JP5203582B2 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP5203582B2
JP5203582B2 JP2006203215A JP2006203215A JP5203582B2 JP 5203582 B2 JP5203582 B2 JP 5203582B2 JP 2006203215 A JP2006203215 A JP 2006203215A JP 2006203215 A JP2006203215 A JP 2006203215A JP 5203582 B2 JP5203582 B2 JP 5203582B2
Authority
JP
Japan
Prior art keywords
film
substrate
optical element
optical
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006203215A
Other languages
Japanese (ja)
Other versions
JP2008032804A (en
Inventor
智一 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2006203215A priority Critical patent/JP5203582B2/en
Publication of JP2008032804A publication Critical patent/JP2008032804A/en
Application granted granted Critical
Publication of JP5203582B2 publication Critical patent/JP5203582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、赤外反射防止膜が設けられた光学素子、特にその反射防止効果の改良に関する。   The present invention relates to an optical element provided with an infrared antireflection film, and particularly to an improvement in the antireflection effect thereof.

光学測定器には、光学フィルターや光学窓といった光学素子が不可欠であるが、それらの表面での光の反射は光量のロスとなる。そこで、光学素子の表面に光の波長程度の厚みをもつ光学膜を形成し、光の干渉効果を利用して表面反射を抑えている。   Optical elements such as optical filters and optical windows are indispensable for optical measuring instruments, but the reflection of light on their surfaces results in a loss of light quantity. Therefore, an optical film having a thickness approximately equal to the wavelength of light is formed on the surface of the optical element, and surface reflection is suppressed by utilizing the light interference effect.

基板となる物質の屈折率よりも小さい屈折率をもつ物質で光学膜を形成すると、その膜の光学膜厚(屈折率×物理的な膜厚)の4倍の波長の光に対して最も反射防止効果が高い膜となるが、その波長から離れていくほどその効果は少なくなる。また、反射防止の度合いは屈折率の関係で決まり、入射媒質の屈折率をn、反射防止膜の屈折率をn、基板の屈折率をnとすれば、n=(n1/2が成り立つとき、表面反射をゼロにすることができる。したがって、これらの条件を満たすような膜材料を使用するのが一般的である。 When an optical film is formed of a material having a refractive index smaller than the refractive index of the material used as the substrate, it is most reflective to light having a wavelength four times the optical film thickness (refractive index × physical film thickness) of the film. Although the film has a high prevention effect, the effect decreases with distance from the wavelength. The degree of antireflection is determined by the relationship of the refractive index. If the refractive index of the incident medium is n 0 , the refractive index of the antireflection film is n 1 , and the refractive index of the substrate is n 2 , n 1 = (n 0 When n 2 ) 1/2 holds, the surface reflection can be zero. Therefore, a film material that satisfies these conditions is generally used.

単層の反射防止膜では、図1に示すように、光学膜厚の4倍の波長から離れていくに従い、急激に反射防止効果が小さくなる。そのため、ある特定の狭い波長範囲で反射防止したいときには単層の反射防止膜で十分であるが、より広い波長範囲でその効果を望む場合には反射防止膜の層数を増やす必要がある。例えば、反射防止膜を二層で形成すると、図1から分かるように、単層の反射防止膜よりも広い波長範囲で良好な反射防止効果を示す。   In the single-layer antireflection film, as shown in FIG. 1, the antireflection effect decreases rapidly as the distance from the wavelength is four times the optical film thickness. Therefore, a single-layer antireflection film is sufficient when it is desired to prevent reflection in a specific narrow wavelength range. However, when the effect is desired in a wider wavelength range, it is necessary to increase the number of antireflection films. For example, when the antireflection film is formed of two layers, as shown in FIG. 1, the antireflection effect is better in a wider wavelength range than the single-layer antireflection film.

このように、広い波長範囲で良好な反射防止効果を得るためには、複数の層で反射防止膜を構成する必要がある。特に、赤外域で用いられる反射防止膜は、可視域のものと比べけた違いに広い波長領域での反射防止効果が要求されるため、多層で構成することが一般的となっている(例えば、特許文献1参照)。
実開昭61−16501号公報
Thus, in order to obtain a good antireflection effect in a wide wavelength range, it is necessary to form an antireflection film with a plurality of layers. In particular, since the antireflection film used in the infrared region is required to have an antireflection effect in a wide wavelength region as compared with that in the visible region, it is generally configured with a multilayer (for example, Patent Document 1).
Japanese Utility Model Publication No. 61-16501

多層の場合も十分な反射防止効果を得ようとすれば、各層の屈折率が特定の関係を満たすように膜材料を選ばなければならない。つまり、広帯域の反射防止膜を作製するためには、広い波長範囲で吸収がなく、さらに適切な屈折率の関係を満たす材料の組み合わせが必要となってくる。しかしながら、赤外領域では、赤外光に対して透明な物質が少ないため、適切な物質の組み合わせを実現するのは不可能な場合が多く、広帯域にわたって反射防止効果のある加工を施すことは難しかった。   In order to obtain a sufficient antireflection effect even in the case of multiple layers, the film material must be selected so that the refractive index of each layer satisfies a specific relationship. That is, in order to produce a broadband antireflection film, a combination of materials that do not absorb in a wide wavelength range and satisfy an appropriate refractive index relationship is required. However, in the infrared region, since there are few substances that are transparent to infrared light, it is often impossible to achieve an appropriate combination of substances, and it is difficult to apply antireflection processing over a wide band. It was.

また、層数が増えると干渉が複雑になり、その結果、反射スペクトルは、リップルと呼ばれる、波長によって高反射、低反射を細かく繰り返すような形状となる。多層膜ではリップルが非常に大きくかつ多数となるため、広帯域で一様な反射防止効果を得るための障害となっていた。
本発明は上記課題に鑑みなされたものであり、その目的は赤外の広い波長領域に渡って良好な反射防止効果を持つ反射防止膜が形成された光学素子を提供することにある。
In addition, as the number of layers increases, interference becomes complicated. As a result, the reflection spectrum has a shape called a ripple that repeats high reflection and low reflection finely depending on the wavelength. In the multilayer film, ripples are very large and many, and this is an obstacle to obtaining a uniform antireflection effect in a wide band.
The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical element in which an antireflection film having a good antireflection effect over a wide infrared wavelength region is formed.

上記目的を達成するため、本発明にかかるスペクトル測定用光学素子は、基板と、該基板の表裏両面に設けられた赤外反射防止膜と、を備え、前記赤外反射防止膜は複数の光学膜が積層した多層膜であり、前記基板の表側及び裏側に設けられた赤外反射防止膜の膜構成が互いに異なることを特徴とする。
また、前記光学素子において、基板表側及び裏側の多層膜は、基板より外側に向かうにつれ、屈折率が低下し、該多層膜の各層の光学膜厚が200〜1100nmに分布していることが好適である。
In order to achieve the above object, an optical element for spectrum measurement according to the present invention comprises a substrate and infrared antireflection films provided on both the front and back surfaces of the substrate, and the infrared antireflection film comprises a plurality of optical elements. It is a multilayer film in which films are laminated, and the film structures of infrared antireflection films provided on the front side and the back side of the substrate are different from each other.
In the optical element, it is preferable that the multilayer film on the front side and the back side of the substrate has a refractive index that decreases toward the outside of the substrate, and the optical film thickness of each layer of the multilayer film is distributed between 200 and 1100 nm. It is.

上記の光学素子において、前記赤外反射防止膜は、前記基板から数えて第1層目がZnSの光学膜、第2層目がCeOの光学膜、第3層目がPbFの光学膜、第4層目がLaFまたはBaFの光学膜、第5層目がYFの光学膜で構成されていることが好適である。
In the above optical element, wherein the infrared reflection preventing film, the first layer is an optical film of ZnS counting from the substrate, the second layer is CeO 2 of the optical film, the third layer is PbF 2 optical film The fourth layer is preferably composed of an optical film of LaF 3 or BaF, and the fifth layer is composed of an optical film of YF 3 .

本発明にかかる光学素子は、基板の表裏両面にそれぞれ異なる膜構成の赤外反射防止膜が設けられているため、広い波長範囲にわたって良好な反射防止効果をもつ。   The optical element according to the present invention has a good antireflection effect over a wide wavelength range because infrared antireflection films having different film configurations are provided on both the front and back surfaces of the substrate.

以下、図面を参照して本発明の好適な実施形態について説明する。
図2は本発明の一実施形態にかかる光学素子の概略構成図である。図2の光学素子10は、基板12と、基板12の一方の面に設けられた第1赤外反射防止膜14と、基板12の他方の面に設けられた第2赤外反射防止膜16と、を備える。赤外反射防止膜14,16はそれぞれ、複数(図では5層)の光学膜(14−1〜14−5、16−1〜16−5)が積層されて構成される。さらに、赤外反射防止膜14,16は膜構成(各層の屈折率及び膜厚)を調整して、反射率の波長依存性がそれぞれ異なるように構成されている。具体的には、一方の面に形成された赤外反射防止膜の反射率が大きくなっている波長領域で、他方の面の赤外反射防止膜の反射率が小さくなるように、それぞれの赤外反射防止膜14、16の多層膜構造が決められている。その結果、図3に示すように、表裏両面に同じ膜構成の反射防止膜を設けた場合(点線)よりも、本実施形態の光学素子のように表裏両面に異なる構成の反射防止膜を設けた場合(実線)の方が広帯域にわたって低い反射率をもつ。また、図4に示すように、同時にリップルも相殺された赤外反射防止膜とすることもできる。ここで、図4(a)が表面のみに赤外反射防止膜を設けた光学素子(点線)、裏面のみに赤外反射防止膜を設けた光学素子(破線)の反射スペクトルを示すグラフであり、図4(b)が表裏両面に赤外反射防止膜を設けた光学素子の反射スペクトルである。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic configuration diagram of an optical element according to an embodiment of the present invention. The optical element 10 in FIG. 2 includes a substrate 12, a first infrared antireflection film 14 provided on one surface of the substrate 12, and a second infrared antireflection film 16 provided on the other surface of the substrate 12. And comprising. Each of the infrared antireflection films 14 and 16 is formed by laminating a plurality (five layers in the figure) of optical films (14-1 to 14-5, 16-1 to 16-5). Further, the infrared antireflection films 14 and 16 are configured such that the wavelength dependency of the reflectance is different by adjusting the film configuration (refractive index and film thickness of each layer). Specifically, in the wavelength region where the reflectance of the infrared antireflection film formed on one surface is large, each of the red surfaces is reduced so that the reflectance of the infrared antireflection film on the other surface is small. The multilayer structure of the external antireflection films 14 and 16 is determined. As a result, as shown in FIG. 3, an antireflection film having a different configuration is provided on both the front and back surfaces, as in the optical element of the present embodiment, as compared with the case where an antireflection film having the same film configuration is provided on both front and back surfaces (dotted line). (Solid line) has a lower reflectivity over a wide band. Moreover, as shown in FIG. 4, it can also be set as the infrared reflection prevention film | membrane in which the ripple was canceled simultaneously. Here, FIG. 4A is a graph showing a reflection spectrum of an optical element (dotted line) provided with an infrared antireflection film only on the front surface and an optical element (dashed line) provided with an infrared antireflection film only on the back surface. FIG. 4B is a reflection spectrum of an optical element in which an infrared antireflection film is provided on both the front and back surfaces.

このように、第1赤外反射防止膜14のみを基板に設けたと仮定したときの反射スペクトルの山にあたる波長範囲が、第2赤外反射防止膜16のみを基板に設けたと仮定したときの反射スペクトルの谷にあたる波長範囲に略対応し、第1赤外反射防止膜14のみを基板に設けたと仮定したときの反射スペクトルの谷にあたる波長範囲が、第2赤外反射防止膜16のみを基板に設けたと仮定したときの反射スペクトルの山にあたる波長範囲に対応するように、第1および第2赤外反射防止膜14,16の膜構造が互いに異なるように構成されているため、比較的少ない層数で広い波長領域(1.3μm〜13μm)に渡り良好な反射防止効果を有する光学素子を得ることができる。   As described above, the wavelength range corresponding to the peak of the reflection spectrum when it is assumed that only the first infrared antireflection film 14 is provided on the substrate is the reflection when it is assumed that only the second infrared antireflection film 16 is provided on the substrate. The wavelength range corresponding to the valley of the reflection spectrum when it is assumed that only the first infrared antireflection film 14 is provided on the substrate substantially corresponds to the wavelength range corresponding to the valley of the spectrum, and only the second infrared antireflection film 16 is provided on the substrate. Since the film structures of the first and second infrared antireflection films 14 and 16 are different from each other so as to correspond to the wavelength range corresponding to the peak of the reflection spectrum when it is assumed to be provided, there are relatively few layers. An optical element having a good antireflection effect can be obtained over a wide wavelength range (1.3 μm to 13 μm).

本実施形態の光学素子の基板12はZnSeで構成され、赤外反射防止膜14、16は、基板12から数えて第1層目(14−1、16−1)がZnSの光学膜、第2層目(14−2、16−2)がCeOの光学膜、第3層目(14−3、16−3)がPbFの光学膜、第4層目(14−4、16−4)がLaFまたはBaFの光学膜、第5層目(14−5、16−5)がYFの光学膜で構成されていることが好適である。ここで、上記の材質の波長500nmでの屈折率はそれぞれ、ZnS:2.4、CeO:2、PbF:1.75、LaF:1.6、BaF:1.48、YF:1.45である。このよう膜構成とすることで、比較的少ない層数で広い波長範囲(1.3μm〜13μm)にわたり良好な反射防止効果を有することに加え、十分な耐湿性を有する光学素子とすることができる。 The substrate 12 of the optical element of this embodiment is made of ZnSe, and the infrared antireflection films 14 and 16 are optical films whose first layers (14-1 and 16-1) are ZnS as the first layer counted from the substrate 12, respectively. second layer (14-2,16-2) is CeO 2 of the optical film, a third layer (14-3,16-3) is PbF 2 optical film, the fourth layer (14-4,16- 4) is preferably composed of an optical film of LaF 3 or BaF 2 and the fifth layer (14-5, 16-5) is composed of an optical film of YF 3 . Here, the refractive indexes of the above materials at a wavelength of 500 nm are ZnS: 2.4, CeO 2 : 2, PbF 2 : 1.75, LaF 3 : 1.6, BaF 2 : 1.48, YF 3, respectively. : 1.45. By adopting such a film configuration, an optical element having sufficient moisture resistance can be obtained in addition to having a good antireflection effect over a wide wavelength range (1.3 μm to 13 μm) with a relatively small number of layers. .

さらに、赤外反射防止膜の各層の屈折率は、N(N=(Nの条件を満たすことが好適である。ここで、Nは表側の第n層目14−n(n=1〜5)の光学的膜厚であり、Nは入射媒質の屈折率であり、Nは基板の屈折率である。
なお、本発明の構成が適用される「光学素子」の例としては、相対向する面を有する略板状形状のものであれば特に限定されないが、例えば赤外光検知器の窓等が好適な例として挙げられる。
Furthermore, it is preferable that the refractive index of each layer of the infrared antireflection film satisfies the condition of N 0 (N 2 N 4 ) 2 N b = (N 1 N 3 N 5 ) 2 . Here, N n is the optical thickness of the n-th layer 14-n (n = 1 to 5) on the front side, N 0 is the refractive index of the incident medium, and N b is the refractive index of the substrate. .
An example of the “optical element” to which the configuration of the present invention is applied is not particularly limited as long as it has a substantially plate-like shape having opposing surfaces. For example, a window of an infrared light detector is preferable. An example.

以下、本発明にかかる光学素子のより詳しい実施例を説明するが、本発明はこれに限定されず、その他の構成をとってもよい。   Hereinafter, although the more detailed Example of the optical element concerning this invention is described, this invention is not limited to this, You may take another structure.

製造方法
光学研磨したZnSe基板を150℃に保ち、電子シャワーで表面を洗浄した。その後、高真空中で下記表1に示した膜構成で真空蒸着を行なった。なお、表中の層の順序は基板から数えたものであり、光学膜厚は波長500nmの屈折率で計算した。

Figure 0005203582
Manufacturing Method The optically polished ZnSe substrate was kept at 150 ° C., and the surface was washed with an electronic shower. Thereafter, vacuum deposition was performed in a high vacuum with the film configuration shown in Table 1 below. The order of the layers in the table was counted from the substrate, and the optical film thickness was calculated with a refractive index of a wavelength of 500 nm.
Figure 0005203582

図5は、表1に示した実施例1の光学素子の反射スペクトル(波長範囲1300nm〜13000nm)である。ここで、図5(a)が表裏両面に反射防止膜を形成した場合の反射スペクトルであり、図5(b)が、ZnSe基板自体の反射スペクトル(実線)、表側のみに反射防止膜を蒸着したZnSe基板の反射スペクトル(点線)、もしくは裏側のみに反射防止膜を蒸着したZnSe基板(破線)の反射スペクトルである。
図5(a)から、実施例1の光学素子は、波長範囲1300nm〜13000nmにわたって、リップルが少なくかつ低い反射率(反射率20%未満)の良好な反射防止効果を有していることが分かる。
FIG. 5 is a reflection spectrum (wavelength range: 1300 nm to 13000 nm) of the optical element of Example 1 shown in Table 1. Here, FIG. 5A shows the reflection spectrum when antireflection films are formed on both the front and back surfaces, and FIG. 5B shows the reflection spectrum of the ZnSe substrate itself (solid line), and the antireflection film is deposited only on the front side. It is a reflection spectrum (dotted line) of the ZnSe substrate that has been deposited, or a reflection spectrum of a ZnSe substrate (dashed line) having an antireflection film deposited only on the back side.
FIG. 5A shows that the optical element of Example 1 has a good antireflection effect with low ripple and low reflectance (less than 20% reflectance) over the wavelength range of 1300 nm to 13000 nm. .

次に実施例1の光学素子に対し下記に記載する試験を行い、耐湿性を調べた。
耐湿性試験
(試験方法)室温、湿度95%中の雰囲気で、実施例1の光学素子を一ヶ月、放置。
(試験結果)前記実施例1の光学素子の、外観、透過スペクトルに変化なし。
上記の試験結果から、実施例1の光学素子は実用上十分な耐湿性も有することが分かった。
Next, the test described below was performed on the optical element of Example 1 to examine moisture resistance.
Moisture resistance test (test method) The optical element of Example 1 was left for one month in an atmosphere at room temperature and 95% humidity.
(Test result) No change in appearance and transmission spectrum of the optical element of Example 1.
From the above test results, it was found that the optical element of Example 1 also has practically sufficient moisture resistance.

製造方法
実施例1と同様の製造方法で、ZnSe基板に対し、下記表2に示す膜構成の赤外反射防止膜を形成した。なお、表中の層の順序は基板から数えたものであり、光学膜厚は波長500nmの屈折率で計算した。
Manufacturing Method An infrared antireflection film having a film configuration shown in Table 2 below was formed on a ZnSe substrate by the same manufacturing method as in Example 1. The order of the layers in the table was counted from the substrate, and the optical film thickness was calculated with a refractive index of a wavelength of 500 nm.

Figure 0005203582
Figure 0005203582

図6は、表2に示した実施例2の光学素子の反射スペクトル(波長範囲1300nm〜13000nm)である。ここで、図6(a)が表裏両面に反射防止膜を形成した場合の反射スペクトルであり、図6(b)が表側のみ(実線)、もしくは裏側のみ(破線)に反射防止膜を形成した場合の反射スペクトルである。
図6(a)から、実施例2の光学素子は波長範囲1300nm〜13000nmにわたって、リップルが少なく、反射率が9%未満の良好な波長防止効果を有していることが分かる。
また、実施例2の光学素子に対しても実施例1と同様に耐湿性の試験を行なったが、実用上十分な性能を持つことが確認された。
FIG. 6 is a reflection spectrum (wavelength range: 1300 nm to 13000 nm) of the optical element of Example 2 shown in Table 2. Here, FIG. 6A shows a reflection spectrum when antireflection films are formed on both the front and back surfaces, and FIG. 6B shows an antireflection film formed only on the front side (solid line) or only on the back side (broken line). In the case of the reflection spectrum.
From FIG. 6A, it can be seen that the optical element of Example 2 has a good wavelength prevention effect with less ripple and a reflectance of less than 9% over the wavelength range of 1300 nm to 13000 nm.
Further, a moisture resistance test was performed on the optical element of Example 2 in the same manner as in Example 1, and it was confirmed that the optical element had practically sufficient performance.

Si基板の反射率(実線)、Si基板上に一層の光学膜(SiO)を形成したものの反射率(点線)、及びSi基板上に二層の光学膜(CeO+MgF)を形成したものの反射率(破線)、の波長依存性を示したグラフである。The reflectivity of the Si substrate (solid line), the reflectivity (dotted line) of the one-layer optical film (SiO) formed on the Si substrate, and the two-layer optical film (CeO 2 + MgF 2 ) formed on the Si substrate It is the graph which showed the wavelength dependence of a reflectance (broken line). 本発明の実施形態にかかる光学素子の概略構成図である。It is a schematic block diagram of the optical element concerning embodiment of this invention. 基板の表側と裏側に同一構成の反射防止膜を設けた光学素子の反射スペクトル(点線)と、基板の表側と裏側に異なる構成の反射防止膜を設けた光学素子の反射スペクトル(実線)とを示したグラフである。A reflection spectrum (dotted line) of an optical element having an antireflection film having the same configuration on the front side and the back side of the substrate, and a reflection spectrum (solid line) of an optical element having an antireflection film having a different configuration on the front side and the back side of the substrate. It is the shown graph. 図4(a)は表側のみに反射防止膜を設けた光学素子(点線)、および裏側のみに反射防止膜を設けた光学素子(破線)の反射スペクトルを示すグラフであり、図4(b)は表裏両面に反射防止膜を設けた光学素子の反射スペクトルである。FIG. 4 (a) is a graph showing the reflection spectrum of an optical element (dotted line) provided with an antireflection film only on the front side and an optical element (dashed line) provided with an antireflection film only on the back side. Is a reflection spectrum of an optical element having antireflection films on both the front and back surfaces. 図5は実施例1の光学素子の反射スペクトルである。ここで、図5(a)が表裏両面に反射防止膜を形成した場合の反射スペクトルであり、図5(b)が、ZnSe基板自体の反射スペクトル(実線)、表側のみに反射防止膜を蒸着したZnSe基板の反射スペクトル(点線)、裏側のみに反射防止膜を蒸着したZnSe基板(破線)の反射スペクトルである。FIG. 5 is a reflection spectrum of the optical element of Example 1. Here, FIG. 5A shows the reflection spectrum when antireflection films are formed on both the front and back surfaces, and FIG. 5B shows the reflection spectrum of the ZnSe substrate itself (solid line), and the antireflection film is deposited only on the front side. The reflection spectrum of the ZnSe substrate (dotted line), and the reflection spectrum of the ZnSe substrate (dashed line) on which the antireflection film is deposited only on the back side. 図6は実施例2の光学素子の反射スペクトルであり、図6(a)が表裏両S面に反射防止膜を形成した場合の反射スペクトル、図6(b)が表側のみ(実線)、裏側のみ(破線)に反射防止膜を形成した場合の反射スペクトルである。6 is a reflection spectrum of the optical element of Example 2. FIG. 6 (a) is a reflection spectrum when antireflection films are formed on both front and back S surfaces, FIG. 6 (b) is only the front side (solid line), and the back side. It is a reflection spectrum when an antireflection film is formed only on (broken line).

符号の説明Explanation of symbols

10 光学素子
12 基板
14 反射防止膜
16 反射防止膜
10 optical element 12 substrate 14 antireflection film 16 antireflection film

Claims (1)

基板と、該基板の表裏両面に設けられた赤外反射防止膜と、を備えたスペクトル測定用光学素子であって
前記赤外反射防止膜は複数の光学膜が積層した多層膜であり、前記基板表側及び裏側の多層膜は、前記基板から数えて第1層目がZnSの光学膜、第2層目がCeO の光学膜、第3層目がPbF の光学膜、第4層目がLaF またはBaFの光学膜、第5層目がYF の光学膜で構成されており、各光学膜の光学膜厚が200〜1100nmに分布していることを特徴とするスペクトル測定用光学素子。
A spectrum measuring optical element comprising a substrate and infrared antireflection films provided on both the front and back surfaces of the substrate,
The infrared antireflection film is a multilayer film in which a plurality of optical films are laminated. The multilayer film on the front side and the back side of the substrate is a ZnS optical film as a first layer and the second layer is CeO as counted from the substrate. 2 optical film, the third layer is composed of PbF 2 optical film, the fourth layer is composed of LaF 3 or BaF optical film, and the fifth layer is composed of YF 3 optical film . An optical element for spectrum measurement, wherein the film thickness is distributed in a range of 200 to 1100 nm.
JP2006203215A 2006-07-26 2006-07-26 Optical element Active JP5203582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203215A JP5203582B2 (en) 2006-07-26 2006-07-26 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203215A JP5203582B2 (en) 2006-07-26 2006-07-26 Optical element

Publications (2)

Publication Number Publication Date
JP2008032804A JP2008032804A (en) 2008-02-14
JP5203582B2 true JP5203582B2 (en) 2013-06-05

Family

ID=39122327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203215A Active JP5203582B2 (en) 2006-07-26 2006-07-26 Optical element

Country Status (1)

Country Link
JP (1) JP5203582B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9122002B2 (en) 2009-08-05 2015-09-01 Sharp Kabushiki Kaisha Tabular member and structure with observation port
JP5854347B2 (en) 2009-12-23 2016-02-09 住友電工ハードメタル株式会社 Optical components
WO2011099500A1 (en) * 2010-02-12 2011-08-18 中谷産業株式会社 Display window panel, and method for producing display window panel
WO2011099499A1 (en) * 2010-02-12 2011-08-18 中谷産業株式会社 Display window panel, and method for producing display window panel
KR102193781B1 (en) * 2013-10-29 2020-12-23 삼성디스플레이 주식회사 Display device integrated Touch Screen Panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298202A (en) * 1999-04-14 2000-10-24 Mitsubishi Electric Corp Ir-ray lens

Also Published As

Publication number Publication date
JP2008032804A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
CN1979230B (en) Dielectric multilayer filter
US5460888A (en) Multi-layered optical film
JP4190773B2 (en) Antireflection film, optical lens and optical lens unit
JP5203582B2 (en) Optical element
JP7215476B2 (en) optical filter
JP2014032213A (en) Optical functional film for infrared rays
JPH11264903A (en) Antireflection film and its production
JPH05215915A (en) Multilayer reflection increase film
JP2005274527A (en) Cover glass for clock
JP5879021B2 (en) ND filter
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
WO2011074388A1 (en) Optical component, and method for producing same
JP2000111702A (en) Antireflection film
JPH0875902A (en) Multilayer reflection preventing film
TWI788014B (en) Optical filter
JP2003043245A (en) Optical filter
JP2000347002A5 (en)
JP2000347002A (en) Antireflection film
KR20220096836A (en) Imaging Device
CN116134372A (en) Wire grid polarizer reflection control
JP2002277606A (en) Antireflection film and optical element
JP2001074904A (en) Antireflection film for two wavelengths
JPH0756004A (en) Conductive antireflection film
JP7404673B2 (en) Antireflection film, its manufacturing method, and optical components
JP7405405B2 (en) Anti-reflection film, optical element having same, and method for producing anti-reflection film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5203582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250