JP2004069865A - Multilayer film optical filter and its manufacturing method and optical part using it - Google Patents

Multilayer film optical filter and its manufacturing method and optical part using it Download PDF

Info

Publication number
JP2004069865A
JP2004069865A JP2002226661A JP2002226661A JP2004069865A JP 2004069865 A JP2004069865 A JP 2004069865A JP 2002226661 A JP2002226661 A JP 2002226661A JP 2002226661 A JP2002226661 A JP 2002226661A JP 2004069865 A JP2004069865 A JP 2004069865A
Authority
JP
Japan
Prior art keywords
optical filter
layer
substrate
multilayer optical
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002226661A
Other languages
Japanese (ja)
Inventor
Yuichi Umeda
梅田 裕一
Hitoshi Kitagawa
北川 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002226661A priority Critical patent/JP2004069865A/en
Publication of JP2004069865A publication Critical patent/JP2004069865A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer film optical filter which controls the influence of interference by multiple reflection in a base plate and the occurrence of an interference even when the base plate is arranged almost vertically to the optical axis. <P>SOLUTION: The multilayer film optical filter 20 is composed of a multilayer film optical filter layer 5 obtained by laminating several thin films of a plurality of dielectric materials having different refractive indexes on the base plate 1. Reflection preventing layers 4 for controlling the multiple reflection between the base plates are provided on both the main surface of the base plate 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、特定の波長の光を透過あるいは反射させ、バンドパスフィルタ、利得平坦化フィルタ等として用いられる、多層膜光フィルタ及びその製造方法とそれを用いる光学部品に関するものである。より詳しくは、基板の多重反射を抑制し、基板を光軸に対してほぼ垂直に配置した場合でも干渉が発生しない、多層膜光フィルタに関するものである。
【0002】
【従来の技術】
多層膜光フィルタは、積層された膜のそれぞれの界面での光の干渉現象を利用して、対象とする光の波長範囲において所望の透過、あるいは反射の特性を得ようとするものである。図5に、一般的に用いられている多層膜光フィルタ10の例として、高屈折率層12として酸化タンタル(以下Taと記載)層を、低屈折率層13として酸化珪素(以下SiOと記載)層を用いた例を示す。それぞれの層を、数十層から100層程度、ガラス基板1の上に交互に積層して構成されている。
【0003】
各層の膜厚は、透過あるいは反射の対象とする光の波長λに対して、光学厚みがλ/4となる厚みを中心に設計されている。ここで光学厚みとは、屈折率と物理的厚み(実際の膜厚)の積で定義される値である。例えば光通信用途の波長1.55μmの光を対象とする場合、実際の膜厚は、Ta層が0.18μmの層を主体に0.05〜1.0μmの範囲に、SiO層は0.26μmの層を主体に0.08〜1.5μmの範囲に分布させるものが多い。
【0004】
【発明が解決しようとする課題】
このような多膜光フィルタ10にあっては、ガラス基板1の多層膜光フィルタ層を設置した反対側の表面に反射防止コート層14(ARコート)を設け、基板裏面における反射光の影響を防いでいる。これは、基板をほぼ垂直に配置した際、基板内の多重反射による干渉でフィルタの分光特性に影響が出ることをある程度抑止するものである。しかしながら、従来の技術においてはARコートが多層膜光フィルタの形成される基板の裏面にのみ限定されるため、基板の多重反射は基板両面のそれぞれの反射率の積に関係しているので、フィルタ面の反射率が低い波長領域では干渉による影響が大きくなり、基板内の多重反射による干渉の影響を完全に抑えることができず、基板を光軸に対してほぼ垂直に配置した場合干渉が発生しやすいという問題点があった。
【0005】
また上記のような高精度の膜厚制御を要求される多層膜光フィルタは、光学的な膜厚測定システムを用いて、成膜中の膜厚を測定、監視しながら成膜する方法がとられている。これは成膜された各層を透過した後、基板を透過して測定器に入射してくる光量により膜厚を測定するものであるが、本来必要な各層からの透過光の他に、基板表面で一部の光が反射され、基板内を透過してくる光と干渉して透過光量が変化するため、成膜中の光学モニターの動作に影響を与えるという問題点があった。
【0006】
本発明は、上記の課題を解決するために、前記基板と該多層膜光フィルタ層を構成する層群の間および該多層膜光フィルタ層の形成された基板の裏側の面に、反射防止の機能を有する反射防止コート層を備えることにより、基板内の反射を抑制した多層膜光フィルタを提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明は、基板と、該基板の一主表面に接して設けられた反射防止機能を有する第1の反射防止コート層と、該反射防止コート層の表面に接して設けられた屈折率の互いに異なる複数の誘電体材料の薄膜が繰り返し積層された多層膜光フィルタ層と、前記基板の前記主表面と反対側の主表面に接して設けられた第2の反射防止コート層とからなることを特徴とする多層膜光フィルタである。
かかる構成によれば、反射防止コート層が基板に接した両面に設けられるので、多重反射による干渉の影響を極限まで小さくすることができ、高性能のフィルタを得ることが可能となる。
本発明の前記第1の反射防止コート層は屈折率が互いに異なる少なくとも2種類以上の誘電体材料層が繰り返し積層された構成を有することが好ましい。反射防止コート層用に特別の材料を用いることなく、通常の光フィルタ製造装置により、その製造条件を若干変えるだけで作ることができる。
【0008】
本発明の前記第1の反射防止コート層及び前記多層膜光フィルタ層は共に、同じ2種類の誘電体材料からなり、一方が高屈折率層、他方が低屈折率層を形成してそれぞれの層が交互に積層されることが好ましい。2種類の誘電体材料を用いた場合においても、適切な膜厚と層数を選択することにより、所望の性能を有する反射防止コート層及び多層膜光フィルタ層を得ることができる。
本発明は前記高屈折率層の材料が酸化タンタル(Ta)または酸化チタン(TiO)のどちらか一方であり、前記低屈折率層の材料が酸化珪素(SiO)であることが好ましい。これらの材料は薄膜の層としての物性が安定しており、構成材料として適当である。
【0009】
本発明は基板の一主表面に、屈折率の互いに異なる2種類の誘電体材料の薄膜を交互に積層して前記第1の反射防止コート層を形成する第1の工程と、該反射防止コート層の上面に、屈折率の互いに異なる2種類の誘電体材料の薄膜を交互に積層し多層膜光フィルタ層を積層する第2の工程と、前記基板の前記主表面と反対側の主表面に前記第2の反射防止コート層を形成する第3の工程とからなり、前記第2の工程は前記第1の工程に引き続いて行われることを特徴とする、多層膜光フィルタの製造方法である。
この製造方法によれば、光学モニタによる膜厚測定を行いながら連続して成膜を行うことができ、高精度に膜厚制御された高性能の特性の多層膜光フィルタを得ることが容易になる。またこの方法によれば、第1の工程から第2の工程へ移る際に、被加工物を成膜装置から取り外す必要がないので、大気暴露による酸化を防ぐことができるばかりでなく、被加工物の治工具への取り付け精度のバラツキによる成膜精度への影響も発生しないので、より高性能の多層膜光フィルタを得ることができ、また製造時間の短縮を図ることもできる。
【0010】
また本発明の多層膜光フィルタを構成要素とすることを特徴とする光学部品は、基板を光軸に対してほぼ垂直に配置した場合でも、基板裏面における反射による透過率の少ない多層膜光フィルタを用いるので干渉が発生せず、多層膜光フィルタ部品としての性能が安定する。
【0011】
【発明の実施の形態】
本発明の実施例を図面に基づいて具体的に説明すれば、以下の通りである。
〔第1の実施形態〕図1は、本発明の第1の実施形態である多層膜光フィルタ20の膜構成を示すもので、波長1.55μmの光を対象とした光通信用の利得平坦化フィルタとして設計、製造したものである。
【0012】
厚さ6mmのガラス基板1に接する最下層に、本発明に係わる、屈折率の異なる2層(低屈折率層3と高屈折率層2)を各2層、計4層を積層して反射防止コート層4が設けられている。反射防止コート層4上に、屈折率の異なる2層(低屈折率層3と高屈折率層2)を各35層、計70層を積層して、多層膜光フィルタ層5を構成している。ここで高屈折率層2にはTa(屈折率2.05)を、低屈折率層3にはSiO(屈折率1.46)を採用している。反射防止コート層4の材料は高屈折率層2と同じTaと、低屈折率層3と同じSiOを採用している。
【0013】
本実施の形態の多層膜光フィルタ20は、イオンビームスパッタ(IBS)により各薄膜層を形成した。真空チャンバ内にタンタル(Ta)とシリコン(Si)、2個のターゲットを置き、反応ガスとして酸素を供給して、それぞれの酸化物の薄膜を基板1上に設けられた反射防止層4上に堆積させる。成膜装置には膜厚の測定手段を配置して成膜中の膜厚を監視する。ターゲットのどちらか一方を選択して成膜を行い、所定の膜厚になった時点で他方のターゲットに切り換える。この作業を所定回数繰り返して目的とする多層膜光フィルタ20が得られる。
【0014】
反射防止膜は、屈折率の異なる薄膜、高屈折率層2にはTa(屈折率2.05)を、低屈折率層3にはSiO(屈折率1.46)を反射防止として機能する所定の膜厚(0.1〜0.5μm)で交互に2層づつ、計4層積層することにより、表面反射率を低く抑えようとするものである。本発明では、多層膜光フィルタ層と同一の薄膜を用いて、反射防止層を形成することにより、従来は別工程で形成されていた反射防止層を多層膜光フィルタ層形成と同じ工程にて形成できる。
【0015】
本実施例では、ARコートを構成する積層数は4層であることを示したが、4層に限らず形成することができる。またARコート層と多層膜光フィルタ層群との間が、層構成の関係から高屈折率層、低屈折率層の交互の順序にならない場合、交互の順序の関係を満たすように高屈折率層もしくは低屈折率層のバッファ層を設けてもよい。また高屈折率層の材料は、酸化チタン(TiO)など、別の材質であってもよい。
裏面に設置されるARコート層4’の形成は、多層膜光フィルタ層を形成する前に行ってもよく、また多層膜光フィルタ層を形成した後に行ってもよい。
また図1では、光多層膜光フィルタ層側に設置したARコートと同一材質であることを示したが、効果がある場合には材質が異なってもよい。
【0016】
図2は本発明におけるARコートの設置位置による基板内反射光の強度を示す模式図である。入射光は、基板に対しほぼ垂直に入射し、基板の両表面で反射する。ARコートを設置していない面での反射率は通常約4%である。また本発明の4層積層によるARコートの反射率は約0.02%を代表値とし、0.01%から0.1%に調整される。本実施例では0.1%とした。なお図示した光の進行方向の矢印やその太さについては、説明のために用いたものであり、光の強度や反射方向を直接表すものではない。
【0017】
図2(A)は基板に多層膜光フィルタ層を設け、ARコートを設置しない場合である。多層膜膜光フィルタ層を設置した基板の反対側から入射した入射光は、基板表面で入射光の約4%が反射される。さらに基板中を通過した入射光は、基板1と多層膜膜光フィルタ層5との界面でやはり同様に約4%反射される。前記界面を通過した入射光は多層膜膜光フィルタ層5を通過し所定の特性の透過光となる。基板1と多層膜膜光フィルタ層5との界面で反射した光は基板中を入射光と反対の方向に進み、基板表面より出るが、約4%はさらに基板表面で反射し基板中を進む。このとき反射光の強度は、入射光の約0.16%となる。このように、基板の両表面で減衰しながら反射光が基板中を反射しつづける。
【0018】
図2(B)は基板1に多層膜膜光フィルタ層5を設け、多層膜膜光フィルタ層を設置しない基板表面にARコート4を設置した場合である。多層膜膜光フィルタ層を設置した基板の反対側から入射した入射光は、基板表面のARコート4により入射光の約0.1%が反射される。さらに基板中を通過した入射光は、基板1と多層膜膜光フィルタ層5との界面で約4%反射される。前記界面を通過した入射光は多層膜膜光フィルタ層5を通過し所定の特性の透過光となる。基板1と多層膜膜光フィルタ層5との界面で反射した光は基板中を入射光と反対の方向に進み、基板表面より出るが、約0.1%はさらに基板表面のARコート4で反射し基板中を進む。このとき反射光の強度は、入射光の約0.004%となる。このように、基板の両表面で減衰しながら反射光が基板中を反射しつづける。
【0019】
図2(C)は基板1にARコート4を設置し、このARコート4上に多層膜膜光フィルタ層5を設けた場合である。多層膜膜光フィルタ層5を設置した基板の反対側から入射した入射光の約4%は基板表面で反射される。さらに基板中を通過した入射光は、基板1と多層膜膜光フィルタ層5との間に存在するARコート4により約0.1%反射される。前記ARコート4を通過した入射光は多層膜膜光フィルタ層5を通過し所定の特性の透過光となる。ARコートで反射した光は基板中を入射光と反対の方向に進み、基板表面より出るが、約4%はさらに基板表面で反射し基板中を進む。このとき反射光の強度は、入射光の約0.004%となる。このように、基板の両表面で減衰しながら反射光が基板中を反射しつづける。
【0020】
図2(d)は基板1の両面にARコート4を設置し多層膜膜光フィルタ層5を設けた場合である。多層膜膜光フィルタ層5を設置した基板の反対側から入射した入射光は、基板表面のARコート4により入射光の約0.1%が反射される。さらに基板中を通過した入射光は、基板1と多層膜膜光フィルタ層5との間に存在するARコート4により約0.1%反射される。前記ARコート4を通過した入射光は多層膜膜光フィルタ層5を通過し所定の特性の透過光となる。基板1と多層膜膜光フィルタ層5との間に存在するARコート4で反射した光は基板中を入射光と反対の方向に進み、基板表面より出るが、約0.1%はさらに基板表面のARコート4で反射し基板中を進む。このとき反射光の強度は、入射光の約0.0001%となる。このように、基板の両表面で減衰しながら反射光が基板中を反射しつづける。
【0021】
上記で示す通り、基板表面に設置されたARコートにより基板中を多重反射する光を減衰させる効果は、ARコートを基板両面に設置した場合が最も優れ、基板片面に設置されたARコートの効果は多層膜膜光フィルタ層を設置した側及び多層膜膜光フィルタ層を設置した側の反対側ともにほぼ等しい減衰の効果であるが、両面に設置した場合と比べるとはるかに及ばない。またARコートを設置しない場合光を減衰させる効果はさらに小さいものとなる。
【0022】
ARコート層が、基板の両面に形成される本発明においては、多層膜光フィルタの基板内の多重反射を極限まで抑制し、干渉を低減させるので、フィルタの分光特性に影響を与えていた基板内多重反射の影響を無視できるまでに性能を向上させることができる。これにより高性能光多層膜フィルタを光軸に対してほぼ垂直に配置した場合でも干渉が発生しない多層膜光フィルタが実現できる。また基板内多重反射を抑制することにより、多層膜光フィルタの製造においても光モニタリングによる膜厚測定の精度を向上させることが可能となるため、より高精度の光多層膜フィルタ層の形成が可能となる。
【0023】
図3(A)、(B)は、上記の製造方法における、途中の工程での膜構成を示す断面である。図3(A)は、予め基板の裏面にTaとSiOとからなる反射防止コート層4’を設けておき、第1の工程であるTaとSiOとからなる反射防止コート層4の成膜が終了した段階を示している。図3(B)は、第2の工程である、屈折率の異なる2層(低屈折率層3と高屈折率層2)を繰り返し積層する工程の、最初の2層が成膜された段階を示す。以後同様の条件で低屈折率層3と高屈折率層2を交互に積層し、最終的に図1の構成となる。
【0024】
〔第2の実施形態〕図4は、本発明の多層膜光フィルタ20を用いた光学部品の例として、光ファイバ32、レンズ31と組み合わせて光フィルタモジュール30を構成した例を示す。フィルタの配置は従来例と全く同様に行うことができる。
これによれば、基板を光軸に対してほぼ垂直に配置した場合でも、基板裏面における反射による透過率の少ない多層膜光フィルタを用いるので干渉が発生せず、多層膜光フィルタ部品としての性能が安定する。
【0025】
【発明の効果】
以上説明したように、本発明の多層膜光フィルタ20は、基板と、該基板の一主表面に接して設けられた反射防止機能を有する第1の反射防止コート層と、該反射防止コート層の表面に接して設けられた屈折率の互いに異なる複数の誘電体材料の薄膜が繰り返し積層された多層膜光フィルタ層と、前記基板の他の主表面に接して設けられた第2の反射防止コート層とからなることを特徴とする多層膜光フィルタである。
かかる構成によれば、反射防止コート層を基板両面に接して設けることが可能となるので、多重反射による干渉の影響を極限まで小さくすることができ、高性能の光フィルタを得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施例の多層膜光フィルタの、膜構成を示す図である。
【図2】本発明におけるARコートの設置位置による基板内反射光の強度を示す模式図である。
【図3】本発明の多層膜光フィルタの製造方法を示す工程断面図である。
【図4】本発明の実施形態の多層膜光フィルタを用いた光フィルタモジュールの、構成を示す図である。
【図5】従来例の多層膜光フィルタの膜構成を示す断面図である。
【符号の説明】
1 基板
2、12 高屈折率層
3、13 低屈折率層
4、4’、14 反射防止コート層 (ARコート)
5  多層膜光フィルタ層
10 従来例の多層膜光フィルタ
20 本発明の多層膜光フィルタ
30 光フィルタモジュール
31 レンズ
32 光ファイバ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer optical filter that transmits or reflects light of a specific wavelength and is used as a bandpass filter, a gain flattening filter, and the like, a method of manufacturing the same, and an optical component using the same. More specifically, the present invention relates to a multilayer optical filter that suppresses multiple reflection of a substrate and does not cause interference even when the substrate is arranged substantially perpendicular to an optical axis.
[0002]
[Prior art]
The multilayer optical filter attempts to obtain desired transmission or reflection characteristics in a target light wavelength range by utilizing the interference phenomenon of light at each interface of the laminated films. FIG. 5 shows, as an example of a generally used multilayer optical filter 10, a tantalum oxide (hereinafter referred to as Ta 2 O 5 ) layer as a high refractive index layer 12 and a silicon oxide (hereinafter referred to as a low refractive index layer 13). An example using a layer (described as SiO 2 ) will be described. Each layer is formed by alternately stacking several tens to about 100 layers on the glass substrate 1.
[0003]
The thickness of each layer is designed around a thickness at which the optical thickness is λ / 4 with respect to the wavelength λ of light to be transmitted or reflected. Here, the optical thickness is a value defined by the product of the refractive index and the physical thickness (actual thickness). For example, when the target light of a wavelength 1.55μm optical communication applications and actual film thickness is in the range of 0.05~1.0μm mainly a layer of Ta 2 O 5 layer is 0.18 .mu.m, SiO 2 In many cases, the layers are mainly formed of 0.26 μm and are distributed in the range of 0.08 to 1.5 μm.
[0004]
[Problems to be solved by the invention]
In such a multilayer optical filter 10, an antireflection coating layer 14 (AR coating) is provided on the surface of the glass substrate 1 opposite to the side on which the multilayer optical filter layer is provided, and the influence of reflected light on the back surface of the substrate is reduced. I'm preventing. This is to suppress, to some extent, the influence of interference due to multiple reflections within the substrate on the spectral characteristics of the filter when the substrate is disposed almost vertically. However, in the related art, since the AR coating is limited only to the back surface of the substrate on which the multilayer optical filter is formed, the multiple reflection of the substrate is related to the product of the respective reflectances on both surfaces of the substrate. In the wavelength region where the reflectivity of the surface is low, the influence of interference increases, and the effect of interference due to multiple reflections within the substrate cannot be completely suppressed. Interference occurs when the substrate is placed almost perpendicular to the optical axis. There was a problem that it was easy to do.
[0005]
In addition, for a multilayer optical filter that requires high-precision film thickness control as described above, a method of forming a film while measuring and monitoring the film thickness during film formation using an optical film thickness measurement system is adopted. Have been. In this method, the film thickness is measured based on the amount of light transmitted through each layer and then transmitted through the substrate and incident on the measuring instrument. However, since a part of the light is reflected and interferes with the light transmitted through the substrate, the amount of transmitted light changes, thereby affecting the operation of the optical monitor during film formation.
[0006]
In order to solve the above-mentioned problems, the present invention provides an anti-reflection coating between the substrate and a group of layers constituting the multilayer optical filter layer and on a back surface of the substrate on which the multilayer optical filter layer is formed. An object of the present invention is to provide a multilayer optical filter in which reflection in a substrate is suppressed by providing an antireflection coating layer having a function.
[0007]
[Means for Solving the Problems]
The present invention provides a substrate, a first antireflection coat layer having an antireflection function provided in contact with one main surface of the substrate, and a refractive index provided in contact with the surface of the antireflection coat layer. A multilayer optical filter layer in which thin films of a plurality of different dielectric materials are repeatedly laminated, and a second antireflection coat layer provided in contact with a main surface of the substrate opposite to the main surface. This is a multilayer optical filter characterized by the following.
According to this configuration, since the anti-reflection coating layer is provided on both surfaces in contact with the substrate, the influence of interference due to multiple reflection can be minimized, and a high-performance filter can be obtained.
The first antireflection coating layer of the present invention preferably has a configuration in which at least two or more types of dielectric material layers having different refractive indices are repeatedly laminated. Without using a special material for the anti-reflection coating layer, it can be manufactured by a normal optical filter manufacturing apparatus by slightly changing the manufacturing conditions.
[0008]
The first antireflection coating layer and the multilayer optical filter layer of the present invention are both made of the same two kinds of dielectric materials, one of which forms a high refractive index layer and the other forms a low refractive index layer, and Preferably, the layers are alternately stacked. Even when two types of dielectric materials are used, an antireflection coating layer and a multilayer optical filter layer having desired performance can be obtained by selecting an appropriate thickness and the number of layers.
In the present invention, the material of the high refractive index layer is one of tantalum oxide (Ta 2 O 5 ) and titanium oxide (TiO 2 ), and the material of the low refractive index layer is silicon oxide (SiO 2 ). Is preferred. These materials have stable physical properties as a thin film layer and are suitable as constituent materials.
[0009]
The present invention provides a first step of alternately laminating thin films of two kinds of dielectric materials having different refractive indices on one main surface of a substrate to form the first anti-reflection coating layer; A second step of alternately laminating thin films of two kinds of dielectric materials having different refractive indices on the upper surface of the layer and laminating a multilayer optical filter layer; A third step of forming the second anti-reflection coating layer, wherein the second step is performed subsequent to the first step. .
According to this manufacturing method, it is possible to continuously form a film while measuring the film thickness by using an optical monitor, and it is easy to obtain a multilayer optical filter having high-performance characteristics whose film thickness is controlled with high precision. Become. Further, according to this method, it is not necessary to remove the workpiece from the film forming apparatus when moving from the first step to the second step, so that oxidation due to exposure to the atmosphere can be prevented, and Since there is no influence on the film forming accuracy due to the variation in the mounting accuracy of the object to the jig, a higher performance multilayer optical filter can be obtained, and the manufacturing time can be shortened.
[0010]
Further, an optical component characterized by comprising the multilayer optical filter of the present invention as a constituent element is a multilayer optical filter having a low transmittance due to reflection on the back surface of the substrate even when the substrate is arranged substantially perpendicular to the optical axis. Since no interference is generated, the performance as a multilayer optical filter component is stabilized.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
[First Embodiment] FIG. 1 shows a film configuration of a multilayer optical filter 20 according to a first embodiment of the present invention. The gain flatness for optical communication for 1.55 μm wavelength light is shown. The filter was designed and manufactured as a chemical filter.
[0012]
The lowermost layer which is in contact with the glass substrate 1 having a thickness of 6 mm, two layers each having a different refractive index (low refractive index layer 3 and high refractive index layer 2) according to the present invention, each having a total of four layers, are laminated and reflected. The prevention coat layer 4 is provided. On the antireflection coating layer 4, 35 layers each of two layers having different refractive indices (the low refractive index layer 3 and the high refractive index layer 2) are laminated to a total of 70 layers to form a multilayer optical filter layer 5. I have. Here, Ta 2 O 5 (refractive index 2.05) is used for the high refractive index layer 2 and SiO 2 (refractive index 1.46) is used for the low refractive index layer 3. The material of the antireflection coating layer 4 employs the same Ta 2 O 5 as the high refractive index layer 2 and the same SiO 2 as the low refractive index layer 3.
[0013]
In the multilayer optical filter 20 of the present embodiment, each thin film layer is formed by ion beam sputtering (IBS). Tantalum (Ta), silicon (Si), and two targets are placed in a vacuum chamber, and oxygen is supplied as a reaction gas to deposit a thin film of each oxide on the antireflection layer 4 provided on the substrate 1. Deposit. A film thickness measuring means is arranged in the film forming apparatus to monitor the film thickness during film formation. Film formation is performed by selecting one of the targets, and when the film thickness reaches a predetermined value, the target is switched to the other target. By repeating this operation a predetermined number of times, the intended multilayer optical filter 20 is obtained.
[0014]
The antireflection film is a thin film having a different refractive index. The high refractive index layer 2 is made of Ta 2 O 5 (refractive index: 2.05), and the low refractive index layer 3 is made of SiO 2 (refractive index: 1.46). By alternately stacking two layers at a predetermined film thickness (0.1 to 0.5 μm) which functions as a total of four layers, the surface reflectance is intended to be suppressed low. In the present invention, by using the same thin film as the multilayer optical filter layer and forming the antireflection layer, the antireflection layer conventionally formed in a separate process can be formed in the same process as the multilayer optical filter layer formation. Can be formed.
[0015]
In the present embodiment, the number of layers constituting the AR coat is four, but the number of layers is not limited to four. When the order of the high-refractive index layer and the low-refractive index layer is not alternated between the AR coating layer and the multilayer optical filter layer group due to the layer configuration, the high refractive index is set so as to satisfy the alternating order. A buffer layer of a layer or a low refractive index layer may be provided. Further, the material of the high refractive index layer may be another material such as titanium oxide (TiO 2 ).
The formation of the AR coat layer 4 'provided on the back surface may be performed before forming the multilayer optical filter layer, or may be performed after forming the multilayer optical filter layer.
Further, FIG. 1 shows that the material is the same as that of the AR coat provided on the optical multilayer film optical filter layer side, but the material may be different if the effect is obtained.
[0016]
FIG. 2 is a schematic diagram showing the intensity of the reflected light in the substrate according to the installation position of the AR coat in the present invention. Incident light is incident on the substrate substantially perpendicularly and reflects off both surfaces of the substrate. The reflectance on the surface where no AR coat is provided is usually about 4%. Further, the reflectivity of the AR coat formed by the four-layer lamination of the present invention is adjusted from 0.01% to 0.1%, with about 0.02% as a representative value. In this embodiment, it is 0.1%. It should be noted that the illustrated arrows in the traveling direction of light and the thicknesses thereof are used for explanation, and do not directly represent the intensity or reflection direction of light.
[0017]
FIG. 2A shows a case where a multilayer optical filter layer is provided on a substrate and an AR coat is not provided. About 4% of the incident light that is incident from the opposite side of the substrate on which the multilayer optical filter layer is provided is reflected on the substrate surface. Further, the incident light that has passed through the substrate is also reflected about 4% at the interface between the substrate 1 and the multilayer optical filter layer 5. The incident light passing through the interface passes through the multilayer optical filter layer 5 and becomes transmitted light having predetermined characteristics. Light reflected at the interface between the substrate 1 and the multilayer optical filter layer 5 travels in the substrate in the direction opposite to the incident light and exits the substrate surface, but about 4% is further reflected on the substrate surface and travels through the substrate. . At this time, the intensity of the reflected light is about 0.16% of the incident light. In this way, the reflected light continues to be reflected in the substrate while being attenuated on both surfaces of the substrate.
[0018]
FIG. 2B shows a case where the multilayer optical filter layer 5 is provided on the substrate 1 and the AR coat 4 is provided on the surface of the substrate where the multilayer optical filter layer is not provided. About 0.1% of the incident light incident from the opposite side of the substrate on which the multilayer film optical filter layer is provided is reflected by the AR coat 4 on the substrate surface. Further, the incident light that has passed through the substrate is reflected about 4% at the interface between the substrate 1 and the multilayer optical filter layer 5. The incident light passing through the interface passes through the multilayer optical filter layer 5 and becomes transmitted light having predetermined characteristics. The light reflected at the interface between the substrate 1 and the multilayer optical filter layer 5 travels in the substrate in the direction opposite to the incident light and exits from the substrate surface, but about 0.1% is further applied to the AR coat 4 on the substrate surface. Reflects and travels through the substrate. At this time, the intensity of the reflected light is about 0.004% of the incident light. In this way, the reflected light continues to be reflected in the substrate while being attenuated on both surfaces of the substrate.
[0019]
FIG. 2C shows a case where an AR coat 4 is provided on the substrate 1 and a multilayer optical filter layer 5 is provided on the AR coat 4. About 4% of incident light incident from the opposite side of the substrate on which the multilayer optical filter layer 5 is provided is reflected on the substrate surface. Further, the incident light passing through the substrate is reflected by about 0.1% by the AR coat 4 existing between the substrate 1 and the multilayer optical filter layer 5. The incident light passing through the AR coat 4 passes through the multilayer optical filter layer 5 and becomes transmitted light having predetermined characteristics. The light reflected by the AR coat travels in the substrate in the direction opposite to the incident light and exits the substrate surface, but about 4% is further reflected on the substrate surface and travels through the substrate. At this time, the intensity of the reflected light is about 0.004% of the incident light. In this way, the reflected light continues to be reflected in the substrate while being attenuated on both surfaces of the substrate.
[0020]
FIG. 2D shows a case where an AR coat 4 is provided on both surfaces of the substrate 1 and a multilayer optical filter layer 5 is provided. About 0.1% of the incident light incident from the opposite side of the substrate on which the multilayer film optical filter layer 5 is provided is reflected by the AR coat 4 on the substrate surface. Further, the incident light passing through the substrate is reflected by about 0.1% by the AR coat 4 existing between the substrate 1 and the multilayer optical filter layer 5. The incident light passing through the AR coat 4 passes through the multilayer optical filter layer 5 and becomes transmitted light having predetermined characteristics. The light reflected by the AR coat 4 existing between the substrate 1 and the multilayer optical filter layer 5 travels in the substrate in the direction opposite to the incident light, and exits from the substrate surface. The light is reflected by the AR coat 4 on the surface and travels through the substrate. At this time, the intensity of the reflected light is about 0.0001% of the incident light. In this way, the reflected light continues to be reflected in the substrate while being attenuated on both surfaces of the substrate.
[0021]
As described above, the effect of attenuating the light that is multiply reflected in the substrate by the AR coat disposed on the substrate surface is most effective when the AR coat is disposed on both surfaces of the substrate, and the effect of the AR coat disposed on one surface of the substrate is the best. Although the effect of the attenuation is substantially the same on both the side on which the multilayer optical filter layer is provided and the side opposite to the side on which the multilayer optical filter layer is provided, it is far less than that provided on both sides. In addition, when the AR coat is not provided, the effect of attenuating light is further reduced.
[0022]
In the present invention, in which the AR coat layer is formed on both sides of the substrate, the multiple reflection in the substrate of the multilayer optical filter is suppressed to the utmost and the interference is reduced, so that the substrate which has affected the spectral characteristics of the filter has been affected. The performance can be improved so that the influence of internal multiple reflection can be ignored. This realizes a multilayer optical filter that does not cause interference even when the high-performance optical multilayer filter is arranged substantially perpendicular to the optical axis. In addition, by suppressing multiple reflection in the substrate, it is possible to improve the accuracy of film thickness measurement by optical monitoring in the production of a multilayer optical filter, so that a more accurate optical multilayer filter layer can be formed. It becomes.
[0023]
FIGS. 3A and 3B are cross-sectional views showing a film configuration in an intermediate step in the above manufacturing method. 3 (A) is previously provided with a Ta 2 O 5 and SiO 2 Metropolitan consisting antireflective coating layer 4 'on the back surface of the pre-board, consisting of Ta 2 O 5 and SiO 2 Metropolitan a first step the reflective This shows a stage at which the formation of the prevention coat layer 4 has been completed. FIG. 3B shows a second step of repeatedly stacking two layers having different refractive indices (low-refractive-index layer 3 and high-refractive-index layer 2), in which the first two layers are formed. Is shown. Thereafter, the low-refractive-index layers 3 and the high-refractive-index layers 2 are alternately stacked under the same conditions to finally obtain the configuration shown in FIG.
[0024]
[Second Embodiment] FIG. 4 shows an example in which an optical filter module 30 is configured by combining an optical fiber 32 and a lens 31 as an example of an optical component using the multilayer optical filter 20 of the present invention. The filter can be arranged in exactly the same manner as in the conventional example.
According to this, even when the substrate is arranged almost perpendicular to the optical axis, no interference occurs because a multilayer optical filter having a small transmittance due to reflection on the back surface of the substrate is used, and the performance as a multilayer optical filter component is obtained. Becomes stable.
[0025]
【The invention's effect】
As described above, the multilayer optical filter 20 of the present invention includes a substrate, a first antireflection coat layer having an antireflection function provided in contact with one main surface of the substrate, and the antireflection coat layer. A multilayer optical filter layer formed by repeatedly laminating a plurality of thin films of dielectric materials having different refractive indices provided in contact with the surface of the substrate, and a second anti-reflection layer provided in contact with the other main surface of the substrate A multilayer optical filter comprising a coat layer.
According to this configuration, the antireflection coating layer can be provided in contact with both surfaces of the substrate, so that the influence of interference due to multiple reflection can be minimized, and a high-performance optical filter can be obtained. Become.
[Brief description of the drawings]
FIG. 1 is a diagram showing a film configuration of a multilayer optical filter according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram showing the intensity of reflected light in a substrate according to the installation position of an AR coat in the present invention.
FIG. 3 is a process sectional view illustrating a method for manufacturing a multilayer optical filter of the present invention.
FIG. 4 is a diagram showing a configuration of an optical filter module using the multilayer optical filter according to the embodiment of the present invention.
FIG. 5 is a sectional view showing a film configuration of a conventional multilayer optical filter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2, 12 High refractive index layer 3, 13 Low refractive index layer 4, 4 ', 14 Antireflection coating layer (AR coating)
5 Multilayer Optical Filter Layer 10 Conventional Multilayer Optical Filter 20 Multilayer Optical Filter 30 of the Present Invention Optical Filter Module 31 Lens 32 Optical Fiber

Claims (6)

基板と、該基板の一主表面に接して設けられた反射防止機能を有する第1の反射防止コート層と、該反射防止コート層の表面に接して設けられた屈折率の互いに異なる複数の誘電体材料の薄膜が繰り返し積層された多層膜光フィルタ層と、前記基板の前記主表面と反対側の主表面に接して設けられた第2の反射防止コート層とからなることを特徴とする多層膜光フィルタ。A substrate, a first antireflection coating layer having an antireflection function provided in contact with one main surface of the substrate, and a plurality of dielectric layers having different refractive indices provided in contact with the surface of the antireflection coating layer. A multilayer optical filter layer in which thin films of a body material are repeatedly laminated, and a second antireflection coating layer provided in contact with a main surface of the substrate opposite to the main surface. Membrane light filter. 前記第1の反射防止コート層は屈折率が互いに異なる少なくとも2種類以上の誘電体材料層が繰り返し積層された構成を有することを特徴とする請求項1記載の多層膜光フィルタ。2. The multilayer optical filter according to claim 1, wherein the first antireflection coat layer has a configuration in which at least two or more types of dielectric material layers having different refractive indexes are repeatedly laminated. 3. 前記第1の反射防止コート層及び前記多層膜光フィルタ層は共に、同じ2種類の誘電体材料からなり、一方が高屈折率層、他方が低屈折率層を形成してそれぞれの層が交互に積層されたことを特徴とする、請求項2記載の多層膜光フィルタ。The first antireflection coating layer and the multilayer optical filter layer are both made of the same two kinds of dielectric materials, one of which forms a high refractive index layer and the other forms a low refractive index layer, and the respective layers alternate. The multilayer optical filter according to claim 2, wherein the multilayer optical filter is laminated. 前記高屈折率層の材料が酸化タンタル(Ta)または酸化チタン(TiO)のどちらか一方であり、前記低屈折率層の材料が酸化珪素(SiO)であることを特徴とする請求項3記載の多層膜光フィルタ。The material of the high refractive index layer is one of tantalum oxide (Ta 2 O 5 ) and titanium oxide (TiO 2 ), and the material of the low refractive index layer is silicon oxide (SiO 2 ). 4. The multilayer optical filter according to claim 3, wherein: 基板の一主表面に、屈折率の互いに異なる2種類の誘電体材料の薄膜を交互に積層して前記第1の反射防止コート層を形成する第1の工程と、該反射防止コート層の上面に、屈折率の互いに異なる2種類の誘電体材料の薄膜を交互に積層し多層膜光フィルタ層を積層する第2の工程と、前記基板の前記主表面と反対側の主表面に前記第2の反射防止コート層を形成する第3の工程とからなり、前記第2の工程は前記第1の工程に引き続いて行われることを特徴とする、多層膜光フィルタの製造方法。A first step of alternately stacking thin films of two kinds of dielectric materials having different refractive indexes on one main surface of a substrate to form the first antireflection coat layer, and an upper surface of the antireflection coat layer A second step of alternately laminating thin films of two types of dielectric materials having different refractive indices and laminating a multilayer optical filter layer; and forming a second layer on the main surface of the substrate opposite to the main surface. And a third step of forming an anti-reflection coating layer, wherein the second step is performed subsequent to the first step. 請求項1乃至4記載の多層膜光フィルタを構成要素とすることを特徴とする光学部品。An optical component comprising the multilayer optical filter according to claim 1 as a constituent element.
JP2002226661A 2002-08-02 2002-08-02 Multilayer film optical filter and its manufacturing method and optical part using it Withdrawn JP2004069865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226661A JP2004069865A (en) 2002-08-02 2002-08-02 Multilayer film optical filter and its manufacturing method and optical part using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226661A JP2004069865A (en) 2002-08-02 2002-08-02 Multilayer film optical filter and its manufacturing method and optical part using it

Publications (1)

Publication Number Publication Date
JP2004069865A true JP2004069865A (en) 2004-03-04

Family

ID=32013939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226661A Withdrawn JP2004069865A (en) 2002-08-02 2002-08-02 Multilayer film optical filter and its manufacturing method and optical part using it

Country Status (1)

Country Link
JP (1) JP2004069865A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201409A (en) * 2005-01-19 2006-08-03 Nippon Sheet Glass Co Ltd Optical filter, wavelength multiplexed light coupler using optical filter and manufacturing method thereof
KR20150016372A (en) * 2012-10-26 2015-02-11 쿄세라 코포레이션 Optical filter member and imaging device provided with same
JP2015227963A (en) * 2014-06-02 2015-12-17 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201409A (en) * 2005-01-19 2006-08-03 Nippon Sheet Glass Co Ltd Optical filter, wavelength multiplexed light coupler using optical filter and manufacturing method thereof
KR20150016372A (en) * 2012-10-26 2015-02-11 쿄세라 코포레이션 Optical filter member and imaging device provided with same
KR101650065B1 (en) * 2012-10-26 2016-08-22 쿄세라 코포레이션 Optical filter member and imaging device provided with same
US9651723B2 (en) 2012-10-26 2017-05-16 Kyocera Corporation Optical filter member and imaging device provided with the same
JP2015227963A (en) * 2014-06-02 2015-12-17 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3359114B2 (en) Thin film type ND filter and method of manufacturing the same
US5993898A (en) Fabrication method and structure for multilayer optical anti-reflection coating, and optical component and optical system using multilayer optical anti-reflection coating
US20120269483A1 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
JP2007171735A (en) Wide band anti-reflection film
TW584742B (en) Multilayer film optical filter, method of producing the same, and optical component using the same
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
KR20150021012A (en) Etalon and method for producing etalon
CN112764135A (en) Narrow-band antireflection film with extremely low residual reflection
JP2004069865A (en) Multilayer film optical filter and its manufacturing method and optical part using it
JPH07209516A (en) Optical multilayer film filter
JPH052101A (en) Optical component
JP2001100024A (en) Multilayered optical filter
JP2016114699A (en) Optical filter and imaging apparatus
JP2003043245A (en) Optical filter
JP2009031406A (en) Nonpolarization beam splitter and optical measuring instrument using the same
JP2004258494A (en) Nd filter
KR20110098720A (en) Hafnium oxide or zirconium oxide coating
JP2003177205A (en) Antireflection film for ir region
JP2008009117A (en) Method of forming dielectric multilayer film
JP7251099B2 (en) Bandpass filter and manufacturing method thereof
JPS6361202A (en) Optical thin film for infrared ray
JP2935765B2 (en) Manufacturing method of dichroic mirror
JPH0985874A (en) Optical thin film and manufacture thereof
JP2003177210A (en) Antireflection film for ir region
JPH1068802A (en) Antireflection film and its film forming method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004