JP2008009117A - Method of forming dielectric multilayer film - Google Patents

Method of forming dielectric multilayer film Download PDF

Info

Publication number
JP2008009117A
JP2008009117A JP2006179231A JP2006179231A JP2008009117A JP 2008009117 A JP2008009117 A JP 2008009117A JP 2006179231 A JP2006179231 A JP 2006179231A JP 2006179231 A JP2006179231 A JP 2006179231A JP 2008009117 A JP2008009117 A JP 2008009117A
Authority
JP
Japan
Prior art keywords
dielectric multilayer
optical element
multilayer film
film
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006179231A
Other languages
Japanese (ja)
Inventor
Kenji Konno
賢治 金野
Hiroshi Hatano
洋 波多野
Masahiro Okitsu
昌広 興津
Hiroaki Ueda
裕昭 上田
Manami Kuiseko
真奈美 杭迫
Naoki Nishida
直樹 西田
Kojiro Sekine
孝二郎 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006179231A priority Critical patent/JP2008009117A/en
Publication of JP2008009117A publication Critical patent/JP2008009117A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a dielectric multilayer film used for an optical device whereby the characteristics of the dielectric multilayer film is easily and precisely controlled and the optical device having excellent characteristics is obtained. <P>SOLUTION: The method of forming the dielectric multilayer film formed on the optical device is provided with a first step for forming a test dielectric multilayer film simultaneously on the optical device and a reference substrate for a reference arranged in the vicinity of the optical device before regular film-forming and measuring the characteristics of the optical device and the reference substrate on each of which the test dielectric multilayer film is formed and obtaining the difference of the characteristics between them and a second step for regularly forming the dielectric multilayer film simultaneously on the optical device and the reference substrate following the first step, measuring the characteristics of the regularly film-formed reference substrate and obtaining the characteristics of the regularly film-formed optical device based on the characteristics of the regularly film-formed reference substrate and the difference of the characteristics. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、誘電体多層膜の製造方法に関し、特に光学素子に用いられる誘電体多層膜の製造方法に関する。   The present invention relates to a method for manufacturing a dielectric multilayer film, and more particularly to a method for manufacturing a dielectric multilayer film used for an optical element.

近年、誘電体多層膜が形成された光学レンズ、ダイクロイックミラー、帯域フィルター、レーザーミラー等の光学素子が種々開発されている(例えば、特許文献1、特許文献2参照)。   In recent years, various optical elements such as optical lenses, dichroic mirrors, bandpass filters, and laser mirrors on which a dielectric multilayer film is formed have been developed (see, for example, Patent Document 1 and Patent Document 2).

誘電体多層膜は、所定の光学的膜厚を有する高屈折率誘電体物質の薄膜と低屈折率誘電体物質の薄膜とが基板上に複数層交互に積層されてなるものであり、従来、通常真空槽内に別々に設置された蒸発源より高屈折率膜の材料と低屈折率膜の材料を交互に蒸発させ、該真空槽内に保持された基板上にそれらの材料を蒸着積層させ、誘電体多層膜を形成する方法により製造されている。   A dielectric multilayer film is formed by alternately laminating a plurality of thin films of a high refractive index dielectric material and a low refractive index dielectric material having a predetermined optical film thickness on a substrate. Normally, the material of the high refractive index film and the material of the low refractive index film are evaporated alternately from the evaporation source installed separately in the vacuum chamber, and these materials are vapor deposited on the substrate held in the vacuum chamber. It is manufactured by a method of forming a dielectric multilayer film.

層数の多い誘電体多層膜は、光の特定の波長領域や入射角度領域に対する反射特性(透過特性)が大きく、優れた波長依存性および角度依存性を有している。尚、光の波長の変化に対する薄膜の厚み(光学膜厚)の変化と光の入射角度の変化に対する薄膜を透過する距離(光学膜厚)の変化は等価なことから、波長依存性と角度依存性は同等の特性であるということができる。   A dielectric multilayer film having a large number of layers has a large reflection characteristic (transmission characteristic) with respect to a specific wavelength region and incident angle region of light, and has excellent wavelength dependency and angle dependency. Since the change in the thickness (optical thickness) of the thin film with respect to the change in the wavelength of light and the change in the distance (optical thickness) transmitted through the thin film with respect to the change in the incident angle of light are equivalent, the wavelength dependence and the angle dependence It can be said that sex is an equivalent property.

この様に、波長依存性(又は角度依存性)を有する誘電体多層膜が形成された光学素子は、例えば、色フィルターや特許文献1、特許文献2に開示されている角度依存性を利用したSIM(Solid Immersion Mirror;固浸ミラー)等の様に光学系の入射面としてだけでなく、複合機能を有するので追加の部材を必要としないことや、SIMの様に複合することで初めて機能することができるといった効果がある。   As described above, the optical element on which the dielectric multilayer film having wavelength dependency (or angle dependency) is formed utilizes, for example, a color filter or angle dependency disclosed in Patent Literature 1 and Patent Literature 2. Not only as an incident surface of an optical system, such as a SIM (Solid Immersion Mirror), but also because it has a composite function, it does not require additional members, and functions only when combined like a SIM. There is an effect that can be.

ところで、波長依存性(角度依存性)を有する誘電体多層膜は、製造時に光学膜厚が変動すると、波長(角度)がシフトし所望の特性の光学素子を得ることができない。しかしながら、通常行われている真空蒸着やスパッタといった成膜工程では、バッチ間誤差と呼ばれる繰り返しによる光学膜厚のばらつきやバッチ内誤差と呼ばれる同一の成膜工程内での光学膜厚のばらつきが発生する。従って、光学素子に誘電体多層膜を形成する場合、その特性の管理が重要である。   By the way, when a dielectric multilayer film having wavelength dependency (angle dependency) changes its optical film thickness at the time of manufacture, the wavelength (angle) shifts and an optical element having desired characteristics cannot be obtained. However, in film formation processes such as vacuum deposition and sputtering, which are usually performed, optical film thickness variations due to repetition called batch-to-batch errors and optical film thickness variations within the same film-forming process called batch errors occur. To do. Therefore, when a dielectric multilayer film is formed on the optical element, it is important to manage its characteristics.

そこで、成膜工程において誘電体多層膜の特性を管理する方法として、通常、製品となる光学素子を成膜する際に、該光学素子の近傍に参照用の参照基板を配置して該光学素子と一緒に成膜する。そして、得られた光学素子と参照基板は等しい特性を示すものとし、容易にその特性を測定することができる参照基板の測定値をもって光学素子の特性値として光学素子に形成された多層膜誘電体の特性を管理している。
特開2005−31390号公報 特開2005−134539号公報
Therefore, as a method for managing the characteristics of the dielectric multilayer film in the film formation process, when forming an optical element as a product, a reference substrate for reference is generally disposed in the vicinity of the optical element. A film is formed together. The obtained optical element and the reference substrate exhibit the same characteristics, and the multilayer dielectric formed on the optical element as the characteristic value of the optical element with the measured value of the reference substrate that can easily measure the characteristic Manage the characteristics of
JP 2005-31390 A JP 2005-134539 A

この様に、光学素子に誘電体多層膜を形成する場合、その特性を高い精度で管理し成膜することが重要である。しかしながら、特許文献1や特許文献2に開示されている光学レンズの技術は、この様な成膜に係る製造方法を示唆するものではなかった。   Thus, when forming a dielectric multilayer film on an optical element, it is important to control the characteristics with high accuracy. However, the optical lens technology disclosed in Patent Document 1 and Patent Document 2 did not suggest a manufacturing method related to such film formation.

また、参照基板の特性をもって製品となる光学素子の特性を管理する従来の方法においては、光学素子と参照基板の大きさや形状の差異、また、蒸着時の保持方法や蒸着源からの距離の差異等により光学素子と参照基板の特性が一致しない場合がある。したがって、参照基板の特性をもって製品となる光学素子の特性とし、光学素子の特性を管理することは困難なものと考えられる。   In addition, in the conventional method for managing the characteristics of the optical element as a product with the characteristics of the reference substrate, the difference in the size and shape of the optical element and the reference substrate, the difference in the holding method during vapor deposition and the distance from the vapor deposition source For example, the characteristics of the optical element and the reference substrate may not match. Therefore, it is considered difficult to manage the characteristics of the optical element by using the characteristics of the optical element as a product with the characteristics of the reference substrate.

本発明は、上記課題を鑑みてなされたもので、光学素子に用いられる誘電体多層膜の製造方法において、誘電体多層膜の特性を容易に精度よく管理することができ、優れた特性の光学素子を得ることができる誘電体多層膜の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and in the method for producing a dielectric multilayer film used in an optical element, the characteristics of the dielectric multilayer film can be easily and accurately managed, and the optical characteristics of the excellent characteristics It is an object of the present invention to provide a method for producing a dielectric multilayer film capable of obtaining an element.

上記目的は、下記の1乃至4のいずれか1項に記載の発明によって達成される。   The above object is achieved by the invention described in any one of the following items 1 to 4.

1.光学素子に形成される誘電体多層膜の製造方法において、
本成膜前に前記光学素子と該光学素子の近傍に配置された参照用の参照基板に同時に前記誘電体多層膜を試験成膜し、試験成膜された光学素子と参照基板の特性を測定し、その特性差を取得する第1の工程と、
前記第1の工程に続いて、前記光学素子と前記参照基板に同時に前記誘電体多層膜を本成膜し、本成膜された参照基板の特性を測定し、該特性と前記特性差に基づいて本成膜された光学素子の特性を取得する第2の工程と、を有することを特徴とする誘電体多層膜の製造方法。
1. In the method for producing a dielectric multilayer film formed on an optical element,
Before the main film formation, the dielectric multilayer film is simultaneously formed on the optical element and a reference substrate for reference arranged in the vicinity of the optical element, and the characteristics of the optical element formed on the test film and the reference substrate are measured. A first step of obtaining the characteristic difference;
Subsequent to the first step, the dielectric multilayer film is formed on the optical element and the reference substrate at the same time, the characteristics of the formed reference substrate are measured, and based on the characteristics and the characteristic difference. And a second step of acquiring the characteristics of the optical element formed as a film.

2.前記誘電体多層膜が成膜される前記光学素子の面は、曲面形状に形成されていることを特徴とする前記1に記載の誘電体多層膜の製造方法。   2. 2. The method for producing a dielectric multilayer film according to 1 above, wherein a surface of the optical element on which the dielectric multilayer film is formed is formed in a curved shape.

3.前記光学素子は、該光学素子を保持する成膜ホルダに装填されて成膜され、
前記光学素子が前記成膜ホルダに装填された状態で、該光学素子に前記誘電体多層膜が成膜される面の最大有効長さをD、該光学素子に前記誘電体多層膜が成膜される領域を決定し前記光学素子を保持する保持部の厚みをTとしたときに、Tに対するDの比は下記式を満足することを特徴とする前記1または2に記載の誘電体多層膜の製造方法。
式:5<D/T<100
4.前記誘電体多層膜が形成された光学素子は、所定の波長領域では反射率が略100%、他の波長領域では透過率が略100%の分光特性を有するダイクロイックミラーであることを特徴とする前記1乃至3のいずれか1項に記載の誘電体多層膜の製造方法。
3. The optical element is loaded into a film formation holder that holds the optical element and formed into a film,
With the optical element loaded in the film formation holder, the maximum effective length of the surface on which the dielectric multilayer film is deposited is set to D, and the dielectric multilayer film is deposited on the optical element. 3. The dielectric multilayer film according to 1 or 2 above, wherein the ratio of D to T satisfies the following expression, where T is a thickness of a holding portion that determines a region to be held and holds the optical element: Manufacturing method.
Formula: 5 <D / T <100
4). The optical element on which the dielectric multilayer film is formed is a dichroic mirror having a spectral characteristic of a reflectance of approximately 100% in a predetermined wavelength region and a transmittance of approximately 100% in other wavelength regions. 4. The method for producing a dielectric multilayer film according to any one of 1 to 3 above.

本発明によれば、予め試験成膜によって得られた光学素子と参照基板との特性差と本成膜で得られた参照基板の特性に基づいて本成膜された光学素子の特性を取得する様にした。したがって、前述の様に、光学素子と参照基板の大きさや形状の差異、また、蒸着時の保持方法や蒸着源からの距離の差異等により光学素子と参照基板の特性が一致しない場合においても、予め試験成膜において光学素子と参照基板との特性差を掴んでおき、本成膜においては、容易に測定することができる参照基板の特性を測定するだけで、光学素子に形成された誘電体多層膜の特性を知ることができる。この様にして取得した特性値を用いることにより、測定の困難な光学素子の測定を個々に行うことなく、誘電体多層膜の特性を容易に、且つ、効率よく高い精度で管理することができ、優れた特性の光学素子を得ることができる。   According to the present invention, the characteristics of the optical element formed in the main film are acquired based on the characteristic difference between the optical element obtained in advance by the test film formation and the reference substrate and the characteristics of the reference substrate obtained in the main film formation. I did it. Therefore, as described above, even when the characteristics of the optical element and the reference substrate do not match due to the difference in the size and shape of the optical element and the reference substrate, or the difference in the distance from the deposition method and the holding method during vapor deposition, A dielectric formed on an optical element can be obtained simply by measuring the characteristics of the reference substrate that can be easily measured in this film formation. The characteristics of the multilayer film can be known. By using the characteristic values obtained in this way, the characteristics of the dielectric multilayer film can be managed easily and efficiently with high accuracy without individually measuring optical elements that are difficult to measure. An optical element having excellent characteristics can be obtained.

また、本発明による誘電体多層膜の製造方法は、誘電体多層膜が成膜される面が曲面形状に形成される等その特性を容易に測定することが困難な光学素子に好適である。一般に用いられている分光計で波長依存特性(分光特性)を測定する場合、成膜される面が曲面形状に形成されていると、測定する位置によって入射角度が変わり、角度依存特性の影響を受け精度良く波長依存特性を測定することが困難である。顕微分光装置を用いて測定することは可能であるが、正確にレンズの頂点位置を測定する必要があり、その結果測定に多大な時間を要し製造工程における管理方法として不適である。そこで、本発明による製造方法においては、誘電体多層膜の特性を容易に、且つ、効率よく高い精度で管理することができるので好適である。   The method for producing a dielectric multilayer film according to the present invention is suitable for an optical element in which it is difficult to easily measure the characteristics, for example, the surface on which the dielectric multilayer film is formed is formed in a curved shape. When measuring wavelength-dependent characteristics (spectral characteristics) with a commonly used spectrometer, if the surface to be deposited is formed in a curved surface, the incident angle changes depending on the measurement position, and the influence of the angle-dependent characteristics is affected. It is difficult to measure wavelength-dependent characteristics with high accuracy. Although it is possible to measure using a microspectroscope, it is necessary to accurately measure the apex position of the lens. As a result, it takes a lot of time for measurement and is not suitable as a management method in the manufacturing process. Therefore, the manufacturing method according to the present invention is preferable because the characteristics of the dielectric multilayer film can be easily and efficiently managed with high accuracy.

また、光学素子を大量生産する場合、通常、光学素子は成膜ホルダに複数個同時に組み入れられた後に成膜装置に配置されて成膜される。成膜ホルダは光学素子を保持する為に光学素子を押える部分(保持部)を備えている。この保持部の内側の領域が成膜されることになる。保持部の厚みT(光学素子に誘電体多層膜が成膜される領域を決める部分の厚み)はゼロにはできない。この為、光学素子において、保持部の周辺は少なくとも保持部の厚みT程度、通常は厚みTの数倍程度の範囲においては、蒸発源からの影になったりすることで成膜の乱れが発生する。光学素子が小さくなるにつれてこの乱れが無視できなくなり、光学素子の有効範囲Dの全域において乱れのない均一な多層膜を形成することが困難になる。従って、保持部の厚みTと光学素子に誘電体多層膜が成膜される面の最大有効長さDの関係を適正に規定する必要がある。そこで、本発明においては、下記(式1)を満足する様にTとDとの関係を規定している。
5<D/T<100 (式1)
(式1)において下限値5を下回ると、乱れの影響が光学素子の中心部分にまで及び、良好な特性の誘電体多層膜が形成された光学素子を得ることができない。一方、上限値100を超えると、乱れの影響を無視できる様な大きさの光学素子となる。本発明による製造方法を用いなくとも従来行われている簡易な方法で特性を測定することができる。
When mass-producing optical elements, usually, a plurality of optical elements are incorporated into a film formation holder and then placed in a film formation apparatus for film formation. The film formation holder includes a portion (holding portion) for pressing the optical element in order to hold the optical element. A region inside the holding portion is formed. The thickness T of the holding portion (the thickness of the portion that determines the region where the dielectric multilayer film is formed on the optical element) cannot be made zero. For this reason, in the optical element, at least about the thickness T of the holding portion, usually in the range of several times the thickness T around the holding portion, the film is disturbed by a shadow from the evaporation source. To do. As the optical element becomes smaller, this disturbance cannot be ignored, and it becomes difficult to form a uniform multilayer film without disturbance throughout the effective range D of the optical element. Therefore, it is necessary to properly define the relationship between the thickness T of the holding portion and the maximum effective length D of the surface on which the dielectric multilayer film is formed on the optical element. Therefore, in the present invention, the relationship between T and D is defined so as to satisfy the following (Formula 1).
5 <D / T <100 (Formula 1)
If the lower limit of 5 is not reached in (Equation 1), the influence of the disturbance extends to the central portion of the optical element, and an optical element in which a dielectric multilayer film with good characteristics is formed cannot be obtained. On the other hand, when the upper limit value 100 is exceeded, the optical element has such a size that the influence of disturbance can be ignored. Even if the manufacturing method according to the present invention is not used, the characteristics can be measured by a conventional simple method.

また、本発明による誘電体多層膜の製造方法は、所定の波長領域では反射率が略100%、他の波長領域では透過率が略100%の分光特性を有するダイクロイックミラーの様な光学素子の製造方法に好適である。この様な光学素子は反射領域と透過領域を適切に使い分けることで複合機能を有する高機能な光学素子となる。しかしながら、一方では、反射領域と透過領域の境界が変動すると特性の悪化に敏感に影響する為、境界部分の特性変動を通常厳しく管理する必要がある。そこで、本発明による製造方法においては、誘電体多層膜の特性を容易に、且つ、効率よく高い精度で管理することができ、良好な特性の光学素子をいつも安定して得ることができるので好適である。   The dielectric multilayer film manufacturing method according to the present invention is a method for manufacturing an optical element such as a dichroic mirror having a spectral characteristic of a reflectance of approximately 100% in a predetermined wavelength region and a transmittance of approximately 100% in other wavelength regions. Suitable for manufacturing method. Such an optical element becomes a high-performance optical element having a composite function by properly using the reflective region and the transmissive region. However, on the other hand, if the boundary between the reflective region and the transmissive region changes, it will sensitively affect the deterioration of the characteristic, so it is usually necessary to strictly manage the characteristic change at the boundary part. Therefore, the manufacturing method according to the present invention is preferable because the characteristics of the dielectric multilayer film can be easily and efficiently managed with high accuracy, and an optical element having good characteristics can be obtained stably at all times. It is.

以下、図面に基づいて、本発明に係る誘電体多層膜の製造方法の実施の形態を説明する。   Hereinafter, embodiments of a method for producing a dielectric multilayer film according to the present invention will be described with reference to the drawings.

最初に、本発明における光学素子および参照基板にそれぞれ該当するレンズ1と平板ガラス2の外観について図1を用いて説明する。図1(a)は、レンズ1の外観を示す側面図、図1(b)は、平板ガラスの外観を示す側面図である。   First, the appearance of the lens 1 and the flat glass 2 corresponding to the optical element and the reference substrate in the present invention will be described with reference to FIG. FIG. 1A is a side view showing the appearance of the lens 1, and FIG. 1B is a side view showing the appearance of the flat glass.

図1(a)に示す様に、誘電体多層膜が成膜されるレンズ1の第1面101は、曲面形状に形成されている。また、図1(b)に示す様に、平板ガラス2の表裏の面201,202は、平坦な平面形状に形成されている。   As shown in FIG. 1A, the first surface 101 of the lens 1 on which the dielectric multilayer film is formed is formed in a curved shape. Moreover, as shown in FIG.1 (b), the front and back surfaces 201 and 202 of the flat glass 2 are formed in flat planar shape.

次に、この様な構成のレンズ1に成膜される誘電体多層膜の特性の一例について図2を用いて説明する。図2(a)は、誘電体多層膜の波長依存特性、図2(b)は、誘電体多層膜の角度依存特性を示すグラフである。   Next, an example of the characteristics of the dielectric multilayer film formed on the lens 1 having such a configuration will be described with reference to FIG. FIG. 2A is a graph showing the wavelength dependence characteristics of the dielectric multilayer film, and FIG. 2B is a graph showing the angle dependence characteristics of the dielectric multilayer film.

所定の光学的膜厚を有する高屈折率誘電体物質の薄膜と低屈折率誘電体物質の薄膜とがレンズ1上に複数層交互に積層された多層の誘電体多層膜は、図1(a)、(b)に示す様に、所定の波長領域(入射角度領域)では反射率が略100%、他の波長領域(入射角度領域)では透過率が略100%の特性を示し、光の特定の波長領域や入射角度領域に対する反射特性(透過特性)が大きく、優れた波長依存性および角度依存性を有している。   A multilayer dielectric multilayer film in which a thin film of a high refractive index dielectric material and a thin film of a low refractive index dielectric material having a predetermined optical film thickness are alternately laminated on the lens 1 is shown in FIG. ) And (b), the reflectance is approximately 100% in a predetermined wavelength region (incident angle region), and the transmittance is approximately 100% in other wavelength regions (incident angle region). Reflection characteristics (transmission characteristics) with respect to a specific wavelength region and incident angle region are large, and it has excellent wavelength dependency and angle dependency.

次に、コートホルダ3について図3を用いて説明する。図3(a)は、コートホルダ3の一例による構成を示す平面図、図3(b)は、図3(a)においてコートホルダ3にレンズ1が装填された状態をA−A’方向から見た側断面図である。   Next, the coat holder 3 will be described with reference to FIG. FIG. 3A is a plan view showing a configuration of an example of the coat holder 3, and FIG. 3B is a diagram illustrating a state in which the lens 1 is loaded on the coat holder 3 in FIG. FIG.

コートホルダ3は、本発明における成膜ホルダに該当し、成膜時にレンズ1を保持するものである。コートホルダ3には、図3(a)に示す様に、レンズ1を装填する複数の穴301が設けられている。レンズ1を大量生産する場合、レンズ1はコートホルダ3に設けられた複数の穴301に同時に複数個装填された後に後述の真空蒸着装置6に配置されて成膜される。   The coat holder 3 corresponds to the film formation holder in the present invention, and holds the lens 1 during film formation. As shown in FIG. 3A, the coat holder 3 is provided with a plurality of holes 301 into which the lens 1 is loaded. When the lens 1 is mass-produced, a plurality of lenses 1 are simultaneously loaded into a plurality of holes 301 provided in the coat holder 3 and then placed in a vacuum vapor deposition apparatus 6 described later to form a film.

コートホルダ3は、図3(b)に示す様に、レンズ1を保持する保持部302を備えている。この保持部302の内側の領域Dが成膜されることになる。保持部の厚みT(レンズ1に誘電体多層膜が成膜される領域を決める部分の厚み)はゼロにはできない。この為、レンズ1において、保持部302の周辺部102は少なくとも保持部302の厚みT程度、通常は厚みTの数倍程度の範囲においては、蒸発源からの影になったりすることで成膜の乱れが発生する。レンズ1の形状が小さくなるにつれてこの乱れが無視できなくなり、レンズ1の有効範囲Dの全域において乱れのない均一な多層膜を形成することが困難になる。従って、保持部の厚みTとレンズ1に誘電体多層膜が成膜される面の最大有効長さDの関係を適正に規定する必要がある。そこで、本発明においては、下記(式1)を満足する様にTとDとの関係を規定している。そしてここでは、例えば、Dを2.8mm、Tを0.15mmとしている。
5<D/T<100 (式1)
(式1)においてD/Tが下限値5を下回ると、成膜の乱れの影響がレンズ1の中心部103にまで及び、良好な特性の誘電体多層膜が形成されたレンズ1を得ることができない。一方、D/Tが上限値100を超えると、乱れの影響を無視できる様な大きさのレンズ1となる。この場合は、本発明による製造方法を用いなくとも従来行われている簡易な方法で特性を測定することができる。
As shown in FIG. 3B, the coat holder 3 includes a holding portion 302 that holds the lens 1. A region D inside the holding portion 302 is formed. The thickness T of the holding portion (the thickness of the portion that determines the region where the dielectric multilayer film is formed on the lens 1) cannot be made zero. For this reason, in the lens 1, the peripheral portion 102 of the holding portion 302 is formed as a shadow from the evaporation source at least in the range of the thickness T of the holding portion 302, usually several times the thickness T. Disturbance occurs. As the shape of the lens 1 becomes smaller, this disturbance cannot be ignored, and it becomes difficult to form a uniform multilayer film without any disturbance throughout the effective range D of the lens 1. Therefore, it is necessary to properly define the relationship between the thickness T of the holding portion and the maximum effective length D of the surface on which the dielectric multilayer film is formed on the lens 1. Therefore, in the present invention, the relationship between T and D is defined so as to satisfy the following (Formula 1). Here, for example, D is 2.8 mm and T is 0.15 mm.
5 <D / T <100 (Formula 1)
When D / T is less than the lower limit value 5 in (Expression 1), the influence of film formation disturbance extends to the central portion 103 of the lens 1 to obtain the lens 1 on which a dielectric multilayer film having good characteristics is formed. I can't. On the other hand, when D / T exceeds the upper limit value 100, the lens 1 has such a size that the influence of disturbance can be ignored. In this case, the characteristics can be measured by a conventional simple method without using the manufacturing method according to the present invention.

次に、レンズ1に、前述の様な特性を示す誘電体多層膜を形成する成膜工程の流れを図5を用いて説明する。図5は、誘電体多層膜の成膜工程の流れを示す図である。   Next, the flow of a film forming process for forming a dielectric multilayer film having the above-described characteristics on the lens 1 will be described with reference to FIG. FIG. 5 is a diagram showing a flow of a dielectric multilayer film forming process.

最初に、コートホルダ3を数個用意し、それぞれのコートホルダ3に設けられた複数の穴301にそれぞれレンズ1を装填する(ステップ1)。次に、レンズ1が装填された複数のコートホルダ3を図6に示すドーム冶具5に設けられた複数の穴501に搭載し、同時に、参照用としての平板ガラス2をコートホルダ3が搭載された穴501に隣接する例えば穴502に搭載する(ステップS2)。この場合、平板ガラス2は、ドーム冶具5の穴502の形状に合わせて、例えばφ30mmまたはφ60mmの円板状に形成されている。真空蒸着の場合、コートホルダ3に装填されたレンズ1は、ドーム冶具5に搭載されて成膜される。ドーム冶具5は、複数のレンズ1の蒸着時の成膜のばらつきを抑える為にそれぞれのレンズ1を蒸着源から一定の距離に保つ為のものである。次に、レンズ1が装填されたコートホルダ3と平板ガラス2とが搭載されたドーム冶具5を図7に示す真空蒸着装置6のコートドーム601に設置し、試験成膜を実施する(ステップS3)。尚、図6、図7に示すドーム冶具5、真空蒸着装置6は、従来用いられている周知のものであり、説明は省略する。   First, several coat holders 3 are prepared, and the lenses 1 are loaded into the plurality of holes 301 provided in the respective coat holders 3 (step 1). Next, the plurality of coat holders 3 loaded with the lenses 1 are mounted in the plurality of holes 501 provided in the dome jig 5 shown in FIG. 6, and at the same time, the flat glass 2 for reference is mounted on the coat holder 3. For example, it is mounted in the hole 502 adjacent to the hole 501 (step S2). In this case, the flat glass 2 is formed in a disc shape of, for example, φ30 mm or φ60 mm in accordance with the shape of the hole 502 of the dome jig 5. In the case of vacuum deposition, the lens 1 loaded in the coat holder 3 is mounted on the dome jig 5 and formed into a film. The dome jig 5 is for keeping each lens 1 at a certain distance from the vapor deposition source in order to suppress variations in film formation during vapor deposition of the plurality of lenses 1. Next, the dome jig 5 on which the coat holder 3 loaded with the lens 1 and the flat glass 2 are mounted is placed on the coat dome 601 of the vacuum vapor deposition apparatus 6 shown in FIG. 7, and test film formation is performed (step S3). ). In addition, the dome jig 5 and the vacuum evaporation apparatus 6 shown in FIGS.

試験成膜が完了すると、成膜されたレンズ1と平板ガラス2の波長依存特性(分光特性)を測定する。レンズ1は小さく、またその成膜された面は曲面形状に形成されていることから、通常用いられている分光計では測定が困難である。したがって顕微分光装置を用いてレンズ1の曲面の頂点付近の分光特性を測定する。尚、平板ガラスについては通常用いられている分光計で容易に測定できる。   When the test film formation is completed, the wavelength-dependent characteristics (spectral characteristics) of the formed lens 1 and flat glass 2 are measured. Since the lens 1 is small and the surface on which the film is formed is formed in a curved surface shape, it is difficult to measure with a commonly used spectrometer. Therefore, the spectral characteristics near the apex of the curved surface of the lens 1 are measured using a microspectroscope. In addition, about flat glass, it can measure easily with the spectrometer used normally.

ここで、測定されたそれぞれの分光特性の一例について図8を用いて説明する。図8は、試験成膜されたレンズ1および平板ガラス2の分光特性(波長依存特性)の一例を示すグラフである。   Here, an example of each measured spectral characteristic will be described with reference to FIG. FIG. 8 is a graph showing an example of spectral characteristics (wavelength-dependent characteristics) of the lens 1 and the flat glass 2 that have been subjected to test film formation.

図8に示す様に、レンズ1の分光特性Rと平板ガラス2の分光特性Hとでは、反射と透過の境界であり反射率が50%になる波長が異なっている。レンズ1と平板ガラス2の反射率が50%になる波長を、それぞれλr0、λh0とすると、λr0の方がλh0よりももΔλ(例えば15nm)長波長が側にあることが確認できる。この様にしてレンズ1と平板ガラス2の特性差(波長差)Δλを取得する(ステップS4)。尚、この特性差(波長差)Δλは、レンズ1と平板ガラス2との相対位置関係が変化しない限り、各バッチにおいて一定である。この様に、ステップS1乃至S4は本発明における第1の工程に該当する。   As shown in FIG. 8, the spectral characteristic R of the lens 1 and the spectral characteristic H of the flat glass 2 are different in the wavelength at which the reflectance is 50%, which is a boundary between reflection and transmission. If the wavelengths at which the reflectance of the lens 1 and the flat glass 2 are 50% are λr0 and λh0, respectively, it can be confirmed that λr0 has a longer wavelength by Δλ (for example, 15 nm) than λh0. In this way, the characteristic difference (wavelength difference) Δλ between the lens 1 and the flat glass 2 is acquired (step S4). This characteristic difference (wavelength difference) Δλ is constant in each batch as long as the relative positional relationship between the lens 1 and the flat glass 2 does not change. Thus, steps S1 to S4 correspond to the first step in the present invention.

次に、第1の工程に続いて、ステップS1乃至S3と同様にしてレンズ1と平板ガラス2に本成膜を行う(ステップS5)。本成膜が完了すると、成膜された平板ガラス2の波長依存特性(分光特性)を測定する(ステップS6)。測定された平板ガラス2の反射と透過の境界であり反射率が50%になる波長をλh1とすると、成膜されたレンズ1の反射と透過の境界であり反射率が50%になる波長λr1は、λh1に前述の試験成膜によって得られた特性差(波長差)Δλを加えた値、すなわち、下記(式2)で求められる値となる。この様にしてレンズ1の波長λr1を知ることができる(ステップS7)。
λr1=λr1+Δλ (式2)
この様に、ステップS5乃至S7は本発明における第2の工程に該当する。
Next, following the first step, main film formation is performed on the lens 1 and the flat glass 2 in the same manner as in steps S1 to S3 (step S5). When the main film formation is completed, the wavelength dependency characteristic (spectral characteristic) of the formed flat glass 2 is measured (step S6). The wavelength λr1 is the boundary between the reflection and transmission of the measured flat glass 2 and has a reflectance of 50%, and λh1 is the boundary between the reflection and transmission of the formed lens 1 and the reflectance is 50%. Is a value obtained by adding the characteristic difference (wavelength difference) Δλ obtained by the above-described test film formation to λh1, that is, a value obtained by the following (Expression 2). In this way, the wavelength λr1 of the lens 1 can be known (step S7).
λr1 = λr1 + Δλ (Formula 2)
Thus, steps S5 to S7 correspond to the second step in the present invention.

この様に、本発明の実施形態に係る誘電体多層膜の製造方法によれば、レンズ1と平板ガラス2の大きさや形状の差異、また、蒸着時の保持方法や蒸着源からの距離の差異等によりンズ1と平板ガラス2の特性が一致しない場合においても、予め試験成膜においてレンズ1と平板ガラス2との特性差を掴んでおき、本成膜においては、容易に測定することができる平板ガラス2の特性を測定するだけで、レンズ1に形成された誘電体多層膜の特性を知ることができる。この様にして取得した特性値を用いることにより、測定の困難なレンズ1の測定を個々に行うことなく、誘電体多層膜の特性を容易に、且つ、効率よく高い精度で管理することができ、優れた特性の光学素子を得ることができる。   Thus, according to the method for manufacturing a dielectric multilayer film according to the embodiment of the present invention, the difference in size and shape between the lens 1 and the flat glass 2, and the difference in the holding method during deposition and the distance from the deposition source. Even if the characteristics of the glass 1 and the flat glass 2 do not coincide with each other, the characteristic difference between the lens 1 and the flat glass 2 is grasped in advance in the test film formation, and in this film formation, it can be easily measured. By simply measuring the characteristics of the flat glass 2, the characteristics of the dielectric multilayer film formed on the lens 1 can be known. By using the characteristic values obtained in this way, it is possible to easily and efficiently manage the characteristics of the dielectric multilayer film without performing individual measurement of the lens 1 which is difficult to measure. An optical element having excellent characteristics can be obtained.

以上、本発明を実施の形態を参照して説明してきたが、本発明は前述の実施の形態に限定して解釈されるべきでなく、適宜変更、改良が可能であることは勿論である。例えば、前述の図3を用いて説明したコートホルダ2に替わり、図4に示す様な構成のコートホルダ4を用いてもよい。図4は、コートホルダの別例による構成を示す平面図である。   The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be changed or improved as appropriate. For example, instead of the coat holder 2 described with reference to FIG. 3, the coat holder 4 having the configuration shown in FIG. 4 may be used. FIG. 4 is a plan view showing a configuration of another example of the coat holder.

コートホルダ4は、図4に示す様に、中央に平板ガラス2を装填する穴402と、穴402の周縁にレンズ1を装填する複数の穴401が設けられている。これにより、レンズ1と平板ガラス2との相対位置関係を確実に維持することができる。   As shown in FIG. 4, the coat holder 4 is provided with a hole 402 for loading the flat glass 2 at the center and a plurality of holes 401 for loading the lens 1 at the periphery of the hole 402. Thereby, the relative positional relationship of the lens 1 and the flat glass 2 can be maintained reliably.

本発明に係るレンズおよび平板ガラスの一例による外観を示す側面図である。It is a side view which shows the external appearance by an example of the lens and flat glass which concern on this invention. 本発明に係る誘電体多層膜の波長依存特性および角度依存特性の一例を示すグラフである。It is a graph which shows an example of the wavelength dependence characteristic and angle dependence characteristic of the dielectric multilayer film concerning this invention. 本発明に係る成膜ホルダ(コートホルダ)の一例による構成を示す模式図である。It is a schematic diagram which shows the structure by an example of the film-forming holder (coat holder) which concerns on this invention. 本発明に係る成膜ホルダ(コートホルダ)の別例による構成を示す模式図である。It is a schematic diagram which shows the structure by another example of the film-forming holder (coat holder) which concerns on this invention. 本発明に係る誘電体多層膜の製造方法における成膜工程の流れを示す図である。It is a figure which shows the flow of the film-forming process in the manufacturing method of the dielectric multilayer film concerning this invention. 従来のドーム冶具の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional dome jig. 従来の真空蒸着装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the conventional vacuum evaporation system. 本発明に係る誘電体多層膜の製造方法における試験成膜によるレンズおよび平板ガラスの分光特性(波長依存特性)を示すグラフである。It is a graph which shows the spectral characteristic (wavelength dependence characteristic) of the lens and flat glass by test film-forming in the manufacturing method of the dielectric multilayer film concerning this invention.

符号の説明Explanation of symbols

1 レンズ
2 平板ガラス
3,4 成膜ホルダ(コートホルダ)
5 ドーム冶具
6 真空蒸着装置
1 Lens 2 Flat glass 3, 4 Deposition holder (coat holder)
5 Dome jig 6 Vacuum deposition equipment

Claims (4)

光学素子に形成される誘電体多層膜の製造方法において、
本成膜前に前記光学素子と該光学素子の近傍に配置された参照用の参照基板に同時に前記誘電体多層膜を試験成膜し、試験成膜された光学素子と参照基板の特性を測定し、その特性差を取得する第1の工程と、
前記第1の工程に続いて、前記光学素子と前記参照基板に同時に前記誘電体多層膜を本成膜し、本成膜された参照基板の特性を測定し、該特性と前記特性差に基づいて本成膜された光学素子の特性を取得する第2の工程と、を有することを特徴とする誘電体多層膜の製造方法。
In the method for producing a dielectric multilayer film formed on an optical element,
Before the main film formation, the dielectric multilayer film is simultaneously formed on the optical element and a reference substrate for reference arranged in the vicinity of the optical element, and the characteristics of the optical element formed on the test film and the reference substrate are measured. A first step of obtaining the characteristic difference;
Subsequent to the first step, the dielectric multilayer film is formed on the optical element and the reference substrate at the same time, the characteristics of the formed reference substrate are measured, and based on the characteristics and the characteristic difference. And a second step of acquiring the characteristics of the optical element formed as a film.
前記誘電体多層膜が成膜される前記光学素子の面は、曲面形状に形成されていることを特徴とする請求項1に記載の誘電体多層膜の製造方法。 2. The method for producing a dielectric multilayer film according to claim 1, wherein the surface of the optical element on which the dielectric multilayer film is formed is formed in a curved shape. 前記光学素子は、該光学素子を保持する成膜ホルダに装填されて成膜され、
前記光学素子が前記成膜ホルダに装填された状態で、該光学素子に前記誘電体多層膜が成膜される面の最大有効長さをD、該光学素子に前記誘電体多層膜が成膜される領域を決定し前記光学素子を保持する保持部の厚みをTとしたときに、Tに対するDの比は下記式を満足することを特徴とする請求項1または2に記載の誘電体多層膜の製造方法。
式:5<D/T<100
The optical element is loaded into a film formation holder that holds the optical element and formed into a film,
With the optical element loaded in the film formation holder, the maximum effective length of the surface on which the dielectric multilayer film is deposited is set to D, and the dielectric multilayer film is deposited on the optical element. 3. The dielectric multilayer according to claim 1, wherein a ratio of D to T satisfies the following expression, where T is a thickness of a holding portion that determines a region to be held and holds the optical element. A method for producing a membrane.
Formula: 5 <D / T <100
前記誘電体多層膜が形成された光学素子は、所定の波長領域では反射率が略100%、他の波長領域では透過率が略100%の分光特性を有するダイクロイックミラーであることを特徴とする請求項1乃至3のいずれか1項に記載の誘電体多層膜の製造方法。 The optical element on which the dielectric multilayer film is formed is a dichroic mirror having a spectral characteristic of a reflectance of approximately 100% in a predetermined wavelength region and a transmittance of approximately 100% in other wavelength regions. The method for producing a dielectric multilayer film according to any one of claims 1 to 3.
JP2006179231A 2006-06-29 2006-06-29 Method of forming dielectric multilayer film Pending JP2008009117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179231A JP2008009117A (en) 2006-06-29 2006-06-29 Method of forming dielectric multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179231A JP2008009117A (en) 2006-06-29 2006-06-29 Method of forming dielectric multilayer film

Publications (1)

Publication Number Publication Date
JP2008009117A true JP2008009117A (en) 2008-01-17

Family

ID=39067408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179231A Pending JP2008009117A (en) 2006-06-29 2006-06-29 Method of forming dielectric multilayer film

Country Status (1)

Country Link
JP (1) JP2008009117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133468A1 (en) * 2011-03-28 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing objective lens
JP2019035969A (en) * 2018-10-10 2019-03-07 デクセリアルズ株式会社 Manufacturing method of antireflection film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133468A1 (en) * 2011-03-28 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing objective lens
JP2019035969A (en) * 2018-10-10 2019-03-07 デクセリアルズ株式会社 Manufacturing method of antireflection film

Similar Documents

Publication Publication Date Title
JP4667204B2 (en) Method for forming multilayer film
CN105323443B (en) Spectral image acquisition device and by optical wavelength adquisitiones
KR20130081575A (en) Anti reflective coating layer and manufacturing method thereof
JPS58217901A (en) Laminate vapor-deposited on both sides
JP5058783B2 (en) Optical element and method of manufacturing the optical element
TW584742B (en) Multilayer film optical filter, method of producing the same, and optical component using the same
JP2008009117A (en) Method of forming dielectric multilayer film
KR20150021012A (en) Etalon and method for producing etalon
JP2024007494A (en) Multispectral filter matrix with curved fabry-perot filters and methods for manufacturing the same
JP6505430B2 (en) Optical filter and imaging device
TW200905283A (en) A plasmonic reflection filter
JP5324742B2 (en) Optical filter
JP4311739B2 (en) Light amount ratio adjusting filter for interferometer device, interferometer device, and optical interference measurement method
US11789188B2 (en) Optical filter
US9835952B2 (en) Systems and methods for a narrow band high transmittance interference filter
JP2008158258A (en) Optical interference filter and its fabrication
JP2004069865A (en) Multilayer film optical filter and its manufacturing method and optical part using it
KR20180127932A (en) Mixed spacer multispectral filter
TW201337019A (en) Optical device, optical thin film formation device, and optical thin film formation method
Lü et al. Design and manufacture of super-multilayer optical filters based on PARMS technology
JP2003121119A (en) Film thickness monitoring apparatus and method therefor
JP2006139102A (en) Apparatus and method of manufacturing optical wavelength variable filter
JPS6361202A (en) Optical thin film for infrared ray
JP2003215329A (en) Multilayer film optical filter, method for producing the same and optical parts using the same
JP2007199084A (en) Optical thin film forming device loaded with film thickness measuring device, and optical thin film forming method