JP4080265B2 - Polarization conversion element and manufacturing method thereof - Google Patents

Polarization conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP4080265B2
JP4080265B2 JP2002203162A JP2002203162A JP4080265B2 JP 4080265 B2 JP4080265 B2 JP 4080265B2 JP 2002203162 A JP2002203162 A JP 2002203162A JP 2002203162 A JP2002203162 A JP 2002203162A JP 4080265 B2 JP4080265 B2 JP 4080265B2
Authority
JP
Japan
Prior art keywords
film
light
conversion element
polarization
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002203162A
Other languages
Japanese (ja)
Other versions
JP2004045767A (en
Inventor
弘和 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
AGC Techno Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Techno Glass Co Ltd filed Critical AGC Techno Glass Co Ltd
Priority to JP2002203162A priority Critical patent/JP4080265B2/en
Publication of JP2004045767A publication Critical patent/JP2004045767A/en
Application granted granted Critical
Publication of JP4080265B2 publication Critical patent/JP4080265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、偏光変換素子およびその製造方法に関するものである。
【0002】
【従来の技術】
ランダムな偏光の光を、偏光方向の揃った1種類の直線偏光に変換して出射する偏光変換素子としては、特開平7−294906号公報に記載されたものが知られている。図14(a)には、このような偏光変換素子の斜視図、図14(b)にはその平面図およびこの偏光変換素子における偏光変換を例示した。この偏光変換素子は、偏光分離膜11を有する線状の偏光ビームスプリッタ101と、反射膜12を有するプリズム102とを交互に貼り合わせたものである。また偏光分離素子の出射面の一部に選択位相差板として、λ/2位相差板(1/2波長位相差板)130を備えている。
【0003】
この構成の偏光変換素子において、光入射面に入射したS偏光成分(偏光ベクトルが入射面に垂直な偏光、S波)とP偏光成分(偏光ベクトルが入射面内にある偏光、P波)とを含む入射光は、まず、偏光分離膜11によりS波とP波とに分離される。P波は、偏光分離膜11をそのまま透過し、λ/2位相差板130によってS波に変換されて出射する。またS波は偏光分離膜11によりほぼ直角に反射され、反射膜12によりさらに直角に反射されて出射する。従って、この偏光変換素子に入射したランダムな偏光方向を有する光は、すべてS波の光となって出射する。
【0004】
また、このような構造の偏光分離素子の製造方法については特開平2−227901号、特開平10−39136号、および特開平10−90520号に記載されている。これらは偏光分離膜と反射膜の形成された透光性板材を積層接着した後、積層面に対し例えば45°の角度で切断してブロックを切り出し、光学研磨加工を行った後に、光出射面に部分的に位相差板を1本ずつ貼りつけるものである。
【0005】
【発明が解決しようとする課題】
しかしながら、図14のような偏光分離素子においては、λ/2位相差板(1/2波長位相差板)が光出射面に間隔をおいて貼り付けられたものとなることから、耐熱性、耐候性や耐久性などの面で改善すべき点があった。また素子本体には通常ガラスが用いられ、その出射面に反射防止膜が施されるが、反射防止膜は、ガラス面との密着性に比べてこの面に貼り付けられるポリカーボネートなどのプラスチックのλ/2位相差板との密着性がよくないという問題点があった。また液晶プロジェクタなどの投射型表示装置においては、高出力の光源の近くに偏光変換装置を配置して用いることから、耐熱性や耐久性のより優れた素子が強く望まれてきた。
【0006】
また偏光分離素子の製造において、光入射面と光出射面を研磨仕上げした後に偏光ビームスプリッタなどの光出射面にλ/2位相差板を1本ずつ貼り付ける工程を有するため、その生産性の点でも問題があった。
【0007】
本発明者は、位相差板を光出射面に貼り付けるのではなく、偏光変換素子の内部に取りこんでしまう構造、例えば偏光ビームスプリッタとプリズムとの間などの透光性基板の間に挟む構造の偏光変換素子(特願2001−367782)を発明することにより、こうした問題を解決した。本発明は、この発明をさらに改良し、偏光変換素子から出射する光の照度のむらを低減して均一化することにより、さらに高性能化された偏光変換素子を提供するものである。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明の偏光変換素子は、第1の主面を光入斜面、第2の主面を光出射面とする平板状の透光性基材中に、前記第1および第2の主面に対し傾斜して間隔をおいて偏光分離膜と反射膜とが交互に平行配置され、前記偏光分離膜の前記光出射面側に位相差板が配置され、互いに隣り合う前記偏光分光膜と前記反射膜との間隔が実質的に等しくなるように構成されていることを特徴とする。
【0009】
本発明においては、偏光変換素子を構成する上で、平板状の透光性基材が光入射面を形成する第1の主面と光出射面を形成する第2の主面とは互いにほぼ平行にすればよく、また偏光分離膜、反射膜およびλ/2位相差板が主面とのなす傾斜角はほぼ45°とすればよい。
【0010】
本発明において、位相差板としてP波をS波に変換するλ/2位相差板を用いることにより、偏光変換素子の光入射面にランダム偏光を入射し、偏光分離膜を透過した偏光、例えばP波をλ/2位相差板でS波に変換して出射させ、他方で偏光分離膜を反射したS波を反射膜で反射させて出射するとことにより、偏光方向をS波に揃えた光を出射することができる。
【0011】
本発明に用いるこのような位相差板として、ポリカーボネート系フィルムやポリアクリレート系フィルムなどを2軸延伸したプラスチックフィルムを用いることができる。
【0012】
また本発明の偏光変換素子は、第1の主面を光入斜面、第2の主面を光出射面とする平板状の透光性基材中に、前記第1および第2の主面に対し傾斜して間隔をおいて偏光分離膜と反射膜とが交互に平行配置され、前記反射膜の前記光出射面側に位相差板が配置され、互いに隣り合う前記偏光分光膜と前記反射膜との間隔が実質的に等しくなるように構成されているものであってもよい。
【0013】
この場合に位相差板として例えばλ/4位相差板を反射膜に隣接させて用いることにより、偏光変換素子の光入射面にランダム偏光を入射し、偏光分離膜を透過したP波を出射させ、また他方で偏光分離膜を反射したS波は、反射膜に隣接した位相差板を透過させた後に反射膜で反射させ再び位相差板を透過させることにより、P波に変換して出射させることができる。このようにしてランダム偏光を入射し、偏光方向をP波に揃えた光を出射することができる。
【0014】
この場合にも、偏光変換素子を構成する上で、平板状の透光性基材が光入射面を形成する第1の主面と光出射面を形成する第2の主面とは互いにほぼ平行にすればよく、また偏光分離膜、反射膜およびλ/2位相差板が主面とのなす傾斜角はほぼ45°とすればよい。
【0015】
上記構造の偏光変換素子においては、偏光分離膜を直接透過して出射する光束と反射膜で反射して出射する光束とが光出射面で交互に並ぶことになり、この場合にはこれら光束の間に間隙が生じ、照度むらが発生しやすい。本発明者はこの点に着目し、その原因について追求を行なった結果、位相差板が透光性基材の中に取り込まれることによって生じる2つの原因により、照度むらが発生しやすくなることを明らかにすることができた。
【0016】
その第1の原因は、位相差板が透光性基材の中に取り込まれたことにより、互いに隣り合う前記偏光分光膜と前記反射膜との間隔が位相差板の厚さの影響を受けて変化した場合に発生する照度むらであることがわかった。図15(a)はこの様子を示した模式図である。図の符号は図14に合わせた。両矢印で示した領域において出射光量が減少することがわかる。本発明においては互いに隣り合う前記偏光分光膜と前記反射膜との間隔が実質的に等しくなるように構成されているので、偏光分離膜を直接透過して出射する光束と反射膜で反射して出射する光束との間に間隙がなく、このため照度むらの小さい出射光を得ることができる。
【0017】
本発明において、互いに隣り合う前記偏光分光膜と前記反射膜との間隔が実質的に等しい、とは、偏光分離膜を直接透過して出射する光束と反射膜で反射して出射する光束との間に間隙が生じず、照度むらの小さい出射光を得ることができる状態であればよく、このためには例えば間隔の差が2%以下であることが好ましく、1%以下であることがより好ましく、0.5%以下であることがさらに好ましい。
【0018】
またその第2の原因は位相差板の屈折率が透光性基材の屈折率と異なる場合にも、照度むらの原因となることがわかった。図15(b)はこの様子を示した模式図である。図の符号は図14に合わせた。矢印で示した領域において出射光量が減少することがわかる。従って本発明の偏光変換素子において、位相差板の屈折率が透光性基材の屈折率と実質的に等しくなるように構成されていることが好ましいことがわかった。
【0019】
このため本発明において出射光の照度むらを低減するためには、位相差板と透光性基材との屈折率の差が0.1以下であることが好ましく、0.05以下であることがより好ましく、0.02以下であればさらに好ましい。例えば透光性基材として屈折率1.52の白板ガラスを用いた場合に、屈折率1.586のポリカーボネートの位相差板に用いることにより、屈折率差を0.1以下にすることができる。また透光性基材として屈折率1.52の白板ガラスを用いた場合に、位相差板として、環式炭化水素でエチレン結合を持つシクロオレフィンの重合体を主体とする透光性のシクロオレフィン系樹脂、例えば屈折率1.51のJSR社製ARTON(商品名)を用いれば、屈折率差を0.01とすることができ、さらに好ましい結果が得られる。
【0020】
本発明の偏光変換素子によれば、位相差板がむき出しではなく、複数の透光性部材の接合部に偏光分離膜に隣接して挟み込まれて接着され配置されているので、位相差板として2軸延伸プラスチックフィルムが用いられた場合でも、ブラスチックフィルムの位相差板が熱によって変形したりはがれたりするのを避けることができる。このため耐熱性や耐候性などについて、従来に比べ大幅な向上が得られる。ここに本発明の位相差板に用いる耐熱性の2軸延伸プラスチックフィルムとしては、ポリアクリレート系フィルムおよびシクロオレフィン系樹脂が特に優れていることがわかった。なお本発明の偏光分離素子における接着面には、各種光学接着剤を用いることができる。
【0021】
本発明の偏光変換素子においては、光の反射による損失を低減するために、光入射面や光出射面に反射防止膜を設けることができる。ここで用いる反射防止膜としては、例えばTiOとSiOとを5層程度交互に蒸着し積層した積層膜を用いることができる。本発明の偏光変換素子においては、従来の偏光変換素子の光出射面に配置されていた位相差板を素子の内部に設けるようにしたので、光出射面には位相差板を設ける必要がない。このため本発明の偏光変換素子においては、位相差板に煩わされることなく、密着性の良好な反射防止膜を光入射面や光出射面に設けることができる。
【0022】
このようにして、本発明により耐熱性を有し長期の使用に適し、照度むらの小さい偏光変換素子が得られ、例えば100℃程度の高温度で長時間使用する液晶プロジェクタに用いた場合にも、劣化が少ないという利点を有する偏光変換素子が提供できるようになった。
【0023】
このような本発明の偏光変換素子は、平行な2面を有し厚さtの透光性板材、偏光分離膜、平行な2面を有し厚さt−tの透光性板材、厚さtの位相差板、及び反射膜がこの順序に繰り返し積層された積層体が、その積層面に対し所定の角度で切断され、その切断面か光学的に研磨されて互いに平行な光入射面と光出射面とを形成していることを特徴とするものであってもよい。
【0024】
またこのような本発明の偏光変換素子は、、平行な2面を有し厚さtの透光性板材、反射膜、平行な2面を有し厚さt−tの透光性板材、厚さtの位相差板、及び偏光分離膜がこの順序に繰り返し積層された積層体が、その積層面に対し所定の角度で切断され、その切断面か光学的に研磨されて互いに平行な光入射面と光出射面とを形成していることを特徴とするものであってもよい。
【0025】
本発明の偏光変換素子の製造方法は、平行な2面を有し厚さtを有する第1の透光性板材の一方の面に偏光分離膜を形成する偏光分離膜形成工程と、平行な2面を有し厚さt−tの第2の透光性板材の一方の面に反射膜を形成する反射膜形成工程と、厚さtを有する位相差板と、偏光分離膜の形成された前記第1の透光性板材と、反射膜の形成された前記第2の透光性板材とを、前記位相差板が前記偏光分離膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有する偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程とを備えたことを特徴とする。
【0026】
また本発明の偏光変換素子の製造方法は、平行な2面を有し厚さt−tを有する第1の透光性板材の一方の面に偏光分離膜を形成する偏光分離膜形成工程と、平行な2面を有し厚さtを有する第2の透光性板材の一方の面に反射膜を形成する反射膜形成工程と、偏光分離膜の形成された前記第1の透光性板材と、厚さtを有する位相差板と、反射膜の形成された前記第2の透光性板材とを、前記位相差板が前記反射膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有する偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程とを備えたものであってもよい。
【0027】
また本発明の偏光変換素子の製造方法は、平行な2面を有し厚さtを有する第1の透光性板材の一方の面に偏光分離膜を形成する工程と、前記平行な2面を有する前記透光性部材のもう一方の面に反射膜を形成する工程と、厚さtを有する位相差板と、偏光分離膜および反射膜の形成された前記第1の透光性板材と、偏光分離膜および反射膜のいずれをも形成していない厚さt−tを有する第2の透光性板材とを、前記位相差板が前記偏光分離膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有する偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程とを備えたものであってもよい。
【0028】
さらに本発明の偏光変換素子の製造方法は、平行な2面を有し厚さt−tを有する第1の透光性板材の一方の面に偏光分離膜を形成する工程と、前記平行な2面を有する前記透光性部材のもう一方の面に反射膜を形成する工程と、偏光分離膜および反射膜の形成された前記第1の透光性板材と、厚さtを有する位相差板と、偏光分離膜および反射膜のいずれをも形成していない厚さtを有する第2の透光性板材とを、前記位相差板の板面が前記反射膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有する偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程とを備えたものであってもよい。
【0029】
このようにすることによって、位相差板を取り込んだ場合でも、互いに隣り合う前記偏光分光膜と前記反射膜との間隔を実質的に等しくした偏光分離素子を製造することができる。
【0030】
上記本発明の偏光変換素子の製造方法においては、偏光分離膜と反射膜が形成された第1と第2の透光性板を交互に積層する際に、偏光分離板にλ/2位相差板を接着し、これを第1と第2の透光性板の間に挟み込むようにするか、あるいは偏光分離膜と反射膜が形成された第1と第2の透光性板を交互に積層する際に、反射膜にλ/4位相差板を接着し、これを第1と第2の透光性板の間に挟み込むようにすればよい。このため、従来のように偏光変換素子ブロックを形成し光出射面を研磨加工した後にλ/2位相差板を1枚ずつ貼り付けるという手間のかかる工程が不要となり、従来に比べて大幅な生産性向上が得られる。
【0031】
本発明の偏光変換素子の製造方法においては、上記積層接着工程が、複数の第1の透光性板材と複数の第2の透光性板材と位相差板とを光硬化性接着層を介して積層し、光照射により接着する光照射接着工程を備えているものであってもよい。このように、光硬化性接着材を用い、光照射によって接着する工程を用いることにより、偏光変換素子の製造の生産性及び信頼性を高めることができる。
【0032】
この光照射接着工程は、光照射接着工程が、第1の透光性板材、位相差板および第2の透光性板材を光硬化性接着層を介して積層する工程と、光を照射して光硬化性接着層を硬化させる工程とを順次繰り返すものであってもよい。
【0033】
また、この光照射接着工程は、光照射接着工程が、第1の透光性板材、位相差板および第2の透光性板材を光硬化性接着層を介して順次積層して積層体を形成する工程と、積層体を形成した後に光を照射して光硬化性接着層を硬化させ工程を備えたものであってもよい。
【0034】
この光照射接着工程は、第1および第2の透光性板材の互いに平行な面に対し、角度をなす方向から光の照射を行って光硬化を行うことが好ましい。こうすることによって光が接着層に効率よく照射され、短い照射時間で確実な接着を行なうことができる。
【0035】
【発明の実施の形態】
以下に本発明の実施の形態を図面に従い詳細に説明する。
【0036】
(実施の形態1)偏光変換素子1
図1(a)は本発明の一実施形態の偏光変換素子の模式的斜視図、また図1(b)はその平面図である。
【0037】
図1(a)および(b)において、偏光変換素子100はランダムな偏光光束を偏光方向が一方向に揃った光束に変換して出射する作用を持つ直方体形状の素子であり、断面がほぼ平行四辺形の柱状の第1の透光性部材101と第2の透光性部材102が交互に接合されて形成されている。この第1の透光性部材101と第2の透光性部材102は、厚みが異なり、第2の透光性部材の方が位相差板の厚みだけ薄くしてある。この偏光変換素子100の一方の面を光入射面100aとし、これとほぼ平行な他方の面を100bを光出射面としている。
【0038】
光入射面100aおよび光出射面100bに対して所定の角度をなす第1の透光性部材101と第2の透光性部材102の接着面には、偏光分離膜11とこの偏光分離膜に隣接してλ/2位相差板130が配置された接着面と、反射膜12が形成された接着面とが、図1(a)に示されたように交互に配列されている。
【0039】
第1の透光性部材101および第2の透光性部材102には、磨きガラスやフロートガラスなどの板ガラスを用いることができる。これらの透光性部材はガラス以外の透光性材料、例えばアクリル樹脂やポリカーボネ−ト樹脂などの透光性樹脂を用いることもできる。
【0040】
偏光分離膜11は、S波とP波のうちP波を選択的に透過し他方が選択的に反射する性質を有する膜であって、例えば誘電体多層膜を積層することによって形成される。本実施の形態では、P波を透過させS波を反射させる偏光分離膜11が形成されている。
【0041】
反射膜12としては、例えばアルミニウム膜のような反射膜を用いることができるが、誘電体多層膜を積層し、偏光分離膜11で反射された直線偏光成分のみを選択的に反射し、他の直線偏光成分は反射しないように構成することによって、反射による損失のより少ない反射膜が形成できる。
【0042】
図2は本実施形態の偏光変換素子100の一部を模式的平面図で示し、この偏光変換素子100に入射したランダムな偏光の光が一方向の偏光に変換されて出射する様子を模式的に示したものである。
【0043】
ランダム偏光(S+P)の入射光は、偏光変換素子100の光入射面100aから偏光分離膜11に向けて入射し、透光性部材101内を通過して偏光分離膜11にてランダム偏光の成分中のP波が透過しS波が反射する。偏光分離膜11を透過したP波は、偏光分離板に隣接したλ/2位相差板130で直ちにS波に変換され、透光性部材102内を進んで光出向面100bから出射する。他方で偏光分離膜11を反射したS波は、透光性部材101内を進み、反射膜12にて反射され、光出向面100bから出射する。こうして偏光変換素子に入射した光は、いずれもS波となって偏光変換素子の光出射面から出射する。なおλ/2位相差板130は、図2に示されているような角度での光の透過に対して1/2波長の位相差板として働くものである。
【0044】
本実施形態の偏光変換素子においては、図3に例示したように、接着のための接着剤層を適宜設けることができる。
【0045】
図3の(a)は、第1の透光性部材101の互いに平行で対向する2つの側面のうち、一方の面に偏光分離膜11が形成され、さらにこの面にλ/2位相差板130が接着されており、また第2の透光性部材102の互いに平行で対向する2つの側面のうち、一方の面に反射膜12が形成されており、これら第1の透光性部材101と第2の透光性部材102が接着層20により交互に配列され、接着されているものを模式的に示した平面図である。
【0046】
また図3の(b)は、第1の透光性部材101の互いに平行で対向する2つの側面のうち、一方の面に偏光分離膜11が形成され、さらにこの面にλ/2位相差板130が接着され、もう一方の面には反射膜12が形成され、この第1の透光性部材101と第2の透光性部材102とが接着層20により交互に配列接着されたものを模式的に示した平面図である。
【0047】
(実施の形態2)偏光変換素子2
図4(a)は本発明の他の一実施形態の偏光変換素子の模式的斜視図4また図4(b)はその平面図である。
【0048】
図4(a)および(b)において、偏光変換素子100はランダムな偏光光束を偏光方向が一方向に揃った光束に変換して出射する作用を持つ直方体形状の素子であり、断面がほぼ平行四辺形の柱状の第1の透光性部材101と第2の透光性部材102が交互に接合されて形成されている。この第1の透光性部材101と第2の透光性部材102とは厚みが異なり、第1の透光性部材の方が位相差板の厚みだけ薄くしてある。この偏光変換素子100の一方の面を光入射面100aとし、これとほぼ平行な他方の面を100bを光出射面としている。
【0049】
光入射面100aおよび光出射面100bに対して所定の角度をなす第1の透光性部材101と第2の透光性部材102の接着面には、反射膜12とこの反射膜に隣接してλ/4位相差板131が配置された接着面と、偏光分離膜11が形成された接着面とが、図4(a)に示されたように交互に配列されている。
【0050】
偏光分離膜11は、S波とP波のいずれか一方を透過し、他方を反射する性質を持った膜である。本実施の形態では、P波を透過させ、S波を反射させる性質の偏光分離膜11を形成している。
【0051】
図5は本実施形態の偏光変換素子100の一部を模式的平面図で示し、この偏光変換素子100に入射したランダムな偏光の光が一方向の偏光に変換されて出射する様子を模式的に示したものである。ランダム偏光(P+S)の入射光は、偏光変換素子100の光入射面100aから偏光分離膜11に向けて入射し、透光性部材101内を通過して偏光分離膜11にてランダム偏光の成分中のP波が透過しS波が反射する。偏光分離膜11を透過したP波は、透光性部材102内を進んで光出向面100bから出射する。他方、偏光分離膜11を反射したS波は、透光性部材101内を進み、λ/4位相差板131を経て反射膜12にて反射され、再びλ/4位相差板131を経てP波に変換され光出向面100bから出射する。こうして偏光変換素子に入射した光は、いずれもP波となって偏光変換素子の光出射面から出射する。
【0052】
なお、ここではλ/4位相差板を用いた場合について述べたが、ここに設ける位相差板は、λ/4位相差板に限られるものではなく、S波が位相差板131を経て反射膜12にて反射され、再び位相差板131を経たときにP波に変換されるものであればよい。従って2回の位相差板透過において位相量の変化が互いに等しい必要はなく、2回の位相差板透過後のS波の受ける合計の位相量の変化がλ/2相当となればよい。
【0053】
本実施形態の偏光変換素子の構成においても、先の実施の形態1の場合と同様に、接着のための接着剤層を適宜設けることができる。
【0054】
(実施の形態3)偏光変換素子の製造方法1
図6は、本発明の偏光変換素子の製造方法の一実施形態における工程の流れ図である。図6において、第1の透光性板材101aに対し、工程603にて偏光分離膜を形成し、また第2の透光性板材102aに対し、工程604にて反射膜を形成する。これらの工程を経た第1の透光性板材と第2の透光性板材の間に、λ/2位相差板130を挟んで工程605にて積層・接着し、工程606にて硬化して積層体607を形成する。ここで第1の透光性板材101aの板厚に比べ、第2の透光性板材102aの板厚を、λ/2位相差板130の厚さだけ薄くしている。なお工程605と工程606とは一体化されていてもよい。次にこの積層体607を、工程608にてその積層面に対し所定の角度で切断し、偏光変換素子ブロック609を得る。続いてこの偏光変換素子ブロック609の光入射面および光出射面となる部分を工程610にて光学研磨して偏光分離素子100を得る。
【0055】
光学研磨を終えた偏光分離素子100の光入射面や光出射面には、光の反射損失を低減するための反射防止膜として、TiOとSiOとを交互に蒸着し積層した5層の積層膜を設ける。
【0056】
本発明の偏光変換素子においては、位相差板は素子の内部に設けられており、光出射面にはポリマーフィルムなどの位相差板を設けていない。このため位相差板の部分での反射防止膜の剥離の問題に煩わされることがない。また反射防止膜の形成時の偏光分離素子100の温度として、従来は光出射面に貼り付けられた位相差板を保護するために、70〜80℃程度に留めておかなけれはならなかったのに対し、本発明では100℃程度まで昇温が可能となり、密着性の良好な反射防止膜を形成することができる。
【0057】
図7は図6に示した本実施形態の工程の一部である板材の準備、積層・接着および硬化の様子を模式的に示した図である。図7(a)に示したそれぞれ複数枚の偏光分離膜11を形成した第1の透光性板材101a、反射膜12を形成した第2の透光性板材102aおよびλ/2位相差板130を、同図(b)に示したように積層し接着し、続いて同図(c)に示したように、紫外(UV)光を照射して硬化させる。UV光は透光性板材に対し垂直な方向から照射し、光硬化を行なう。このとき、透光性板材の板面に平行な方向から照射すると硬化する時間が短縮できて効率よく接着層を硬化させることができる。
【0058】
図8は上記本発明の偏光変換素子の製造方法における積層体の切断工程を模式的に示したものである。積層体は図8(a)に示すように積層面に対し所定の角度、例えば45°で切断し、図8(b)に示すようにさらに端部を揃えるなどして偏光変換素子ブロック809を得る。
【0059】
ここで上記偏光変換素子を構成する各部材の寸法の具体例を述べておくと、例えば第1透光性板材の厚さ2.26mm、第2の透光性板材の厚さ2.16mm、位相差板の厚さ0.10mmである。他方、偏光分離膜および反射膜は2〜3μm程度に過ぎず、また接着層の厚さも同様に薄くしている。また、このような第1、第2の透光性板材の積層数を17枚とし、幅55mmの偏光変換素子が構成される。
【0060】
(実施の形態4)偏光変換素子の製造方法2
図9は、本発明の偏光変換素子の製造方法の他の実施形態における工程の流れ図である。図9において、第1の透光性板材101aの一方の面に工程903にて偏光分離膜を形成し、工程904にて第1の透光性板材101aのもう一方の面に反射膜を形成する。この工程を経た第1の透光性板材101aとこれらの膜のいずれをも形成していない第2の透光性板材102aとの間に、λ/2位相差板130を挟んで工程905にて積層・接着し、工程906にて硬化して積層体907を形成する。第2の透光性板材は位相差板の厚みの分だけ第1の透光性部材よりも薄くしてある。なお工程905と工程906とは一体化されていてもよい。
【0061】
次にこの積層体907を、工程908にてその積層面に対し所定の角度で切断し、偏光変換素子ブロック909を得る。続いて工程910にて、この偏光変換素子ブロック909の光入射面および光出射面となる部分を光学研磨して偏光分離素子100を得る。
【0062】
光学研磨を終えた偏光分離素子100の光入射面や光出射面には、光の反射損失を低減するための反射防止膜として、TiOとSiOとを交互に蒸着し積層した5層の積層膜を設ける。
【0063】
図10は図9に示した本実施形態の工程の一部である板材の準備、積層・接着および硬化の工程を模式的に示した図である。図10(a)に示したそれぞれ複数枚の偏光分離膜11および反射膜12を形成した第1の透光性板材101a、第2の透光性板材102aおよびλ/2位相差板130を、同図(b)に示したように積層し接着し、続いて同図(c)に示したように、紫外光を照射して硬化させる。
【0064】
(実施の形態5)偏光変換素子の製造方法3
本実施の形態の偏光変換素子の製造方法は、位相差板を反射膜に隣接させて設けた偏光変換素子に関するものである。本実施の形態における製造工程は下記の点を除いて先に実施の形態3の場合と全く同じであり、その工程流れ図は先に実施の形態3で説明した図6でλ/2位相差板130をλ/4位相差板131で置き換えたもので示される。
【0065】
本実施の形態と実施の形態3との相違点は、板材の積層の順序にある。図11には、図6で示された工程流れ図の一部である板材の準備、積層・接着および硬化の様子を模式的に示した。図11(a)に示したように、反射膜12を形成した第2の透光性板材102a、λ/4波長位相差板131、および偏光分離膜11を形成した第1の透光性板材101aを、それぞれ複数枚準備し、同図(b)に示したようにこの順序に積層し、反射膜12とλ/4波長位相差板130とが隣接するようにして接着し、続いて同図(c)に示したように、紫外(UV)光を照射して硬化させる。こうして位相差板を反射膜に隣接させて設けた偏光変換素子が製造できる。
【0066】
(実施の形態6)偏光変換素子の製造方法4
図12は本実施の形態の偏光変換素子の製造方法における紫外光を用いた光硬化工程を示したもので、上記した工程とは別のものである。図12(a)において、まず第2の透光性板材102aと第1の透光性板材101aとを接着し、紫外光を照射して硬化し、次にこれに位相差板130と第2の透光性部材102aとを接着して再び紫外光を照射して硬化し、これにさらに第1の透光性部材101aを接着して紫外光を照射して硬化する、というように接着と硬化を順次繰り返して積層体を形成する。
【0067】
こうすることによって、効率よく、しかも確実に接着層を硬化することができる。UV光は透過性板材に対し垂直な方向から照射し、光硬化を行なう。このとき、透光性板材の板面に平行な芳香から照射すると、硬化に要する時間が短縮でき、効率よく接着層の硬化を行なうことができる。
【0068】
(実施の形態7)偏光変換素子の評価
まず、上記実施の形態2によって作製された偏光変換素子の反射防止膜の密着性を評価した。評価方法は、反射防止膜の形成された上記偏光変換素子の出射面に事務用セロハン粘着テープを貼り付け、その一端から引き剥がしたときの状態を調べるものである。その結果、反射防止膜の剥がれは全くなかった。比較のために、従来型の光出射面にポリマーフィルムの位相差板を設けた偏光変換素子の場合について同様の評価を行った結果、位相差板上の反射防止膜が剥がれて粘着テープ側に転写することが確認された。
【0069】
次に上記実施の形態2によって作製された反射防止膜つきの偏光変換素子を120℃の恒温槽で1000時間保持した後、および150℃の環境で200時間保持した後、目視によって評価を行った。その結果、どちらの場合にも偏光変換素子には変化が認められなかった。従来型の光出射面にポリマーフィルムの位相差板を設けた偏光変換素子の場合について同様の評価を行ったところ、どちらの場合も位相差板に変色とうねりが生じていることが見出された。
【0070】
このことから、本発明の偏光変換素子は、従来のものに比べ、反射防止膜の剥離などによる劣化が小さいこと、そして耐熱性に優れることがわかった。
【0071】
(実施の形態8)表示装置への適用
図13は本発明の偏光変換素子を投射型表示装置に適用した場合の一実施形態を示したものである。図13において、光源60から発した光は、第1および第2のレンズ系31、32を経て、偏光変換素子1にて一方向の偏光に効率よく変換され、全反射ミラー41で反射されて色分解フィルタ42、43、44に導かれてR(赤)G(緑)B(青)の3色の光に分解される。色分解フィルタ42を透過したR光は、全反射ミラー46を経て液晶装置51で変調されてダイクロイックプリズム36のR部に入射する。また色分解フィルタ42で反射したG、B光は、色分解フィルタ43でさらにG光とB光とに分けられる。このうちG光は液晶装置52で変調されてダイクロイックプリズム36のG部に入射する。またB光は全反射ミラー44、45を経て液晶装置53で変調されてダイクロイックプリズム36のB部に入射する。液晶装置でそれぞれに変調されたR、GおよびB光は、ダイクロイックプリズム36で合成されてカラー映像が形成され、この映像が投射光学系37により、投射面70に投射される。
【0072】
本発明の偏光変換素子、例えば図1に示すものと、これと同様の積層構成で第1、第2の透光性部材の厚さを等しくした比較例とを図13の投射表示装置に装着し、投射面70での照度を比較した。この際、偏光変換素子の大きさは、投射表示装置の光路に合せた同一サイズとし、各偏光変換素子への入射光量を損なわないように、それぞれの偏光変換素子への入射位置に合せた第1および第2のレンズ系31、32を使用した。また、各偏光変換素子の透光性部材には屈折率1.52の白板ガラスを用い、位相差板には屈折率1.51のARTONフィルムを使用した。照度測定は、投射面70上に照射計を設置し、少なくとも投射面を9分割した各区画の中心点9個所を含む複数個所と、連続的に測定位置を変えた測定とを行った。
【0073】
この結果、比較例の偏光変換素子を使用したものに比べ、本発明の偏光変換素子を使用したものは、各測定個所の測定値を平均すると、全体として2〜3%照度が向上していた。また、投射面の左端から右端まで照度計の位置を連続的に移動させて照度を測定したところ、比較例の偏光変換素子を使用したものでは、一時的に照度が落ち込む部分が存在した。これは、偏光変換素子の偏光分離膜と反射膜との間隔が位相差板の厚さの影響を受けて変化し、その結果、偏光変換素子からの出射光の減少域が生じたことに起因するものと考えられる。これに対し、本発明の偏光変換素子を使用したものでは、投射面の左端から右端まで照度計の位置を連続的に移動させて照度を測定した場合の照度の高低変化が少なく、均一な投射量が得られており、本発明の偏光変換素子では照度ムラの小さい出射光が得られていることがわかった。
【0074】
このようにして本発明の偏光変換素子を投射型表示装置に適用すれば、むだなく光の変換が行えるので光の利用効率を高めることができ、スクリーン上に投射される映像を明るくすることができる。しかも本発明の偏光変換素子は位相差板が透光性部材に貼りつけられているのではなく、透光性部材の間に挟まれた構成であり、素子表面に露出したものではないため、強い光源にさらされて温度上昇がある場合でも、耐熱性を具備し安定してその機能を保つことができる。より具体的には、従来の素子表面に位相差板を貼り付けたものでは、長時間の使用により、位相板の変色・うねりを生じ、着色による透過率低下、正確な位相変換ができなくなることによる有効光線の減少によって投射像が暗くなる問題があったが、本発明の偏光変換素子を使用した場合には、位相差板の劣化に起因するこれらの問題を生じないため、初期の投射照度を長時間維持できる。
【0075】
本発明の偏光変換素子は上記実施形態のほか、例えば上述のように前面型ではなく背面投射型の投射表示装置、カラー型の投射表示装置ではなく白黒画像を投射するモノクロ投射型表示装置など、さまざまな投射表示装置に適用することができる。
【0076】
【発明の効果】
本発明の偏光変換素子は、位相差板が素子表面に露出していないため、従来の偏光変換素子に比べ、耐熱性、耐候性、耐久性の著しく優れたものが得られる。このため、本発明によれば、偏光変換素子に光源からの強い光線にさらされるなどして温度上昇があっても、安定してその機能を保つことが可能である。しかも互いに隣り合う偏光分離膜と反射膜との間隔が実質的に等しくなるように構成されることにより、出射光の照度むらを大幅に低減することができる。
【0077】
また本発明の偏光変換素子の製造方法によれば、位相差板は透光性板材を積層する工程で透光性部材の層の間に挟み込めばよく、偏光変換素子ブロックの光出射面の研磨後に各出射面に位相差板を貼るという従来の工程を必要としないので、従来に比べて製造工程が大幅に短縮できる。
【図面の簡単な説明】
【図1】 (a)は本発明の一実施形態の偏光変換素子の模式的斜視図、(b)はその平面図である。
【図2】 本実施形態の偏光変換素子の一部を模式的平面図で示し、この偏光変換素子に入射したランダムな偏光の光が一方向の偏光に変換されて出射する様子を模式的に示したものである。
【図3】 接着のために接着剤層を設けた本発明の偏光変換素子の実施形態を示す図である。
【図4】 (a)は本発明の他の一実施形態の偏光変換素子の模式的斜視図、(b)はその平面図である。
【図5】 本発明の他の一実施形態の偏光変換素子の一部を模式的平面図で示し、この偏光変換素子に入射したランダムな偏光の光が一方向の偏光に変換されて出射する様子を模式的に示したものである。
【図6】 本発明の偏光変換素子の製造方法の一実施形態における工程の流れ図である。
【図7】 図6に示した本発明の偏光変換素子の製造方法の一実施形態における工程の一部である板材の準備、積層・接着および硬化の様子を模式的に示した図である。
【図8】 (a)は上記本発明の偏光変換素子の製造方法における積層体の切断工程の一実施形態を模式的に示したものであり、(b)は切断された偏光変換素子ブロックを模式的に示したものである。
【図9】 本発明の偏光変換素子の製造方法の他の実施形態における工程の流れ図である。
【図10】 図9に示した本発明の偏光変換素子の製造方法の実施形態における工程の一部である板材の準備、積層・接着および硬化を模式的に示した図である。
【図11】 本発明の偏光変換素子の製造方法の他の実施形態における工程の一部である板材の準備、積層・接着および硬化を模式的に示した図である。
【図12】 本発明の偏光変換素子の製造方法のさらに他の実施形態における工程の一部である板材の準備、積層・接着および硬化を模式的に示した図である。
【図13】 本発明の偏光変換素子を投射型表示装置に適用した場合の一実施形態を模式的に示した図である。
【図14】 従来技術による偏光変換素子を示す。(a)はその斜視図であり、(b)はその平面図である。
【図15】 互いに隣り合う偏光分光膜と反射膜との間隔が位相差板の厚さの影響を受けて変化した場合(a)、および位相差板の屈折率と透光性基材の屈折率とが異なる場合(b)に、それぞれ照度むらの原因となることを模式的に示した図である。
【符号の説明】
1,100……偏光変換素子、11……偏光分離膜、12……反射膜、20……接着層、31……第1のレンズ系、32……第2のレンズ系、36……ダイクロイックプリズム、37……投射光学系、41,45,46……全反射ミラー、42,43,44……色分解フィルタ、51,52,53……液晶表示装置、60……光源、70……投射面、100……偏光変換素子、100a……光入射面、100b……光出射面、101a……第1の透光性板材、101……第1の透光性部材、102……第2の透光性部材、102a……第2の透光性板材、130……λ/2位相差板、131……λ/4位相差板、603,903……偏光分離膜形成工程、604,904……反射膜形成工程、605,905……積層・接着工程、606,906……硬化する工程、607,907……積層体、608,908……切断する工程、609,809,909……偏光変換素子ブロック、610,910……光学研磨する工程。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polarization conversion element and a method for manufacturing the same.
[0002]
[Prior art]
As a polarization conversion element that converts random polarized light into one type of linearly polarized light having a uniform polarization direction and emits the same, one described in JP-A-7-294906 is known. FIG. 14A illustrates a perspective view of such a polarization conversion element, and FIG. 14B illustrates a plan view thereof and polarization conversion in the polarization conversion element. This polarization conversion element is obtained by alternately bonding a linear polarization beam splitter 101 having a polarization separation film 11 and a prism 102 having a reflection film 12. In addition, a λ / 2 phase difference plate (1/2 wavelength phase difference plate) 130 is provided as a selective phase difference plate on a part of the exit surface of the polarization beam splitting element.
[0003]
In the polarization conversion element having this configuration, the S-polarized component incident on the light incident surface (polarized light whose polarization vector is perpendicular to the incident surface, S-wave) and the P-polarized component (polarized light whose polarization vector is in the incident surface, P-wave) First, the incident light including is separated into an S wave and a P wave by the polarization separation film 11. The P wave passes through the polarization separation film 11 as it is, is converted into an S wave by the λ / 2 phase difference plate 130, and is emitted. Further, the S wave is reflected almost at right angles by the polarization separation film 11 and is further reflected at right angles by the reflection film 12 and emitted. Accordingly, all light having a random polarization direction incident on the polarization conversion element is emitted as S-wave light.
[0004]
A method for manufacturing a polarization separation element having such a structure is described in JP-A-2-227901, JP-A-10-39136, and JP-A-10-90520. After laminating and bonding a light-transmitting plate material on which a polarization separation film and a reflection film are formed, these are cut at an angle of, for example, 45 ° with respect to the laminated surface to cut out blocks, and after performing optical polishing, the light exit surface A part of the phase difference plate is attached to each other.
[0005]
[Problems to be solved by the invention]
However, in the polarization separation element as shown in FIG. 14, the λ / 2 phase difference plate (1/2 wavelength phase difference plate) is attached to the light exit surface with an interval, so that the heat resistance, There were points to be improved in terms of weather resistance and durability. In addition, glass is usually used for the element body, and an antireflection film is applied to the emission surface, but the antireflection film is made of a plastic λ such as polycarbonate that is attached to this surface as compared with the adhesion to the glass surface. / 2 There was a problem that adhesiveness with a phase difference plate was not good. Further, in a projection type display device such as a liquid crystal projector, since a polarization conversion device is disposed near a high output light source, an element having higher heat resistance and durability has been strongly desired.
[0006]
In addition, in the manufacture of the polarization separation element, since the light incident surface and the light output surface are polished and finished, a step of attaching one λ / 2 phase difference plate to the light output surface such as a polarizing beam splitter is provided. There was also a problem.
[0007]
The present inventor does not attach the retardation plate to the light exit surface, but incorporates it into the polarization conversion element, for example, a structure sandwiched between translucent substrates such as between the polarization beam splitter and the prism. This problem was solved by inventing the polarization conversion element (Japanese Patent Application No. 2001-367778). The present invention further improves the present invention and provides a polarization conversion element with higher performance by reducing and uniforming the unevenness of illuminance of light emitted from the polarization conversion element.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the polarization conversion element of the present invention includes the first translucent substrate having a first main surface as a light incident slope and a second main surface as a light exit surface. Polarization separation films and reflection films are alternately arranged in parallel with an inclination with respect to the first and second main surfaces, and a phase difference plate is arranged on the light exit surface side of the polarization separation film, and adjacent to each other. It is characterized in that the distance between the polarizing spectroscopic film and the reflective film to be matched is substantially equal.
[0009]
In the present invention, in constituting the polarization conversion element, the first main surface on which the flat translucent substrate forms the light incident surface and the second main surface on which the light output surface is formed are substantially the same. The inclination angle formed by the polarization separation film, the reflection film, and the λ / 2 retardation plate with respect to the main surface may be approximately 45 °.
[0010]
In the present invention, by using a λ / 2 phase difference plate that converts P wave into S wave as a phase difference plate, random polarized light is incident on the light incident surface of the polarization conversion element and transmitted through the polarization separation film, for example, Light whose polarization direction is aligned with that of the S wave by converting the P wave into an S wave with a λ / 2 phase difference plate and emitting it, and on the other hand, reflecting the S wave reflected by the polarization separation film with the reflecting film Can be emitted.
[0011]
As such a retardation plate used in the present invention, a plastic film obtained by biaxially stretching a polycarbonate film or a polyacrylate film can be used.
[0012]
In the polarization conversion element of the present invention, the first main surface and the second main surface are arranged in a plate-shaped translucent base material having a first main surface as a light incident slope and a second main surface as a light output surface. The polarization separation film and the reflection film are alternately arranged in parallel at an interval with respect to the light source, the phase difference plate is disposed on the light exit surface side of the reflection film, and the polarization spectral film and the reflection film adjacent to each other. It may be configured such that the distance from the film is substantially equal.
[0013]
In this case, for example, a λ / 4 retardation plate is used as a retardation plate adjacent to the reflection film, so that random polarized light is incident on the light incident surface of the polarization conversion element, and a P wave transmitted through the polarization separation film is emitted. On the other hand, the S wave reflected from the polarization separation film is transmitted through the phase difference plate adjacent to the reflection film, then reflected by the reflection film, and again transmitted through the phase difference plate, thereby being converted into a P wave and emitted. be able to. In this way, it is possible to emit random polarized light and emit light whose polarization direction is aligned with P waves.
[0014]
Also in this case, in constituting the polarization conversion element, the first main surface on which the flat light-transmitting base material forms the light incident surface and the second main surface on which the light output surface is formed are substantially the same. The inclination angle formed by the polarization separation film, the reflection film, and the λ / 2 retardation plate with respect to the main surface may be approximately 45 °.
[0015]
In the polarization conversion element having the above structure, the light beam directly transmitted through the polarization separation film and the light beam reflected from the reflection film are alternately arranged on the light output surface. There is a gap in the surface and uneven illuminance is likely to occur. As a result of pursuing the cause of the inventor focusing on this point, the inventors found that unevenness in illuminance is likely to occur due to two causes caused by the phase difference plate being taken into the translucent substrate. I was able to clarify.
[0016]
The first cause is that the interval between the polarizing spectral film and the reflective film adjacent to each other is affected by the thickness of the retardation plate because the retardation plate is taken into the translucent substrate. It was found that the illuminance was uneven when it changed. FIG. 15A is a schematic diagram showing this state. The reference numerals in FIG. It can be seen that the amount of emitted light decreases in the region indicated by the double-headed arrow. In the present invention, since the interval between the polarizing spectral film and the reflective film adjacent to each other is substantially equal, the light beam directly transmitted through the polarization separation film and reflected by the reflective film are reflected. There is no gap between the emitted light beam and, therefore, it is possible to obtain emitted light with small illuminance unevenness.
[0017]
In the present invention, the distance between the polarizing spectral film and the reflective film that are adjacent to each other is substantially equal to the distance between the light beam that is directly transmitted through the polarization separation film and the light beam that is reflected by the reflection film and emitted. There is no need to create a gap between them, and it is only necessary to be able to obtain emitted light with small illuminance unevenness. For this purpose, for example, the difference in spacing is preferably 2% or less, more preferably 1% or less. Preferably, it is 0.5% or less.
[0018]
The second cause was found to be the cause of uneven illuminance even when the refractive index of the phase difference plate was different from the refractive index of the translucent substrate. FIG. 15B is a schematic diagram showing this state. The reference numerals in FIG. It can be seen that the amount of emitted light decreases in the region indicated by the arrow. Therefore, it was found that the polarization conversion element of the present invention is preferably configured such that the refractive index of the retardation plate is substantially equal to the refractive index of the translucent substrate.
[0019]
For this reason, in order to reduce the illuminance unevenness of the emitted light in the present invention, the difference in refractive index between the phase difference plate and the translucent substrate is preferably 0.1 or less, and 0.05 or less. Is more preferable, and 0.02 or less is more preferable. For example, when white plate glass having a refractive index of 1.52 is used as a light-transmitting substrate, the difference in refractive index can be made 0.1 or less by using it for a polycarbonate phase difference plate having a refractive index of 1.586. . In addition, when white plate glass having a refractive index of 1.52 is used as a light-transmitting substrate, a light-transmitting cycloolefin mainly composed of a cyclic hydrocarbon polymer having a cycloolefin and an ethylene bond is used as a phase difference plate. If a resin based on ARTON (trade name) manufactured by JSR having a refractive index of 1.51, for example, a refractive index difference can be set to 0.01, and a more preferable result is obtained.
[0020]
According to the polarization conversion element of the present invention, the retardation plate is not exposed, and is disposed adjacent to the polarization separation film and bonded to the joint portion of the plurality of translucent members. Even when a biaxially stretched plastic film is used, the retardation film of the plastic film can be prevented from being deformed or peeled off by heat. For this reason, the heat resistance, weather resistance, and the like can be greatly improved as compared to the conventional case. Here, it was found that polyacrylate films and cycloolefin resins are particularly excellent as heat-resistant biaxially stretched plastic films used for the retardation plate of the present invention. Various optical adhesives can be used for the adhesive surface in the polarization separation element of the present invention.
[0021]
In the polarization conversion element of the present invention, an antireflection film can be provided on the light incident surface or the light emitting surface in order to reduce loss due to light reflection. As the antireflection film used here, for example, TiO 2 And SiO 2 A laminated film in which about 5 layers are alternately deposited and laminated can be used. In the polarization conversion element of the present invention, the phase difference plate arranged on the light exit surface of the conventional polarization conversion element is provided inside the element, so there is no need to provide a phase difference plate on the light exit surface. . For this reason, in the polarization conversion element of the present invention, an antireflection film having good adhesion can be provided on the light incident surface and the light emitting surface without bothering the retardation plate.
[0022]
In this way, the present invention provides a polarization conversion element that has heat resistance, is suitable for long-term use, and has low illuminance unevenness. For example, when used in a liquid crystal projector that is used at a high temperature of about 100 ° C. for a long time. Thus, it has become possible to provide a polarization conversion element having the advantage of less deterioration.
[0023]
Such a polarization conversion element of the present invention has two parallel surfaces and a thickness t of a translucent plate material, a polarization separation film, and has two parallel surfaces and a thickness t−t. p Translucent plate material, thickness t p The laminated body in which the retardation plate and the reflective film are repeatedly laminated in this order is cut at a predetermined angle with respect to the laminated surface, the cut surface is optically polished, and the light incident surface and the light are parallel to each other. An emission surface may be formed.
[0024]
Further, such a polarization conversion element of the present invention has two parallel surfaces and a thickness t of a translucent plate, a reflective film, and two parallel surfaces and a thickness t−t. p Translucent plate material, thickness t p The phase difference plate and the laminated body in which the polarization separation films are repeatedly laminated in this order are cut at a predetermined angle with respect to the laminated surface, the cut surface is optically polished, and the light incident surfaces are parallel to each other. A light emitting surface may be formed.
[0025]
The method for manufacturing a polarization conversion element of the present invention includes a polarization separation film forming step of forming a polarization separation film on one surface of a first light-transmitting plate having two parallel surfaces and having a thickness t. It has two sides and thickness tt p A reflective film forming step of forming a reflective film on one surface of the second translucent plate material, and a thickness t p The retardation plate, the first light transmissive plate material on which the polarization separation film is formed, and the second light transmissive plate material on which the reflection film is formed. The phase difference plate is the polarization separation film. Laminating and adhering step of sequentially laminating and adhering so as to be adjacent to each other, forming a laminated body, cutting the laminated body at a predetermined angle with respect to the laminated surface, and having a light incident surface and a light emitting surface parallel to each other A polarization conversion element block forming step for forming a polarization conversion element block, and an optical polishing step for optically polishing the light incident surface and the light exit surface of the polarization conversion element block are provided.
[0026]
In addition, the method for manufacturing a polarization conversion element of the present invention has two parallel surfaces and a thickness tt. p A polarization separation film forming step of forming a polarization separation film on one surface of the first translucent plate material having a first surface of the second translucent plate material having two parallel surfaces and a thickness t A reflective film forming step for forming a reflective film on the first light transmissive plate material on which the polarization separation film is formed, and a thickness t p Laminate bonding in which a phase difference plate having a reflective film and a second translucent plate material on which a reflective film is formed are sequentially laminated and bonded so that the phase difference plate is adjacent to the reflective film. A polarization conversion element block forming step of cutting the laminate at a predetermined angle with respect to the lamination surface to form a polarization conversion element block having a light incident surface and a light exit surface parallel to each other, and the polarization conversion An optical polishing step for optically polishing the light incident surface and the light emitting surface of the element block may be provided.
[0027]
The method for manufacturing a polarization conversion element of the present invention includes a step of forming a polarization separation film on one surface of a first light-transmitting plate having two parallel surfaces and a thickness t, and the two parallel surfaces. Forming a reflective film on the other surface of the translucent member having a thickness t p A thickness tt where neither the polarization separation film nor the reflection film is formed, the retardation plate having the polarization separation film and the reflection film, and the first light transmissive plate material on which the polarization separation film and the reflection film are formed. p A lamination bonding step of sequentially laminating and adhering a second translucent plate material having the phase difference plate adjacent to the polarization separation film to form a laminate, and attaching the laminate to the lamination surface A polarization conversion element block forming step of cutting a predetermined angle to form a polarization conversion element block having a light incident surface and a light output surface parallel to each other, and the light incident surface and the light output of the polarization conversion element block And an optical polishing step for optically polishing the surface.
[0028]
Furthermore, the method for manufacturing a polarization conversion element of the present invention has two parallel surfaces and a thickness tt. p A step of forming a polarization separation film on one surface of the first light-transmitting plate member having a step, a step of forming a reflection film on the other surface of the light-transmissive member having the two parallel surfaces, The first translucent plate having the separation film and the reflection film formed thereon; and a thickness t p And a second light-transmitting plate material having a thickness t on which neither the polarization separation film nor the reflection film is formed, and the plate surface of the phase difference plate is adjacent to the reflection film And a polarization conversion element having a light incident surface and a light output surface parallel to each other, and a laminate bonding step of sequentially laminating and bonding to form a laminate, and cutting the laminate at a predetermined angle with respect to the laminate surface A polarization converting element block forming step for forming a block and an optical polishing step for optically polishing the light incident surface and the light emitting surface of the polarization converting element block may be provided.
[0029]
By doing so, even when the retardation film is taken in, it is possible to manufacture a polarization separation element in which the distance between the polarizing spectral film and the reflective film adjacent to each other is substantially equal.
[0030]
In the method for manufacturing a polarization conversion element of the present invention, when the first and second light-transmitting plates on which the polarization separation film and the reflection film are formed are alternately laminated, a λ / 2 phase difference is formed on the polarization separation plate. Adhere the plates and sandwich them between the first and second translucent plates, or alternately stack the first and second translucent plates on which the polarization separation film and the reflective film are formed. At this time, a λ / 4 retardation plate may be bonded to the reflective film and sandwiched between the first and second translucent plates. This eliminates the time-consuming process of pasting the λ / 2 retardation plates one by one after forming the polarization conversion element block and polishing the light exit surface as in the prior art, which is significantly more productive than in the past. Improvement is obtained.
[0031]
In the method for manufacturing a polarization conversion element of the present invention, the laminate bonding step includes a plurality of first light-transmitting plate materials, a plurality of second light-transmitting plate materials, and a phase difference plate via a photocurable adhesive layer. It may be provided with a light irradiation adhesion step of laminating and adhering by light irradiation. Thus, the productivity and reliability of manufacture of a polarization conversion element can be improved by using a photo-curing adhesive and using a step of bonding by light irradiation.
[0032]
In this light irradiation bonding step, the light irradiation bonding step includes a step of laminating the first light-transmitting plate material, the phase difference plate, and the second light-transmitting plate material through the light-curable bonding layer, and light irradiation. Then, the step of curing the photocurable adhesive layer may be sequentially repeated.
[0033]
Further, in this light irradiation bonding step, the light irradiation bonding step is performed by sequentially laminating the first light-transmitting plate material, the phase difference plate, and the second light-transmitting plate material through the photocurable bonding layer. A step of forming and a step of irradiating light after forming the laminate to cure the photocurable adhesive layer may be provided.
[0034]
In this light irradiation adhesion step, it is preferable to perform light curing by irradiating light from a direction forming an angle with respect to parallel surfaces of the first and second translucent plates. By doing so, light is efficiently irradiated to the adhesive layer, and reliable bonding can be performed in a short irradiation time.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0036]
(Embodiment 1) Polarization conversion element 1
FIG. 1A is a schematic perspective view of a polarization conversion element according to an embodiment of the present invention, and FIG. 1B is a plan view thereof.
[0037]
1 (a) and 1 (b), a polarization conversion element 100 is a rectangular parallelepiped element having an action of converting a random polarized light beam into a light beam whose polarization direction is aligned in one direction and emitting the light, and the cross section is substantially parallel. A quadrangular columnar first translucent member 101 and a second translucent member 102 are alternately joined. The first translucent member 101 and the second translucent member 102 have different thicknesses, and the second translucent member is made thinner by the thickness of the retardation plate. One surface of the polarization conversion element 100 is a light incident surface 100a, and the other surface substantially parallel to this surface is a light emitting surface 100b.
[0038]
On the bonding surface of the first light transmissive member 101 and the second light transmissive member 102 that form a predetermined angle with respect to the light incident surface 100a and the light output surface 100b, Adhesive surfaces on which the λ / 2 phase difference plates 130 are disposed adjacent to each other and adhesive surfaces on which the reflective film 12 is formed are alternately arranged as shown in FIG.
[0039]
As the first light-transmissive member 101 and the second light-transmissive member 102, plate glass such as polished glass or float glass can be used. These translucent members may be made of translucent materials other than glass, for example, translucent resins such as acrylic resins and polycarbonate resins.
[0040]
The polarization separation film 11 is a film having a property of selectively transmitting a P wave of the S wave and the P wave and selectively reflecting the other, and is formed, for example, by laminating a dielectric multilayer film. In the present embodiment, the polarization separation film 11 that transmits the P wave and reflects the S wave is formed.
[0041]
As the reflection film 12, for example, a reflection film such as an aluminum film can be used. However, a dielectric multilayer film is stacked, and only the linearly polarized light component reflected by the polarization separation film 11 is selectively reflected. By configuring so that the linearly polarized light component is not reflected, a reflective film with less loss due to reflection can be formed.
[0042]
FIG. 2 is a schematic plan view showing a part of the polarization conversion element 100 of the present embodiment, and schematically shows how randomly polarized light incident on the polarization conversion element 100 is converted into unidirectional polarized light and emitted. It is shown in.
[0043]
Incident light of random polarization (S + P) enters the polarization separation film 11 from the light incident surface 100 a of the polarization conversion element 100, passes through the translucent member 101, and is a component of random polarization at the polarization separation film 11. Inside P wave is transmitted and S wave is reflected. The P wave that has passed through the polarization separation film 11 is immediately converted into an S wave by the λ / 2 phase difference plate 130 adjacent to the polarization separation plate, travels through the translucent member 102, and exits from the light output surface 100b. On the other hand, the S wave reflected from the polarization separation film 11 travels through the translucent member 101, is reflected by the reflection film 12, and exits from the light outgoing surface 100b. The light thus incident on the polarization conversion element is all emitted as S waves from the light exit surface of the polarization conversion element. The λ / 2 phase difference plate 130 functions as a ½ wavelength phase difference plate for the transmission of light at an angle as shown in FIG.
[0044]
In the polarization conversion element of this embodiment, as illustrated in FIG. 3, an adhesive layer for adhesion can be appropriately provided.
[0045]
FIG. 3A shows a polarizing separation film 11 formed on one of two side surfaces of the first translucent member 101 that are parallel and opposed to each other, and a λ / 2 phase difference plate is further formed on this surface. The reflective film 12 is formed on one surface of two side surfaces of the second translucent member 102 that are parallel to and opposed to each other, and the first translucent member 101 is bonded to the first translucent member 101. FIG. 6 is a plan view schematically showing a structure in which the second light-transmissive member 102 and the second light-transmissive member 102 are alternately arranged and bonded by the adhesive layer 20.
[0046]
FIG. 3B shows a polarization separation film 11 formed on one of the two side surfaces of the first translucent member 101 that are parallel to each other and facing each other. Further, a λ / 2 phase difference is formed on this surface. A plate 130 is bonded, a reflective film 12 is formed on the other surface, and the first light-transmissive member 101 and the second light-transmissive member 102 are alternately arranged and bonded by the adhesive layer 20. It is the top view which showed typically.
[0047]
(Embodiment 2) Polarization conversion element 2
FIG. 4A is a schematic perspective view of a polarization conversion element according to another embodiment of the present invention, and FIG. 4B is a plan view thereof.
[0048]
4 (a) and 4 (b), the polarization conversion element 100 is a rectangular parallelepiped element having an action of converting a random polarized light beam into a light beam whose polarization direction is aligned in one direction and emitting it, and its cross section is substantially parallel. A quadrangular columnar first translucent member 101 and a second translucent member 102 are alternately joined. The first translucent member 101 and the second translucent member 102 have different thicknesses, and the first translucent member is made thinner by the thickness of the retardation plate. One surface of the polarization conversion element 100 is a light incident surface 100a, and the other surface substantially parallel to this surface is a light emitting surface 100b.
[0049]
On the bonding surface of the first translucent member 101 and the second translucent member 102 that form a predetermined angle with respect to the light incident surface 100a and the light emitting surface 100b, the reflective film 12 is adjacent to the reflective film. The adhesive surface on which the λ / 4 retardation film 131 is disposed and the adhesive surface on which the polarization separation film 11 is formed are alternately arranged as shown in FIG.
[0050]
The polarization separation film 11 is a film having a property of transmitting one of the S wave and the P wave and reflecting the other. In the present embodiment, the polarization separation film 11 having the property of transmitting the P wave and reflecting the S wave is formed.
[0051]
FIG. 5 is a schematic plan view showing a part of the polarization conversion element 100 of the present embodiment, and schematically shows how randomly polarized light incident on the polarization conversion element 100 is converted into unidirectional polarized light and emitted. It is shown in. Incident light of random polarization (P + S) enters the polarization separation film 11 from the light incident surface 100 a of the polarization conversion element 100, passes through the translucent member 101, and is a component of random polarization in the polarization separation film 11. Inside P wave is transmitted and S wave is reflected. The P wave that has passed through the polarization separation film 11 travels through the translucent member 102 and is emitted from the light outgoing surface 100b. On the other hand, the S wave reflected from the polarization separation film 11 travels through the translucent member 101, is reflected by the reflection film 12 through the λ / 4 retardation plate 131, and again passes through the λ / 4 retardation plate 131 to P It is converted into a wave and emitted from the light outgoing surface 100b. The light incident on the polarization conversion element in this way is emitted as a P wave from the light exit surface of the polarization conversion element.
[0052]
Although the case where the λ / 4 retardation plate is used is described here, the retardation plate provided here is not limited to the λ / 4 retardation plate, and the S wave is reflected through the retardation plate 131. Any material can be used as long as it is reflected by the film 12 and converted into a P wave when it passes through the phase difference plate 131 again. Therefore, the change in the phase amount does not need to be equal between the two transmissions through the retardation plate, and the total change in the phase amount received by the S wave after the two transmissions through the retardation plate may be equivalent to λ / 2.
[0053]
Also in the configuration of the polarization conversion element of this embodiment, an adhesive layer for adhesion can be appropriately provided as in the case of the first embodiment.
[0054]
(Embodiment 3) Method 1 for manufacturing a polarization conversion element
FIG. 6 is a flowchart of steps in an embodiment of the method for manufacturing a polarization conversion element of the present invention. In FIG. 6, a polarization separation film is formed in step 603 on the first translucent plate material 101a, and a reflective film is formed in step 604 on the second translucent plate material 102a. Between the first light-transmitting plate material and the second light-transmitting plate material that have undergone these steps, a λ / 2 retardation plate 130 is sandwiched and bonded in step 605, and cured in step 606. A stacked body 607 is formed. Here, the thickness of the second light-transmissive plate material 102a is made thinner by the thickness of the λ / 2 phase difference plate 130 than the thickness of the first light-transmissive plate material 101a. Note that step 605 and step 606 may be integrated. Next, the laminated body 607 is cut at a predetermined angle with respect to the laminated surface in Step 608 to obtain a polarization conversion element block 609. Subsequently, the portions that become the light incident surface and light output surface of the polarization conversion element block 609 are optically polished in Step 610 to obtain the polarization separation element 100.
[0055]
As the antireflection film for reducing the reflection loss of light, TiO2 is applied to the light incident surface and the light exit surface of the polarization separation element 100 after the optical polishing. 2 And SiO 2 Are stacked alternately to provide a laminated film of five layers.
[0056]
In the polarization conversion element of the present invention, the retardation plate is provided inside the element, and a retardation plate such as a polymer film is not provided on the light exit surface. For this reason, the problem of peeling of the antireflection film at the portion of the phase difference plate is not bothered. In addition, the temperature of the polarization separation element 100 during the formation of the antireflection film must conventionally be kept at about 70 to 80 ° C. in order to protect the retardation plate attached to the light emitting surface. On the other hand, in the present invention, the temperature can be raised to about 100 ° C., and an antireflection film with good adhesion can be formed.
[0057]
FIG. 7 is a view schematically showing the state of preparation, lamination / adhesion and curing of a plate material which is a part of the steps of the present embodiment shown in FIG. As shown in FIG. 7A, each of the first translucent plate 101a on which a plurality of polarization separation films 11 are formed, the second translucent plate 102a on which the reflective film 12 is formed, and the λ / 2 phase difference plate 130. Are laminated and bonded as shown in FIG. 2B, and subsequently cured by irradiation with ultraviolet (UV) light as shown in FIG. UV light is irradiated from a direction perpendicular to the translucent plate material to perform photocuring. At this time, if it irradiates from the direction parallel to the plate | board surface of a translucent board | plate material, the hardening time can be shortened and an adhesive layer can be hardened efficiently.
[0058]
FIG. 8 schematically shows the laminate cutting step in the method for producing a polarization conversion element of the present invention. The laminated body is cut at a predetermined angle, for example, 45 ° with respect to the laminated surface as shown in FIG. 8A, and the polarization conversion element block 809 is formed by further aligning the ends as shown in FIG. 8B. obtain.
[0059]
Here, specific examples of dimensions of the respective members constituting the polarization conversion element will be described. For example, the thickness of the first translucent plate member is 2.26 mm, the thickness of the second translucent plate member is 2.16 mm, The thickness of the retardation plate is 0.10 mm. On the other hand, the polarization separation film and the reflection film are only about 2 to 3 μm, and the thickness of the adhesive layer is similarly reduced. In addition, a polarization conversion element having a width of 55 mm is formed by stacking 17 such first and second translucent plates.
[0060]
(Embodiment 4) Polarization conversion element manufacturing method 2
FIG. 9 is a flowchart of steps in another embodiment of the method for manufacturing a polarization conversion element of the present invention. In FIG. 9, a polarization separation film is formed on one surface of the first translucent plate 101a in step 903, and a reflective film is formed on the other surface of the first translucent plate 101a in step 904. To do. In step 905, the λ / 2 phase difference plate 130 is sandwiched between the first translucent plate 101a that has undergone this step and the second translucent plate 102a that is not formed with any of these films. Are laminated and bonded, and cured in step 906 to form a laminate 907. The second translucent plate material is made thinner than the first translucent member by the thickness of the retardation plate. Note that step 905 and step 906 may be integrated.
[0061]
Next, the laminated body 907 is cut at a predetermined angle with respect to the laminated surface in Step 908 to obtain a polarization conversion element block 909. Subsequently, in Step 910, the polarization separating element 100 is obtained by optically polishing the light incident surface and the light exit surface of the polarization conversion element block 909.
[0062]
As the antireflection film for reducing the reflection loss of light, TiO2 is applied to the light incident surface and the light exit surface of the polarization separation element 100 after the optical polishing. 2 And SiO 2 Are stacked alternately to provide a laminated film of five layers.
[0063]
FIG. 10 is a diagram schematically showing plate material preparation, lamination / adhesion and curing steps which are a part of the steps of the present embodiment shown in FIG. A first translucent plate material 101a, a second translucent plate material 102a, and a λ / 2 phase difference plate 130, each of which is formed with a plurality of polarization separation films 11 and reflection films 12 shown in FIG. As shown in FIG. 5B, the layers are laminated and bonded, and subsequently, as shown in FIG.
[0064]
(Embodiment 5) Method 3 for Producing Polarization Conversion Element
The method for manufacturing a polarization conversion element of the present embodiment relates to a polarization conversion element provided with a retardation plate adjacent to a reflective film. The manufacturing process in the present embodiment is exactly the same as that of the third embodiment except for the following points, and the process flowchart is the λ / 2 phase difference plate shown in FIG. 6 described in the third embodiment. 130 is replaced with a λ / 4 retardation plate 131.
[0065]
The difference between the present embodiment and the third embodiment is the order of stacking the plate materials. FIG. 11 schematically shows the state of preparation, lamination / adhesion, and curing of a plate material that is a part of the process flowchart shown in FIG. As shown in FIG. 11A, the second light transmissive plate material 102a on which the reflective film 12 is formed, the λ / 4 wavelength phase difference plate 131, and the first light transmissive plate material on which the polarization separation film 11 is formed. A plurality of 101a are prepared, stacked in this order as shown in FIG. 5B, and bonded so that the reflective film 12 and the λ / 4 wavelength phase difference plate 130 are adjacent to each other, and then the same. As shown in FIG. 3C, the resin is cured by irradiation with ultraviolet (UV) light. Thus, a polarization conversion element provided with the retardation plate adjacent to the reflective film can be manufactured.
[0066]
Embodiment 6 Method 4 for Producing a Polarization Conversion Element
FIG. 12 shows a photocuring process using ultraviolet light in the method for manufacturing a polarization conversion element of the present embodiment, which is different from the above-described process. In FIG. 12A, first, the second translucent plate material 102a and the first translucent plate material 101a are bonded and cured by irradiating with ultraviolet light, and then the retardation plate 130 and the second translucent plate. The light transmissive member 102a is bonded and cured by irradiating ultraviolet light again, and the first light transmissive member 101a is further bonded and cured by irradiating ultraviolet light. Curing is sequentially repeated to form a laminate.
[0067]
By doing so, the adhesive layer can be cured efficiently and reliably. UV light is irradiated from a direction perpendicular to the transmissive plate material to perform photocuring. At this time, when irradiating from a fragrance parallel to the plate surface of the translucent plate material, the time required for curing can be shortened, and the adhesive layer can be efficiently cured.
[0068]
(Embodiment 7) Evaluation of polarization conversion element
First, the adhesion of the antireflection film of the polarization conversion element produced according to the second embodiment was evaluated. The evaluation method is to examine the state when the cellophane adhesive tape for office use is attached to the exit surface of the polarization conversion element on which the antireflection film is formed and peeled off from one end thereof. As a result, there was no peeling of the antireflection film. For comparison, as a result of performing the same evaluation for the case of a polarization conversion element in which a polymer film retardation plate is provided on a conventional light exit surface, the antireflection film on the retardation plate is peeled off and is exposed to the adhesive tape side. It was confirmed that it was transferred.
[0069]
Next, the polarization conversion element with the antireflection film produced according to Embodiment 2 was evaluated by visual observation after being held in a thermostatic bath at 120 ° C. for 1000 hours and after being held in a 150 ° C. environment for 200 hours. As a result, no change was observed in the polarization conversion element in either case. A similar evaluation was performed for a polarization conversion element having a polymer film retardation plate on the conventional light exit surface, and in both cases it was found that the retardation plate had discoloration and waviness. It was.
[0070]
From this, it was found that the polarization conversion element of the present invention is less deteriorated due to peeling off of the antireflection film and superior in heat resistance as compared with the conventional one.
[0071]
(Embodiment 8) Application to display device
FIG. 13 shows an embodiment in which the polarization conversion element of the present invention is applied to a projection display device. In FIG. 13, the light emitted from the light source 60 passes through the first and second lens systems 31 and 32, is efficiently converted into polarized light in one direction by the polarization conversion element 1, and is reflected by the total reflection mirror 41. The light is guided to the color separation filters 42, 43, and 44 and is decomposed into light of three colors of R (red), G (green), and B (blue). The R light transmitted through the color separation filter 42 is modulated by the liquid crystal device 51 through the total reflection mirror 46 and is incident on the R portion of the dichroic prism 36. The G and B lights reflected by the color separation filter 42 are further divided by the color separation filter 43 into G light and B light. Of these, the G light is modulated by the liquid crystal device 52 and enters the G portion of the dichroic prism 36. The B light is modulated by the liquid crystal device 53 through the total reflection mirrors 44 and 45 and is incident on the B portion of the dichroic prism 36. The R, G, and B lights respectively modulated by the liquid crystal device are combined by the dichroic prism 36 to form a color image, and this image is projected onto the projection surface 70 by the projection optical system 37.
[0072]
The polarization conversion element of the present invention, for example, the one shown in FIG. 1 and the comparative example in which the thicknesses of the first and second light-transmitting members are equal to each other in the same laminated configuration are mounted on the projection display device of FIG. The illuminance on the projection surface 70 was compared. At this time, the size of the polarization conversion element is the same size as that of the optical path of the projection display device, and is adjusted according to the incident position on each polarization conversion element so as not to impair the amount of incident light on each polarization conversion element. The first and second lens systems 31, 32 were used. In addition, a white plate glass having a refractive index of 1.52 was used as a light-transmissive member of each polarization conversion element, and an ARTON film having a refractive index of 1.51 was used as a retardation plate. In the illuminance measurement, an irradiometer was installed on the projection surface 70, and at least a plurality of locations including nine central points of each section obtained by dividing the projection surface into nine portions, and measurement with continuously changing measurement positions were performed.
[0073]
As a result, compared with the device using the polarization conversion device of the comparative example, the device using the polarization conversion device of the present invention had an improvement in illuminance of 2 to 3% as a whole when the measurement values at the respective measurement points were averaged. . In addition, when the illuminance was measured by continuously moving the position of the illuminometer from the left end to the right end of the projection surface, there was a portion where the illuminance temporarily dropped in the case where the polarization conversion element of the comparative example was used. This is because the distance between the polarization separation film and the reflection film of the polarization conversion element changes due to the influence of the thickness of the phase difference plate, and as a result, a decrease area of light emitted from the polarization conversion element occurs. It is thought to do. On the other hand, in the case of using the polarization conversion element of the present invention, there is little change in illuminance when measuring the illuminance by continuously moving the position of the illuminometer from the left end to the right end of the projection surface, and uniform projection The amount of light was obtained, and it was found that the polarized light conversion element of the present invention was able to obtain outgoing light with small illuminance unevenness.
[0074]
Thus, if the polarization conversion element of the present invention is applied to a projection display device, light conversion can be performed without difficulty, so that the light use efficiency can be improved and the image projected on the screen can be brightened. it can. Moreover, the polarization conversion element of the present invention is not a phase difference plate attached to the translucent member, but is sandwiched between the translucent members, and is not exposed on the element surface. Even when the temperature rises due to exposure to a strong light source, it has heat resistance and can stably maintain its function. More specifically, when a retardation plate is attached to the surface of a conventional element, discoloration and undulation of the phase plate will occur due to long-term use, resulting in a decrease in transmittance due to coloring and an inaccurate phase conversion. However, when the polarization conversion element of the present invention is used, these problems caused by the deterioration of the retardation plate do not occur, so that the initial projection illuminance is reduced. Can be maintained for a long time.
[0075]
In addition to the above embodiment, the polarization conversion element of the present invention is a rear projection type projection display device instead of a front type as described above, a monochrome projection type display device that projects a monochrome image instead of a color type projection display device, etc. It can be applied to various projection display devices.
[0076]
【The invention's effect】
In the polarization conversion element of the present invention, since the retardation plate is not exposed on the surface of the element, a material having remarkably superior heat resistance, weather resistance, and durability can be obtained as compared with the conventional polarization conversion element. For this reason, according to the present invention, even when the polarization conversion element is exposed to a strong light beam from the light source and the temperature rises, the function can be stably maintained. In addition, since the distance between the polarization separation film and the reflection film adjacent to each other is substantially equal, the illuminance unevenness of the emitted light can be greatly reduced.
[0077]
According to the method for manufacturing a polarization conversion element of the present invention, the retardation plate may be sandwiched between the layers of the light transmissive member in the step of laminating the light transmissive plates, and the light exit surface of the polarization conversion element block Since the conventional process of attaching a retardation plate to each exit surface after polishing is not required, the manufacturing process can be greatly shortened compared to the conventional process.
[Brief description of the drawings]
FIG. 1A is a schematic perspective view of a polarization conversion element according to an embodiment of the present invention, and FIG. 1B is a plan view thereof.
FIG. 2 is a schematic plan view showing a part of the polarization conversion element of the present embodiment, and schematically shows how randomly polarized light incident on the polarization conversion element is converted into unidirectional polarized light and emitted. It is shown.
FIG. 3 is a diagram showing an embodiment of a polarization conversion element of the present invention in which an adhesive layer is provided for bonding.
4A is a schematic perspective view of a polarization conversion element according to another embodiment of the present invention, and FIG. 4B is a plan view thereof.
FIG. 5 is a schematic plan view showing a part of a polarization conversion element according to another embodiment of the present invention, and randomly polarized light incident on the polarization conversion element is converted into unidirectional polarized light and emitted. The situation is shown schematically.
FIG. 6 is a flowchart of steps in an embodiment of the method for manufacturing a polarization conversion element of the present invention.
7 is a view schematically showing the state of preparation, lamination / adhesion, and curing of a plate material, which is a part of the steps in the embodiment of the method of manufacturing the polarization conversion element of the present invention shown in FIG. 6. FIG.
FIG. 8 (a) schematically shows an embodiment of a laminate cutting step in the method for manufacturing a polarization conversion element of the present invention, and FIG. 8 (b) shows a cut polarization conversion element block. It is shown schematically.
FIG. 9 is a flowchart of steps in another embodiment of the method for manufacturing a polarization conversion element of the present invention.
10 is a diagram schematically showing plate material preparation, lamination / adhesion, and curing, which are a part of the steps in the embodiment of the method of manufacturing the polarization conversion element of the present invention shown in FIG. 9. FIG.
FIG. 11 is a diagram schematically showing plate material preparation, lamination / adhesion, and curing, which are a part of steps in another embodiment of the method for manufacturing a polarization conversion element of the present invention.
FIG. 12 is a diagram schematically showing preparation, lamination / adhesion, and curing of a plate material, which is a part of steps in still another embodiment of the method for manufacturing a polarization conversion element of the present invention.
FIG. 13 is a diagram schematically showing an embodiment in which the polarization conversion element of the present invention is applied to a projection display device.
FIG. 14 shows a polarization conversion element according to the prior art. (A) is the perspective view, (b) is the top view.
FIG. 15A shows the case where the distance between the polarizing spectral film and the reflective film adjacent to each other changes under the influence of the thickness of the retardation plate, and the refractive index of the retardation plate and the refraction of the translucent substrate. It is the figure which showed typically that it becomes a cause of illuminance nonuniformity, respectively, when a rate differs (b).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,100 ... Polarization conversion element, 11 ... Polarization separation film, 12 ... Reflection film, 20 ... Adhesive layer, 31 ... 1st lens system, 32 ... 2nd lens system, 36 ... Dichroic Prism 37 ... Projection optical system 41, 45, 46 ... Total reflection mirror, 42, 43, 44 ... Color separation filter, 51, 52, 53 ... Liquid crystal display device, 60 ... Light source, 70 ... Projection surface, 100... Polarization conversion element, 100 a... Light incident surface, 100 b... Light exit surface, 101 a. 2 translucent member, 102a... Second translucent plate material, 130... Λ / 2 phase difference plate, 131... Λ / 4 phase difference plate, 603, 903. , 904... Reflection film forming process, 605, 905... Lamination / adhesion process, 606, 90 ...... curing, 607,907 ...... laminate, 608,908 ...... cutting to step 609,809,909 ...... polarization converter block, 610,910 ...... optically polished to process.

Claims (17)

第1の主面を光入斜面、第2の主面を光出射面とする平板状の透光性基材中に、前記第1および第2の主面に対し傾斜し間隔をおいて偏光分離膜と反射膜とが交互に平行配置され、また前記偏光分離膜の前記光出射面側位相差板が前記偏光分離膜と隣接して配置され、前記偏光分離膜と前記位相差板と前記反射膜とが第1の主面に対して同一の方向に傾斜した状態で配置され、互いに隣り合う前記偏光分膜と前記反射膜との間隔が実質的に等しくなるように構成されていることを特徴とする偏光変換素子。Polarized light is inclined with respect to the first and second main surfaces in a flat light-transmitting substrate having the first main surface as a light incident slope and the second main surface as a light output surface. Separation films and reflection films are alternately arranged in parallel, and a retardation plate is disposed adjacent to the polarization separation film on the light exit surface side of the polarization separation film, and the polarization separation film and the retardation plate the reflective layer and are arranged in a state of being inclined in the same direction with respect to the first main surface, is configured so that the distance between said polarizing component release film adjacent said reflective film is made substantially equal to each other A polarization conversion element characterized by comprising: 第1の主面を光入斜面、第2の主面を光出射面とする平板状の透光性基材中に、前記第1および第2の主面に対し傾斜し間隔をおいて偏光分離膜と反射膜とが交互に平行配置され、また前記反射膜の前記光出射面側位相差板が前記反射膜と隣接して配置され、前記偏光分離膜と前記位相差板と前記反射膜とが第1の主面に対して同一の方向に傾斜した状態で配置され、互いに隣り合う前記偏光分膜と前記反射膜との間隔が実質的に等しくなるように構成されていることを特徴とする偏光変換素子。Polarized light is inclined with respect to the first and second main surfaces in a flat light-transmitting substrate having the first main surface as a light incident slope and the second main surface as a light output surface. Separation films and reflection films are alternately arranged in parallel, and a phase difference plate is arranged adjacent to the reflection film on the light exit surface side of the reflection film, and the polarization separation film, the phase difference plate, and the reflection are arranged in a state where the film is inclined in the same direction with respect to the first main surface, the distance between said polarizing component release film adjacent the reflective film is configured to be substantially equal to each other A polarization conversion element characterized by the above. 前記位相差板の屈折率が、前記透光性基材の屈折率と実質的に等しくなるように構成されていることを特徴とする請求項1または2記載の偏光変換素子。  The polarization conversion element according to claim 1 or 2, wherein a refractive index of the retardation plate is configured to be substantially equal to a refractive index of the translucent substrate. 前記位相差板が、2軸延伸プラスチックフィルムであることを特徴とする請求項1または2記載の偏光変換素子。  The polarization conversion element according to claim 1, wherein the retardation plate is a biaxially stretched plastic film. 前記2軸延伸プラスチックフィルムが、ポリアクリレートフィルム又はシクロオレフィン系フィルムであることを特徴とする請求項4記載の偏光変換素子。  The polarization conversion element according to claim 4, wherein the biaxially stretched plastic film is a polyacrylate film or a cycloolefin film. 光出射面に反射防止膜が被着されていることを特徴とする請求項1〜5のいずれか1項記載の偏光変換素子。  6. The polarization conversion element according to claim 1, wherein an antireflection film is attached to the light emitting surface. 映像プロジェクタに組込んで用いることを特徴とする請求項1〜6のいずれか1項記載の偏光変換素子。  The polarization conversion element according to claim 1, wherein the polarization conversion element is used by being incorporated in a video projector. 平行な2面を有し厚さtの透光性板材、偏光分離膜、平行な2面を有し厚さt−tの透光性板材、厚さtの位相差板、及び反射膜がこの順序に繰り返し積層された積層体が、その積層面に対し所定の角度で切断されることで前記偏光分離膜と前記位相差板と前記反射膜とが切断面に対して同一の方向に傾斜した状態で配置され、その切断面が光学的に研磨されて互いに平行な光入射面と光出射面とを形成していることを特徴とする偏光変換素子。Translucent plate thickness t has two parallel faces, the polarization separation film, translucent plate having a thickness of t-t p has two parallel faces, a phase difference plate having a thickness of t p, and the reflection laminate film is stacked repeatedly in this order, the same direction that the piled up surface and the polarization separation film Rukoto is cut at a predetermined angle and the retardation plate and the reflective film to the cutting plane And a light incident surface and a light exit surface that are parallel to each other to form a polarization conversion element. 平行な2面を有し厚さtの透光性板材、反射膜、平行な2面を有し厚さt−tの透光性板材、厚さtの位相差板、及び偏光分離膜がこの順序に繰り返し積層された積層体が、その積層面に対し所定の角度で切断されることで前記偏光分離膜と前記位相差板と前記反射膜とが切断面に対して同一の方向に傾斜した状態で配置され、その切断面が光学的に研磨されて互いに平行な光入射面と光出射面とを形成していることを特徴とする偏光変換素子。Translucent plate thickness t has two parallel faces, a reflection film, translucent plate having a thickness of t-t p has two parallel faces, a phase difference plate having a thickness of t p, and the polarization separation laminate film is stacked repeatedly in this order, the same direction that the piled up surface and the polarization separation film Rukoto is cut at a predetermined angle and the retardation plate and the reflective film to the cutting plane polarization conversion element is disposed in an inclined state, the cut surface is equal to or forming the light incident surface parallel to each other are polished optical histological and light exit surface. 平行な2面を有し厚さtを有する第1の透光性板材の一方の面に偏光分離膜を形成する偏光分離膜形成工程と、
平行な2面を有し厚さt−tの第2の透光性板材の一方の面に反射膜を形成する反射膜形成工程と、
厚さtを有する位相差板と、偏光分離膜の形成された前記第1の透光性板材と、反射膜の形成された前記第2の透光性板材とを、前記位相差板が前記偏光分離膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、
前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有し、かつ前記偏光分離膜と前記反射膜と前記位相差板とが前記光入射面に対して同一の方向に傾斜した状態で配置される偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、
前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程と
を備えたことを特徴とする偏光変換素子の製造方法。
A polarization separation film forming step of forming a polarization separation film on one surface of the first translucent plate having two parallel surfaces and having a thickness t;
A reflection film forming step of forming a reflective film on one surface of the second transparent board thickness t-t p has two parallel sides,
A phase difference plate having a thickness t p, and the first transparent board formed of polarization splitting film and said second transparent plate member which is formed of a reflective film, the retardation plate A lamination adhesion step of sequentially laminating and adhering so as to be adjacent to the polarization separation film;
The laminate was cut at a predetermined angle with respect to the lamination plane, have a parallel light incident surface and light exit surface each other, and the polarization separation film and the reflective film and the retardation plate is the light incident a polarization conversion element block forming step of forming a polarization converter block that will be placed in a state of being inclined in the same direction with respect to the surface,
An optical polishing process for optically polishing the light incident surface and the light emitting surface of the polarization conversion element block.
平行な2面を有し厚さt−tを有する第1の透光性板材の一方の面に偏光分離膜を形成する偏光分離膜形成工程と、
平行な2面を有し厚さtを有する第2の透光性板材の一方の面に反射膜を形成する反射膜形成工程と、
偏光分離膜の形成された前記第1の透光性板材と、厚さtを有する位相差板と、反射膜の形成された前記第2の透光性板材とを、前記位相差板が前記反射膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、
前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有し、かつ前記偏光分離膜と前記反射膜と前記位相差板とが前記光入射面に対して同一の方向に傾斜した状態で配置される偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、
前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程と
を備えたことを特徴とする偏光変換素子の製造方法。
A polarization separation film forming step of forming a polarization separating film on one surface of the first transparent board having a thickness t-t p has two parallel sides,
A reflective film forming step of forming a reflective film on one surface of the second translucent plate having two parallel surfaces and having a thickness t;
Said first transparent board formed of the polarization separation film, and a retardation plate having a thickness t p, and said second transparent plate member which is formed of a reflective film, the retardation plate A lamination bonding step of sequentially laminating and adhering so as to be adjacent to the reflective film to form a laminated body;
The laminate was cut at a predetermined angle with respect to the lamination plane, have a parallel light incident surface and light exit surface each other, and the polarization separation film and the reflective film and the retardation plate is the light incident a polarization conversion element block forming step of forming a polarization converter block that will be placed in a state of being inclined in the same direction with respect to the surface,
An optical polishing process for optically polishing the light incident surface and the light emitting surface of the polarization conversion element block.
平行な2面を有し厚さtを有する第1の透光性板材の一方の面に偏光分離膜を形成する工程と、
前記平行な2面を有する前記透光性材のもう一方の面に反射膜を形成する工程と、
厚さtを有する位相差板と、偏光分離膜および反射膜の形成された前記第1の透光性板材と、偏光分離膜および反射膜のいずれをも形成していない厚さt−tを有する第2の透光性板材とを、前記位相差板が前記偏光分離膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、
前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有し、かつ前記偏光分離膜と前記反射膜と前記位相差板とが前記光入射面に対して同一の方向に傾斜した状態で配置される偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、
前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程と
を備えたことを特徴とする偏光変換素子の製造方法。
Forming a polarization separation film on one surface of the first translucent plate having two parallel surfaces and having a thickness t;
Forming a reflective film on the other surface of the translucent plate material having the two parallel sides,
A phase difference plate having a thickness t p, the polarization separation film and said first transparent plate member which is formed of a reflective film, a polarization separation film and the thickness t-t that is not also form either reflective film a lamination bonding step of forming a laminate by sequentially laminating and adhering a second translucent plate material having p so that the retardation plate is adjacent to the polarization separation film;
The laminate was cut at a predetermined angle with respect to the lamination plane, have a parallel light incident surface and light exit surface each other, and the polarization separation film and the reflective film and the retardation plate is the light incident a polarization conversion element block forming step of forming a polarization converter block that will be placed in a state of being inclined in the same direction with respect to the surface,
An optical polishing process for optically polishing the light incident surface and the light emitting surface of the polarization conversion element block.
平行な2面を有し厚さt−tを有する第1の透光性板材の一方の面に偏光分離膜を形成する工程と、
前記平行な2面を有する前記透光性部材のもう一方の面に反射膜を形成する工程と、
偏光分離膜および反射膜の形成された前記第1の透光性板材と、厚さtを有する位相差板と、偏光分離膜および反射膜のいずれをも形成していない厚さtを有する第2の透光性板材とを、前記位相差板の板面が前記反射膜に隣接するように順次積層し接着して積層体を形成する積層接着工程と、
前記積層体を積層面に対し所定の角度で切断加工し、互いに平行な光入射面と光出射面とを有し、かつ前記偏光分離膜と前記反射膜と前記位相差板とが前記光入射面に対して同一の方向に傾斜した状態で配置される偏光変換素子ブロックを形成する偏光変換素子ブロック形成工程と、
前記偏光変換素子ブロックの前記光入射面と前記光出射面とを光学的に研磨する光学研磨工程と
を備えたことを特徴とする偏光変換素子の製造方法。
Forming a polarization separating film on one surface of the first transparent board having a thickness t-t p has two parallel sides,
Forming a reflective film on the other surface of the translucent member having the two parallel surfaces;
It has a first transparent board formed of the polarization separation film and reflective film, a phase difference plate having a thickness t p, the thickness t which is not also form either of the polarization separation film and reflective film A lamination bonding step of forming a laminate by sequentially laminating and bonding the second light-transmitting plate material so that the plate surface of the retardation plate is adjacent to the reflective film;
The laminate was cut at a predetermined angle with respect to the lamination plane, have a parallel light incident surface and light exit surface each other, and the polarization separation film and the reflective film and the retardation plate is the light incident a polarization conversion element block forming step of forming a polarization converter block that will be placed in a state of being inclined in the same direction with respect to the surface,
An optical polishing process for optically polishing the light incident surface and the light emitting surface of the polarization conversion element block.
前記積層接着工程が、複数の第1の透光性板材と複数の第2の透光性板材と複数の位相差板とを、光硬化性接着層を介して積層し、光照射により硬化する光照射接着工程を備えていることを特徴とする請求項10〜13のいずれか1項記載の偏光変換素子の製造方法。  In the laminating and bonding step, a plurality of first translucent plates, a plurality of second translucent plates and a plurality of retardation plates are laminated via a photocurable adhesive layer, and cured by light irradiation. The method for manufacturing a polarization conversion element according to claim 10, further comprising a light irradiation adhesion step. 前記光照射接着工程が、前記第1の透光性板材、前記位相差板および第2の透光性板材を光硬化性接着層を介して積層する工程と、光を照射して前記光硬化性接着層を硬化させる工程とを順次繰り返すものであることを特徴とする請求項10〜14のずれか1項記載の偏光変換素子の製造方法。The light irradiation bonding step includes a step of laminating the first light-transmitting plate material, the phase difference plate, and the second light-transmitting plate material through a light-curable adhesive layer, and the light curing by light irradiation. method of manufacturing a polarizing conversion element according There Zureka one of claims 10 to 14, characterized in that those sequentially repeating the step of curing the sexual adhesive layer. 前記光照射接着工程が、前記第1の透光性板材、前記位相差板および前記第2の透光性板材を光硬化性接着層を介して順次積層して積層体を形成する工程と、前記積層体を形成した後に光を照射して前記光硬化性接着層を硬化させ工程を備えたものであることを特徴とする請求項10〜14のいずれか1項記載の偏光変換素子の製造方法。  The light irradiation adhesion step is a step of sequentially laminating the first translucent plate material, the retardation plate, and the second translucent plate material via a photocurable adhesive layer; and The process for producing a polarization conversion element according to any one of claims 10 to 14, further comprising a step of irradiating light after the laminated body is formed to cure the photocurable adhesive layer. Method. 前記積層接着工程が、前記第1および第2の透光性板材の互いに平行な面に対し、角度をなす方向からの光の照射により光硬化を行うことを特徴とする請求項14〜16のいずれか1項記載の偏光変換素子の製造方法。  The laminated adhesion step performs photocuring by irradiating light from a direction forming an angle with respect to parallel surfaces of the first and second translucent plates. The manufacturing method of the polarization converting element of any one of Claims 1.
JP2002203162A 2002-07-11 2002-07-11 Polarization conversion element and manufacturing method thereof Expired - Fee Related JP4080265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203162A JP4080265B2 (en) 2002-07-11 2002-07-11 Polarization conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203162A JP4080265B2 (en) 2002-07-11 2002-07-11 Polarization conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004045767A JP2004045767A (en) 2004-02-12
JP4080265B2 true JP4080265B2 (en) 2008-04-23

Family

ID=31709136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203162A Expired - Fee Related JP4080265B2 (en) 2002-07-11 2002-07-11 Polarization conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4080265B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128419A (en) * 2008-12-01 2010-06-10 Epson Toyocom Corp Optical element
JP2010152044A (en) * 2008-12-25 2010-07-08 Epson Toyocom Corp Polarizer, method for manufacturing the same, and projector
US8657448B2 (en) 2011-05-30 2014-02-25 Seiko Epson Corporation Polarization converting element, polarization converting unit, and projection-type imaging device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030134B2 (en) * 2005-08-18 2012-09-19 株式会社リコー Polarization conversion element, polarization conversion optical system, and image projection apparatus
KR101211272B1 (en) 2005-12-29 2012-12-11 엘지디스플레이 주식회사 Light irradation equipment
CN101675363B (en) * 2007-05-07 2012-04-04 柯尼卡美能达精密光学株式会社 Method for manufacturing optical element
JP5458545B2 (en) * 2008-10-22 2014-04-02 セイコーエプソン株式会社 Method for manufacturing optical article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128419A (en) * 2008-12-01 2010-06-10 Epson Toyocom Corp Optical element
JP2010152044A (en) * 2008-12-25 2010-07-08 Epson Toyocom Corp Polarizer, method for manufacturing the same, and projector
US8657448B2 (en) 2011-05-30 2014-02-25 Seiko Epson Corporation Polarization converting element, polarization converting unit, and projection-type imaging device

Also Published As

Publication number Publication date
JP2004045767A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
KR100384084B1 (en) Method for manufacturing a polarization beam splitter
JP3309846B2 (en) Method of manufacturing polarization separation device and polarization conversion device
US7995275B2 (en) Polarization conversion element, polarization conversion optical system and image projecting apparatus
US9151960B2 (en) Polarization conversion element, polarization conversion unit, projection apparatus, and method for manufacturing polarization conversion element having a thin ultraviolet light curing adhesive layer
JP2006220879A (en) Polarizer, luminescent device, and liquid crystal display
JP4080265B2 (en) Polarization conversion element and manufacturing method thereof
JP4080198B2 (en) Polarization conversion element and manufacturing method thereof
JP4191125B2 (en) Polarization conversion element and manufacturing method thereof
JP2008046609A (en) Polarization recovery plate
KR100453119B1 (en) Polarization conversion element and projector, and method of producing the polarization conversion element
JP2003215345A (en) Polarization lighting device
JP2004145305A (en) Polarization conversion element and its manufacturing method
JP2000292618A (en) Polarization lighting system
JP2008116898A (en) Optical filter, projection type display device and manufacturing method of optical filter
CN113391510B (en) Wavelength conversion element, method for manufacturing same, light source device, and projector
JP2004317828A (en) Optical device, optical system and projecting projector device
JP2005037745A (en) Polarized beam conversion element, its manufacturing method, and liquid crystal display device
JP3399449B2 (en) Manufacturing method of polarization conversion element
JPH11142624A (en) Optical block, display device equipped with optical system having optical block and manufacture of optical block
JP4285032B2 (en) Polarized beam conversion element, method for manufacturing the same, and liquid crystal display device
JP2003344654A (en) Optic element and polarization conversion element
JP2004070299A (en) Polarization conversion element and manufacturing method therefor
JP2023153170A (en) Polarization conversion element and image display device
JP2004170677A (en) Polarized-light separation element
JP2004272105A (en) Polarized beam converting element and its manufacturing method, and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees