JP5458545B2 - Method for manufacturing optical article - Google Patents

Method for manufacturing optical article Download PDF

Info

Publication number
JP5458545B2
JP5458545B2 JP2008271731A JP2008271731A JP5458545B2 JP 5458545 B2 JP5458545 B2 JP 5458545B2 JP 2008271731 A JP2008271731 A JP 2008271731A JP 2008271731 A JP2008271731 A JP 2008271731A JP 5458545 B2 JP5458545 B2 JP 5458545B2
Authority
JP
Japan
Prior art keywords
thickness
adhesive layer
translucent member
laminate
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008271731A
Other languages
Japanese (ja)
Other versions
JP2010101992A (en
Inventor
衆方 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008271731A priority Critical patent/JP5458545B2/en
Publication of JP2010101992A publication Critical patent/JP2010101992A/en
Application granted granted Critical
Publication of JP5458545B2 publication Critical patent/JP5458545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)

Description

本発明は、透光性部材と接着層と無機性結晶材料とを備えた光学物品の製造方法およびその光学物品に関する。   The present invention relates to a method for manufacturing an optical article including a translucent member, an adhesive layer, and an inorganic crystal material, and the optical article.

光ピックアップや液晶プロジェクタ、その他の装置において、複数の透光性部材の間に光学薄膜を挟んで形成された光学物品が用いられている。
このような光学物品として、それぞれ内部に反射膜が設けられた2つの透光性部材の間に偏光分離膜を挟んで順次積層し、これらの透光性部材の前記偏光分離膜の光射出面側に水晶位相板を設けた偏光分離素子(PS変換素子)がある。
In optical pickups, liquid crystal projectors, and other devices, optical articles formed by sandwiching an optical thin film between a plurality of translucent members are used.
As such an optical article, a light-emitting surface of the light-polarizing separation film of these light-transmitting members is sequentially laminated by sandwiching a light-polarizing separation film between two light-transmitting members each provided with a reflective film therein. There is a polarization separation element (PS conversion element) provided with a crystal phase plate on the side.

例えば、反射膜が形成された第1の透光性部材と、第1の透光性部材に形成された偏光分離膜と位相差板である水晶位相板からなる偏光分離変換部と、第2の透光性部材と、を順次重ね合わせて相互に接着して形成された従来例(特許文献1)がある。
このような光学物品は、各部材が接着剤で接着固定され、種々の方法で製造されている。偏光分離変換部は、通常、偏光分離膜と水晶位相板とから構成され、第1の透光性部材と水晶位相板とが接着剤を介して接着固定された積層体を得る。そして、この積層体を研磨することにより所定の厚みに形成されるが、この場合、第1の透光性部材、接着剤、水晶位相板の順で積層されており、水晶位相板を研磨することで積層体の総厚の調整を行うのが一般的であった。
For example, a first light transmissive member on which a reflective film is formed, a polarization separation conversion unit made up of a polarization phase separation film formed on the first light transmissive member and a crystal phase plate as a phase difference plate, and a second There is a conventional example (Patent Document 1) formed by sequentially superimposing and translucently adhering to each other.
Such optical articles are manufactured by various methods in which each member is bonded and fixed with an adhesive. The polarization separation / conversion unit is usually composed of a polarization separation film and a quartz phase plate, and obtains a laminate in which the first translucent member and the quartz phase plate are bonded and fixed via an adhesive. Then, the laminated body is formed to a predetermined thickness by polishing. In this case, the first light transmitting member, the adhesive, and the quartz phase plate are laminated in this order, and the quartz phase plate is polished. In general, the total thickness of the laminate was adjusted.

特開2007−206225号公報JP 2007-206225 A

しかしながら、第1の透光性部材、接着剤、水晶位相板の順で積層された積層体において、第1の透光性部材および接着剤が均一の厚みでない場合がある。特に、接着剤の層は厚みにばらつきが生じやすい。したがって、水晶位相板を研磨すると、第1の透光性部材および接着剤の厚みの相違が水晶位相板の厚みに反映されてしまい、水晶位相板の厚みが不均一になるという課題がある。さらに、高精度な厚みが要求される水晶位相板の厚みが不均一になることで、光学物品の偏光変換効率等に影響を及ぼすという課題がある。   However, in the laminate in which the first translucent member, the adhesive, and the crystal phase plate are laminated in this order, the first translucent member and the adhesive may not have a uniform thickness. In particular, the adhesive layer tends to vary in thickness. Therefore, when the quartz phase plate is polished, a difference in thickness between the first light-transmissive member and the adhesive is reflected in the thickness of the quartz phase plate, and there is a problem that the thickness of the quartz phase plate becomes non-uniform. Furthermore, there is a problem in that the polarization phase conversion efficiency of the optical article is affected by the non-uniform thickness of the quartz phase plate that requires a highly accurate thickness.

本発明の目的は、偏光変換効率に優れた光学物品を高精度に加工することができる光学物品の製造方法およびその光学物品を提供することにある。   The objective of this invention is providing the manufacturing method of an optical article which can process the optical article excellent in the polarization conversion efficiency with high precision, and the optical article.

[適用例1]
本適用例にかかる光学物品の製造方法は、透光性部材と、無機性結晶材料と、を備えた光学物品の製造方法であって、第1の透光性部材の一方の面と前記無機性結晶材料の一方の面とを接着剤からなる第1の接着層で接着する研磨前接着工程と、前記無機性結晶材料の他方の面を基準面として前記第1の透光性部材の他方の面を研磨する第1の研磨工程と、前記第1の透光性部材の他方の面を基準面として前記無機性結晶材料を所定の厚みに研磨する第2の研磨工程と、を備えたことを特徴とする。
この構成の本適用例では、透光性部材と無機性結晶材料層とを備えた光学物品の製造方法において、まず、無機性結晶材料が接着された第1の透光性部材の接着面ではない他方の面を研磨することによりこの第1の透光性部材の他方の面が無機性結晶材料の他方の面と平行になるように形成する。その後、形成された第1の透光性部材の他方の面を基準面として支持した状態で無機性結晶材料層の研磨を行う。この方法によって、無機性結晶材料の面内の厚みを均一にすることができるので、偏光変換効率に優れるとともに、無機性結晶材料を含む光学物品を高精度に加工することができる。
[Application Example 1]
A method for manufacturing an optical article according to this application example is a method for manufacturing an optical article including a translucent member and an inorganic crystal material, and includes one surface of the first translucent member and the inorganic material. A pre-polishing adhesion step of adhering one surface of the crystalline material with a first adhesive layer made of an adhesive, and the other surface of the first translucent member using the other surface of the inorganic crystalline material as a reference surface And a second polishing step for polishing the inorganic crystalline material to a predetermined thickness using the other surface of the first light-transmissive member as a reference surface. It is characterized by that.
In this application example having this configuration, in the method of manufacturing an optical article including the translucent member and the inorganic crystal material layer, first, on the bonding surface of the first translucent member to which the inorganic crystal material is bonded. By polishing the other surface that is not present, the other surface of the first translucent member is formed in parallel with the other surface of the inorganic crystal material. Thereafter, the inorganic crystal material layer is polished in a state where the other surface of the formed first translucent member is supported as a reference surface. By this method, the in-plane thickness of the inorganic crystal material can be made uniform, so that the polarization conversion efficiency is excellent and an optical article including the inorganic crystal material can be processed with high accuracy.

[適用例2]
本適用例にかかる光学物品の製造方法は、前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、接着剤からなる第2の接着層と、偏光分離膜と、第2の透光性部材と、反射膜と、接着剤からなる第3の接着層と、を順に繰り返し積層する積層工程を備え、前記積層体を、以下の式(1)を満たす厚みに形成する。
[Application Example 2]
The method for manufacturing an optical article according to this application example includes the first translucent member, the first adhesive layer, a laminate made of the inorganic crystal material, a second adhesive layer made of an adhesive, A lamination process of repeatedly laminating a polarization separation film, a second translucent member, a reflection film, and a third adhesive layer made of an adhesive in order is provided, and the laminate is expressed by the following formula (1) It is formed to a thickness that satisfies

[式1]
t1=t2−t3−t4 ・・・(1)
式中、t1は前記積層体の厚み、t2は前記第2の透光性部材の厚み、t3は前記第2の接着層の厚み、t4は前記第3の接着層の厚みである。
[Formula 1]
t1 = t2-t3-t4 (1)
In the formula, t1 is the thickness of the laminate, t2 is the thickness of the second translucent member, t3 is the thickness of the second adhesive layer, and t4 is the thickness of the third adhesive layer.

この構成の本適用例では、前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、第2の接着層と、偏光分離膜と、第2の透光性部材と、反射膜と、第3の接着層と、が順に繰り返し積層される光学物品において、積層体の厚み、第2の透光性部材の厚み、第2の接着層の厚み、および、第3の接着層の厚みを上記式(1)を満たす構成としたので、ピッチずれによる光量ロスを抑えることができ、偏光光量を十分に確保することができる。すなわち、光学品質の向上を図ることができる。   In this application example of this configuration, the first translucent member, the first adhesive layer and the laminate made of the inorganic crystal material, the second adhesive layer, the polarization separation film, the second In the optical article in which the translucent member, the reflective film, and the third adhesive layer are repeatedly laminated in order, the thickness of the laminate, the thickness of the second translucent member, the thickness of the second adhesive layer, And since the thickness of the 3rd contact bonding layer was set as the structure which satisfy | fills said Formula (1), the light quantity loss by pitch shift | offset | difference can be suppressed and polarization light quantity can fully be ensured. That is, the optical quality can be improved.

[適用例3]
本適用例にかかる光学物品の製造方法は、前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、偏光分離膜と、接着剤からなる第2の接着層と、第2の透光性部材と、反射膜と、接着剤からなる第3の接着層と、を順に繰り返し積層する積層工程を備え、前記積層体を、以下の式(2)を満たす厚みに形成する。
[Application Example 3]
The method for manufacturing an optical article according to this application example includes a first layer made of the first translucent member, the first adhesive layer and the inorganic crystal material, a polarizing separation film, and a second adhesive. A layering step in which the adhesive layer, the second translucent member, the reflective film, and the third adhesive layer made of an adhesive are sequentially laminated, and the laminate is represented by the following formula (2): It is formed to a thickness that satisfies

[式2]
t1=t2+t3−t4 ・・・(2)
式中、t1は前記積層体の厚み、t2は前記第2の透光性部材の厚み、t3は前記第2の接着層の厚み、t4は前記第3の接着層の厚みである。
[Formula 2]
t1 = t2 + t3-t4 (2)
In the formula, t1 is the thickness of the laminate, t2 is the thickness of the second translucent member, t3 is the thickness of the second adhesive layer, and t4 is the thickness of the third adhesive layer.

この構成の本適用例では、前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、偏光分離膜と、第2の接着層と、第2の透光性部材と、反射膜と、第3の接着層と、が順に繰り返し積層されてなる光学物品において、積層体の厚み、第2の透光性部材の厚み、第2の接着層の厚み、および、第3の接着層の厚みを上記式(2)を満たす構成としたので、ピッチずれによる光量ロスを抑えることができ、偏光光量を十分に確保することができる。すなわち、光学品質の向上を図ることができる。   In this application example having this configuration, the first translucent member, the first adhesive layer and the laminate made of the inorganic crystal material, the polarization separation film, the second adhesive layer, and the second In an optical article in which a translucent member, a reflective film, and a third adhesive layer are repeatedly laminated in order, the thickness of the laminate, the thickness of the second translucent member, and the thickness of the second adhesive layer And since the thickness of the 3rd contact bonding layer was set as the structure which satisfy | fills said Formula (2), the light quantity loss by a pitch shift | offset | difference can be suppressed and polarized light quantity can fully be ensured. That is, the optical quality can be improved.

[適用例4]
本適用例にかかる光学物品の製造方法は、前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、接着剤からなる第2の接着層と、偏光分離膜と、第2の透光性部材と、接着剤からなる第3の接着層と、反射膜と、を順に繰り返し積層する積層工程を備え、前記積層体を、以下の式(3)を満たす厚みに形成する。
[Application Example 4]
The method for manufacturing an optical article according to this application example includes the first translucent member, the first adhesive layer, a laminate made of the inorganic crystal material, a second adhesive layer made of an adhesive, A layering step in which a polarization separation film, a second translucent member, a third adhesive layer made of an adhesive, and a reflective film are sequentially laminated, and the laminate is expressed by the following formula (3) It is formed to a thickness that satisfies

[式3]
t1=t2−t3+t4 ・・・(3)
式中、t1は前記積層体の厚み、t2は前記第2の透光性部材の厚み、t3は前記第2の接着層の厚み、t4は前記第3の接着層の厚みである。
[Formula 3]
t1 = t2−t3 + t4 (3)
In the formula, t1 is the thickness of the laminate, t2 is the thickness of the second translucent member, t3 is the thickness of the second adhesive layer, and t4 is the thickness of the third adhesive layer.

この構成の本適用例では、前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、第2の接着層と、偏光分離膜と、第2の透光性部材と、第3の接着層と、反射膜と、が順に繰り返し積層されてなる光学物品において、積層体の厚み、第2の透光性部材の厚み、第2の接着層の厚み、および、第3の接着層の厚みを上記式(3)を満たす構成としたので、ピッチずれによる光量ロスを抑えることができ、偏光光量を十分に確保することができる。すなわち、光学品質の向上を図ることができる。   In this application example of this configuration, the first translucent member, the first adhesive layer and the laminate made of the inorganic crystal material, the second adhesive layer, the polarization separation film, the second In an optical article in which a translucent member, a third adhesive layer, and a reflective film are repeatedly laminated in order, the thickness of the laminate, the thickness of the second translucent member, and the thickness of the second adhesive layer And since the thickness of the 3rd contact bonding layer was set as the structure which satisfy | fills said Formula (3), the light quantity loss by a pitch shift | offset | difference can be suppressed and sufficient polarized light quantity can be ensured. That is, the optical quality can be improved.

[適用例5]
本適用例にかかる光学物品の製造方法は、前記無機性結晶材料は水晶であり、前記光学物品は、前記透光性部材と前記水晶と偏光分離膜と反射膜とが積層されてなる偏光ビームスプリッタである。
この構成の本適用例では、水晶からなる無機性結晶材料を用いて前述の工程で製造することにより、高精度に加工することができ、その結果優れた偏光変換効率を備えた偏光ビームスプリッタ(Polarized Beam Splitter、PBS)を製造することができる。
[Application Example 5]
In the method of manufacturing an optical article according to this application example, the inorganic crystal material is a crystal, and the optical article is a polarized beam formed by laminating the translucent member, the crystal, a polarization separation film, and a reflection film. It is a splitter.
In this application example of this configuration, a polarizing beam splitter (with excellent polarization conversion efficiency) that can be processed with high accuracy by manufacturing using an inorganic crystal material made of quartz in the above-described steps. Polarized Beam Splitter, PBS) can be manufactured.

[適用例6]
本適用例にかかる光学物品は、透光性部材と、無機性結晶材料と、前記透光性部材と前記無機性結晶材料とを接着している接着層と、を備えた光学物品であって、前記無機性結晶材料の表面と、前記接着層と前記無機性結晶材料層との界面と、が実用上平行であることを特徴とする。
この構成の本適用例では、無機性結晶材料層の厚みが均一となるので、偏光変換効率に優れた光学物品を提供することができる。
[Application Example 6]
An optical article according to this application example is an optical article including a translucent member, an inorganic crystal material, and an adhesive layer that adheres the translucent member and the inorganic crystal material. The surface of the inorganic crystal material and the interface between the adhesive layer and the inorganic crystal material layer are practically parallel to each other.
In this application example having this configuration, the thickness of the inorganic crystal material layer becomes uniform, so that an optical article excellent in polarization conversion efficiency can be provided.

[適用例7]
本適用例にかかる光学物品は、前記無機性結晶材料は水晶であり、前記光学物品は、前記透光性部材と前記水晶と偏光分離膜と反射膜とが積層されてなる偏光ビームスプリッタである。
この構成の本適用例では、前述のように均一の厚みを有する水晶からなる無機性結晶材料層に偏光分離膜および反射膜が積層された偏光ビームスプリッタ(Polarized Beam Splitter、PBS)であるので、前述と同様の作用効果を奏することができる。
[Application Example 7]
In the optical article according to this application example, the inorganic crystal material is a crystal, and the optical article is a polarization beam splitter in which the translucent member, the crystal, a polarization separation film, and a reflection film are laminated. .
In this application example of this configuration, as described above, a polarization beam splitter (Polarized Beam Splitter, PBS) in which a polarization separation film and a reflection film are laminated on an inorganic crystal material layer made of quartz having a uniform thickness. The same effects as described above can be achieved.

本発明の実施形態を図面に基づいて説明する。ここで、各実施形態において、同一構成要素は同一符号を付して説明を省略もしくは簡略にする。
[第1実施形態]
第1実施形態を図1から図7に基づいて説明する。図1は第1実施形態にかかる偏光分離変換素子の端面を示す図であり、図2および図3は図1の要部を示す断面図である。ここで、偏光分離変換素子は、光学物品としてPS変換素子(または偏光ビームスプリッタ、Polarized Beam Splitter、PBS)と称されるものである。この偏光分離変換素子は、例えば、液晶プロジェクタ装置に用いられている。
図1において、偏光分離変換素子1は、第1の透光性部材11と第2の透光性部材12とが偏光分離変換部13を間に挟んで交互に配置された平板状部材である。第1の透光性部材11と第2の透光性部材12とにはそれぞれ反射部14が設けられている。反射部14は隣り合う偏光分離変換部13の間の中間位置に配置されている。
第1の透光性部材11及び第2の透光性部材12は、その光入射側の平面と光出射側の平面とが平行とされ、これらの平面に対して45°の角度をもって偏光分離変換部13と反射部14とが互いに平行に配置されている。本実施形態では、偏光分離変換素子1は左右対称構造としたが、一方向のみに平行配置された非対称な構造でもよい。
Embodiments of the present invention will be described with reference to the drawings. Here, in each embodiment, the same components are assigned the same reference numerals, and the description thereof is omitted or simplified.
[First embodiment]
A first embodiment will be described with reference to FIGS. FIG. 1 is a view showing an end face of a polarization beam splitting conversion element according to the first embodiment, and FIGS. 2 and 3 are cross-sectional views showing main parts of FIG. Here, the polarization separation conversion element is a PS conversion element (or polarization beam splitter, Polarized Beam Splitter, PBS) as an optical article. This polarization separation / conversion element is used in, for example, a liquid crystal projector apparatus.
In FIG. 1, a polarization separation / conversion element 1 is a flat plate member in which a first light transmissive member 11 and a second light transmissive member 12 are alternately arranged with a polarization separation / conversion unit 13 interposed therebetween. . Each of the first light transmissive member 11 and the second light transmissive member 12 is provided with a reflecting portion 14. The reflection unit 14 is disposed at an intermediate position between the adjacent polarization separation conversion units 13.
The first light transmissive member 11 and the second light transmissive member 12 have their light incident side plane and light emission side plane parallel to each other, and polarization separation is performed at an angle of 45 ° with respect to these planes. The conversion unit 13 and the reflection unit 14 are arranged in parallel to each other. In the present embodiment, the polarization separation / conversion element 1 has a left-right symmetric structure, but may have an asymmetric structure arranged in parallel in only one direction.

第1の透光性部材11や第2の透光性部材12は、BK7等の光学ガラス、白板ガラス、ホウケイ酸ガラス、青板ガラスをはじめとするガラスから成形されている。
偏光分離変換部13は、図2に示される通り、第1の接着層131と位相差板132と第2の接着層133と偏光分離膜134と、を備えている。
第1の接着層131および第2の接着層133は接着剤からなる層であり、接着剤としては一般的な光硬化型接着剤を使用することができる。
位相差板132は、短冊状の1/2波長板であり、無機性結晶材料を用いることができる。無機性結晶材料としては、例えば、SiOの単結晶からなる水晶が挙げられ、この水晶は人工水晶でも天然水晶でもよい。
偏光分離膜134は、入射した光線束(S偏光とP偏光)を、S偏光の部分光束(S偏光)とP偏光の部分光束(P偏光)とに分離し、S偏光とP偏光のいずれか一方を選択的に透過させ、他方を選択的に反射する性質を有する膜である。例えば、図3に示すように、S偏光を反射し、P偏光を透過する。偏光分離膜134は、異なる材質の層、例えば、酸化ケイ素(SiO)の層、ランタンアルミネートの層及びフッ化マグネシウム(MgF)の層が積層されて構成される。これらの層は複数層で構成されるものであり、本実施形態では図示しないが、例えば、5層で構成される。第1の透光性部材11側から第2の透光性部材12側に向かうに従って、第1層、第2層、第3層、第4層、第5層となり、第1の透光性部材11に直接設けられる。これらの層のうち第1層、及び第5層が酸化ケイ素(SiO)の層であり、第3層がフッ化マグネシウム(MgF2)の層であり、第2層及び第4層がランタンアルミネートの層である。
The 1st translucent member 11 and the 2nd translucent member 12 are shape | molded from glass including optical glass, such as BK7, white plate glass, borosilicate glass, and blue plate glass.
As shown in FIG. 2, the polarization separation conversion unit 13 includes a first adhesive layer 131, a retardation plate 132, a second adhesive layer 133, and a polarization separation film 134.
The first adhesive layer 131 and the second adhesive layer 133 are layers made of an adhesive, and a general photocurable adhesive can be used as the adhesive.
The phase difference plate 132 is a strip-shaped half-wave plate, and an inorganic crystal material can be used. Examples of the inorganic crystal material include quartz made of a single crystal of SiO 2 , and this quartz may be artificial quartz or natural quartz.
The polarization separation film 134 separates the incident light bundle (S-polarized light and P-polarized light) into an S-polarized partial light beam (S-polarized light) and a P-polarized partial light beam (P-polarized light). It is a film having the property of selectively transmitting one of them and selectively reflecting the other. For example, as shown in FIG. 3, S-polarized light is reflected and P-polarized light is transmitted. The polarization separation film 134 is configured by stacking layers of different materials, for example, a silicon oxide (SiO 2 ) layer, a lanthanum aluminate layer, and a magnesium fluoride (MgF 2 ) layer. These layers are composed of a plurality of layers, and are not illustrated in the present embodiment, but are composed of, for example, five layers. As it goes from the first translucent member 11 side to the second translucent member 12 side, a first layer, a second layer, a third layer, a fourth layer, and a fifth layer are formed. It is directly provided on the member 11. Among these layers, the first layer and the fifth layer are layers of silicon oxide (SiO 2 ), the third layer is a layer of magnesium fluoride (MgF 2), and the second layer and the fourth layer are lanthanum aluminum. Nate layer.

反射部14は、反射膜141と第3の接着層142と、を備えている。
反射膜141は、誘電体多層膜を積層することによって形成される。もちろん、反射膜141を構成する誘電体多層膜は、偏光分離膜134を構成するものとは異なる組成および構成を有している。反射膜141としては、偏光分離膜134で反射された直線偏光成分(S偏光またはP偏光)のみを選択的に反射し、他の直線偏光成分は反射しないような誘電体多層膜で構成されたものが好ましい。
反射膜141は、アルミニウムを蒸着することによって形成するようにしてもよい。誘電体多層膜で反射膜141を形成した場合には、特定の直線偏光成分(たとえばS偏光)を約98%程度の反射率で反射することができる。一方、アルミニウム膜では、反射率は高々92%程度である。従って、誘電体多層膜で反射膜141を形成するようにすれば、偏光ビームスプリッタアレイから出射される光量を高めることができる。さらに、誘電体多層膜は、アルミニウム膜よりも光の吸収が少ないので、発熱も少ないという利点もある。なお、特定の直線偏光成分の反射率を向上させるには、反射膜141を構成する誘電体多層膜(通常は2種類の膜が交互に積層された構造である)を構成するそれぞれの膜の厚さ、あるいは膜の材料を最適化すれば良い。
第3の接着層142は、第1の接着層131および第2の接着層133で用いられたものと同様のものを使用することができる。
The reflection unit 14 includes a reflection film 141 and a third adhesive layer 142.
The reflective film 141 is formed by laminating dielectric multilayer films. Of course, the dielectric multilayer film constituting the reflective film 141 has a composition and configuration different from those constituting the polarization separation film 134. The reflection film 141 is composed of a dielectric multilayer film that selectively reflects only the linearly polarized light component (S-polarized light or P-polarized light) reflected by the polarization separation film 134 and does not reflect other linearly polarized light components. Those are preferred.
The reflective film 141 may be formed by evaporating aluminum. When the reflective film 141 is formed of a dielectric multilayer film, a specific linearly polarized light component (for example, S-polarized light) can be reflected with a reflectance of about 98%. On the other hand, the reflectivity of the aluminum film is at most about 92%. Therefore, if the reflective film 141 is formed of a dielectric multilayer film, the amount of light emitted from the polarizing beam splitter array can be increased. Furthermore, the dielectric multilayer film has an advantage that it generates less heat because it absorbs less light than the aluminum film. In order to improve the reflectance of a specific linearly polarized light component, each of the films constituting the dielectric multilayer film (usually a structure in which two kinds of films are alternately laminated) constituting the reflective film 141 is used. The thickness or film material may be optimized.
As the third adhesive layer 142, the same material as that used in the first adhesive layer 131 and the second adhesive layer 133 can be used.

これらの層の厚みを、図2を参照して以下のように定義する。
第1の透光性部材11の厚みをt11、第1の接着層131の厚みをt12、位相差板132の厚みをt13、第2の透光性部材12の厚みをt2、第2の接着層133の厚みをt3、第3の接着層142の厚みをt4とする。
ここで、偏光分離変換素子1に入射する入射光に対する射出光の光量を確保するためには、偏光分離膜134の中間位置から第1の透光性部材11を含む反射膜141の中間位置までのピッチL1と、偏光分離膜134の中間位置から第2の透光性部材12を含む反射膜141の中間位置までのピッチL2と、が同一(L1=L2)であることが好ましい。すなわち、t2=t11+t12+t13+t3+t4となり、第1の透光性部材11と第1の接着層131と位相差板132とからなる積層物の厚みt1は、以下の式で定義される。なお、偏光分離膜134と反射膜141の膜厚は他の層の厚みに比べて無視できる程に小さい。
The thicknesses of these layers are defined as follows with reference to FIG.
The thickness of the first translucent member 11 is t11, the thickness of the first adhesive layer 131 is t12, the thickness of the retardation plate 132 is t13, the thickness of the second translucent member 12 is t2, and the second adhesive The thickness of the layer 133 is t3, and the thickness of the third adhesive layer 142 is t4.
Here, in order to ensure the light quantity of the emitted light with respect to the incident light incident on the polarization separation conversion element 1, from the intermediate position of the polarization separation film 134 to the intermediate position of the reflection film 141 including the first translucent member 11. And the pitch L2 from the intermediate position of the polarization separating film 134 to the intermediate position of the reflective film 141 including the second light transmissive member 12 are preferably the same (L1 = L2). That is, t2 = t11 + t12 + t13 + t3 + t4, and the thickness t1 of the laminate composed of the first translucent member 11, the first adhesive layer 131, and the retardation plate 132 is defined by the following equation. Note that the thicknesses of the polarization separation film 134 and the reflection film 141 are negligibly small compared to the thicknesses of the other layers.

[式4]
t1=t2−t3−t4 ・・・(1)
[Formula 4]
t1 = t2-t3-t4 (1)

次に、第1実施形態にかかる光学物品の製造方法について図4から図7を用いて説明する。図4は第1実施形態における積層の工程を説明する概略図、図5は第1実施形態における研磨工程を説明する概略図、図6は第1実施形態における切断工程を説明する概略図、図7は第1実施形態における切断工程を説明する概略図である。
まず、第1の透光性部材11を形成するための短冊状光学ブロック11Aと第2の透光性部材12を形成するための短冊状光学ブロック12Aとを用意する。これらの短冊状光学ブロック11A,12Aの材質は第1の透光性部材11や第2の透光性部材12と同じである。
Next, a method for manufacturing an optical article according to the first embodiment will be described with reference to FIGS. FIG. 4 is a schematic diagram for explaining the lamination process in the first embodiment, FIG. 5 is a schematic diagram for explaining the polishing process in the first embodiment, and FIG. 6 is a schematic diagram for explaining the cutting process in the first embodiment. 7 is a schematic diagram illustrating a cutting process in the first embodiment.
First, a strip-shaped optical block 11A for forming the first light-transmissive member 11 and a strip-shaped optical block 12A for forming the second light-transmissive member 12 are prepared. The material of these strip-shaped optical blocks 11A and 12A is the same as that of the first translucent member 11 and the second translucent member 12.

[1.研磨前接着工程]
図4(A)に示すように、短冊状光学ブロック11Aの一方の面に接着剤を塗布して第1の接着層131を形成し、この第1の接着層131によって、短冊状位相差板132Aを接着させる。このように、短冊状光学ブロック11A、第1の接着層131、短冊状位相差板132Aからなる積層体を積層体20とする。
[1. Adhesion process before polishing]
As shown in FIG. 4A, an adhesive is applied to one surface of the strip-shaped optical block 11A to form a first adhesive layer 131, and the strip-shaped retardation plate is formed by the first adhesive layer 131. 132A is adhered. In this way, a laminate including the strip-shaped optical block 11A, the first adhesive layer 131, and the strip-shaped retardation plate 132A is referred to as a laminate 20.

[2.研磨工程]
研磨を行う装置としては、図5(A)に示されるように、平板状の支持板91と、支持板91の支持面91Aに平行な研磨面92Aを有し、支持面91Aに対して研磨面92Aを平行に保った状態で円を描くように動作可能な砥石92を有する装置を用いる。
[2−1.第1の研磨工程]
図5(A)に示すように、複数の積層体20を、短冊状位相差板132Aが支持面91Aに接する状態となるように支持板91上で支持する。各積層体20は、短冊状光学ブロック11Aおよび第1の接着層131の厚みが同一ではなく、また、一つの積層体20においても短冊状光学ブロック11Aおよび第1の接着層131の厚みが不均一となっている。
第1の研磨工程では、このような厚みにばらつきのある積層体20が所定の厚みとなるように、例えば、短冊状光学ブロック11Aを図5(A)に示すラインlの位置まで研磨することにより、積層体20の総厚を均一にする。これにより、ラインlの位置に基準面20Aが形成される。また、この基準面20Aは短冊状位相板132Aの表面と実用上平行な面に形成されている。
[2. Polishing process]
As shown in FIG. 5A, the polishing apparatus has a flat support plate 91 and a polishing surface 92A parallel to the support surface 91A of the support plate 91. The support surface 91A is polished. An apparatus having a grindstone 92 operable to draw a circle with the surface 92A held in parallel is used.
[2-1. First polishing step]
As shown in FIG. 5A, the plurality of stacked bodies 20 are supported on the support plate 91 so that the strip-like phase difference plate 132A is in contact with the support surface 91A. In each laminate 20, the thickness of the strip-shaped optical block 11A and the first adhesive layer 131 is not the same, and the thickness of the strip-shaped optical block 11A and the first adhesive layer 131 is not the same in one laminate 20 as well. It is uniform.
In the first polishing step, for example, the strip-shaped optical block 11A is polished to the position of the line l shown in FIG. 5A so that the laminate 20 having such a variation in thickness has a predetermined thickness. Thus, the total thickness of the stacked body 20 is made uniform. Thereby, the reference surface 20A is formed at the position of the line l. The reference surface 20A is formed on a surface that is practically parallel to the surface of the strip-shaped phase plate 132A.

[2−2.第2の研磨工程]
次に、図5(B)に示すように、積層体20を反転させ、基準面20Aが支持面91Aに接する状態となるように支持板91上で支持する。第1の研磨工程で、積層体20の総厚みが均一であり、且つ短冊状位相板132Aの表面と支持面91Aは平行に支持されるので、短冊状位相板132Aは均一に研磨される。そして、短冊状位相差板132Aが研磨され、厚みがt1の積層体20が形成される。
[2-2. Second polishing step]
Next, as shown in FIG. 5B, the laminate 20 is inverted and supported on the support plate 91 so that the reference surface 20A is in contact with the support surface 91A. In the first polishing step, the total thickness of the laminate 20 is uniform, and the surface of the strip phase plate 132A and the support surface 91A are supported in parallel, so the strip phase plate 132A is uniformly polished. Then, the strip-like retardation plate 132A is polished to form the laminate 20 having a thickness t1.

[3.反射膜および偏光分離膜形成工程]
図4(B)に示すように、短冊状光学ブロック12Aの一方の面に偏光分離膜134を形成するための偏光分離膜134Aを形成し、一方の面とは反対側の面に反射膜141を形成するための反射膜141Aを形成する。偏光分離膜134Aおよび反射膜141Aの形成方法は、真空蒸着,イオンアシスト蒸着、イオンプレーティング法、スパッタ法等の従来の方法を用いて形成する。このようして得られた積層体を積層体30とする。
[3. Reflection film and polarization separation film formation process]
As shown in FIG. 4B, a polarization separation film 134A for forming a polarization separation film 134 is formed on one surface of the strip-shaped optical block 12A, and a reflection film 141 is formed on the surface opposite to the one surface. A reflective film 141A for forming the film is formed. The polarization separation film 134A and the reflection film 141A are formed using a conventional method such as vacuum deposition, ion-assisted deposition, ion plating, or sputtering. The laminate obtained in this manner is referred to as a laminate 30.

[4.貼合工程]
図4(C)に示すように、積層体20の短冊状光学ブロック11Aと積層体30の反射膜141とを接着剤を介して貼り合わせ、一体化させる。ここで塗布した接着剤からなる層は、第3の接着層142となる。このようにして得られた積層体を積層体40とする。
そして、積層体40を、接着剤からなる第2の接着層133を介して複数積層し、図6(A)に示されるような積層体50を作成する。
[4. Bonding process]
As shown in FIG. 4C, the strip-shaped optical block 11A of the laminate 20 and the reflective film 141 of the laminate 30 are bonded together with an adhesive and integrated. The layer made of the adhesive applied here becomes the third adhesive layer 142. The laminate obtained in this way is referred to as laminate 40.
Then, a plurality of stacked bodies 40 are stacked through the second adhesive layer 133 made of an adhesive, and a stacked body 50 as shown in FIG. 6A is created.

[5.切断工程]
切断工程では、積層体50を所定形状に切断する。
図6(A)に示されるように、両端部が揃えられた状態の積層体50を用意する。
そして、図6(B)に示されるように、積層された短冊状光学ブロック11A,12Aに、その平面に対して45°の方向Lに沿って所定間隔毎に切断する。切断された1つのブロック11Cを図7(A)に示す。図7(A)に示される通り、ブロック11Cは端面が平行四辺形とされる。そして、ブロック11Cには偏光分離変換部13と反射部14とが所定間隔毎に配置された構造となる。その後、ブロック11Cの所定位置をその平面に対して垂直な方向V1に沿って切断する。
[6.接合工程]
図7(B)に示される通り、切断されたブロック11Cを左右に並べて接合し、偏光分離変換素子1が成形される。
[5. Cutting process]
In the cutting step, the stacked body 50 is cut into a predetermined shape.
As shown in FIG. 6A, a laminate 50 is prepared in a state where both ends are aligned.
Then, as shown in FIG. 6B, the stacked strip-like optical blocks 11A and 12A are cut at predetermined intervals along a direction L of 45 ° with respect to the plane. One cut block 11C is shown in FIG. As shown in FIG. 7A, the end face of the block 11C is a parallelogram. The block 11C has a structure in which the polarization separation conversion unit 13 and the reflection unit 14 are arranged at predetermined intervals. Thereafter, the predetermined position of the block 11C is cut along a direction V1 perpendicular to the plane.
[6. Joining process]
As shown in FIG. 7B, the polarized blocks 11C are formed by joining the cut blocks 11C side by side.

従って、第1実施形態では、以下の作用効果を奏することができる。
(1)短冊状光学ブロック11Aを用意し、この短冊状光学ブロック11Aの一方の面に接着剤からなる第1の接着層131を介して短冊状位相差板132Aを接着させて積層体20を形成する。そして、積層体20の短冊状位相差板132Aが支持面91Aに接する状態となるように支持板91上で支持して短冊状光学ブロック11Aを研磨することにより積層体20の総厚を均一にした後、積層体20を基準面20Aが支持面91Aに接する状態に反転させ、短冊状位相差板132Aを研磨する方法を採用した。そのため、短冊状光学ブロック11Aまたは第1の接着層131の厚みが不均一であったとしても、最初に短冊状光学ブロック11Aを研磨して積層体20の総厚を均一化するので、その後の第2の研磨工程において、短冊状位相差板132Aの厚みを均一に研磨することができる。すなわち、短冊状位相差板132Aの表面と、短冊状位相差板132Aと第1の接着層131との界面と、が平行な状態に保たれる。したがって、偏光変換効率に影響を及ぼすことのない高精度な偏光分離変換素子1を製造することができる。
Therefore, in the first embodiment, the following operational effects can be achieved.
(1) A strip-shaped optical block 11A is prepared, and a strip-shaped retardation plate 132A is bonded to one surface of the strip-shaped optical block 11A via a first adhesive layer 131 made of an adhesive, whereby the laminate 20 is bonded. Form. Further, the strip-shaped optical block 11A is polished by supporting it on the support plate 91 so that the strip-like retardation plate 132A of the laminate 20 is in contact with the support surface 91A, thereby making the total thickness of the laminate 20 uniform. Then, the laminate 20 was inverted so that the reference surface 20A was in contact with the support surface 91A, and the strip-like retardation plate 132A was polished. Therefore, even if the thickness of the strip-shaped optical block 11A or the first adhesive layer 131 is not uniform, the strip-shaped optical block 11A is first polished to make the total thickness of the laminate 20 uniform. In the second polishing step, the thickness of the strip-like retardation plate 132A can be uniformly polished. That is, the surface of the strip-like retardation plate 132A and the interface between the strip-like retardation plate 132A and the first adhesive layer 131 are kept in a parallel state. Therefore, it is possible to manufacture a highly accurate polarization separation / conversion element 1 that does not affect the polarization conversion efficiency.

(2)前述のように、短冊状光学ブロック11Aおよび第1の接着層131の厚みが不均一であっても、総厚が均一かつ高精度な偏光分離変換素子1を製造することができるため、短冊状光学ブロック11Aの厚み精度および第1の接着層131を塗布する際の精度が要求されない。したがって、製造工程が容易になるため、安価な偏光分離変換素子1を効率よく製造することができる。 (2) As described above, even if the strip-shaped optical block 11A and the first adhesive layer 131 are non-uniform in thickness, the polarization separation conversion element 1 having a uniform total thickness and high accuracy can be manufactured. The thickness accuracy of the strip-shaped optical block 11A and the accuracy when applying the first adhesive layer 131 are not required. Therefore, since the manufacturing process is facilitated, the inexpensive polarization separation conversion element 1 can be efficiently manufactured.

[第2実施形態]
次に、本発明の第2実施形態を図8および図9に基づいて説明する。第2実施形態では、偏光分離変換素子の偏光分離変換部の構成および製造方法が第1実施形態とは異なる。
図8は本発明の第2実施形態の光学物品である偏光分離変換素子を示す要部拡大断面図であり、図9は第2実施形態における積層工程を説明する概略図である。
図8において、偏光分離変換部15は、第1の接着層151と位相差板152と偏光分離膜153と第2の接着層154と、を備えている。
偏光分離膜153は第1実施形態の偏光分離膜134と同様の構成であり、位相差板152は第1実施形態の位相差板132と同様の構成である。第1の接着層151および第2の接着層154に使用される接着剤も第1実施形態で使用したものと同様のものを使用することができる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. In 2nd Embodiment, the structure and manufacturing method of the polarization separation conversion part of a polarization separation conversion element differ from 1st Embodiment.
FIG. 8 is an enlarged cross-sectional view showing a main part of a polarization separation / conversion element that is an optical article according to the second embodiment of the present invention, and FIG. 9 is a schematic view for explaining a lamination process in the second embodiment.
In FIG. 8, the polarization separation conversion unit 15 includes a first adhesive layer 151, a retardation plate 152, a polarization separation film 153, and a second adhesive layer 154.
The polarization separation film 153 has the same configuration as the polarization separation film 134 of the first embodiment, and the retardation plate 152 has the same configuration as the retardation plate 132 of the first embodiment. The adhesive used for the first adhesive layer 151 and the second adhesive layer 154 can also be the same as that used in the first embodiment.

これらの層の厚みを、図8を参照して以下のように定義する。
第1の透光性部材11の厚みをt11、第1の接着層151の厚みをt12、位相差板152の厚みをt13、第2の透光性部材12の厚みをt2、第2の接着層154の厚みをt3、第3の接着層142の厚みをt4とする。
ここで、偏光分離変換素子6に入射する入射光に対する射出光の光量を確保するためには、偏光分離膜153の中間位置から第1の透光性部材11を含む反射膜141の中間位置までのピッチL1と、偏光分離膜153の中間位置から第2の透光性部材12を含む反射膜141の中間位置までのピッチL2と、が同一(L1=L2)であることが好ましい。すなわち、t11+t12+t13+t4=t2+t3となり、第1の透光性部材11と第1の接着層151と位相差板152とからなる積層体の厚みt1は、以下の式で定義される。なお、偏光分離膜153と反射膜141の膜厚は他の層の厚みに比べて無視できる程に小さい。
The thicknesses of these layers are defined as follows with reference to FIG.
The thickness of the first translucent member 11 is t11, the thickness of the first adhesive layer 151 is t12, the thickness of the retardation film 152 is t13, the thickness of the second translucent member 12 is t2, and the second adhesion is performed. The thickness of the layer 154 is t3, and the thickness of the third adhesive layer 142 is t4.
Here, in order to secure the light quantity of the emitted light with respect to the incident light incident on the polarization separation conversion element 6, from the intermediate position of the polarization separation film 153 to the intermediate position of the reflection film 141 including the first light-transmissive member 11. And the pitch L2 from the intermediate position of the polarization separation film 153 to the intermediate position of the reflective film 141 including the second light-transmissive member 12 are preferably the same (L1 = L2). That is, t11 + t12 + t13 + t4 = t2 + t3, and the thickness t1 of the laminate including the first light transmissive member 11, the first adhesive layer 151, and the retardation plate 152 is defined by the following equation. Note that the thicknesses of the polarization separation film 153 and the reflection film 141 are negligibly small compared to the thicknesses of the other layers.

[式5]
t1=t2+t3−t4 ・・・(2)
[Formula 5]
t1 = t2 + t3-t4 (2)

このような構成の偏光分離変換素子6の製造方法について図9を用いて説明する。
[1.研磨前接着工程]
まず、第1の透光性部材11を形成するための短冊状光学ブロック11Aを用意し、図9(A)に示すように、短冊状光学ブロック11Aの一方の面に接着剤を塗布して第1の接着層151を形成し、この第1の接着層151の上に位相差板152を形成するための短冊状位相差板152Aを積層して、接着させる。このように、短冊状光学ブロック11A、第1の接着層151および短冊状位相差板152Aからなる積層体を積層体61とする。
A method for manufacturing the polarization separation conversion element 6 having such a configuration will be described with reference to FIGS.
[1. Adhesion process before polishing]
First, a strip-shaped optical block 11A for forming the first translucent member 11 is prepared, and an adhesive is applied to one surface of the strip-shaped optical block 11A as shown in FIG. 9A. A first adhesive layer 151 is formed, and a strip-like phase difference plate 152A for forming the phase difference plate 152 is laminated on the first adhesive layer 151 and bonded. In this way, a laminate including the strip-shaped optical block 11A, the first adhesive layer 151, and the strip-shaped retardation plate 152A is referred to as a laminate 61.

[2.研磨工程]
研磨工程では、積層体61の両方の面を研磨して所定の厚み、すなわち前述の式(2)で示されるt1の厚みに加工する。研磨方法としては、第1実施形態で用いた装置を用い、同様の方法で第1の研磨工程および第2の研磨工程を実施する。
[3.偏光分離膜形成工程]
次に、所定の厚みにされた積層体61の短冊状位相差板152Aの上に偏光分離膜153を形成するための偏光分離膜153Aを真空蒸着,イオンアシスト蒸着、イオンプレーティング法、スパッタ法等の従来の方法を用いて形成する。このようにして得られた積層体を積層体63とする。
[2. Polishing process]
In the polishing step, both surfaces of the laminate 61 are polished and processed into a predetermined thickness, that is, a thickness of t1 represented by the above-described formula (2). As a polishing method, the apparatus used in the first embodiment is used, and the first polishing process and the second polishing process are performed by the same method.
[3. Polarization separation film forming process]
Next, the polarization separation film 153A for forming the polarization separation film 153 on the strip-like retardation plate 152A of the laminate 61 having a predetermined thickness is vacuum-deposited, ion-assisted deposition, ion plating method, sputtering method. The conventional method such as the above is used. The laminated body obtained in this manner is referred to as a laminated body 63.

[4.反射膜形成工程]
図9(B)に示すように、短冊状光学ブロック12Aの一方の面に反射膜141を形成するための反射膜141Aを真空蒸着,イオンアシスト蒸着、イオンプレーティング法、スパッタ法等の従来の方法を用いて形成する。このようして得られた積層体を積層体64とする。
[4. Reflective film forming process]
As shown in FIG. 9B, a reflective film 141A for forming the reflective film 141 on one surface of the strip-shaped optical block 12A is formed by a conventional method such as vacuum deposition, ion-assisted deposition, ion plating method, sputtering method or the like. Form using method. The laminate obtained in this way is referred to as laminate 64.

[5.貼合工程]
図9(C)に示すように、積層体63の短冊状光学ブロック11Aと積層体64の反射膜141Aとを接着剤を介して貼り合わせ、一体化させる。ここで塗布した接着剤は、第3の接着層142となる。このようにして得られた積層体を積層体65とする。
そして、積層体65を、第2の接着層154となる接着層を介して複数積層する。
[5. Bonding process]
As shown in FIG. 9C, the strip-shaped optical block 11A of the laminated body 63 and the reflective film 141A of the laminated body 64 are bonded together with an adhesive and integrated. The adhesive applied here becomes the third adhesive layer 142. The laminate obtained in this manner is referred to as a laminate 65.
Then, a plurality of stacked bodies 65 are stacked through an adhesive layer that becomes the second adhesive layer 154.

以降は、第1実施形態と同様にして、切断工程および接合工程を実施して、図8に示す偏光分離変換素子6が成形される。
従って、第2実施形態では、第1実施形態の効果(1)(2)と同様の効果を奏することができる。
Thereafter, similarly to the first embodiment, the cutting step and the joining step are performed, and the polarization separation conversion element 6 shown in FIG. 8 is formed.
Therefore, in the second embodiment, the same effects as the effects (1) and (2) of the first embodiment can be achieved.

[第3実施形態]
次に、本発明の第3実施形態を図10および図11に基づいて説明する。第3実施形態では、偏光分離変換素子の反射部の構成および製造方法が第1実施形態とは異なる。
図10は本発明の第3実施形態の光学物品である偏光分離変換素子を示す要部拡大断面図であり、図11は第3実施形態における積層工程を説明する概略図である。
図10において、反射部16は、第1の透光性部材11側から順に反射膜161、第3の接着層162が積層されている。反射膜161は第1実施形態の反射膜141と同様の構成であり、第3の接着層162に使用される接着剤も第1実施形態で使用したものと同様のものを使用することができる。
[Third embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, the configuration and the manufacturing method of the reflection part of the polarization separation conversion element are different from those in the first embodiment.
FIG. 10 is an enlarged cross-sectional view showing a main part of a polarization separation / conversion element that is an optical article according to a third embodiment of the present invention, and FIG. 11 is a schematic view for explaining a lamination process in the third embodiment.
In FIG. 10, the reflective portion 16 is formed by laminating a reflective film 161 and a third adhesive layer 162 in order from the first translucent member 11 side. The reflective film 161 has the same configuration as that of the reflective film 141 of the first embodiment, and the same adhesive as that used in the first embodiment can be used for the third adhesive layer 162. .

これらの層の厚みを、図10を参照して以下のように定義する。
第1の透光性部材11の厚みをt11、第1の接着層131の厚みをt12、位相差板132の厚みをt13、第2の透光性部材12の厚みをt2、第2の接着層133の厚みをt3、第3の接着層162の厚みをt4とする。
ここで、偏光分離変換素子7に入射する入射光に対する射出光の光量を確保するためには、偏光分離膜134の中間位置から第1の透光性部材11を含む反射膜161の中間位置までのピッチL1と、偏光分離膜134の中間位置から第2の透光性部材12を含む反射膜161の中間位置までのピッチL2と、が同一(L1=L2)であることが好ましい。すなわち、t11+t12+t13+t3=t2+t4となり、第1の透光性部材11と第1の接着層131と位相差板132とからなる積層体の厚みt1は、以下の式で定義される。なお、偏光分離膜と反射膜の膜厚は他の層の厚みに比べて無視できる程に小さい。
The thicknesses of these layers are defined as follows with reference to FIG.
The thickness of the first translucent member 11 is t11, the thickness of the first adhesive layer 131 is t12, the thickness of the retardation plate 132 is t13, the thickness of the second translucent member 12 is t2, and the second adhesive The thickness of the layer 133 is t3, and the thickness of the third adhesive layer 162 is t4.
Here, in order to secure the amount of the emitted light with respect to the incident light incident on the polarization separation conversion element 7, from the intermediate position of the polarization separation film 134 to the intermediate position of the reflection film 161 including the first light transmissive member 11. And the pitch L2 from the intermediate position of the polarization separating film 134 to the intermediate position of the reflective film 161 including the second light transmissive member 12 are preferably the same (L1 = L2). That is, t11 + t12 + t13 + t3 = t2 + t4, and the thickness t1 of the laminate including the first light transmissive member 11, the first adhesive layer 131, and the retardation plate 132 is defined by the following equation. Note that the thicknesses of the polarization separation film and the reflection film are negligibly small compared to the thicknesses of the other layers.

[式6]
t1=t2−t3+t4 ・・・(3)
[Formula 6]
t1 = t2−t3 + t4 (3)

このような構成の偏光分離変換素子7の製造方法について図11を用いて説明する。
[1.研磨前接着工程]
まず、第1の透光性部材11を形成するための短冊状光学ブロック11Aを用意し、図11(A)に示すように、短冊状光学ブロック11Aの一方の面に接着剤を塗布して第1の接着層131を形成し、この第1の接着層131の上に位相差板132を形成するための短冊状位相差板132Aを積層して接着させる。このようにして得られた積層体を積層体71とする。
A method for manufacturing the polarization separation conversion element 7 having such a configuration will be described with reference to FIGS.
[1. Adhesion process before polishing]
First, a strip-shaped optical block 11A for forming the first translucent member 11 is prepared, and an adhesive is applied to one surface of the strip-shaped optical block 11A as shown in FIG. A first adhesive layer 131 is formed, and a strip-like retardation plate 132A for forming the retardation plate 132 is laminated on the first adhesive layer 131 and bonded. The laminate obtained in this way is referred to as laminate 71.

[2.研磨工程]
研磨工程では、積層体71の両方の面を研磨して所定の厚み、すなわち前述の式(3)で示されるt1の厚みに加工する。研磨方法としては、第1実施形態で用いた装置を用い、同様の方法で第1の研磨工程および第2の研磨工程を実施する。
[2. Polishing process]
In the polishing step, both surfaces of the laminated body 71 are polished and processed into a predetermined thickness, that is, a thickness of t1 represented by the above formula (3). As a polishing method, the apparatus used in the first embodiment is used, and the first polishing process and the second polishing process are performed by the same method.

[3.反射膜形成工程]
次に、所定の厚みにされた積層体71の短冊状光学ブロック11Aの他方の面に反射膜161を形成するための反射膜161Aを真空蒸着,イオンアシスト蒸着、イオンプレーティング法、スパッタ法等の従来の方法を用いて形成する。このようして得られた積層体を積層体72とする。
[3. Reflective film forming process]
Next, a reflective film 161A for forming the reflective film 161 on the other surface of the strip-shaped optical block 11A of the laminate 71 having a predetermined thickness is vacuum-deposited, ion-assisted deposition, ion plating method, sputtering method, etc. The conventional method is used. The laminate obtained in this way is designated as laminate 72.

[4.偏光分離膜形成工程]
図11(B)に示すように、短冊状光学ブロック12Aの一方の面に偏光分離膜134を形成するための偏光分離膜134Aを真空蒸着,イオンアシスト蒸着、イオンプレーティング法、スパッタ法等の従来の方法を用いて形成する。このようにして得られた積層体を積層体73とする。
[4. Polarization separation film forming process]
As shown in FIG. 11B, a polarization separation film 134A for forming the polarization separation film 134 on one surface of the strip-shaped optical block 12A is formed by vacuum deposition, ion assist deposition, ion plating method, sputtering method, or the like. Form using conventional methods. The laminate obtained in this way is referred to as laminate 73.

[5.貼合工程]
図11(C)に示すように、積層体72の反射膜161Aと積層体73の短冊状光学ブロック12Aを接着剤を介して貼り合わせ、一体化させる。ここで塗布した接着剤は、第3の接着層162となる。このようにして得られた積層体を積層体74とする。
そして、積層体74を、接着剤からなる第2の接着層133を介して複数積層する。
[5. Bonding process]
As shown in FIG. 11C, the reflective film 161A of the laminated body 72 and the strip-shaped optical block 12A of the laminated body 73 are bonded together with an adhesive and integrated. The adhesive applied here becomes the third adhesive layer 162. The laminate obtained in this manner is referred to as a laminate 74.
Then, a plurality of laminated bodies 74 are laminated through the second adhesive layer 133 made of an adhesive.

以降は、第1実施形態と同様にして、切断工程および接合工程を実施して、図10に示す偏光分離変換素子7が成形される。
従って、第3実施形態では、第1実施形態の効果(1)(2)と同様の効果を奏することができる。
Thereafter, similarly to the first embodiment, the cutting step and the joining step are performed, and the polarization separation conversion element 7 shown in FIG. 10 is formed.
Therefore, in the third embodiment, the same effects as the effects (1) and (2) of the first embodiment can be achieved.

以下、本実施形態の効果を確認するために、実施例について説明する。
[実施例1]
実施例1は第1実施形態に対応した偏光分離変換素子1の実施例である。各層に用いた材料と厚みは以下の通りである。
第1の透光性部材および第2の透光性部材:ガラス(SCHOTT社(独)製、商品名「B270」)、厚み2〜3mm
位相差板 :人工水晶、目標中心厚み30μm
接着層 :光硬化型接着剤(アーデル社製、商品名「UT20」)、厚み数μm
偏光分離膜:第1実施形態に記載の材料、厚み数μm
反射膜 :第1実施形態に記載の材料、厚み数μm
Hereinafter, examples will be described in order to confirm the effects of the present embodiment.
[Example 1]
Example 1 is an example of the polarization separation conversion element 1 corresponding to the first embodiment. The materials and thicknesses used for each layer are as follows.
First translucent member and second translucent member: glass (manufactured by SCHOTT (Germany), trade name “B270”), thickness of 2 to 3 mm
Phase difference plate: Artificial quartz, target center thickness 30μm
Adhesive layer: photocurable adhesive (trade name “UT20”, manufactured by Adel), thickness of several μm
Polarized light separation film: material described in the first embodiment, thickness of several μm
Reflective film: material described in the first embodiment, thickness of several μm

上記構成の偏光分離変換素子を第1実施形態に記載の製造方法で複数作製したところ、作製後の位相差板の厚みは面内28.5μm以上31.5μm以下の範囲内であった。すなわち、位相差板の研磨誤差は±1.5μm以内であった。
そして、これらの偏光分離変換素子について、各波長における偏光変換効率を日立製分光光度計U4100を用いて測定した。測定結果を図12に示す。
When a plurality of polarization separation / conversion elements having the above-described configuration were produced by the production method described in the first embodiment, the thickness of the retardation film after production was in the range of 28.5 μm to 31.5 μm. That is, the polishing error of the retardation plate was within ± 1.5 μm.
And about these polarization splitting conversion elements, the polarization conversion efficiency in each wavelength was measured using the Hitachi spectrophotometer U4100. The measurement results are shown in FIG.

[比較例1]
実施例1と同様の構成の偏光分離変換素子を、従来の方法で複数作成した。すなわち、積層体20の短冊状光学ブロック11Aが支持面91Aに接する状態となるように支持板91上で支持して短冊状位相差板132Aを研磨した後、積層体20を反転させ、短冊状位相差板132Aが支持面91Aに接する状態となるように支持板91上で支持して短冊状光学ブロック11Aを研磨して、厚みt1の積層体20を形成した。
[Comparative Example 1]
A plurality of polarization separation / conversion elements having the same configuration as in Example 1 were prepared by a conventional method. That is, the strip-shaped optical block 11A of the laminate 20 is supported on the support plate 91 so that the strip-shaped optical block 11A is in contact with the support surface 91A, and the strip-shaped retardation plate 132A is polished. The strip-shaped optical block 11A was polished by being supported on the support plate 91 so that the retardation plate 132A was in contact with the support surface 91A, thereby forming the laminate 20 having a thickness t1.

作製後の位相差板の厚みは27.0μm以上33.0μm以下の範囲内であった。すなわち、位相差板の研磨誤差は±3.0μm以内であった。
そして、これらの偏光分離変換素子について、各波長における偏光変換効率を日立製分光光度計U4100を用いて測定した。測定結果を図13に示す。
The thickness of the retardation plate after production was in the range of 27.0 μm or more and 33.0 μm or less. That is, the polishing error of the retardation plate was within ± 3.0 μm.
And about these polarization splitting conversion elements, the polarization conversion efficiency in each wavelength was measured using the Hitachi spectrophotometer U4100. The measurement results are shown in FIG.

実施例1では、水晶の厚みのばらつきが面内±1.5μmであり、比較例1の±3.0μmに比べてばらつきが小さくなった。
また、図12および図13からわかるように、波長500nm以上600nm以下の領域において、偏光変換効率が安定して高くなっている。
In Example 1, the variation in the thickness of the crystal was in-plane ± 1.5 μm, and the variation was smaller than that in Comparative Example 1 of ± 3.0 μm.
Further, as can be seen from FIGS. 12 and 13, the polarization conversion efficiency is stably high in the wavelength region of 500 nm to 600 nm.

本発明は、液晶プロジェクタ、その他の装置に用いられる光学物品に利用できる。   The present invention can be used for optical articles used in liquid crystal projectors and other devices.

本発明の第1実施形態の光学物品である偏光分離変換素子を示す端面図。1 is an end view showing a polarization separation / conversion element that is an optical article according to a first embodiment of the present invention. 図1の要部拡大断面図。The principal part expanded sectional view of FIG. 図1の要部拡大断面図。The principal part expanded sectional view of FIG. 第1実施形態における積層工程を説明する概略図。Schematic explaining the lamination | stacking process in 1st Embodiment. 第1実施形態における研磨工程を説明する概略図。Schematic explaining the grinding | polishing process in 1st Embodiment. 第1実施形態における切断工程を説明する概略図。Schematic explaining the cutting process in 1st Embodiment. 第1実施形態における切断工程を説明する概略図。Schematic explaining the cutting process in 1st Embodiment. 本発明の第2実施形態の光学物品である偏光分離変換素子を示す要部拡大断面図。The principal part expanded sectional view which shows the polarization separation conversion element which is an optical article of 2nd Embodiment of this invention. 第2実施形態における積層工程を説明する概略図。Schematic explaining the lamination | stacking process in 2nd Embodiment. 本発明の第3実施形態の光学物品である偏光分離変換素子を示す要部拡大断面図。The principal part expanded sectional view which shows the polarization separation conversion element which is an optical article of 3rd Embodiment of this invention. 第3実施形態における積層工程を説明する概略図。Schematic explaining the lamination | stacking process in 3rd Embodiment. 実施例1の結果を示すグラフ。3 is a graph showing the results of Example 1. 比較例1の結果を示すグラフ。The graph which shows the result of the comparative example 1.

符号の説明Explanation of symbols

1…偏光分離変換素子(光学物品)、11…第1の透光性部材、12…第2の透光性部材、13…偏光分離変換部、14…反射部、131…第1の接着層、132…位相差板、133…第2の接着層、134…偏光分離膜、141…反射膜、142…第3の接着層   DESCRIPTION OF SYMBOLS 1 ... Polarization separation conversion element (optical article), 11 ... 1st translucent member, 12 ... 2nd translucent member, 13 ... Polarization separation conversion part, 14 ... Reflection part, 131 ... 1st contact bonding layer , 132 ... retardation plate, 133 ... second adhesive layer, 134 ... polarization separation film, 141 ... reflective film, 142 ... third adhesive layer

Claims (5)

透光性部材と、無機性結晶材料と、を備えた光学物品の製造方法であって、
ガラスからなる第1の透光性部材の一方の面と前記無機性結晶材料の一方の面とを接着剤からなる第1の接着層で接着する研磨前接着工程と、
前記無機性結晶材料の他方の面を基準面として前記第1の透光性部材の他方の面を研磨する第1の研磨工程と、
前記第1の研磨工程で研磨された前記第1の透光性部材の他方の面を基準面として前記無機性結晶材料を所定の厚みに研磨する第2の研磨工程と、を備えたことを特徴とする光学物品の製造方法。
A method for producing an optical article comprising a translucent member and an inorganic crystal material,
A pre-polishing adhesion step of adhering one surface of the first translucent member made of glass and one surface of the inorganic crystal material with a first adhesive layer made of an adhesive;
A first polishing step of polishing the other surface of the first light-transmissive member using the other surface of the inorganic crystal material as a reference surface;
And a second polishing step of polishing the inorganic crystal material to a predetermined thickness using the other surface of the first light-transmissive member polished in the first polishing step as a reference surface. A method for producing an optical article.
請求項1に記載の光学物品の製造方法において、
前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、接着剤からなる第2の接着層と、偏光分離膜と、第2の透光性部材と、反射膜と、接着剤からなる第3の接着層と、を順に繰り返し積層する積層工程を備え、
前記積層体を、以下の式(1)を満たす厚みに形成することを特徴とする光学物品の製造方法。
t1=t2−t3−t4 ・・・(1)
(式中、t1は前記積層体の厚み、t2は前記第2の透光性部材の厚み、t3は前記第2の接着層の厚み、t4は前記第3の接着層の厚みである。)
In the manufacturing method of the optical article according to claim 1,
The first translucent member, the first adhesive layer and the laminate made of the inorganic crystal material, the second adhesive layer made of an adhesive, the polarization separation film, and the second translucent member And a laminating step of repeatedly laminating a reflective film and a third adhesive layer made of an adhesive in order,
The manufacturing method of the optical article characterized by forming the said laminated body in the thickness which satisfy | fills the following formula | equation (1).
t1 = t2-t3-t4 (1)
(In the formula, t1 is the thickness of the laminate, t2 is the thickness of the second translucent member, t3 is the thickness of the second adhesive layer, and t4 is the thickness of the third adhesive layer.)
請求項1に記載の光学物品の製造方法において、
前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、偏光分離膜と、接着剤からなる第2の接着層と、第2の透光性部材と、反射膜と、接着剤からなる第3の接着層と、を順に繰り返し積層する積層工程を備え、
前記積層体を、以下の式(2)を満たす厚みに形成することを特徴とする光学物品の製造方法。
t1=t2+t3−t4 ・・・(2)
(式中、t1は前記積層体の厚み、t2は前記第2の透光性部材の厚み、t3は前記第2の接着層の厚み、t4は前記第3の接着層の厚みである。)
In the manufacturing method of the optical article according to claim 1,
The first translucent member, the first adhesive layer and a laminate composed of the inorganic crystal material, a polarization separation film, a second adhesive layer composed of an adhesive, and a second translucent member And a laminating step of repeatedly laminating a reflective film and a third adhesive layer made of an adhesive in order,
The manufacturing method of the optical article characterized by forming the said laminated body in the thickness which satisfy | fills the following formula | equation (2).
t1 = t2 + t3-t4 (2)
(In the formula, t1 is the thickness of the laminate, t2 is the thickness of the second translucent member, t3 is the thickness of the second adhesive layer, and t4 is the thickness of the third adhesive layer.)
請求項1に記載の光学物品の製造方法において、
前記第1の透光性部材、前記第1の接着層および前記無機性結晶材料からなる積層体と、接着剤からなる第2の接着層と、偏光分離膜と、第2の透光性部材と、接着剤からなる第3の接着層と、反射膜と、を順に繰り返し積層する積層工程を備え、
前記積層体を、以下の式(3)を満たす厚みに形成することを特徴とする光学物品の製造方法。
t1=t2−t3+t4 ・・・(3)
(式中、t1は前記積層体の厚み、t2は前記第2の透光性部材の厚み、t3は前記第2の接着層の厚み、t4は前記第3の接着層の厚みである。)
In the manufacturing method of the optical article according to claim 1,
The first translucent member, the first adhesive layer and the laminate made of the inorganic crystal material, the second adhesive layer made of an adhesive, the polarization separation film, and the second translucent member And a laminating step of repeatedly laminating a third adhesive layer made of an adhesive and a reflective film in order,
The manufacturing method of the optical article characterized by forming the said laminated body in the thickness which satisfy | fills the following formula | equation (3).
t1 = t2−t3 + t4 (3)
(In the formula, t1 is the thickness of the laminate, t2 is the thickness of the second translucent member, t3 is the thickness of the second adhesive layer, and t4 is the thickness of the third adhesive layer.)
請求項1から請求項4のいずれかに記載の光学物品の製造方法において、
前記無機性結晶材料は水晶であり、
前記光学物品は、前記透光性部材と前記水晶と偏光分離膜と反射膜とが積層されてなる偏光ビームスプリッタであることを特徴とする光学物品の製造方法。
In the manufacturing method of the optical article in any one of Claims 1-4,
The inorganic crystalline material is quartz;
The method for manufacturing an optical article, wherein the optical article is a polarizing beam splitter formed by laminating the light-transmissive member, the crystal, a polarization separation film, and a reflection film.
JP2008271731A 2008-10-22 2008-10-22 Method for manufacturing optical article Active JP5458545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271731A JP5458545B2 (en) 2008-10-22 2008-10-22 Method for manufacturing optical article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271731A JP5458545B2 (en) 2008-10-22 2008-10-22 Method for manufacturing optical article

Publications (2)

Publication Number Publication Date
JP2010101992A JP2010101992A (en) 2010-05-06
JP5458545B2 true JP5458545B2 (en) 2014-04-02

Family

ID=42292713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271731A Active JP5458545B2 (en) 2008-10-22 2008-10-22 Method for manufacturing optical article

Country Status (1)

Country Link
JP (1) JP5458545B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541056B2 (en) 2010-10-01 2014-07-09 セイコーエプソン株式会社 Polarization conversion element, polarization conversion unit, projection device, and method of manufacturing polarization conversion element
JP2012226121A (en) * 2011-04-20 2012-11-15 Seiko Epson Corp Polarization conversion element, polarization conversion unit, and projection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080265B2 (en) * 2002-07-11 2008-04-23 Agcテクノグラス株式会社 Polarization conversion element and manufacturing method thereof
JP2005099779A (en) * 2003-08-29 2005-04-14 Seiko Instruments Inc Quartz crystal plate and display device using it
JP4500043B2 (en) * 2003-12-25 2010-07-14 セイコーインスツル株式会社 Manufacturing method of crystal plate for display device
JP2006276313A (en) * 2005-03-29 2006-10-12 Kyocera Kinseki Corp Manufacturing method of optical filter
JP2007232870A (en) * 2006-02-28 2007-09-13 Seiko Epson Corp Projector

Also Published As

Publication number Publication date
JP2010101992A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP2021131566A (en) Method for manufacturing transmission diffraction grating
US20130038933A1 (en) Beam splitter and method for manufacturing the same
KR20010007316A (en) Method for manufacturing a polarization beam splitter
JP2010230856A (en) Polarization conversion device an polarized illumination optical device, and liquid crystal projector
JP2007279692A (en) Polarized light splitting device and method for manufacturing the same
US8467128B2 (en) Polarizing cube and method of fabricating the same
JP2007206225A (en) Polarization conversion element
US7961392B2 (en) Polarization beam splitter and polarization conversion element
JP5209932B2 (en) Polarization beam splitter and polarization conversion element
JP5458545B2 (en) Method for manufacturing optical article
JP2007279199A (en) Polarization conversion element, and method for manufacturing the same
CN105717564A (en) Depolarization pentagonal prism and manufacturing method thereof
JPH11211916A (en) Polarized beam splitter
JP3584257B2 (en) Polarizing beam splitter
JP2006064871A (en) Polarized light converting element and manufacturing method thereof
KR20070093359A (en) Polarization conversion element and method for manufacturing the same
JP4080265B2 (en) Polarization conversion element and manufacturing method thereof
JP4392195B2 (en) Polarization conversion element and method for manufacturing the same
TWM264502U (en) Polarized light split device, polarized light transfer device and projection type display
JP2003014932A (en) Polarized beam splitter and method for fabricating polarized beam splitter
JP2007212694A (en) Beam splitter
JP2011013457A (en) Method for producing prism assembly
WO2007129375A1 (en) Optical device component
JP2001350024A (en) Polarizing beam splitter
WO2020161950A1 (en) Polarization beam splitter and optical device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350