JPH05215915A - Multilayer reflection increase film - Google Patents

Multilayer reflection increase film

Info

Publication number
JPH05215915A
JPH05215915A JP4046108A JP4610892A JPH05215915A JP H05215915 A JPH05215915 A JP H05215915A JP 4046108 A JP4046108 A JP 4046108A JP 4610892 A JP4610892 A JP 4610892A JP H05215915 A JPH05215915 A JP H05215915A
Authority
JP
Japan
Prior art keywords
component
layer
phase difference
multilayer reflection
polarization component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4046108A
Other languages
Japanese (ja)
Inventor
Noriko Shiokawa
紀子 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP4046108A priority Critical patent/JPH05215915A/en
Publication of JPH05215915A publication Critical patent/JPH05215915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain a high reflection index with regard to both of an S polarization component and a P polarization component by a small number of layers, and also, to obtain a no-phase difference state of the S polarization component and the P polarization component of a reflected light extending over a wide wavelength area. CONSTITUTION:The multilayer reflection increase film 19 is constituted by laminating even number layers in 10-18 on the surface of optical parts 20 used at 30-60 deg. incident angle. An odd number-th layer counted from the surface side of the optical parts 20 is constituted of a material mainly composed of at least one compound selected out of a group consisting of TiO2, CeO2, ZnS and Bi2O3, respectively. Also, an even number-th layer counted from the surface side of the optical parts 20 is constituted of a material mainly composed of at least one compound selected out of a group consisting of MgF2 and SiO2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、カメラ、望遠
鏡、各種光学測定機器、各種OA機器、レーザー応用機
器、各種電子映像機器、光通信装置、光情報処理装置、
光学応用製造装置等の光学機器を構成する光学部品に対
して施される多層反射増加膜に関する。
BACKGROUND OF THE INVENTION The present invention relates to, for example, a camera, a telescope, various optical measuring devices, various OA devices, laser applied devices, various electronic image devices, optical communication devices, optical information processing devices,
The present invention relates to a multilayer reflection increasing film applied to an optical component that constitutes an optical device such as an optical application manufacturing apparatus.

【0002】[0002]

【従来の技術】例えば、レーザープリンター、光ディス
ク装置、レーザー加工装置および測定装置のようなレー
ザー応用機器には、レンズやプリズム等の多くの光学部
品が用いられているが、このような光学部品に対して
は、光路を変更する際にできるだけ光の損失を少なくす
るために、反射増加膜を形成することが行われている。
この反射増加膜は、光学部品の表面に、真空蒸着法等に
より、例えばTiO2 、SiO2 、MgF2 のような無
機物質よりなる薄膜を複数積層して形成したものであ
る。
2. Description of the Related Art For example, many optical parts such as lenses and prisms are used in laser application equipment such as laser printers, optical disk devices, laser processing devices and measuring devices. On the other hand, in order to reduce the loss of light as much as possible when changing the optical path, a reflection increasing film is formed.
This reflection-increasing film is formed by laminating a plurality of thin films made of an inorganic material such as TiO 2 , SiO 2 , or MgF 2 on the surface of an optical component by a vacuum vapor deposition method or the like.

【0003】この多層反射増加膜としては、S偏光成
分、P偏光成分共に高い反射率、すなわちほぼ100%
に近い反射率を得ることが重要な課題とされているが、
そのためには、積層する層数を多くすることが有効であ
ることが知られており、従って、従来の多層反射増加膜
では、20層またはそれ以上の数を積層していた。
This multilayer reflection increasing film has a high reflectance for both the S-polarized component and the P-polarized component, that is, almost 100%.
It is said that obtaining a reflectance close to
For that purpose, it is known that it is effective to increase the number of layers to be laminated. Therefore, in the conventional multilayer reflection increasing film, 20 layers or more are laminated.

【0004】しかしながら、その反面、積層する層数が
多くなれば、それだけ多層反射増加膜の製造の工程数が
増え、製造の手間やコストがかかり、また、層の剥離の
危険性が増え、耐久性が低下するという欠点がある。さ
らには、各層の応力によるクラックの発生の危険性が増
すという欠点もある。
However, on the other hand, if the number of layers to be laminated increases, the number of manufacturing steps of the multilayer reflection increasing film increases accordingly, the manufacturing labor and cost increase, and the risk of layer peeling increases, resulting in durability. There is a drawback that the property is lowered. Furthermore, there is a drawback that the risk of cracks due to the stress of each layer increases.

【0005】また、レーザー用の光学系では、多層反射
増加膜に要求される性能として、高い反射率が得られる
ことのみならず、反射光にS偏光成分とP偏光成分との
位相差が実質的にないこと(以下、無位相差という)、
換言すれば直線偏光となることが重要である。すなわ
ち、S偏光成分とP偏光成分とに位相差があると、レー
ザービームのスポット径を小さくすることができず、S
/N比等の精度が低下するからである。
Further, in the optical system for laser, not only a high reflectance is obtained as the performance required for the multilayer reflection increasing film, but also the phase difference between the S-polarized component and the P-polarized component is substantially contained in the reflected light. That does not exist (hereinafter referred to as no phase difference),
In other words, it is important that the light is linearly polarized light. That is, if there is a phase difference between the S-polarized component and the P-polarized component, the spot diameter of the laser beam cannot be reduced and S
This is because the accuracy such as the / N ratio decreases.

【0006】さらに、一般に、S偏光成分とP偏光成分
との位相差には、波長依存性があるが、上記無位相差の
状態は、広い波長域にわたって得られなければならな
い。すなわち、レーザー光源自身が持っている仕様幅や
環境の変化等によって使用する波長が変動することがあ
るが、このような変動に対しても無位相差を維持し、高
いレベルの精度を安定的に得ることが好ましいからであ
る。
Further, in general, the phase difference between the S-polarized light component and the P-polarized light component has wavelength dependency, but the above-mentioned non-phase difference state must be obtained over a wide wavelength range. That is, the wavelength to be used may change due to the specification width of the laser light source itself, changes in the environment, etc., but no phase difference is maintained against such changes and a high level of accuracy is stable. This is because it is preferable to obtain

【0007】このような無位相差およびその波長依存性
がないことに関し、従来の多層反射増加膜では、満足す
る性能が得られるものは未だなく、特に、設計波長では
無位相差であるが、設計波長から±30nm以上離れる
と、反射光のS偏光成分とP偏光成分との位相差が5°
を超えてしまうような状態であった。
Regarding such non-phase difference and its wavelength dependence, none of the conventional multilayer reflection increasing films can achieve satisfactory performance. In particular, there is no phase difference at the design wavelength. The phase difference between the S-polarized light component and the P-polarized light component of the reflected light is 5 ° when separated from the design wavelength by ± 30 nm or more.
It was in a state of exceeding.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、少な
い層数でS偏光成分、P偏光成分共に高い反射率を得る
とともに、広い波長域にわたって、S偏光成分とP偏光
成分との無位相差状態が得られる多層反射増加膜を提供
することにある。
The object of the present invention is to obtain a high reflectance for both the S-polarized light component and the P-polarized light component with a small number of layers, and to provide an inconsistency between the S-polarized light component and the P-polarized light component over a wide wavelength range. An object of the present invention is to provide a multilayer reflection increasing film that can obtain a phase difference state.

【0009】[0009]

【課題を解決するための手段】このような目的は、下記
(1)および(2)の本発明により達成される。
Such objects are achieved by the present invention described in (1) and (2) below.

【0010】(1) 入射角が30〜60°で用いられ
る光学部品の表面に、10〜18のうちの偶数の層を積
層してなる多層反射増加膜であって、前記表面側から数
えて奇数番目の層は、それぞれ、TiO2 、CeO2
ZnSおよびBi23 よりなる群から選択された少な
くとも1つの化合物を主成分とする材料で構成され、前
記表面側から数えて偶数番目の層は、それぞれ、MgF
2 およびSiO2 よりなる群から選択された少なくとも
1つの化合物を主成分とする材料で構成されていること
を特徴とする多層反射増加膜。
(1) A multilayer reflection increasing film formed by laminating an even number layer of 10 to 18 on the surface of an optical component used at an incident angle of 30 to 60 °, counting from the surface side. The odd layers are TiO 2 , CeO 2 , and
ZnS and Bi 2 O 3 are composed of a material containing at least one compound selected from the group consisting of ZnS and Bi 2 O 3 as a main component.
2. A multilayer reflection increasing film, which is composed of a material whose main component is at least one compound selected from the group consisting of 2 and SiO 2 .

【0011】(2) 前記光学部品の構成材料の屈折率
が1.50〜1.54である上記(1)に記載の多層反
射増加膜。
(2) The multilayer reflection increasing film as described in (1) above, wherein the constituent material of the optical component has a refractive index of 1.50 to 1.54.

【0012】[0012]

【発明の構成】以下、本発明の多層反射増加膜を添付図
面に示す好適実施例に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The multilayer reflection increasing film of the present invention will be described below in detail with reference to the preferred embodiments shown in the accompanying drawings.

【0013】図1は、本発明の多層反射増加膜の構成例
を拡大して示す断面側面図である。同図に示すように、
多層反射増加膜19は、光学部品20の表面に形成され
ている。
FIG. 1 is an enlarged sectional side view showing an example of the structure of the multilayer reflection increasing film of the present invention. As shown in the figure,
The multilayer reflection increasing film 19 is formed on the surface of the optical component 20.

【0014】光学部品20としては、例えば、透明な各
種硝材またはプラスチック(例えばアクリル系樹脂、ポ
リカーボネート、ポリスチレン)で構成されたレンズ、
プリズム、光学フィルター等が挙げれらる。また、光学
部品20の多層反射増加膜19を形成する表面は、図示
のごとく平面であっても、また曲面(球面または非球
面)であってもよい。
As the optical component 20, for example, a lens made of various transparent glass materials or plastics (for example, acrylic resin, polycarbonate, polystyrene),
Examples include prisms and optical filters. The surface of the optical component 20 on which the multilayer reflection increasing film 19 is formed may be a flat surface as shown, or may be a curved surface (spherical surface or aspherical surface).

【0015】このような光学部品20は、通常の使用状
態において、入射角θが30〜60°、好ましくは35
〜50°程度、より好ましくは40〜47°程度で用い
られるものである。入射角θが30°未満であると反射
率が低下する傾向を示し、また入射角θが60°を超え
ると、S偏光成分とP偏光成分との位相差が大きくな
る。
Such an optical component 20 has an incident angle θ of 30 to 60 °, preferably 35, in a normal use condition.
It is used at about -50 °, more preferably at about 40-47 °. When the incident angle θ is less than 30 °, the reflectance tends to decrease, and when the incident angle θ exceeds 60 °, the phase difference between the S polarized component and the P polarized component becomes large.

【0016】また、光学部品20の屈折率は、1.50
〜1.54、特に1.51〜1.52であるのが好まし
い。屈折率がこのような範囲のものにおいて、後述する
効果が特に有効に発揮される。
The refractive index of the optical component 20 is 1.50.
˜1.54, especially 1.51 to 1.52 is preferred. When the refractive index is in such a range, the effects described below are particularly effectively exhibited.

【0017】本発明の多層反射増加膜の層数は、10〜
18のうちの偶数である。層数が10未満であると、S
偏光成分、P偏光成分共に反射率が低下する。なお、層
数が偶数である理由は、奇数であると十分な反射率が得
られず、またS偏光成分とP偏光成分との位相差が大き
くなるからである。
The number of layers of the multilayer reflection enhancing film of the present invention is 10 to 10.
It is an even number of eighteen. If the number of layers is less than 10, S
Both the polarization component and the P polarization component have reduced reflectance. The reason why the number of layers is even is that if it is odd, a sufficient reflectance cannot be obtained, and the phase difference between the S-polarized component and the P-polarized component becomes large.

【0018】図示の多層反射増加膜19は、光学部品2
0の表面側から順に積層された、第1層1、第2層2、
第3層3、第4層4、第5層5、第6層6、第7層7、
第8層8、第9層9、第10層10、第11層11、第
12層12、第13層13、第14層14、第15層1
5、第16層16、第17層17および第18層18の
合計18層で構成されている。これらの層のうち、隣接
する2つの層の構成材料を、それらの屈折率がある程度
乖離したものとすることが反射増加および無位相差にと
って有効である。
The illustrated multilayer reflection enhancing film 19 is used for the optical component 2
The first layer 1, the second layer 2, and the
Third layer 3, fourth layer 4, fifth layer 5, sixth layer 6, seventh layer 7,
8th layer 8, 9th layer 9, 10th layer 10, 11th layer 11, 12th layer 12, 13th layer 13, 14th layer 14, 15th layer 1
5, 16th layer 16, 17th layer 17 and 18th layer 18 in total. Of these layers, it is effective to increase the reflection and retard the phase difference by making the constituent materials of the two adjacent layers different from each other in their refractive indexes.

【0019】すなわち、奇数番目の層1、3、5、7、
9、11、13、15および17は、それぞれ、TiO
2 、CeO2 、ZnSおよびBi23 よりなる群から
選択された少なくとも1つの化合物を主成分とする材料
で構成され、偶数番目の層2、4、6、8、10、1
2、14、16および18は、それぞれ、MgF2 およ
びSiO2 よりなる群から選択された少なくとも1つの
化合物を主成分とする材料で構成されている。
That is, the odd-numbered layers 1, 3, 5, 7,
9, 11, 13, 15, and 17 are TiO 2, respectively.
2 , an even-numbered layer 2, 4, 6, 8, 10, 1 composed of a material containing at least one compound selected from the group consisting of 2 , CeO 2 , ZnS and Bi 2 O 3 as a main component.
2, 14, 16 and 18 are each made of a material containing as a main component at least one compound selected from the group consisting of MgF 2 and SiO 2 .

【0020】ここで、TiO2 、CeO2 、ZnSおよ
びBi23 よりなる群から選択された少なくとも1つ
の化合物を主成分とする材料とは、TiO2 、CeO
2 、ZnSまたはBi23 のうちのいずれか1つまた
は任意の2つ以上の混合物(混合比は任意)、あるい
は、これらを主成分(好ましくは合計60重量%以上、
より好ましくは80重量%以上)とし、他の物質(添加
物または不可避的不純物等を含む)を含む混合物を言う
が、そのなかでも、実質的に不純物を含まないTiO
2 、CeO2 、ZnSまたはBi23 のうちのいずれ
か1つが好ましく、TiO2 またはZnSがより好まし
い。
Here, a material containing at least one compound selected from the group consisting of TiO 2 , CeO 2 , ZnS and Bi 2 O 3 as a main component means TiO 2 , CeO 2 .
2 , any one of ZnS and Bi 2 O 3 or a mixture of any two or more thereof (mixing ratio is arbitrary), or these as a main component (preferably 60% by weight or more in total,
(More preferably 80% by weight or more), and refers to a mixture containing other substances (including additives or unavoidable impurities, etc.), and among them, TiO substantially free of impurities
Any one of 2 , CeO 2 , ZnS or Bi 2 O 3 is preferable, and TiO 2 or ZnS is more preferable.

【0021】また、MgF2 およびSiO2 よりなる群
から選択された少なくとも1つの化合物を主成分とする
材料とは、MgF2 またはSiO2 のいずれか1つまた
は2つの混合物(混合比は任意)、あるいは、これらを
主成分(好ましくは合計60重量%以上、より好ましく
は80重量%以上)とし、他の物質(添加物または不可
避的不純物等を含む)を含む混合物を言うが、そのなか
でも、実質的に不純物を含まないMgF2 またはSiO
2 が好ましい。
Further, the material mainly composed of at least one compound selected from the group consisting of MgF 2 and SiO 2, one of MgF 2 or SiO 2 one or a mixture of the two (the mixing ratio is arbitrary) Or, a mixture containing these as the main components (preferably 60% by weight or more in total, more preferably 80% by weight or more) and other substances (including additives or unavoidable impurities) is mentioned. , MgF 2 or SiO containing substantially no impurities
2 is preferred.

【0022】なお、奇数番目の各層は、すべて同一の組
成でもそれぞれ異なる組成でもよく、同様に偶数番目の
各層も、すべて同一の組成でもそれぞれ異なる組成でも
よい。
The odd-numbered layers may all have the same composition or different compositions. Similarly, the even-numbered layers may have the same composition or different compositions.

【0023】奇数番目の各層の屈折率(波長550nmで
測定)は、2.2〜2.4が好ましく、2.29〜2.
38がより好ましい。
The refractive index (measured at a wavelength of 550 nm) of each odd-numbered layer is preferably 2.2 to 2.4, and 2.29 to 2.
38 is more preferable.

【0024】偶数番目の各層の屈折率(波長550nmで
測定)は、1.3〜1.5が好ましく、1.37〜1.
49がより好ましい。
The refractive index (measured at a wavelength of 550 nm) of each even-numbered layer is preferably 1.3 to 1.5, and 1.37 to 1.
49 is more preferred.

【0025】多層反射増加膜19の各層1〜18の構成
材料、さらには屈折率を上記のようにすることにより、
S偏光成分、P偏光成分共に極めて高い反射率が得ら
れ、反射光のS偏光成分とP偏光成分との位相差が実質
的になく、しかもその効果は広い波長域において得られ
る。さらに、このような多層反射増加膜19は、劣化が
少なく、優れた耐久性が得られる。また、各層1〜18
間の境界面および光学部品20の表面における膜の密着
性も良好であり、内部応力によるクラックの発生もな
い。
By making the constituent materials of the layers 1 to 18 of the multilayer reflection increasing film 19 and the refractive index as described above,
An extremely high reflectance is obtained for both the S-polarized component and the P-polarized component, there is substantially no phase difference between the S-polarized component and the P-polarized component of the reflected light, and the effect is obtained in a wide wavelength range. Further, such a multilayer reflection increasing film 19 is less deteriorated and has excellent durability. Also, each layer 1-18
The adhesion of the film on the boundary surface between them and on the surface of the optical component 20 is also good, and cracks due to internal stress do not occur.

【0026】多層反射増加膜19において、各層1〜1
8の光学的膜厚には特に制限はないが、通常は次のよう
なものとするのが好ましい。すなわち、各層1〜18の
光学的膜厚は、それぞれ、反射増加したい波長域の中心
波長の0.15〜0.35倍程度とするのが好ましく、
より好ましくは0.20〜0.30倍程度、さらに好ま
しくは0.225〜0.275倍程度とされる。
In the multilayer reflection increasing film 19, each of the layers 1 to 1
The optical film thickness of No. 8 is not particularly limited, but it is usually preferable to set it as follows. That is, the optical film thickness of each of the layers 1 to 18 is preferably about 0.15 to 0.35 times the central wavelength of the wavelength range in which reflection is desired to increase,
It is more preferably about 0.20 to 0.30 times, further preferably about 0.225 to 0.275 times.

【0027】各層1〜18の形成は、通常、真空蒸着、
スパッタリング、イオンプレーティング等の気相成膜法
により行われ、成膜条件の設定により、上記膜組成およ
び膜厚を得ることができる。以上のような反射増加膜1
9は、特に、波長570〜710nm、さらには波長58
0〜680nmの入射光に対し、高い反射率と無位相差を
実現する。
The formation of the layers 1 to 18 is usually carried out by vacuum vapor deposition,
The film composition and the film thickness can be obtained by a vapor phase film forming method such as sputtering or ion plating, and the film forming conditions can be set. Reflection increasing film 1 as described above
9 has a wavelength of 570 to 710 nm, and a wavelength of 58.
It realizes high reflectance and no phase difference for incident light of 0 to 680 nm.

【0028】[0028]

【実施例】以下、本発明の具体的実施例について説明す
る。
EXAMPLES Specific examples of the present invention will be described below.

【0029】(実施例1) [1]多層反射増加膜の製造 光学ガラス部品(BK7、屈折率:1.51)を精密洗
浄した後、真空蒸着法により、この光学ガラス部品の表
面側から下記表1に示す材料で構成される第1層〜第1
8層を順次形成し、本発明の多層反射増加膜を得た。な
お、表1中には、各層の屈折率(測定波長550nm)お
よび膜厚を併せて示す。
(Example 1) [1] Production of multilayer reflection-increasing film After precision cleaning of an optical glass component (BK7, refractive index: 1.51), the following was performed from the surface side of this optical glass component by vacuum deposition. First layer to first layer composed of materials shown in Table 1
Eight layers were sequentially formed to obtain the multilayer reflection increasing film of the present invention. In Table 1, the refractive index (measurement wavelength 550 nm) and film thickness of each layer are also shown.

【0030】[0030]

【表1】 [Table 1]

【0031】[2]分光特性の測定 上記多層反射増加膜に対し、波長580〜680nm(設
計波長λ0 =630nm)の光を入射角45°で入射さ
せ、S偏光成分およびP偏光成分のそれぞれの反射率を
測定した。その結果を図2のグラフに示す。
[2] Measurement of Spectral Characteristics A light having a wavelength of 580 to 680 nm (design wavelength λ 0 = 630 nm) is incident on the multilayer reflection increasing film at an incident angle of 45 °, and the S-polarized component and the P-polarized component are respectively reflected. Was measured. The results are shown in the graph of FIG.

【0032】このグラフに示すように、S偏光成分(図
中点線)は、設計波長からの乖離が±50nm以内で反射
率約100%を達成しており、P偏光成分(図中実線)
は、設計波長からの乖離が±50nm以内で反射率約98
%以上、±30nm以内で反射率約99%以上を達成して
いる。
As shown in this graph, the S polarization component (dotted line in the figure) achieves a reflectance of about 100% within a deviation of ± 50 nm from the design wavelength, and the P polarization component (solid line in the figure).
Shows a reflectance of about 98 when the deviation from the design wavelength is within ± 50 nm.
% Or more, and a reflectance of about 99% or more is achieved within ± 30 nm.

【0033】[3]位相差の測定 上記多層反射増加膜に対し、波長580〜700nm(設
計波長λ0 =630nm)の光を入射角45°で入射さ
せ、反射光におけるS偏光成分とP偏光成分との位相差
を測定した。その結果を図9のグラフに示す。
[3] Measurement of Phase Difference Light having a wavelength of 580 to 700 nm (design wavelength λ 0 = 630 nm) is incident on the multilayer reflection increasing film at an incident angle of 45 °, and the S-polarized component and the P-polarized light in the reflected light are incident. The phase difference with the component was measured. The result is shown in the graph of FIG.

【0034】このグラフに示すように、S偏光成分とP
偏光成分との位相差は、設計波長からの乖離が−50〜
+70nmの範囲内で±4.5°以内を達成している。
As shown in this graph, S polarization component and P
As for the phase difference with the polarization component, the deviation from the design wavelength is -50 to
Within ± 70 ° within the range of +70 nm.

【0035】(実施例2) [1]多層反射増加膜の製造 実施例1と同様の光学ガラス部品を精密洗浄した後、真
空蒸着法により、この光学ガラス部品の表面側から下記
表2に示す材料で構成される第1層〜第16層を順次形
成し、本発明の多層反射増加膜を得た。なお、表2中に
は、各層の屈折率(測定波長550nm)および膜厚を併
せて示す。
(Example 2) [1] Production of multilayer reflection-increasing film The same optical glass parts as in Example 1 were precision cleaned, and then vacuum-evaporated to show the surface side of the optical glass parts shown in Table 2 below. First to sixteenth layers made of materials were sequentially formed to obtain a multilayer reflection increasing film of the present invention. In Table 2, the refractive index (measurement wavelength 550 nm) and film thickness of each layer are also shown.

【0036】[0036]

【表2】 [Table 2]

【0037】[2]分光特性の測定 実施例1と同様にして、S偏光成分およびP偏光成分の
それぞれの反射率を測定した。その結果を図3のグラフ
に示す。
[2] Measurement of Spectral Characteristics In the same manner as in Example 1, the reflectances of the S-polarized component and the P-polarized component were measured. The result is shown in the graph of FIG.

【0038】このグラフに示すように、S偏光成分(図
中点線)は、設計波長からの乖離が±50nm以内で反射
率約99%以上を達成しており、P偏光成分(図中実
線)は、設計波長からの乖離が±50nm以内で反射率約
95%以上、±30nm以内で反射率約98%以上を達成
している。
As shown in this graph, the S polarization component (dotted line in the figure) achieves a reflectance of about 99% or more within a deviation of ± 50 nm from the design wavelength, and the P polarization component (solid line in the figure). Achieves a reflectance of about 95% or more within a deviation of ± 50 nm from the design wavelength, and a reflectance of about 98% or more within a deviation of ± 30 nm.

【0039】[3]位相差の測定 実施例1と同様にして、反射光におけるS偏光成分とP
偏光成分との位相差を測定した。その結果を図10のグ
ラフに示す。
[3] Measurement of phase difference In the same manner as in Example 1, the S-polarized component and P in the reflected light were measured.
The phase difference with the polarized component was measured. The result is shown in the graph of FIG.

【0040】このグラフに示すように、S偏光成分とP
偏光成分との位相差は、設計波長からの乖離が−50〜
+70nmの範囲内で±4.0°以内を達成している。
As shown in this graph, the S polarization component and P
As for the phase difference with the polarization component, the deviation from the design wavelength is -50 to
Achieved within ± 4.0 ° within +70 nm.

【0041】(実施例3) [1]多層反射増加膜の製造 実施例1と同様の光学ガラス部品を精密洗浄した後、真
空蒸着法により、この光学ガラス部品の表面側から下記
表3に示す材料で構成される第1層〜第14層を順次形
成し、本発明の多層反射増加膜を得た。なお、表3中に
は、各層の屈折率(測定波長550nm)および膜厚を併
せて示す。
(Example 3) [1] Production of multilayer reflection-increasing film After optical glass parts similar to those in Example 1 were precisely cleaned, they are shown in Table 3 below from the surface side of the optical glass parts by vacuum deposition. First to fourteenth layers made of materials were sequentially formed to obtain a multilayer reflection increasing film of the present invention. In Table 3, the refractive index (measurement wavelength 550 nm) and film thickness of each layer are also shown.

【0042】[0042]

【表3】 [Table 3]

【0043】[2]分光特性の測定 実施例1と同様にして、S偏光成分およびP偏光成分の
それぞれの反射率を測定した。その結果を図4のグラフ
に示す。
[2] Measurement of Spectral Characteristics In the same manner as in Example 1, the reflectances of the S-polarized component and the P-polarized component were measured. The result is shown in the graph of FIG.

【0044】このグラフに示すように、S偏光成分(図
中点線)は、設計波長からの乖離が±50nm以内で反射
率約99%以上を達成しており、P偏光成分(図中実
線)は、設計波長からの乖離が±50nm以内で反射率約
92%以上、±30nm以内で反射率約96%以上を達成
している。
As shown in this graph, the S polarization component (dotted line in the figure) achieves a reflectance of about 99% or more within a deviation of ± 50 nm from the design wavelength, and the P polarization component (solid line in the figure). Achieves a reflectance of about 92% or more when the deviation from the design wavelength is within ± 50 nm, and a reflectance of about 96% or more within ± 30 nm.

【0045】[3]位相差の測定 上記多層反射増加膜に対し、波長570〜700nm(設
計波長λ0 =630nm)の光を入射角45°で入射さ
せ、反射光におけるS偏光成分とP偏光成分との位相差
を測定した。その結果を図11のグラフに示す。
[3] Measurement of Phase Difference Light having a wavelength of 570 to 700 nm (design wavelength λ 0 = 630 nm) is incident on the above multilayer reflection increasing film at an incident angle of 45 °, and S polarization component and P polarization of reflected light The phase difference with the component was measured. The result is shown in the graph of FIG.

【0046】このグラフに示すように、S偏光成分とP
偏光成分との位相差は、設計波長からの乖離が−60〜
+70nmの範囲内で±5.0°以内を達成している。
As shown in this graph, the S polarization component and P
The phase difference with the polarization component is -60 to 60 degrees apart from the design wavelength.
Achieved within ± 5.0 ° in the range of +70 nm.

【0047】(実施例4) [1]多層反射増加膜の製造 実施例1と同様の光学ガラス部品を精密洗浄した後、真
空蒸着法により、この光学ガラス部品の表面側から下記
表4に示す材料で構成される第1層〜第14層を順次形
成し、本発明の多層反射増加膜を得た。なお、表4中に
は、各層の屈折率(測定波長550nm)および膜厚を併
せて示す。
(Example 4) [1] Production of multilayer reflection-increasing film The same optical glass parts as in Example 1 were precision cleaned, and then vacuum-evaporated to show the surface side of the optical glass parts shown in Table 4 below. First to fourteenth layers made of materials were sequentially formed to obtain a multilayer reflection increasing film of the present invention. In addition, in Table 4, the refractive index (measurement wavelength 550 nm) and the film thickness of each layer are also shown.

【0048】[0048]

【表4】 [Table 4]

【0049】[2]分光特性の測定 実施例1と同様にして、S偏光成分およびP偏光成分の
それぞれの反射率を測定した。その結果を図5のグラフ
に示す。
[2] Measurement of Spectral Characteristics In the same manner as in Example 1, the reflectances of the S-polarized component and the P-polarized component were measured. The result is shown in the graph of FIG.

【0050】このグラフに示すように、S偏光成分(図
中点線)は、設計波長からの乖離が±50nm以内で反射
率約99%以上を達成しており、P偏光成分(図中実
線)は、設計波長からの乖離が±50nm以内で反射率約
92%以上、±30nm以内で反射率約96%以上を達成
している。
As shown in this graph, the S polarization component (dotted line in the figure) achieves a reflectance of about 99% or more within a deviation of ± 50 nm from the design wavelength, and the P polarization component (solid line in the figure). Achieves a reflectance of about 92% or more when the deviation from the design wavelength is within ± 50 nm, and a reflectance of about 96% or more within ± 30 nm.

【0051】[3]位相差の測定 実施例1と同様にして、反射光におけるS偏光成分とP
偏光成分との位相差を測定した。その結果を図12のグ
ラフに示す。
[3] Measurement of Phase Difference In the same manner as in Example 1, the S-polarized component and P in the reflected light
The phase difference with the polarized component was measured. The result is shown in the graph of FIG.

【0052】このグラフに示すように、S偏光成分とP
偏光成分との位相差は、設計波長からの乖離が−50〜
+70nmの範囲内で±3.0°以内を達成している。
As shown in this graph, the S polarization component and P
As for the phase difference with the polarization component, the deviation from the design wavelength is -50 to
Achieves within ± 3.0 ° in the range of +70 nm.

【0053】(実施例5) [1]多層反射増加膜の製造 実施例1と同様の光学ガラス部品を精密洗浄した後、真
空蒸着法により、この光学ガラス部品の表面側から下記
表5に示す材料で構成される第1層〜第12層を順次形
成し、本発明の多層反射増加膜を得た。なお、表5中に
は、各層の屈折率(測定波長550nm)および膜厚を併
せて示す。
(Example 5) [1] Production of multilayer reflection-increasing film After optical glass parts similar to those in Example 1 were precision washed, the results are shown in Table 5 below from the surface side of the optical glass parts by vacuum deposition. First to twelfth layers made of materials were sequentially formed to obtain a multilayer reflection increasing film of the present invention. In Table 5, the refractive index (measurement wavelength 550 nm) and film thickness of each layer are also shown.

【0054】[0054]

【表5】 [Table 5]

【0055】[2]分光特性の測定 実施例1と同様にして、S偏光成分およびP偏光成分の
それぞれの反射率を測定した。その結果を図6のグラフ
に示す。
[2] Measurement of Spectral Characteristics In the same manner as in Example 1, the reflectances of the S-polarized component and the P-polarized component were measured. The result is shown in the graph of FIG.

【0056】このグラフに示すように、S偏光成分(図
中点線)は、設計波長からの乖離が±50nm以内で反射
率約98%以上を達成しており、P偏光成分(図中実
線)は、設計波長からの乖離が±50nm以内で反射率約
90%以上、±30nm以内で反射率約93%以上を達成
している。
As shown in this graph, the S polarization component (dotted line in the figure) achieves a reflectance of about 98% or more within a deviation of ± 50 nm from the design wavelength, and the P polarization component (solid line in the figure). Achieves a reflectance of about 90% or more when the deviation from the design wavelength is within ± 50 nm, and a reflectance of about 93% or more within ± 30 nm.

【0057】[3]位相差の測定 実施例3と同様にして、反射光におけるS偏光成分とP
偏光成分との位相差を測定した。その結果を図13のグ
ラフに示す。
[3] Measurement of Phase Difference In the same manner as in Example 3, the S-polarized component and P in the reflected light were measured.
The phase difference with the polarized component was measured. The result is shown in the graph of FIG.

【0058】このグラフに示すように、S偏光成分とP
偏光成分との位相差は、設計波長からの乖離が−60〜
+70nmの範囲内で±3.0°以内を達成している。
As shown in this graph, S polarization component and P
The phase difference with the polarization component is -60 to 60 degrees apart from the design wavelength.
Achieves within ± 3.0 ° in the range of +70 nm.

【0059】(実施例6) [1]多層反射増加膜の製造 実施例1と同様の光学ガラス部品を精密洗浄した後、真
空蒸着法により、この光学ガラス部品の表面側から下記
表6に示す材料で構成される第1層〜第10層を順次形
成し、本発明の多層反射増加膜を得た。なお、表6中に
は、各層の屈折率(測定波長550nm)および膜厚を併
せて示す。
(Example 6) [1] Production of multilayer reflection-increasing film After optical glass parts similar to those in Example 1 were precision cleaned, the results are shown in Table 6 below from the surface side of the optical glass parts by vacuum deposition. First to tenth layers made of materials were sequentially formed to obtain a multilayer reflection increasing film of the present invention. In Table 6, the refractive index (measurement wavelength: 550 nm) and film thickness of each layer are also shown.

【0060】[0060]

【表6】 [Table 6]

【0061】[2]分光特性の測定 実施例1と同様にして、S偏光成分およびP偏光成分の
それぞれの反射率を測定した。その結果を図7のグラフ
に示す。
[2] Measurement of Spectral Characteristics In the same manner as in Example 1, the reflectances of the S-polarized component and the P-polarized component were measured. The result is shown in the graph of FIG.

【0062】このグラフに示すように、S偏光成分(図
中点線)は、設計波長からの乖離が±50nm以内で反射
率約96%以上を達成しており、P偏光成分(図中実
線)は、設計波長からの乖離が±50nm以内で反射率約
83%以上、±30nm以内で反射率約87%以上を達成
している。
As shown in this graph, the S polarization component (dotted line in the figure) achieves a reflectance of about 96% or more within a deviation of ± 50 nm from the design wavelength, and the P polarization component (solid line in the figure). Achieves a reflectance of about 83% or more when the deviation from the design wavelength is within ± 50 nm, and a reflectance of about 87% or more within ± 30 nm.

【0063】[3]位相差の測定 実施例3と同様にして、反射光におけるS偏光成分とP
偏光成分との位相差を測定した。その結果を図14のグ
ラフに示す。
[3] Measurement of phase difference In the same manner as in Example 3, the S-polarized component and P in the reflected light were measured.
The phase difference with the polarized component was measured. The result is shown in the graph of FIG.

【0064】このグラフに示すように、S偏光成分とP
偏光成分との位相差は、設計波長からの乖離が−60〜
+70nmの範囲内で±3.0°以内を達成している。
As shown in this graph, the S polarization component and P
The phase difference with the polarization component is -60 to 60 degrees apart from the design wavelength.
Achieves within ± 3.0 ° in the range of +70 nm.

【0065】(比較例) [1]多層反射増加膜の製造 実施例1と同様の光学ガラス部品を精密洗浄した後、真
空蒸着法により、この光学ガラス部品の表面側から下記
表7に示す材料で構成される第1層〜第8層を順次形成
し、比較例の多層反射増加膜を得た。なお、表7中に
は、各層の屈折率(測定波長550nm)および膜厚を併
せて示す。
(Comparative Example) [1] Production of multilayer reflection-increasing film After optical glass parts similar to those in Example 1 were precision cleaned, the materials shown in Table 7 below were applied from the surface side of the optical glass parts by vacuum deposition. The first layer to the eighth layer composed of the above were sequentially formed to obtain a multilayer reflection increasing film of a comparative example. In Table 7, the refractive index (measurement wavelength 550 nm) and film thickness of each layer are also shown.

【0066】[0066]

【表7】 [Table 7]

【0067】[2]分光特性の測定 実施例1と同様にして、S偏光成分およびP偏光成分の
それぞれの反射率を測定した。その結果を図8のグラフ
に示す。
[2] Measurement of Spectral Characteristics In the same manner as in Example 1, the reflectances of the S-polarized component and the P-polarized component were measured. The result is shown in the graph of FIG.

【0068】このグラフに示すように、S偏光成分(図
中点線)は、設計波長からの乖離が±50nm以内で反射
率約89%以上であり、P偏光成分(図中実線)は、設
計波長からの乖離が±50nm以内で反射率約71%以
上、±30nm以内で反射率約75%以上であり、いずれ
も上記実施例1〜6で得られた反射率に比べ、低い値と
なっている。
As shown in this graph, the S polarization component (dotted line in the figure) has a reflectance of about 89% or more within a deviation of ± 50 nm from the design wavelength, and the P polarization component (solid line in the figure) is When the deviation from the wavelength is within ± 50 nm, the reflectance is about 71% or more, and within ± 30 nm, the reflectance is about 75% or more, both of which are lower than the reflectances obtained in Examples 1 to 6 above. ing.

【0069】[3]位相差の測定 実施例1と同様にして、反射光におけるS偏光成分とP
偏光成分との位相差を測定した。その結果を図15のグ
ラフに示す。
[3] Measurement of phase difference In the same manner as in Example 1, the S-polarized component and P in the reflected light were measured.
The phase difference with the polarized component was measured. The result is shown in the graph of FIG.

【0070】このグラフに示すように、S偏光成分とP
偏光成分との位相差は、設計波長からの乖離が−50〜
+70nmの範囲内で±5.0°以内となっている。
As shown in this graph, S polarization component and P
As for the phase difference with the polarization component, the deviation from the design wavelength is -50 to
It is within ± 5.0 ° in the range of +70 nm.

【0071】(実施例7)実施例1〜6のそれぞれにつ
いて、第1層、第5層および第9層の構成材料を、それ
ぞれZnS(屈折率:2.37、膜厚:66nm)とした
以外は同様の多層反射増加膜を製造した。
Example 7 In each of Examples 1 to 6, the constituent material of the first layer, the fifth layer and the ninth layer was ZnS (refractive index: 2.37, film thickness: 66 nm). A similar multilayer reflection increasing film was manufactured except for the above.

【0072】これらに対し、それぞれ、実施例1〜6と
同様にして分光特性および位相差を測定したところ、実
施例1〜6とほぼ同様の高い反射率および広い波長域で
の無位相差が達成された。
On the other hand, when the spectral characteristics and the phase difference were measured in the same manner as in Examples 1 to 6, respectively, the high reflectance and the non-phase difference in a wide wavelength range similar to those in Examples 1 to 6 were obtained. Achieved

【0073】(実施例8)実施例1〜6のそれぞれにつ
いて、第1層、第5層、第7層および第9層の構成材料
を、それぞれCeO2 (屈折率:2.31、膜厚:68
nm)とし、その他の奇数番目の層の構成材料を、それぞ
れBi23 (屈折率:2.38、膜厚:66nm)とし
た以外は同様の多層反射増加膜を製造した。
(Embodiment 8) In each of Embodiments 1 to 6, the constituent materials of the first layer, the fifth layer, the seventh layer and the ninth layer were respectively changed to CeO 2 (refractive index: 2.31, film thickness). : 68
nm) and the other constituent materials of the odd-numbered layers were Bi 2 O 3 (refractive index: 2.38, film thickness: 66 nm), respectively.

【0074】これらに対し、それぞれ、実施例1〜6と
同様にして分光特性および位相差を測定したところ、実
施例1〜6とほぼ同様の高い反射率および広い波長域で
の無位相差が達成された。
On the other hand, when the spectral characteristics and the phase difference were measured in the same manner as in Examples 1 to 6, respectively, the high reflectance and the no-phase difference in a wide wavelength range similar to those in Examples 1 to 6 were obtained. Achieved

【0075】[0075]

【発明の効果】以上述べたように、本発明の多層反射増
加膜によれば、少ない層数で、高い反射率、特に、S偏
光成分とP偏光成分の双方について高い反射率が得ら
れ、しかも、広い波長域にわたって、反射光のS偏光成
分とP偏光成分との無位相差状態が得られる。
As described above, according to the multilayer reflection increasing film of the present invention, a high reflectance can be obtained with a small number of layers, especially for both S-polarized light components and P-polarized light components. Moreover, a non-phase difference state between the S-polarized component and the P-polarized component of the reflected light can be obtained over a wide wavelength range.

【0076】また、本発明の多層反射増加膜は、層数が
少ないため、製造が容易であり、また安定性、耐久性に
も優れている。
Since the multilayer reflection increasing film of the present invention has a small number of layers, it is easy to manufacture and is excellent in stability and durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層反射増加膜の構成例を拡大して示
す断面側面図である。
FIG. 1 is an enlarged cross-sectional side view showing a configuration example of a multilayer reflection increasing film of the present invention.

【図2】本発明の実施例1における分光特性を示すグラ
フである。
FIG. 2 is a graph showing spectral characteristics in Example 1 of the present invention.

【図3】本発明の実施例2における分光特性を示すグラ
フである。
FIG. 3 is a graph showing spectral characteristics in Example 2 of the present invention.

【図4】本発明の実施例3における分光特性を示すグラ
フである。
FIG. 4 is a graph showing spectral characteristics in Example 3 of the present invention.

【図5】本発明の実施例4における分光特性を示すグラ
フである。
FIG. 5 is a graph showing spectral characteristics in Example 4 of the present invention.

【図6】本発明の実施例5における分光特性を示すグラ
フである。
FIG. 6 is a graph showing spectral characteristics in Example 5 of the present invention.

【図7】本発明の実施例6における分光特性を示すグラ
フである。
FIG. 7 is a graph showing spectral characteristics in Example 6 of the present invention.

【図8】比較例における分光特性を示すグラフである。FIG. 8 is a graph showing spectral characteristics in a comparative example.

【図9】本発明の実施例1におけるS偏光成分とP偏光
成分との位相差を示すグラフである。
FIG. 9 is a graph showing a phase difference between the S-polarized component and the P-polarized component in Example 1 of the present invention.

【図10】本発明の実施例2におけるS偏光成分とP偏
光成分との位相差を示すグラフである。
FIG. 10 is a graph showing a phase difference between an S-polarized component and a P-polarized component in Example 2 of the present invention.

【図11】本発明の実施例3におけるS偏光成分とP偏
光成分との位相差を示すグラフである。
FIG. 11 is a graph showing a phase difference between an S-polarized component and a P-polarized component in Example 3 of the present invention.

【図12】本発明の実施例4におけるS偏光成分とP偏
光成分との位相差を示すグラフである。
FIG. 12 is a graph showing a phase difference between an S-polarized component and a P-polarized component in Example 4 of the present invention.

【図13】本発明の実施例5におけるS偏光成分とP偏
光成分との位相差を示すグラフである。
FIG. 13 is a graph showing a phase difference between an S-polarized component and a P-polarized component in Example 5 of the present invention.

【図14】本発明の実施例6におけるS偏光成分とP偏
光成分との位相差を示すグラフである。
FIG. 14 is a graph showing a phase difference between an S-polarized component and a P-polarized component in Example 6 of the present invention.

【図15】比較例におけるS偏光成分とP偏光成分との
位相差を示すグラフである。
FIG. 15 is a graph showing a phase difference between an S-polarized component and a P-polarized component in a comparative example.

【符号の説明】[Explanation of symbols]

1 第1層 2 第2層 3 第3層 4 第4層 5 第5層 6 第6層 7 第7層 8 第8層 9 第9層 10 第10層 11 第11層 12 第12層 13 第13層 14 第14層 15 第15層 16 第16層 17 第17層 18 第18層 19 多層反射増加膜 20 光学部品 1 1st layer 2 2nd layer 3 3rd layer 4 4th layer 5 5th layer 6 6th layer 7 7th layer 8 8th layer 9 9th layer 10 10th layer 11 11th layer 12 12th layer 13th 13 layers 14 14th layer 15 15th layer 16 16th layer 17 17th layer 18 18th layer 19 Multilayer reflection increasing film 20 Optical parts

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入射角が30〜60°で用いられる光学
部品の表面に、10〜18のうちの偶数の層を積層して
なる多層反射増加膜であって、 前記表面側から数えて奇数番目の層は、それぞれ、Ti
2 、CeO2 、ZnSおよびBi23 よりなる群か
ら選択された少なくとも1つの化合物を主成分とする材
料で構成され、 前記表面側から数えて偶数番目の層は、それぞれ、Mg
2 およびSiO2 よりなる群から選択された少なくと
も1つの化合物を主成分とする材料で構成されているこ
とを特徴とする多層反射増加膜。
1. A multilayer reflection increasing film formed by laminating an even number layer of 10 to 18 on a surface of an optical component used at an incident angle of 30 to 60 °, which is an odd number counted from the surface side. The second layer is Ti
O 2, at least one compound selected from CeO 2, the group consisting of ZnS and Bi 2 O 3 is formed of a material whose main component, even-numbered layers counted from the surface side, respectively, Mg
A multilayer reflection-increasing film comprising a material containing at least one compound selected from the group consisting of F 2 and SiO 2 as a main component.
【請求項2】 前記光学部品の構成材料の屈折率が1.
50〜1.54である請求項1に記載の多層反射増加
膜。
2. The refractive index of the constituent material of the optical component is 1.
The multilayer reflection increasing film according to claim 1, which has a thickness of 50 to 1.54.
JP4046108A 1992-01-31 1992-01-31 Multilayer reflection increase film Pending JPH05215915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4046108A JPH05215915A (en) 1992-01-31 1992-01-31 Multilayer reflection increase film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4046108A JPH05215915A (en) 1992-01-31 1992-01-31 Multilayer reflection increase film

Publications (1)

Publication Number Publication Date
JPH05215915A true JPH05215915A (en) 1993-08-27

Family

ID=12737798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4046108A Pending JPH05215915A (en) 1992-01-31 1992-01-31 Multilayer reflection increase film

Country Status (1)

Country Link
JP (1) JPH05215915A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029352A1 (en) * 1996-12-25 1998-07-09 Nippon Sheet Glass Co., Ltd. Thin film for optics, composition for the formation thereof, and ultraviolet-absorbing and heat-reflecting glass made by using the same
US7573562B2 (en) 2007-03-29 2009-08-11 Canon Kabushiki Kaisha Reflective optical element and exposure apparatus
US9319444B2 (en) 2009-06-22 2016-04-19 Monotype Imaging Inc. Font data streaming
US9317777B2 (en) 2013-10-04 2016-04-19 Monotype Imaging Inc. Analyzing font similarity for presentation
US9569865B2 (en) 2012-12-21 2017-02-14 Monotype Imaging Inc. Supporting color fonts
US9626337B2 (en) 2013-01-09 2017-04-18 Monotype Imaging Inc. Advanced text editor
US9691169B2 (en) 2014-05-29 2017-06-27 Monotype Imaging Inc. Compact font hinting
US9817615B2 (en) 2012-12-03 2017-11-14 Monotype Imaging Inc. Network based font management for imaging devices
US10115215B2 (en) 2015-04-17 2018-10-30 Monotype Imaging Inc. Pairing fonts for presentation
US10572574B2 (en) 2010-04-29 2020-02-25 Monotype Imaging Inc. Dynamic font subsetting using a file size threshold for an electronic document
US10909429B2 (en) 2017-09-27 2021-02-02 Monotype Imaging Inc. Using attributes for identifying imagery for selection
US11334750B2 (en) 2017-09-07 2022-05-17 Monotype Imaging Inc. Using attributes for predicting imagery performance
US11537262B1 (en) 2015-07-21 2022-12-27 Monotype Imaging Inc. Using attributes for font recommendations
US11657602B2 (en) 2017-10-30 2023-05-23 Monotype Imaging Inc. Font identification from imagery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029352A1 (en) * 1996-12-25 1998-07-09 Nippon Sheet Glass Co., Ltd. Thin film for optics, composition for the formation thereof, and ultraviolet-absorbing and heat-reflecting glass made by using the same
US7573562B2 (en) 2007-03-29 2009-08-11 Canon Kabushiki Kaisha Reflective optical element and exposure apparatus
US9319444B2 (en) 2009-06-22 2016-04-19 Monotype Imaging Inc. Font data streaming
US10572574B2 (en) 2010-04-29 2020-02-25 Monotype Imaging Inc. Dynamic font subsetting using a file size threshold for an electronic document
US9817615B2 (en) 2012-12-03 2017-11-14 Monotype Imaging Inc. Network based font management for imaging devices
US9569865B2 (en) 2012-12-21 2017-02-14 Monotype Imaging Inc. Supporting color fonts
US9626337B2 (en) 2013-01-09 2017-04-18 Monotype Imaging Inc. Advanced text editor
US9317777B2 (en) 2013-10-04 2016-04-19 Monotype Imaging Inc. Analyzing font similarity for presentation
US9805288B2 (en) 2013-10-04 2017-10-31 Monotype Imaging Inc. Analyzing font similarity for presentation
US9691169B2 (en) 2014-05-29 2017-06-27 Monotype Imaging Inc. Compact font hinting
US10115215B2 (en) 2015-04-17 2018-10-30 Monotype Imaging Inc. Pairing fonts for presentation
US11537262B1 (en) 2015-07-21 2022-12-27 Monotype Imaging Inc. Using attributes for font recommendations
US11334750B2 (en) 2017-09-07 2022-05-17 Monotype Imaging Inc. Using attributes for predicting imagery performance
US10909429B2 (en) 2017-09-27 2021-02-02 Monotype Imaging Inc. Using attributes for identifying imagery for selection
US11657602B2 (en) 2017-10-30 2023-05-23 Monotype Imaging Inc. Font identification from imagery

Similar Documents

Publication Publication Date Title
CN1979230B (en) Dielectric multilayer filter
EP2708922A2 (en) Anti-reflection coating, optical member having it, and optical equipment comprising such optical member
JP6051710B2 (en) Antireflection film, optical member using the same, and optical instrument
JPH05215915A (en) Multilayer reflection increase film
CN101105547A (en) Dielectric multilayer filter
JP4190773B2 (en) Antireflection film, optical lens and optical lens unit
US20050264874A1 (en) Omnidirectional photonic crystal
US6317264B1 (en) Thin film polarizing device having metal-dielectric films
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
WO2020103206A1 (en) Polarization-independent filter
US3809459A (en) Antireflection coating for an inner surface of cemented lenses
JP2002014203A (en) Antireflection film and optical member using the same
WO2020015102A1 (en) Polarization-independent beam splitter
JP2008032804A (en) Optical element
JPH05264802A (en) Multilayered antireflection film
JPS6177002A (en) Optical antireflecting film
JP2001100002A (en) Antireflection film and optical member using same
JP2009031406A (en) Nonpolarization beam splitter and optical measuring instrument using the same
JP3894107B2 (en) Infrared antireflection film
JP2002267801A (en) Antireflection film and optical member which uses the same
JPH058801B2 (en)
JP3113371B2 (en) Multi-layer anti-reflective coating
JP6236776B2 (en) Antireflection film, optical member using the same, and optical instrument
US20150362632A1 (en) Antireflection coating and optical element including the same
JP3113376B2 (en) Multi-layer anti-reflective coating