Therefore, when the diamond-like carbon film 9 is formed on one surface of the base material 7, the base material 7 is deformed as shown in FIG. 6C by the internal stress of the diamond-like carbon film 9, and the second surface 7b is flat. (A flat surface with sufficient flatness for use). Thereby, the flatness of the surface of the diamond-like carbon film 9 is about 0.7 μm.
[0037]
Thereafter, the first surface 7a is polished so that the flatness is about 0.4 μm. Then, the antireflection film 8 is formed on the flat first surface 7a by, for example, vacuum deposition. At this time, since the internal stress of the antireflection film 8 is small, the base material 7 is hardly deformed, and the flatness of the antireflection film 8 and the diamond-like carbon film 9 is maintained.
[0038]
When such a lens protection member is replaced with the lens protection member 4 in FIG. 1 and a hole having a diameter of about 200 μm and a depth of about 100 μm is formed on a printed wiring board, the deformation of the processed shape due to distortion of the lens protection member is not seen. Good processing was possible.
[0039]
Further, the lens protection member was disposed in the vicinity of the printed wiring board, the laser output was set to 30 W, and a hole having a diameter of about 300 μm and a depth of about 150 μm was continuously processed (about 100 hours) on the printed wiring board. At this time, the diamond-like carbon film 9 is exposed to a large amount of dust and gas, but the diamond-like carbon film 9 is not peeled off, and the optical system in the condenser lens 3 and the laser oscillator 1 is also damaged. There wasn't.
[0040]
Furthermore, when the hole was drilled to the printed wiring board with a diameter of 60 μm and a depth of 30 μm using the lens protection member obtained in the second embodiment, the deformation of the processing shape due to the distortion of the lens protection member was not seen and good. Processing was possible.
[0041]
Thus, according to the manufacturing method of Embodiment 2, the corrosion resistance can be improved while keeping the reflectance of the laser beam 6 low. Further, the flatness on the antireflection film 8 side can be increased more reliably, and the deformation of the processed shape due to the distortion of the lens protection member can be more reliably prevented.
[0042]
In addition, in the manufacturing method of Embodiment 1, 2, when processing the 2nd surface which forms a diamond-like carbon film | membrane into a concave shape, the curvature radius of the cross section of the concave shape is 1500 mm (flatness with respect to a diameter of 100 mm) 0.8 μm) or more is preferable, and in particular, 3000 mm (flatness 0.4 μm with respect to a diameter of 100 mm) or more is desirable.
In the first and second embodiments, the lens protection member has been described. However, the laser transmission member is not limited to the lens protection member, and the present invention can be applied to a laser transmission member used for other purposes.
[0043]
【The invention's effect】
As described above, the lens protection member of the laser beam machine according to the present invention forms the antireflection film for preventing the reflection of the laser beam on the first surface of the base material, and the diamond on the second surface of the base material. Since the like carbon film is formed, the corrosion resistance can be improved while keeping the reflectance of the laser light low.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a main part of an infrared laser beam machine according to Embodiment 1 of the present invention.
2 is a process diagram illustrating a method for manufacturing the lens protection member of FIG. 1. FIG.
3 is a process diagram illustrating a method for manufacturing a lens protection member according to Comparative Example 1. FIG.
4 is a process diagram illustrating a method for manufacturing a lens protection member according to Comparative Example 2. FIG.
5 is a process diagram illustrating a method for manufacturing a lens protection member according to Comparative Example 3. FIG.
FIG. 6 is a process diagram showing a method for manufacturing a lens protection member according to Embodiment 2 of the present invention.
[Explanation of symbols]
4 lens protective member (laser transmitting member), 6 laser light, 7 base material, 7a first surface, 7b second surface, 8 antireflection film, 9 diamond-like carbon film.

Claims (2)

レーザ光の入射面である第1面と、上記レーザ光の出射面であり被加工物に対向する第2面を有し、上記レーザ光を透過する平板状の基材、
上記第1面上に形成され、上記レーザ光の反射を防止する反射防止膜、及び
上記第2面上に直接形成されているダイヤモンドライクカーボン膜
を備えていることを特徴とするレーザ加工機のレンズ保護部材
Has a first surface which is the laser beam incident surface, an exit surface of the laser beam and a second surface opposite to the workpiece, flat base material which transmits the laser beam,
An antireflection film that is formed on the first surface and prevents reflection of the laser light, and a diamond-like carbon film that is directly formed on the second surface . Lens protection member .
レーザ光の入射面である第1面と、上記レーザ光の出射面であり被加工物に対向する第2面を有しレーザ光を透過する平板状の基材の上記第2面を凹面形状に加工する工程、
上記第2面上にダイヤモンドライクカーボン膜を形成し、これにより上記基材を変形させ上記第2面を平面にする工程、
上記第1面を平面に加工する工程、及び
上記レーザ光の反射を防止する反射防止膜を上記第1面上に形成する工程
を含むことを特徴とするレーザ加工機のレンズ保護部材の製造方法。
Concave first surface is a plane of incidence of the laser beam, the second surface of a flat substrate that transmits a laser beam and a second surface opposite to the emission surface a and the workpiece the laser light Process to shape,
Forming a diamond-like carbon film on the second surface, thereby deforming the substrate to make the second surface flat;
A method of manufacturing a lens protection member for a laser beam machine, comprising: processing the first surface into a flat surface; and forming an antireflection film for preventing reflection of the laser light on the first surface. .
JP2003112554A 2003-04-17 2003-04-17 Lens protection member for laser processing machine and method for manufacturing the same Expired - Lifetime JP4074217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112554A JP4074217B2 (en) 2003-04-17 2003-04-17 Lens protection member for laser processing machine and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112554A JP4074217B2 (en) 2003-04-17 2003-04-17 Lens protection member for laser processing machine and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004317834A JP2004317834A (en) 2004-11-11
JP4074217B2 true JP4074217B2 (en) 2008-04-09

Family

ID=33472717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112554A Expired - Lifetime JP4074217B2 (en) 2003-04-17 2003-04-17 Lens protection member for laser processing machine and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4074217B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113901A (en) * 1981-12-26 1983-07-07 Nippon Kogaku Kk <Nikon> Laminated optical structural body
JPS58217901A (en) * 1982-06-14 1983-12-19 Nippon Kogaku Kk <Nikon> Laminate vapor-deposited on both sides
JP2001235603A (en) * 2000-02-25 2001-08-31 Ricoh Co Ltd Optical device, optical device for optical recording and reproducing, and information recording and reproducing device
JP2002372763A (en) * 2001-04-10 2002-12-26 Mitsubishi Electric Corp Optical window for infrared camera, infrared camera using the same and production method for the optical window
JP3807726B2 (en) * 2001-12-27 2006-08-09 株式会社リコー Objective lens for optical pickup, manufacturing method thereof, optical pickup module, optical disc apparatus, and dew condensation removing method

Also Published As

Publication number Publication date
JP2004317834A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
TWI732427B (en) Optical member and laser processing machine
US20180364402A1 (en) Extending the reflection bandwith of silver coating stacks for highly reflective mirrors
TWI655453B (en) Optical member and laser processor
JP5207471B2 (en) Optical components
US10459134B2 (en) UV-blocking coating with capping layer in optical assembly having UV light source
WO2005059610A1 (en) Optical filter
US4988164A (en) Anti-reflection film for synthetic resin optical elements
JP2008260978A (en) Method for forming reflection film
JP4074217B2 (en) Lens protection member for laser processing machine and method for manufacturing the same
US6150039A (en) Protective and/or reflectivity enhancement of noble metal
CN106291908A (en) Golden enhancement mode reflectance coating system and preparation method for large-scale astronomical telescope primary mirror
US10578785B2 (en) Blocking coating with adhesion layer for ultraviolet optics
WO2016203863A1 (en) Optical component and laser machining apparatus
JP2006095601A (en) Laser guide for working machine and its production method
EP3992672B1 (en) Optical element, optical system, and optical apparatus
JPS5895301A (en) Laser total reflector
EP1497680B1 (en) Thin layer polarisation splitter, method for the production thereof, and ophthalmic lens comprising projection inserts containing the same
US20230275392A1 (en) Laser amplification module for a solid-state laser system and method for manufacturing thereof
CN113946004A (en) Reflector and manufacturing method thereof, lens module and electronic equipment
JPS58149002A (en) Total reflection mirror for laser light
JP2000019304A (en) Optical parts
JPH06250017A (en) Multilayer film filter device for optical fiber
CN216083160U (en) Reflective sheet having a plurality of refractive layers
US20060193974A1 (en) Production method for chip-form film-forming component
JP3353948B2 (en) Beam splitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term