WO2011074388A1 - Optical component, and method for producing same - Google Patents

Optical component, and method for producing same Download PDF

Info

Publication number
WO2011074388A1
WO2011074388A1 PCT/JP2010/070982 JP2010070982W WO2011074388A1 WO 2011074388 A1 WO2011074388 A1 WO 2011074388A1 JP 2010070982 W JP2010070982 W JP 2010070982W WO 2011074388 A1 WO2011074388 A1 WO 2011074388A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer film
optical component
film
refractive index
layer
Prior art date
Application number
PCT/JP2010/070982
Other languages
French (fr)
Japanese (ja)
Inventor
義正 山口
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN2010800573037A priority Critical patent/CN102656487A/en
Publication of WO2011074388A1 publication Critical patent/WO2011074388A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1073Beam splitting or combining systems characterized by manufacturing or alignment methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers

Definitions

  • the present invention relates to an optical component and a manufacturing method thereof.
  • wavelength separation elements for separating light in a predetermined wavelength region have been widely used in optical communication systems and the like.
  • Specific examples of the wavelength separation element include those disclosed in Patent Documents 1 to 3 below.
  • Patent Document 1 discloses a dichroic mirror 100 shown in FIG. 10 as a wavelength separation element.
  • the dichroic mirror 100 includes first and second prisms 101 and 102 each having a triangular prism shape.
  • a mirror coat layer 103 made of a multilayer film is formed.
  • a SiO 2 coat layer 104 is formed on the slope 102 a of the second prism 102.
  • the SiO 2 coat layer 104 and the mirror coat layer 103 are bonded by the adhesive layer 105.
  • the mirror coat layer 103 realizes the wavelength separation function.
  • the SiO 2 coat layer 104 is provided to improve the adhesion between the mirror coat layer 103 and the second prism 102.
  • the wavelength difference between the wavelength regions separated in the wavelength separation element has become smaller.
  • the wavelength separation characteristic required for the wavelength separation element is also increasing.
  • the dichroic mirror 100 in order to satisfy such a demand, it is necessary to increase the number of multilayer films constituting the mirror coat layer 103.
  • the multilayer film layer It is necessary to increase the number. Therefore, it is difficult to achieve both high optical function and low cost and to realize higher optical function.
  • the present invention has been made in view of such a point, and an object thereof is to provide an optical component that can be manufactured at a low cost and can realize a high optical function.
  • the optical component according to the present invention includes a first light transmissive member, a second light transmissive member, and an optical functional film.
  • the optical functional film is provided between the first translucent member and the second translucent member.
  • the optical functional film has a first multilayer film, a second multilayer film, and an adhesive layer.
  • the first multilayer film is formed on the first light transmissive member.
  • the second multilayer film is formed on the second light transmissive member.
  • the adhesive layer bonds the first multilayer film and the second multilayer film.
  • “multilayer film” refers to a film composed of a plurality of laminated layers.
  • the method for manufacturing an optical component according to the present invention also relates to a method for manufacturing the optical component according to the present invention.
  • the method for manufacturing an optical component according to the present invention includes first and second multilayer film forming steps and an adhesion step.
  • the first multilayer film forming step is a step of forming the first multilayer film on the first light transmissive member.
  • the second multilayer film forming step is a step of forming the second multilayer film on the second light transmissive member.
  • the bonding step is a step of bonding the first multilayer film and the second multilayer film with an adhesive layer.
  • the optical functional film is formed on the first multilayer film formed on the first light transmissive member and the second light transmissive member. 2 multilayer films. For this reason, an optical functional film having the number of layers exceeding the limit of the number of layers that can be formed by the film forming apparatus can be manufactured.
  • the maximum number of layers that can be deposited by the deposition apparatus is n
  • the first multilayer film having n layers and the second multilayer film having n layers are formed by an adhesive layer.
  • a multilayer film having substantially 2n layers can be produced, and as a result, a high optical function can be realized.
  • the optical functional film is a wavelength separation film that transmits light in the first wavelength region and reflects light in the second wavelength region different from the first wavelength region. Can realize an optical component having high steep filter characteristics.
  • the optical functional film since the optical functional film includes the first multilayer film and the second multilayer film, the multilayer film is formed only on one of the first and second translucent members.
  • the time required for forming the multilayer film can be reduced as compared with the case of forming the film. For example, when the optical functional film has a multilayer film of about 40 layers, at present, it takes about 6 hours to form the multilayer film. On the other hand, if each of the first and second multilayer films has about 20 layers and these are formed simultaneously, the time required to form the first and second multilayer films is about 3 hours. In this way, the time required for producing the optical functional film can be shortened, so that the time and production cost required for producing the optical component can also be reduced.
  • the first multilayer film has the same film configuration as the second multilayer film.
  • a part of the first multilayer film and the second multilayer film can be formed in the same process.
  • the first multilayer film and the second multilayer film have the same film configuration. In this case, if the first multilayer film forming step for forming the first multilayer film and the second multilayer film forming step are performed in the same process, the time and manufacturing cost required for manufacturing the multilayer film can be further reduced. Can do.
  • performing the first multilayer film forming step and the second multilayer film forming step in the same process means that the first and second light-transmitting members or the first light-transmitting member or the first light-transmitting member are included in one film forming apparatus. And the base material of the second translucent member is disposed, and the first multilayer film and the second multilayer film are simultaneously formed in the one film forming apparatus.
  • each of the first and second multilayer films has a smaller number of layers than the optical functional film. For this reason, an optical component can be manufactured at a high yield rate compared with the case where optical functional films having a large number of layers are manufactured in a lump. In general, as the number of layers in the multilayer film increases, the yield rate of the multilayer film significantly decreases.
  • the film stress of the multilayer film increases as the number of layers in the multilayer film increases.
  • the first and second multilayer films are formed on the first and second light transmissive members, respectively, only the first or second light transmissive member is formed.
  • stress hardly remains in the first and second translucent members.
  • the joining accuracy of the first and second translucent members is improved, and further, when the base materials of the first and second translucent members are divided, the deformation of the base material is suppressed. Can do. Therefore, an optical component can be manufactured with high shape accuracy.
  • the optical component according to the present invention has a multilayer film formed on both the surface of the first light transmissive member and the surface of the second light transmissive member. As described above, it is not necessary to separately form a SiO 2 coating layer in order to improve adhesion.
  • each of the first and second translucent members is a member that transmits at least part of light incident on the optical component. That is, each of the 1st and 2nd translucent member is a member which permeate
  • the use wavelength range of the optical component is not limited to the visible wavelength range.
  • the use wavelength range of the optical component may be, for example, an ultraviolet wavelength range, a near ultraviolet wavelength range, a near infrared wavelength range, or an infrared wavelength range. That is, each of the first and second translucent members may not transmit visible light.
  • “transmitting” means transmitting with a transmittance of 85% or more for the purpose of wavelength separation, and transmitting with an arbitrary transmittance for the purpose of light quantity branching. Say.
  • each of the first and second translucent members is not particularly limited.
  • Each of the first and second translucent members may be made of glass, resin, or ceramic, for example.
  • the first and second translucent members are preferably made of glass. Glass has good reliability such as temperature dependency of optical properties and moisture resistance, and a high-precision base material can be produced by stretch molding and polishing. For this reason, high productivity is realizable by forming the 1st and 2nd translucent member with glass.
  • each of the first and second translucent members are not particularly limited.
  • Each of the first and second translucent members may be, for example, a prism, a plate, or a lens.
  • each of the first and second light-transmissive members may be an optical element such as a prism whose light input / output surface has optical power, for example.
  • the “prism” refers to a substantially triangular prism-shaped translucent member having a pair of triangular end faces and three side faces. Each end face of the prism may not be a right triangle. Further, the pair of end faces of the prism may not be parallel. The corners and ridges of the prism may be chamfered or rounded.
  • the optical functional film is a film that bears at least part of the functions of the optical component.
  • the configuration of the optical functional film can be appropriately designed according to the function required for the optical component.
  • the optical functional film can be a wavelength separation film.
  • the optical functional film includes the first and second multilayer films bonded by the adhesive layer.
  • the adhesive layer does not bear an optical function, the optical function of the optical functional film is substantially provided by the first and second multilayer films.
  • the layer structure of the multilayer film can be appropriately designed according to the function of the optical functional film to be realized.
  • the optical functional film is a wavelength separation film
  • each of the first and second multilayer films has a low refractive index layer having a relatively low refractive index and a relatively high refractive index.
  • a multilayer film in which high refractive index layers are alternately stacked can be obtained.
  • the low refractive index layer and the high refractive index layer are relatively defined layers. That is, the low refractive index layer is a layer having a lower refractive index than the high refractive index layer, and conversely, the high refractive index layer is a layer having a higher refractive index than the low refractive index layer.
  • the low refractive index layer can be formed of, for example, silicon oxide, aluminum oxide, alkaline earth metal fluoride, or the like.
  • the high refractive index layer can be formed of, for example, titanium oxide, niobium oxide, tungsten oxide, lead oxide, lanthanum oxide, tantalum oxide, zircon oxide, zinc sulfide or the like.
  • the plurality of low refractive index layers constituting the first or second multilayer film may include layers made of materials having different refractive indexes.
  • the plurality of high refractive index layers constituting the first or second multilayer film may include layers made of materials having different refractive indexes.
  • At least one of the first outermost layer located on the most adhesive layer side of the first multilayer film and the second outermost layer located on the most adhesive layer side of the second multilayer film It preferably has substantially the same refractive index as the adhesive layer. More preferably, both the first outermost layer and the second outermost layer have substantially the same refractive index as the adhesive layer. In this case, since unnecessary refraction and reflection at the interface of the adhesive layer can be suppressed, high optical performance can be realized. In the present invention, “having substantially the same refractive index” means that the refractive index difference is within ⁇ 5%.
  • the adhesive layer usually has a refractive index as low as about 1.5. For this reason, it is preferable that at least one of the first outermost layer and the second outermost layer is a low refractive index layer. Furthermore, it is more preferable that both the first outermost layer and the second outermost layer are low refractive index layers.
  • the low refractive index layer is preferably formed of magnesium fluoride, silicon oxide, or aluminum oxide. This is because the adhesiveness with the adhesive layer is good and it has high mechanical strength.
  • the adhesive layer is not particularly limited.
  • an acrylic resin or an epoxy resin can be used.
  • the adhesive layer may be made of an energy ray curable resin.
  • the “energy ray curable resin” is a resin that is cured by irradiation with energy rays.
  • Specific examples of the energy ray curable resin include a photocurable resin and a thermosetting resin.
  • the thickness of the adhesive layer is not particularly limited, but is preferably in the range of 5 ⁇ m to 10 ⁇ m. If the thickness of the adhesive layer is too thick, light absorption in the adhesive layer tends to increase or weather resistance tends to deteriorate. Moreover, when the thickness of an adhesive bond layer is too thin, it exists in the tendency for adhesiveness to fall.
  • the refractive index of the adhesive layer and the refractive index of at least one of the first and second multilayer films are substantially the same, even if the layer thickness of the adhesive layer changes, The optical properties of the optical component are not substantially changed. That is, even when an adhesive layer is interposed between the first multilayer film and the second multilayer film, the first multilayer film and the second multilayer film are optical function films. It can function integrally.
  • an optical component that can be manufactured at a low cost and can realize a high optical function.
  • FIG. 1 is a schematic side view of an optical component according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view in which a portion II in FIG. 1 is enlarged.
  • FIG. 3 is a schematic perspective view of the base material.
  • FIG. 4 is a schematic side view for explaining a multilayer film forming process.
  • FIG. 5 is a schematic perspective view for explaining the bonding process.
  • FIG. 6 is a schematic perspective view for explaining the dividing step.
  • FIG. 7 is a schematic side view of an optical component according to the second embodiment.
  • FIG. 8 is a graph showing the light transmittance of the optical component according to the example and the light transmittance of the optical component according to the comparative example.
  • FIG. 9 is a graph illustrating the reflection characteristics of the optical component according to the example and the reflection characteristics of the optical component according to the comparative example.
  • FIG. 10 is a schematic side view of the wavelength separation element described in Patent Document 1.
  • optical component 1 shown in FIG. 1 and the optical component 2 shown in FIG. 7 are merely examples. Therefore, the optical component according to the present invention is not limited to the optical components 1 and 2.
  • FIG. 1 is a schematic side view of an optical component according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view in which a portion II in FIG. 1 is enlarged.
  • the optical component 1 shown in FIG. 1 transmits a light 21 in a first wavelength range of incident light 20 while reflecting a light 22 in a second wavelength range different from the first wavelength range. It is.
  • the optical component 1 includes a first translucent member 11 and a second translucent member 12.
  • Each of the 1st and 2nd translucent members 11 and 12 consists of translucent materials, such as glass.
  • each of the 1st and 2nd translucent members 11 and 12 is substantially triangular prism shape.
  • the 1st translucent member 11 and the 2nd translucent member 12 consist of the same material, and have the same shape.
  • An optical functional film 13 is provided between the slope 11a of the first light transmissive member 11 and the slope 12a of the second light transmissive member 12.
  • the slope 11 a of the first light transmissive member 11 and the slope 12 a of the second light transmissive member 12 are joined via an optical functional film 13.
  • the optical functional film 13 is a wavelength separation film that transmits the light 21 in the first wavelength band of the incident light 20 and reflects the light 22 in the second wavelength band different from the first wavelength band. .
  • the optical functional film 13 includes a first multilayer film 13a and a second multilayer film 13b.
  • the first multilayer film 13 a is formed on the slope 11 a of the first light transmissive member 11.
  • the second multilayer film 13 b is formed on the slope 12 a of the second light transmissive member 12.
  • the first multilayer film 13a and the second multilayer film 13b are bonded by an adhesive layer 13c.
  • the adhesive layer 13c is not particularly limited as long as it can bond the first multilayer film 13a and the second multilayer film 13b.
  • the adhesive layer 13c is formed of an acrylic ultraviolet curable resin.
  • the thickness t13c (see FIG. 2) of the adhesive layer 13c is in the range of 5 ⁇ m to 10 ⁇ m in this embodiment.
  • the thickness t13c of the adhesive layer 13c is not particularly limited. This is because the thickness t13c of the adhesive layer 13c does not substantially affect the optical characteristics of the optical functional film 13.
  • each of the first and second multilayer films 13a and 13b includes a low refractive index layer 15 having a relatively low refractive index and a high refractive index layer 16 having a relatively high refractive index.
  • a low refractive index layer 15 having a relatively low refractive index
  • a high refractive index layer 16 having a relatively high refractive index.
  • the first multilayer film 13a and the second multilayer film 13b have the same film configuration.
  • the high refractive index layer 16 can be formed of, for example, titanium oxide, niobium oxide, tungsten oxide, lead oxide, lanthanum oxide, tantalum oxide, zircon oxide, zinc sulfide, or the like.
  • the low refractive index layer 15 can be formed of, for example, silicon oxide, aluminum oxide, alkaline earth metal fluoride, or the like.
  • the low refractive index layer 15 is more preferably made of silicon oxide or magnesium fluoride.
  • the first outermost layer located on the most adhesive layer 13c side of the first multilayer film 13a is composed of a low refractive index layer 15a.
  • the second outermost layer located on the most adhesive layer 13c side of the second multilayer film 13b is composed of a low refractive index layer 15b.
  • each of the low refractive index layers 15a and 15b constituting the first and second outermost layers has substantially the same refractive index as that of the adhesive layer 13c.
  • the outermost layer formed on the inclined surface 11a of the first multilayer film 13a is constituted by the low refractive index layer 15c.
  • the outermost layer formed on the inclined surface 12a of the second multilayer film 13b is also composed of the low refractive index layer 15d.
  • the outermost layer formed on the first or second translucent member 11 or 12 is a low refractive index layer, the first or second translucent film of the first and second multilayer films 13a and 13b is used. Adhesiveness to the adhesive members 11 and 12 can be enhanced. From the viewpoint of improving the adhesion, each of the low refractive index layers 15c and 15d is preferably silicon oxide.
  • a plurality of substantially triangular prism-shaped base materials 30 shown in FIG. 3 are prepared.
  • This base material 30 becomes the 1st and 2nd translucent members 11 and 12 through the parting process etc. which are mentioned later.
  • a plurality of base materials 30 are installed in a film forming apparatus (not shown), and the slope 30a of the base material 30 has the same configuration as the first and second multilayer films 13a and 13b.
  • the multilayer film 31 (see FIG. 5) is formed (first and second multilayer film forming steps).
  • the method for forming the multilayer film 31 is not particularly limited.
  • the multilayer film 31 can be formed by sputtering or vapor deposition.
  • the pair of base materials 30 on which the multilayer film 31 is formed are bonded together with an adhesive (not shown). Thereafter, as shown in FIG. 6, the base material 30 is divided into a plurality of pieces in the length direction (a dividing step).
  • the optical component 1 can be manufactured by the above process.
  • the optical functional film 13 is constituted by the first multilayer film 13a and the second multilayer film 13b that are bonded to each other by the adhesive layer 13c.
  • the number of layers of the optical functional film 13 can be increased up to twice the maximum number of layers that can be formed by the film forming apparatus. Therefore, the optical function of the optical component 1 can be enhanced. Specifically, an optical component with high steep filter characteristics can be manufactured.
  • the yield rate of the multilayer film 31 is much higher than the yield rate of the multilayer film having the number of layers twice that of the multilayer film 31. Therefore, the optical component 1 can be manufactured at a high yield rate.
  • the film stress of the multilayer film 31 is much smaller than the film stress of the multilayer film having twice the number of layers as the multilayer film 31, the first and second translucent members 11, 12 or the first and second Unduly stress is unlikely to remain in the base material of the second translucent member. For this reason, while joining precision of the 1st and 2nd translucent members 11 and 12 improves, when dividing a base material of the 1st and 2nd translucent members, modification of a base material is controlled. can do. Therefore, the optical component 1 can be manufactured with high shape accuracy.
  • the manufacturing cost and the time required for manufacturing the optical functional film 13 can be reduced. it can. As a result, the time and manufacturing cost required for manufacturing the optical component 1 can be reduced.
  • the outermost layers located on the most adhesive layer sides of the first and second multilayer films 13a and 13b are constituted by the low refractive index layers 15a and 15b.
  • the refractive index of the low-refractive-index layers 15a and 15b and the refractive index of the adhesive bond layer 13c are substantially the same.
  • the first and second multilayer films 13a and 13b can function integrally as an optical functional film.
  • unnecessary refraction and reflection at the interface of the adhesive layer 13c can be suppressed, so that a decrease in optical function can be suppressed.
  • the low refractive index layers 15a and 15b are formed of silicon oxide, aluminum oxide, and magnesium fluoride. These have good adhesiveness with the adhesive layer 13c and have high mechanical strength. Therefore, the mechanical durability of the optical component 1 can be increased.
  • each of the first and second translucent members 11 and 12 is constituted by a prism.
  • the first and second translucent members are used.
  • the shape of each member is not particularly limited.
  • one of the first and second translucent members may be a prism and the other may be plate-shaped.
  • each of the 1st and 2nd translucent members 11 and 12 may be plate-shaped.
  • Example 1 The optical component 1 shown in FIG. 1 was manufactured by the design shown below, and the light transmittance (the intensity of the light 21 / the intensity of the light 20) at a light incident angle of 45 ° was measured using a spectrophotometer. Further, as a comparative example, an optical component was produced in the same manner as in the example except that the second multilayer film was not formed, and the light transmittance (P-polarized light) was measured. The measurement results are shown in FIG. In FIG. 8, the solid line indicates the data of Example 1, and the broken line indicates the data of Comparative Example 1.
  • the steepness of the filter characteristics can be enhanced by providing the second multilayer film 13b having 22 layers in addition to the first multilayer film 13a having 22 layers.
  • the measurement result this time is the same as the measurement result when the multilayer film described in Table 1 is formed twice only on the surface of the first translucent member 11, and the first multilayer film 13a
  • the film formation time can be reduced to about half.
  • Example 1 BK-7 or its equivalent (refractive index: 1.52) was used as the first and second light transmissive members 11 and 12.
  • Example 1 the film configurations of the first and second multilayer films are as shown in Table 1.
  • Example 2 The optical component 1 shown in FIG. 1 was produced according to the design shown below, and the reflection characteristics at a light incident angle of 49 ° were evaluated.
  • an optical component was produced in the same manner as in the example except that the second multilayer film was not formed, and the reflection characteristics were evaluated.
  • the measurement results are shown in FIG. In FIG. 9, the solid line indicates the data of Example 2, and the broken line indicates the data of Comparative Example 2.
  • the extinction ratio of reflected light (the amount of S-polarized light and P-polarized light) Difference) can be increased.
  • the measurement result this time is the same as the measurement result when the multilayer film described in Table 2 is formed twice only on the surface of the first translucent member 11, or the first multilayer film.
  • Example 2 BK-7 or its equivalent (refractive index of 1.52) was used as the first and second light transmissive members 11 and 12.
  • the film configurations of the first and second multilayer films in Example 2 and Comparative Example 2 are as shown in Table 2.

Abstract

Provided is an optical component which can be produced at low costs, and which can have a high optical function. An optical component (1) is provided with a first translucent member (11), a second translucent member (12), and an optically functional film (13). The optically functional film (13) is disposed between the first translucent member (11) and the second translucent member (12). The optically functional film (13) has a first multilayer film (13a), a second multilayer film (13b), and an adhesive layer (13c). The first multilayer film (13a) is formed on the first translucent member (11). The second multilayer film (13b) is formed on the second translucent member (12). The first multilayer film (13a) and the second multilayer film (13b) are bonded together with the adhesive layer (13c).

Description

光学部品及びその製造方法Optical component and manufacturing method thereof
 本発明は、光学部品及びその製造方法に関する。 The present invention relates to an optical component and a manufacturing method thereof.
 従来、光通信システム等において、所定の波長領域の光を分離する波長分離素子が広く用いられている。波長分離素子の具体例として、例えば、下記の特許文献1~3等に開示されているものが挙げられる。 Conventionally, wavelength separation elements for separating light in a predetermined wavelength region have been widely used in optical communication systems and the like. Specific examples of the wavelength separation element include those disclosed in Patent Documents 1 to 3 below.
 例えば、下記の特許文献1には、波長分離素子として、図10に示すダイクロイックミラー100が開示されている。ダイクロイックミラー100は、それぞれ三角柱状の第1及び第2のプリズム101,102を有する。第1のプリズム101の斜面101aの上には多層膜からなるミラーコート層103が形成されている。一方、第2のプリズム102の斜面102aの上にはSiOコート層104が形成されている。そして、SiOコート層104と、ミラーコート層103とが接着剤層105により接着されている。 For example, Patent Document 1 below discloses a dichroic mirror 100 shown in FIG. 10 as a wavelength separation element. The dichroic mirror 100 includes first and second prisms 101 and 102 each having a triangular prism shape. On the slope 101a of the first prism 101, a mirror coat layer 103 made of a multilayer film is formed. On the other hand, a SiO 2 coat layer 104 is formed on the slope 102 a of the second prism 102. The SiO 2 coat layer 104 and the mirror coat layer 103 are bonded by the adhesive layer 105.
 このダイクロイックミラー100において、波長分離機能を実現しているのは、ミラーコート層103である。SiOコート層104は、ミラーコート層103と第2のプリズム102との間の接着性を向上させるために設けられている。 In the dichroic mirror 100, the mirror coat layer 103 realizes the wavelength separation function. The SiO 2 coat layer 104 is provided to improve the adhesion between the mirror coat layer 103 and the second prism 102.
特開2006-154388号公報JP 2006-154388 A 特開2009-139653号公報JP 2009-139653 A 特開2006-208701号公報JP 2006-208701 A
 ところで、近年、波長分離素子において分離される波長領域間の波長差が小さくなってきている。このため、波長分離素子に求められる波長分離特性も高まってきている。具体的には、波長分離素子のフィルタ特性の急峻性を高めること等が強く求められている。例えば、上記ダイクロイックミラー100において、このような要望を満足するためには、ミラーコート層103を構成する多層膜の層数を多くする必要がある。 Incidentally, in recent years, the wavelength difference between the wavelength regions separated in the wavelength separation element has become smaller. For this reason, the wavelength separation characteristic required for the wavelength separation element is also increasing. Specifically, there is a strong demand for increasing the steepness of the filter characteristics of the wavelength separation element. For example, in the dichroic mirror 100, in order to satisfy such a demand, it is necessary to increase the number of multilayer films constituting the mirror coat layer 103.
 しかしながら、ミラーコート層103を構成する多層膜の層数を多くしようとすると、ミラーコート層103の製造に要する時間及び製造コストが格段に高くなると共に、ミラーコート層103の良品率が低下する傾向にある。このため、近年の低コスト化の要望に応えることが困難になる。 However, when the number of multilayer films constituting the mirror coat layer 103 is increased, the time and manufacturing cost required for manufacturing the mirror coat layer 103 are remarkably increased, and the yield rate of the mirror coat layer 103 tends to decrease. It is in. For this reason, it becomes difficult to meet the recent demand for cost reduction.
 また、ミラーコート層103を構成する多層膜の層数を多くするには装置的な限界がある。すなわち、成膜装置の仕様によっては、層数が非常に多い多層膜からなるミラーコート層103を形成することができない。従って、ダイクロイックミラー100では、高い波長分離機能を実現することが困難である。 In addition, there is an apparatus limitation to increase the number of multilayer films constituting the mirror coat layer 103. That is, depending on the specifications of the film forming apparatus, it is not possible to form the mirror coat layer 103 composed of a multilayer film having a very large number of layers. Therefore, it is difficult for the dichroic mirror 100 to realize a high wavelength separation function.
 また、波長分離素子以外の光学部品においても、透光性部材間に多層膜が設けられる場合、上記ダイクロイックミラー100と同様の課題があり、高い光学機能を実現するためには、多層膜の層数を多くする必要がある。従って、高い光学機能と低コスト化との両立、及びさらに高い光学機能の実現が困難である。 Also, in the optical component other than the wavelength separation element, when a multilayer film is provided between the translucent members, there is a problem similar to that of the dichroic mirror 100, and in order to realize a high optical function, the multilayer film layer It is necessary to increase the number. Therefore, it is difficult to achieve both high optical function and low cost and to realize higher optical function.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、低コストで製造できると共に、高い光学機能を実現し得る光学部品を提供することにある。 The present invention has been made in view of such a point, and an object thereof is to provide an optical component that can be manufactured at a low cost and can realize a high optical function.
 本発明に係る光学部品は、第1の透光性部材と、第2の透光性部材と、光学的機能膜とを備えている。光学的機能膜は、第1の透光性部材と第2の透光性部材との間に設けられている。光学的機能膜は、第1の多層膜と、第2の多層膜と、接着剤層とを有する。第1の多層膜は、第1の透光性部材の上に形成されている。第2の多層膜は、第2の透光性部材の上に形成されている。接着剤層は、第1の多層膜と第2の多層膜とを接着している。なお、本発明において、「多層膜」とは、積層された複数の層からなる膜をいう。 The optical component according to the present invention includes a first light transmissive member, a second light transmissive member, and an optical functional film. The optical functional film is provided between the first translucent member and the second translucent member. The optical functional film has a first multilayer film, a second multilayer film, and an adhesive layer. The first multilayer film is formed on the first light transmissive member. The second multilayer film is formed on the second light transmissive member. The adhesive layer bonds the first multilayer film and the second multilayer film. In the present invention, “multilayer film” refers to a film composed of a plurality of laminated layers.
 また、本発明に係る光学部品の製造方法は、本発明に係る光学部品を製造するための方法に関する。本発明に係る光学部品の製造方法は、第1及び第2の多層膜形成工程と、接着工程とを備えている。第1の多層膜形成工程は、第1の透光性部材の上に第1の多層膜を形成する工程である。第2の多層膜形成工程は、第2の透光性部材の上に第2の多層膜を形成する工程である。接着工程は、第1の多層膜と第2の多層膜とを接着剤層により接着する工程である。 The method for manufacturing an optical component according to the present invention also relates to a method for manufacturing the optical component according to the present invention. The method for manufacturing an optical component according to the present invention includes first and second multilayer film forming steps and an adhesion step. The first multilayer film forming step is a step of forming the first multilayer film on the first light transmissive member. The second multilayer film forming step is a step of forming the second multilayer film on the second light transmissive member. The bonding step is a step of bonding the first multilayer film and the second multilayer film with an adhesive layer.
 このように、本発明において、光学的機能膜は、第1の透光性部材の上に形成されている第1の多層膜と、第2の透光性部材の上に形成されている第2の多層膜とを備えている。このため、成膜装置により成膜できる層数の限界を超えた層数を有する光学的機能膜を作製することができる。具体的には、成膜装置により成膜できる層数の最大値をnとすると、層数がnの第1の多層膜と、層数がnの第2の多層膜とを接着剤層により接着することにより、実質的に層数が2nの多層膜を作製することができ、結果として、高い光学機能を実現することができる。具体的には、光学的機能膜が、例えば、第1の波長領域の光を透過させる一方、第1の波長領域とは異なる第2の波長領域の光を反射させる波長分離膜である場合には、フィルタ特性の急峻性が高い光学部品を実現することができる。 As described above, in the present invention, the optical functional film is formed on the first multilayer film formed on the first light transmissive member and the second light transmissive member. 2 multilayer films. For this reason, an optical functional film having the number of layers exceeding the limit of the number of layers that can be formed by the film forming apparatus can be manufactured. Specifically, when the maximum number of layers that can be deposited by the deposition apparatus is n, the first multilayer film having n layers and the second multilayer film having n layers are formed by an adhesive layer. By bonding, a multilayer film having substantially 2n layers can be produced, and as a result, a high optical function can be realized. Specifically, for example, when the optical functional film is a wavelength separation film that transmits light in the first wavelength region and reflects light in the second wavelength region different from the first wavelength region. Can realize an optical component having high steep filter characteristics.
 また、本発明に係る光学部品は、光学的機能膜が第1の多層膜と第2の多層膜とを備えるため、第1及び第2の透光性部材のいずれかの上のみに多層膜を形成する場合よりも多層膜の形成に要する時間を短縮することができる。例えば、光学的機能膜が約40層の多層膜を有する場合、現状では、多層膜の形成に、約6時間程度の時間が必要となる。それに対して、第1,第2の多層膜をそれぞれ約20層とし、これらを同時に形成すれば、第1及び第2の多層膜の形成に要する時間は、約3時間となる。このようにすれば、光学的機能膜の作製に要する時間を短縮できるため、光学部品の製造に要する時間及び製造コストも低減することができる。 In the optical component according to the present invention, since the optical functional film includes the first multilayer film and the second multilayer film, the multilayer film is formed only on one of the first and second translucent members. The time required for forming the multilayer film can be reduced as compared with the case of forming the film. For example, when the optical functional film has a multilayer film of about 40 layers, at present, it takes about 6 hours to form the multilayer film. On the other hand, if each of the first and second multilayer films has about 20 layers and these are formed simultaneously, the time required to form the first and second multilayer films is about 3 hours. In this way, the time required for producing the optical functional film can be shortened, so that the time and production cost required for producing the optical component can also be reduced.
 また、製造に要する時間及び製造コストを低減する観点からは、第1の多層膜の少なくとも一部を第2の多層膜と同一の膜構成とすることが好ましい。この場合、第1の多層膜の一部と第2の多層膜とを同一工程で成膜することができる。さらに、第1の多層膜と第2の多層膜とが同一の膜構成を有することが好ましい。この場合、第1の多層膜を形成する第1の多層膜形成工程と、第2の多層膜形成工程とを同一工程で行うと、多層膜の製造に要する時間及び製造コストをより低減することができる。 Also, from the viewpoint of reducing the time required for manufacturing and manufacturing cost, it is preferable that at least a part of the first multilayer film has the same film configuration as the second multilayer film. In this case, a part of the first multilayer film and the second multilayer film can be formed in the same process. Furthermore, it is preferable that the first multilayer film and the second multilayer film have the same film configuration. In this case, if the first multilayer film forming step for forming the first multilayer film and the second multilayer film forming step are performed in the same process, the time and manufacturing cost required for manufacturing the multilayer film can be further reduced. Can do.
 なお、「第1の多層膜形成工程と第2の多層膜形成工程とを同一工程で行う」とは、あるひとつの成膜装置内に、第1及び第2の透光性部材または第1及び第2の透光性部材の母材を配置し、第1の多層膜と第2の多層膜とを、そのひとつの成膜装置内において同時に形成することを意味する。 Note that “performing the first multilayer film forming step and the second multilayer film forming step in the same process” means that the first and second light-transmitting members or the first light-transmitting member or the first light-transmitting member are included in one film forming apparatus. And the base material of the second translucent member is disposed, and the first multilayer film and the second multilayer film are simultaneously formed in the one film forming apparatus.
 本発明において、第1及び第2の多層膜のそれぞれは、光学的機能膜よりも層数が少ない。このため、層数が多い光学的機能膜を一括して作製する場合と比較して、高い良品率で光学部品を製造することができる。なお、一般的に、多層膜の層数が多くなると、多層膜の良品率が大幅に低下する。 In the present invention, each of the first and second multilayer films has a smaller number of layers than the optical functional film. For this reason, an optical component can be manufactured at a high yield rate compared with the case where optical functional films having a large number of layers are manufactured in a lump. In general, as the number of layers in the multilayer film increases, the yield rate of the multilayer film significantly decreases.
 また、透光性部材の上に多層膜を形成する場合、多層膜の層数が多くなると、多層膜の膜応力が大きくなる。本発明の光学部品は、第1及び第2の透光性部材のそれぞれの上に第1及び第2の多層膜が形成されているため、第1または第2の透光性部材の上のみに層数が多い多層膜を形成した場合と比較して、第1及び第2の透光性部材に応力が残留し難くなる。このため、第1及び第2の透光性部材の接合精度が向上し、更には第1及び第2の透光性部材の母材を分断する際に、母材の変形等を抑制することができる。従って、高い形状精度で光学部品を製造することができる。 In addition, when a multilayer film is formed on the translucent member, the film stress of the multilayer film increases as the number of layers in the multilayer film increases. In the optical component of the present invention, since the first and second multilayer films are formed on the first and second light transmissive members, respectively, only the first or second light transmissive member is formed. Compared with the case where a multilayer film having a large number of layers is formed, stress hardly remains in the first and second translucent members. For this reason, the joining accuracy of the first and second translucent members is improved, and further, when the base materials of the first and second translucent members are divided, the deformation of the base material is suppressed. Can do. Therefore, an optical component can be manufactured with high shape accuracy.
 また、本発明に係る光学部品は、第1の透光性部材の表面と、第2の透光性部材の表面との両方に多層膜が形成されているため、例えば上記特許文献1に記載のように、接着性を高めるために、SiOコート層を別途形成する必要がない。 The optical component according to the present invention has a multilayer film formed on both the surface of the first light transmissive member and the surface of the second light transmissive member. As described above, it is not necessary to separately form a SiO 2 coating layer in order to improve adhesion.
 本発明において、第1及び第2の透光性部材のそれぞれは、光学部品に対して入射する光の少なくとも一部を透過させる部材である。すなわち、第1及び第2の透光性部材のそれぞれは、光学部品の使用波長域の光を透過させる部材である。光学部品の使用波長域は、可視波長域に限定されない。光学部品の使用波長域は、例えば、紫外波長域、近紫外波長域、近赤外波長域または赤外波長域であってもよい。すなわち、第1及び第2の透光性部材のそれぞれは、可視光を透過しないものであってもよい。なお、本発明において、「透過させる」とは、波長分離を目的とした場合、85%以上の透過率で透過させることをいい、光量分岐を目的とした場合、任意の透過率で透過させることをいう。 In the present invention, each of the first and second translucent members is a member that transmits at least part of light incident on the optical component. That is, each of the 1st and 2nd translucent member is a member which permeate | transmits the light of the use wavelength range of an optical component. The use wavelength range of the optical component is not limited to the visible wavelength range. The use wavelength range of the optical component may be, for example, an ultraviolet wavelength range, a near ultraviolet wavelength range, a near infrared wavelength range, or an infrared wavelength range. That is, each of the first and second translucent members may not transmit visible light. In the present invention, “transmitting” means transmitting with a transmittance of 85% or more for the purpose of wavelength separation, and transmitting with an arbitrary transmittance for the purpose of light quantity branching. Say.
 第1及び第2の透光性部材のそれぞれの材質も特に限定されない。第1及び第2の透光性部材のそれぞれは、例えば、ガラス、樹脂またはセラミックからなるものであってもよい。第1及び第2の透光性部材は、ガラスからなるものであることが好ましい。ガラスは、光学特性の温度依存性、耐湿性等の信頼性が良好であり、延伸成形、研磨加工により高精度の母材を作製できる。このため、ガラスにより第1及び第2の透光性部材を形成することにより、高い生産性を実現することができる。 The material of each of the first and second translucent members is not particularly limited. Each of the first and second translucent members may be made of glass, resin, or ceramic, for example. The first and second translucent members are preferably made of glass. Glass has good reliability such as temperature dependency of optical properties and moisture resistance, and a high-precision base material can be produced by stretch molding and polishing. For this reason, high productivity is realizable by forming the 1st and 2nd translucent member with glass.
 第1及び第2の透光性部材のそれぞれの形状寸法も特に限定されない。第1及び第2の透光性部材のそれぞれは、例えば、プリズムであってもよいし、板であってもよいし、レンズであってもよい。また、第1及び第2の透光性部材のそれぞれは、例えば、光入出面が光学的パワーを有するプリズム等の光学素子であってもよい。なお、本発明において、「プリズム」とは、三角形状の一対の端面と、3つの側面とを有する略三角柱状の透光性部材をいう。プリズムの各端面は、直角三角形でなくてもよい。また、プリズムの一対の端面は、平行でなくてもよい。プリズムの角部や稜線部は、面取り状またはR面取り状であってもよい。 The shape and size of each of the first and second translucent members are not particularly limited. Each of the first and second translucent members may be, for example, a prism, a plate, or a lens. In addition, each of the first and second light-transmissive members may be an optical element such as a prism whose light input / output surface has optical power, for example. In the present invention, the “prism” refers to a substantially triangular prism-shaped translucent member having a pair of triangular end faces and three side faces. Each end face of the prism may not be a right triangle. Further, the pair of end faces of the prism may not be parallel. The corners and ridges of the prism may be chamfered or rounded.
 本発明において、光学的機能膜は、光学部品が有する機能の少なくとも一部を担う膜である。光学的機能膜の構成は、光学部品に要求される機能に応じて適宜設計することができる。例えば、光学部品が波長分離素子である場合は、光学的機能膜を波長分離膜とすることができる。 In the present invention, the optical functional film is a film that bears at least part of the functions of the optical component. The configuration of the optical functional film can be appropriately designed according to the function required for the optical component. For example, when the optical component is a wavelength separation element, the optical functional film can be a wavelength separation film.
 上述のように、本発明において、光学的機能膜は、接着剤層により接着されている第1及び第2の多層膜を備えている。ここで、一般的に、接着剤層は、光学的機能を担っていないため、光学的機能膜の光学的機能は、実質的に第1及び第2の多層膜により付与されている。 As described above, in the present invention, the optical functional film includes the first and second multilayer films bonded by the adhesive layer. Here, in general, since the adhesive layer does not bear an optical function, the optical function of the optical functional film is substantially provided by the first and second multilayer films.
 多層膜の層構成は、実現しようとする光学的機能膜の機能に応じて適宜設計することができる。例えば、光学的機能膜が波長分離膜である場合には、第1及び第2の多層膜のそれぞれを、相対的に低い屈折率を有する低屈折率層と、相対的に高い屈折率を有する高屈折率層とが交互に積層された多層膜とすることができる。 The layer structure of the multilayer film can be appropriately designed according to the function of the optical functional film to be realized. For example, when the optical functional film is a wavelength separation film, each of the first and second multilayer films has a low refractive index layer having a relatively low refractive index and a relatively high refractive index. A multilayer film in which high refractive index layers are alternately stacked can be obtained.
 なお、低屈折率層と高屈折率層とは、相対的に定義される層である。すなわち、低屈折率層とは、高屈折率層よりも低い屈折率を有する層であり、逆に高屈折率層は、低屈折率層よりも高い屈折率を有する層である。 Note that the low refractive index layer and the high refractive index layer are relatively defined layers. That is, the low refractive index layer is a layer having a lower refractive index than the high refractive index layer, and conversely, the high refractive index layer is a layer having a higher refractive index than the low refractive index layer.
 低屈折率層は、例えば、酸化ケイ素、酸化アルミニウム、フッ化アルカリ土類金属等により形成することができる。 The low refractive index layer can be formed of, for example, silicon oxide, aluminum oxide, alkaline earth metal fluoride, or the like.
 一方、高屈折率層は、例えば、酸化チタン、酸化ニオブ、酸化タングステン、酸化鉛、酸化ランタン、酸化タンタル、酸化ジルコン、硫化亜鉛等により形成することができる。 On the other hand, the high refractive index layer can be formed of, for example, titanium oxide, niobium oxide, tungsten oxide, lead oxide, lanthanum oxide, tantalum oxide, zircon oxide, zinc sulfide or the like.
 なお、第1または第2の多層膜を構成している複数の低屈折率層の全てが実質的に同じ屈折率を有している必要はない。例えば、第1または第2の多層膜を構成している複数の低屈折率層には、屈折率が相互に異なる材料からなる層が存在してもよい。同様に、第1または第2の多層膜を構成している複数の高屈折率層の全てが実質的に同じ屈折率を有している必要はない。例えば、第1または第2の多層膜を構成している複数の高屈折率層には、屈折率が相互に異なる材料からなる層が存在してもよい。 Note that it is not necessary for all of the plurality of low refractive index layers constituting the first or second multilayer film to have substantially the same refractive index. For example, the plurality of low refractive index layers constituting the first or second multilayer film may include layers made of materials having different refractive indexes. Similarly, it is not necessary that all of the plurality of high refractive index layers constituting the first or second multilayer film have substantially the same refractive index. For example, a plurality of high refractive index layers constituting the first or second multilayer film may include layers made of materials having different refractive indexes.
 本発明において、第1の多層膜の最も接着剤層側に位置する第1の最外層と、第2の多層膜の最も接着剤層側に位置する第2の最外層との少なくとも一方は、接着剤層と実質的に同じ屈折率を有することが好ましい。第1の最外層と第2の最外層の両方が、接着剤層と実質的に同じ屈折率を有することがより好ましい。この場合、接着剤層の界面における不要な屈折や反射を抑制することができるため、高い光学性能を実現することができる。なお、本発明において、「実質的に同じ屈折率を有する」とは、屈折率差が、±5%以内であることをいう。 In the present invention, at least one of the first outermost layer located on the most adhesive layer side of the first multilayer film and the second outermost layer located on the most adhesive layer side of the second multilayer film, It preferably has substantially the same refractive index as the adhesive layer. More preferably, both the first outermost layer and the second outermost layer have substantially the same refractive index as the adhesive layer. In this case, since unnecessary refraction and reflection at the interface of the adhesive layer can be suppressed, high optical performance can be realized. In the present invention, “having substantially the same refractive index” means that the refractive index difference is within ± 5%.
 接着剤層は、通常、1.5程度の低い屈折率を有する。このため、第1の最外層と第2の最外層との少なくとも一方が低屈折率層であることが好ましい。さらには、第1の最外層と第2の最外層との両方が低屈折率層であることがより好ましい。この場合、上記低屈折率層は、フッ化マグネシウム、酸化ケイ素、酸化アルミニウムにより形成されていることが好ましい。これらは、接着剤層との接着性が良好であり、且つ高い機械的強度を有するためである。 The adhesive layer usually has a refractive index as low as about 1.5. For this reason, it is preferable that at least one of the first outermost layer and the second outermost layer is a low refractive index layer. Furthermore, it is more preferable that both the first outermost layer and the second outermost layer are low refractive index layers. In this case, the low refractive index layer is preferably formed of magnesium fluoride, silicon oxide, or aluminum oxide. This is because the adhesiveness with the adhesive layer is good and it has high mechanical strength.
 本発明において、接着剤層は、特に限定されない。接着剤層としては、例えば、アクリル系樹脂やエポキシ系樹脂等が使用可能である。また、接着剤層は、エネルギー線硬化性樹脂からなるものであってもよい。ここで、「エネルギー線硬化性樹脂」とは、エネルギー線を照射することにより硬化する樹脂である。エネルギー線硬化性樹脂の具体例としては、光硬化性樹脂、熱硬化性樹脂等が挙げられる。 In the present invention, the adhesive layer is not particularly limited. As the adhesive layer, for example, an acrylic resin or an epoxy resin can be used. The adhesive layer may be made of an energy ray curable resin. Here, the “energy ray curable resin” is a resin that is cured by irradiation with energy rays. Specific examples of the energy ray curable resin include a photocurable resin and a thermosetting resin.
 接着剤層の厚みは、特に限定されないが、5μm~10μmの範囲内にあることが好ましい。接着剤層の厚みが厚すぎると、接着剤層における光吸収が増大したり、耐候性が劣化したりする傾向にある。また、接着剤層の厚みが薄すぎると、接着性が低下する傾向にある。 The thickness of the adhesive layer is not particularly limited, but is preferably in the range of 5 μm to 10 μm. If the thickness of the adhesive layer is too thick, light absorption in the adhesive layer tends to increase or weather resistance tends to deteriorate. Moreover, when the thickness of an adhesive bond layer is too thin, it exists in the tendency for adhesiveness to fall.
 なお、接着剤層の屈折率と、第1及び第2の多層膜の少なくとも一方の最外層との屈折率が実質的に同じである場合は、接着剤層の層厚が変化しても、光学部品の光学特性は実質的に変化しない。すなわち、第1の多層膜と第2の多層膜との間に接着剤層が介在している場合であっても、第1の多層膜と第2の多層膜とは、光学的機能膜として一体的に機能させることができる。 When the refractive index of the adhesive layer and the refractive index of at least one of the first and second multilayer films are substantially the same, even if the layer thickness of the adhesive layer changes, The optical properties of the optical component are not substantially changed. That is, even when an adhesive layer is interposed between the first multilayer film and the second multilayer film, the first multilayer film and the second multilayer film are optical function films. It can function integrally.
 本発明によれば、低コストで製造できると共に、高い光学機能を実現し得る光学部品を提供できる。 According to the present invention, it is possible to provide an optical component that can be manufactured at a low cost and can realize a high optical function.
図1は、第1の実施形態に係る光学部品の略図的側面図である。FIG. 1 is a schematic side view of an optical component according to the first embodiment. 図2は、図1におけるII部分を拡大した略図的断面図である。FIG. 2 is a schematic cross-sectional view in which a portion II in FIG. 1 is enlarged. 図3は、母材の略図的斜視図である。FIG. 3 is a schematic perspective view of the base material. 図4は、多層膜の成膜工程を説明するための略図的側面図である。FIG. 4 is a schematic side view for explaining a multilayer film forming process. 図5は、接着工程を説明するための略図的斜視図である。FIG. 5 is a schematic perspective view for explaining the bonding process. 図6は、分断工程を説明するための略図的斜視図である。FIG. 6 is a schematic perspective view for explaining the dividing step. 図7は、第2の実施形態に係る光学部品の略図的側面図である。FIG. 7 is a schematic side view of an optical component according to the second embodiment. 図8は、実施例に係る光学部品の光透過率と、比較例に係る光学部品の光透過率とを表すグラフである。FIG. 8 is a graph showing the light transmittance of the optical component according to the example and the light transmittance of the optical component according to the comparative example. 図9は、実施例に係る光学部品の反射特性と、比較例に係る光学部品の反射特性とを表すグラフである。FIG. 9 is a graph illustrating the reflection characteristics of the optical component according to the example and the reflection characteristics of the optical component according to the comparative example. 図10は、上記の特許文献1に記載の波長分離素子の略図的側面図である。FIG. 10 is a schematic side view of the wavelength separation element described in Patent Document 1.
 以下、本発明を実施した好ましい形態について、図1に示す光学部品1と図7に示す光学部品2とを例に挙げて詳細に説明する。但し、光学部品1,2は、単なる例示である。従って、本発明に係る光学部品は、光学部品1,2に何ら限定されない。 Hereinafter, preferred embodiments of the present invention will be described in detail by taking the optical component 1 shown in FIG. 1 and the optical component 2 shown in FIG. 7 as examples. However, the optical components 1 and 2 are merely examples. Therefore, the optical component according to the present invention is not limited to the optical components 1 and 2.
 (第1の実施形態)
 図1は、第1の実施形態に係る光学部品の略図的側面図である。図2は、図1におけるII部分を拡大した略図的断面図である。
(First embodiment)
FIG. 1 is a schematic side view of an optical component according to the first embodiment. FIG. 2 is a schematic cross-sectional view in which a portion II in FIG. 1 is enlarged.
 図1に示す光学部品1は、入射光20のうち、第1の波長域の光21を透過させる一方、第1の波長域とは異なる第2の波長域の光22を反射させる波長分離素子である。 The optical component 1 shown in FIG. 1 transmits a light 21 in a first wavelength range of incident light 20 while reflecting a light 22 in a second wavelength range different from the first wavelength range. It is.
 光学部品1は、第1の透光性部材11と、第2の透光性部材12とを備えている。第1及び第2の透光性部材11,12のそれぞれは、ガラス等の透光性材料からなるものである。本実施形態では、第1及び第2の透光性部材11,12のそれぞれは、略三角柱状である。具体的には、本実施形態では、第1の透光性部材11と第2の透光性部材12とは、同一材料からなり、且つ同一形状を有している。 The optical component 1 includes a first translucent member 11 and a second translucent member 12. Each of the 1st and 2nd translucent members 11 and 12 consists of translucent materials, such as glass. In this embodiment, each of the 1st and 2nd translucent members 11 and 12 is substantially triangular prism shape. Specifically, in this embodiment, the 1st translucent member 11 and the 2nd translucent member 12 consist of the same material, and have the same shape.
 第1の透光性部材11の斜面11aと、第2の透光性部材12の斜面12aとの間には、光学的機能膜13が設けられている。第1の透光性部材11の斜面11aと、第2の透光性部材12の斜面12aとは、光学的機能膜13を介して接合されている。 An optical functional film 13 is provided between the slope 11a of the first light transmissive member 11 and the slope 12a of the second light transmissive member 12. The slope 11 a of the first light transmissive member 11 and the slope 12 a of the second light transmissive member 12 are joined via an optical functional film 13.
 光学的機能膜13は、入射光20のうち、第1の波長域の光21を透過させる一方、第1の波長域とは異なる第2の波長域の光22を反射させる波長分離膜である。 The optical functional film 13 is a wavelength separation film that transmits the light 21 in the first wavelength band of the incident light 20 and reflects the light 22 in the second wavelength band different from the first wavelength band. .
 光学的機能膜13は、第1の多層膜13aと、第2の多層膜13bとを備えている。第1の多層膜13aは、第1の透光性部材11の斜面11aの上に形成されている。一方、第2の多層膜13bは、第2の透光性部材12の斜面12aの上に形成されている。第1の多層膜13aと第2の多層膜13bとは、接着剤層13cによって接着されている。 The optical functional film 13 includes a first multilayer film 13a and a second multilayer film 13b. The first multilayer film 13 a is formed on the slope 11 a of the first light transmissive member 11. On the other hand, the second multilayer film 13 b is formed on the slope 12 a of the second light transmissive member 12. The first multilayer film 13a and the second multilayer film 13b are bonded by an adhesive layer 13c.
 接着剤層13cは、第1の多層膜13aと第2の多層膜13bとを接着可能なものである限りにおいて特に限定されない。本実施形態では、接着剤層13cは、アクリル系紫外線硬化樹脂により形成されている。 The adhesive layer 13c is not particularly limited as long as it can bond the first multilayer film 13a and the second multilayer film 13b. In the present embodiment, the adhesive layer 13c is formed of an acrylic ultraviolet curable resin.
 接着剤層13cの厚みt13c(図2を参照)は、本実施形態では、5μm~10μmの範囲内とされている。但し、接着剤層13cの厚みt13cは、特に限定されない。接着剤層13cの厚みt13cは、光学的機能膜13の光学特性に実質的に影響を及ぼさないためである。 The thickness t13c (see FIG. 2) of the adhesive layer 13c is in the range of 5 μm to 10 μm in this embodiment. However, the thickness t13c of the adhesive layer 13c is not particularly limited. This is because the thickness t13c of the adhesive layer 13c does not substantially affect the optical characteristics of the optical functional film 13.
 次に、主として図2を参照しながら、第1及び第2の多層膜13a、13bについて説明する。 Next, the first and second multilayer films 13a and 13b will be described mainly with reference to FIG.
 図2に示すように、第1及び第2の多層膜13a、13bのそれぞれは、相対的に低い屈折率を有する低屈折率層15と、相対的に高い屈折率を有する高屈折率層16とが交互に積層された多層膜である。本実施形態では、第1の多層膜13aと第2の多層膜13bとは、同一の膜構成を有している。 As shown in FIG. 2, each of the first and second multilayer films 13a and 13b includes a low refractive index layer 15 having a relatively low refractive index and a high refractive index layer 16 having a relatively high refractive index. Are multilayer films alternately stacked. In the present embodiment, the first multilayer film 13a and the second multilayer film 13b have the same film configuration.
 高屈折率層16は、例えば、酸化チタン、酸化ニオブ、酸化タングステン、酸化鉛、酸化ランタン、酸化タンタル、酸化ジルコン、硫化亜鉛等により形成することができる。 The high refractive index layer 16 can be formed of, for example, titanium oxide, niobium oxide, tungsten oxide, lead oxide, lanthanum oxide, tantalum oxide, zircon oxide, zinc sulfide, or the like.
 低屈折率層15は、例えば、酸化ケイ素、酸化アルミニウム、フッ化アルカリ土類金属等により形成することができる。なかでも、低屈折率層15は、酸化ケイ素、フッ化マグネシウムからなるものであることがより好ましい。 The low refractive index layer 15 can be formed of, for example, silicon oxide, aluminum oxide, alkaline earth metal fluoride, or the like. In particular, the low refractive index layer 15 is more preferably made of silicon oxide or magnesium fluoride.
 第1の多層膜13aの最も接着剤層13c側に位置している第1の最外層は、低屈折率層15aにより構成されている。第2の多層膜13bの最も接着剤層13c側に位置している第2の最外層は、低屈折率層15bにより構成されている。本実施形態において、第1及び第2の最外層を構成している低屈折率層15a、15bのそれぞれは、接着剤層13cと実質的に同じ屈折率を有している。 The first outermost layer located on the most adhesive layer 13c side of the first multilayer film 13a is composed of a low refractive index layer 15a. The second outermost layer located on the most adhesive layer 13c side of the second multilayer film 13b is composed of a low refractive index layer 15b. In this embodiment, each of the low refractive index layers 15a and 15b constituting the first and second outermost layers has substantially the same refractive index as that of the adhesive layer 13c.
 また、第1の多層膜13aのうちの斜面11a上に形成されている最外層は、低屈折率層15cにより構成されている。同様に、第2の多層膜13bの斜面12a上に形成されている最外層も低屈折率層15dにより構成されている。第1または第2の透光性部材11,12上に形成されている最外層を低屈折率層にすれば、第1及び第2の多層膜13a、13bの第1または第2の透光性部材11,12に対する密着性を高めることができる。この密着性を高める観点から、低屈折率層15c、15dのそれぞれは、酸化ケイ素であることが好ましい。 Further, the outermost layer formed on the inclined surface 11a of the first multilayer film 13a is constituted by the low refractive index layer 15c. Similarly, the outermost layer formed on the inclined surface 12a of the second multilayer film 13b is also composed of the low refractive index layer 15d. If the outermost layer formed on the first or second translucent member 11 or 12 is a low refractive index layer, the first or second translucent film of the first and second multilayer films 13a and 13b is used. Adhesiveness to the adhesive members 11 and 12 can be enhanced. From the viewpoint of improving the adhesion, each of the low refractive index layers 15c and 15d is preferably silicon oxide.
 次に、本実施形態に係る光学部品1の製造方法について、図3~図6を参照しながら説明する。 Next, a method for manufacturing the optical component 1 according to this embodiment will be described with reference to FIGS.
 まず、図3に示す略三角柱状の母材30を複数用意する。この母材30は、後述する分断工程等を経て、第1及び第2の透光性部材11,12になるものである。次に、図4に示すように、複数の母材30を、図示しない成膜装置中に設置し、母材30の斜面30aに第1及び第2の多層膜13a、13bと同一構成を有している多層膜31(図5を参照)を形成する(第1及び第2の多層膜形成工程)。多層膜31の形成方法は特に限定されない。例えば、スパッタ法や蒸着法等により多層膜31を形成することができる。 First, a plurality of substantially triangular prism-shaped base materials 30 shown in FIG. 3 are prepared. This base material 30 becomes the 1st and 2nd translucent members 11 and 12 through the parting process etc. which are mentioned later. Next, as shown in FIG. 4, a plurality of base materials 30 are installed in a film forming apparatus (not shown), and the slope 30a of the base material 30 has the same configuration as the first and second multilayer films 13a and 13b. The multilayer film 31 (see FIG. 5) is formed (first and second multilayer film forming steps). The method for forming the multilayer film 31 is not particularly limited. For example, the multilayer film 31 can be formed by sputtering or vapor deposition.
 次に、図5に示すように、多層膜31が形成された一対の母材30同士を、図示しない接着剤により貼り合わせる(接着工程)。その後、図6に示すように、母材30を長さ方向において複数に分断する(分断工程)。以上の工程により、光学部品1を製造することができる。 Next, as shown in FIG. 5, the pair of base materials 30 on which the multilayer film 31 is formed are bonded together with an adhesive (not shown). Thereafter, as shown in FIG. 6, the base material 30 is divided into a plurality of pieces in the length direction (a dividing step). The optical component 1 can be manufactured by the above process.
 上記のように、本実施形態では、光学的機能膜13が、互いに接着剤層13cにより接着されている第1の多層膜13aと第2の多層膜13bとにより構成されている。このため、光学的機能膜13の層数を、成膜装置により成膜できる層数の最大値の2倍まで増大させることができる。従って、光学部品1の光学機能を高めることができる。具体的には、フィルタ特性の急峻性が高い光学部品を作製することができる。 As described above, in this embodiment, the optical functional film 13 is constituted by the first multilayer film 13a and the second multilayer film 13b that are bonded to each other by the adhesive layer 13c. For this reason, the number of layers of the optical functional film 13 can be increased up to twice the maximum number of layers that can be formed by the film forming apparatus. Therefore, the optical function of the optical component 1 can be enhanced. Specifically, an optical component with high steep filter characteristics can be manufactured.
 また、多層膜31の良品率は、多層膜31の2倍の層数を有する多層膜の良品率よりもはるかに高い。従って、光学部品1は、高い良品率で製造可能である。 Further, the yield rate of the multilayer film 31 is much higher than the yield rate of the multilayer film having the number of layers twice that of the multilayer film 31. Therefore, the optical component 1 can be manufactured at a high yield rate.
 さらに、多層膜31の膜応力は、多層膜31の2倍の層数を有する多層膜の膜応力よりもはるかに小さいため、第1及び第2の透光性部材11,12または第1及び第2の透光性部材の母材に不当な応力が残留しにくくなる。このため、第1及び第2の透光性部材11,12の接合精度が向上すると共に、第1及び第2の透光性部材の母材を分断する際に、母材の変形等を抑制することができる。従って、高い形状精度で光学部品1を製造することができる。 Furthermore, since the film stress of the multilayer film 31 is much smaller than the film stress of the multilayer film having twice the number of layers as the multilayer film 31, the first and second translucent members 11, 12 or the first and second Unduly stress is unlikely to remain in the base material of the second translucent member. For this reason, while joining precision of the 1st and 2nd translucent members 11 and 12 improves, when dividing a base material of the 1st and 2nd translucent members, modification of a base material is controlled. can do. Therefore, the optical component 1 can be manufactured with high shape accuracy.
 また、本実施形態では、第1及び第2の多層膜13a、13b(多層膜31)を同一工程で成膜するため、光学的機能膜13の作製コスト及び作製に要する時間を低減することができる。その結果、光学部品1の製造に要する時間及び製造コストも低減することができる。 In this embodiment, since the first and second multilayer films 13a and 13b (multilayer film 31) are formed in the same process, the manufacturing cost and the time required for manufacturing the optical functional film 13 can be reduced. it can. As a result, the time and manufacturing cost required for manufacturing the optical component 1 can be reduced.
 本実施形態では、第1及び第2の多層膜13a、13bのそれぞれの最も接着剤層側に位置する最外層が低屈折率層15a、15bにより構成されている。そして、低屈折率層15a、15bの屈折率と、接着剤層13cの屈折率とは、実質的に同じである。このようにすることにより、第1及び第2の多層膜13a、13bが、光学的機能膜として一体的に機能させることができる。また、このようにすれば、接着剤層13cの界面における不要な屈折や反射を抑制できるため、光学機能の低下を抑制することができる。 In the present embodiment, the outermost layers located on the most adhesive layer sides of the first and second multilayer films 13a and 13b are constituted by the low refractive index layers 15a and 15b. And the refractive index of the low-refractive- index layers 15a and 15b and the refractive index of the adhesive bond layer 13c are substantially the same. In this way, the first and second multilayer films 13a and 13b can function integrally as an optical functional film. In addition, if this is done, unnecessary refraction and reflection at the interface of the adhesive layer 13c can be suppressed, so that a decrease in optical function can be suppressed.
 さらに本実施形態では、低屈折率層15a、15bが酸化ケイ素、酸化アルミニウム、フッ化マグネシウムにより形成されている。これらは、接着剤層13cとの接着性が良好であり、且つ高い機械的強度を有する。従って、光学部品1の機械的耐久性を高めることができる。 Furthermore, in this embodiment, the low refractive index layers 15a and 15b are formed of silicon oxide, aluminum oxide, and magnesium fluoride. These have good adhesiveness with the adhesive layer 13c and have high mechanical strength. Therefore, the mechanical durability of the optical component 1 can be increased.
 なお、上記第1の実施形態では、第1及び第2の透光性部材11,12のそれぞれがプリズムにより構成されている場合について説明したが、本発明において第1及び第2の透光性部材のそれぞれの形状は特に限定されない。例えば、第1及び第2の透光性部材の一方がプリズムで、他方が板状であってもよい。また、図7に示すように、第1及び第2の透光性部材11,12のそれぞれが板状であってもよい。 In the first embodiment, the case where each of the first and second translucent members 11 and 12 is constituted by a prism has been described. However, in the present invention, the first and second translucent members are used. The shape of each member is not particularly limited. For example, one of the first and second translucent members may be a prism and the other may be plate-shaped. Moreover, as shown in FIG. 7, each of the 1st and 2nd translucent members 11 and 12 may be plate-shaped.
 (実施例1)
 下記に示す設計により、図1に示す光学部品1を作製し、光入射角度45°における光透過率(光21の強度/光20の強度)を、分光光度計を用いて測定した。また、比較例として、第2の多層膜を形成しないこと以外は、実施例と同様にして光学部品を作製し、光透過率(P偏光)を測定した。測定結果を図8に示す。なお、図8において、実線が実施例1のデータを示し、破線が比較例1のデータを示している。
Example 1
The optical component 1 shown in FIG. 1 was manufactured by the design shown below, and the light transmittance (the intensity of the light 21 / the intensity of the light 20) at a light incident angle of 45 ° was measured using a spectrophotometer. Further, as a comparative example, an optical component was produced in the same manner as in the example except that the second multilayer film was not formed, and the light transmittance (P-polarized light) was measured. The measurement results are shown in FIG. In FIG. 8, the solid line indicates the data of Example 1, and the broken line indicates the data of Comparative Example 1.
 図8に示す結果から分かるように、22層の第1の多層膜13aに加えて、22層の第2の多層膜13bを設けることにより、フィルタ特性の急峻性を高めることができる。なお、今回の測定結果は、第1の透光性部材11の表面上のみに表1に記載の多層膜を2回成膜した場合の測定結果と同様であり、また第1の多層膜13aと第2の多層膜13bとを同一工程で形成することにより、成膜時間を約半分とすることができた。 As can be seen from the results shown in FIG. 8, the steepness of the filter characteristics can be enhanced by providing the second multilayer film 13b having 22 layers in addition to the first multilayer film 13a having 22 layers. The measurement result this time is the same as the measurement result when the multilayer film described in Table 1 is formed twice only on the surface of the first translucent member 11, and the first multilayer film 13a By forming the second multilayer film 13b and the second multilayer film 13b in the same process, the film formation time can be reduced to about half.
 なお、実施例1及び比較例1では、第1及び第2の透光性部材11,12として、BK-7またはその相当品(屈折率1.52)を使用した。 In Example 1 and Comparative Example 1, BK-7 or its equivalent (refractive index: 1.52) was used as the first and second light transmissive members 11 and 12.
 実施例1及び比較例1では、第1及び第2の多層膜の膜構成は、共に表1に示す通りである。 In Example 1 and Comparative Example 1, the film configurations of the first and second multilayer films are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 下記に示す設計により、図1に示す光学部品1を作製し、光入射角度49°における反射特性を評価した。また、比較例として、第2の多層膜を形成しないこと以外は、実施例と同様にして光学部品を作製し、反射特性を評価した。測定結果を図9に示す。なお、図9において、実線が実施例2のデータを示し、破線が比較例2のデータを示している。
(Example 2)
The optical component 1 shown in FIG. 1 was produced according to the design shown below, and the reflection characteristics at a light incident angle of 49 ° were evaluated. In addition, as a comparative example, an optical component was produced in the same manner as in the example except that the second multilayer film was not formed, and the reflection characteristics were evaluated. The measurement results are shown in FIG. In FIG. 9, the solid line indicates the data of Example 2, and the broken line indicates the data of Comparative Example 2.
 図9に示す結果から分かるように、4層の第1の多層膜13aに加えて、4層の第2の多層膜13bを設けることにより、反射光の消光比(S偏光とP偏光の光量差)を大きくすることができる。なお、今回の測定結果は、第1の透光性部材11の表面上のみに表2に記載の多層膜を2回成膜した場合の測定結果と同様であったり、また第1の多層膜13aと第2の多層膜13bとを同一工程で形成することにより、成膜時間を約半分とすることができた。 As can be seen from the results shown in FIG. 9, by providing a four-layer second multilayer film 13b in addition to the four-layer first multilayer film 13a, the extinction ratio of reflected light (the amount of S-polarized light and P-polarized light) Difference) can be increased. The measurement result this time is the same as the measurement result when the multilayer film described in Table 2 is formed twice only on the surface of the first translucent member 11, or the first multilayer film. By forming 13a and the second multilayer film 13b in the same process, the film formation time could be reduced to about half.
 なお、実施例2及び比較例2において、第1及び第2の透光性部材11,12として、BK-7またはその相当品(屈折率1.52)を使用した。 In Example 2 and Comparative Example 2, BK-7 or its equivalent (refractive index of 1.52) was used as the first and second light transmissive members 11 and 12.
 実施例2及び比較例2における第1及び第2の多層膜の膜構成は、共に表2に示す通りである。 The film configurations of the first and second multilayer films in Example 2 and Comparative Example 2 are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1,2…光学部品
11…第1の透光性部材
11a…第1の透光性部材の斜面
12…第2の透光性部材
12a…第2の透光性部材の斜面
13…光学的機能膜
13a…第1の多層膜
13b…第2の多層膜
13c…接着剤層
15…低屈折率層
15a…第1の多層膜の最も接着剤層側の第1の最外層を構成する低屈折率層
15b…第2の多層膜の最も接着剤層側の第2の最外層を構成する低屈折率層
15c…第1の多層膜の最も第1の透光性部材側の低屈折率層
15d…第2の多層膜の最も第2の透光性部材側の低屈折率層
16…高屈折率層
20…入射光
21…透過光
22…反射光
30…母材
30a…母材の斜面
31…多層膜
DESCRIPTION OF SYMBOLS 1, 2 ... Optical component 11 ... 1st translucent member 11a ... Slope 12 of 1st translucent member ... 2nd translucent member 12a ... Slope 13 of 2nd translucent member ... Optical Functional film 13a ... first multilayer film 13b ... second multilayer film 13c ... adhesive layer 15 ... low refractive index layer 15a ... low constituting the first outermost layer on the most adhesive layer side of the first multilayer film Refractive index layer 15b ... Low refractive index layer 15c constituting the second outermost layer on the most adhesive layer side of the second multilayer film ... Low refractive index on the first light transmissive member side of the first multilayer film Layer 15d: Low refractive index layer 16 on the second light transmissive member side of the second multilayer film ... High refractive index layer 20: Incident light 21 ... Transmitted light 22 ... Reflected light 30 ... Base material 30a ... Base material 30a Slope 31 ... multilayer film

Claims (13)

  1.  第1の透光性部材と、
     第2の透光性部材と、
     前記第1の透光性部材と前記第2の透光性部材との間に設けられている光学的機能膜とを備え、
     前記光学的機能膜が、前記第1の透光性部材の上に形成されている第1の多層膜と、前記第2の透光性部材の上に形成されている第2の多層膜と、前記第1の多層膜と前記第2の多層膜とを接着している接着剤層とを有する光学部品。
    A first translucent member;
    A second translucent member;
    An optical functional film provided between the first translucent member and the second translucent member;
    The optical functional film includes a first multilayer film formed on the first light transmissive member, and a second multilayer film formed on the second light transmissive member. An optical component having an adhesive layer that bonds the first multilayer film and the second multilayer film.
  2.  前記第1の多層膜の最も前記接着剤層側に位置する第1の最外層と、前記第2の多層膜の最も前記接着剤層側に位置する第2の最外層との少なくとも一方が、前記接着剤層と実質的に同じ屈折率を有する請求項1に記載の光学部品。 At least one of the first outermost layer located on the most adhesive layer side of the first multilayer film and the second outermost layer located on the most adhesive layer side of the second multilayer film, The optical component according to claim 1, wherein the optical component has substantially the same refractive index as the adhesive layer.
  3.  前記第1の最外層と前記第2の最外層との両方が、前記接着剤層と実質的に同じ屈折率を有する請求項2に記載の光学部品。 3. The optical component according to claim 2, wherein both the first outermost layer and the second outermost layer have substantially the same refractive index as that of the adhesive layer.
  4.  前記第1の多層膜と前記第2の多層膜との両方が、相対的に低い屈折率を有する低屈折率層と、相対的に高い屈折率を有する高屈折率層とが交互に積層された多層膜であり、
     前記第1の最外層と前記第2の最外層との少なくとも一方が前記低屈折率層である請求項2または3に記載の光学部品。
    Both the first multilayer film and the second multilayer film are alternately laminated with a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index. Multilayer film,
    The optical component according to claim 2, wherein at least one of the first outermost layer and the second outermost layer is the low refractive index layer.
  5.  前記第1の最外層と前記第2の最外層との少なくとも一方を構成している低屈折率層が、フッ化マグネシウム、酸化ケイ素、酸化アルミニウムからなる請求項4に記載の光学部品。 5. The optical component according to claim 4, wherein the low refractive index layer constituting at least one of the first outermost layer and the second outermost layer is made of magnesium fluoride, silicon oxide, or aluminum oxide.
  6.  前記第1の多層膜の少なくとも一部が、前記第2の多層膜と同一の膜構成を有する請求項1~5のいずれか一項に記載の光学部品。 The optical component according to any one of claims 1 to 5, wherein at least a part of the first multilayer film has the same film configuration as the second multilayer film.
  7.  前記第1の多層膜と前記第2の多層膜とが、同一の膜構成を有する請求項6に記載の光学部品。 The optical component according to claim 6, wherein the first multilayer film and the second multilayer film have the same film configuration.
  8.  前記接着剤層の厚みが、1~25μmの範囲内にある請求項1~7のいずれか一項に記載の光学部品。 The optical component according to any one of claims 1 to 7, wherein a thickness of the adhesive layer is in a range of 1 to 25 µm.
  9.  前記光学的機能膜が、第1の波長領域の光を透過させる一方、第1の波長領域とは異なる第2の波長領域の光を反射させる波長分離膜である請求項1~8のいずれか一項に記載の光学部品。 9. The wavelength separation film according to claim 1, wherein the optical functional film is a wavelength separation film that transmits light in the first wavelength region and reflects light in a second wavelength region different from the first wavelength region. The optical component according to one item.
  10.  前記第1の透光性部材と前記第2の透光性部材との少なくとも一方は、プリズムまたは板である請求項1~9のいずれか一項に記載の光学部品。 The optical component according to any one of claims 1 to 9, wherein at least one of the first light-transmissive member and the second light-transmissive member is a prism or a plate.
  11.  請求項1~10のいずれか一項に記載の光学部品の製造方法であって、
     前記第1の透光性部材の上に前記第1の多層膜を形成する第1の多層膜形成工程と、
     前記第2の透光性部材の上に前記第2の多層膜を形成する第2の多層膜形成工程と、
     前記第1の多層膜と前記第2の多層膜とを前記接着剤層により接着する接着工程とを備える光学部品の製造方法。
    A method for manufacturing an optical component according to any one of claims 1 to 10,
    A first multilayer film forming step of forming the first multilayer film on the first translucent member;
    A second multilayer film forming step of forming the second multilayer film on the second translucent member;
    An optical component manufacturing method comprising: an adhesion step of adhering the first multilayer film and the second multilayer film with the adhesive layer.
  12.  前記第1の多層膜形成工程と前記第2の多層膜形成工程とを同一工程で行う請求項11に記載の光学部品の製造方法。 The method for manufacturing an optical component according to claim 11, wherein the first multilayer film forming step and the second multilayer film forming step are performed in the same step.
  13.  前記第1の多層膜と前記第2の多層膜とが同一の膜構成を有する請求項11に記載の光学部品の製造方法。 The method for manufacturing an optical component according to claim 11, wherein the first multilayer film and the second multilayer film have the same film configuration.
PCT/JP2010/070982 2009-12-15 2010-11-25 Optical component, and method for producing same WO2011074388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800573037A CN102656487A (en) 2009-12-15 2010-11-25 Optical component, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009283574A JP2011128176A (en) 2009-12-15 2009-12-15 Optical component and method of manufacturing the same
JP2009-283574 2009-12-15

Publications (1)

Publication Number Publication Date
WO2011074388A1 true WO2011074388A1 (en) 2011-06-23

Family

ID=44167151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070982 WO2011074388A1 (en) 2009-12-15 2010-11-25 Optical component, and method for producing same

Country Status (4)

Country Link
JP (1) JP2011128176A (en)
CN (1) CN102656487A (en)
TW (1) TWI598616B (en)
WO (1) WO2011074388A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008606A (en) * 2018-07-03 2020-01-16 セイコーエプソン株式会社 Cross dichroic prism, image display module and image display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186650A (en) * 2016-06-17 2016-10-27 パイオニア株式会社 Optical element and method for manufacturing optical element
CN110361799B (en) * 2019-06-28 2022-08-02 西安应用光学研究所 Dichroic medium cubic beam splitter prism capable of resisting laser damage
CN112630985B (en) * 2020-12-28 2021-09-14 福建福特科光电股份有限公司 Color separation device and color separation method of black light lens
WO2024048127A1 (en) * 2022-09-02 2024-03-07 日本電気硝子株式会社 Prism, glass article, and method for manufacturing prism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284705A (en) * 1990-03-30 1991-12-16 Hoya Corp Polarized beam splitter
JPH07281024A (en) * 1994-04-08 1995-10-27 Nikon Corp Polarized beam splitter
JPH07306314A (en) * 1994-05-13 1995-11-21 Nikon Corp Polarizer
JPH095518A (en) * 1995-06-19 1997-01-10 Nikon Corp Polarization beam splitter and its production
JP2004515796A (en) * 2000-02-24 2004-05-27 エイエスエムエル ユーエス, インコーポレイテッド Ultraviolet polarized beam splitter for microlithography
JP2006195301A (en) * 2005-01-17 2006-07-27 Konica Minolta Opto Inc Optical element
JP2007504516A (en) * 2003-05-16 2007-03-01 スリーエム イノベイティブ プロパティズ カンパニー Polarization beam splitter and projection system using polarization beam splitter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284705A (en) * 1990-03-30 1991-12-16 Hoya Corp Polarized beam splitter
JPH07281024A (en) * 1994-04-08 1995-10-27 Nikon Corp Polarized beam splitter
JPH07306314A (en) * 1994-05-13 1995-11-21 Nikon Corp Polarizer
JPH095518A (en) * 1995-06-19 1997-01-10 Nikon Corp Polarization beam splitter and its production
JP2004515796A (en) * 2000-02-24 2004-05-27 エイエスエムエル ユーエス, インコーポレイテッド Ultraviolet polarized beam splitter for microlithography
JP2007504516A (en) * 2003-05-16 2007-03-01 スリーエム イノベイティブ プロパティズ カンパニー Polarization beam splitter and projection system using polarization beam splitter
JP2006195301A (en) * 2005-01-17 2006-07-27 Konica Minolta Opto Inc Optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008606A (en) * 2018-07-03 2020-01-16 セイコーエプソン株式会社 Cross dichroic prism, image display module and image display device

Also Published As

Publication number Publication date
CN102656487A (en) 2012-09-05
TW201142341A (en) 2011-12-01
TWI598616B (en) 2017-09-11
JP2011128176A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US7957063B2 (en) Diffractive optical device, optical system using the diffractive optical device and method for manufacturing diffractive optical device
JP4958594B2 (en) Antireflection film, optical element and optical system
WO2011074388A1 (en) Optical component, and method for producing same
US9188707B2 (en) Optical lens with anti-reflection film and lens module
JP2009156954A (en) Wavelength separation film, and optical communication filter using the same
CN101430389B (en) Membrane stack structure of blue light splitting piece
CN112444898B (en) Optical filter for wide-angle application
JP2007206225A (en) Polarization conversion element
JP4692486B2 (en) Optical filter and optical filter manufacturing method
CN101435882B (en) Film stacking structure of red light splitting slice
JP2008032804A (en) Optical element
JP3584257B2 (en) Polarizing beam splitter
JP2005275294A (en) Optical element
JP4080265B2 (en) Polarization conversion element and manufacturing method thereof
CN210323440U (en) Coated lens and optical lens comprising same
JP2006220872A (en) Optical filter, manufacturing method of optical filter, and imaging device
JP2010185916A (en) Beam splitting film and beamsplitter using the same
CN107479163B (en) Optical cemented lens group
JP7135794B2 (en) optical filter
JP2001350024A (en) Polarizing beam splitter
JP2006178261A5 (en)
EP2520955A1 (en) Plate-type broadband depolarizing beam splitter
JP7452354B2 (en) Optical member and its manufacturing method
CN109665722B (en) High-transparency composite glass
JP2008009125A (en) Wavelength separating film and filter for optical communication using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057303.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837417

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837417

Country of ref document: EP

Kind code of ref document: A1