JP2003043245A - Optical filter - Google Patents

Optical filter

Info

Publication number
JP2003043245A
JP2003043245A JP2001230793A JP2001230793A JP2003043245A JP 2003043245 A JP2003043245 A JP 2003043245A JP 2001230793 A JP2001230793 A JP 2001230793A JP 2001230793 A JP2001230793 A JP 2001230793A JP 2003043245 A JP2003043245 A JP 2003043245A
Authority
JP
Japan
Prior art keywords
layer
film
layers
light
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001230793A
Other languages
Japanese (ja)
Inventor
Minoru Otani
実 大谷
Ryuji Hiroo
竜二 枇榔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001230793A priority Critical patent/JP2003043245A/en
Publication of JP2003043245A publication Critical patent/JP2003043245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter through which only light in the visible wavelength region pass can be transmitted with high transmittance and reduce temperature rising due to ultraviolet rays by narrowing a boundary wavelength interval (a cut wavelength interval) between the boundary between the visible wavelength region transmitting light and the ultraviolet wavelength region reflecting light and the boundary between the visible wavelength region transmitting the light and the infrared wavelength region reflecting light. SOLUTION: In the filter provided with a multilayer film consisting of a plurality of layers of a first, a second, a third, a fourth,... an n-th layer in this order from the substrate side toward the air side, the filter is provided with a metal film sandwiched between dielectric layers as a layer close to the substrate and two or more alternating multilayer stacks comprising a low refractive index film and a high refractive index film with identical film thickness periods, and one or more adjusting layers are formed on both sides of the respective stacks.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一部の波長域を透
過し他の波長域を反射する波長選択フィルターに関する
ものであり、特に、可視波長域を透過し、所定波長以下
の紫外波長域と所定波長以上の赤外波長域での吸収が少
なく良好な反射特性を有する光学フィルターに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength selection filter which transmits a part of a wavelength range and reflects another wavelength range, and more particularly, a visible wavelength range and an ultraviolet wavelength range of a predetermined wavelength or less. And an optical filter having good reflection characteristics with little absorption in the infrared wavelength region of a predetermined wavelength or more.

【0002】[0002]

【従来の技術】従来、波長選択フィルターとして、特開
昭53−146482号公報、あるいは特開昭62−2
70350号公報に記載されているように、金属膜を誘
電体で挟んだ膜構成の可視光を透過させ、赤外光を反射
するようにしたフィルターが知られている。また、これ
らにさらに耐熱性や耐久性を向上させるため、金属膜を
挟む両サイドの誘電体材料を変えた構成が、特許第26
25079号公報あるいは特開平10−268129号
公報に記載されているように金属膜を挟む両サイドの誘
電体材料を変えた構成が、特許第2625079号公報
あるいは特開平10−268129号公報等に提案され
ている。
2. Description of the Related Art Conventionally, as a wavelength selection filter, JP-A-53-146482 or JP-A-62-2 is used.
As described in Japanese Patent No. 70350, there is known a filter having a film structure in which a metal film is sandwiched between dielectrics and transmitting visible light and reflecting infrared light. In addition, in order to further improve heat resistance and durability, a structure in which the dielectric material on both sides of the metal film is changed is disclosed in Japanese Patent No. 26.
As disclosed in Japanese Patent No. 25079 or Japanese Unexamined Patent Publication No. 10-268129, a configuration in which the dielectric material on both sides of the metal film is changed is proposed in Japanese Patent No. 2625079 or Japanese Unexamined Patent Publication No. 10-268129. Has been done.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例のものにおいては、、波長380nm以下の紫外光
の吸収によるフィルターの温度上昇による光学系のゆら
ぎや、1μm前後での近赤外光の透過光によるフィルタ
ー以降の光学系へのノイズ等の悪影響があるという問題
点があった。
However, in the above conventional example, the fluctuation of the optical system due to the temperature rise of the filter due to the absorption of the ultraviolet light having the wavelength of 380 nm or less and the transmission of the near infrared light around 1 μm. There is a problem that the optical system after the filter is adversely affected by light, such as noise.

【0004】そこで、本発明は、上記課題を解決し、光
が透過する可視波長域と光が反射される紫外波長域の境
と、光が透過する可視波長域と光が反射される赤外波長
域の境との間の境波長幅(カット波長幅)を小さくし
て、可視域波長のみを高い透過率で透過させることがで
き、紫外光による温度上昇を少なくすることが可能とな
る光学フィルターを提供することを目的とするものであ
る。
In view of the above, the present invention has solved the above-mentioned problems and has a boundary between a visible wavelength range where light is transmitted and an ultraviolet wavelength range where light is reflected, and an infrared range where visible light is transmitted and light is reflected. Optics that can reduce the temperature rise due to ultraviolet light by reducing the boundary wavelength width (cut wavelength width) between the boundary of the wavelength range and transmitting only the visible wavelength with high transmittance. It is intended to provide a filter.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を達
成するため、つぎの(1)〜(3)のように構成した光
学フィルターを提供するものである。 (1)基板側から空気側に向けて順に、第1層、第2
層、第3層、第4層………第n層の、複数の層による多
層膜を有するフィルターにおいて、前記基板に近い層に
誘電体層に挟まれた金属膜と、低屈折率膜と高屈折率膜
の同一膜厚周期の交互多層膜スタックを2つ以上有し、
前記各スタックの前後に1層以上の調整層を構成したこ
とを特徴とする光学フィルター。 (2)前記2つ以上のスタック間において、基板側から
より離れている最終スタックの膜材料が、紫外波長で吸
収が他のスタック膜材料より小さい膜材料で構成されて
いることを特徴とする上記(1)に記載の光学フィルタ
ー。 (3)前記金属膜の材料が、Al、又はAg、又はA
u、又はCuのいずれかの材料であることを特徴とする
上記(1)または上記(2)に記載の光学フィルター。
In order to achieve the above-mentioned object, the present invention provides an optical filter having the following (1) to (3). (1) The first layer and the second layer are arranged in this order from the substrate side to the air side.
In a filter having a multilayer film including a plurality of layers, such as a layer, a third layer, a fourth layer ... A plurality of layers, a metal film sandwiched between dielectric layers in a layer close to the substrate, and a low refractive index film. Having two or more alternating multilayer film stacks of the same film thickness cycle of high refractive index films,
An optical filter comprising one or more adjusting layers formed before and after each stack. (2) Between the two or more stacks, the film material of the final stack, which is further away from the substrate side, is composed of a film material having absorption smaller than other stack film materials at an ultraviolet wavelength. The optical filter according to (1) above. (3) The material of the metal film is Al, Ag, or A
The optical filter according to (1) or (2) above, which is a material of either u or Cu.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態においては、
上記構成を適用し、基板側から空気側へ順に第1層、第
2層、第3層、第4層、、、、、と数える多層膜で、基
板に近い層に誘電体層に挟まれた金属膜を設け、低屈折
率膜と高屈折率膜の同一膜厚周期の交互多層膜スタック
を2つ以上形成し、各スタックの前後に1層以上の調整
層がある膜構成にすることで、波長300nm〜380
nmの紫外光と波長780nmから5000nmの赤外
光の2つの波長領域に対して高反射率であり、波長38
0nmから700nmの可視光波長領域での透過率を高
くすることが可能となる。これにより、光が透過する可
視波長域と光が反射される紫外波長域の境と、光が透過
する可視波長域と光が反射される赤外波長域の境との間
の境波長幅(カット波長幅)を小さくして、可視域波長
のみを高い透過率で透過させることができ、紫外光によ
る温度上昇を少なくすることが可能となる。また、最終
スタックの膜材料は、紫外波長で吸収が他のスタック膜
材料より小さくすることによって、より高精度な光学フ
ィルターとすることができる。また、基板に近い層に設
けられている誘電体層に挟まれた金属膜の材料として
は、Al,Ag,Au,Cuのいずれかの材料が好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION In the embodiments of the present invention,
Applying the above-mentioned configuration, the multilayer film is counted from the substrate side to the air side in the order of the first layer, the second layer, the third layer, the fourth layer, ... A metal film is provided, two or more alternating multilayer film stacks having the same film thickness cycle of a low refractive index film and a high refractive index film are formed, and one or more adjusting layers are provided before and after each stack. At a wavelength of 300 nm to 380
nm ultraviolet light and infrared light having a wavelength of 780 nm to 5000 nm have a high reflectance with respect to two wavelength regions.
It is possible to increase the transmittance in the visible light wavelength region of 0 nm to 700 nm. Thus, the boundary wavelength width between the visible wavelength range where light is transmitted and the ultraviolet wavelength range where light is reflected and the boundary between the visible wavelength range where light is transmitted and the infrared wavelength range where light is reflected ( The cut wavelength width) can be reduced to allow only visible wavelengths to be transmitted with high transmittance, and the temperature rise due to ultraviolet light can be reduced. Further, the film material of the final stack can be made into a more accurate optical filter by making the absorption at the ultraviolet wavelength smaller than that of the other stack film materials. The material of the metal film sandwiched between the dielectric layers provided in the layer close to the substrate is preferably any one of Al, Ag, Au, and Cu.

【0007】[0007]

【実施例】以下に、本発明の実施例について説明する。 [実施例1]図1に本発明の実施例1における光学フィ
ルターの膜構成を示す。第1層に誘電体膜、第2層に金
属膜、第3層に誘電体膜、第1−第3スタック層間にそ
れぞれ調整層がある構成である。実際に真空蒸着法によ
り製作した膜構成を表1に示す。
EXAMPLES Examples of the present invention will be described below. [Embodiment 1] FIG. 1 shows a film structure of an optical filter in Embodiment 1 of the present invention. The first layer has a dielectric film, the second layer has a metal film, the third layer has a dielectric film, and adjustment layers are provided between the first to third stack layers. Table 1 shows the film structure actually manufactured by the vacuum deposition method.

【0008】[0008]

【表1】 石英基板上に、第1層にTiO2層、第2層がAg膜で
第3層がTiO2層であり、第4,5層が調整層、第6
から17層がSiO2とHfO2の交互層6ペアの第1ス
タック層であり、第18,19層が調整層、第20から
29層がSiO2とHfO2の交互層5ペアの第2スタッ
ク層、第30,31層が調整層、第32から41層がS
iO2とHfO2の交互層5ペアの第3スタック層、第4
2層が最終層で調整層となった構成である。500nm
における屈折率、および光学膜厚は表に示している。
[Table 1] On a quartz substrate, the first layer is a TiO 2 layer, the second layer is an Ag film, the third layer is a TiO 2 layer, the fourth and fifth layers are adjustment layers, and the sixth layer is a sixth layer.
To 17 layers are the first stack layers of 6 pairs of alternating layers of SiO 2 and HfO 2 , 18th and 19th layers are adjustment layers, and 20th to 29th layers are the second of 5 pairs of alternating layers of SiO 2 and HfO 2 . Stack layer, 30th and 31st layers are adjustment layers, 32nd to 41st layers are S
Alternate layers of iO 2 and HfO 2 5th stack layer, 4th stack layer
Two layers are the final layers and the adjustment layer. 500 nm
The refractive index and the optical film thickness at are shown in the table.

【0009】膜厚からわかるように、第1スタック層は
850nm付近に中心波長がある反射特性、第2スタッ
ク層は1067nm付近に中心波長がある反射特性、第
3スタック層は中心波長が320nm付近にある反射特
性を示している。また、可視波長400nmから720
nmの範囲で透過率を上げるために調整層を各スタック
層前後に入れた構成である。このフィルターの波長30
0nmから5000nmまでの透過特性を図2に反射特
性を図3に示す。可視域のみ透過となっており、近赤外
800nm付近から5000nmの範囲で反射率60%
〜90%と高反射率となっている。また、波長300n
mから900nmまでの範囲の透過率特性を図4に、反
射率特性を図5に示す。波長400nmから700nm
の広い範囲で透過率90%程度と高透過率を示しており
良好な反射防止効果をもっていることがわかる。
As can be seen from the film thickness, the first stack layer has a reflection characteristic having a center wavelength near 850 nm, the second stack layer has a reflection characteristic having a center wavelength near 1067 nm, and the third stack layer has a center wavelength near 320 nm. Shows the reflection characteristics. Also, visible wavelengths from 400 nm to 720
In this structure, adjustment layers are provided before and after each stack layer in order to increase the transmittance in the range of nm. The wavelength of this filter is 30
The transmission characteristics from 0 nm to 5000 nm are shown in FIG. 2, and the reflection characteristics are shown in FIG. Only visible light is transmitted, and reflectance is 60% in the range of near infrared 800 nm to 5000 nm.
It has a high reflectance of up to 90%. Also, the wavelength is 300n
FIG. 4 shows the transmittance characteristic in the range from m to 900 nm, and FIG. 5 shows the reflectance characteristic. Wavelength 400nm to 700nm
The transmittance is as high as about 90% in a wide range, indicating that it has a good antireflection effect.

【0010】(比較例)従来例のフィルターの膜構成に
よって比較例を製作した。比較例の膜構成は、石英基板
上にTiO2/Ag/TiO2の3層構成で、A:TiO
2:71nm/Ag:21.7nm/TiO2:71.7
nmとB: TiO2:74.7nm/Ag:17.6
nm/TiO2:73.6nmの2種類を製作した。そ
の透過特性を図6に、反射特性を図7に示す。実施例1
に比べて、可視波長域と紫外域および近赤外域との境の
波長で特性に差が見られ、これによれば、比較例に比し
て実施例1の膜構成においては、光が透過する可視波長
域と光が反射される紫外波長域の境と、光が透過する可
視波長域と光が反射される赤外波長域の境との間の境波
長幅(カット波長幅)が小さくなっていることがわか
る。また、実施例1の構成では、この特性によりフィル
ター以降の光学系に紫外域光および近赤外域光が入射す
る量は著しく減っている。また、従来例では紫外光によ
るフィルターの温度上昇が大きく問題となっていたが、
実施例1の構成では、紫外光の反射率が大きく温度上昇
も著しく減少した。
(Comparative Example) A comparative example was manufactured by the film structure of the filter of the conventional example. The film structure of the comparative example is a three-layer structure of TiO 2 / Ag / TiO 2 on a quartz substrate.
2 : 71 nm / Ag: 21.7 nm / TiO 2 : 71.7
nm and B: TiO 2: 74.7nm / Ag : 17.6
nm / TiO 2: were fabricated two types of 73.6nm. The transmission characteristics are shown in FIG. 6 and the reflection characteristics are shown in FIG. Example 1
In comparison with Comparative Example, there is a difference in characteristics at the wavelengths at the boundary between the visible wavelength range and the ultraviolet and near-infrared regions. According to this, in the film configuration of Example 1 as compared with Comparative Example, light is transmitted. The boundary wavelength width (cut wavelength width) between the boundary between the visible wavelength range and the ultraviolet wavelength range where light is reflected and the boundary between the visible wavelength range where light is transmitted and the infrared wavelength range where light is reflected is small. You can see that it has become. Further, in the configuration of the first embodiment, the amount of ultraviolet light and near infrared light incident on the optical system after the filter is significantly reduced due to this characteristic. Also, in the conventional example, the temperature rise of the filter due to ultraviolet light was a big problem,
With the configuration of Example 1, the reflectance of ultraviolet light was large and the temperature rise was significantly reduced.

【0011】[実施例2]真空蒸着法により製作した実
施例2の膜構成を表2に示す。
[Example 2] Table 2 shows the film constitution of Example 2 manufactured by the vacuum deposition method.

【0012】[0012]

【表2】 石英基板上に、第1層にTiO2層、第2層がAg膜で
第3層がTiO2層であり、第4,5層が調整層、第6
から17層がSiO2とHfO2の交互層6ペアの第1ス
タック層であり、第18,19層が調整層、第20から
29層がSiO2とHfO2の交互層5ペアの第2スタッ
ク層、第30,31層が調整層、第32から41層がM
gF2とAl23の交互層5ペアの第3スタック層、第
42層がMgF2最終層で調整層となった構成である。
500nmにおける屈折率、および光学膜厚は表に示し
ている。
[Table 2] On a quartz substrate, the first layer is a TiO 2 layer, the second layer is an Ag film, the third layer is a TiO 2 layer, the fourth and fifth layers are adjustment layers, and the sixth layer is a sixth layer.
To 17 layers are the first stack layers of 6 pairs of alternating layers of SiO 2 and HfO 2 , 18th and 19th layers are adjustment layers, and 20th to 29th layers are the second of 5 pairs of alternating layers of SiO 2 and HfO 2 . Stack layer, 30th and 31st layers are adjustment layers, 32nd to 41st layers are M
The third stack layer and the 42nd layer of 5 pairs of alternating layers of gF 2 and Al 2 O 3 are the final layers of MgF 2 and are the adjustment layers.
The refractive index at 500 nm and the optical film thickness are shown in the table.

【0013】膜厚からわかるように、第1スタック層は
850nm付近に中心波長がある反射特性、第2スタッ
ク層は1067nm付近に中心波長がある反射特性、第
3スタック層は中心波長が320nm付近にある反射特
性を示している。また、可視波長400nmから720
nmの範囲で透過率を上げるために調整層を各スタック
層前後に入れた構成である。このフィルターの波長30
0nmから5000nmまでの透過特性を図8に示す。
可視域のみ透過となっており、近赤外800nm付近か
ら5000nmの範囲で透過率30%〜5%となってい
る。また、波長300nmから900nmまでの範囲の
透過率特性を図9に示す。波長400nmから700n
mの広い範囲で透過率90%程度と高透過率を示してお
り良好な反射防止効果をもっていることがわかる。
As can be seen from the film thickness, the first stack layer has a reflection characteristic having a center wavelength near 850 nm, the second stack layer has a reflection characteristic having a center wavelength near 1067 nm, and the third stack layer has a center wavelength near 320 nm. Shows the reflection characteristics. Also, visible wavelengths from 400 nm to 720
In this structure, adjustment layers are provided before and after each stack layer in order to increase the transmittance in the range of nm. The wavelength of this filter is 30
The transmission characteristics from 0 nm to 5000 nm are shown in FIG.
Only the visible region is transmitted, and the transmittance is 30% to 5% in the range from near infrared 800 nm to 5000 nm. Further, FIG. 9 shows the transmittance characteristics in the wavelength range of 300 nm to 900 nm. Wavelength 400nm to 700n
It shows that the transmittance is as high as about 90% in a wide range of m and that it has a good antireflection effect.

【0014】このフィルターの紫外光による温度上昇を
測定したところ、実施例1よりも小さいという結果が得
られた。これは、最終スタック膜材料が、MgF2/A
2 3のような紫外域で低吸収材料にしたためだという
ことがわかった。また、金属膜材料はAg以外にAl,
Au,Cuでも良好な結果が得られることもわかった。
The temperature rise of this filter due to ultraviolet light
As a result of the measurement, the result is smaller than that of Example 1.
Was given. This is because the final stack film material is MgF2/ A
l2O 3It is said that it is a low absorption material in the ultraviolet region like
I understood it. In addition to Ag, the metal film material is Al,
It was also found that good results were obtained with Au and Cu.

【0015】[0015]

【発明の効果】以上に説明したように、本発明によれ
ば、光が透過する可視波長域と光が反射される紫外波長
域の境と、光が透過する可視波長域と光が反射される赤
外波長域の境との間の境波長幅(カット波長幅)を小さ
くして、可視域波長のみを高い透過率で透過させること
ができ、紫外光による温度上昇を少なくすることが可能
となる光学フィルターを実現することができる。
As described above, according to the present invention, the boundary between the visible wavelength range where light is transmitted and the ultraviolet wavelength range where light is reflected and the visible wavelength range where light is transmitted and the light is reflected. It is possible to reduce the boundary wavelength width (cut wavelength width) between the boundary of the infrared wavelength range, which allows transmission of only visible wavelengths with high transmittance, and to reduce the temperature rise due to ultraviolet light. It is possible to realize an optical filter that becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における光学フィルターの膜
構成を示す図。
FIG. 1 is a diagram showing a film configuration of an optical filter in Example 1 of the present invention.

【図2】本発明の実施例1における光学フィルターの透
過特性測定結果を示す図。
FIG. 2 is a diagram showing a measurement result of transmission characteristics of an optical filter in Example 1 of the present invention.

【図3】本発明の実施例1における光学フィルターの反
射特性測定結果を示す図。
FIG. 3 is a diagram showing the results of measuring the reflection characteristics of the optical filter in Example 1 of the present invention.

【図4】本発明の実施例1における光学フィルターの透
過特性測定結果を示す図。
FIG. 4 is a diagram showing a result of measurement of transmission characteristics of an optical filter in Example 1 of the present invention.

【図5】本発明の実施例1における光学フィルターの反
射特性測定結果を示す図。
FIG. 5 is a diagram showing the results of measuring the reflection characteristics of the optical filter in Example 1 of the present invention.

【図6】比較例における光学フィルターの透過特性測定
結果を示す図。
FIG. 6 is a diagram showing a measurement result of transmission characteristics of an optical filter in a comparative example.

【図7】比較例における光学フィルターの反射特性測定
結果を示す図。
FIG. 7 is a diagram showing a measurement result of reflection characteristics of an optical filter in a comparative example.

【図8】本発明の実施例2における光学フィルターの透
過特性測定結果を示す図。
FIG. 8 is a diagram showing a measurement result of transmission characteristics of an optical filter in Example 2 of the present invention.

【図9】本発明の実施例2における光学フィルターの透
過特性測定結果を示す図。
FIG. 9 is a diagram showing the results of measuring the transmission characteristics of an optical filter in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H048 FA05 FA09 FA12 FA13 FA18 FA24 GA04 GA07 GA09 GA14 GA33 GA57 4G059 AA11 AC04 AC06 AC30 DA01 DA02 DA05 DA09 DB02 EA01 EA04 EA05 EB03 GA02 GA04 GA14 5G435 AA12 GG11 GG16 HH02 KK07   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H048 FA05 FA09 FA12 FA13 FA18                       FA24 GA04 GA07 GA09 GA14                       GA33 GA57                 4G059 AA11 AC04 AC06 AC30 DA01                       DA02 DA05 DA09 DB02 EA01                       EA04 EA05 EB03 GA02 GA04                       GA14                 5G435 AA12 GG11 GG16 HH02 KK07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板側から空気側に向けて順に、第1層、
第2層、第3層、第4層………第n層の、複数の層によ
る多層膜を有するフィルターにおいて、 前記基板に近い層に誘電体層に挟まれた金属膜と、低屈
折率膜と高屈折率膜の同一膜厚周期の交互多層膜スタッ
クを2つ以上有し、前記各スタックの前後に1層以上の
調整層を構成したことを特徴とする光学フィルター。
1. A first layer, in order from the substrate side to the air side,
A second layer, a third layer, a fourth layer, ... A filter having a multilayer film of a plurality of layers of an nth layer, wherein a metal film sandwiched between dielectric layers is a layer close to the substrate, and a low refractive index. An optical filter comprising two or more alternating multilayer film stacks of a film and a high-refractive index film having the same film thickness cycle, and one or more adjusting layers formed before and after each stack.
【請求項2】前記2つ以上のスタック間において、基板
側からより離れている最終スタックの膜材料が、紫外波
長で吸収が他のスタック膜材料より小さい膜材料で構成
されていることを特徴とする請求項1に記載の光学フィ
ルター。
2. The film material of the final stack, which is more distant from the substrate side, between the two or more stacks is composed of a film material that absorbs at ultraviolet wavelengths smaller than other stack film materials. The optical filter according to claim 1.
【請求項3】前記金属膜の材料が、Al、又はAg、又
はAu、又はCuのいずれかの材料であることを特徴と
する請求項1または請求項2に記載の光学フィルター。
3. The optical filter according to claim 1, wherein the material of the metal film is any one of Al, Ag, Au, and Cu.
JP2001230793A 2001-07-31 2001-07-31 Optical filter Pending JP2003043245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230793A JP2003043245A (en) 2001-07-31 2001-07-31 Optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230793A JP2003043245A (en) 2001-07-31 2001-07-31 Optical filter

Publications (1)

Publication Number Publication Date
JP2003043245A true JP2003043245A (en) 2003-02-13

Family

ID=19062940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230793A Pending JP2003043245A (en) 2001-07-31 2001-07-31 Optical filter

Country Status (1)

Country Link
JP (1) JP2003043245A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304229A (en) * 2006-05-10 2007-11-22 Sony Corp Optical element and projection apparatus
CN100414333C (en) * 2006-07-07 2008-08-27 中山大学 A single fiber three-way wave separator/wave combination device
CN100419471C (en) * 2005-08-02 2008-09-17 中山大学 Multi frequency acute angle space light filter
JP2010175838A (en) * 2009-01-29 2010-08-12 Daishinku Corp Light cut filter
JP2012093568A (en) * 2010-10-27 2012-05-17 Olympus Corp Multilayer film filter
CN103718068A (en) * 2011-07-01 2014-04-09 特罗皮格拉斯科技有限公司 A spectrally selective panel
JP2015145956A (en) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method thereof
JP2015203856A (en) * 2014-04-16 2015-11-16 東海光学株式会社 Optical product and spectacle lens

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419471C (en) * 2005-08-02 2008-09-17 中山大学 Multi frequency acute angle space light filter
JP2007304229A (en) * 2006-05-10 2007-11-22 Sony Corp Optical element and projection apparatus
CN100414333C (en) * 2006-07-07 2008-08-27 中山大学 A single fiber three-way wave separator/wave combination device
JP2010175838A (en) * 2009-01-29 2010-08-12 Daishinku Corp Light cut filter
JP2012093568A (en) * 2010-10-27 2012-05-17 Olympus Corp Multilayer film filter
CN103718068A (en) * 2011-07-01 2014-04-09 特罗皮格拉斯科技有限公司 A spectrally selective panel
JP2014525050A (en) * 2011-07-01 2014-09-25 トロピグラス テクノロジーズ リミテッド Spectral selectivity panel
US11048030B2 (en) 2011-07-01 2021-06-29 Tropiglas Technologies Ltd Spectrally selective panel
JP2015145956A (en) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method thereof
JP2015203856A (en) * 2014-04-16 2015-11-16 東海光学株式会社 Optical product and spectacle lens

Similar Documents

Publication Publication Date Title
CN1979230B (en) Dielectric multilayer filter
JP3359114B2 (en) Thin film type ND filter and method of manufacturing the same
US20190383972A1 (en) Layer system and optical element comprising a layer system
JP2007171735A (en) Wide band anti-reflection film
WO2008018247A1 (en) Transmission type polarizing element, and complex polarizing plate using the element
JP4065530B2 (en) Antireflection film, optical element and optical system having antireflection film
JPH10268130A (en) Light absorbing filter
JP2003043245A (en) Optical filter
WO2018110017A1 (en) Optical product
JP4171362B2 (en) Transparent substrate with antireflection film
JPH0593811A (en) Light absorptive film
JP4981456B2 (en) ND filter
JP5203582B2 (en) Optical element
JPH0875902A (en) Multilayer reflection preventing film
JP2004334012A (en) Antireflection film and optical filter
JPH07209516A (en) Optical multilayer film filter
JP3373182B2 (en) Multilayer optical filter
JPH052101A (en) Optical component
JP2002277606A (en) Antireflection film and optical element
CN112241037A (en) Reflective wire grid polarizer with transparent cap
JPH10153705A (en) Dichroic mirror
JP2001013304A (en) Optical parts
JP7251099B2 (en) Bandpass filter and manufacturing method thereof
JPH01286476A (en) Laser mirror having flat spectral characteristics in narrow wavelength band
JPH1039105A (en) Antireflection film