JPH10153705A - Dichroic mirror - Google Patents

Dichroic mirror

Info

Publication number
JPH10153705A
JPH10153705A JP32596196A JP32596196A JPH10153705A JP H10153705 A JPH10153705 A JP H10153705A JP 32596196 A JP32596196 A JP 32596196A JP 32596196 A JP32596196 A JP 32596196A JP H10153705 A JPH10153705 A JP H10153705A
Authority
JP
Japan
Prior art keywords
film
refractive index
dichroic mirror
tio2
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32596196A
Other languages
Japanese (ja)
Inventor
Yukinori Tsukamoto
征徳 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32596196A priority Critical patent/JPH10153705A/en
Publication of JPH10153705A publication Critical patent/JPH10153705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dichroic mirror, which functions as an almost total reflection mirror in a reflected wavelength band region, suppresses transmissivity in a transmitted wavelength band region, and functions as a half mirror having a flat spactal transmission characteristic. SOLUTION: A transmissivity adjustment film 14, which is constituted of a 3-layers film structure: a TiO2 film 12 consisting essentially of TiO2 having the high refractive index, a SiO2 film 13 having the low refractive index and the TiO2 film 12 consisting essentially of TiO2 having the high refractive index, is applied on the surface of an optical glass substrate 11 of BK 7. A multilayer film 15, which is constituted of a 13-layer film structure in which the TiO2 film 12 consisting essentially of TiO2 having the high refractive index and a SiO2 film 13 having the low refractive index are alternately laminated, is applied thereon. The transmissivity adjustment film 14 is a 3-layers transmission film structure, in which the transmissivity in the transmitted wavelength band region is possible to be suppressed to the extent of 90 to 50% due to the optical film thickness of each high refractive index film. If the film thickness is <=1/50 of the designed center wavelength of the multilayer film 15, the effect of suppression is little. If the film thickness is >=1/8, some type of the basic structure raises transmissivity. Further, flatness in the transmitted wavelength band region and a restrained wavelength region are controlled by the film thickness of the low refractive index film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カメラ、複写機、
プリンタ等の光学機械に用いられるダイクロイックミラ
ーに関するものである。
The present invention relates to a camera, a copying machine,
The present invention relates to a dichroic mirror used for an optical machine such as a printer.

【0002】[0002]

【従来の技術】従来、特定波長域の光を反射して、他の
波長域の光を透過するダイクロイックミラーは、高屈折
率膜と低屈折率膜の誘電体材料を設計中心波長λのλ/
4の光学的膜厚として交互に積層した多層膜により構成
されている。
2. Description of the Related Art Conventionally, a dichroic mirror that reflects light in a specific wavelength range and transmits light in another wavelength range has been designed by using dielectric materials of a high refractive index film and a low refractive index film as a design center wavelength λ. /
The optical film of No. 4 is composed of multilayer films alternately stacked.

【0003】このような多層膜の最も簡単な膜構成は、
基板をG、高屈折率膜をH、低屈折率膜をLとして、G
+H+L+H+L・・・H+L+Hであり、基本となる
構成はタイプ1として(L/2、H、L/2)Mと、タ
イプ2として(H/2、L、H/2)Mのタイプがあ
る。タイプ1は反射波長域の長波長側を高透過波長帯城
とした場合に用いられ、タイプ2は反射波長域の短波長
側を高透過波長帯城とした場合に用いられている。
The simplest film configuration of such a multilayer film is as follows:
When the substrate is G, the high refractive index film is H, and the low refractive index film is L, G
+ H + L + H + L... H + L + H, and the basic configuration includes a type 1 (L / 2, H, L / 2) M and a type 2 (H / 2, L, H / 2) M. Type 1 is used when the long wavelength side of the reflection wavelength region is a high transmission wavelength band, and type 2 is used when the short wavelength side of the reflection wavelength region is a high transmission wavelength band.

【0004】図5はこの従来例のダイクロイックミラー
の使用形態を示しており、透明基板1の片面に、基本構
成タイプ1の12層膜構成のダイクロイックミラー2が
設けられ、他面に2層膜構成から成るハーフミラー3が
設けられている。
FIG. 5 shows a usage form of this conventional dichroic mirror. A dichroic mirror 2 of a basic structure type 1 having a 12-layer film structure is provided on one surface of a transparent substrate 1 and a two-layer film is formed on the other surface. A half mirror 3 having a configuration is provided.

【0005】図6はこのダイクロイックミラーの透過率
の特性図を示し、Aはダイクロイックミラー2の透過率
特性、Bはハーフミラー3の透過率特性、Cはダイクロ
イックミラー2とハーフミラー3を合成した透過率特性
である。
FIG. 6 shows a characteristic diagram of the transmittance of the dichroic mirror. A is a transmittance characteristic of the dichroic mirror 2, B is a transmittance characteristic of the half mirror 3, and C is a combination of the dichroic mirror 2 and the half mirror 3. It is a transmittance characteristic.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述した
従来例では、透過波長帯城で高い透過率にするために
は、多層膜の積層数の増加に伴う透過波長帯域のリップ
ルを減少させる様々な手法が実施されているが、透過波
長帯城の透過率を大幅に抑制することは困難という問題
がある。
However, in the above-mentioned prior art, in order to obtain a high transmittance in the transmission wavelength band, there are various techniques for reducing the ripple in the transmission wavelength band accompanying an increase in the number of stacked multilayer films. However, there is a problem that it is difficult to significantly suppress the transmittance of the transmission wavelength band.

【0007】このため、前述の従来例のように多層膜の
ダイクロイックミラー2と他の面等にハーフミラー3を
併用して用いた場合は、透過面又は反射面が2面以上に
なり、ゴーストなどの光学特性の低下や光学系の複雑化
によるコスト高の問題が発生する。
For this reason, when the multi-layer dichroic mirror 2 and the half mirror 3 are used in combination with other surfaces as in the above-described conventional example, the number of transmission or reflection surfaces becomes two or more, and the ghost However, there arises a problem of high cost due to a decrease in optical characteristics and a complicated optical system.

【0008】本発明の目的は、上述の問題点を解消し、
反射波長帯域では略全反射ミラーとして、透過波長帯域
では透過率を抑制し、平坦な分光透過特性のハーフミラ
ーとして機能するダイクロイックミラーを提供すること
にある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a dichroic mirror that functions as a substantially total reflection mirror in a reflection wavelength band and suppresses transmittance in a transmission wavelength band and functions as a half mirror having flat spectral transmission characteristics.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに本発明に係るダイクロイックミラーは、透明な基板
の表面に成膜した透過率調整膜を介して、設計中心波長
λのλ/4の光学的膜厚とした高屈折率膜と低屈折率膜
の誘電体材料を交互に積層した多層膜から成ることを特
徴とする。
In order to achieve the above object, a dichroic mirror according to the present invention uses a transmittance adjusting film formed on the surface of a transparent substrate to transmit a light having a design center wavelength of λ / 4. And a multi-layered film in which dielectric materials of a high-refractive-index film and a low-refractive-index film having an optical film thickness are alternately laminated.

【0010】[0010]

【発明の実施の形態】本発明を図1〜図4に図示の実施
例に基づいて詳細に説明する。図1はダイクロイックミ
ラーを示す模式的断面図である。このダイクロイックミ
ラーにおいては、BK7の光学ガラス基板11の表面
に、高屈折率のTiO2を主成分とするTiO2 膜12
と、低屈折率のSiO2 膜13と、高屈折率のTiO2
を主成分とするTiO2 膜12の3層膜構成から成る透
過率調整膜14が被膜され、その上に高屈折率のTiO
2 を主成分とTiO2 膜12と低屈折率のSiO2 膜1
3を交互に積層した13層膜構成から成る多層膜15が
被覆されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a schematic sectional view showing a dichroic mirror. In this dichroic mirror, a TiO 2 film 12 composed mainly of TiO 2 having a high refractive index is formed on the surface of an optical glass substrate 11 of BK 7.
And a low refractive index SiO 2 film 13 and a high refractive index TiO 2
Is coated with a transmittance adjusting film 14 having a three-layer structure of a TiO 2 film 12 containing TiO 2 as a main component, and a high refractive index TiO 2 film is formed thereon.
2 as main component, TiO 2 film 12 and SiO 2 film 1 with low refractive index
3 is covered with a multilayer film 15 having a 13-layer film configuration in which 3 are alternately stacked.

【0011】透過率調整膜14は3層の透過膜構成であ
り、各高屈折率膜の光学的膜厚により透過波長帯域の透
過率を90%〜50%程度に抑制することができる。膜
厚が多層膜15の設計中心波長をλとすると、高屈折率
膜の膜厚がλ/50以下では抑制の効果が少なく、λ/
8以上では基本横成のタイプによっては透過率を高くす
る。また、低屈折率膜の膜厚により透過波長帯域の平坦
性と抑制波長域を制御できる。
The transmittance adjusting film 14 has a three-layered transmittance film configuration, and the transmittance in the transmission wavelength band can be suppressed to about 90% to 50% by the optical thickness of each high refractive index film. Assuming that the thickness of the multilayer film 15 is designed at λ, the suppression effect is small when the thickness of the high refractive index film is λ / 50 or less.
If it is 8 or more, the transmittance is increased depending on the type of the basic horizontal structure. Further, the flatness of the transmission wavelength band and the suppression wavelength band can be controlled by the thickness of the low refractive index film.

【0012】この第1の実施例では、真空蒸着装置にB
K7の光学ガラス製基板11を入れ、基板11の表面温
度を〜300℃に、真空度を1×10-3Pa以下の圧力
に真空加熱排気した後に、TiO2 を主成分としたTi
2 膜12を44nm、SiO2 膜13を220nm、
TiO2 を主成分としたTiO2 膜12を44nmにそ
れぞれ成膜した3層膜構成から成る透過率調整膜14を
成膜する。更に、その上に低屈折率のSiO2 膜13
と、高屈折率のTiO2 を主成分としたTiO2膜12
を設計中心波長λを880nmとして、入射角38度で
λ/4の膜厚を交互に積層し、13層の最終層は低屈折
率のSiO2 膜13をλ/8の膜厚に成膜して13層膜
構成の多層膜15を成膜し、合計層数16層膜のダイク
ロイックミラーを成膜した後に真空蒸着装置から取り出
す。
In the first embodiment, B
Put an optical glass substrate 11 of K7, to to 300 ° C. The surface temperature of the substrate 11, the degree of vacuum after vacuum heat evacuated to 1 × 10 -3 Pa or less pressure, mainly composed of TiO 2 Ti
O 2 film 12 is 44 nm, SiO 2 film 13 is 220 nm,
A transmittance adjusting film 14 having a three-layer structure in which a TiO 2 film 12 mainly composed of TiO 2 is formed to a thickness of 44 nm is formed. Further, a low refractive index SiO 2 film 13 is formed thereon.
And a TiO 2 film 12 containing TiO 2 having a high refractive index as a main component
With a design center wavelength λ of 880 nm, a film thickness of λ / 4 is alternately laminated at an incident angle of 38 °, and a 13-layer final layer is formed of a low refractive index SiO 2 film 13 with a film thickness of λ / 8. Then, a multilayer film 15 having a 13-layer structure is formed, and a dichroic mirror having a total of 16 layers is formed, and then taken out from the vacuum evaporation apparatus.

【0013】図2は本実施例のダイクロイックミラーの
入射角38度における分光透過率を示す特性図である。
この図2から分かるように、ダイクロイックミラーは波
長880nmで略全反射して、可視光域の波長400n
m〜700nm間では透過率80%の平坦な分光透過特
性となる。
FIG. 2 is a characteristic diagram showing the spectral transmittance of the dichroic mirror of this embodiment at an incident angle of 38 degrees.
As can be seen from FIG. 2, the dichroic mirror reflects substantially totally at a wavelength of 880 nm, and has a wavelength of 400
Between m and 700 nm, a flat spectral transmission characteristic with a transmittance of 80% is obtained.

【0014】第2の実施例では、真空蒸着装置にBK7
の光学ガラス製基板11を入れ、基板11の表面温度を
〜300℃に、真空度を1×10-3Pa以下の圧力に真
空加熱排気した後に、TiO2 を主成分としたTiO2
膜12を67nm、SiO2膜13を205nm、Ti
2 を主成分としたTiO2 膜12を67nmに、それ
ぞれ成膜した3層膜構成から成る透過率調整膜14を成
膜し、その上に低屈折率のSiO2 膜13と、高屈折率
のTiO2 を主成分としたTiO2 膜12を設計中心波
長λを880nmとして入射角38度でλ/4の膜厚を
交互に積層し、13層の最終層は低屈折率のSiO2
13をλ/8の膜厚に成膜して、13層膜構成の多層膜
15を成膜し、合計層数16層膜のダイクロイックミラ
ーを成膜した後に真空蒸着装置から取り出す。
In the second embodiment, BK7
Put the optical glass substrate 11, to to 300 ° C. The surface temperature of the substrate 11, the degree of vacuum after vacuum heat evacuated to 1 × 10 -3 Pa or less pressure, TiO 2 mainly composed of TiO 2
The film 12 has a thickness of 67 nm, the SiO 2 film 13 has a thickness of 205 nm,
A TiO 2 film 12 containing O 2 as a main component is formed at a thickness of 67 nm, a transmittance adjusting film 14 having a three-layer structure is formed, and a low-refractive-index SiO 2 film 13 and a high-refractive-index SiO 2 film 13 are formed thereon. stacking a TiO 2 film 12 of TiO 2 rate was mainly composed of the designed center wavelength lambda alternately thickness of lambda / 4 at an incident angle of 38 degrees 880 nm, the final layer the low refractive index of the 13-layer SiO 2 The film 13 is formed to have a film thickness of λ / 8, a multilayer film 15 having a 13-layer structure is formed, and a dichroic mirror having a total of 16 layers is formed and then taken out from the vacuum evaporation apparatus.

【0015】図3は本実施例のダイクロイックミラーの
入射角38度における分光透過率を示す特性図である。
この図3から分かるように、本実施例のダイクロイック
ミラーは波長880nmで略全反射して、可視光域の波
長400nm〜700nm間では透過率70%の平坦な
分光透過特性が得られる。
FIG. 3 is a characteristic diagram showing the spectral transmittance of the dichroic mirror of this embodiment at an incident angle of 38 degrees.
As can be seen from FIG. 3, the dichroic mirror of the present embodiment is substantially totally reflected at a wavelength of 880 nm, and a flat spectral transmission characteristic with a transmittance of 70% is obtained in the visible light range between 400 nm and 700 nm.

【0016】第3の実施例では、真空蒸着装置にBK7
の光学ガラス製基板11を入れ、基板11の表面温度を
〜300℃に、真空度を1×10-3Pa以下の圧力に真
空加熱排気した後に、TiO2 を主成分としたTiO2
膜12を30nm、SiO2膜13を440nmを成膜
した2層膜構成から成る透過率調整膜14を成膜し、そ
の上に高屈折率のTiO2 を主成分としたTiO2 膜1
2と、低屈折率のSiO2 膜13を設計中心波長入を4
40nmとしてλ/4の膜厚を交互に積層し、11層の
最終層は高屈折率のTiO2 膜をλ/8の膜厚に成膜し
て、11層膜構成の多層膜15を成膜し、合計層数13
層膜のダイクロイックミラーを成膜後に真空蒸着装置よ
り取り出す。
In the third embodiment, BK7
Put the optical glass substrate 11, to to 300 ° C. The surface temperature of the substrate 11, the degree of vacuum after vacuum heat evacuated to 1 × 10 -3 Pa or less pressure, TiO 2 mainly composed of TiO 2
The film 12 30 nm, a SiO 2 film 13 was deposited transmittance adjusting film 14 made of two-layer structure was deposited 440 nm, TiO 2 film mainly containing TiO 2 of high refractive index thereon 1
2 and low refractive index SiO 2 film 13
A thickness of λ / 4 is alternately stacked at 40 nm, and a TiO 2 film having a high refractive index is formed to a thickness of λ / 8 as a final layer of 11 layers, thereby forming a multilayer film 15 having an 11-layer structure. 13 layers in total
After forming the dichroic mirror of the layer film, it is taken out from the vacuum evaporation apparatus.

【0017】図4は本実施例のダイクロイックミラーの
入射角0度における分光透過率を示す特性図である。こ
の図から分かるように、本実施例のダイクロイックミラ
ーは波長440nmで略全反射して、可視光域の波長5
20nm〜700nm間では透過率80%の平坦な分光
透過特性を有している。
FIG. 4 is a characteristic diagram showing the spectral transmittance of the dichroic mirror of this embodiment at an incident angle of 0 degree. As can be seen from this figure, the dichroic mirror of this embodiment is substantially totally reflected at a wavelength of 440 nm, and has a wavelength of 5 in the visible light range.
It has a flat spectral transmission characteristic with a transmittance of 80% between 20 nm and 700 nm.

【0018】[0018]

【発明の効果】以上説明したように本発明に係るダイク
ロイックミラーは、反射波長帯域では略全反射ミラーと
して、透過波長帯域では透過率を抑制し、平坦な分光透
過特性のハーフミラーとして機能するダイクロイックミ
ラーを実現でき、各種光学機械の高性能化や簡略化等に
大きく貢献できる。
As described above, the dichroic mirror according to the present invention functions as a substantially total reflection mirror in the reflection wavelength band, suppresses the transmittance in the transmission wavelength band, and functions as a half mirror having flat spectral transmission characteristics. Mirrors can be realized, greatly contributing to higher performance and simplification of various optical machines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ダイクロイックミラーの膜構成の模式的断面図
である。
FIG. 1 is a schematic sectional view of a film configuration of a dichroic mirror.

【図2】第1の実施例のダイクロイックミラーの透過率
特性図である。
FIG. 2 is a transmittance characteristic diagram of the dichroic mirror of the first embodiment.

【図3】第2の実施例のダイクロイックミラーの透過率
特性図である。
FIG. 3 is a transmittance characteristic diagram of a dichroic mirror according to a second embodiment.

【図4】第3の実施例のダイクロイックミラーの透過率
特性図である。
FIG. 4 is a transmittance characteristic diagram of a dichroic mirror according to a third embodiment.

【図5】従来例のダイクロイックミラーの断面図であ
る。
FIG. 5 is a sectional view of a conventional dichroic mirror.

【図6】従来例のダイクロイックミラーの透過率特性図
である。
FIG. 6 is a transmittance characteristic diagram of a conventional dichroic mirror.

【符号の説明】[Explanation of symbols]

11 基板 12 TiO2 膜 13 SiO2 膜 14 透過率調整膜 15 多層膜Reference Signs List 11 substrate 12 TiO 2 film 13 SiO 2 film 14 transmittance adjusting film 15 multilayer film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透明な基板の表面に成膜した透過率調整
膜を介して、設計中心波長λのλ/4の光学的膜厚とし
た高屈折率膜と低屈折率膜の誘電体材料を交互に積層し
た多層膜から成ることを特徴とするダイクロイックミラ
ー。
1. A dielectric material for a high refractive index film and a low refractive index film having an optical thickness of λ / 4 of a design center wavelength λ via a transmittance adjusting film formed on the surface of a transparent substrate. A dichroic mirror comprising a multilayer film in which are alternately stacked.
【請求項2】 前記透過率調整膜は高屈折率膜と低屈折
率膜の誘電体材料から成る請求項1に記載のダイクロイ
ックミラー。
2. The dichroic mirror according to claim 1, wherein the transmittance adjusting film is made of a dielectric material of a high refractive index film and a low refractive index film.
【請求項3】 前記透過率調整膜の高屈折率膜の光学的
膜厚は、前記多層膜の設計中心波長λに対し、λ/50
〜λ/8の範囲とした請求項2に記載のダイクロイック
ミラー。
3. The optical film thickness of the high refractive index film of the transmittance adjusting film is λ / 50 with respect to the design center wavelength λ of the multilayer film.
The dichroic mirror according to claim 2, wherein the range is λ / 8.
【請求項4】 前記誘電体材料はMgF2 、SiO2
Al23 、 ZrO2 、 TiO2 、 Ta25 、又はこ
れらの混合物により構成した請求項1又は2に記載のダ
イクロイックミラー。
4. The method according to claim 1, wherein the dielectric material is MgF 2 , SiO 2 ,
The dichroic mirror according to claim 1, wherein the dichroic mirror is made of Al 2 O 3 , ZrO 2 , TiO 2 , Ta 2 O 5 , or a mixture thereof.
【請求項5】 請求項1〜4のダイクロイックミラーを
備えた光学器械。
5. An optical instrument comprising the dichroic mirror according to claim 1.
JP32596196A 1996-11-21 1996-11-21 Dichroic mirror Pending JPH10153705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32596196A JPH10153705A (en) 1996-11-21 1996-11-21 Dichroic mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32596196A JPH10153705A (en) 1996-11-21 1996-11-21 Dichroic mirror

Publications (1)

Publication Number Publication Date
JPH10153705A true JPH10153705A (en) 1998-06-09

Family

ID=18182537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32596196A Pending JPH10153705A (en) 1996-11-21 1996-11-21 Dichroic mirror

Country Status (1)

Country Link
JP (1) JPH10153705A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008554A (en) * 2007-06-28 2009-01-15 Hitachi High-Technologies Corp Spectrophotometer and liquid chromatography
WO2012002542A1 (en) * 2010-07-01 2012-01-05 株式会社ニコン Optical members and microscope
JP2015055811A (en) * 2013-09-13 2015-03-23 日油株式会社 Wavelength selective reflection film for transfer, and transfer method and transferred molded article using the same
CN105093377A (en) * 2015-09-17 2015-11-25 京东方科技集团股份有限公司 Blue ray attenuation device and preparation method, base plate, displayer and intelligent wearable product
WO2018054140A1 (en) * 2016-09-23 2018-03-29 京东方科技集团股份有限公司 Display device
CN108973373A (en) * 2018-08-01 2018-12-11 苏州安洁科技股份有限公司 Be cracked after plated film membrane stress removal technique on a kind of ink layer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008554A (en) * 2007-06-28 2009-01-15 Hitachi High-Technologies Corp Spectrophotometer and liquid chromatography
US7787120B2 (en) 2007-06-28 2010-08-31 Hitachi High-Technologies Corporation Spectrophotometer and liquid chromatography system
JP4536754B2 (en) * 2007-06-28 2010-09-01 株式会社日立ハイテクノロジーズ Spectrophotometer and liquid chromatography
WO2012002542A1 (en) * 2010-07-01 2012-01-05 株式会社ニコン Optical members and microscope
US8773761B2 (en) 2010-07-01 2014-07-08 Nikon Corporation Optical member and microscope
JP5673679B2 (en) * 2010-07-01 2015-02-18 株式会社ニコン microscope
JP2015055811A (en) * 2013-09-13 2015-03-23 日油株式会社 Wavelength selective reflection film for transfer, and transfer method and transferred molded article using the same
CN105093377A (en) * 2015-09-17 2015-11-25 京东方科技集团股份有限公司 Blue ray attenuation device and preparation method, base plate, displayer and intelligent wearable product
WO2018054140A1 (en) * 2016-09-23 2018-03-29 京东方科技集团股份有限公司 Display device
US10816706B2 (en) 2016-09-23 2020-10-27 Boe Technology Group Co., Ltd. Display device
CN108973373A (en) * 2018-08-01 2018-12-11 苏州安洁科技股份有限公司 Be cracked after plated film membrane stress removal technique on a kind of ink layer

Similar Documents

Publication Publication Date Title
JP3332879B2 (en) Dichroic mirror
JP4404568B2 (en) Infrared cut filter and manufacturing method thereof
TWI404979B (en) Dielectric multilayer filter
US20080013178A1 (en) Dielectric multilayer filter
JP2003029027A (en) Near ir ray cut filter
JPH11202127A (en) Dichroic mirror
JPH10268130A (en) Light absorbing filter
JPH0593811A (en) Light absorptive film
JP2006259124A (en) Cold mirror
JPH10153705A (en) Dichroic mirror
JP2005031298A (en) Transparent substrate with antireflection film
JPH11101913A (en) Optical element
JPH07111482B2 (en) Multi-layer antireflection film
JP2002014203A (en) Antireflection film and optical member using the same
JPH07209516A (en) Optical multilayer film filter
JP2566634B2 (en) Multi-layer antireflection film
JP2835535B2 (en) Anti-reflection coating for optical components
JP3531444B2 (en) Prism beam splitter
JPH05264802A (en) Multilayered antireflection film
JPS6177018A (en) Filter
JPH08146218A (en) Polarizing beam splitter
JPH0756004A (en) Conductive antireflection film
JP2935765B2 (en) Manufacturing method of dichroic mirror
JP3113371B2 (en) Multi-layer anti-reflective coating
JPH10232311A (en) Narrow band reflection filter