JPWO2006092919A1 - Optical element and optical element manufacturing method - Google Patents

Optical element and optical element manufacturing method Download PDF

Info

Publication number
JPWO2006092919A1
JPWO2006092919A1 JP2007505821A JP2007505821A JPWO2006092919A1 JP WO2006092919 A1 JPWO2006092919 A1 JP WO2006092919A1 JP 2007505821 A JP2007505821 A JP 2007505821A JP 2007505821 A JP2007505821 A JP 2007505821A JP WO2006092919 A1 JPWO2006092919 A1 JP WO2006092919A1
Authority
JP
Japan
Prior art keywords
substrate
thin film
optical element
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007505821A
Other languages
Japanese (ja)
Other versions
JP5098640B2 (en
Inventor
邦彦 吉野
邦彦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007505821A priority Critical patent/JP5098640B2/en
Publication of JPWO2006092919A1 publication Critical patent/JPWO2006092919A1/en
Application granted granted Critical
Publication of JP5098640B2 publication Critical patent/JP5098640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Abstract

厚さ0.8mm以下の石英製の基板1の表面に、SiO2薄膜2とNb2O5薄膜3を、交互に合計約100層成膜して、多層光学薄膜4を形成する。基板1の線膨張係数が小さくて、多層光学薄膜4との差が大きいので、基板1を、通常200℃程度である成膜状態から常温としたとき、多層光学薄膜4の圧縮応力と、温度降下によって発生する熱応力が相殺して、基板1の変形(反り)が軽減される。よって、基板1をダイシングソー等により切断するときに加工が容易であり、破損することが少なく、かつ、切り出された光学素子の面精度が向上する。A multilayer optical thin film 4 is formed by alternately depositing about 100 layers of SiO 2 thin films 2 and Nb 2 O 5 thin films 3 on the surface of a quartz substrate 1 having a thickness of 0.8 mm or less. Since the linear expansion coefficient of the substrate 1 is small and the difference from the multilayer optical thin film 4 is large, the compression stress and temperature of the multilayer optical thin film 4 when the substrate 1 is brought to room temperature from the film formation state which is usually about 200 ° C. The thermal stress generated by the descent cancels out, and the deformation (warpage) of the substrate 1 is reduced. Therefore, when the substrate 1 is cut with a dicing saw or the like, the processing is easy, the damage is less, and the surface accuracy of the cut out optical element is improved.

Description

本発明は、基板の上に誘電体膜等の薄膜を成膜して形成される光学素子、及びこのような光学素子の製造方法に関するものである。   The present invention relates to an optical element formed by forming a thin film such as a dielectric film on a substrate, and a method for manufacturing such an optical element.

光通信等に使用される干渉フィルタや反射防止膜等の光学素子の中には、厚さが1mm以下のガラスの上に、薄膜を多層に形成し、多層薄膜における光の干渉を利用して所望の光学特性を持たせるものがある。   In optical elements such as interference filters and antireflection films used for optical communications, etc., a thin film is formed on a glass with a thickness of 1 mm or less, and light interference in the multilayer thin film is utilized. Some have desired optical characteristics.

このような光学素子は、例えば、50mm角、厚さが約0.3mmのガラス基板(BK7)の上に、低屈折物質であるSiOと、高屈折物質であるNb、Ta、TiO、ZrO、HfO等の薄膜を交互に積層して(各薄膜の一層当たりの厚さは、典型的には数十nm〜数百nmである)形成される。又、Alのような前記低屈折率物質の薄膜と高屈折率物質の薄膜の中間の屈折率を有する薄膜が、これらの低屈折率物質と高屈折率物質の間に適当に介在する膜構造の多層薄膜とすることもある。Such optical elements are, for example, 50 mm square, on a glass substrate having a thickness of about 0.3 mm (BK7), and SiO 2 which is a low refractive material, Nb 2 O 5, Ta 2 O is a high refractive material 5 , thin films of TiO 2 , ZrO 2 , HfO 2, etc. are alternately stacked (the thickness of each thin film is typically several tens to several hundreds of nanometers). Further, a thin film having a refractive index intermediate between the low refractive index material thin film and the high refractive index material thin film such as Al 2 O 3 is appropriately interposed between the low refractive index material and the high refractive index material. The film structure may be a multilayer thin film.

成膜には、スパッタリング法やイオンビームアシスト法が使用されることが多い。成膜の完了後、表面に多層薄膜を有する基板は常温に冷却され、ダイシングソー等により所定の大きさに切断されて、光学素子として使用される。   A sputtering method or an ion beam assist method is often used for film formation. After the film formation is completed, the substrate having the multilayer thin film on the surface is cooled to room temperature, cut into a predetermined size by a dicing saw or the like, and used as an optical element.

このような光学素子を製造する際に、多層薄膜の圧縮応力の影響で、基板に反りが発生するという問題点がある。この場合、圧縮応力とは、多層薄膜が成膜された側の基板の面を伸ばすように働く応力のことであり、このために、成膜後の基板は、多層薄膜が成膜された側が凸となるように変形する。このような圧縮応力は、Nbの場合には、50〜150MPa、SiOの場合には、150〜350MPaと推定されている。When manufacturing such an optical element, there is a problem that the substrate is warped due to the compressive stress of the multilayer thin film. In this case, the compressive stress is a stress that works so as to stretch the surface of the substrate on which the multilayer thin film is formed. Deform to be convex. Such compressive stress is estimated to be 50 to 150 MPa in the case of Nb 2 O 5 and 150 to 350 MPa in the case of SiO 2 .

この基板の変形が許容限度を超えると、ダイシングソー等での切断が困難になったり、取り扱い中に破損したりするという問題がある。又、切り出された光学素子の表面が平坦にならないという問題点が発生する場合がある。切り出された光学素子の表面が平坦にならないと、当該光学素子に入射する光の位置によって光学特性が変わったり、これらの微小な光学素子を並べて、ガラス等の他の光学素子の間に挟む際に、表面が凹凸となり、接着がうまく行われない等の問題点が発生する。   If the deformation of the substrate exceeds the allowable limit, there is a problem that it becomes difficult to cut with a dicing saw or the like, or breaks during handling. Further, there may be a problem that the surface of the cut out optical element is not flat. If the surface of the cut out optical element does not become flat, the optical characteristics change depending on the position of light incident on the optical element, or when these micro optical elements are arranged and sandwiched between other optical elements such as glass In addition, there are problems such as uneven surface and poor adhesion.

本発明はこのような事情に鑑みてなされたもので、成膜完了後の変形が少なく、従って、切断等の取り扱いが容易で、光学特性の良好な光学素子、及びこのような光学素子の製造方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and there is little deformation after film formation is completed, and therefore, handling such as cutting is easy, optical elements with good optical properties, and manufacture of such optical elements are provided. It is an object to provide a method.

前記課題を解決するための第1の手段は、圧縮応力を有する薄膜を基板上に成膜して形成された光学素子であって、前記基板として、前記薄膜の線膨張係数よりも小さい線膨張係数を有する、厚さが0.8mm以下の素材が使用されていることを特徴とする光学素子である。   A first means for solving the problem is an optical element formed by forming a thin film having a compressive stress on a substrate, and the substrate has a linear expansion smaller than a linear expansion coefficient of the thin film. An optical element having a coefficient and having a thickness of 0.8 mm or less is used.

一般に、薄膜の成膜はスッパタリング法やイオンビームアシスト法等によって行われ、これらは高温で行われる。よって、基板として、薄膜の線膨張係数よりも小さい線膨張係数を有する素材を使用すれば、成膜完了後に常温としたとき、薄膜の収縮量が基板の収縮量より大きくなる。よって、薄膜の圧縮応力と温度降下により基板と薄膜の間に発生する熱応力が相殺し合い、成膜完了後に基板が常温となった状態では、薄膜の圧縮応力により発生する基板の変形量を小さくすることができる。基板の厚さが0.8mm以上となると、膜応力による変形が小さくなって本手段の効果が小さくなるので、基板の厚さを0.8mm以下に限定する。   In general, a thin film is formed by a sputtering method, an ion beam assist method, or the like, and these are performed at a high temperature. Therefore, if a material having a linear expansion coefficient smaller than that of the thin film is used as the substrate, the amount of contraction of the thin film becomes larger than the amount of contraction of the substrate when the room temperature is reached after completion of film formation. Therefore, the thermal stress generated between the substrate and the thin film cancels out due to the compressive stress and temperature drop of the thin film. can do. When the thickness of the substrate is 0.8 mm or more, deformation due to film stress is reduced and the effect of this means is reduced. Therefore, the thickness of the substrate is limited to 0.8 mm or less.

基板の厚さは、0.7mm、0.6mm、0.5mm、0.4mm、0.3mm、0.2mm、0.1mmと薄くなるに従って、本手段の効果が大きくなる。なお、本手段は、必ずしも、スッパタリング法やイオンビームアシスト法によって薄膜が形成されたものに限らない。   As the thickness of the substrate is reduced to 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, and 0.1 mm, the effect of this means increases. Note that this means is not necessarily limited to a thin film formed by the sputtering method or the ion beam assist method.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記薄膜の厚さと前記基板の厚さの比が1:80から3:1の間にあることを特徴とするものである。   The second means for solving the above-mentioned problem is the first means, characterized in that the ratio of the thickness of the thin film to the thickness of the substrate is between 1:80 and 3: 1. To do.

基板の上に誘電体膜等の薄膜を成膜して形成される光学素子の薄膜の厚さは、殆どの場合10μm〜30μmである。又、基板の厚さは、10μm〜0.8mmである。よって、薄膜の厚さと基板の厚さの比が1:80から3:1の間にある場合に、特に前記第1の手段の効果が大きい。   In most cases, the thickness of the thin film of the optical element formed by forming a thin film such as a dielectric film on the substrate is 10 μm to 30 μm. The thickness of the substrate is 10 μm to 0.8 mm. Therefore, when the ratio of the thickness of the thin film to the thickness of the substrate is between 1:80 and 3: 1, the effect of the first means is particularly great.

前記課題を解決する為の第3の手段は、前記第1の手段又は第2の手段であって、前記薄膜が、多層膜構造を有することを特徴とするものである。   A third means for solving the problem is the first means or the second means, wherein the thin film has a multilayer film structure.

前記第1の手段、第2の手段は、干渉フィルターなどを形成する多層膜構造のものであってもよく、積層数が多くなると、様々な分光透過率特性を実現しやすくなるが、一方では薄膜自身の応力も大きくなるので、前記第1の手段、第2の手段を適用することにより得られる効果は、薄膜が、多層膜構造を有する場合に特に大きい。   The first means and the second means may have a multilayer film structure that forms an interference filter or the like, and when the number of layers increases, it becomes easier to realize various spectral transmittance characteristics. Since the stress of the thin film itself also increases, the effect obtained by applying the first means and the second means is particularly great when the thin film has a multilayer structure.

前記課題を解決するための第4の手段は、前記第1の手段から第3の手段のいずれかであって、前記素材が、石英であることを特徴とするものである。   A fourth means for solving the problem is any one of the first means to the third means, wherein the material is quartz.

一般に薄膜の線膨張係数は、約50×10−7/K程度とされている。これに対し、石英の線膨張係数は、約5×10−7/K程度と一桁小さいので、前記第1の手段又は第2の手段の素材として用いると、特に効果が大きい。Generally, the linear expansion coefficient of a thin film is about 50 × 10 −7 / K. On the other hand, the coefficient of linear expansion of quartz is about 5 × 10 −7 / K, which is an order of magnitude smaller, so that it is particularly effective when used as a material for the first means or the second means.

前記課題を解決するための第5の手段は、基板の上に、圧縮応力を有する薄膜を成膜する工程を含む光学素子の製造方法であって、前記基板に、前記薄膜の線膨張係数よりも小さい線膨張係数を有する、厚さが0.8mm以下の素材を使用し、成膜完了後に、表面に薄膜が形成された前記基板を常温に戻したとき、前記基板の変形が許容範囲に収まるような温度で成膜を行うことを特徴とする光学素子の製造方法である。   A fifth means for solving the above problem is a method of manufacturing an optical element including a step of forming a thin film having a compressive stress on a substrate, wherein the substrate is formed on the basis of a linear expansion coefficient of the thin film. When a substrate having a small coefficient of linear expansion and a thickness of 0.8 mm or less is used, and the substrate having a thin film formed on the surface is returned to room temperature after completion of film formation, the deformation of the substrate falls within an allowable range. An optical element manufacturing method is characterized in that film formation is performed at such a temperature.

前述のように、基板として薄膜の線膨張係数よりも小さい線膨張係数を有する素材を使用すると、薄膜の圧縮応力と熱応力が相殺して、常温での基板の変形を小さくすることができる。基板を常温に戻したときの熱応力の大きさは、成膜中の基板の温度が高くなるにつれて大きくなるので、成膜中の基板の温度を調節すれば、薄膜の圧縮応力と熱応力を相殺させて、基板を常温に戻したときの変形量を小さくすることができる。なお、基板の厚さを0.8mm以下に限定する理由は第1の手段と同様である。   As described above, when a material having a linear expansion coefficient smaller than that of the thin film is used as the substrate, the compressive stress and thermal stress of the thin film cancel each other, and the deformation of the substrate at room temperature can be reduced. Since the magnitude of the thermal stress when the substrate is returned to room temperature increases as the temperature of the substrate during film formation increases, the compressive stress and thermal stress of the thin film can be reduced by adjusting the temperature of the substrate during film formation. By canceling out, the amount of deformation when the substrate is returned to room temperature can be reduced. The reason for limiting the thickness of the substrate to 0.8 mm or less is the same as in the first means.

基板の厚さは、0.7mm、0.6mm、0.5mm、0.4mm、0.3mm、0.2mm、0.1mmと薄くなるに従って、本手段の効果が大きくなる。   As the thickness of the substrate is reduced to 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, and 0.1 mm, the effect of this means increases.

前記課題を解決するための第6の手段は、前記第5の手段であって、前記薄膜の厚さと前記基板の厚さの比が1:80から3:1の間にあることを特徴とするものである。   A sixth means for solving the above-mentioned problem is the fifth means, characterized in that the ratio of the thickness of the thin film to the thickness of the substrate is between 1:80 and 3: 1. To do.

前記課題を解決する為の第7の手段は、前記第5の手段又は第6の手段であって、前記薄膜が、多層膜構造を有することを特徴とするものである。   A seventh means for solving the above-mentioned problems is the fifth means or the sixth means, wherein the thin film has a multilayer film structure.

前記課題を解決するための第8の手段は、前記第5の手段から第7の手段のいずれかであって、前記素材が、石英であることを特徴とするものである。   An eighth means for solving the above-mentioned problem is any one of the fifth to seventh means, wherein the material is quartz.

本発明の実施の形態の1例である光学素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the optical element which is an example of embodiment of this invention.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である光学素子の製造方法を説明するための図である。石英製の基板1(約50mm角、厚さ約0.3mm)の表面に、スパッタリング装置を使用して、SiO薄膜2とNb薄膜3を、交互に合計約100層成膜して、多層光学薄膜4を形成する。多層光学薄膜4の厚さは約30μmである。Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a method of manufacturing an optical element which is an example of an embodiment of the present invention. Quartz substrate 1 (approximately 50mm square, a thickness of about 0.3 mm) on the surface of, by using a sputtering apparatus, a SiO 2 thin film 2 and Nb 2 O 5 thin film 3, and a total of about 100 layer deposition alternately Then, the multilayer optical thin film 4 is formed. The thickness of the multilayer optical thin film 4 is about 30 μm.

基板1としては、例えば、石英の他に、例えば、株式会社オハラ製のクリアセラムZ、ショット社製のゼロデュア、コーニング社製のパイレックスガラス、ショット社製のテンパックスガラス等、線膨張率が小さい光学材料を使用することができる。   As the substrate 1, for example, in addition to quartz, for example, Clear Serum Z made by OHARA, Zerodur made by Shot, Pyrex glass made by Corning, Tempax glass made by Shot, etc. have a small linear expansion coefficient. Optical materials can be used.

多層光学薄膜4の線膨張係数は、約50×10−7/Kである(Nbの線膨張率は、6.5×10−5/K、Si0の線膨張率は、4〜5×10−5/Kである。)。従来のガラス(BK7)の線膨張係数は約75×10−7/Kであり、多層光学薄膜4の線膨張係数より大きかったので、成膜後の基板1を常温としたとき、圧縮応力と熱応力が同じ向きに働き、基板1の変形をさらに大きくしていた。The linear optical expansion coefficient of the multilayer optical thin film 4 is about 50 × 10 −7 / K (the linear expansion coefficient of Nb 2 0 5 is 6.5 × 10 −5 / K, and the linear expansion coefficient of SiO 2 is 4 to 5 × 10 −5 / K.) Since the conventional glass (BK7) has a linear expansion coefficient of about 75 × 10 −7 / K and is larger than the linear expansion coefficient of the multilayer optical thin film 4, when the substrate 1 after film formation is at room temperature, the compressive stress and The thermal stress worked in the same direction, and the deformation of the substrate 1 was further increased.

本実施の形態においては、基板1の線膨張係数が多層光学薄膜4の線膨張率より小さいので、基板1を、通常200℃程度である成膜状態から常温としたとき、多層光学薄膜4の圧縮応力と、温度降下によって発生する熱応力が相殺して、基板1の変形(反り)が軽減される。よって、基板1をダイシングソー等により切断するときに加工が容易であり、破損することが少なく、かつ、切り出された光学素子の面精度が向上する。   In this embodiment, since the linear expansion coefficient of the substrate 1 is smaller than the linear expansion coefficient of the multilayer optical thin film 4, when the substrate 1 is brought to room temperature from a film formation state that is usually about 200 ° C., the multilayer optical thin film 4 The compressive stress and the thermal stress generated by the temperature drop cancel each other, and the deformation (warpage) of the substrate 1 is reduced. Therefore, when the substrate 1 is cut with a dicing saw or the like, the processing is easy, the damage is less, and the surface accuracy of the cut out optical element is improved.

又、多層光学薄膜4の形成時において、成膜条件に支障の無い範囲で、成膜温度を調節し、それにより基板1を常温としたときの熱応力を調節し、その結果、常温状態での基板1の変形を小さくすることができる。その方法として、例えば、基板1の材料を決定した後、成膜温度を変化させて成膜を行い、その後に基板1を常温状態にしたときの変形量が最も小さくなるような成膜温度を見つけて、その温度で成膜をするようにすればよい。   Further, when the multilayer optical thin film 4 is formed, the film forming temperature is adjusted within a range that does not affect the film forming conditions, thereby adjusting the thermal stress when the substrate 1 is at room temperature. The deformation of the substrate 1 can be reduced. As the method, for example, after determining the material of the substrate 1, the film formation temperature is changed and the film formation is performed, and then the film formation temperature is set such that the deformation amount becomes the smallest when the substrate 1 is brought to a normal temperature state. Find it and deposit at that temperature.

又、成膜温度に制約があるときは、例えば、基板1の材料を変えて、所定の成膜温度で成膜を行い、その後に基板1を常温状態にしたときの変形量が最も小さくなるような基板1の材料を見つけて、その材料を基板1の材料として使用するようにすればよい。   Further, when the film forming temperature is limited, for example, the amount of deformation is minimized when the material of the substrate 1 is changed and the film is formed at a predetermined film forming temperature and then the substrate 1 is brought to a room temperature. What is necessary is just to find the material of such a board | substrate 1 and to use the material as a material of the board | substrate 1.

本発明に使用される薄膜を構成する物質としては、SiO、Nbの他に、Ta、TiO、ZrO、HfO、Alのような材料の他、成膜時に圧縮応力を発生するような材料を使用することができる。As materials constituting the thin film used in the present invention, in addition to materials such as SiO 2 and Nb 2 O 5 , in addition to materials such as Ta 2 O 5 , TiO 2 , ZrO 2 , HfO 2 , and Al 2 O 3 , A material that generates compressive stress during film formation can be used.

図1に示すような基板1として、50mm角、厚さ0.3mmの石英を用い、その表面にスパッタリング装置により、Si0を51層、Nbを50層、交互に成膜した。成膜温度は約200℃であった。1層のSi0の平均厚さは150nm程度、1層のNbの平均厚さは250nm程度であった。このようにして形成された多層光学薄膜4の厚さは約20μmであった。As a substrate 1 as shown in FIG. 1, quartz having a size of 50 mm square and a thickness of 0.3 mm was used, and 51 layers of SiO 2 and 50 layers of Nb 2 0 5 were alternately formed on the surface thereof by a sputtering apparatus. The film forming temperature was about 200 ° C. The average thickness of one layer of SiO 2 was about 150 nm, and the average thickness of one layer of Nb 2 0 5 was about 250 nm. The thickness of the multilayer optical thin film 4 thus formed was about 20 μm.

成膜中における基板1の反り量を観測したところ、約1.1mmであった。成膜完了後、基板1を常温にしたところ、基板1の反り量は0.5mmに改善された。   When the amount of warpage of the substrate 1 during the film formation was observed, it was about 1.1 mm. When the substrate 1 was brought to room temperature after the film formation was completed, the warpage amount of the substrate 1 was improved to 0.5 mm.

この基板をダイシングソーでカットすることにより、厚さ0.3mm、8mm×0.3mm角の光学素子を多数切り出した。これらの素子を導波路中に挟んで使用したところ、導波路に形成された溝に、問題なく嵌め込むことができた。又、所望の光学特性を得ることができた。   By cutting this substrate with a dicing saw, a large number of optical elements having a thickness of 0.3 mm and 8 mm × 0.3 mm square were cut out. When these elements were sandwiched between the waveguides, they were able to be fitted into the grooves formed in the waveguides without any problems. Moreover, desired optical characteristics could be obtained.

比較例Comparative example

基板1としてガラス(BK7)を使用した他は、実施例1と同じ方法で光学素子を製造した。   An optical element was manufactured in the same manner as in Example 1 except that glass (BK7) was used as the substrate 1.

成膜中における基板1の反り量を観測したところ、約0.9mmであった。成膜完了後、基板1を常温にしたところ、基板1の反り量は1.4mmに悪化した。すなわち、実施例の約3倍の反り量となった。   When the amount of warpage of the substrate 1 during the film formation was observed, it was about 0.9 mm. After the film formation was completed, when the substrate 1 was brought to room temperature, the warpage amount of the substrate 1 deteriorated to 1.4 mm. That is, the amount of warpage was about three times that of the example.

この基板をダイシングソーでカットすることにより、厚さ0.3mm、8mm×0.3mm角の光学素子を多数切り出した。これらの素子を導波路中に挟んで使用したところ、導波路に形成された溝に嵌め込むことができないものがあった。又、所望の光学特性を得ることができないものがあったが、これは、表面の反りによる入射角の変動に起因するものと推定される。


By cutting this substrate with a dicing saw, a large number of optical elements having a thickness of 0.3 mm and 8 mm × 0.3 mm square were cut out. When these elements are sandwiched and used in a waveguide, there are some that cannot be fitted in a groove formed in the waveguide. In addition, some optical fibers cannot obtain desired optical characteristics, which is presumed to be caused by fluctuations in the incident angle due to surface warpage.


Claims (8)

圧縮応力を有する薄膜を基板上に成膜して形成された光学素子であって、前記基板として、前記薄膜の線膨張係数よりも小さい線膨張係数を有する、厚さが0.8mm以下の素材が使用されていることを特徴とする光学素子。   An optical element formed by forming a thin film having a compressive stress on a substrate, wherein the substrate has a material having a linear expansion coefficient smaller than that of the thin film and a thickness of 0.8 mm or less. An optical element being used. 前記薄膜の厚さと前記基板の厚さの比が1:80から3:1の間にあることを特徴とする請求項1に記載の光学素子。   2. The optical element according to claim 1, wherein the ratio of the thickness of the thin film to the thickness of the substrate is between 1:80 and 3: 1. 前記薄膜は、多層膜構造を有することを特微とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the thin film has a multilayer film structure. 前記素材が、石英であることを特徴とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the material is quartz. 基板の上に、圧縮応力を有する薄膜を成膜する工程を含む光学素子の製造方法であって、前記基板に前記薄膜の線膨張係数よりも小さい線膨張係数を有する、厚さが0.8mm以下の素材を使用し、成膜完了後に、表面に薄膜が形成された前記基板を常温に戻したとき、前記基板の変形が許容範囲に収まるような温度で成膜を行うことを特徴とする光学素子の製造方法。   A method of manufacturing an optical element including a step of forming a thin film having compressive stress on a substrate, wherein the substrate has a linear expansion coefficient smaller than a linear expansion coefficient of the thin film, and a thickness of 0.8 mm or less The film is formed at a temperature such that the deformation of the substrate falls within an allowable range when the substrate having the thin film formed on the surface is returned to room temperature after the film formation is completed. Device manufacturing method. 前記薄膜の厚さと前記基板の厚さの比が1:80から3:1の間にあることを特徴とする請求項5に記載の光学素子の製造方法。   6. The method of manufacturing an optical element according to claim 5, wherein the ratio of the thickness of the thin film to the thickness of the substrate is between 1:80 and 3: 1. 前記薄膜は、多層膜構造を有することを特徴とする請求項5に記載の光学索子の製造方法。   The optical thin film manufacturing method according to claim 5, wherein the thin film has a multilayer structure. 前記素材が、石英であることを特徴とする請求項5に記載の光学素子の製造方法。


The method for manufacturing an optical element according to claim 5, wherein the material is quartz.


JP2007505821A 2005-02-28 2006-01-30 Optical element and optical element manufacturing method Active JP5098640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007505821A JP5098640B2 (en) 2005-02-28 2006-01-30 Optical element and optical element manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005052214 2005-02-28
JP2005052214 2005-02-28
JP2007505821A JP5098640B2 (en) 2005-02-28 2006-01-30 Optical element and optical element manufacturing method
PCT/JP2006/301435 WO2006092919A1 (en) 2005-02-28 2006-01-30 Optical element and method for manufacturing optical element

Publications (2)

Publication Number Publication Date
JPWO2006092919A1 true JPWO2006092919A1 (en) 2008-08-07
JP5098640B2 JP5098640B2 (en) 2012-12-12

Family

ID=36940960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007505821A Active JP5098640B2 (en) 2005-02-28 2006-01-30 Optical element and optical element manufacturing method

Country Status (3)

Country Link
JP (1) JP5098640B2 (en)
TW (1) TWI405999B (en)
WO (1) WO2006092919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116497310B (en) * 2023-04-04 2023-12-05 北京创思镀膜有限公司 Optical film element and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201622A1 (en) * 2014-01-30 2015-08-20 Carl Zeiss Smt Gmbh Method for producing a mirror element
TWI617828B (en) * 2017-06-27 2018-03-11 吳鳳學校財團法人吳鳳科技大學 Anti-reflection Composite Film
CN115047549A (en) * 2022-05-26 2022-09-13 麦斯塔微电子(深圳)有限公司 Optical element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944964A (en) * 1997-02-13 1999-08-31 Optical Coating Laboratory, Inc. Methods and apparatus for preparing low net stress multilayer thin film coatings
JP2000352633A (en) * 1999-04-05 2000-12-19 Nec Corp Optical waveguide, waveguide type optical device using same, and manufacture of the device
JP2000329921A (en) * 1999-05-21 2000-11-30 Canon Inc Color filter, liquid crystal device using the same and production thereof
JP2001221914A (en) * 2000-02-10 2001-08-17 Furukawa Electric Co Ltd:The Etalon filter
JP4554067B2 (en) * 2000-12-26 2010-09-29 株式会社フジクラ Optical component and manufacturing method thereof
JP2003114327A (en) * 2001-10-04 2003-04-18 Olympus Optical Co Ltd Polarized light separation film and polarized light separation prism
JP2005298833A (en) * 2002-10-22 2005-10-27 Asahi Glass Co Ltd Multilayer film-coated substrate and its manufacturing method
TW200420979A (en) * 2003-03-31 2004-10-16 Zeon Corp Protective film for polarizing plate and method for preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116497310B (en) * 2023-04-04 2023-12-05 北京创思镀膜有限公司 Optical film element and preparation method thereof

Also Published As

Publication number Publication date
TW200641388A (en) 2006-12-01
TWI405999B (en) 2013-08-21
JP5098640B2 (en) 2012-12-12
WO2006092919A1 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
US20190383972A1 (en) Layer system and optical element comprising a layer system
KR20110073425A (en) Manufacturing method for glass substrate with thin film
JP5280654B2 (en) Transmission diffraction grating, and spectroscopic element and spectroscope using the same
JP5543690B2 (en) Optical filter for UVIR cut
JP5098640B2 (en) Optical element and optical element manufacturing method
JP2014021146A (en) Optical film, optical element, optical system and optical instrument
JP2023178283A (en) Ultra-thin thin-film optical interference filter
US20070211344A1 (en) Half mirror
US20060245056A1 (en) Thin-film structure with counteracting layer
US20080166534A1 (en) Optical Element and Method for Manufacturing Optical Element
US9989687B2 (en) Wave plate having consistent birefringence properties across the visible spectrum and manufacturing method for same
JP2006023602A (en) Optical multilayer film bandpass filter
JPH07209516A (en) Optical multilayer film filter
JP4443425B2 (en) Optical multilayer device
US7052733B2 (en) Method for making thin film filter having a negative temperature drift coefficient
JP2017009704A (en) Optical element using multi-layer film, optical system and optical device
JP2016114699A (en) Optical filter and imaging apparatus
EP2447745A1 (en) Multilayer filter
JP2006208695A (en) Optical element and method for manufacturing optical element
JP5667261B2 (en) Optical filter
JPWO2007004296A1 (en) Optical element including dielectric multilayer film and manufacturing method thereof
JP2004069865A (en) Multilayer film optical filter and its manufacturing method and optical part using it
RU2778680C1 (en) Optical mirror
WO2020090615A1 (en) Band-pass filter and manufacturing method therefor
JP2004020653A (en) Dielectric multilayer film filter element and optical part using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250