JPS6361202A - Optical thin film for infrared ray - Google Patents

Optical thin film for infrared ray

Info

Publication number
JPS6361202A
JPS6361202A JP61206539A JP20653986A JPS6361202A JP S6361202 A JPS6361202 A JP S6361202A JP 61206539 A JP61206539 A JP 61206539A JP 20653986 A JP20653986 A JP 20653986A JP S6361202 A JPS6361202 A JP S6361202A
Authority
JP
Japan
Prior art keywords
film
optical thin
thin film
thickness
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61206539A
Other languages
Japanese (ja)
Inventor
Atsushi Tsuchiya
敦 土屋
Mikio Okamoto
幹夫 岡本
Hiroyuki Sugimura
博之 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP61206539A priority Critical patent/JPS6361202A/en
Publication of JPS6361202A publication Critical patent/JPS6361202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the spectral characteristic from being shifted in accordance with circumstances of the use and to improve the abrasion resisting property by overcoating an optical thin film for infrared rays with a diamond-shaped carbon having a prescribed thickness as the spectral characteristic shift preventing film. CONSTITUTION:An interference filter or a multilayered mirror 2 formed on a substrate 1 is overcoated with a diamond-shaped carbon film 3. It is preferable that this coat covers not only the upper face of the optical thin film but also the overall surface including its peripheral end face, and the optical thin film is not taken out to the air after being formed and is coated in a vacuum chamber as it is. If the thickness of the film 3 is thinner than 0.7mum, the film 3 is ineffective; and >10mum thickness is improper because the film forming time is extended and the film is easily peeled with the internal stress of the film if the thickness of the film exceeds 10mum. Though the film 3 may be a single layer, the film 3 is more effective if multilayered structure is given to the film 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、分光特性がシフトしない赤外用光学薄膜即ち
赤外用干渉フィルタ又は赤外用多層膜ミラーに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an infrared optical thin film whose spectral characteristics do not shift, that is, an infrared interference filter or an infrared multilayer mirror.

(従来の技術) 赤外用干渉フィルタ及び赤外用多層膜ミラーは、一般に
、ゲルマニウム、シリコン、サファイア、螢石等の結晶
材料を基板とし、その上に光学干渉理論に基づき、高屈
折率物質(例えばsb、s、、G e % S i 、
など)と低屈折率物質(例えばB a F t 、M 
g F t 、S i Oなど)のi”l[Heを交互
に数層から数10層積層させたものである。この場合、
各層は真空蒸着、スパッタリング、イオンブレーティン
グ、CVOなどの真空薄膜堆積技術により形成される。
(Prior art) Infrared interference filters and infrared multilayer mirrors generally use a crystal material such as germanium, silicon, sapphire, or fluorite as a substrate, and based on optical interference theory, a high refractive index material (e.g. sb, s, , G e % S i ,
) and low refractive index materials (e.g. B a F t , M
g F t , S i O, etc.) of i”l[He are alternately stacked from several layers to several tens of layers. In this case,
Each layer is formed by vacuum thin film deposition techniques such as vacuum evaporation, sputtering, ion blasting, and CVO.

(発明が解決しようとする問題点) しかし、形成した光学薄膜を真空チャンバーから取り出
して空気中に放置すると、分光特性(スペクトル曲線)
が全体に長波長側にシフトするという第1の問題点があ
った。
(Problem to be solved by the invention) However, when the formed optical thin film is taken out of the vacuum chamber and left in the air, the spectral characteristics (spectral curve)
The first problem is that the entire wavelength is shifted toward longer wavelengths.

そのため、従来は、長$i長側にシフトするのを見越し
て、成膜の際に各層の光学的厚みを制御していた。しか
し、このような製造方法は、見込み違いが発生し易く、
分光特性の再現性がよくないという欠点があった。
Therefore, in the past, the optical thickness of each layer was controlled during film formation in anticipation of the shift to the long side. However, this manufacturing method is prone to miscalculations,
The drawback was that the reproducibility of spectral characteristics was poor.

また、これらの赤外用光学薄膜が、■高真空下の条件で
用いられる場合や、■光源の近くで使用されるときのよ
うに高温度の条件下で用いられる場合には、短波長側に
シフトするという第2の問題点があった。例えば、第3
図に実線で示す分光特性を有する光学薄膜に強度の大き
いレーザ光を照射すると第3図に点線Bで示すように分
光特性が短波長側にシフトしてしまい、基準波長(ここ
では4000rv+)の透過率が変化してしまう。
In addition, when these infrared optical thin films are used under high vacuum conditions or under high temperature conditions such as when used near a light source, they tend to shift toward shorter wavelengths. There was a second problem with shifting. For example, the third
When an optical thin film with the spectral characteristics shown by the solid line in the figure is irradiated with a high-intensity laser beam, the spectral characteristics shift to the shorter wavelength side as shown by the dotted line B in Figure 3. The transmittance will change.

特に、赤外用干渉フィルタ、多層膜ミラーにおいて、こ
のシフトの問題が顕著かつ重大であり、早期に問題解決
が望まれていた。
In particular, the problem of this shift is remarkable and serious in infrared interference filters and multilayer mirrors, and an early solution to the problem has been desired.

更に、これらの赤外用光学薄膜は、キズが付き易いとい
う第3の問題点があった。
Furthermore, these infrared optical thin films have a third problem of being easily scratched.

本発明の目的は、以上のような分光特性のシフトを防止
すること及びキズの付き易さを防止することにある。
An object of the present invention is to prevent the above-mentioned shifts in spectral characteristics and to prevent susceptibility to scratches.

(問題を解決するための手段) 本発明者らは、鋭意研究の結果、所定の膜厚のダイヤモ
ンド状カーボン膜で光学薄膜をオーバーコートすると、
分光特性のシフト防止とキズ付き防止に顕効があること
を見い出し、本発明を成すに至った。
(Means for Solving the Problem) As a result of intensive research, the present inventors found that when an optical thin film is overcoated with a diamond-like carbon film of a predetermined thickness,
It was discovered that the present invention is effective in preventing shifts in spectral characteristics and preventing scratches, leading to the completion of the present invention.

従って、本発明は、「基板上に形成された赤外用干渉フ
ィルタ又は赤外用多層膜ミラーからなる赤外用光学薄膜
において、 分光特性のシフト防止膜として厚さ0.7〜10μmの
ダイヤモンド状カーボン膜でオーバーコートしたことを
特徴とする赤外用光学FJ膜」を提供する。
Therefore, the present invention provides a diamond-like carbon film with a thickness of 0.7 to 10 μm as a film for preventing shifts in spectral characteristics in an infrared optical thin film consisting of an infrared interference filter or an infrared multilayer mirror formed on a substrate. The present invention provides an infrared optical FJ film characterized by being overcoated with:

(作用) 第1図は、本発明の赤外用光学薄膜の垂直断面を示す概
念図であり、基板l上に形成された干渉フィルタ又は多
層膜ミラー2がダイヤモンド状カーボン膜3でオーバー
コートされている。
(Function) FIG. 1 is a conceptual diagram showing a vertical cross section of the infrared optical thin film of the present invention, in which an interference filter or multilayer mirror 2 formed on a substrate l is overcoated with a diamond-like carbon film 3. There is.

コートは光学薄膜の上面だけにとどまらず、その周縁部
端面を含む全表面にコートすることが好ましい。この場
合、光学薄膜を形成したあと空気中に放置して分光特性
が長波長側にする前にコートすべきであり、光学薄膜を
形成したあと空気中に取り出さずにそのまま真空チャン
バー内でコートすることが好ましい。
It is preferable to coat not only the upper surface of the optical thin film but also the entire surface including the peripheral edge end surface. In this case, after forming the optical thin film, it should be coated before leaving it in the air to change the spectral characteristics to the long wavelength side, and after forming the optical thin film, it should be coated in the vacuum chamber without taking it out into the air. It is preferable.

ダイヤモンド状カーボン膜それ自身は、公知であり、例
えばプラズマCVDあるいはイオンビームスパッタリン
グにより形成される。カーボン膜の膜厚は0.7〜10
μmでなければならず、0.7μmより薄いと効果がな
く、逆に10μmを越えると、■成膜時間が長くなり、
■膜の内部応力によりrr、Il 離し易くなるので不
適当である。なお、この範囲内でl模J¥を適当に選択
することにより、基準波長における透過率を、ダイヤモ
ンド状カーボン膜のないときに比べて、上げたり、下げ
たり、同等にすることもできる。□ ダイヤモンド状カーボン膜は、それ自体単層でもよいが
、第2図に示すように多層構造にしてもよい。多層構造
にすると、同一の単層膜に比べ効果がより高くなること
がある。
The diamond-like carbon film itself is known and is formed, for example, by plasma CVD or ion beam sputtering. The thickness of the carbon film is 0.7 to 10
If it is thinner than 0.7 μm, it will not be effective, and if it exceeds 10 μm, ■ The film formation time will be longer.
(2) It is unsuitable because the internal stress of the film makes it easy for rr and Il to separate. In addition, by appropriately selecting l<J> within this range, the transmittance at the reference wavelength can be increased, decreased, or made equal to that without the diamond-like carbon film. □ The diamond-like carbon film itself may be a single layer, but it may also have a multilayer structure as shown in FIG. A multilayer structure may be more effective than an identical single layer film.

また、ダイヤモンド状カーボン膜の膜厚は、0.7〜1
0μmの間で反射防止効果のある膜厚を選択でき、干渉
フィルタの場合、そうすることが好ましい。
Moreover, the film thickness of the diamond-like carbon film is 0.7 to 1
A film thickness having an antireflection effect can be selected between 0 μm, and it is preferable to do so in the case of an interference filter.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例1) 先ず、波長4000nm以上の光を透過する干渉フィル
タ2を製作するため、光学設計者によって第6図に示す
如き21層構造の光学設計図(基準波長λ。= 290
0nm)を設計してもらった。
(Example 1) First, in order to manufacture an interference filter 2 that transmits light with a wavelength of 4000 nm or more, an optical designer created an optical design diagram of a 21-layer structure as shown in FIG. 6 (reference wavelength λ = 290 nm).
0nm) was designed.

第6図に於いて、Hは高屈折率(n=4.0)のゲルマ
ニウムの層を示し、Lは低屈折率n=1.8)の5iO
O層を示し、数値ro、125 j及びro、25jは
、その右に示す単層H又はLの厚さを示す。但し、単位
は、 屈折率n×実際の膜厚d÷波長λ。
In Figure 6, H indicates a layer of germanium with a high refractive index (n = 4.0), and L indicates a layer of 5iO with a low refractive index (n = 1.8).
The numbers ro, 125 j and ro, 25 j indicate the thickness of the monolayer H or L shown to the right. However, the unit is refractive index n x actual film thickness d ÷ wavelength λ.

である。It is.

基板1としてサファイア基板を用意し、その上に第6図
の設計図に従い高屈折率物質と低屈折率物質を交互に蒸
着して干渉フィルタ2を作成した。
A sapphire substrate was prepared as the substrate 1, and a high refractive index material and a low refractive index material were alternately deposited on the sapphire substrate according to the design diagram shown in FIG. 6 to create an interference filter 2.

作成後、真空チャンバーから空気中へ取り出さずにその
まま真空中で分光特性を測定した結果を第4図に実線A
で示す。
After the fabrication, the spectral characteristics were measured in vacuum without being taken out of the vacuum chamber into the air. The solid line A in Figure 4 shows the results.
Indicated by

続いて、干渉フィルタ2の上にプラズマCVDにより膜
厚:1μのダイヤモンド状カーボン膜3をオーバーコー
トし、本実施例の赤外用光学薄膜を完成した。
Subsequently, a diamond-like carbon film 3 having a film thickness of 1 μm was overcoated on the interference filter 2 by plasma CVD to complete the infrared optical thin film of this example.

この分光特性を測定した結果を第4図に一点破線Bで示
す、カーボン膜3の膜厚を予め計算により、基準波長λ
。” 4000nmにおける12ii過率が実線Aと変
わらない値にしたので、その通りの結果がでている。
The result of measuring this spectral characteristic is shown by the dotted line B in FIG.
. ” The 12ii pass rate at 4000 nm was set to the same value as the solid line A, so the result is as expected.

そして、第4図のBの分光特性は、この光学薄膜を6ケ
月間空気中に放置しておいてもシフトせず、また、lk
wの赤外線ランプの光を72時間照射して全くシフトし
なかった。
The spectral characteristics of B in Figure 4 do not shift even if this optical thin film is left in the air for 6 months, and lk
There was no shift at all after 72 hours of irradiation with light from an infrared lamp.

(比較例) 実施例1において、ダイヤモンド状カーボン膜3を設け
ない外は、全く同様にして赤外用光学薄膜を作成した。
(Comparative Example) An infrared optical thin film was prepared in exactly the same manner as in Example 1, except that the diamond-like carbon film 3 was not provided.

これは、lkwの赤外線ランプの光を72時間照射する
と、分光特性がシフトした。
This is because the spectral characteristics shifted when irradiated with light from an lkw infrared lamp for 72 hours.

(実施例2) 実施例1と同様に干渉フィルタ2を作成後、真空チャン
バーから空気中へ取り出さずにそのまま真空中で分光特
性を測定した結果を第5図に実線Aで示す。
(Example 2) After producing the interference filter 2 in the same manner as in Example 1, the spectral characteristics were measured in vacuum without being taken out of the vacuum chamber into the air. The results are shown by solid line A in FIG.

続いて、干渉フィルタ2の上にプラズマCVDにより膜
厚: 0.96μのダイヤモンド状カーボン膜3をオー
バーコートし、本実施例の赤外用光学薄膜を完成した。
Subsequently, a diamond-like carbon film 3 having a film thickness of 0.96 μm was overcoated on the interference filter 2 by plasma CVD to complete the infrared optical thin film of this example.

この分光特性を測定した結果を第5図に点線Bで示す。The results of measuring this spectral characteristic are shown by dotted line B in FIG.

この場合には、基準波長λ。−4000nmにおける透
過率が実¥LIAAよりも数%向上しいてる。
In this case, the reference wavelength λ. The transmittance at -4000 nm is improved by several percent compared to the actual LIAA.

そして、第5図のBの分光特性は、この光学薄膜を6ケ
月間空気中に放置しておいてもシフトせず、また、lk
wの赤外線ランプの光を72時間照射しても全くシフト
しなかった。
The spectral characteristics of B in Figure 5 do not shift even if this optical thin film is left in the air for 6 months, and lk
There was no shift at all even after 72 hours of irradiation with light from an infrared lamp.

一方、実施例1と比較例の赤外用光学gi膜について、
耐擦傷性をテストした。テストは落砂試験法により行な
った。試験の条件を第1表に示す。
On the other hand, regarding the infrared optical GI films of Example 1 and Comparative Example,
Tested for scratch resistance. The test was conducted using the falling sand test method. The test conditions are shown in Table 1.

表 1    砕 テストの結果、ダイヤモンド状カーボン膜でオーバーコ
ートした実施例1は変化がなかったが、オーバーコート
の無い比較例は基板が露出してしまった。
Table 1 As a result of the crushing test, there was no change in Example 1, which was overcoated with a diamond-like carbon film, but in Comparative Example, which had no overcoat, the substrate was exposed.

(発明の効果) 以上のように、本発明は、従来の赤外用光学)W膜で欠
点とされていた使用する環境による分光特性のシフトが
全くなく、また、耐擦傷性も高い。
(Effects of the Invention) As described above, the present invention has no shift in spectral characteristics due to the environment in which it is used, which was a drawback of conventional infrared optical (W) films, and also has high scratch resistance.

そのほか、充分な耐環境性も備えているため、使用する
環境によって分光特性が変化することもない。
In addition, it has sufficient environmental resistance, so its spectral characteristics do not change depending on the environment in which it is used.

【図面の簡単な説明】 第1図は、本発明の一実施例を示す赤外用光学薄膜の垂
直断面を示す概念図である。 第2図は、本発明の他の実施例を示す赤外用光学FJ 
115!の垂直断面を示す概念図である。 第3図は、従来の1つの赤外用光学薄膜の分光特性を示
すグラフである。 第4図は、実施例1にかかる赤外用光学薄膜の分光特性
を示すグラフである。 第5図は、実施例2にかかる赤外用光学薄膜の分光特性
を示すグラフである。 第6図は、実施例1及び2で作成した干渉フィルタの構
造を示す説明図である。 (主要部分の符号の説明)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing a vertical cross section of an infrared optical thin film showing an embodiment of the present invention. FIG. 2 shows an infrared optical FJ showing another embodiment of the present invention.
115! FIG. FIG. 3 is a graph showing the spectral characteristics of one conventional infrared optical thin film. FIG. 4 is a graph showing the spectral characteristics of the infrared optical thin film according to Example 1. FIG. 5 is a graph showing the spectral characteristics of the infrared optical thin film according to Example 2. FIG. 6 is an explanatory diagram showing the structure of the interference filter created in Examples 1 and 2. (Explanation of symbols of main parts)

Claims (1)

【特許請求の範囲】 1 基板上に形成された赤外用干渉フィルタ又は赤外用
多層膜ミラーからなる赤外用光学薄膜において、 分光特性のシフト防止膜として厚さ0.7〜10μmの
ダイヤモンド状カーボン膜でオーバーコートしたことを
特徴とする赤外用光学薄膜。 2 前記ダイヤモンド状カーボン膜が多層構造からなる
ことを特徴とする特許請求の範囲第1項記載の赤外用光
学薄膜。
[Claims] 1. In an infrared optical thin film formed on an infrared interference filter or an infrared multilayer mirror formed on a substrate, a diamond-like carbon film with a thickness of 0.7 to 10 μm is used as a spectral characteristic shift prevention film. An infrared optical thin film characterized by being overcoated with. 2. The infrared optical thin film according to claim 1, wherein the diamond-like carbon film has a multilayer structure.
JP61206539A 1986-09-02 1986-09-02 Optical thin film for infrared ray Pending JPS6361202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206539A JPS6361202A (en) 1986-09-02 1986-09-02 Optical thin film for infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206539A JPS6361202A (en) 1986-09-02 1986-09-02 Optical thin film for infrared ray

Publications (1)

Publication Number Publication Date
JPS6361202A true JPS6361202A (en) 1988-03-17

Family

ID=16525046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206539A Pending JPS6361202A (en) 1986-09-02 1986-09-02 Optical thin film for infrared ray

Country Status (1)

Country Link
JP (1) JPS6361202A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410160A2 (en) * 1989-07-25 1991-01-30 Horiba, Ltd. Optical filter
JP2006084994A (en) * 2004-09-17 2006-03-30 Nidec Copal Corp Nd filter and optical quantity diaphragm device using nd filter
JP2012173315A (en) * 2011-02-17 2012-09-10 Seiko Epson Corp Wavelength variable interference filter, optical module and electronic apparatus
JP2013167789A (en) * 2012-02-16 2013-08-29 Seiko Epson Corp Interference filter, optical module, and electronic apparatus
CN106842401A (en) * 2017-01-19 2017-06-13 中国科学院上海技术物理研究所 A kind of far infrared band optical film filter with cvd diamond as substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410160A2 (en) * 1989-07-25 1991-01-30 Horiba, Ltd. Optical filter
JP2006084994A (en) * 2004-09-17 2006-03-30 Nidec Copal Corp Nd filter and optical quantity diaphragm device using nd filter
JP2012173315A (en) * 2011-02-17 2012-09-10 Seiko Epson Corp Wavelength variable interference filter, optical module and electronic apparatus
JP2013167789A (en) * 2012-02-16 2013-08-29 Seiko Epson Corp Interference filter, optical module, and electronic apparatus
CN106842401A (en) * 2017-01-19 2017-06-13 中国科学院上海技术物理研究所 A kind of far infrared band optical film filter with cvd diamond as substrate

Similar Documents

Publication Publication Date Title
US4128303A (en) Anti reflection coating with a composite middle layer
Hass et al. Reflecting coatings for the extreme ultraviolet
JP3359114B2 (en) Thin film type ND filter and method of manufacturing the same
US20190383972A1 (en) Layer system and optical element comprising a layer system
JPH0238924B2 (en)
US3737210A (en) Multilayer filter based on substitution of herpin equivalent layers in a antireflection coating formula
US4112142A (en) Method for the production of light-reflecting layers on a surface of a transparent glass article
JPS5860701A (en) Reflection preventing film
JPS6361202A (en) Optical thin film for infrared ray
US6501598B2 (en) Prism and optical device using the same
JP2004334012A (en) Antireflection film and optical filter
JPH07209516A (en) Optical multilayer film filter
JPS58223101A (en) Production of polygonal mirror
JP3232727B2 (en) 2-wavelength anti-reflection coating
JP2691989B2 (en) Neutral density filter
JPH0253001A (en) Production of multilayer film for soft x-rays and vacuum ultraviolet rays
JPS62237401A (en) Antireflection film
JPS6126768A (en) Reflection mirror in optical apparatus
JP2004069865A (en) Multilayer film optical filter and its manufacturing method and optical part using it
JPH0580202A (en) Antireflection film for plastic optical parts, production thereof and plastic optical parts with antireflection film
JPH07244204A (en) Dual wavelength anti-reflection film
JP2935765B2 (en) Manufacturing method of dichroic mirror
JPH07280999A (en) Multilayer film x-ray reflector
WO2013024531A1 (en) Thin film light-absorbing film
JP2693500B2 (en) Anti-reflective coating