JPH06186403A - Multilayer film optical member - Google Patents

Multilayer film optical member

Info

Publication number
JPH06186403A
JPH06186403A JP35589992A JP35589992A JPH06186403A JP H06186403 A JPH06186403 A JP H06186403A JP 35589992 A JP35589992 A JP 35589992A JP 35589992 A JP35589992 A JP 35589992A JP H06186403 A JPH06186403 A JP H06186403A
Authority
JP
Japan
Prior art keywords
film
layer
substrate
stress
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35589992A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
浩 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP35589992A priority Critical patent/JPH06186403A/en
Publication of JPH06186403A publication Critical patent/JPH06186403A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To prevent the deformation due to internal stress of a thin film. CONSTITUTION:Stresses of materials having compression stress among each material constituting of a multilayer film are defined as S11, S12, S13,..., the total physical film thicknesses in the multilayer film of each material are defined as d11, d12, d13,..., and S11Xd11+S12Xd12+S13Xd13+... is defined as S1. On the other hand, the stressed of materials having tensile stress are definned as S21, S22, S23,... and the total physical film thicknesses in the multilayer film of each material are defined as d21, d22, d23,... and S21Xd21+S22Xd22+ S23Xd23+... is defined as S2. An adjusting layer not affecting to the optical performance and also enabling to satisfy the function of 2/3<S1/S2<3/2, is provided on at least one layer of the multilayer film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反射膜としての多層膜
を基板の表面に成膜してなる多層膜光学部材に係り、特
に、成膜した薄膜の内部応力による基板へ歪みを防ぐこ
とができる多層膜光学部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layer optical member formed by forming a multi-layer film as a reflective film on the surface of a substrate, and particularly to preventing distortion of the substrate due to internal stress of the formed thin film. The present invention relates to a multi-layer optical member capable of

【0002】[0002]

【従来の技術】従来より、真空蒸着法、スパッタリング
法などによって基板上に成膜された薄膜は、一定の内部
応力をもち、基板を変形させるような力があることが知
られている。そして、この応力が大きい場合や、あるい
は特に基板の厚さが小さい場合などには光学性能に影響
するような変形を引き起こすことがある。特に、1mm
厚以下の極薄い基板では、λ/100(λは波長)とい
うオーダーの高精度な研磨を行なっても、多層膜の成膜
後にはλのオーダー程度にまで基板が変形してしまう。
2. Description of the Related Art It has been conventionally known that a thin film formed on a substrate by a vacuum vapor deposition method, a sputtering method or the like has a constant internal stress and has a force to deform the substrate. When this stress is large, or especially when the thickness of the substrate is small, it may cause deformation that affects the optical performance. Especially 1 mm
With an extremely thin substrate having a thickness of not more than the thickness, even if highly accurate polishing of the order of λ / 100 (λ is the wavelength) is performed, the substrate is deformed to the order of λ after the multilayer film is formed.

【0003】このように多層膜を形成した基板を、光デ
ィスクのピックアップ部分の可動ミラーとして用いた場
合、概略にはレーザ光源からのレーザ光を平行光束とし
た後、可動ミラーを介して集光レンズに導いて約2μm
のスポット径にし、光ディスク上に照射して信号を読み
取るように用いた場合、可動ミラーは、レーザ光の平行
光束の平行度を損なわないように、平面性の高いものが
要求される。
When the substrate thus formed with the multilayer film is used as a movable mirror in the pickup portion of an optical disk, roughly, a laser beam from a laser light source is made into a parallel light flux, and then a condenser lens is passed through the movable mirror. To about 2 μm
When the spot diameter is set to and the signal is used to read the signal by irradiating the spot on the optical disc, the movable mirror is required to have high flatness so as not to impair the parallelism of the parallel light flux of the laser light.

【0004】このため、従来、多層膜の内部応力による
基板の変形を押さえる方法として、あらかじめ膜の内部
応力による基板の変形量を測定し、その結果を元に前も
って基板面を研磨加工して反対方向に曲率をもたせる方
法や、あるいは特公昭62−18881号公報に記載さ
れるように、基板の裏面にも同様の応力を有する膜を設
けることによって基板にかかる力を相殺する、等の方法
が知られている。
Therefore, conventionally, as a method for suppressing the deformation of the substrate due to the internal stress of the multilayer film, the amount of deformation of the substrate due to the internal stress of the film is measured in advance, and the substrate surface is polished and processed in advance based on the result. There is a method of providing a curvature in the direction, or a method of canceling the force applied to the substrate by providing a film having the same stress on the back surface of the substrate as described in JP-B-62-18881. Are known.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来基板を研
磨加工する方法では、前工程として行なう基板面の曲率
加工研磨にかなりの精度が要求される。また、裏面に成
膜する方法では、二度の成膜が必要なため工程が複雑と
なり、また裏面に成膜することのでない場合には用いる
ことができないという欠点を有している。そこで、本発
明では、基板の前加工や複数回の成膜などの必要なし
に、片面への一度の成膜のみで基板面の歪みを防止でき
るように多層膜を形成した多層膜光学部材を提供するこ
とを目的とする。
However, in the conventional method for polishing the substrate, a considerable accuracy is required for the curvature-polishing of the substrate surface, which is performed as a pre-process. In addition, the method of forming a film on the back surface has a drawback that the process is complicated because the film formation is required twice and cannot be used unless the film is formed on the back surface. Therefore, in the present invention, a multilayer optical member in which a multilayer film is formed so as to prevent distortion of the substrate surface by only one film formation on one surface without the need for pre-processing the substrate or multiple film formations. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、基板と、この基板の表面に成膜した多層
膜からなる多層膜光学部材において、上記多層膜を構成
する各物質のうち、圧縮応力を持つ物質の応力をs11
12, 13,・・・・・・、それぞれの物質の多層膜に
おける物理的膜厚の合計をd11,d12,d13,・・・・
・・として、S1 をs11×d11+s12×d12+s13×d
13+・・・・・・とし、同様に、引張応力を持つ物質の
応力をs21, 22, 23,・・・・・・、それぞれの物
質の多層膜における物理的膜厚の合計をd21,d22,d
23,・・・・・・として、S2 をs21×d21+s22×d
22+s23×d23+・・・・・・としたとき、光学性能に
影響を与えず、かつ、2/3<S1 /S2 <3/2なる
関係を満足できるようにする調整層を多層膜の少なくと
も1層に設けて構成した。
In order to achieve the above object, the present invention provides a multilayer optical member comprising a substrate and a multilayer film formed on the surface of the substrate, wherein each substance constituting the multilayer film is formed. , The stress of the material with compressive stress is s 11 ,
s 12, s 13 , ..., The total physical film thicknesses of the respective materials in the multilayer film are d 11 , d 12 , d 13 ,.
.., where S 1 is s 11 × d 11 + s 12 × d 12 + s 13 × d
And 13 + ......, likewise, s 21 stresses the material having a tensile stress, s 22, s 23, ......, the sum of the physical thickness of the multilayer film of the respective materials To d 21 , d 22 , d
23 , ..., S 2 is s 21 × d 21 + s 22 × d
22 + s 23 × when the d 23 + · · · · · ·, without affecting optical performance, and, 2/3 <adjusting layer to be able to satisfy S 1 / S 2 <3/2 the relationship Was provided in at least one layer of the multilayer film.

【0007】[0007]

【作用】上記構成によれば、通常の光学特性のみに着目
した設計を行なった後、さらに必要な光学特性を損なわ
ないまま応力が緩和できるような調整層を加え、圧縮応
力と引張応力とのバランスをとることによって多層膜全
体の応力を小さくする。ここで、多層膜光学部材の光学
性能を十分に維持するため、成膜による基板の変形量、
すなわち、ソリ量を使用する波長の1/20以下に保つ
場合、多層膜を構成する各物質の、圧縮応力を持つ物質
の応力と、それぞれの物質膜における物理的膜厚の合計
との積の和S1 に対する、引張応力を持つ物質の応力
と、それぞれの物質の多層膜における物理的膜厚の合計
との積の和S2 の比S1 /S2 は、2/3以上で3/2
以下の値が必要とされ、1に近いもの程より望ましい。
これによって、光学性能に影響を及ぼすような大きな基
板変形がなくなり、特別な基板の特別な前加工や基板裏
面への成膜などの工程を経ることなしに良好な光学面を
得ることができる。また、本発明の多層膜光学部材を光
ディスクのピックアップ部分の反射鏡として用いた場
合、大きな基板変形が生じないので、レーザ光の平行光
束における平行度の狂いが少なくなり、焦光レンズによ
る焦点位置の変化やスポット径の変化が最小限に抑えら
れ、誤動作や読み取り誤差が生じにくくなる。
According to the above structure, after designing only the ordinary optical characteristics, an adjusting layer is added so that the stress can be relaxed without impairing the required optical characteristics, and the compressive stress and tensile stress By balancing, the stress of the entire multilayer film is reduced. Here, in order to sufficiently maintain the optical performance of the multilayer optical member, the amount of deformation of the substrate due to film formation,
That is, when the amount of warpage is kept at 1/20 or less of the wavelength used, the product of the stress of the material having the compressive stress and the total physical film thickness of the respective material films forming the multilayer film is calculated. to the sum S 1, and the stress of the material having a tensile stress, the ratio S 1 / S 2 of the sum S 2 of the product of the sum of the physical thickness of the multilayer film of the respective materials, with 2/3 or more 3 / Two
The following values are required, with values closer to 1 being more desirable.
As a result, a large deformation of the substrate that affects the optical performance is eliminated, and a good optical surface can be obtained without going through a process such as special pre-processing of a special substrate or film formation on the back surface of the substrate. Further, when the multilayer optical member of the present invention is used as a reflecting mirror in the pickup portion of an optical disc, a large substrate deformation does not occur, so that the deviation of the parallelism in the parallel light flux of the laser light is reduced, and the focus position by the focusing lens is reduced. Changes and spot diameter changes are minimized, and malfunctions and reading errors are less likely to occur.

【0008】[0008]

【実施例1】本実施例の多層膜光学部材は、780nm
の波長をもつレーザ光用の反射膜を設けたもので、直径
10mm,厚さ1mmのガラス基板上に応力緩和層を成
膜し、その上に高反射率層と低反射率層を交互に成膜し
て構成した。反射膜の材料としては、高反射率層にTi
2 、低反射率層にSiO2 を使用した。
Example 1 The multilayer optical member of this example has a thickness of 780 nm.
With a reflection film for laser light having a wavelength of, a stress relaxation layer is formed on a glass substrate having a diameter of 10 mm and a thickness of 1 mm, and a high reflectance layer and a low reflectance layer are alternately formed on the stress relaxation layer. It was formed by forming a film. As a material for the reflective film, Ti is used for the high reflectance layer.
O 2 and SiO 2 were used for the low reflectance layer.

【0009】上記多層膜光学部材は、真空槽の中をオイ
ルディフュージョンポンプをもちて5×10-5Torr
まで排気して、真空槽内に固定したガラス基板を300
℃まで加熱し、ガラス基板上に上記材料からなる反射膜
を設けて構成した。反射膜は、ガラス基板側第1層に応
力緩和層として光学的膜厚3λ(λ=850nm)のT
iO2 層、その上にλ/4のSiO2 層とλ/4のTi
2 層を交互に9組、最後にλ/8のSiO2 層の各層
をそれぞれ電子ビーム蒸着法にて成膜して構成した。本
実施例の多層膜光学部材の反射膜による45度入射時の
分光反射率を図1に示す。
The multilayer optical member has a vacuum chamber with an oil diffusion pump of 5 × 10 -5 Torr.
Evacuate to 300, and fix the glass substrate fixed in the vacuum chamber to 300
It was heated up to 0 ° C., and a reflective film made of the above material was provided on a glass substrate to form a structure. The reflective film is a T layer having an optical thickness of 3λ (λ = 850 nm) as a stress relaxation layer on the first layer on the glass substrate side.
iO 2 layer, λ / 4 SiO 2 layer and λ / 4 Ti on it
Nine sets of O 2 layers were alternately formed, and finally each layer of a λ / 8 SiO 2 layer was formed by electron beam evaporation. FIG. 1 shows the spectral reflectance of the multilayer optical member according to the present embodiment when the light is reflected at 45 degrees.

【0010】本実施例によれば、図1に示すように、使
用波長(780nm)で99%以上の反射特性を有して
いた。また、反射膜の膜応力を測定したところ、7.5
×107 dyn/cm2 であり、成膜前後の基板変形を
調べたところ、そのソリ量は20nmであった。
According to this embodiment, as shown in FIG. 1, the reflection characteristic was 99% or more at the used wavelength (780 nm). The film stress of the reflective film was measured and found to be 7.5.
A × 10 7 dyn / cm 2, were examined substrate deformation before and after the film formation, the warpage amount was 20 nm.

【0011】ところで、本実施例の多層膜光学部材、光
ディスクのピックアップ部分の可動ミラーとして用いる
場合、成膜による基板変形量すなわちソリ量を使用する
波長λ=780nmの1/20以下、すなわち、約40
nm以内に保つ必要がある。このため、十分な光学性能
を維持するためには、多層膜を構成する各物質の、圧縮
応力を持つ物質の応力と、それぞれの物質の多層膜にお
ける物理的膜厚の合計との積の和S1 と、引張応力を持
つ物質の応力と、それぞれの物質の多層膜における物理
的膜厚の合計との積の和S2 の比S1 /S2 は、2/3
以上3/2以下の値が必要とされ、1に近いものほどよ
り望ましい。したがって、本実施例の多層膜光学部材で
は、ソリ量は十分に実用範囲内に収まっていることが分
かる。
By the way, when the multilayer optical member of this embodiment is used as a movable mirror in the pickup portion of an optical disk, the amount of substrate deformation due to film formation, that is, the amount of warpage is 1/20 or less of the wavelength λ = 780 nm used, that is, about. 40
It must be kept within nm. Therefore, in order to maintain sufficient optical performance, the sum of the products of the stresses of the substances having a compressive stress and the total physical film thickness of each substance forming the multilayer film of each substance The ratio S 1 / S 2 of the sum S 2 of the product of S 1 and the stress of the substance having the tensile stress to the total physical film thickness of the multilayer film of each substance is 2/3.
A value of 3/2 or less is required, and a value closer to 1 is more desirable. Therefore, it can be seen that the amount of warpage is sufficiently within the practical range in the multilayer optical member of this example.

【0012】[0012]

【実施例2】本実施例の多層膜光学部材は、実施例1と
同様に高反射率にTiO2 、低反射率にSiO2 からな
る材料を使用し、その膜厚構成を違えて、780nmの
波長をもつレーザ光用の反射膜を設けた。
Second Embodiment The multilayer optical member of the present embodiment uses a material having a high reflectance of TiO 2 and a low reflectance of SiO 2 as in the case of the first embodiment. A reflection film for laser light having a wavelength of is provided.

【0013】上記多層膜光学部材は、真空槽の中をオイ
ルディフュージョンポンプを用いて5×10-5Torr
まで排気して真空槽内に固定した直径10mm、厚さ1
mmのガラス基板を300℃まで加熱し、ガラス基板上
に上記材料からなる反射膜を設けて構成した。反射膜
は、ガラス基板側第1層に光学的膜厚λ/2(λ=57
0nm)のTiO2 層、その上にλ/4のSiO2 層と
λ/2のTiO2 層を交互に9組、最後にλ/8のSi
2 層の各層をそれぞれ電子ビーム蒸着法にて成膜して
構成した。応力緩和層はλ/2のTiO2 層である。本
実施例の多層膜光学部材の反射膜による45度入射時の
分光反射率を図2に示す。
The multi-layered film optical member has a vacuum chamber of 5 × 10 −5 Torr using an oil diffusion pump.
Evacuated to 10 mm in diameter and fixed in a vacuum chamber, thickness 1
A glass substrate of mm was heated to 300 ° C., and a reflective film made of the above material was provided on the glass substrate. The reflection film has an optical film thickness λ / 2 (λ = 57) on the first layer on the glass substrate side.
0 nm) TiO 2 layer, 9 pairs of λ / 4 SiO 2 layer and λ / 2 TiO 2 layer are alternately formed on the TiO 2 layer, and finally λ / 8 Si layer.
Each of the O 2 layers was formed by an electron beam evaporation method. The stress relaxation layer is a λ / 2 TiO 2 layer. FIG. 2 shows the spectral reflectance of the multilayer optical member according to the present embodiment when the light is reflected by 45 degrees.

【0014】本実施例によれば、図2に示すように、使
用波長(780nm)で99%以上の反射特性が得られ
た。また、反射膜の膜応力を測定したところ、6.3×
107 dyn/cm2 であり、成膜前後の基板変形を調
べたところ、そのソリ量は11nmであった。
According to this embodiment, as shown in FIG. 2, a reflection characteristic of 99% or more was obtained at the wavelength used (780 nm). Moreover, when the film stress of the reflective film was measured, it was 6.3 ×
It was 10 7 dyn / cm 2 , and when the substrate deformation before and after film formation was examined, the amount of warpage was 11 nm.

【0015】次に、実施例1及び実施例2との比較例1
を示す。比較例1の多層膜光学部材は、実施例1,2と
同様に、高反射率層にTiO2、低反射率層にSiO2
からなる材料を使用し、780nmの波長をもつレーザ
光用の反射膜をもうけた。また、真空槽の中をオイルデ
ィフュージョンを用いて5×10-5Torrまで排気し
て、真空槽内に固定した直径10mm,厚さ1mmのガ
ラス基板を300℃まで加熱し、ガラス基板に上記材料
からなる反射膜を設けて構成した。
Next, a comparative example 1 with the first and second embodiments
Indicates. In the multilayer optical member of Comparative Example 1, similar to Examples 1 and 2 , TiO 2 was used as the high reflectance layer and SiO 2 was used as the low reflectance layer.
A reflective film for laser light having a wavelength of 780 nm was provided using the material Further, the inside of the vacuum chamber was evacuated to 5 × 10 −5 Torr using an oil diffusion, and a glass substrate having a diameter of 10 mm and a thickness of 1 mm fixed in the vacuum chamber was heated to 300 ° C. It was configured by providing a reflective film made of.

【0016】反射膜は、ガラス基板側第1層に光学的膜
厚λ/4(λ=850nm)のTiO2 層、その上にλ
/4のSiO2 層とλ/4のTiO2 層を交互に9組、
最後にλ/8のSiO2 層の各層をそれぞれ電子ビーム
蒸着法にて成膜して構成した。比較例1の多層膜光学部
材の反射膜による45度入射時の分光反射率を図3に示
す。
The reflection film was formed by forming a TiO 2 layer having an optical film thickness of λ / 4 (λ = 850 nm) on the first layer on the glass substrate side, and forming a λ 2 layer on the TiO 2 layer.
9 pairs of / 4 SiO 2 layers and λ / 4 TiO 2 layers alternately,
Finally, each of the λ / 8 SiO 2 layers was formed by an electron beam evaporation method. FIG. 3 shows the spectral reflectance of the multilayer optical member of Comparative Example 1 when the reflective film is incident at 45 degrees.

【0017】比較例1の反射膜の膜応力を測定したとこ
ろ、8.0×108 dyn/cm2であり、成膜前後の
基板変形を調べたところ、そのソリ量は151nmであ
った。これにより、実施例1,2と比較例1の多層膜光
学部材は、同様の反射特性(波長780nmで99%以
上)をもつが、実施例1,2の多層膜光学部材は、比較
例1に比較して基板の変形量が1/10以下と非常に小
さいことが判る。
When the film stress of the reflective film of Comparative Example 1 was measured, it was 8.0 × 10 8 dyn / cm 2 , and when the substrate deformation before and after film formation was examined, the amount of warpage was 151 nm. As a result, the multilayer optical members of Examples 1 and 2 and Comparative Example 1 have similar reflection characteristics (99% or more at a wavelength of 780 nm), but the multilayer optical members of Examples 1 and 2 are Comparative Example 1 It can be seen that the amount of deformation of the substrate is 1/10 or less, which is very small compared to.

【0018】[0018]

【実施例3】本実施例の多層膜光学部材は、高反射率層
にTa2 5 、低反射率層にMgF2 を使用し、780
nmの波長をもつレーザ光用の反射膜を設けた。上記多
層膜光学部材は、真空槽の中をオイルデイフュージョン
ポンプを用いて5×10-5Torrまで排気して、真空
槽内に固定した直径10mm、厚さ1mmのガラス基板
を300℃まで加熱し、ガラス基板上に上記材料からな
る反射膜を設けて構成した。
Example 3 The multilayer optical member of this example uses Ta 2 O 5 for the high reflectance layer and MgF 2 for the low reflectance layer, and uses 780
A reflection film for laser light having a wavelength of nm was provided. For the multilayer optical member, a vacuum chamber was evacuated to 5 × 10 −5 Torr using an oil diffusion pump, and a glass substrate having a diameter of 10 mm and a thickness of 1 mm fixed in the vacuum chamber was heated to 300 ° C. Then, a reflective film made of the above material was provided on the glass substrate.

【0019】反射膜は、ガラス基板側第1層に応力緩和
層として光学的膜厚2λ(λ=870nm)のTa2
5 層、その上にλ/4のMgF2 層の各層をそれぞれ電
子ビーム蒸着法にて成膜して構成した。本実施例の多層
膜光学部材の反射膜による45度入射時の分光反射率を
図4に示す。
The reflection film is a Ta 2 O having an optical film thickness of 2λ (λ = 870 nm) as a stress relaxation layer on the first layer on the glass substrate side.
Five layers, and each of the λ / 4 MgF 2 layers were formed by electron beam evaporation. FIG. 4 shows the spectral reflectance of the multilayer optical member according to the present embodiment when the light is reflected at 45 degrees.

【0020】本実施例によれば、図4に示すように、使
用波長(780nm)で99%以上の反射特性を有して
いた。また、反射膜の膜応力を測定したところ、3.5
×107 dyn/cm2 であり、成膜前後の基板の変形
を調べたところ、そのソリ量は11nmであった。
According to the present embodiment, as shown in FIG. 4, the reflection characteristic was 99% or more at the used wavelength (780 nm). The film stress of the reflective film was measured and found to be 3.5.
A × 10 7 dyn / cm 2, were examined deformation of before and after the film formation of the substrate, the warpage amount was 11 nm.

【0021】[0021]

【実施例4】本実施例の多層膜光学部材は、実施例3と
同様に高反射率層にTa2 5 層、低反射率層にMgF
2 層からなる材料を使用し、その膜構成を違えて、78
0nmの波長をもつレーザ光用の反射膜を設けた。
[Embodiment 4] The multilayer optical member of the present embodiment is similar to Embodiment 3 in that the high reflectance layer is a Ta 2 O 5 layer and the low reflectance layer is MgF.
Using a material consisting of two layers, and changing the film structure,
A reflective film for laser light having a wavelength of 0 nm was provided.

【0022】上記多層膜光学部材は、真空槽の中をオイ
ルデイフュージョンポンプを用いて5×10-5Torr
まで排気して、真空槽内に固定した直径10mm、厚さ
1mmのガラス基板を300℃まで加熱し、ガラス基板
上に上記材料からなる反射膜を設けて構成した。
The above-mentioned multilayer optical member has a vacuum chamber of 5 × 10 -5 Torr using an oil diffusion pump.
The glass substrate having a diameter of 10 mm and a thickness of 1 mm fixed in a vacuum chamber was heated to 300 ° C., and a reflection film made of the above material was provided on the glass substrate.

【0023】反射膜は、ガラス基板側第1層から順に、
光学的膜厚λ=870nmとして、2λ/6のTa2
5 層とλ/6のMgF2 層の各層を交互に9組、最後に
λ/8のMgF2 層の各槽をそれぞれ電子ビーム蒸着法
にて成膜して構成した。応力緩和層は、2λ/6のTa
2 5 層とλ/6のMgF2 層である。
The reflection film is formed in order from the glass substrate side first layer.
2λ / 6 Ta 2 O with optical film thickness λ = 870 nm
Nine sets of 5 layers and λ / 6 MgF 2 layers were alternately arranged, and finally each λ / 8 MgF 2 layer was formed by electron beam evaporation. The stress relaxation layer has a Ta of 2λ / 6.
2 O 5 layer and λ / 6 MgF 2 layer.

【0024】本実施例の多層膜光学部材の反射膜による
45度入射時の分光反射率を図5に示す。
FIG. 5 shows the spectral reflectance of the multi-layered optical member of this embodiment when the light is reflected at 45 degrees.

【0025】本実施例によれば、図5に示すように、使
用波長(780nm)で99%以上の反射特性が得られ
た。また、反射膜の膜応力を測定したところ、4.2×
106 dyn/cm2 であり、成膜前後の基板の変形を
調べたところ、そのソリ量は6nmであった。
According to this embodiment, as shown in FIG. 5, a reflection characteristic of 99% or more was obtained at the wavelength used (780 nm). Also, when the film stress of the reflective film was measured, it was 4.2 ×
It was 10 6 dyn / cm 2 , and when the deformation of the substrate before and after film formation was examined, the amount of warpage was 6 nm.

【0026】次に、実施例3および実施例4との比較例
2を示す。比較例2の多層膜光学部材は、実施例3,4
と同様に、高反射率層にTa2 5 層、低反射率層にM
gF2 層からなる材料を使用し、780nmの波長をも
つレーザ光用の反射膜を設けた。また、真空槽の中をオ
イルデイフュージョンポンプを用いて5×10-5Tor
rまで排気して、真空槽内に固定した直径10mm、厚
さ1mmのガラス基板を300℃まで加熱し、ガラス基
板上に上記材料からなる反射膜を設けて構成した。
Next, a comparative example 2 with the third and fourth embodiments will be shown. The multilayer optical members of Comparative Example 2 are the same as those of Examples 3 and 4.
Similarly, the high reflectance layer has a Ta 2 O 5 layer and the low reflectance layer has M
A reflective film for laser light having a wavelength of 780 nm was provided using a material composed of a gF 2 layer. In addition, the inside of the vacuum chamber is 5 × 10 −5 Tor using an oil diffusion pump.
The glass substrate having a diameter of 10 mm and a thickness of 1 mm fixed in a vacuum chamber was heated to 300 ° C. after evacuation to r, and a reflection film made of the above material was provided on the glass substrate.

【0027】反射膜は、ガラス基板側第1層に光学的膜
厚λ/4(λ=850nm)のTa2 5 層、その上に
λ/4のMgF2 層とλ/4のTa2 5 層を交互に9
組、最後にλ/8のMgF2 層の各槽をそれぞれ電子ビ
ーム蒸着法にて成膜して構成した。比較例2の多層膜光
学部材の反射膜による45度入射時の分光反射率を図6
に示す。
The reflective film was a Ta 2 O 5 layer having an optical film thickness of λ / 4 (λ = 850 nm) on the first layer on the glass substrate side, and a λ / 4 MgF 2 layer and a λ / 4 Ta 2 layer thereon. Alternating 9 layers of O 5
Finally, each tank of λ / 8 MgF 2 layer was formed by the electron beam evaporation method. FIG. 6 shows the spectral reflectance of the multilayer film optical member of Comparative Example 2 at the time of incidence of 45 degrees due to the reflection film.
Shown in.

【0028】比較例2の反射膜の膜応力を測定したとこ
ろ、6.5×108 dyn/cm2 であり、成膜前後の
基板変形を調べたところ、そのソリ量は135nmであ
った。これにより、実施例3,4と比較例2の多層膜光
学部材は、同様の反射特性(波長780nmで99%以
上)をもつが、実施例3,4の多層膜光学部材は、比較
例2に比較して基板の変形量が1/10以下と非常に小
さいことが判る。
When the film stress of the reflective film of Comparative Example 2 was measured, it was 6.5 × 10 8 dyn / cm 2 , and when the substrate deformation before and after film formation was examined, the amount of warpage was 135 nm. As a result, the multilayer optical members of Examples 3 and 4 and Comparative Example 2 have similar reflection characteristics (99% or more at a wavelength of 780 nm), but the multilayer optical members of Examples 3 and 4 are Comparative Example 2 It can be seen that the amount of deformation of the substrate is 1/10 or less, which is very small compared to.

【0029】以下に、実施例1〜4と各比較例における
多層膜の反射率、膜応力およびそれぞれの膜を構成する
膜材料単層の場合における膜応力の値を整理し、表1に
示す。
The values of the reflectance, the film stress of the multilayer films and the film stress in the case of a single film material constituting each film in Examples 1 to 4 and each comparative example are summarized and shown in Table 1. .

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】以上のように、本発明によれば、成膜し
た薄膜の内部応力によって生じる基板の変形を調整する
調整層を、成膜する多層膜の少なくとも1層に設けたの
で、基板の変形量のバランスを多層膜の中でとることが
できるため、一度の成膜のみで基板の変形のない多層膜
光学部材を得ることができる。しかも、面倒な複数回の
成膜や精度のよい研磨加工を必要としないため、歩留ま
りも良く光学性に優れた多層膜光学部材を安価に提供す
ることができる。
As described above, according to the present invention, the adjusting layer for adjusting the deformation of the substrate caused by the internal stress of the formed thin film is provided in at least one layer of the multilayer film to be formed. Since the deformation amount can be balanced in the multilayer film, it is possible to obtain the multilayer optical member in which the substrate is not deformed by only one film formation. In addition, since it is not necessary to perform a troublesome multiple times of film formation and highly accurate polishing, it is possible to inexpensively provide a multilayer optical member having a high yield and excellent optical properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の分光反射率を示すグラフ図
である。
FIG. 1 is a graph showing the spectral reflectance of Example 1 of the present invention.

【図2】本発明の実施例2の分光反射率を示すグラフ図
である。
FIG. 2 is a graph showing the spectral reflectance of Example 2 of the present invention.

【図3】比較例1の分光反射率を示すグラフ図である。FIG. 3 is a graph showing the spectral reflectance of Comparative Example 1.

【図4】本発明の実施例3の分光反射率示すグラフ図で
ある。
FIG. 4 is a graph showing the spectral reflectance of Example 3 of the present invention.

【図5】本発明の実施例4の分光反射率を示すグラフ図
である。
FIG. 5 is a graph showing the spectral reflectance of Example 4 of the present invention.

【図6】比較例2の分光反射率を示すグラフ図である。FIG. 6 is a graph showing the spectral reflectance of Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板の表面に成膜した多層
膜からなる多層膜光学部材において、上記多層膜を構成
する各物質のうち、圧縮応力を持つ物質の応力をs11
12, 13,・・・・・・、それぞれの物質の多層膜に
おける物理的膜厚の合計をd11,d12,d13,・・・・
・・として、S1 をs11×d11+s12×d12+s13×d
13+・・・・・・とし、同様に、引張応力を持つ物質の
応力をs21, 22, 23,・・・・・・、それぞれの物
質の多層膜における物理的膜厚の合計をd21,d22,d
23,・・・・・・として、S2 をs21×d21+s22×d
22+s23×d23+・・・・・・としたとき、光学性能に
影響を与えず、かつ、2/3<S1 /S2 <3/2なる
関係を満足できるようにする調整層を多層膜の少なくと
も1層に設けたことを特徴とする多層膜光学部材。
1. A multilayer optical member comprising a substrate and a multilayer film formed on the surface of the substrate, wherein a stress of a substance having a compressive stress among the substances constituting the multilayer film is s 11 ,
s 12, s 13 , ..., The total physical film thicknesses of the respective materials in the multilayer film are d 11 , d 12 , d 13 ,.
.., where S 1 is s 11 × d 11 + s 12 × d 12 + s 13 × d
And 13 + ......, likewise, s 21 stresses the material having a tensile stress, s 22, s 23, ......, the sum of the physical thickness of the multilayer film of the respective materials To d 21 , d 22 , d
23 , ..., S 2 is s 21 × d 21 + s 22 × d
22 + s 23 × when the d 23 + · · · · · ·, without affecting optical performance, and, 2/3 <adjusting layer to be able to satisfy S 1 / S 2 <3/2 the relationship Is provided in at least one layer of the multilayer film.
JP35589992A 1992-12-18 1992-12-18 Multilayer film optical member Withdrawn JPH06186403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35589992A JPH06186403A (en) 1992-12-18 1992-12-18 Multilayer film optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35589992A JPH06186403A (en) 1992-12-18 1992-12-18 Multilayer film optical member

Publications (1)

Publication Number Publication Date
JPH06186403A true JPH06186403A (en) 1994-07-08

Family

ID=18446304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35589992A Withdrawn JPH06186403A (en) 1992-12-18 1992-12-18 Multilayer film optical member

Country Status (1)

Country Link
JP (1) JPH06186403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298061A (en) * 1999-04-14 2000-10-24 Murata Mfg Co Ltd Infrared ray sensor
WO2006006363A1 (en) * 2004-07-09 2006-01-19 Daishinku Corporation Optical filter and method of manufacturing optical filter
CN100394214C (en) * 2002-11-21 2008-06-11 台达电子工业股份有限公司 Film-coating method by means of film stress balance
JP2008241746A (en) * 2007-03-23 2008-10-09 Seiko Epson Corp Optical article and its manufacturing method
JP2011243977A (en) * 2010-05-18 2011-12-01 Seoul Semiconductor Co Ltd Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US9419186B2 (en) 2010-05-18 2016-08-16 Seoul Semiconductor Co., Ltd. Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298061A (en) * 1999-04-14 2000-10-24 Murata Mfg Co Ltd Infrared ray sensor
CN100394214C (en) * 2002-11-21 2008-06-11 台达电子工业股份有限公司 Film-coating method by means of film stress balance
WO2006006363A1 (en) * 2004-07-09 2006-01-19 Daishinku Corporation Optical filter and method of manufacturing optical filter
JP2008241746A (en) * 2007-03-23 2008-10-09 Seiko Epson Corp Optical article and its manufacturing method
JP2011243977A (en) * 2010-05-18 2011-12-01 Seoul Semiconductor Co Ltd Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US9419186B2 (en) 2010-05-18 2016-08-16 Seoul Semiconductor Co., Ltd. Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US9793448B2 (en) 2010-05-18 2017-10-17 Seoul Semiconductor Co., Ltd. Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US10043955B2 (en) 2010-05-18 2018-08-07 Seoul Semiconductor Co., Ltd. Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same

Similar Documents

Publication Publication Date Title
JPS58217901A (en) Laminate vapor-deposited on both sides
WO1989002572A1 (en) Method and apparatus for measuring refractive index and film thickness
JP3060624B2 (en) Multilayer reflector
JPH0593811A (en) Light absorptive film
JPH06186403A (en) Multilayer film optical member
JP3342042B2 (en) Reflective color separation diffraction grating
JP5589581B2 (en) Optical element and manufacturing method thereof
JP5478383B2 (en) Laser processing machine
JPS58223101A (en) Production of polygonal mirror
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JPH08146218A (en) Polarizing beam splitter
JPH07280999A (en) Multilayer film x-ray reflector
JP2004523797A (en) Distributed multilayer mirror
JPH0915407A (en) Reflection optical element
JP2814595B2 (en) Multilayer reflector
JP3344022B2 (en) Optical device and optical pickup
JP3648791B2 (en) Manufacturing method of multilayer mirror
JPH05346496A (en) Multilayer film reflecting mirror
JP2000193810A (en) Reflection mirror
JP2007003936A (en) Infrared region reflecting mirror and its manufacturing method
JPH06180401A (en) Edge filter
JPH08146202A (en) Optical parts having antireflection film
JPS63266397A (en) X-ray reflecting mirror
JPS63266399A (en) X-ray reflecting mirror
JPH0985874A (en) Optical thin film and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307