JP2000034557A - Reflection enhancing film for near infrared rays and production of the same - Google Patents

Reflection enhancing film for near infrared rays and production of the same

Info

Publication number
JP2000034557A
JP2000034557A JP10201475A JP20147598A JP2000034557A JP 2000034557 A JP2000034557 A JP 2000034557A JP 10201475 A JP10201475 A JP 10201475A JP 20147598 A JP20147598 A JP 20147598A JP 2000034557 A JP2000034557 A JP 2000034557A
Authority
JP
Japan
Prior art keywords
film
layer
refractive
zns
znse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10201475A
Other languages
Japanese (ja)
Inventor
Kazumasa Konishi
一昌 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10201475A priority Critical patent/JP2000034557A/en
Publication of JP2000034557A publication Critical patent/JP2000034557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the reflection enhancing film for a reflective mirror for near infrared rays, which exhibits a high reflectivity with a small number of coating layers and has a sufficiently high adhesion strength and environmental durability and to provide its production method. SOLUTION: The reflection enhancing film for near infrared rays is comprised of a substrate 1 composed of Cu, Si, DK-7 glass or a silica glass, a Au film layer which is applied through Cr, Ti or Ni layer 5 on the substrate 1, a buffer layer 7 which is applied on the Au film layer and composed of ZnSe or ZnS and alternately laminated layers on the buffer layer, which layers are constituted of a layer 2 having a low reflectivity and comprising any of YF3, YbF3 or DyF3 and a layer 3 having a high reflectivity and comprising ZnSe or ZnS.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は近赤外線用反射鏡の
増反射膜およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective film for a near-infrared reflecting mirror and a method of manufacturing the same.

【0002】[0002]

【従来の技術】発振波長1.06μmのYAGレーザ用
反射鏡などの近赤外線用反射鏡は、BK−7ガラス(商
品名:硼珪クラウンガラス)や石英ガラスなどの基材の
表面に、必要によりAu膜をコートした基板(反射鏡の
部材)上に、誘電体の多層膜(高屈折率材料の膜と低屈
折率材料の膜とを交互に積層した増反射コーティング
膜)をコーティングすることにより反射率を高めた構造
となっている。増反射コーティング膜は散乱損失および
吸収損失をできるだけ少なくする必要があり、低屈折率
材料としてはSiO2 が、高屈折率材料としてはTiO
2 、Ta2 5 又はHfO2 などが用いられている。従
来の近赤外線用反射鏡の膜構造の1例を図2に示すが、
BK−7ガラスや石英ガラスからなる基材1の表面にT
iO2 、Ta2 5 又はHfO2 などの高屈折率材料の
膜からなる高屈折率層3と、SiO2 などの低屈折率材
料の膜からなる低屈折率層2とが交互に15層以上積層
された構造となっており、反射率は99.0%以上とな
っている。増反射膜はそれぞれの膜の界面での反射を利
用して反射率を高めている。従って界面が多いほど(膜
の層数が多いほど)高反射率となる。また、界面での反
射の大小は膜材料の屈折率の差で決まり、その差が大き
いほど反射率は大きくなる。従来多用されている低屈折
率膜材料であるSiO2 の屈折率は1.5、高屈折率膜
材料であるTiO2 、Ta2 5 およびHfO2 の屈折
率はそれぞれ2.2、2.1および1.9であり、9
9.0%以上の反射率を得るためには15層以上、9
9.5%以上の反射率を達成するためには21層以上が
必要とされている。
2. Description of the Related Art A near-infrared reflecting mirror such as a reflecting mirror for a YAG laser having an oscillation wavelength of 1.06 .mu.m is required on the surface of a base material such as BK-7 glass (trade name: borosilicate crown glass) or quartz glass. Coating on a substrate (reflective mirror member) coated with an Au film by the method described above, a dielectric multilayer film (increased reflection coating film in which a film of a high refractive index material and a film of a low refractive index material are alternately laminated). The structure has a higher reflectivity. It is necessary to reduce scattering loss and absorption loss of the high reflection coating film as much as possible. SiO 2 is used as a low refractive index material, and TiO is used as a high refractive index material.
2 , Ta 2 O 5 or HfO 2 is used. FIG. 2 shows an example of a film structure of a conventional near-infrared reflecting mirror.
The surface of the substrate 1 made of BK-7 glass or quartz glass has T
Fifteen high-refractive-index layers 3 made of a film of a high-refractive-index material such as iO 2 , Ta 2 O 5, or HfO 2 and low-refractive-index layers 2 made of a film of a low-refractive index material such as SiO 2 are alternately formed. The structure is stacked as described above, and the reflectance is 99.0% or more. The reflection-enhancing film uses a reflection at the interface of each film to increase the reflectance. Therefore, the reflectance increases as the number of interfaces increases (the number of layers of the film increases). The magnitude of the reflection at the interface is determined by the difference in the refractive index of the film material. The greater the difference, the greater the reflectance. The refractive index of SiO 2 , which is a low-refractive-index film material which has been widely used, is 1.5, and the refractive indexes of TiO 2 , Ta 2 O 5, and HfO 2 which are high-refractive-index film materials are 2.2, 2. 1 and 1.9, 9
To obtain a reflectance of 9.0% or more, 15 layers or more, 9
To achieve a reflectivity of 9.5% or more, 21 layers or more are required.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術において
は散乱損失および吸収損失の点では満足できるものの、
膜の層数を多くする必要があり、製造上問題がある。本
発明者は低屈折率材としてSiO2 よりも屈折率の小さ
いYF3 やYbF3を用いた、透過部材又は反射部材か
らなる基材の表面に低屈折率材および高屈折率材からな
るコーティング膜を形成させた赤外線用光学部品を開発
し、提案している(特開平7−331412号公報)。
この公報には、AuをコートしたSi又はCu基板上
に、低屈折率材であるYF3 やYbF3 の膜と、高屈折
率材であるZnSe又はZnSの膜とを交互に積層した
増反射膜も開示されている。しかしながら、Auをコー
トしたSi又はCu基板上に前記YF3 やYbF3のコ
ーティング膜を形成させた場合、膜の付着強度が低いと
いう問題があった。本発明はこのような従来技術の実状
に鑑み、少ない層数で高い反射率が得られ、しかも十分
な膜付着強度と耐環境性を備えた近赤外線用反射鏡の増
反射膜およびその製造方法を提供することを目的とす
る。
In the above prior art, although the scattering loss and the absorption loss are satisfactory,
It is necessary to increase the number of layers of the film, and there is a problem in manufacturing. The present inventor uses YF 3 or YbF 3 having a lower refractive index than SiO 2 as a low-refractive-index material, and coats a surface made of a low-refractive-index material and a high-refractive-index material on the surface of a substrate made of a transmitting member or a reflecting member. An infrared optical component having a film formed thereon has been developed and proposed (Japanese Patent Application Laid-Open No. Hei 7-331412).
This publication discloses an enhanced reflection in which a film of YF 3 or YbF 3 as a low-refractive index material and a film of ZnSe or ZnS as a high-refractive index material are alternately laminated on a Si or Cu substrate coated with Au. A membrane is also disclosed. However, when the coating film of YF 3 or YbF 3 is formed on a Si or Cu substrate coated with Au, there is a problem that the adhesion strength of the film is low. The present invention has been made in view of the above circumstances of the prior art, and has a high reflectance with a small number of layers, and has a sufficient film adhesion strength and environmental resistance. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】本発明は(1)Cu、S
i、BK−7ガラス又は石英ガラスからなる基材の表面
にCr、Ti又はNi層を介してAu膜をコートした基
板上にZnSe又はZnSよりなるバッファー層を設
け、その上にYF3 、YbF3 又はDyF3 のいずれか
1種よりなる低屈折率層とZnSe又はZnSよりなる
高屈折率層とを交互に形成させてなることを特徴とする
近赤外線用増反射膜、(2)前記低屈折率層と高屈折率
層の層数がそれぞれ3〜4層であることを特徴とする前
記(1)の近赤外線用増反射膜、および(3)Cu、S
i、BK−7ガラス又は石英ガラスからなる基材の表面
にCr、Ti又はNi層を介してAu膜をコートした基
板を120〜180℃に加熱し、該温度範囲に保持しな
がらZnSe又はZnSを蒸着させてバッファー層を形
成し、さらに前記温度範囲に維持しながらYF3 、Yb
3 又はDyF3 のいずれか1種とZnSe又はZnS
とを交互に蒸着させ、YF3 、YbF3 又はDyF3
いずれか1種よりなる低屈折率層とZnSe又はZnS
よりなる高屈折率層とを交互に形成させることを特徴と
する近赤外線用増反射膜の製造方法である。
The present invention provides (1) Cu, S
i, a buffer layer made of ZnSe or ZnS is provided on a substrate coated with an Au film via a Cr, Ti or Ni layer on the surface of a base material made of BK-7 glass or quartz glass, and YF 3 , YbF A high-refractive-index film for near-infrared light, wherein a low-refractive-index layer made of any one of 3 and DyF 3 and a high-refractive-index layer made of ZnSe or ZnS are alternately formed; The number of layers of the refractive index layer and the number of the high refractive index layers are each 3 to 4 layers, and the near-infrared enhanced reflective film of (1), and (3) Cu, S
i, a substrate in which a surface of a substrate made of BK-7 glass or quartz glass is coated with an Au film via a Cr, Ti, or Ni layer is heated to 120 to 180 ° C., and ZnSe or ZnS is maintained while maintaining the temperature range. Is deposited to form a buffer layer, and while maintaining the above temperature range, YF 3 , Yb
Any one of F 3 or DyF 3 and ZnSe or ZnS
Are alternately deposited, and a low refractive index layer made of any one of YF 3 , YbF 3 or DyF 3 and ZnSe or ZnS
And a high refractive index layer formed alternately.

【0005】[0005]

【発明の実施の態様】本発明の近赤外線用増反射膜はC
u、Si、BK−7ガラス又は石英ガラスからなる基材
の表面にAu膜の付着力を向上させるためのCr、Ti
又はNi層を介してAu膜をコーティングしたものを基
板とし、この上にYF3 、YbF3 又はDyF3 のいず
れか1種よりなる低屈折率層とZnSe又はZnSより
なる高屈折率層とを交互に形成させて反射率を向上させ
ている。さらに本発明の近赤外線用増反射膜において
は、前記低屈折率層と高屈折率層とが交互に形成された
増反射コーティング膜と前記基板との間に、厚さ60〜
80nmのZnSe又はZnSよりなるバッファー層が
設けられている点が最大の特徴である。このバッファー
層を設けることにより、基板と増反射コーティング膜と
の付着力が向上する。通常、バッファー層を設けると光
学的特性(反射率)が低下するが、本発明においては、
バッファー層の材料としてZnSe又はZnSを使用
し、上記のような厚み範囲とすることにより光学的特性
の低下を抑え、付着力を向上させている。バッファー層
の厚みが上記範囲を外れるとバッファー層としての効果
が小さくなり、膜が剥離しやすくなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The near-infrared reflective film of the present invention is C
Cr, Ti for improving the adhesion of an Au film to the surface of a substrate made of u, Si, BK-7 glass or quartz glass
Alternatively, a substrate coated with an Au film via a Ni layer is used as a substrate, and a low-refractive-index layer made of any one of YF 3 , YbF 3 and DyF 3 and a high-refractive-index layer made of ZnSe or ZnS are formed thereon. They are alternately formed to improve the reflectance. Further, in the near-infrared enhanced reflective film of the present invention, between the substrate and the enhanced reflective coating film in which the low-refractive index layer and the high-refractive index layer are alternately formed, a thickness of 60 to
The most significant feature is that a buffer layer made of ZnSe or ZnS of 80 nm is provided. By providing this buffer layer, the adhesion between the substrate and the enhanced reflection coating film is improved. Usually, when a buffer layer is provided, the optical characteristics (reflectance) decrease, but in the present invention,
By using ZnSe or ZnS as the material of the buffer layer and setting the thickness range as described above, a decrease in optical characteristics is suppressed, and the adhesive force is improved. When the thickness of the buffer layer is out of the above range, the effect as the buffer layer is reduced, and the film is easily peeled.

【0006】低屈折率膜材料であるYF3 、YbF3
よびDyF3 の屈折率はいずれも1.38であり、高屈
折率膜材料であるZnSeおよびZnSの屈折率はそれ
ぞれ2.5および2.3である。そのため従来使用され
ている低屈折率膜材料であるSiO2 と高屈折率膜材料
であるTiO2 、Ta2 5 又はHfO2 との組み合わ
せの場合に比較して屈折率差が大きいので、少ない層数
の増反射コーティング膜で高反射率が得られ、低屈折率
層と高屈折率層がそれぞれ3層の合計6層で99.0%
以上、それぞれ4層の合計8層とすることで99.5%
以上の高反射率を得ることができる。各低屈折率層及び
高屈折率層の厚みは対象とする近赤外線の波長及び入射
角によって異なるが、波長λ、膜材料の屈折率がnで光
が垂直に入射する場合には、それぞれの層の厚みがほぼ
λ/(4・n)となるようにする。例えば、波長106
2nmのYAGレーザで、レーザ光線の入射角が45°
であり、低屈折率膜材料としてYbF3 、高屈折率膜材
料としてZnSeを使用する場合、低屈折率層及び高屈
折率層の厚みはそれぞれ209nm及び111nmとす
ればよい。
The refractive indices of the low refractive index film materials YF 3 , YbF 3 and DyF 3 are 1.38, and the refractive indices of the high refractive index film materials ZnSe and ZnS are 2.5 and 2 respectively. .3. Therefore, the difference in the refractive index is larger than that of the combination of the conventionally used low-refractive-index film material SiO 2 and the high-refractive-index film material TiO 2 , Ta 2 O 5, or HfO 2 , so that the difference is small. High reflectivity is obtained with the number of layers of the high-reflection coating film, and 99.0% of a total of 6 low-refractive-index layers and 3 high-refractive-index layers.
As described above, 99.5% is achieved by making each of the four layers a total of eight layers.
The above high reflectance can be obtained. Although the thickness of each low-refractive-index layer and high-refractive-index layer differs depending on the wavelength and incident angle of the near-infrared ray to be targeted, when the wavelength is λ, the refractive index of the film material is n and light is incident vertically, the respective The thickness of the layer is set to be approximately λ / (4 · n). For example, the wavelength 106
2nm YAG laser, incident angle of laser beam is 45 °
When using YbF 3 as the low-refractive-index film material and ZnSe as the high-refractive-index film material, the thicknesses of the low-refractive-index layer and the high-refractive-index layer may be 209 nm and 111 nm, respectively.

【0007】本発明の近赤外線用増反射膜の膜構造の1
例を図1に示す。この例ではCu、Si、BK−7ガラ
ス又は石英ガラスからなる基材1の表面にCr層5を介
してAu膜6をコートした基板上に、ZnSe又はZn
Sのバッファー層7を設け、その上にYF3 、YbF3
又はDyF3 からなる低屈折率層2とZnSe又はZn
Sからなる高屈折率層3とが交互に各4層、合計8層積
層された構造となっている。
[0007] One of the film structures of the near-infrared enhanced reflection film of the present invention
An example is shown in FIG. In this example, ZnSe or ZnSe is deposited on a substrate in which an Au film 6 is coated on the surface of a substrate 1 made of Cu, Si, BK-7 glass or quartz glass with a Cr layer 5 interposed therebetween.
An S buffer layer 7 is provided, and YF 3 , YbF 3
Or, the low refractive index layer 2 made of DyF 3 and ZnSe or Zn
It has a structure in which high refractive index layers 3 made of S are alternately stacked in four layers, each of which is a total of eight layers.

【0008】本発明の近赤外線用増反射膜は例えば次の
ようにして製造することができる。Cu、Si、BK−
7ガラス又は石英ガラスからなる基材の表面にCr、T
i又はNi層を介してAu膜をコートした基板を、図3
に示す構成の真空蒸着装置の真空チャンバ11内に入
れ、高真空に排気しヒータ12により120〜180℃
に加熱し、同温度範囲に保持しながらZnSe又はZn
Sを蒸着させて厚さ60〜80nmのバッファー層を形
成させる。このバッファー層の上に、さらに前記温度範
囲に維持しながら低屈折率膜材料であるYF3 、YbF
3 又はDyF3のいずれか1種と高屈折率膜材料である
ZnSe又はZnSとを交互に蒸着させ、低屈折率層と
高屈折率層とを交互に形成させる。各膜材料は電子ビー
ム蒸発源(EB蒸発源)14から基板13に蒸着され
る。図3中の15はシャッターである。真空蒸着の際の
基板温度が120℃未満では膜の付着強度が十分でな
く、また180℃を超えると付着強度が低下するほか、
膜の表面に荒れが発生する。
The near-infrared reflective film of the present invention can be manufactured, for example, as follows. Cu, Si, BK-
7 Cr or T on the surface of a substrate made of glass or quartz glass
A substrate coated with an Au film via an i or Ni layer is shown in FIG.
Into a vacuum chamber 11 of a vacuum evaporation apparatus having the structure shown in FIG.
While maintaining the same temperature range, ZnSe or Zn
S is deposited to form a buffer layer having a thickness of 60 to 80 nm. On this buffer layer, while maintaining the above temperature range, YF 3 , YbF
Either 3 or DyF 3 and ZnSe or ZnS, which is a high-refractive-index film material, are alternately deposited to form a low-refractive-index layer and a high-refractive-index layer alternately. Each film material is deposited on the substrate 13 from an electron beam evaporation source (EB evaporation source) 14. Reference numeral 15 in FIG. 3 denotes a shutter. If the substrate temperature during vacuum deposition is lower than 120 ° C., the adhesive strength of the film is not sufficient, and if it exceeds 180 ° C., the adhesive strength is reduced,
Roughness occurs on the surface of the film.

【0009】本発明の近赤外線用増反射膜は波長850
〜2500nmの近赤外線に対し高い反射率を示し、膜
の付着性及び耐環境性に優れた増反射膜であり、YAG
レーザ用反射鏡の増反射膜などの用途に有用なものであ
る。
The near-infrared enhanced reflection film of the present invention has a wavelength of 850.
YAG is a high-reflection film that exhibits high reflectance to near-infrared rays of up to 2500 nm and is excellent in film adhesion and environmental resistance.
It is useful for applications such as a reflection-enhancing film of a laser reflecting mirror.

【0010】[0010]

【実施例】以下実施例により本発明をさらに具体的に説
明する。 (実施例1)Cuの表面にCr層を介してAu膜をコー
トした基板の表面に、表1に示す膜構成のバッファー層
と低屈折率層および高屈折率層を形成させた試料を作製
した。また、比較のためバッファー層を設けない試料を
作製した。、得られた近赤外線用増反射膜の試料1〜1
5について反射率及び付着強度の測定と外観観察を行っ
た。なお、バッファー層の厚みは62nm、各低屈折率
層(YbF3 、YF3又はDyF3 )の厚みは209n
m、高屈折率層の厚みはZnSeは111nm、ZnS
は114nmとした。蒸着時の基板温度および測定、観
察結果を表1に示す。表1において、反射率は分光光度
計により波長1.06μmの近赤外線の反射率を測定
し、付着強度はセロハンテープを貼り付けてゆっくりと
剥がすテープテストにより、膜剥離が発生しないものを
○、膜剥離が発生したものを×とした。外観は目視によ
り表面が鏡面状態であるものを○、表面がざらついて白
色に見えるものを×とした。また、水を張った超音波洗
浄機に入れて超音波を作用させる耐環境性(耐水性)試
験を行い、10分間の処理で変化のないものを○、膜の
表面が白く荒れるか、あるいは剥離したものを×とし
た。さらに、得られた本発明の試料(No.1、5、
9、13、14、15)について反射スペクトル(入射
角45°)を測定した結果を図4〜図9に示す。
The present invention will be described more specifically with reference to the following examples. (Example 1) A sample in which a buffer layer, a low refractive index layer, and a high refractive index layer having a film configuration shown in Table 1 were formed on the surface of a substrate in which a Cu film was coated with an Au film via a Cr layer. did. For comparison, a sample without a buffer layer was prepared. Samples 1 to 1 of the obtained near-infrared enhanced reflection film
For No. 5, the reflectance and the adhesion strength were measured and the appearance was observed. The thickness of the buffer layer was 62 nm, and the thickness of each low refractive index layer (YbF 3 , YF 3 or DyF 3 ) was 209 n.
m, the thickness of the high refractive index layer is 111 nm for ZnSe,
Was 114 nm. Table 1 shows the substrate temperature at the time of vapor deposition and the measurement and observation results. In Table 1, the reflectance was measured by a spectrophotometer to measure the reflectance of near-infrared light having a wavelength of 1.06 μm. The sample where film peeling occurred was evaluated as x. The appearance was evaluated as ○ when the surface was specular, and × when the surface was rough and white. In addition, an environment resistance (water resistance) test in which ultrasonic waves are applied in an ultrasonic cleaning machine filled with water and subjected to an ultrasonic test is performed. What peeled was set to x. Furthermore, the obtained samples of the present invention (Nos. 1, 5,
9, 13, 14, 15) are shown in FIG. 4 to FIG. 9 showing the results of measuring the reflection spectrum (incident angle: 45 °).

【0011】[0011]

【表1】 [Table 1]

【0012】表1の結果から、低屈折率層および高屈折
率層をそれぞれ3層としたものでは、低屈折率層および
高屈折率層からなる増反射コーティング膜と基板との間
にバッファー層を設け、基板温度160℃でコーティン
グ膜の蒸着を行った試料No.1および5は反射率が9
9.0%以上で外観、付着強度、耐環境性(耐水性)と
もに良好な結果を示した。しかしながら、同様にバッフ
ァー層を設けたものであっても、蒸着の際の基板温度が
100℃と低い試料No.2および6では反射率が9
9.0%以上で外観も良好であったが、付着強度が低
く、耐環境性が悪くなり、蒸着の際の基板温度が200
℃と高い試料No.3および7では反射率および付着強
度が低下し、外観及び耐環境性も悪くなっていることが
わかる。また、バッファー層を設けなかった試料No.
4および8では、基板温度が160℃であっても良好な
付着強度が得られないことがわかる。
From the results shown in Table 1, when the low-refractive index layer and the high-refractive index layer are each composed of three layers, the buffer layer is provided between the substrate and the high reflection coating film composed of the low and high refractive index layers. And the sample No. in which a coating film was deposited at a substrate temperature of 160 ° C. 1 and 5 have a reflectivity of 9
At 9.0% or more, good results were exhibited in all of the appearance, adhesion strength and environmental resistance (water resistance). However, even in the case where the buffer layer was similarly provided, the sample No. in which the substrate temperature at the time of vapor deposition was as low as 100 ° C. At 2 and 6, the reflectivity is 9
The appearance was good at 9.0% or more, but the adhesion strength was low, the environmental resistance was poor, and the substrate temperature during evaporation was 200%.
° C and sample No. It can be seen that in the cases of Nos. 3 and 7, the reflectance and the adhesive strength were reduced, and the appearance and the environmental resistance were also poor. In addition, the sample No.
4 and 8, it can be seen that good adhesion strength cannot be obtained even when the substrate temperature is 160 ° C.

【0013】また、低屈折率層および高屈折率層をそれ
ぞれ4層としたものでは、バッファー層を設け、基板温
度160℃でコーティング膜の蒸着を行った試料No.
9、13、14及び15は反射率が99.5%以上で外
観、付着強度、耐環境性ともに良好な結果を示した。し
かしながら、同様にバッファー層を設けたものであって
も、蒸着の際の基板温度が100℃と低い試料No.1
0では反射率が99.5%以上で外観も良好であった
が、付着強度が低く、耐環境性が悪化し、蒸着の際の基
板温度が200℃と高い試料No.11では反射率およ
び付着強度が低下し、外観及び耐環境性も悪くなってい
ることがわかる。また、バッファー層を設けなかった試
料No.12では、基板温度が160℃であっても良好
な付着強度は得られなかった。
In the case where the low refractive index layer and the high refractive index layer each have four layers, the buffer layer was provided and the coating film was deposited at a substrate temperature of 160 ° C.
9, 13, 14 and 15 had a reflectance of 99.5% or more, and showed good results in appearance, adhesion strength and environmental resistance. However, even in the case where the buffer layer was similarly provided, the sample No. in which the substrate temperature at the time of vapor deposition was as low as 100 ° C. 1
In Sample No. 0, the reflectance was 99.5% or more and the appearance was good, but the adhesion strength was low, the environmental resistance was deteriorated, and the substrate temperature at the time of vapor deposition was as high as 200 ° C. In the case of No. 11, it can be seen that the reflectance and the adhesion strength are reduced, and the appearance and environmental resistance are also deteriorated. In addition, the sample No. In No. 12, good adhesion strength could not be obtained even when the substrate temperature was 160 ° C.

【0014】(実施例2)実施例1で得た試料9と従来
品(石英ガラス基板にSiO2 /TiO2 の膜組成で層
数は20層、反射率99.5%以上)を使用して耐光強
度試験を行った。試験はYAGレーザ光(波長1062
nm)をレンズで集光し、集光位置に試料をセットして
レーザ光を1秒間照射し、損傷の有無を目視及び顕微鏡
で観察することによって行った。レーザ光照射位置での
ビーム径は1〜1.4mm(楕円)、入射角は45°と
した。最大出力である1.5kWのレーザ光を照射(照
射されるエネルギー密度は135kW/cm2 )した結
果、試料9及び従来品ともに損傷は発生しなかった。通
常の使用条件で照射されるレーザ光のエネルギー密度は
最大でも数kW/cm 2 であることから、本発明に係る
増反射膜は十分な耐光性を有していることがわかる。
(Example 2) Sample 9 obtained in Example 1 and a conventional sample 9
Product (quartz glass substrate with SiOTwo/ TiOTwoLayer with film composition
Number is 20 layers, reflectivity is 99.5% or more)
Degree test. The test was performed using a YAG laser beam (wavelength 1062).
nm) with a lens, set the sample at the focusing position
Irradiate laser light for 1 second, visually inspect for damage and microscope
By observing at At the laser beam irradiation position
The beam diameter is 1 to 1.4 mm (ellipse) and the incident angle is 45 °
did. Irradiate 1.5 kW laser beam which is the maximum output
The energy density emitted is 135 kW / cmTwo)
As a result, no damage occurred in both Sample 9 and the conventional product. Through
The energy density of the laser beam irradiated under normal use conditions is
At most several kW / cm TwoTherefore, according to the present invention,
It can be seen that the enhanced reflection film has sufficient light resistance.

【0015】[0015]

【発明の効果】本発明の近赤外線用増反射膜は層数が少
なく製造が容易で、しかも高い反射率を有しており、さ
らに膜の付着力が高く耐環境性に優れたものである。ま
た、本発明の製造方法によれば前記近赤外線用増反射膜
を容易に製造することができる。
The near-infrared enhanced reflection film of the present invention has a small number of layers, is easy to manufacture, has a high reflectance, and has a high adhesion of the film and excellent environmental resistance. . Further, according to the manufacturing method of the present invention, the near-infrared enhanced reflection film can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の近赤外線用増反射膜の膜構造の1例を
示す断面図。
FIG. 1 is a cross-sectional view showing one example of a film structure of a near-infrared enhanced reflection film of the present invention.

【図2】従来技術による近赤外線用増反射膜の膜構造の
1例を示す断面図。
FIG. 2 is a cross-sectional view showing an example of a film structure of a near-infrared enhanced reflection film according to a conventional technique.

【図3】本発明の近赤外線用増反射膜を製造するための
真空蒸着装置の構成を模式的に示す図。
FIG. 3 is a diagram schematically showing a configuration of a vacuum evaporation apparatus for manufacturing the near-infrared enhanced reflection film of the present invention.

【図4】実施例1で作製した試料1の反射スペクトルを
示す図。
FIG. 4 is a diagram showing a reflection spectrum of Sample 1 manufactured in Example 1.

【図5】実施例1で作製した試料5の反射スペクトルを
示す図。
FIG. 5 is a diagram showing a reflection spectrum of Sample 5 manufactured in Example 1.

【図6】実施例1で作製した試料9の反射スペクトルを
示す図。
FIG. 6 is a diagram showing a reflection spectrum of Sample 9 manufactured in Example 1.

【図7】実施例1で作製した試料13の反射スペクトル
を示す図。
FIG. 7 shows a reflection spectrum of Sample 13 manufactured in Example 1.

【図8】実施例1で作製した試料14の反射スペクトル
を示す図。
FIG. 8 is a diagram showing a reflection spectrum of Sample 14 manufactured in Example 1.

【図9】実施例1で作製した試料15の反射スペクトル
を示す図。
9 shows a reflection spectrum of Sample 15 manufactured in Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 基材 2 低屈折率層 3 高屈折率層 5
クロム層 6 Au層 7 バッファー層 11 真空チャン
バ 12 ヒータ 13 基板 14 EB蒸着源
15 シャッター
Reference Signs List 1 base material 2 low refractive index layer 3 high refractive index layer 5
Chromium layer 6 Au layer 7 Buffer layer 11 Vacuum chamber 12 Heater 13 Substrate 14 EB evaporation source
15 Shutter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA02D AA02E AA05E AA09D AA09E AB11A AB12B AB13B AB16B AB17A AB25C AG00A AT00A BA05 BA07 BA10A BA10E BA13 BA44 EG002 EH112 EH66D EH662 EJ422 JD10 JK06 JK11D JL00 JM02C JN06 JN18E 4K029 AA02 AA09 BA05 BA07 BA12 BA17 BA41 BA42 BA51 BB02 BC07 BD09 CA01 DB03 DB05 DB21 EA08 JA02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F100 AA02D AA02E AA05E AA09D AA09E AB11A AB12B AB13B AB16B AB17A AB25C AG00A AT00A BA05 BA07 BA10A BA10E BA13 BA44 EG002 EH112 EH66D EH662 EJ422 JD10 JKN JA10 JK10 BA17 BA41 BA42 BA51 BB02 BC07 BD09 CA01 DB03 DB05 DB21 EA08 JA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cu、Si、BK−7ガラス又は石英ガ
ラスからなる基材の表面にCr、Ti又はNi層を介し
てAu膜をコートした基板上にZnSe又はZnSより
なるバッファー層を設け、その上にYF3 、YbF3
はDyF3 のいずれか1種よりなる低屈折率層とZnS
e又はZnSよりなる高屈折率層とを交互に形成させて
なることを特徴とする近赤外線用増反射膜。
A buffer layer made of ZnSe or ZnS is provided on a substrate in which an Au film is coated on a surface of a substrate made of Cu, Si, BK-7 glass or quartz glass with a Cr, Ti or Ni layer interposed therebetween, A low-refractive-index layer made of any one of YF 3 , YbF 3 and DyF 3 and a ZnS
A high-reflection film for near-infrared rays, wherein high-refractive-index layers made of e or ZnS are alternately formed.
【請求項2】 前記低屈折率層と高屈折率層の層数がそ
れぞれ3〜4層であることを特徴とする請求項1に記載
の近赤外線用増反射膜。
2. The near-infrared enhanced reflection film according to claim 1, wherein the number of the low-refractive-index layers and the number of the high-refractive-index layers are three to four, respectively.
【請求項3】 Cu、Si、BK−7ガラス又は石英ガ
ラスからなる基材の表面にCr、Ti又はNi層を介し
てAu膜をコートした基板を120〜180℃に加熱
し、該温度範囲に保持しながらZnSe又はZnSを蒸
着させてバッファー層を形成し、さらに前記温度範囲に
維持しながらYF3 、YbF3 又はDyF3 のいずれか
1種とZnSe又はZnSとを交互に蒸着させ、Y
3 、YbF 3 又はDyF3 のいずれか1種よりなる低
屈折率層とZnSe又はZnSよりなる高屈折率層とを
交互に形成させることを特徴とする近赤外線用増反射膜
の製造方法。
3. Cu, Si, BK-7 glass or quartz glass
A Cr, Ti or Ni layer is interposed on the surface of
The Au-coated substrate to 120-180 ° C
Then, while maintaining the temperature range, ZnSe or ZnS is vaporized.
To form a buffer layer, and
YF while maintainingThree, YbFThreeOr DyFThreeAny of
One kind and ZnSe or ZnS are alternately deposited, and Y
FThree, YbF ThreeOr DyFThreeLow consisting of any one of
A refractive index layer and a high refractive index layer made of ZnSe or ZnS.
Highly reflective film for near infrared rays characterized by being formed alternately
Manufacturing method.
JP10201475A 1998-07-16 1998-07-16 Reflection enhancing film for near infrared rays and production of the same Pending JP2000034557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10201475A JP2000034557A (en) 1998-07-16 1998-07-16 Reflection enhancing film for near infrared rays and production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10201475A JP2000034557A (en) 1998-07-16 1998-07-16 Reflection enhancing film for near infrared rays and production of the same

Publications (1)

Publication Number Publication Date
JP2000034557A true JP2000034557A (en) 2000-02-02

Family

ID=16441704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10201475A Pending JP2000034557A (en) 1998-07-16 1998-07-16 Reflection enhancing film for near infrared rays and production of the same

Country Status (1)

Country Link
JP (1) JP2000034557A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072343A1 (en) * 2001-03-08 2002-09-19 Shin-Etsu Handotai Co., Ltd. Heat reflecting material and heating device using the material
WO2005003618A1 (en) * 2003-07-04 2005-01-13 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material and equipment using the same
JP2008542082A (en) * 2005-06-09 2008-11-27 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Flame-resistant coated molded polycarbonate articles
KR101146619B1 (en) * 2010-11-22 2012-05-14 한국전광(주) High reflection mirror for simultaneously satisfying visible ray and infrared ray region
CN102941710A (en) * 2012-11-14 2013-02-27 江苏欧邦塑胶有限公司 Safe heat insulation glass
CN102950830A (en) * 2012-11-14 2013-03-06 江苏欧邦塑胶有限公司 Heat insulation film
CN103668067A (en) * 2013-12-09 2014-03-26 西南技术物理研究所 Preparation method of wide-angle multiband infrared high-reflective film system
KR101766392B1 (en) 2017-03-29 2017-08-09 (주) 유남옵틱스 Reflective mirror and Method for manufacturing the same
CN115491638A (en) * 2022-08-31 2022-12-20 中国电子科技集团公司第十一研究所 Preparation method of broad-spectrum back anti-reflection film for detector chip
CN117512527A (en) * 2023-11-10 2024-02-06 星际光(上海)实业有限公司 Dielectric film reflector and preparation process thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072343A1 (en) * 2001-03-08 2002-09-19 Shin-Etsu Handotai Co., Ltd. Heat reflecting material and heating device using the material
US6815645B2 (en) 2001-03-08 2004-11-09 Shin-Etsu Handotai Co., Ltd. Heat reflecting material and heating device using the material
WO2005003618A1 (en) * 2003-07-04 2005-01-13 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material and equipment using the same
EP1643180A1 (en) * 2003-07-04 2006-04-05 Matsushita Electric Industrial Co., Ltd. Vacuum thermal insulation material and equipment using the same
CN1309991C (en) * 2003-07-04 2007-04-11 松下电器产业株式会社 Vacuum heat insulating material and machine using the same vacuum heat insulation material
US7485352B2 (en) 2003-07-04 2009-02-03 Panasonic Corporation Vacuum heat insulator and apparatus using the same
EP1643180A4 (en) * 2003-07-04 2010-08-25 Panasonic Corp Vacuum thermal insulation material and equipment using the same
JP2008542082A (en) * 2005-06-09 2008-11-27 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Flame-resistant coated molded polycarbonate articles
KR101146619B1 (en) * 2010-11-22 2012-05-14 한국전광(주) High reflection mirror for simultaneously satisfying visible ray and infrared ray region
CN102941710A (en) * 2012-11-14 2013-02-27 江苏欧邦塑胶有限公司 Safe heat insulation glass
CN102950830A (en) * 2012-11-14 2013-03-06 江苏欧邦塑胶有限公司 Heat insulation film
CN103668067A (en) * 2013-12-09 2014-03-26 西南技术物理研究所 Preparation method of wide-angle multiband infrared high-reflective film system
CN103668067B (en) * 2013-12-09 2016-01-13 西南技术物理研究所 The preparation method of the infrared highly reflecting films system of wide-angle multiband
KR101766392B1 (en) 2017-03-29 2017-08-09 (주) 유남옵틱스 Reflective mirror and Method for manufacturing the same
CN115491638A (en) * 2022-08-31 2022-12-20 中国电子科技集团公司第十一研究所 Preparation method of broad-spectrum back anti-reflection film for detector chip
CN115491638B (en) * 2022-08-31 2024-03-19 中国电子科技集团公司第十一研究所 Preparation method of wide-spectrum back antireflection film for detector chip
CN117512527A (en) * 2023-11-10 2024-02-06 星际光(上海)实业有限公司 Dielectric film reflector and preparation process thereof

Similar Documents

Publication Publication Date Title
JP6343291B2 (en) Improved durable silver coating stack for high reflection mirrors
JPS62191801A (en) Anti reflection film for plastic optical parts
JP2009086533A (en) Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
JP7475450B2 (en) Optical element having a protective coating, its method of manufacture and optical device - Patents.com
JPH07174916A (en) Dichroic optical filter
JP2000034557A (en) Reflection enhancing film for near infrared rays and production of the same
JP2003302520A (en) Reflection mirror for infrared laser and method for manufacturing the same
JP3060624B2 (en) Multilayer reflector
JPS60502173A (en) Anti-reflection coating for optical components made of organic materials
JP2838525B2 (en) Reflector
JP3221770B2 (en) Anti-reflection coating for plastic optical parts
JPH05127004A (en) Reflecting mirror
JP3399159B2 (en) Optical film and optical element for infrared region
JPH1067078A (en) Optical element and multilayered laminate of fluoride material used in production thereof
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
JP2537773B2 (en) Plastic mirror lenses
JP4118008B2 (en) Multilayer reflection mirror
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JPH10123303A (en) Antireflection optical parts
JP4406980B2 (en) Multilayer antireflection film
JP3610777B2 (en) Infrared antireflection film and transmission window
JPS638605A (en) Reflection mirror consisting of synthetic resin member
JPH08310840A (en) Reflection preventing film
RU2097802C1 (en) Interference mirror
JPH04166901A (en) Optical parts having antireflection coating