JP2004145305A - Polarization conversion element and its manufacturing method - Google Patents

Polarization conversion element and its manufacturing method Download PDF

Info

Publication number
JP2004145305A
JP2004145305A JP2003326653A JP2003326653A JP2004145305A JP 2004145305 A JP2004145305 A JP 2004145305A JP 2003326653 A JP2003326653 A JP 2003326653A JP 2003326653 A JP2003326653 A JP 2003326653A JP 2004145305 A JP2004145305 A JP 2004145305A
Authority
JP
Japan
Prior art keywords
light
film
conversion element
polarization conversion
inclined end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326653A
Other languages
Japanese (ja)
Inventor
Kuninori Okuhara
奥原 国乗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HI MEC CO Ltd
HI-MEC CO Ltd
Original Assignee
HI MEC CO Ltd
HI-MEC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HI MEC CO Ltd, HI-MEC CO Ltd filed Critical HI MEC CO Ltd
Priority to JP2003326653A priority Critical patent/JP2004145305A/en
Publication of JP2004145305A publication Critical patent/JP2004145305A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization conversion element with improved heat resistance and weather resistance and to provide its manufacturing method. <P>SOLUTION: In the polarization conversion element, a polarization separation film 8 which transmits P-waves and reflects S-waves in the P-waves and S-waves is formed on an inclined end face 11 of a first light transmitting base material 10. A reflective film 9 is formed on an inclined end face 22 of a second light transmitting base material 20. A half-wave retardation film 30 consisting of a uniaxially stretched single-layer polycarbonate film is joined with a photosetting adhesive 4 between the inclined end face 11 of the first light transmitting base material 10 and the inclined end face 21 of the second light transmitting base material 20. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、液晶プロジェクターや光ピックアップ装置等に搭載する偏光変換素子、およびその製造方法に関するものである。 The present invention relates to a polarization conversion element mounted on a liquid crystal projector, an optical pickup device, and the like, and a method for manufacturing the same.

 液晶プロジェクターは、液晶パネル内を効率よく透過させるために光源から出射された自然光を偏光変換素子(ビームスプリッタ、およびλ/2位相差板)を用いて、出射光の偏波面をS波(S偏光光)あるいはP波(P偏光光)に統一させている。具体的には、ビームスプリッタで出射光をS波、P波に分離し、P波のみがλ/2位相差板を通過するように構成することによって、P波を偏波面が90度ねじれたS波に変換している。このS波と、ビームスプリッターによって分離されたS波が液晶パネルに到達するので、自然光が効率よく利用されプロジェクターが明るく画像再現ができる。ここで、従来の偏光変換素子は、図9に示すように、λ/2位相差板201が粘着材202を介してビームスプリッタ500の光出射側の表面に貼り付けられている(例えば、特許文献1を参照)。
特開平2−227901号公報
The liquid crystal projector uses a polarization converter (a beam splitter and a λ / 2 retardation plate) to convert natural light emitted from a light source into an S wave (S) to efficiently transmit the light through the liquid crystal panel. (Polarized light) or P-wave (P-polarized light). Specifically, the beam splitter separates outgoing light into S-waves and P-waves, and only the P-wave passes through the λ / 2 retardation plate, whereby the polarization plane of the P-wave is twisted by 90 degrees. Converted to S-wave. Since the S wave and the S wave separated by the beam splitter reach the liquid crystal panel, natural light is efficiently used and the projector can reproduce a bright image. Here, in the conventional polarization conversion element, as shown in FIG. 9, a λ / 2 retardation plate 201 is attached to a light emission side surface of a beam splitter 500 via an adhesive 202 (for example, see Patent Reference 1).
JP-A-2-227901

 このような構成の偏光変換素子においては、λ/2位相差板501がビームスプリッタ500の表面に露出した状態で搭載していることから、λ/2位相差板501として高分子フィルムからなるものを用いた場合、耐久性や耐候性が著しく低いという問題がある。また、λ/2位相差板501とビームスプリッタ500とが粘着材502で貼合されているので、粘着材502の耐久性が、全体の耐久性に影響を及ぼしてしまうという問題がある。しかも、高分子からなるλ/2位相差板501、および粘着材502の耐候性や耐久性を大幅に上げることは非常に困難である。そのため、偏光変換素子は、光源に最も近いデバイスでありながら耐熱性などが向上できず、プロジェクター等の設計の自由を奪っていた。 In the polarization conversion element having such a configuration, since the λ / 2 retardation plate 501 is mounted so as to be exposed on the surface of the beam splitter 500, the λ / 2 retardation plate 501 is made of a polymer film. In the case of using, there is a problem that durability and weather resistance are extremely low. Further, since the λ / 2 retardation plate 501 and the beam splitter 500 are bonded with the adhesive 502, there is a problem that the durability of the adhesive 502 affects the overall durability. Moreover, it is very difficult to greatly improve the weather resistance and durability of the λ / 2 retardation plate 501 and the adhesive 502 made of a polymer. For this reason, the polarization conversion element, even though it is the device closest to the light source, could not improve the heat resistance and the like, and deprived the design freedom of the projector and the like.

 以上の問題点に鑑みて、本発明の課題は、耐熱性および耐候性を向上させた偏光変換素子、及びその製造方法を提案することである。 In view of the above problems, an object of the present invention is to propose a polarization conversion element having improved heat resistance and weather resistance, and a method for manufacturing the same.

 上記課題を解決するために、本発明に係る偏光変換素子では、複数の透光性部材の傾斜端面同士が接合された透光性基材中に第1の光学層と第2の光学層とが互いに平行、かつ、前記透光性基材に対する入射光軸に斜めに配置され、前記第1の光学層は、当該第1の光学層を両側で挟む第1の透光性部材および第2の透光性部材のうち、前記第1の透光性部材の傾斜端面に形成された偏光分離膜と、当該第1の透光性部材の前記偏光分離膜が形成された傾斜端面と前記第2の透光性部材の傾斜端面との間に接着固定されたλ/2位相差フィルム(波長板/位相差板)とから構成され、前記第2の光学層は、反射膜であり、前記λ/2位相差フィルムは、一軸延伸された単層の高分子フィルムからなることを特徴とする。すなわち、本発明は、高分子フィルムからなるλ/2位相差フィルムを透光性基材の中に挟み込み、かつ、λ/2位相差フィルムとして単層の高分子フィルム、すなわち、一軸延伸された高分子フィルムを単層で用いたことを特徴とする。 In order to solve the above problems, in the polarization conversion element according to the present invention, the first optical layer and the second optical layer are provided in a light-transmitting base material in which the inclined end faces of the plurality of light-transmitting members are joined. Are arranged parallel to each other and obliquely to the incident optical axis with respect to the light-transmitting substrate, wherein the first optical layer has a first light-transmitting member and a second light-transmitting member sandwiching the first optical layer on both sides. Out of the light-transmitting member, the polarization separation film formed on the inclined end surface of the first light-transmitting member, the inclined end surface of the first light-transmitting member on which the polarization separation film is formed, and And a λ / 2 retardation film (wave plate / retardation plate) bonded and fixed to the inclined end surface of the second light-transmitting member, wherein the second optical layer is a reflective film, The λ / 2 retardation film is characterized by being composed of a uniaxially stretched single-layer polymer film. That is, in the present invention, a λ / 2 retardation film made of a polymer film is sandwiched between light-transmitting substrates, and a single-layer polymer film as a λ / 2 retardation film, that is, uniaxially stretched. It is characterized in that a polymer film is used in a single layer.

 本発明によれば、入射光は、例えば、第1の透光性基材の界面に形成された偏光分離膜でS波(S偏光光)、P波(P偏光光)に分離された後、S波、P波の一方の波を有する光のみがλ/2位相差フィルムを通過し、偏波面が90度ねじられる。この結果、偏光変換素子を出射する際の、偏波面を統一することがきる。また、本発明では、λ/2位相差フィルムを透光性基材の中に挟み込んで接着したので、λ/2位相差フィルムが偏光変換素子の出射光側の表面に露出しておらず、粘着材で貼合されていない。従って、偏光変換素子の耐熱性、耐湿性が向上する。それ故、光源に近いデバイスの熱耐久性を向上できるので、液晶プロジェクターの静粛性(ファンによる空気音の削減)や、装置全体の耐久期間をのばすことができる。 According to the present invention, for example, after the incident light is separated into S-waves (S-polarized light) and P-waves (P-polarized light) by a polarization separation film formed on the interface of the first light-transmissive substrate. , S-wave, or P-wave only passes through the λ / 2 retardation film, and the plane of polarization is twisted by 90 degrees. As a result, it is possible to unify the plane of polarization when emitting the polarization conversion element. Further, in the present invention, since the λ / 2 retardation film was sandwiched and adhered to the translucent substrate, the λ / 2 retardation film was not exposed on the surface of the polarization conversion element on the emission light side, Not bonded with adhesive. Therefore, heat resistance and moisture resistance of the polarization conversion element are improved. Therefore, the thermal durability of a device close to the light source can be improved, so that the quietness of the liquid crystal projector (reduction of air noise by a fan) and the durability of the entire apparatus can be extended.

 本発明の別の形態に係る偏光変換素子では、複数の透光性部材の傾斜端面同士が接合された透光性基材中に第1の光学層と第2の光学層とが互いに平行、かつ、前記透光性基材に対する入射光軸に斜めに配置され、前記第1の光学層は、偏光分離膜であり、前記第2の光学層は、当該第2の光学層を両側で挟む第1の透光性部材および第2の透光性部材のうち、前記第2の透光性部材の傾斜端面に形成された反射膜と、当該第2の透光性部材の前記反射膜が形成された傾斜端面と前記第1の透光性部材の端面との間に接着固定されたλ/4位相差フィルム(波長板/位相差板)とから構成され、前記λ/4位相差フィルムは、一軸延伸された単層の高分子フィルムからなることを特徴とする。すなわち、本発明は、高分子フィルムからなるλ/4位相差フィルムを透光性基材の中に挟み込み、かつ、λ/4位相差フィルムとして単層の高分子フィルム、すなわち、一軸延伸された高分子フィルムを単層で用いたことを特徴とする。 In the polarization conversion element according to another aspect of the present invention, the first optical layer and the second optical layer are parallel to each other in the light-transmitting base material in which the inclined end faces of the plurality of light-transmitting members are joined to each other. The first optical layer is disposed obliquely to an optical axis of incidence with respect to the light-transmitting substrate, the first optical layer is a polarization separation film, and the second optical layer sandwiches the second optical layer on both sides. Of the first light-transmitting member and the second light-transmitting member, the reflection film formed on the inclined end face of the second light-transmitting member and the reflection film of the second light-transmitting member are different. The λ / 4 retardation film, comprising a λ / 4 retardation film (wave plate / retardation plate) adhesively fixed between the formed inclined end face and the end face of the first light transmitting member. Is characterized by comprising a uniaxially stretched single-layer polymer film. That is, in the present invention, a λ / 4 retardation film made of a polymer film is sandwiched in a light-transmitting substrate, and a single-layer polymer film as a λ / 4 retardation film, that is, uniaxially stretched. It is characterized in that a polymer film is used in a single layer.

 本発明によれば、入射光は、第1の透光性基材の界面に形成された偏光分離膜でS波(S偏光光)、P波(P偏光光)に分離された後、S波、P波の一方の波を有する光のみがλ/4位相差フィルムを通過し、偏波面が45度ねじられて、第2の透光性基材の界面に形成された反射膜に至る。この反射膜により全反射された光は、再びλ/4位相差フィルムを通過し、偏波面が45度ねじられる。この結果、偏光変換素子を出射する際の、偏波面を統一することがきる。また、λ/4位相差フィルムを透光性基材の中に挟み込んで接着したので、λ/4位相差フィルムが偏光変換素子の出射光側の表面に露出しておらず、粘着材で貼合されていない。この結果、偏光変換素子の耐熱性、耐湿性が向上する。 According to the present invention, the incident light is separated into an S-wave (S-polarized light) and a P-wave (P-polarized light) by the polarization separation film formed on the interface of the first light-transmitting substrate, and then the S-wave is separated. Only the light having one of the wave and the P wave passes through the λ / 4 retardation film, the polarization plane is twisted by 45 degrees, and reaches the reflection film formed on the interface of the second light-transmitting substrate. . The light totally reflected by this reflection film passes through the λ / 4 phase difference film again, and the polarization plane is twisted by 45 degrees. As a result, it is possible to unify the plane of polarization when emitting the polarization conversion element. Further, since the λ / 4 retardation film was sandwiched and adhered to the translucent base material, the λ / 4 retardation film was not exposed on the surface of the polarization conversion element on the emission light side, and was adhered with an adhesive. Not combined. As a result, heat resistance and moisture resistance of the polarization conversion element are improved.

 本発明において、前記透光性基材では、前記第1の透光性部材と前記第2の透光性部材が交互に並ぶように前記第1の透光性部材と前記第2の透光性部材の両端の傾斜端面同士が各々接合され、前記第1の光学層および前記第2の光学層は各々、前記第1の透光性部材の一方側傾斜端面と前記第2の透光性部材の一方側傾斜端面との第1の接合界面、および前記第1の透光性部材の他方側傾斜端面と前記第2の透光性部材の他方側傾斜端面との第2の接合界面に構成されている。 In the present invention, in the light-transmitting substrate, the first light-transmitting member and the second light-transmitting member are arranged such that the first light-transmitting member and the second light-transmitting member are alternately arranged. The inclined end faces at both ends of the transparent member are joined to each other, and the first optical layer and the second optical layer are respectively connected to one inclined end face of the first light transmissive member and the second light transmissive member. A first joining interface between the one-side inclined end surface of the member and a second joining interface between the other-side inclined end surface of the first translucent member and the other-side inclined end surface of the second translucent member; It is configured.

 本発明において、前記高分子フィルムは、例えば、ポリカーボネート製である。 に お い て In the present invention, the polymer film is made of, for example, polycarbonate.

 本発明において、前記第1の光学層および前記第2の光学層は、いずれも前記入射光軸に対して45度の角度をなしていることが好ましい。このように構成すると、偏光変換素子に入射する入射光と、偏光変換素子を通過して出射される出射光の光軸を平行にすることができる。 In the present invention, it is preferable that the first optical layer and the second optical layer both form an angle of 45 degrees with respect to the incident optical axis. With this configuration, the optical axes of the incident light that enters the polarization conversion element and the emission light that passes through the polarization conversion element and exits can be made parallel.

 本発明において、前記の一軸延伸された単層の高分子フィルムは、可視光域における波長依存性の小さい、あるいは波長依存性を有しない逆分散特性を備えていることが好ましい。 に お い て In the present invention, it is preferable that the uniaxially stretched single-layer polymer film has a small wavelength dependence in a visible light region, or has a reverse dispersion characteristic having no wavelength dependence.

 本発明を適用した偏光変換素子の製造方法では、第1の透光性基板の平行な両面のうちの一方の面に偏光分離膜を形成する一方、第2の透光性基板の平行な両面のうちの一方の面に反射膜を形成しておき、前記第1の透光性基板の前記偏光分離膜が形成されている一方の面と、前記第2の透光性基板の前記反射膜が形成されている側とは反対側の面とを光硬化性接着剤、一軸延伸された単層の高分子フィルムからなるλ/2位相差フィルム、および光硬化性接着剤を介して貼り合わせた後、光硬化性接着剤に光を照射して硬化させて偏光変換素子ユニットを形成し、次に、前記偏光変換素子ユニットを複数、同一の向きで光硬化性接着剤を介して積層するとともに、基板面に対して略平行な方向から光を照射して当該光硬化性接着剤を硬化させて偏光変換素子積層体を形成し、しかる後に、前記偏光変換素子積層体を基板面に対して斜めに切断することを特徴とする。 In the method for manufacturing a polarization conversion element to which the present invention is applied, the polarization separation film is formed on one of the parallel surfaces of the first light-transmitting substrate, while the parallel surfaces of the second light-transmitting substrate are formed. A reflection film is formed on one surface of the first light-transmitting substrate, and one surface of the first light-transmitting substrate on which the polarization separation film is formed, and the reflection film of the second light-transmitting substrate. The surface opposite to the side on which is formed is bonded via a photocurable adhesive, a λ / 2 retardation film composed of a uniaxially stretched single-layer polymer film, and a photocurable adhesive. After that, the photocurable adhesive is irradiated with light to be cured to form a polarization conversion element unit, and then, a plurality of the polarization conversion element units are laminated in the same direction via the photocurable adhesive. At the same time, the photocurable adhesive is cured by irradiating light from a direction substantially parallel to the substrate surface. Allowed to form a polarization converting element stack, thereafter, characterized by cutting the polarization conversion element stack obliquely to the substrate surface.

 本発明では、まず、第1の透光性基板、λ/2位相差フィルム、第2の透光性基板を1枚ずつ積層して偏光変換素子ユニットを形成し、その後、偏光変換素子ユニットを積層して偏光変換素子積層体を形成する。すなわち、第1の透光性基板、λ/2位相差フィルム、第2の透光性基板を複数枚ずつ積層していきなり偏光変換素子積層体を形成する方法を採用していない。このため、積層過程で位相差フィルムの角度がずれてしまうことがないので、偏光変換素子の歩留まりが向上する。また、本発明では、偏光変換素子積層体を形成する際、基板面に対して略平行な方向から光を照射することにより光硬化性接着剤を硬化させる。従って、照射した光が、透光性基板に形成された偏光分離膜、反射膜、λ/2位相差フィルム等の影響を受けることなく、光硬化性接着剤に届く。従って、硬化時間を短縮できるので、生産性を高めることができ、かつ、硬化不良が発生しないため、偏光変換素子の歩留まりが向上する。 In the present invention, first, a first light-transmitting substrate, a λ / 2 retardation film, and a second light-transmitting substrate are laminated one by one to form a polarization conversion element unit. Lamination is performed to form a polarization conversion element laminate. That is, a method in which a plurality of first light-transmitting substrates, a λ / 2 retardation film, and a second light-transmitting substrate are sequentially stacked to form a polarization conversion element laminate is not employed. Therefore, the angle of the retardation film does not shift during the lamination process, and the yield of the polarization conversion element is improved. In the present invention, when forming the polarization conversion element laminate, the photocurable adhesive is cured by irradiating light from a direction substantially parallel to the substrate surface. Therefore, the irradiated light reaches the photocurable adhesive without being affected by the polarization separation film, the reflection film, the λ / 2 retardation film, and the like formed on the translucent substrate. Therefore, the curing time can be shortened, the productivity can be increased, and the curing failure does not occur, so that the yield of the polarization conversion element is improved.

 本発明の別の偏光変換素子の製造方法では、第1の透光性基板の平行な両面のうちの一方の面に偏光分離膜を形成する一方、第2の透光性基板の平行な両面のうちの一方の面に反射膜を形成しておき、前記第1の透光性基板の前記偏光分離膜が形成されている側とは反対側の面と、前記第2の透光性基板の前記反射膜が形成されている側の面とを光硬化性接着剤、一軸延伸された単層の高分子フィルムからなるλ/4位相差フィルム、および光硬化性接着剤を介して貼り合わせた後、光硬化性接着剤に光を照射して硬化させて偏光変換素子ユニットを形成し、次に、前記偏光変換素子ユニットを複数、同一の向きで光硬化性接着剤を介して積層するとともに、基板面と略平行な方向から光を照射して当該光硬化性接着剤を硬化させて偏光変換素子積層体を形成し、しかる後に、前記偏光変換素子積層体を基板面に対して斜めに切断することを特徴とする。 According to another method for manufacturing a polarization conversion element of the present invention, a polarization separation film is formed on one of the parallel surfaces of the first light-transmitting substrate, while the parallel surfaces of the second light-transmitting substrate are formed. A reflection film is formed on one surface of the first light-transmitting substrate, and a surface of the first light-transmitting substrate opposite to the surface on which the polarization separation film is formed; and a second light-transmitting substrate. And the surface on the side where the reflective film is formed is bonded via a photocurable adhesive, a λ / 4 retardation film composed of a uniaxially stretched single-layer polymer film, and a photocurable adhesive. After that, the photocurable adhesive is irradiated with light to be cured to form a polarization conversion element unit, and then, a plurality of the polarization conversion element units are laminated in the same direction via the photocurable adhesive. At the same time, light is irradiated from a direction substantially parallel to the substrate surface to cure the photocurable adhesive and change the polarization. Forming a device stack, thereafter, the polarization conversion element stack, characterized in that cut obliquely to the substrate surface.

 本発明では、まず、第1の透光性基板、λ/4位相差フィルム、第2の透光性基板を1枚ずつ積層して偏光変換素子ユニットを形成し、その後、偏光変換素子ユニットを積層して偏光変換素子積層体を形成する。すなわち、第1の透光性基板、λ/4位相差フィルム、第2の透光性基板を複数枚ずつ積層していきなり偏光変換素子積層体を形成する方法を採用していない。このため、積層過程で位相差フィルムの角度がずれてしまうことがないので、偏光変換素子の歩留まりが向上する。また、本発明では、偏光変換素子積層体を形成する際、基板面に対して略平行な方向から光を照射することにより光硬化性接着剤を硬化させる。従って、照射した光が、透光性基板に形成された偏光分離膜、反射膜、λ/4位相差フィルム等の影響を受けることなく、光硬化性接着剤に届く。従って、硬化時間を短縮できので、生産性を高めることができ、かつ、硬化不良が発生しないため、偏光変換素子の歩留まりが向上する。 In the present invention, first, a first light-transmitting substrate, a λ / 4 retardation film, and a second light-transmitting substrate are laminated one by one to form a polarization conversion element unit. Lamination is performed to form a polarization conversion element laminate. That is, a method in which a plurality of first light-transmitting substrates, a λ / 4 retardation film, and a second light-transmitting substrate are sequentially laminated to form a polarization conversion element laminate is not employed. Therefore, the angle of the retardation film does not shift during the lamination process, and the yield of the polarization conversion element is improved. In the present invention, when forming the polarization conversion element laminate, the photocurable adhesive is cured by irradiating light from a direction substantially parallel to the substrate surface. Therefore, the irradiated light reaches the photocurable adhesive without being affected by the polarization separation film, the reflection film, the λ / 4 retardation film, and the like formed on the translucent substrate. Therefore, the curing time can be shortened, the productivity can be increased, and the curing failure does not occur, so that the yield of the polarization conversion element is improved.

 本発明によれば、高分子フィルムからなるλ/2位相差フィルム、あるいはλ/4位相差フィルムを透光性基材の中に設けたので、偏光変換素子の表面で露出していない。このため、偏光変換素子の耐湿性や耐熱性が向上する。しかも、本発明では、高分子フィルムを2軸延伸したものを複数枚、粘着材によって積層した位相差フィルムではなく、高分子フィルムを一軸延伸した単層の位相差フィルムを用いたので、温度変化があった場合でも、粘着材で積層したフィルム同士が位置ずれを起こすことがない。それ故、偏光変換素子の耐熱性、耐久性が著しく向上する。よって、偏光変換素子を光源に近い位置に配置しても熱的な特性低下が発生しない。 According to the present invention, since the λ / 2 retardation film made of a polymer film or the λ / 4 retardation film is provided in the translucent substrate, it is not exposed on the surface of the polarization conversion element. For this reason, the moisture resistance and heat resistance of the polarization conversion element are improved. Moreover, in the present invention, a single-layer retardation film obtained by uniaxially stretching a polymer film is used instead of a retardation film obtained by laminating a plurality of biaxially stretched polymer films with an adhesive, so that the temperature change Even if there is, the films laminated by the adhesive do not cause positional displacement. Therefore, the heat resistance and durability of the polarization conversion element are significantly improved. Therefore, even if the polarization conversion element is arranged at a position close to the light source, no thermal deterioration occurs.

 図を参照して、本発明の実施の形態を説明する。なお、以下の説明において、P波とS波を入換えてもよい。また、以下の説明では、偏光変換素子に対しては、偏光変換素子に対する光の入射領域を規定するために、インテグレータレンズや遮光膜が配置されるが、これらの図示および説明については省略する。 An embodiment of the present invention will be described with reference to the drawings. In the following description, the P wave and the S wave may be exchanged. In the following description, for the polarization conversion element, an integrator lens and a light shielding film are arranged in order to define a light incident area on the polarization conversion element, but illustration and description thereof are omitted.

 [実施の形態1]
 図1(a)、(b)、(c)、(d)は、本形態の偏光変換素子の断面図、この偏光変換素子においてλ/2位相差フィルムが第1、第2の透光性部材に挟まれている様子を示すA1部分の拡大図、このA1部分をさらに拡大した拡大断面図、および反射膜が第1、第2の透光性部材に挟まれている様子を示すA2部分の拡大図である。図2は、図1に記載された偏光変換素子の光学的な特性を示す説明図である。
[Embodiment 1]
1 (a), (b), (c) and (d) are cross-sectional views of a polarization conversion element according to the present embodiment. In this polarization conversion element, a λ / 2 retardation film has first and second translucencies. An enlarged view of a portion A1 showing a state of being sandwiched by members, an enlarged cross-sectional view of the A1 portion further enlarged, and an A2 portion showing that a reflective film is sandwiched by a first and a second translucent members. FIG. FIG. 2 is an explanatory diagram illustrating optical characteristics of the polarization conversion element illustrated in FIG.

 図1(a)、(b)、(c)、(d)に示すように、本形態の偏光変換素子1は、直方体形状の光学素子であり、断面形状が45度の鋭角を有する平行四辺形をしたガラス製の第1の透光性部材10と、ガラス製の第2の透光性部材20とが交互に並ぶように両側の傾斜端面同士が接合された透光性基材6を有している。従って、偏光変換素子1の透光性基材6では、第1の透光性部材10の一方側の傾斜端面11と第2の透光性部材の一方側の傾斜端面21との第1の接合界面、および第1の透光性部材10の他方側の傾斜端面12と第2の透光性部材20の他方側の傾斜端面22との第2の接合界面が各々、透光性基材6に対する入射光軸Lに対して45度の角度で傾いており、そこには第1の光学層、および第2の光学層が形成されている。 As shown in FIGS. 1 (a), 1 (b), 1 (c) and 1 (d), the polarization conversion element 1 of the present embodiment is a rectangular parallelepiped optical element having a parallelogram having a cross-sectional shape having an acute angle of 45 degrees. The translucent base material 6 whose inclined end surfaces on both sides are joined so that the first translucent member 10 made of glass and the second translucent member 20 made of glass are alternately arranged. Have. Therefore, in the translucent substrate 6 of the polarization conversion element 1, the first oblique end face 11 of the first translucent member 10 and the first oblique end face 21 of the second translucent member are first. The bonding interface and the second bonding interface between the other inclined end face 12 of the first light transmissive member 10 and the other inclined end face 22 of the second light transmissive member 20 are each a translucent base material. It is inclined at an angle of 45 degrees with respect to the incident optical axis L with respect to 6, where a first optical layer and a second optical layer are formed.

 本形態においては、以下に説明するように、第1の光学層は、この第1の光学層を両側で挟む第1の透光性部材10および第2の透光性部材20のうち、第1の透光性部材10の傾斜端面11に形成された偏光分離膜8と、第1の透光性部材10の偏光分離膜8が形成された傾斜端面11と第2の透光性部材20の傾斜端面21との間に接着剤4で固定されたλ/2位相差フィルム30(位相差板)とから構成されている。これに対して、第2の光学層は、第2の透光性部材20の傾斜端面22に形成された反射膜9(コールドミラー)によって構成され、この反射膜9が形成されている第2の透光性部材20の傾斜端面22は、第1の透光性部材10の傾斜端面12に接着剤4により接着固定されている。 In the present embodiment, as described below, the first optical layer is formed of the first light-transmitting member 10 and the second light-transmitting member 20 sandwiching the first optical layer on both sides. The polarization separating film 8 formed on the inclined end surface 11 of the first light transmitting member 10, the inclined end surface 11 of the first light transmitting member 10 where the polarization separating film 8 is formed, and the second light transmitting member 20 And a λ / 2 retardation film 30 (retardation plate) fixed with an adhesive 4 between the inclined end face 21 and the inclined end face 21. On the other hand, the second optical layer is constituted by a reflection film 9 (cold mirror) formed on the inclined end face 22 of the second light transmitting member 20, and the second optical layer on which the reflection film 9 is formed is formed. The inclined end surface 22 of the light transmitting member 20 is bonded and fixed to the inclined end surface 12 of the first light transmitting member 10 with the adhesive 4.

 すなわち、偏光変換素子1では、第1の透光性部材10の傾斜端面11には、自然光(P波、S波)のうち、P波を透過し、S波を反射する偏光分離膜8が形成されている。第2の透光性部材20の傾斜端面22にはアルミニウム膜などからなる反射膜9が形成されている。λ/2位相差フィルム30は、第1の透光性部材10の傾斜端面11に形成された偏光分離膜8と、第2の透光性部材20の傾斜端面21との間に挟み込まれている。 That is, in the polarization conversion element 1, the polarization separation film 8 that transmits the P-wave and reflects the S-wave out of natural light (P-wave and S-wave) is provided on the inclined end surface 11 of the first translucent member 10. Is formed. The reflection film 9 made of an aluminum film or the like is formed on the inclined end surface 22 of the second light transmitting member 20. The λ / 2 retardation film 30 is sandwiched between the polarization separating film 8 formed on the inclined end face 11 of the first light transmitting member 10 and the inclined end face 21 of the second light transmitting member 20. I have.

 λ/2位相差フィルム30として、環状ポリオレフィン系樹脂フィルム、ポリアリレートフィルム、ポリカーボネートフィルム、ポリエーテルスルフォンフィルム、脂環族ポリオレフィンフィルム、ポリイミドフィルム、ポリエーテルスルフォンフィルムなどを用いることができるが、本形態では、一軸延伸のポリカーボネートフィルム(高分子フィルム)が用いられている。このようなフィルムは、可視光域における波長依存性の小さい、あるいは波長依存性を有しない逆分散特性を備えている。また、フィルムは、角度依存性を持たない、あるいは角度依存性が極めて小さい光学特性を有するフィルムであることが好ましい。具体的には、帝人株式会社製のピュアエースWR−R−λ/2(商品名)を用いることができ、その屈折率は、透光性部材10、20の屈折率に近いものである。 As the λ / 2 retardation film 30, a cyclic polyolefin resin film, a polyarylate film, a polycarbonate film, a polyethersulfone film, an alicyclic polyolefin film, a polyimide film, a polyethersulfone film, or the like can be used. Uses a uniaxially stretched polycarbonate film (polymer film). Such a film has a small wavelength dependence in the visible light region or has an inverse dispersion characteristic having no wavelength dependence. Further, it is preferable that the film has no angle dependence or has a very small angle dependence. Specifically, Pure Ace WR-R-λ / 2 (trade name) manufactured by Teijin Limited can be used, and its refractive index is close to that of the translucent members 10 and 20.

 このように構成した偏光変換素子1においては、図1および図2に示すように、透光性基材6の下方から入射した自然光L(P波およびS波を含むランダム光)は、偏光変換素子1に入射した後、偏光分離膜8によりP波は透過、S波は90度反射される。ここで、偏光分離膜8を通過したP波は、隣接するλ/2位相差フィルム30を透過する際、偏波面が90度捩じれてS波となる。一方、偏光分離膜8により反射されたS波は、反射膜9で全反射して、そのままS波として入射光の光軸Lと平行な光軸で出射される。 In the polarization conversion element 1 configured as described above, as shown in FIGS. 1 and 2, natural light L (random light including P-waves and S-waves) incident from below the translucent substrate 6 is subjected to polarization conversion. After entering the element 1, the P wave is transmitted and the S wave is reflected by the polarization separation film 8 at 90 degrees. Here, when the P wave that has passed through the polarization separation film 8 passes through the adjacent λ / 2 retardation film 30, the polarization plane is twisted by 90 degrees and becomes an S wave. On the other hand, the S wave reflected by the polarization splitting film 8 is totally reflected by the reflection film 9 and is emitted as it is on the optical axis parallel to the optical axis L of the incident light.

 (偏光変換素子の製造方法)
 図3を参照して、本形態の偏光変換素子1の製造方法を説明する。図3は、図1に示す偏光変換素子の製造方法を示す工程断面図である。
(Method of manufacturing polarization conversion element)
With reference to FIG. 3, a method for manufacturing the polarization conversion element 1 of the present embodiment will be described. FIG. 3 is a process sectional view illustrating the method for manufacturing the polarization conversion element illustrated in FIG. 1.

 図3(a)において、図1に示す偏光変換素子1を製造するには、平行な2つの基板面を有する第1の透光性基板100の一方の面101に偏光分離膜8を形成する一方、平行な2つの基板面を有する第2の透光性基板200の一方の面201に反射膜9を形成する。 In FIG. 3A, in order to manufacture the polarization conversion element 1 shown in FIG. 1, a polarization separation film 8 is formed on one surface 101 of a first translucent substrate 100 having two parallel substrate surfaces. On the other hand, the reflection film 9 is formed on one surface 201 of the second translucent substrate 200 having two parallel substrate surfaces.

 次に、図3(b)に示すように、第1の透光性基板100の偏光分離膜8が形成されている面101と、第2の透光性基板200の反射膜9が形成されている側とは反対側との面202との間に、光硬化性接着剤4(図1(c)参照)、λ/2位相差フィルム30、および光硬化性接着剤4(図1(c)参照)を挟むようにして、第1の透光性基板100、λ/2位相差フィルム30、および第2の透光性基板200を積層する。接着剤としては、アクリル系接着剤、ウレタン系接着剤、エポキシ系接着剤、ポリエステル系接着剤、ポリイミド系接着剤、イソシアネート系接着剤、塩化ビニル系接着剤、シリコーン系接着剤など種々のものを使用できるが、本形態では、λ/2位相差フィルム30に対する影響や耐熱性の面からアクリル系あるいはシリコン系の接着剤を用いることが好ましい。 Next, as shown in FIG. 3B, a surface 101 of the first light-transmitting substrate 100 on which the polarization separation film 8 is formed, and a reflection film 9 of the second light-transmitting substrate 200 are formed. The photocurable adhesive 4 (see FIG. 1C), the λ / 2 retardation film 30, and the photocurable adhesive 4 (see FIG. c), the first light-transmitting substrate 100, the λ / 2 retardation film 30, and the second light-transmitting substrate 200 are stacked. Various adhesives such as an acrylic adhesive, a urethane adhesive, an epoxy adhesive, a polyester adhesive, a polyimide adhesive, an isocyanate adhesive, a vinyl chloride adhesive, and a silicone adhesive can be used. Although it can be used, in this embodiment, it is preferable to use an acrylic or silicone adhesive from the viewpoint of the influence on the λ / 2 retardation film 30 and the heat resistance.

 そして、矢印L11で示すように、第1の透光性基板100の基板面に対して略垂直な方向から、あるいは、矢印L12で示すように、第1の透光性基板100の基板面に対して略平行な方向から紫外(UV)光を照射して光硬化性接着剤4を硬化させ、偏光変換素子ユニット150を形成する。ここで、第2の透光性基板200の側から光を照射してもよい。また、第1の透光性基板100あるいは第2の透光性基板200の基板面に対して斜め方向から光を照射してもよい。さらに、第1の透光性基板100の側、および第2の透光性基板100の側の双方から光を照射して光硬化性接着剤4を硬化させれば、応力を発生させることなく、接着剤を硬化させることができる。 Then, as shown by an arrow L11, from a direction substantially perpendicular to the substrate surface of the first light-transmitting substrate 100, or as shown by an arrow L12, on the substrate surface of the first light-transmitting substrate 100. Ultraviolet (UV) light is irradiated from a direction substantially parallel to the light-curing adhesive 4 to cure the light-curable adhesive 4, thereby forming the polarization conversion element unit 150. Here, light may be emitted from the second light-transmitting substrate 200 side. Further, light may be applied to the substrate surface of the first light-transmitting substrate 100 or the second light-transmitting substrate 200 from an oblique direction. Furthermore, by irradiating light from both the side of the first translucent substrate 100 and the side of the second translucent substrate 100 to cure the photocurable adhesive 4, no stress is generated. The adhesive can be cured.

 次に、図3(c)に示すように、複数枚の偏光変換素子ユニット150を同一の方向に向けて、光硬化性接着剤4(図1(d)を参照)を介して積層した後、矢印L13で示すように、第1の透光性基板100(第2の透光性基板200)の基板面に対して略平行な方向からUV光を照射して光硬化性接着剤を硬化させ、偏光変換素子積層体160を形成する。 Next, as shown in FIG. 3 (c), after a plurality of polarization conversion element units 150 are laminated in the same direction via the photocurable adhesive 4 (see FIG. 1 (d)). As shown by an arrow L13, the photocurable adhesive is cured by irradiating UV light from a direction substantially parallel to the substrate surface of the first translucent substrate 100 (second translucent substrate 200). Then, the polarization conversion element laminate 160 is formed.

 しかる後には、図3(c)に切断線cを示すように、第1の透光性基板100(第2の透光性基板200)の基板面に対して45度の角度をなすように、偏光変換素子積層体110を切断した後、切断面を研磨して、図1に示す偏光変換素子1を製造する。 Thereafter, as shown by a cutting line c in FIG. 3 (c), an angle of 45 degrees is formed with respect to the substrate surface of the first light-transmitting substrate 100 (the second light-transmitting substrate 200). After cutting the polarization conversion element laminate 110, the cut surface is polished to produce the polarization conversion element 1 shown in FIG.

 (本形態の効果)
 以上説明したように、本形態では、位相差フィルムとして、高分子フィルムからなるλ/2位相差フィルム30を用いたが、このλ/2位相差フィルム30については透光性基材6の中に設けたので、偏光変換素子1の表面で露出していない。このため、λ/2位相差フィルム30は、高温下で外気と触れることがないので、偏光変換素子1の耐湿性や耐熱性が向上する。
(Effect of this embodiment)
As described above, in the present embodiment, the λ / 2 retardation film 30 made of a polymer film is used as the retardation film. Are not exposed on the surface of the polarization conversion element 1. Therefore, the λ / 2 retardation film 30 does not come into contact with the outside air at a high temperature, and thus the moisture resistance and heat resistance of the polarization conversion element 1 are improved.

 また、本形態では、λ/2位相差フィルム30として、高分子フィルムを2軸延伸したものを複数枚、粘着材によって積層した位相差フィルムではなく、高分子フィルムを一軸延伸した単層の位相差フィルムを用いたので、温度変化があった場合でも、粘着材で積層したフィルム同士が位置ずれを起こすことがない。それ故、偏光変換素子1の耐熱性、耐久性が著しく向上する。よって、偏光変換素子1を光源に近い位置に配置しても熱的な特性低下が発生しないので、液晶プロジェクターなどといった装置全体の耐久期間を延ばすことができ、かつ、ファンによる空気音を低減できるので、静粛性を向上することもできる。 In the present embodiment, the λ / 2 retardation film 30 is not a retardation film obtained by laminating a plurality of polymer films biaxially stretched with an adhesive, but a single layer obtained by uniaxially stretching a polymer film. Since the phase difference film is used, even when there is a temperature change, the films laminated with the adhesive do not cause positional displacement. Therefore, the heat resistance and durability of the polarization conversion element 1 are significantly improved. Therefore, even if the polarization conversion element 1 is arranged at a position close to the light source, thermal characteristics do not deteriorate, so that the durable period of the entire device such as a liquid crystal projector can be extended, and air noise caused by the fan can be reduced. Therefore, quietness can be improved.

 また、本形態において、透光性基材10、20の接合界面は、いずれも入射光軸Lに対して45度、傾いている。したがって、偏光変換素子1に対する入射光軸Lと、偏光変換素子1からの出射光軸を一致、平行とすることができる。 Also, in the present embodiment, the bonding interface between the translucent substrates 10 and 20 is inclined by 45 degrees with respect to the incident optical axis L. Therefore, the incident optical axis L with respect to the polarization conversion element 1 and the emission optical axis from the polarization conversion element 1 can be made coincident and parallel.

 さらに、λ/2位相差フィルム30は、可視光域における波長依存性の小さい、あるいは波長依存性を有しない逆分散特性を備えているため、逆分布2層の波長版と比べて、広大域で波長依存性のない機能を持たせることができる。 Further, the λ / 2 retardation film 30 has a small wavelength dependency in the visible light range or has an inverse dispersion characteristic having no wavelength dependency. Thus, a function having no wavelength dependency can be provided.

 しかも、本形態では、λ/2位相差フィルム30の屈折率が透光性基材10、20の屈折率に近いため、透光性基材10、20で挟みこむことによって反射ロスを減らし、光透過度を上げることができる。また、λ/2位相差フィルム30を透光性基材10、20で挟みこむことによって、λ/2位相差フィルム30の両面に透光性基材10、20の平面精度が転写される事になる。それ故、λ/2位相差フィルム30の平面精度が格段に上がり、光の拡散を制御できる。 Moreover, in the present embodiment, the refractive index of the λ / 2 retardation film 30 is close to the refractive index of the translucent substrates 10 and 20, so that the reflection loss is reduced by being sandwiched between the translucent substrates 10 and 20, Light transmittance can be increased. Further, by sandwiching the λ / 2 retardation film 30 between the translucent substrates 10 and 20, the planar accuracy of the translucent substrates 10 and 20 is transferred to both surfaces of the λ / 2 retardation film 30. become. Therefore, the planar accuracy of the λ / 2 retardation film 30 is significantly improved, and light diffusion can be controlled.

 また、本形態では、粘着材を使用しないことで、λ/2位相差フィルム30の耐熱性だけを考慮すればよく、耐熱強度を上昇させることができる。 In addition, in this embodiment, by using no adhesive, only the heat resistance of the λ / 2 retardation film 30 needs to be considered, and the heat resistance can be increased.

 さらに本形態では、偏光変換素子1を製造するにあたって、第1の透光性基板100、λ/2位相差フィルム30、および第2の透光性基板200を1枚ずつ積層して偏光変換素子ユニット150を形成し、その後、偏光変換素子ユニット150を積層して偏光変換素子積層体160を形成する。すなわち、第1の透光性基板100、λ/2位相差フィルム30、第2の透光性基板200を複数枚ずつ積層していきなり偏光変換素子積層体160を形成する方法を採用していない。このため、積層過程でλ/2位相差フィルム30の角度がずれてしまうことがないので、偏光変換素子1の歩留まりが向上する。 Further, in the present embodiment, when manufacturing the polarization conversion element 1, the first light transmission substrate 100, the λ / 2 retardation film 30, and the second light transmission substrate 200 are laminated one by one to form the polarization conversion element. The unit 150 is formed, and then the polarization conversion element units 150 are stacked to form a polarization conversion element laminate 160. In other words, a method in which the first light-transmitting substrate 100, the λ / 2 retardation film 30, and the second light-transmitting substrate 200 are sequentially stacked in plurals to form the polarization conversion element laminate 160 is not adopted. . For this reason, the angle of the λ / 2 retardation film 30 does not shift during the lamination process, and the yield of the polarization conversion element 1 is improved.

 また、本形態では、偏光変換素子積層体160を形成する際、基板面に対して略平行な方向から光を照射することにより光硬化性接着剤4を硬化させる。従って、照射した光が、透光性基板100、200に形成された偏光分離膜8、反射膜9、λ/2位相差フィルム30等の影響を受けることなく、光硬化性接着剤4に確実に届く。従って、硬化時間を短縮できので、生産性を高めることができ、かつ、硬化不良が発生しないため、偏光変換素子1の歩留まりが向上する。 In addition, in the present embodiment, when forming the polarization conversion element laminate 160, the photocurable adhesive 4 is cured by irradiating light from a direction substantially parallel to the substrate surface. Therefore, the irradiated light is reliably applied to the photo-curable adhesive 4 without being affected by the polarization separation film 8, the reflection film 9, the λ / 2 retardation film 30, and the like formed on the translucent substrates 100 and 200. Reach Therefore, the curing time can be shortened, the productivity can be increased, and the curing failure does not occur, so that the yield of the polarization conversion element 1 is improved.

 [実施の形態1の変形例]
 図4(a)、(b)、(c)、(d)は、本形態の偏光変換素子の断面図、この偏光変換素子においてλ/2位相差フィルムが第1、第2の透光性部材に挟まれている様子を示すA1′部分の拡大図、このA1′部分をさらに拡大した拡大断面図、および反射膜が第1、第2の透光性部材に挟まれている様子を示すA2′部分の拡大図である。図4は、図3に記載された偏光変換素子の光学的な特性を示す説明図である。なお、本形態の偏光変換素子は、基本的な構成が実施の形態1と同様であるため、共通する機能を有する部分には同一の符号を付してそれらの説明を省略する。また、本形態の偏光変換素子1の製造方法は、実施の形態1と同様であるため、説明を省略する。
[Modification of First Embodiment]
4A, 4B, 4C, and 4D are cross-sectional views of the polarization conversion device of the present embodiment. In this polarization conversion device, the λ / 2 retardation film has first and second translucencies. FIG. 3 is an enlarged view of an A1 ′ portion showing a state of being sandwiched by members, an enlarged sectional view of the A1 ′ portion further enlarged, and a state of a reflection film being sandwiched between first and second translucent members. It is an enlarged view of A2 'part. FIG. 4 is an explanatory diagram illustrating optical characteristics of the polarization conversion element illustrated in FIG. Note that the polarization conversion element of this embodiment has the same basic configuration as that of the first embodiment, and therefore, portions having common functions are denoted by the same reference numerals and description thereof is omitted. In addition, the method for manufacturing the polarization conversion element 1 of the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.

 図4(a)、(b)、(c)、(d)において、本形態の偏光変換素子1は、自然光をP偏光にして出射するものであり、その構成は、実施の形態1に対して、光入射側と光出射側とが逆になった構成を有している。すなわち、本形態でも、偏光変換素子1は、断面形状が45度の鋭角を有する平行四辺形をしたガラス製の第1の透光性部材10と、ガラス製の第2の透光性部材20とが交互に並ぶように両側の傾斜端面同士が接合された透光性基材6を有している。また、第1の透光性部材10の一方側の傾斜端面11と第2の透光性部材の一方側の傾斜端面21との第1の接合界面、および第1の透光性部材10の他方側の傾斜端面12と第2の透光性部材20の他方側の傾斜端面22との第2の接合界面が各々、透光性基材6に対する入射光軸Lに対して45度の角度で傾いており、そこには第1の光学層、および第2の光学層が形成されている。 4A, 4B, 4C, and 4D, the polarization conversion element 1 of this embodiment emits natural light as P-polarized light, and the configuration is different from that of the first embodiment. The light incident side and the light exit side are reversed. That is, also in the present embodiment, the polarization conversion element 1 has the first transparent member 10 made of glass and the second transparent member 20 made of glass having a parallelogram having a 45 ° acute angle in cross section. And a light-transmissive base material 6 in which the inclined end faces on both sides are joined so that they are alternately arranged. Further, a first bonding interface between the inclined end face 11 on one side of the first light transmissive member 10 and the inclined end face 21 on one side of the second light transmissive member, and the first light transmissive member 10 The second bonding interface between the other inclined end face 12 and the other inclined end face 22 of the second translucent member 20 has an angle of 45 degrees with respect to the incident optical axis L with respect to the translucent substrate 6. , Where a first optical layer and a second optical layer are formed.

 本形態においても、第1の光学層は、第1の透光性部材10の傾斜端面11に形成された偏光分離膜8と、第1の透光性部材10の偏光分離膜8が形成された傾斜端面11と第2の透光性部材20の傾斜端面21との間に接着剤4で固定されたλ/2位相差フィルム30(位相差板)とから構成されている。これに対して、第2の光学層は、第2の透光性部材20の傾斜端面22に形成された反射膜9によって構成され、この反射膜9が形成されている第2の透光性部材20の傾斜端面22は、第1の透光性部材10の傾斜端面12に接着剤4により接着固定されている。 Also in this embodiment, as the first optical layer, the polarization separation film 8 formed on the inclined end face 11 of the first light transmissive member 10 and the polarization separation film 8 of the first light transmissive member 10 are formed. A λ / 2 retardation film 30 (retardation plate) fixed with an adhesive 4 between the inclined end surface 11 and the inclined end surface 21 of the second light transmitting member 20. On the other hand, the second optical layer is constituted by the reflection film 9 formed on the inclined end face 22 of the second light-transmitting member 20, and the second light-transmitting member on which the reflection film 9 is formed is formed. The inclined end surface 22 of the member 20 is bonded and fixed to the inclined end surface 12 of the first translucent member 10 with the adhesive 4.

 このように構成した偏光変換素子1においては、図4および図5に示すように、透光性基材6の上方から入射した自然光L(P波およびS波を含むランダム光)は、偏光変換素子1に入射した後、λ/2位相差フィルム30を透過し、偏光分離膜8によりP波は透過、S波は90度反射される。ここで、偏光分離膜8を通過したP波は、そのまま出射される一方、偏光分離膜8で反射したS波は、隣接するλ/2位相差フィルム30を透過する際、偏波面が90度捩じれてP波となった後、反射膜9で全反射して、そのままP波として入射光の光軸Lと平行な光軸で出射される。 In the polarization conversion element 1 configured as described above, as shown in FIGS. 4 and 5, natural light L (random light including P and S waves) incident from above the translucent substrate 6 is subjected to polarization conversion. After being incident on the element 1, the light passes through the λ / 2 retardation film 30, the P wave is transmitted by the polarization separation film 8, and the S wave is reflected by 90 degrees. Here, the P wave that has passed through the polarization separation film 8 is emitted as it is, while the S wave that has been reflected by the polarization separation film 8 has a polarization plane of 90 degrees when transmitted through the adjacent λ / 2 retardation film 30. After being twisted to become a P-wave, the light is totally reflected by the reflection film 9 and is emitted as-is as a P-wave with an optical axis parallel to the optical axis L of the incident light.

 [実施の形態2]
 図6(a)、(b)、(c)、(d)は、本形態の偏光変換素子の断面図、この偏光変換素子においてλ/4位相差フィルムが第1、第2の透光性部材に挟まれている様子を示すB1部分の拡大図、このB1部分をさらに拡大した拡大断面図、および偏光分離膜が第1、第2の透光性部材に挟まれている様子を示すB2部分の拡大図である。図7は、図6に記載された偏光変換素子の光学的な特性を示す説明図である。
[Embodiment 2]
6A, 6B, 6C, and 6D are cross-sectional views of the polarization conversion device of the present embodiment. In this polarization conversion device, the λ / 4 retardation film has first and second translucencies. An enlarged view of a portion B1 showing a state of being sandwiched between members, an enlarged cross-sectional view of this B1 portion further enlarged, and a view B2 showing a state of a polarization separation film being sandwiched between first and second translucent members. It is an enlarged view of a part. FIG. 7 is an explanatory diagram illustrating optical characteristics of the polarization conversion element illustrated in FIG.

 図6(a)、(b)、(c)、(d)に示すとおり、本形態の偏光変換素子1は、直方体形状の光学素子であり、断面形状が45度の鋭角を有する平行四辺形をしたガラス製の第1の透光性部材10と、ガラス製の第2の透光性部材20とが交互に並ぶように両側の傾斜端面同士が接合された透光性基材6を有している。従って、偏光変換素子1の透光性基材6では、第1の透光性部材10の一方側の傾斜端面11と第2の透光性部材の一方側の傾斜端面21との第1の接合界面、および第1の透光性部材10の他方側の傾斜端面12と第2の透光性部材20の他方側の傾斜端面22との第2の接合界面が各々、透光性基材6に対する入射光軸Lに対して45度の角度で傾いており、そこには第1の光学層、および第2の光学層が形成されている。 As shown in FIGS. 6A, 6B, 6C, and 6D, the polarization conversion element 1 of the present embodiment is a rectangular parallelepiped optical element, and has a parallelogram having a cross-sectional shape having an acute angle of 45 degrees. A transparent base material 6 having inclined end faces on both sides joined to each other such that a first transparent member 10 made of glass and a second transparent member 20 made of glass are alternately arranged. are doing. Therefore, in the translucent substrate 6 of the polarization conversion element 1, the first oblique end face 11 of the first translucent member 10 and the first oblique end face 21 of the second translucent member are first. The bonding interface and the second bonding interface between the other inclined end face 12 of the first light transmissive member 10 and the other inclined end face 22 of the second light transmissive member 20 are each a translucent base material. It is inclined at an angle of 45 degrees with respect to the incident optical axis L with respect to 6, where a first optical layer and a second optical layer are formed.

 本形態においては、以下に説明するように、第1の光学層は、この第1の光学層を両側で挟む第1の透光性部材10および第2の透光性部材20のうち、第1の透光性部材10の傾斜端面11に形成された偏光分離膜8であり、偏光分離膜8が形成されている傾斜端面11は、第2の透光性部材20の傾斜端面21に接着剤4により接着固定されている。これに対して、第2の光学層は、第2の透光性部材20の傾斜端面22に形成された反射膜9と、この反射膜9が形成された第2の透光性部材20の傾斜端面22と第1の透光性部材10の傾斜端面12との間に接着剤4で固定されたλ/4位相差フィルム40(位相差板)とから構成されている。 In the present embodiment, as described below, the first optical layer is formed of the first light-transmitting member 10 and the second light-transmitting member 20 sandwiching the first optical layer on both sides. The polarization separating film 8 is formed on the inclined end face 11 of the first translucent member 10. The inclined end face 11 on which the polarization separating film 8 is formed is bonded to the inclined end face 21 of the second translucent member 20. It is adhered and fixed by the agent 4. On the other hand, the second optical layer is composed of the reflecting film 9 formed on the inclined end face 22 of the second light transmitting member 20 and the second light transmitting member 20 on which the reflecting film 9 is formed. A λ / 4 retardation film 40 (retardation plate) fixed with the adhesive 4 between the inclined end face 22 and the inclined end face 12 of the first light transmitting member 10.

 すなわち、偏光変換素子1では、第1の透光性部材10の傾斜端面11には、自然光(P波、S波)のうち、P波を透過し、S波を反射する偏光分離膜8が形成されている。第2の透光性部材20の傾斜端面22にはアルミニウム膜などからなる反射膜9が形成されている。λ/4位相差フィルム40は、第2の透光性部材20の傾斜端面22に形成された反射膜9と、第1の透光性部材10の傾斜端面12との間に挟み込まれている。 That is, in the polarization conversion element 1, the polarization separation film 8 that transmits the P-wave and reflects the S-wave out of natural light (P-wave and S-wave) is provided on the inclined end surface 11 of the first translucent member 10. Is formed. The reflection film 9 made of an aluminum film or the like is formed on the inclined end surface 22 of the second light transmitting member 20. The λ / 4 retardation film 40 is sandwiched between the reflection film 9 formed on the inclined end surface 22 of the second light transmitting member 20 and the inclined end surface 12 of the first light transmitting member 10. .

 本形態において、λ/4位相差フィルム40は、一軸延伸のポリカーボネートフィルム(高分子フィルム)からなり、可視光域における波長依存性の小さい、あるいは波長依存性を有しない逆分散特性を備えたフィルムである。なお、その屈折率は、透光性基材10、20の屈折率に近いものである。 In the present embodiment, the λ / 4 retardation film 40 is made of a uniaxially stretched polycarbonate film (polymer film), and has a small wavelength dependence in the visible light region or a film having a reverse dispersion characteristic having no wavelength dependence. It is. In addition, the refractive index is close to the refractive index of the translucent substrates 10 and 20.

 このように構成した偏光変換素子1では、図6(a)および図7に示すように、偏光変換素子1に下方から入射した自然光Lは、偏光分離膜8によりP波は透過、S波は90度反射される。ここで、偏光分離膜8を通過したP波はそのままP波として、入射光の光軸と同じ光軸で出射される。これに対して、偏光分離膜8で反射したS波は、λ/4位相差フィルム40を透過することにより偏波面が45度捩じれて円偏光化された後、隣接する第2の透光性基材20に形成された反射膜23で全反射される。全反射された光は、再びλ/4位相差フィルム40を透過することにより偏波面が45度捩じれてP波となり、入射光の光軸と同じ光軸で出射される。 In the polarization conversion element 1 configured as described above, as shown in FIGS. 6A and 7, the natural light L incident on the polarization conversion element 1 from below is transmitted through the polarization separation film 8 as a P wave, and as an S wave. It is reflected 90 degrees. Here, the P wave that has passed through the polarization separation film 8 is emitted as it is as a P wave on the same optical axis as the optical axis of the incident light. On the other hand, the S wave reflected by the polarization separation film 8 is transmitted through the λ / 4 retardation film 40, and the polarization plane is twisted by 45 degrees to be circularly polarized. The light is totally reflected by the reflection film 23 formed on the base material 20. The totally reflected light passes through the λ / 4 phase difference film 40 again, and its polarization plane is twisted by 45 degrees to become a P-wave, and is emitted with the same optical axis as the incident light.

 (偏光変換素子の製造方法)
 図8を参照して、本形態の偏光変換素子1の製造方法を説明する。図8は、図6に示す偏光変換素子の製造方法を示す工程断面図である。
(Method of manufacturing polarization conversion element)
With reference to FIG. 8, a method for manufacturing the polarization conversion element 1 of the present embodiment will be described. FIG. 8 is a process sectional view illustrating the method for manufacturing the polarization conversion element illustrated in FIG. 6.

 図8(a)において、本形態の偏光変換素子1を製造するにあたっては、平行な2つの基板面を有する第1の透光性基板100の一方の面101に偏光分離膜8を形成する一方、平行な2つの基板面を有する第2の透光性基板200の一方の面201に反射膜9を形成する。 In FIG. 8A, when manufacturing the polarization conversion element 1 of the present embodiment, the polarization separation film 8 is formed on one surface 101 of a first light-transmitting substrate 100 having two parallel substrate surfaces. The reflective film 9 is formed on one surface 201 of a second light-transmitting substrate 200 having two parallel substrate surfaces.

 次に、図8(b)に示すように、第1の透光性基板100の偏光分離膜8が形成されている面101とは反対側の面102と、第2の透光性基板200の反射膜9が形成されている側の面201との間に、光硬化性接着剤4(図6(c)を参照)、λ/4位相差フィルム40、および光硬化性接着剤4(図6(c)を参照)を挟むようにして、第1の透光性基板100、λ/4位相差フィルム40、および第2の透光性基板200を積層する。 Next, as shown in FIG. 8B, a surface 102 of the first light-transmitting substrate 100 opposite to the surface 101 on which the polarization separation film 8 is formed, and a second light-transmitting substrate 200 The photocurable adhesive 4 (see FIG. 6C), the λ / 4 retardation film 40, and the photocurable adhesive 4 (between the surface 201 on which the reflective film 9 is formed). The first light-transmitting substrate 100, the λ / 4 retardation film 40, and the second light-transmitting substrate 200 are stacked so as to sandwich (see FIG. 6C).

 そして、矢印L11で示すように、第1の透光性基板100の基板面に対して略垂直な方向から、あるいは、矢印L12で示すように、第1の透光性基板100の基板面に対して略平行な方向から紫外(UV)光を照射して光硬化性接着剤4を硬化させ、偏光変換素子ユニット150を形成する。ここで、第2の透光性基板200の側から光を照射してもよい。また、第1の透光性基板100あるいは第2の透光性基板200の基板面に対して斜め方向から光を照射してもよい。さらに、第1の透光性基板100の側、および第2の透光性基板100の側の双方から光を照射して光硬化性接着剤4を硬化させれば、応力を発生させることなく、接着剤を硬化させることができる。 Then, as shown by an arrow L11, from a direction substantially perpendicular to the substrate surface of the first light-transmitting substrate 100, or as shown by an arrow L12, on the substrate surface of the first light-transmitting substrate 100. Ultraviolet (UV) light is irradiated from a direction substantially parallel to the light-curing adhesive 4 to cure the light-curable adhesive 4, thereby forming the polarization conversion element unit 150. Here, light may be emitted from the second light-transmitting substrate 200 side. Further, light may be applied to the substrate surface of the first light-transmitting substrate 100 or the second light-transmitting substrate 200 from an oblique direction. Furthermore, by irradiating light from both the side of the first translucent substrate 100 and the side of the second translucent substrate 100 to cure the photocurable adhesive 4, no stress is generated. The adhesive can be cured.

 次に、図8(c)に示すように、複数枚の偏光変換素子ユニット150を同一の方向に向けて、光硬化性接着剤4(図6(d)を参照)を介して積層した後、矢印L13で示すように、第1の透光性基板100(第2の透光性基板200)の基板面に対して略平行な方向からUV光を照射して光硬化性接着剤を硬化させ、偏光変換素子積層体160を形成する。 Next, as shown in FIG. 8C, after a plurality of polarization conversion element units 150 are laminated in the same direction via the photocurable adhesive 4 (see FIG. 6D). As shown by an arrow L13, the photocurable adhesive is cured by irradiating UV light from a direction substantially parallel to the substrate surface of the first translucent substrate 100 (second translucent substrate 200). Then, the polarization conversion element laminate 160 is formed.

 しかる後には、図3(c)に切断線cを示すように、第1の透光性基板100(第2の透光性基板200)の基板面に対して45度の角度をなすように、偏光変換素子積層体160を切断した後、切断面を研磨して、図6に示す偏光変換素子1を製造する。 Thereafter, as shown by a cutting line c in FIG. 3 (c), an angle of 45 degrees is formed with respect to the substrate surface of the first light-transmitting substrate 100 (the second light-transmitting substrate 200). After cutting the polarization conversion element laminate 160, the cut surface is polished to produce the polarization conversion element 1 shown in FIG.

 (本形態の効果)
 以上説明したように、本形態では、位相差フィルムとして、高分子フィルムからなるλ/4相差フィルム40を用いたが、このλ/4位相差フィルム40については透光性基材の中に設けたので、偏光変換素子1の表面で露出していない。このため、λ/2位相差フィルム40が高温下で外気と触れることがない。また、λ/4位相差フィルム40として、高分子フィルムを2軸延伸したものを複数枚、粘着材によって積層した位相差フィルムではなく、高分子フィルムを一軸延伸した単層の位相差フィルムを用いたので、温度変化があった場合でも、粘着材で積層したフィルム同士が位置ずれを起こすことがない。それ故、偏光変換素子1の耐熱性、耐久性が著しく向上するなど、実施の形態1と同様な効果を奏する。
(Effect of this embodiment)
As described above, in the present embodiment, the λ / 4 retardation film 40 made of a polymer film is used as the retardation film. However, the λ / 4 retardation film 40 is provided in a light-transmitting substrate. Therefore, it is not exposed on the surface of the polarization conversion element 1. Therefore, the λ / 2 retardation film 40 does not come into contact with the outside air at a high temperature. Further, as the λ / 4 retardation film 40, a single-layer retardation film obtained by uniaxially stretching a polymer film is used instead of a retardation film obtained by laminating a plurality of biaxially stretched polymer films with an adhesive. Therefore, even when there is a temperature change, the films laminated with the adhesive material do not cause displacement. Therefore, the same effects as in the first embodiment are obtained, such as the heat resistance and the durability of the polarization conversion element 1 are significantly improved.

 さらに本形態では、偏光変換素子1を製造するにあたって、第1の透光性基板100、λ/4位相差フィルム40、および第2の透光性基板200を1枚ずつ積層して偏光変換素子ユニット150を形成し、その後、偏光変換素子ユニット150を積層して偏光変換素子積層体160を形成する。すなわち、第1の透光性基板100、λ/2位相差フィルム40、第2の透光性基板200を複数枚ずつ積層していきなり偏光変換素子積層体160を形成する方法を採用していない。このため、積層過程でλ/4位相差フィルム40の角度がずれてしまうことがないので、偏光変換素子1の歩留まりが向上するなど、実施の形態1と同様な効果を奏する。 Further, in the present embodiment, when manufacturing the polarization conversion element 1, the first light transmission substrate 100, the λ / 4 retardation film 40, and the second light transmission substrate 200 are laminated one by one to form a polarization conversion element. The unit 150 is formed, and then the polarization conversion element units 150 are stacked to form a polarization conversion element laminate 160. In other words, a method is not adopted in which the first light-transmitting substrate 100, the λ / 2 retardation film 40, and the second light-transmitting substrate 200 are sequentially stacked in plurals to form the polarization conversion element laminate 160. . For this reason, the angle of the λ / 4 retardation film 40 does not shift during the lamination process, so that the same effect as that of the first embodiment, such as an improvement in the yield of the polarization conversion element 1, is obtained.

 本発明によれば、高分子フィルムからなるλ/2位相差フィルム、あるいはλ/4位相差フィルムを透光性基材の中に設けたので、偏光変換素子の表面で露出していない。このため、偏光変換素子の耐湿性や耐熱性が向上する。しかも、本発明では、高分子フィルムを2軸延伸したものを複数枚、粘着材によって積層した位相差フィルムではなく、高分子フィルムを一軸延伸した単層の位相差フィルムを用いたので、温度変化があった場合でも、粘着材で積層したフィルム同士が位置ずれを起こすことがない。それ故、偏光変換素子の耐熱性、耐久性が著しく向上する。よって、偏光変換素子を光源に近い位置に配置しても熱的な特性低下が発生しないので、液晶プロジェクターなどといった装置全体の耐久期間を延ばすことができ、かつ、ファンによる空気音を低減できるので、静粛性を向上することもできる。 According to the present invention, since the λ / 2 retardation film made of a polymer film or the λ / 4 retardation film is provided in the translucent substrate, it is not exposed on the surface of the polarization conversion element. For this reason, the moisture resistance and heat resistance of the polarization conversion element are improved. Moreover, in the present invention, a single-layer retardation film obtained by uniaxially stretching a polymer film is used instead of a retardation film obtained by laminating a plurality of biaxially stretched polymer films with an adhesive, so that the temperature change Even if there is, there is no displacement between the films laminated with the adhesive. Therefore, the heat resistance and durability of the polarization conversion element are significantly improved. Therefore, even if the polarization conversion element is disposed at a position close to the light source, thermal characteristics do not deteriorate, so that the durability of the entire device such as a liquid crystal projector can be extended, and air noise from the fan can be reduced. Also, the quietness can be improved.

(a)、(b)、(c)、(d)は、本発明の実施の形態1に係る偏光変換素子の断面図、λ/2位相差フィルムが第1、第2の透光性部材に挟まれている様子を示すA1部分の拡大図、このA1部分をさらに拡大した拡大断面図、および反射膜が第1、第2の透光性部材に挟まれている様子を示すA2部分の拡大断面図である。(A), (b), (c), and (d) are cross-sectional views of a polarization conversion element according to Embodiment 1 of the present invention, in which a λ / 2 retardation film is composed of first and second translucent members. An enlarged view of the portion A1 showing the state of being sandwiched between the first and second transparent members, and an enlarged cross-sectional view of the portion A1 showing the state of being sandwiched between the first and second translucent members. It is an expanded sectional view. 図1に示す偏光変換素子の光学的な特性を示す説明図である。FIG. 2 is an explanatory diagram illustrating optical characteristics of the polarization conversion element illustrated in FIG. 1. 図1に示す偏光変換素子の製造方法を示す工程断面図である。FIG. 2 is a process cross-sectional view illustrating a method for manufacturing the polarization conversion element illustrated in FIG. 1. (a)、(b)、(c)、(d)は、本発明の実施の形態1の変形例に係るλ/2位相差フィルムを用いた偏光変換素子の断面図、λ/2位相差フィルムが第1、第2の透光性部材に挟まれている様子を示すA1′部分の拡大図、このA1′部分をさらに拡大した拡大断面図、および反射膜が第1、第2の透光性部材に挟まれている様子を示すA2′部分の拡大断面図である。(A), (b), (c), and (d) are cross-sectional views of a polarization conversion element using a λ / 2 retardation film according to a modification of the first embodiment of the present invention, and λ / 2 retardation. An enlarged view of an A1 'portion showing a state in which the film is sandwiched between the first and second translucent members, an enlarged sectional view of the A1' portion further enlarged, and a reflection film of the first and second translucent members. It is an expanded sectional view of A2 'part showing signs that it is caught between optical members. 図4に示す偏光変換素子の光学的な特性を示す説明図である。FIG. 5 is an explanatory diagram showing optical characteristics of the polarization conversion device shown in FIG. (a)、(b)、(c)、(d)は、本発明の実施の形態2に係る偏光変換素子の断面図、λ/4位相差フィルムが第1、第2の透光性部材に挟まれている様子を示すB1部分の拡大図、このB1部分をさらに拡大した拡大断面図、および偏光分離膜が第1、第2の透光性部材に挟まれている様子を示すB2部分の拡大図である。(A), (b), (c), and (d) are cross-sectional views of a polarization conversion element according to Embodiment 2 of the present invention, in which a λ / 4 retardation film is composed of first and second translucent members. , An enlarged cross-sectional view of the B1 portion further enlarged, and a B2 portion showing the polarization separation film sandwiched between the first and second translucent members. FIG. 図6に示す偏光変換素子の光学的な特性を示す説明図である。FIG. 7 is an explanatory diagram illustrating optical characteristics of the polarization conversion element illustrated in FIG. 6. 図6に示す偏光変換素子の製造方法を示す工程断面図である。FIG. 7 is a process cross-sectional view illustrating a method for manufacturing the polarization conversion element illustrated in FIG. 6. 従来の偏光変換素子の説明図である。It is explanatory drawing of the conventional polarization conversion element.

符号の説明Explanation of reference numerals

1 偏光変換素子
4 接着剤
6 透光性基材
8 偏光分離膜
9 反射膜
10、20 透光性部材
30 λ/2位相差フィルム
40 λ/4位相差フィルム
100 第1の透光性基板
200 第2の透光性基板
150 偏光変換素子ユニット
160 偏光変換素子積層体
DESCRIPTION OF SYMBOLS 1 Polarization conversion element 4 Adhesive 6 Translucent base material 8 Polarization separation film 9 Reflective films 10, 20 Translucent member 30 λ / 2 retardation film 40 λ / 4 retardation film 100 First translucent substrate 200 Second translucent substrate 150 Polarization conversion element unit 160 Polarization conversion element laminate

Claims (8)

 複数の透光性部材の傾斜端面同士が接合された透光性基材中に第1の光学層と第2の光学層とが互いに平行、かつ、前記透光性基材に対する入射光軸に斜めに配置され、
 前記第1の光学層は、当該第1の光学層を両側で挟む第1の透光性部材および第2の透光性部材のうち、前記第1の透光性部材の傾斜端面に形成された偏光分離膜と、当該第1の透光性部材の前記偏光分離膜が形成された傾斜端面と前記第2の透光性部材の傾斜端面との間に接着固定されたλ/2位相差フィルムとから構成され、
 前記第2の光学層は、反射膜であり、
 前記λ/2位相差フィルムは、一軸延伸された単層の高分子フィルムからなることを特徴とする偏光変換素子。
A first optical layer and a second optical layer are parallel to each other in a light-transmissive substrate in which inclined end surfaces of a plurality of light-transmissive members are joined to each other, and are parallel to an incident optical axis with respect to the light-transmissive substrate. Placed diagonally,
The first optical layer is formed on an inclined end face of the first light-transmissive member among the first light-transmissive member and the second light-transmissive member that sandwich the first optical layer on both sides. And a λ / 2 phase difference adhesively fixed between the inclined end face of the first light transmitting member on which the polarized light separating film is formed and the inclined end face of the second light transmitting member. Composed of film and
The second optical layer is a reflective film,
The polarization converter according to claim 1, wherein the λ / 2 retardation film comprises a uniaxially stretched single-layer polymer film.
 複数の透光性部材の傾斜端面同士が接合された透光性基材中に第1の光学層と第2の光学層とが互いに平行、かつ、前記透光性基材に対する入射光軸に斜めに配置され、
 前記第1の光学層は、偏光分離膜であり、
 前記第2の光学層は、当該第2の光学層を両側で挟む第1の透光性部材および第2の透光性部材のうち、前記第2の透光性部材の傾斜端面に形成された反射膜と、当該第2の透光性部材の前記反射膜が形成された傾斜端面と前記第1の透光性部材の傾斜端面との間に接着固定されたλ/4位相差フィルムとから構成され、
 前記λ/4位相差フィルムは、一軸延伸された単層の高分子フィルムからなることを特徴とする偏光変換素子。
A first optical layer and a second optical layer are parallel to each other in a light-transmissive substrate in which inclined end surfaces of a plurality of light-transmissive members are joined to each other, and are parallel to an incident optical axis with respect to the light-transmissive substrate. Placed diagonally,
The first optical layer is a polarization separation film,
The second optical layer is formed on an inclined end face of the second light-transmitting member among the first light-transmitting member and the second light-transmitting member sandwiching the second optical layer on both sides. Reflecting film, a λ / 4 retardation film adhesively fixed between an inclined end surface of the second light transmitting member on which the reflecting film is formed and an inclined end surface of the first light transmitting member. Consisting of
The λ / 4 retardation film is a uniaxially stretched single-layer polymer film, and is a polarization conversion element.
 請求項1または2において、前記透光性基材では、前記第1の透光性部材と前記第2の透光性部材が交互に並ぶように前記第1の透光性部材と前記第2の透光性部材の両端の傾斜端面同士が各々接合され、
 前記第1の光学層および前記第2の光学層は各々、前記第1の透光性部材の一方側傾斜端面と前記第2の透光性部材の一方側傾斜端面との第1の接合界面、および前記第1の透光性部材の他方側傾斜端面と前記第2の透光性部材の他方側傾斜端面との第2の接合界面に構成されていることを特徴とする偏光変換素子。
3. The light-transmissive base material according to claim 1, wherein the first light-transmissive member and the second light-transmissive member are alternately arranged in the first light-transmissive member and the second light-transmissive member. The inclined end faces at both ends of the light-transmitting member are joined to each other,
Each of the first optical layer and the second optical layer is a first bonding interface between one inclined end surface of the first light transmitting member and one inclined end surface of the second light transmitting member. And a second junction interface between the other inclined end face of the first translucent member and the other inclined end face of the second translucent member.
 請求項1ないし3のいずれかにおいて、前記高分子フィルムは、ポリカーボネート製であることを特徴とする偏光変換素子。 (4) The polarization conversion element according to any one of (1) to (3), wherein the polymer film is made of polycarbonate.  請求項1ないし4のいずれかにおいて、前記第1の光学層および前記第2の光学層は、いずれも前記入射光軸に対して45度の角度をなしていることを特徴する偏光変換素子。 (5) The polarization conversion element according to any one of (1) to (4), wherein each of the first optical layer and the second optical layer forms an angle of 45 degrees with the incident optical axis.  請求項1から4のいずれかにおいて、前記の一軸延伸された単層の高分子フィルムは、可視光域における波長依存性の小さい、あるいは波長依存性を有しない逆分散特性を備えていることを特徴とする偏光変換素子。 The method according to any one of claims 1 to 4, wherein the uniaxially stretched single-layered polymer film has a small wavelength dependence in a visible light region or an inverse dispersion characteristic having no wavelength dependence. Characteristic polarization conversion element.  第1の透光性基板の平行な両面のうちの一方の面に偏光分離膜を形成する一方、第2の透光性基板の平行な両面のうちの一方の面に反射膜を形成しておき、
 前記第1の透光性基板の前記偏光分離膜が形成されている一方の面と、前記第2の透光性基板の前記反射膜が形成されている側とは反対側の面とを光硬化性接着剤、一軸延伸された単層の高分子フィルムからなるλ/2位相差フィルム、および光硬化性接着剤を介して貼り合わせた後、光硬化性接着剤に光を照射して硬化させて偏光変換素子ユニットを形成し、
 次に、前記偏光変換素子ユニットを複数、同一の向きで光硬化性接着剤を介して積層するとともに、基板面に対して略平行な方向から光を照射して当該光硬化性接着剤を硬化させて偏光変換素子積層体を形成し、
 しかる後に、前記偏光変換素子積層体を基板面に対して斜めに切断することを特徴とする偏光変換素子の製造方法。
A polarized light separating film is formed on one of the parallel surfaces of the first light-transmitting substrate, and a reflective film is formed on one of the parallel surfaces of the second light-transmitting substrate. Every
The one surface of the first light-transmitting substrate on which the polarization splitting film is formed and the surface of the second light-transmitting substrate on the side opposite to the surface on which the reflection film is formed are illuminated. After bonding via a curable adhesive, a λ / 2 retardation film consisting of a uniaxially stretched single-layer polymer film, and a photocurable adhesive, the photocurable adhesive is cured by irradiating light. To form a polarization conversion element unit,
Next, a plurality of the polarization conversion element units are laminated via a photocurable adhesive in the same direction, and the photocurable adhesive is cured by irradiating light from a direction substantially parallel to the substrate surface. To form a polarization conversion element laminate,
Thereafter, the polarization conversion element laminate is cut obliquely to a substrate surface.
 第1の透光性基板の平行な両面のうちの一方の面に偏光分離膜を形成する一方、第2の透光性基板の平行な両面のうちの一方の面に反射膜を形成しておき、
 前記第1の透光性基板の前記偏光分離膜が形成されている側とは反対側の面と、前記第2の透光性基板の前記反射膜が形成されている側の面とを光硬化性接着剤、一軸延伸された単層の高分子フィルムからなるλ/4位相差フィルム、および光硬化性接着剤を介して貼り合わせた後、光硬化性接着剤に光を照射して硬化させて偏光変換素子ユニットを形成し、
 次に、前記偏光変換素子ユニットを複数、同一の向きで光硬化性接着剤を介して積層するとともに、基板面に対して略平行な方向から光を照射して当該光硬化性接着剤を硬化させて偏光変換素子積層体を形成し、
 しかる後に、前記偏光変換素子積層体を基板面に対して斜めに切断することを特徴とする偏光変換素子の製造方法。
A polarized light separating film is formed on one of the parallel surfaces of the first light-transmitting substrate, and a reflective film is formed on one of the parallel surfaces of the second light-transmitting substrate. Every
The surface of the first light-transmitting substrate on the side opposite to the side on which the polarization separation film is formed and the surface of the second light-transmitting substrate on the side on which the reflection film is formed are illuminated. After laminating through a curable adhesive, a λ / 4 retardation film consisting of a uniaxially stretched single-layer polymer film, and a photocurable adhesive, the photocurable adhesive is cured by irradiating light. To form a polarization conversion element unit,
Next, a plurality of the polarization conversion element units are laminated via a photocurable adhesive in the same direction, and the photocurable adhesive is cured by irradiating light from a direction substantially parallel to the substrate surface. To form a polarization conversion element laminate,
Thereafter, the polarization conversion element laminate is cut obliquely to a substrate surface.
JP2003326653A 2002-09-18 2003-09-18 Polarization conversion element and its manufacturing method Pending JP2004145305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326653A JP2004145305A (en) 2002-09-18 2003-09-18 Polarization conversion element and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002311887 2002-09-18
JP2003326653A JP2004145305A (en) 2002-09-18 2003-09-18 Polarization conversion element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004145305A true JP2004145305A (en) 2004-05-20

Family

ID=32473626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326653A Pending JP2004145305A (en) 2002-09-18 2003-09-18 Polarization conversion element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004145305A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065277A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Projection-type display device
JP2008065276A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Projection type display device
JP2008065278A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Projection type display device
JP2008065279A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Polarized light converting element and polarized light converting member
JP2011090256A (en) * 2009-10-26 2011-05-06 Nikon Corp Screen for projector and projection system
US8279523B2 (en) 2007-08-22 2012-10-02 Seiko Epson Corporation Polarization conversion element and method for manufacturing the same
US8432515B2 (en) 2004-11-11 2013-04-30 Nitto Denko Corporation Combination optical film, laminated combination optical film and image display
WO2013147091A1 (en) * 2012-03-30 2013-10-03 日東電工株式会社 Long retardation film, circularly polarizing plate and organic el panel
JP2017203347A (en) * 2016-05-13 2017-11-16 Toto株式会社 Faucet device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432515B2 (en) 2004-11-11 2013-04-30 Nitto Denko Corporation Combination optical film, laminated combination optical film and image display
JP2008065277A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Projection-type display device
JP2008065276A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Projection type display device
JP2008065278A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Projection type display device
JP2008065279A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Polarized light converting element and polarized light converting member
US8279523B2 (en) 2007-08-22 2012-10-02 Seiko Epson Corporation Polarization conversion element and method for manufacturing the same
JP2011090256A (en) * 2009-10-26 2011-05-06 Nikon Corp Screen for projector and projection system
WO2013147091A1 (en) * 2012-03-30 2013-10-03 日東電工株式会社 Long retardation film, circularly polarizing plate and organic el panel
JP2014044394A (en) * 2012-03-30 2014-03-13 Nitto Denko Corp Long retardation film, circularly polarizing plate and organic electroluminescent (el) panel
CN104204876A (en) * 2012-03-30 2014-12-10 日东电工株式会社 Long retardation film, circularly polarizing plate and organic el panel
US9453951B2 (en) 2012-03-30 2016-09-27 Nitto Denko Corporation Retardation film web, circularly polarizing plate and organic EL panel
JP2017203347A (en) * 2016-05-13 2017-11-16 Toto株式会社 Faucet device

Similar Documents

Publication Publication Date Title
JP5030134B2 (en) Polarization conversion element, polarization conversion optical system, and image projection apparatus
US7362507B2 (en) Polarizing beam splitter
JP2915317B2 (en) Light guide unit, liquid crystal display device and polarization method
JP7129418B2 (en) Vehicle projection assembly
JP2010230856A (en) Polarization conversion device an polarized illumination optical device, and liquid crystal projector
JP2012226121A (en) Polarization conversion element, polarization conversion unit, and projection device
JP5919622B2 (en) Polarization conversion element, polarization conversion unit, and projection type image apparatus
JP2004145305A (en) Polarization conversion element and its manufacturing method
JP2007206225A (en) Polarization conversion element
US20080002257A1 (en) Polarization Recovery Plate
JP4374774B2 (en) Polarization conversion optical system and polarization conversion element
JP2006349972A (en) Polarized light separating sheet and light emitting unit using the same
KR20040104741A (en) Reflecting light polarizer having polarizing film between two sawtooth-shaped surfaces
JP2003167125A (en) Polarization conversion element and method for manufacturing the same
JP4080265B2 (en) Polarization conversion element and manufacturing method thereof
JP2825037B2 (en) Optical connection device and optical system for optical connection device
JP4191125B2 (en) Polarization conversion element and manufacturing method thereof
JP4392195B2 (en) Polarization conversion element and method for manufacturing the same
JP2007249090A (en) Polarization conversion element and its manufacturing method
JP3506914B2 (en) Liquid crystal display
JP5583558B2 (en) Polarization conversion illumination device and display device using the same
JP3399449B2 (en) Manufacturing method of polarization conversion element
JP2012133269A (en) Wavelength plate, polarization conversion element, polarization conversion unit and projection device
JP4841892B2 (en) Backlight unit
JP6686443B2 (en) Wave plate, polarization conversion element, and projector