JPS58217901A - Laminate vapor-deposited on both sides - Google Patents

Laminate vapor-deposited on both sides

Info

Publication number
JPS58217901A
JPS58217901A JP57100789A JP10078982A JPS58217901A JP S58217901 A JPS58217901 A JP S58217901A JP 57100789 A JP57100789 A JP 57100789A JP 10078982 A JP10078982 A JP 10078982A JP S58217901 A JPS58217901 A JP S58217901A
Authority
JP
Japan
Prior art keywords
film
substrate
deposited
vapor
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57100789A
Other languages
Japanese (ja)
Other versions
JPS6218881B2 (en
Inventor
Norio Yamamura
山村 則夫
Masaaki Kaneko
正昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP57100789A priority Critical patent/JPS58217901A/en
Publication of JPS58217901A publication Critical patent/JPS58217901A/en
Publication of JPS6218881B2 publication Critical patent/JPS6218881B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0833Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To easily obtain both side vapor deposition laminates free from strain without requiring any pretreatment or the like, by correcting strain produced in a base due to the first vapor deposited film formed on one side through formation of the second vapor deposited film on the other side. CONSTITUTION:For example, in forming a thin high-reflectance mirror material, a layer H of high refractive index material, such as TiO2, and a layer L of low index material, such as SiO2 are alternately laminated on the first free 31a of the base glass 31 to form a high-reflectance mirror 32, and MgF2 is vapor deposited onto the second face 31b of the glass 31 so as to form an MgF2 vapor deposited film 22, 23 as the second vapor deposited film also used as prevention of reflection having a thickenss thick enough to erase the strain of the glass 31 due to the formation of the mirror 32. Said example is the case of the base strained by the tensile stress of the first film, but when the first film generates compressive stress, a vapor deposition film exhibiting compressive stress, such as SiO2, may be used as the second vapor deposition film.

Description

【発明の詳細な説明】 本発明は、蒸着膜の内部応力による基板面の歪みを補正
した両面蒸着積層物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a double-sided vapor deposited laminate in which distortion of the substrate surface due to internal stress of the vapor deposited film is corrected.

従来より真空蒸着やスパッタリング法などにより基板」
二に形成された蒸着薄膜中には、場合にヱってその基板
面を歪1せる程の大きな内部応力が存在することが知ら
れている(例えば、Trans、 8th Natl、
 Vacuum Symp。
Conventionally, substrates have been manufactured using vacuum evaporation or sputtering methods.
It is known that in some cases, a large internal stress exists in a vapor-deposited thin film formed on a substrate (e.g., Trans, 8th Natl,
Vacuum Symp.

1961年刊 P943〜 )。Published in 1961, P943~).

この蒸着膜中の内部応力により、その両面が平面状に研
磨加工された基板11(第11図(a))は、これが非
常に薄い場合、外部から検知されるほどに変形する。変
形には第1図(b)又は(c)に示す如く、蒸着膜12
の個別によって引張応力による場合(第1図(b))と
、圧縮応力による場合(第1図(C))がある。
Due to the internal stress in the deposited film, the substrate 11 (FIG. 11(a)), whose both surfaces have been polished into a planar shape, is deformed to the extent that it can be detected from the outside if it is very thin. For deformation, as shown in FIG. 1(b) or (c), the vapor deposited film 12
Depending on the case, there are cases where the stress is caused by tensile stress (FIG. 1(b)) and cases where the stress is caused by compressive stress (FIG. 1(C)).

厳密に言えば、同じ物質からなる蒸着膜てあっても、そ
の蒸着法(例えば真空蒸着、スパッタリング、CVDな
と)や、蒸着時のUn々の条件(例えば基板温度、蒸着
速度、真空度、蒸発源と基板との位置関係など)が異な
れば、蒸着膜12の内部に発生する内部応力、ひいては
基板11の歪み計も変わってし“よう。
Strictly speaking, even if the deposited films are made of the same substance, the deposition method (e.g., vacuum evaporation, sputtering, CVD) and the various conditions during the deposition (e.g., substrate temperature, deposition rate, degree of vacuum, If the positional relationship between the evaporation source and the substrate differs, the internal stress generated inside the deposited film 12 and, by extension, the strain gauge of the substrate 11 will also change.

蒸着膜中の内部応力と基板面の歪みldとの関係につい
ては既に解析され、以下の式で示される仁とが知られて
いる( A、 E、 C,TechnicalRepo
rt’A 15 、 I 96 ]年団)。基板が矩形
断面の場合にし、l、 4Eb2 ここでσ:蒸着膜中の内部応力(dyn / cr/l
 )E 基板のヤング率(dyn lcr! )ν、基
板のポアソン比 す、基板の厚み(crn) L 基板の長さくctn) Δ:基板の歪み量(m) なお、基板11の歪み量とは、両端を拘束しない状態に
おいて基板両端を結ぶ直線から基板中心まで下した垂線
の高さhである。
The relationship between the internal stress in the deposited film and the strain ld on the substrate surface has already been analyzed, and the relationship expressed by the following equation is known (A, E, C, TechnicalRepo
rt'A 15, I 96]. When the substrate has a rectangular cross section, l, 4Eb2 where σ: internal stress in the deposited film (dyn/cr/l
) E Young's modulus of the substrate (dyn lcr!) ν, Poisson's ratio of the substrate, thickness of the substrate (crn) L Length of the substrate ctn) Δ: Amount of strain on the substrate (m) What is the amount of strain on the substrate 11? , is the height h of a perpendicular line drawn from a straight line connecting both ends of the board to the center of the board in a state where both ends are not restrained.

−」二人より明らかな如く、蒸着膜12中に発生する内
部応力σを一定とした時には、基板の長さが非常に長か
ったり、あるいは厚さが非常に薄いときには膜内部応力
による基板面歪み量Δが大きくなる。
- As is clear from both of them, when the internal stress σ generated in the deposited film 12 is constant, if the length of the substrate is very long or the thickness is very thin, the substrate surface will be distorted due to the internal stress of the film. The amount Δ increases.

上記基板11の歪みが実際に問題とされるのは、特に高
度な面精度(歪み量λ/100〜λ/200但しλ:波
長)を要求される場合、即ち例えばエタロン板に於いて
である。ここにエタロン板は、良く知られているように
多重干渉を利用した分光器に用いられるものである。エ
タロン板の表面は高い反射率を要求されるため、しばし
ば無機誘電体の多層膜が蒸着される。然るに、この多層
膜の内部応力の為に、せっかく基板(カラス)をλ/2
00以下という高度な面精度に研磨しても、蒸着後λ1
50〜λまで歪んでしまうことがある。
The distortion of the substrate 11 is actually a problem when a particularly high level of surface precision (distortion amount λ/100 to λ/200, where λ is wavelength) is required, that is, for example, in an etalon plate. . As is well known, the etalon plate is used in a spectrometer that utilizes multiple interference. Since the surface of the etalon plate is required to have high reflectance, a multilayer film of an inorganic dielectric is often deposited. However, due to the internal stress of this multilayer film, the substrate (glass) was
Even if polished to a high surface accuracy of 00 or less, λ1 after vapor deposition
It may be distorted up to 50 to λ.

またレーザ測距儀等に使用されるダイクロイックミラー
は、その光学系の要請から薄い基板が用いられ、しかも
分光特性」二特にレーザー波長のみを選択的に反射させ
る為に誘電体の多層膜が蒸着される。測距にはレーザ波
長での干渉縞が利用されるが、この要請によりダイクロ
イックミラーの面精度も非常な高度さが要求される。こ
の場合、多層蒸着膜V」5、分光特性を満足することを
優先させて物質の選択及び厚みの設言1がなされるのが
通常であるため、蒸着膜の内部応力によって引きおこさ
れる基板面及びそれに伴なう膜面の歪みに対しては、別
の手段をもって解決しなければならない。
In addition, dichroic mirrors used in laser rangefinders, etc., use thin substrates due to the requirements of their optical systems, and are coated with a multilayer dielectric film to selectively reflect only the laser wavelength. be done. Interference fringes at laser wavelengths are used for distance measurement, but this requirement requires dichroic mirrors to have extremely high surface accuracy. In this case, the material selection and thickness are usually made with priority given to satisfying the spectral characteristics of the multilayer deposited film V'5. And the resulting distortion of the film surface must be solved by other means.

その解決法として予め基板に蒸着する膜により生ずる内
部応力及び基板歪み量を測定しておき、前もって基板面
を研磨加工して反対方向に曲率を持たせておく方法が考
えられる。
A possible solution to this problem is to measure the internal stress and substrate distortion caused by the film deposited on the substrate in advance, and then polish the substrate surface in advance to give it a curvature in the opposite direction.

この様子を第2図に示す。第2図(b)及び(d)は蒸
着膜22が引張応力を示す場合であり、この揚台には基
板21を予め凸面加工(下方に湾曲させる)しておく。
This situation is shown in FIG. FIGS. 2(b) and 2(d) show the case where the deposited film 22 exhibits tensile stress, and the substrate 21 is previously processed to have a convex surface (curved downward) on this platform.

一方、第2図(C)及び(e)は蒸着膜23が圧縮応力
を示す場合であり、この場合には基板21を予め凹面加
工(」一方に湾曲させる)しておく。
On the other hand, FIGS. 2C and 2E show cases in which the deposited film 23 exhibits compressive stress, and in this case, the substrate 21 is preliminarily processed to have a concave surface (curved in one direction).

しかしながら、この方法には以下の欠点がある。However, this method has the following drawbacks.

(1)異なった膜物質及び多層膜構成を使用する都度、
予備実験により、各々の基板の歪み[iを測定しなけれ
ばならないこと (2)前工程である基板面の曲率加工研磨に、かなりの
精度が要求されること 本発明は、これらの欠点を解決し、特に予備的な実験及
び前加工を必要とせず、それ故結果的に製造時間を短縮
でき、良品率を向−4ニさせることができる蒸着積層物
を提供することを目的とする。
(1) Each time different membrane materials and multilayer configurations are used,
It is necessary to measure the distortion [i] of each substrate through preliminary experiments.(2) Considerable precision is required in the curvature processing and polishing of the substrate surface, which is the previous process.The present invention solves these drawbacks. However, it is an object of the present invention to provide a vapor-deposited laminate that does not require any preliminary experiments or pre-processing, and therefore can shorten the manufacturing time and improve the yield rate by -4.

本発明者らは蒸着膜の内部応力による基板面の歪みを後
から補正することで高度な面精度を得ることを着想し、
基板面の一方の面に所望の特性を有する多層膜又は単層
膜を蒸着した後、基板の他方の面に別の蒸着膜を蒸着し
、このようにすることによって双方の蒸着膜の内部応力
を相殺させて、基板面の歪みの問題を解消した両面蒸着
積層物を発明した。
The present inventors came up with the idea of obtaining a high degree of surface accuracy by later correcting the distortion of the substrate surface due to the internal stress of the deposited film.
After depositing a multilayer film or a single layer film having desired properties on one side of the substrate, another deposited film is deposited on the other side of the substrate, thereby reducing the internal stress of both deposited films. We have invented a double-sided vapor-deposited laminate that eliminates the problem of distortion on the substrate surface by offsetting the above.

本発明を実施するにあたり、その対象となる蒸着積層物
が反射型光学系の場合、基板の裏面側に応力補正のため
に蒸着する膜は、(」質及び膜厚を任意に選ぶことがで
きる。それに対して、透過型光学系の場合は、分光透過
率に影響を力えるので、任意という訳にはいかない。例
えば基板裏面には、しばしば迷光を防ぐために反射防止
層を蒸着する。この場合、材質として表面蒸着層の膜応
力と釣り合う応力を生ずるものを選べば良い。更に膜厚
を一定にしだのでは基板の歪みが補正されない場合は、
反射防止効果を損うことのない範囲内で必要に応じて後
からその膜厚を変化させることにより、表面蒸着層の膜
応力と釣合った応力を有する反射防止膜を形成すること
ができる。
In carrying out the present invention, if the target vapor-deposited laminate is a reflective optical system, the film deposited on the back side of the substrate for stress correction can be arbitrarily selected in quality and thickness. On the other hand, in the case of transmissive optical systems, this cannot be done arbitrarily as it affects the spectral transmittance.For example, an antireflection layer is often deposited on the back side of the substrate to prevent stray light.In this case The material should be selected to produce a stress that balances the film stress of the surface deposited layer.Furthermore, if the distortion of the substrate cannot be corrected by keeping the film thickness constant,
By later changing the film thickness as necessary within a range that does not impair the antireflection effect, it is possible to form an antireflection film having stress balanced with the film stress of the surface deposited layer.

即ち、第1血族着層の膜応力のバラツキや蒸着前の基板
面研磨仕上り状態(面精度)のバラツキがあっても、後
の第2簡潔着で補正できるので製造工程が比較的楽にな
シ、且つ高い基板面精度が得られる。
In other words, even if there are variations in the film stress of the first blood-related deposition layer or variations in the polished finish (surface accuracy) of the substrate surface before vapor deposition, they can be corrected in the subsequent second deposition, making the manufacturing process relatively easy. , and high substrate surface accuracy can be obtained.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

ここで基板ガラス31は、その厚みが0.6 nrtn
と薄いものを用い、両面蒸着積層物の構造は第3図に示
す様に第1面31aに高屈折率物質からなるH層と低屈
折率物質からなるL層とを交互に組み合わせた高反射ミ
ラー32を形成しくここで言う高屈折率、低屈折率とは
基板ガラスの屈折率に対しての意味である)、それとは
反対側の第2面31bに単層反射防止層膜33を形成し
てなる。
Here, the substrate glass 31 has a thickness of 0.6 nrtn
As shown in Figure 3, the structure of the double-sided vapor-deposited laminate is a high-reflection layer in which H layers made of a high refractive index material and L layers made of a low refractive index material are alternately combined on the first surface 31a. To form the mirror 32 (the high refractive index and low refractive index referred to herein refer to the refractive index of the substrate glass), a single-layer antireflection layer film 33 is formed on the second surface 31b on the opposite side. It will be done.

高反射ミラー32の構成は、H層としてTi O2、L
層としテSi O2を用い、ガラス基板31上に11層
とL層を交互に6組形成し最後に、H層をもう一層形成
してなる(第4図参照)。
The configuration of the high reflection mirror 32 includes TiO2 as the H layer, L
Using SiO2 as the layers, six sets of 11 layers and L layers are alternately formed on a glass substrate 31, and finally, another H layer is formed (see FIG. 4).

各々の層は、電子ビームによる一般的な真空蒸着法で形
成し、その厚さは、TL O2層580人、SL 02
層900人である。その結果、発生した膜応力は、引張
応力4.5 X 10 ’ dyn/crlであった。
Each layer is formed by a general vacuum evaporation method using an electron beam, and its thickness is 580 layers for TL O2 layer and 580 layers for SL 02 layer.
There are 900 people in the group. As a result, the membrane stress generated was a tensile stress of 4.5×10′ dyn/crl.

次に、上記高反射ミラー32にょる引張応力によって生
じた基板31の歪みを補正する目的で、基板の反対面3
1bに、同じ引張応ヵ、、オL、fl−’l)□1ヶ4
1゜67.□□イ□  ゛ ”折率のM9 F 2単層
膜を蒸着した。’9 F 2膜は、Pめ実験により厚さ
約950八て内部引張応力1.7 X l 04dyn
/cJを示すことが確かめられた。そこで、上記高反射
ミラー32による引張応力と釣合わせるためにはおよそ
2500人のM、F 2膜を形成すれば良いことが予測
された。
Next, in order to correct the distortion of the substrate 31 caused by the tensile stress caused by the high reflection mirror 32, the opposite surface 3 of the substrate
1b, the same tensile force, oh L, fl-'l) □ 1 piece 4
1°67. A M9 F2 single layer film with a refractive index of
/cJ. Therefore, it was predicted that in order to balance the tensile stress caused by the high reflection mirror 32, it would be sufficient to form approximately 2,500 M and F 2 films.

この予測に基いて、MgF 2膜を2500人形成した
所、高反射ミラ一層32の4.5X 10’ dynA
iの引張応力が0.5 X 10’ dyn 1crl
以下の引張応力にまで緩和され、その結果、基板31表
面の歪みがλ<a  以下に激減し、所望の面精度をイ
jする高反射ミラー機料(本発明でいう両面蒸着積層物
の一実施態様〕が得られた。
Based on this prediction, 2,500 MgF2 films were formed, and 32 4.5X 10' dynA high-reflection mirror layers were formed.
The tensile stress of i is 0.5 x 10' dyn 1crl
As a result, the strain on the surface of the substrate 31 is drastically reduced to λ<a or less, and a high reflection mirror material (one of the double-sided vapor deposited laminates in the present invention) that achieves the desired surface precision Embodiment] was obtained.

このように本発明では完全に平らな面が得られなくとも
、許容し得る面精度が得られればそれて差し支乏−ない
As described above, in the present invention, even if a completely flat surface cannot be obtained, there is no problem as long as an acceptable surface precision can be obtained.

な訃、高反射ミラ一層32が別の膜拐料から成り、その
ためにその発生応力が圧縮応力を示す場合にt、1、反
対面の応力補正用の反射防止層33としては、同じ圧縮
応力を示す蒸着膜を用いねばならない。圧縮応力を示す
蒸オ’、1NlSt 02膜で本発明者らの実験による
と膜厚1000八での圧縮応力値はおよそ2.6×10
 ’ dyn / caであった。
However, if the high-reflection mirror layer 32 is made of a different film material and the generated stress exhibits compressive stress, t,1, the anti-reflection layer 33 for stress correction on the opposite side has the same compressive stress. A deposited film must be used that exhibits the following properties. According to experiments conducted by the present inventors on a vaporized 1NlSt02 film that exhibits compressive stress, the compressive stress value at a film thickness of 1000 mm is approximately 2.6 x 10
' dyn/ca.

また、本発明は積層物が光学部材(反射ミラー、レンズ
、フィルタ等)である場合には反射式でも透過式でも良
いことは前述の通りである。また積層物は光学部材でな
くとも良いことは言うまでもない。
Further, as described above, in the present invention, when the laminate is an optical member (reflection mirror, lens, filter, etc.), either a reflection type or a transmission type may be used. It goes without saying that the laminate does not have to be an optical member.

以上述べてきたように、本発明によ・れば、第1蒸着膜
の内部応力による基板の歪みが第2蒸着膜によって補正
され、この第2蒸着物は必要に応じて後で追加蒸着する
ことができるので、第1蒸着膜の内部応力による基板の
歪みを考慮して最適の厚さ、種類とできる。
As described above, according to the present invention, the distortion of the substrate due to the internal stress of the first deposited film is corrected by the second deposited film, and this second deposited material can be additionally deposited later as necessary. Therefore, the optimum thickness and type can be determined in consideration of the distortion of the substrate due to the internal stress of the first deposited film.

しかもこのことが、面倒な予備実験や精度の良い研磨加
工を要することなく行なえるので、安価にして歩留りが
良くかつ秀れた積層物が大量生産できるという効果が奏
される。
Moreover, since this can be done without requiring troublesome preliminary experiments or precise polishing, it is possible to mass-produce excellent laminates at low cost and with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は従来の蒸着による基板の歪みを
説明する断面図である。 第2図(a)〜(e)は蒸着による基板の歪みを解消す
る一つの手法を説明する断面図である。 第3図は本発明の一実施例を示す両面蒸着積層物の断面
図である。 第4図は第3図の部分拡大図である。 〔主要部分の符号の説明〕 21.31 ・・・・・・山川基板 22.32.33・・・・・蒸着膜 出願人 : 日本光学工業株式会社 安   井   幸   −g!、¥、、i古さ−+>
− ;+−j図 (12) 矛3図
FIGS. 1(a) to 1(c) are cross-sectional views illustrating distortion of a substrate due to conventional vapor deposition. FIGS. 2(a) to 2(e) are cross-sectional views illustrating one method for eliminating distortion of a substrate caused by vapor deposition. FIG. 3 is a sectional view of a double-sided vapor deposited laminate showing an embodiment of the present invention. FIG. 4 is a partially enlarged view of FIG. 3. [Explanation of symbols of main parts] 21.31 ... Yamakawa substrate 22.32.33 ... Deposited film Applicant: Nippon Kogaku Kogyo Co., Ltd. Yuki Yasui -g! , ¥, ,i oldness -+>
- ;+-j figure (12) Spear figure 3

Claims (1)

【特許請求の範囲】[Claims] 基板の一側に蒸着された内部応力を有する第1蒸着膜、
前記内部応力により歪みを起こす基板及び前記第1蒸着
膜とは反対側に蒸着され、第1蒸着膜の有する内部応力
と釣合った内部応力を有する第2蒸着膜から成ることを
特徴とする両面蒸着積層物。
a first deposited film having internal stress deposited on one side of the substrate;
A double-sided structure characterized by comprising a substrate which causes distortion due to the internal stress, and a second vapor deposited film deposited on the opposite side of the first vapor deposited film and having an internal stress balanced with the internal stress of the first vapor deposited film. Vapor-deposited laminate.
JP57100789A 1982-06-14 1982-06-14 Laminate vapor-deposited on both sides Granted JPS58217901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100789A JPS58217901A (en) 1982-06-14 1982-06-14 Laminate vapor-deposited on both sides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100789A JPS58217901A (en) 1982-06-14 1982-06-14 Laminate vapor-deposited on both sides

Publications (2)

Publication Number Publication Date
JPS58217901A true JPS58217901A (en) 1983-12-19
JPS6218881B2 JPS6218881B2 (en) 1987-04-24

Family

ID=14283201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100789A Granted JPS58217901A (en) 1982-06-14 1982-06-14 Laminate vapor-deposited on both sides

Country Status (1)

Country Link
JP (1) JPS58217901A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189704A (en) * 1984-03-09 1985-09-27 Univ Kyoto Multi-layered oxide film having periodicity
JPS61296306A (en) * 1985-06-25 1986-12-27 Horiba Ltd Infrared interference filter made of multi-layered film
DE3543812A1 (en) * 1985-12-12 1987-06-19 Leybold Heraeus Gmbh & Co Kg METHOD FOR PRODUCING A PARTLY-PASTE OPTICAL BODY AND METHOD PRODUCED BY OPTICAL BODY
JPS6349704A (en) * 1986-08-20 1988-03-02 Fujitsu Ltd Dichroic mirror
JPS6382401A (en) * 1986-09-27 1988-04-13 Dainippon Printing Co Ltd Production of fresnel lens sheet
JPS63182603A (en) * 1987-01-24 1988-07-27 Matsushita Electric Works Ltd Ultraviolet cut filter
JPS6457207A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Waveguide type optical device
JPH05127018A (en) * 1991-11-02 1993-05-25 Koshin Kogaku:Kk Strain removing method for substrate subjected to vapor deposition and filter
US5523862A (en) * 1993-04-23 1996-06-04 Ushiodenki Kabushiki Kaisha Parabolic dielectric multilayer reflector
US5786117A (en) * 1990-05-22 1998-07-28 Canon Kabushiki Kaisha Medium and related method and apparatus for recording and reproducing information in cells using multiple interference
EP0929827A1 (en) * 1996-09-30 1999-07-21 Corning Incorporated Strengthened optical glass filter
JP2004303562A (en) * 2003-03-31 2004-10-28 Dainippon Printing Co Ltd Substrate for organic electroluminescent element
JP2004317834A (en) * 2003-04-17 2004-11-11 Mitsubishi Electric Corp Laser transmitting member and its manufacturing method
GB2393188B (en) * 2002-09-25 2006-01-04 Fujitsu Ltd Optical device
WO2006006363A1 (en) * 2004-07-09 2006-01-19 Daishinku Corporation Optical filter and method of manufacturing optical filter
US7411729B2 (en) 2004-08-12 2008-08-12 Olympus Corporation Optical filter, method of manufacturing optical filter, optical system, and imaging apparatus
JP2008192280A (en) * 2007-01-10 2008-08-21 Epson Toyocom Corp Aperture filter and aperture filter with wavelength plate function
WO2009016658A1 (en) * 2007-07-27 2009-02-05 Galileo Avionica S.P.A. Preliminary controlled pre-deformation treatment for the production of mirrors
JP2009139885A (en) * 2007-12-11 2009-06-25 Sony Corp Pellicle mirror and imaging apparatus
CN103233200A (en) * 2013-03-28 2013-08-07 同济大学 355 nm high threshold high reflection film preparation method
JP2015068886A (en) * 2013-09-27 2015-04-13 セイコーエプソン株式会社 Interference filter, optical filter device, optical module, and electronic equipment
US9128279B2 (en) 2010-08-25 2015-09-08 Seiko Epson Corporation Wavelength-tunable interference filter, optical module, and optical analysis apparatus
US9557554B2 (en) 2010-08-25 2017-01-31 Seiko Epson Corporation Wavelength-variable interference filter, optical module, and optical analysis device
JP2017506363A (en) * 2014-01-30 2017-03-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for manufacturing a mirror element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760011B2 (en) * 2004-12-24 2011-08-31 セイコーエプソン株式会社 Optical member
JP2009198756A (en) * 2008-02-21 2009-09-03 Oki Semiconductor Co Ltd Optical transceiving module, and wavelength branching filter used therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785972A (en) * 1980-11-17 1982-05-28 Anelva Corp Thin film former

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785972A (en) * 1980-11-17 1982-05-28 Anelva Corp Thin film former

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189704A (en) * 1984-03-09 1985-09-27 Univ Kyoto Multi-layered oxide film having periodicity
JPS61296306A (en) * 1985-06-25 1986-12-27 Horiba Ltd Infrared interference filter made of multi-layered film
DE3543812A1 (en) * 1985-12-12 1987-06-19 Leybold Heraeus Gmbh & Co Kg METHOD FOR PRODUCING A PARTLY-PASTE OPTICAL BODY AND METHOD PRODUCED BY OPTICAL BODY
JPS6349704A (en) * 1986-08-20 1988-03-02 Fujitsu Ltd Dichroic mirror
JPS6382401A (en) * 1986-09-27 1988-04-13 Dainippon Printing Co Ltd Production of fresnel lens sheet
JPS63182603A (en) * 1987-01-24 1988-07-27 Matsushita Electric Works Ltd Ultraviolet cut filter
JPS6457207A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Waveguide type optical device
US5786117A (en) * 1990-05-22 1998-07-28 Canon Kabushiki Kaisha Medium and related method and apparatus for recording and reproducing information in cells using multiple interference
JPH05127018A (en) * 1991-11-02 1993-05-25 Koshin Kogaku:Kk Strain removing method for substrate subjected to vapor deposition and filter
US5523862A (en) * 1993-04-23 1996-06-04 Ushiodenki Kabushiki Kaisha Parabolic dielectric multilayer reflector
EP0929827A1 (en) * 1996-09-30 1999-07-21 Corning Incorporated Strengthened optical glass filter
EP0929827A4 (en) * 1996-09-30 2000-11-22 Corning Inc Strengthened optical glass filter
GB2393188B (en) * 2002-09-25 2006-01-04 Fujitsu Ltd Optical device
JP2004303562A (en) * 2003-03-31 2004-10-28 Dainippon Printing Co Ltd Substrate for organic electroluminescent element
JP2004317834A (en) * 2003-04-17 2004-11-11 Mitsubishi Electric Corp Laser transmitting member and its manufacturing method
WO2006006363A1 (en) * 2004-07-09 2006-01-19 Daishinku Corporation Optical filter and method of manufacturing optical filter
JPWO2006006363A1 (en) * 2004-07-09 2008-04-24 株式会社大真空 Optical filter and optical filter manufacturing method
JP4692486B2 (en) * 2004-07-09 2011-06-01 株式会社大真空 Optical filter and optical filter manufacturing method
US7411729B2 (en) 2004-08-12 2008-08-12 Olympus Corporation Optical filter, method of manufacturing optical filter, optical system, and imaging apparatus
JP2010153025A (en) * 2007-01-10 2010-07-08 Epson Toyocom Corp Aperture filter, and aperture filter with wavelength plate function
JP2008192280A (en) * 2007-01-10 2008-08-21 Epson Toyocom Corp Aperture filter and aperture filter with wavelength plate function
WO2009016658A1 (en) * 2007-07-27 2009-02-05 Galileo Avionica S.P.A. Preliminary controlled pre-deformation treatment for the production of mirrors
JP2009139885A (en) * 2007-12-11 2009-06-25 Sony Corp Pellicle mirror and imaging apparatus
US9128279B2 (en) 2010-08-25 2015-09-08 Seiko Epson Corporation Wavelength-tunable interference filter, optical module, and optical analysis apparatus
US9557554B2 (en) 2010-08-25 2017-01-31 Seiko Epson Corporation Wavelength-variable interference filter, optical module, and optical analysis device
CN103233200A (en) * 2013-03-28 2013-08-07 同济大学 355 nm high threshold high reflection film preparation method
JP2015068886A (en) * 2013-09-27 2015-04-13 セイコーエプソン株式会社 Interference filter, optical filter device, optical module, and electronic equipment
JP2017506363A (en) * 2014-01-30 2017-03-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for manufacturing a mirror element
US10423073B2 (en) 2014-01-30 2019-09-24 Carl Zeiss Smt Gmbh Method for producing a mirror element

Also Published As

Publication number Publication date
JPS6218881B2 (en) 1987-04-24

Similar Documents

Publication Publication Date Title
JPS58217901A (en) Laminate vapor-deposited on both sides
US6894838B2 (en) Extended bandwidth mirror
US3853386A (en) Low-loss, highly reflective multilayer coating system formed of alternate highly refractive and low-refractive oxide layers
US4415233A (en) Achromatized beam splitter of low polarization
JP2007171735A (en) Wide band anti-reflection film
JP2002267834A (en) Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion
US20050271883A1 (en) Light-transmitting element and method for making same
US7505208B1 (en) Air-gap optical structure with a nonreflective air-gap spacer
JPS5860701A (en) Reflection preventing film
JPWO2006006363A1 (en) Optical filter and optical filter manufacturing method
CN106291908A (en) Golden enhancement mode reflectance coating system and preparation method for large-scale astronomical telescope primary mirror
US3578848A (en) Method of making an interference filter
CN112817070B (en) Surface shape correction method of planar optical element
JPS58223101A (en) Production of polygonal mirror
JPS5910901A (en) Optical laminate
JP7251099B2 (en) Bandpass filter and manufacturing method thereof
US7180670B2 (en) Chirped multilayer mirror
JPWO2006092919A1 (en) Optical element and optical element manufacturing method
JPH06186403A (en) Multilayer film optical member
JPH08327809A (en) Plastic reflecting mirror
KR101146619B1 (en) High reflection mirror for simultaneously satisfying visible ray and infrared ray region
JPS58113901A (en) Laminated optical structural body
JPH07280999A (en) Multilayer film x-ray reflector
JPH01286476A (en) Laser mirror having flat spectral characteristics in narrow wavelength band
CN210222375U (en) Spectroscope of neutral beam splitting membrane combined by metal medium