JPS638605A - Reflection mirror consisting of synthetic resin member - Google Patents

Reflection mirror consisting of synthetic resin member

Info

Publication number
JPS638605A
JPS638605A JP15173186A JP15173186A JPS638605A JP S638605 A JPS638605 A JP S638605A JP 15173186 A JP15173186 A JP 15173186A JP 15173186 A JP15173186 A JP 15173186A JP S638605 A JPS638605 A JP S638605A
Authority
JP
Japan
Prior art keywords
layer
synthetic resin
resin member
sio
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15173186A
Other languages
Japanese (ja)
Other versions
JPH077126B2 (en
Inventor
Mitsuo Kakehi
筧 光夫
Toshiyuki Hoshino
星野 利幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15173186A priority Critical patent/JPH077126B2/en
Publication of JPS638605A publication Critical patent/JPS638605A/en
Publication of JPH077126B2 publication Critical patent/JPH077126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To improve corrosion resistance and the adhesiveness of a reflective surface and to reduce the cost of the titled mirror by forming respective layers consisting of SiO, Cr and Cu in this order on the surface of a substrate consisting of a synthetic resin member and forming an oxide layer of Cu as the upper layer of the Cu layer further thereon. CONSTITUTION:The respective layers consisting of SiO, Sr and Cu are formed in this order on the surface of the substrate consisting of the synthetic resin member and the oxide layer of Cu is further formed as the upper layer of at least the Cu layer thereon. The synthetic resin member is preferably a polystyrene or the like which is precisely molded by casting or injection. The substrate, the surface of which is subjected to supergrinding, is used. A 1st layer to be laminated is the SiO layer and a 2nd layer the Cr layer, which are formed to improve the adhesiveness of the Cu to be laminated as a 3rd layer to the substrate surface. The SiO layer having about 0.5lambda optical film thickness is preferably laminated by a vacuum deposition method and the Cr layer having about 300-500Angstrom mechanical film thickness is preferably laminated by the vacuum deposition method. The satisfactory adhesiveness and corrosion resistance are thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザビームプリンター、特にレーザ光学系な
どの45”  ミラーおよびポリゴンミラー等に用いう
る、合成樹脂部材の反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a reflecting mirror made of a synthetic resin member that can be used in laser beam printers, particularly 45'' mirrors and polygon mirrors in laser optical systems.

〔従来の技術〕[Conventional technology]

従来、光学系部材としての反射鏡、特に45@ミラー、
ポリゴンミラーは、ガラス部材の表面に第1層としてC
rを第2層として銅を基若したものが用いられており、
蓬着させた銅の耐腐食性向上のために、高温に加熱し、
銅の上層部に増反射を兼ねた保護膜を形成していた。
Conventionally, a reflecting mirror as an optical system member, especially a 45@mirror,
The polygon mirror has C as the first layer on the surface of the glass member.
A copper-based material is used with r as the second layer,
In order to improve the corrosion resistance of the coated copper, it is heated to a high temperature,
A protective film was formed on the upper layer of copper, which also served as a reflection enhancer.

反射鏡の製作コストダウンのために、ガラスにかえて合
成樹脂部材を基板としてその表面に銅を真空蒸着したも
のを使用することが試みられたが、この場合は基板を高
温に加熱しておいてノ入着することが出来ず、低温で真
空基若する必要があり、成膜された銅の#腐食性が充分
でなく、これが実用化をさまたげるネックとなっていた
In order to reduce the manufacturing cost of reflective mirrors, an attempt was made to use a synthetic resin substrate with copper vacuum-deposited on the surface instead of glass, but in this case, the substrate was heated to a high temperature. The copper film cannot be deposited in a vacuum, and the deposited copper has insufficient corrosive properties, which has hindered its practical application.

また、合成樹脂基板の表面を精密仕上げしておいても、
その表面に直接銅を真空基若した場合、銅の密着性が充
分ではなく、耐久性に問題があった。
In addition, even if the surface of the synthetic resin board is precisely finished,
When copper was applied directly to the surface under vacuum, the adhesion of the copper was insufficient and there was a problem with durability.

本発明は上記問題点を解決して、合成樹脂部材を用いな
がら密着性および耐腐食性の充分な反射鏡を提供するこ
とにより1反射鏡の製作コストダウンを可能とすること
を目的とするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a reflective mirror with sufficient adhesion and corrosion resistance while using synthetic resin members, thereby making it possible to reduce the manufacturing cost of a single reflective mirror. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は合成樹脂部材よりなる基板面上に、SiO、 
C:rおよびCuの各層がこの順序に形成されており、
かつ少くともCu層の上層として更にCuの酸化物層が
形成されていることを特徴とする合成樹脂部材の反射鏡
である。
In the present invention, SiO,
C: each layer of r and Cu is formed in this order,
The reflective mirror is made of a synthetic resin member, characterized in that at least a Cu oxide layer is further formed as an upper layer of the Cu layer.

本発明の反射鏡はレーザ光学系の45° ミラー、ポリ
ゴンミラー等の近赤外反射ミラーなどに特に適している
The reflecting mirror of the present invention is particularly suitable for near-infrared reflecting mirrors such as 45° mirrors and polygon mirrors in laser optical systems.

本発明で用いる合成樹脂部材は、キャスティング精密成
形またはインジェクション精密成形されたポリスチレン
、アクリロニトリル−スチレン共重合体、ポリメチルメ
タクリレート、ポリカーボネートなどが好ましく、更に
通常その基板面は超研削してから積層に供する。
The synthetic resin member used in the present invention is preferably precision cast or injection molded polystyrene, acrylonitrile-styrene copolymer, polymethyl methacrylate, polycarbonate, etc., and the substrate surface is usually super ground before being subjected to lamination. .

積層される第1層はSi0層、第2層はCr層であり、
これらは第3層として積層するGuの基板面への密着性
を向−ヒするためのものであり、Si0層は光学的膜厚
的0.5人程度のものを真空基若法により積層するのが
好ましい。また、Cr層は機械的膜厚300〜500A
程度のものを真空蒸着法により積層するのが好ましい。
The first layer to be laminated is a Si0 layer, the second layer is a Cr layer,
These are to improve the adhesion of Gu to the substrate surface, which is laminated as the third layer.The Si0 layer has an optical thickness of about 0.5 layers and is laminated by the vacuum base layer method. is preferable. In addition, the Cr layer has a mechanical thickness of 300 to 500A.
It is preferable to laminate a certain amount of materials by vacuum evaporation.

本発明においてはCu層はCr層よりも上に積層されて
おり、かつCu層の上層として少くともCuの酸化物層
が形成されていることが必要であり、 Cuの酸化物層
はCu層の耐腐食性向上の目的で設けるものであり、こ
の目的は、Cr層とCu層との間にもCuの酸化物層が
形成されていると更に効果的に達成される。
In the present invention, the Cu layer is laminated above the Cr layer, and it is necessary that at least a Cu oxide layer is formed as an upper layer of the Cu layer. This purpose is provided for the purpose of improving the corrosion resistance of the Cr layer, and this purpose can be more effectively achieved if a Cu oxide layer is also formed between the Cr layer and the Cu layer.

Cu層は、機械的膜厚約1000A程度のものを真空蒸
着法により形成するのが好ましく、Cuの酸化物層は機
械的膜厚50乃至400A程度のものが好ましく、その
形成手段は真空度1〜3 X 10’ Torr程度の
酸素環境の高周波プラズマ雰囲気にてCuの活性化反応
性蒸着によるのが好ましいが、Cu層の上層として形成
する場合は、Cu層の成膜後、その表面を真空度2〜4
×lO″Torr程度の酸素環境の高周波プラズマ雰囲
気に数分間晒すと、Cu層の表面が酸化されて酸化物層
を形成するので、上述のCuの活性化反応性蒸着法に代
えて好適に採用しうる。
It is preferable that the Cu layer has a mechanical thickness of about 1000 A and is formed by vacuum evaporation, and the Cu oxide layer preferably has a mechanical thickness of about 50 to 400 A, and the means for forming it is a vacuum degree of 1. It is preferable to activate reactive vapor deposition of Cu in a high-frequency plasma atmosphere in an oxygen environment of about 3 x 10' Torr, but when forming it as an upper layer of a Cu layer, the surface of the Cu layer is evacuated after the formation of the Cu layer. degree 2~4
The surface of the Cu layer is oxidized to form an oxide layer when exposed to a high-frequency plasma atmosphere in an oxygen environment of approximately ×1O'' Torr for several minutes, so it is suitable for use in place of the Cu activation reactive vapor deposition method described above. I can do it.

本発明の反射鏡は、上記の如く形成したCuの酸化物層
の上に、更に増反射の目的で、低屈折率で光学的膜厚1
の金属酸化物被膜および高屈折率で光学的膜厚7の金属
酸化物被膜をこの順序に積層し、更に鏝上層として表面
硬化の目的で、低屈折率で光学的膜厚的0.05人の金
属酸化物被膜を形成すると、より品質のすぐれた反射鏡
となるので好天 ましい。低屈折率で光学的膜厚τの金属酸化物はA1□
03または5102、高屈折率で光学的膜厚令の金属酸
化物はTiO2、CeO2、ZrO2、Ta205また
はZrO2とTlO2の混合物、最上部の表面硬化層は
5i02が好ましく、これらの酸化物被膜の形成手段は
Cuの酸化物被膜形成の場合と同様に、lXlO4〜3
×10″Torrの酸素環境の高周波プラズマ雰囲気に
おいて、それぞれ対応する金属もしくは低次酸化物の活
性化反応性蒸着により行うのが好ましい。
The reflecting mirror of the present invention has a low refractive index and an optical thickness of 1 on the Cu oxide layer formed as described above for the purpose of increasing reflection.
A metal oxide film with a high refractive index and an optical thickness of 7. It is preferable to form a metal oxide film, as this will result in a reflecting mirror of better quality. Metal oxide with low refractive index and optical thickness τ is A1□
03 or 5102, the metal oxide with a high refractive index and optical thickness range is TiO2, CeO2, ZrO2, Ta205 or a mixture of ZrO2 and TlO2, and the uppermost surface hardening layer is preferably 5i02, and the formation of these oxide films As in the case of forming an oxide film of Cu, the method is lXlO4~3
Preferably, this is carried out by activated reactive vapor deposition of the respective metal or lower order oxide in a high frequency plasma atmosphere in an oxygen environment of x10'' Torr.

本発明は元来合成樹脂部材の反射鏡であるが、これを製
造するために採用する成膜手段は、部材がガラスまたは
アルミニウムなどの軽金属である場合にも適用可能であ
り、成膜手段がすべて低温で行われるので、合成樹脂以
外の部材を用いた反射鏡の製造に適用した場合、成膜後
すぐに成膜装置よりとり出すことが出来るので、その製
造コストの低減が可能である。
Although the present invention is originally a reflective mirror made of a synthetic resin member, the film forming means employed to manufacture this can also be applied when the member is made of glass or light metal such as aluminum, and the film forming means may be Since everything is carried out at low temperatures, when applied to the manufacture of reflective mirrors using members other than synthetic resins, the film can be taken out of the film forming apparatus immediately after being formed, and therefore the manufacturing cost can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明の反射鏡は耐腐食性に秀れ1反射面の密着性に秀
れている上に、合成樹脂部材上に形成されているので低
コストで製造可能である。また、CuのM化物層上に更
に増反射層および表面硬化層を設けることにより耐摩耗
性、耐溶剤性にすぐれ 且特に近赤外領域にすぐれた反
射特性を有するものとすることが出来る。
The reflecting mirror of the present invention has excellent corrosion resistance and excellent adhesion between the reflecting surfaces, and since it is formed on a synthetic resin member, it can be manufactured at low cost. Further, by further providing a reflection increasing layer and a surface hardening layer on the Cu Mide layer, it is possible to obtain a material having excellent wear resistance and solvent resistance, and particularly excellent reflection characteristics in the near-infrared region.

〔実施例〕〔Example〕

以下に図面を参照しながら実施例をあげて更に本発明を
説明する。
The present invention will be further explained below by giving examples with reference to the drawings.

実施例1 第1図にその構造断面図を示すポリゴンミラーを、下記
の成膜手段で作製した。
Example 1 A polygon mirror whose structural cross-sectional view is shown in FIG. 1 was fabricated using the following film forming method.

キャスティング精密成形して得られたポリカーイネート
のポリゴンミラー用部材1.1の表面を超研削したのち
、真空度2 X 10’ Torrにおいテsi。
After super-grinding the surface of the polycarinate polygon mirror member 1.1 obtained by precision casting, it was subjected to a vacuum test at 2 x 10' Torr.

を光学的膜厚が0.5人(設計波長入=480na+)
になるまで蒸着してSi0層2.1を成膜した0次いで
同じ真空度において機械的膜厚が400Aに達するまで
Crを蒸着してCr層3.1を成膜した。次いで同じ真
空度において機械的膜厚が100OAに達するまでCu
を蒸着してCu層4.1 を成膜した。
The optical film thickness is 0.5 mm (design wavelength input = 480 na+)
Then, at the same degree of vacuum, Cr was deposited until the mechanical thickness reached 400 A to form a Cr layer 3.1. Next, Cu was applied at the same vacuum level until the mechanical film thickness reached 100OA.
was deposited to form a Cu layer 4.1.

次に酸素を基若装置内に導入することにより真空度を2
 X IP’ Tarrとし、酸素環境の高周波プラズ
マ(印加高周波13.56 MHz、 100W)雰囲
気にてCuの活性化反応性決着を機械的膜厚150八に
達するまで行い、Cuの酸化物層5.1を成膜すること
により本発明のポリゴンミラーを得た。
Next, the degree of vacuum is increased to 2 by introducing oxygen into the Kiwaka device.
The Cu oxide layer 5. A polygon mirror of the present invention was obtained by forming a film of 1.

実施例2 第2図にその構造断面図を示すポリゴンミラーを、下記
の成膜手段で作製した。
Example 2 A polygon mirror whose structural cross-sectional view is shown in FIG. 2 was manufactured using the following film forming method.

インジェクション精密成形して得られたポリメチルメタ
クリレートのポリゴンミラー用部材1.1の表面を超研
削したのち、実施例1と同じ方法でSi0層2.1およ
びCr層3.1を順次成膜した。
After super-grinding the surface of a polygon mirror member 1.1 made of polymethyl methacrylate obtained by injection precision molding, a Si0 layer 2.1 and a Cr layer 3.1 were sequentially formed using the same method as in Example 1. .

次に酸素を蒸着装置内に導入することにより真空度を2
 X 10” Torrとし、酸素環境の高周波プラズ
マ(印加高周波13.56 MHz、 100W)雰囲
気にてCuの活性化反応性蒸着を機械的膜厚150Aに
達する迄行い、Cuの酸化物層3.2を成膜した。
Next, the degree of vacuum is increased to 2 by introducing oxygen into the evaporation equipment.
Activated reactive vapor deposition of Cu was carried out in an oxygen environment with high frequency plasma (applied high frequency 13.56 MHz, 100 W) at X 10" Torr until a mechanical film thickness of 150 A was reached, and a Cu oxide layer of 3.2 was deposited.

次いで再び実施例1と同じ方法でCu層4.1およびC
uの酸化物層5.1を順次積層することによりCu層4
.1がCuの酸化物層3.2および5.1によってサン
ドインチされた本発明のポリゴンミラーを得た。
Then, Cu layer 4.1 and C
The Cu layer 4 is formed by sequentially stacking the oxide layers 5.1 of
.. A polygonal mirror of the invention was obtained in which 1 was sandwiched with Cu oxide layers 3.2 and 5.1.

実施例3 第1図にその構造断面図を示すポリゴンミラーを、下記
の成膜手段で作製した。
Example 3 A polygon mirror whose structural cross-sectional view is shown in FIG. 1 was fabricated using the following film forming method.

インジェクション精密成形して得られたアクリロニトリ
ル−スチレン共重合体のポリゴンミラー用部材1.1の
表面を超研削したのち、実施例1と同じ方法でSi0層
2.1 、 Cr層3.1およびCu層4,1を順次成
膜した。
After super-grinding the surface of the polygon mirror member 1.1 made of acrylonitrile-styrene copolymer obtained by injection precision molding, a Si0 layer 2.1, a Cr layer 3.1 and a Cu layer were formed in the same manner as in Example 1. Layers 4 and 1 were deposited sequentially.

次に酸素を基若装置内に導入することにより真空度を3
 X 10″Tarrとしておいて、酸素環境の高周波
プラズマ(印加高周波13.56 MHz、 150W
)雰囲気に 4.5分間晒すことにより、先に成膜した
Cu層4.1のうち表面から約10OAを酸化銅層5.
1 に豆えて、本発明のポリゴンミラーを得た。
Next, the degree of vacuum is increased to 3 by introducing oxygen into the Kiwaka device.
X 10″ Tarr, high frequency plasma in oxygen environment (applied high frequency 13.56 MHz, 150 W
) By exposing to the atmosphere for 4.5 minutes, approximately 10 OA from the surface of the previously formed Cu layer 4.1 was removed from the copper oxide layer 5.
1, a polygon mirror of the present invention was obtained.

実施例4 第3図にその構造断面図を示すポリゴンミラーを、下記
の成膜手段で作製した。
Example 4 A polygon mirror whose structural cross-sectional view is shown in FIG. 3 was fabricated using the following film forming method.

キャスティング精密成形して得られたポリスチレンのポ
リゴンミラー用部材1.1の表面を超研削したのち、実
施例1と同じ方法でSi0層2.1 、 Cr層3.1
 、 Cu層4.1およびCuの酸化物層5.1を順次
成膜した。
After super-grinding the surface of the polystyrene polygon mirror member 1.1 obtained by precision casting, a Si0 layer 2.1 and a Cr layer 3.1 were formed using the same method as in Example 1.
, A Cu layer 4.1 and a Cu oxide layer 5.1 were sequentially formed.

次いで3X10″Torrの酸素環境の高周波プラズマ
(印加高周波13.5[i MHz、 100W)雰囲
気にて入 低次のAl2O3の活性化反応性蒸着を光学的膜厚τ(
設計波長入= 700r++++ )に達するまで行い
、高次のAl2O3層6.1を成膜し、更に3 X 1
0− Tarrの酸素環境の高周波プラズマ(印加高周
波13.56 MHz。
Next, activated reactive vapor deposition of low-order Al2O3 was performed in a high-frequency plasma (applied high frequency 13.5 [i MHz, 100 W) atmosphere in an oxygen environment of 3 x 10'' Torr to an optical film thickness τ (
The process was continued until the design wavelength input = 700r++++) was reached, a high-order Al2O3 layer 6.1 was formed, and further 3 x 1
High-frequency plasma in an oxygen environment of 0-Tarr (applied high frequency 13.56 MHz.

too w)雰囲気にて低次のTiOの活性化反応性法
人 着を光学的膜厚フ(設計波長入= 450nm )に達
するまで行い、高次のTiO2層7.1を成膜し、最後
に1.5 X 10’ Torrの酸素環境の浦周波プ
ラズマ(印加高周波13.513 MH’z、 100
W)雰囲気ニテ低次のSiOの活性化反応性蒸着を光学
的膜厚0.05人(設計波長入= 40Or+m )に
達するまで行って5102層8.1の表面硬化膜を形成
し、本発明のポリゴンミラーを得た。
Activation reactive corporate deposition of low-order TiO is carried out in an atmosphere (too w) until reaching the optical film thickness (design wavelength input = 450 nm), a high-order TiO2 layer 7.1 is formed, and finally Ura frequency plasma in oxygen environment of 1.5 X 10' Torr (applied high frequency 13.513 MHz, 100
W) Activated reactive vapor deposition of low-order SiO in an atmosphere was performed until reaching an optical film thickness of 0.05 mm (design wavelength input = 40 Or+m) to form a surface hardened film of 5102 layers 8.1, and the present invention I got a polygon mirror.

実施例5 実施例4において、TiO2層7.1の代りに。Example 5 In Example 4 instead of the TiO2 layer 7.1.

CeO2、ZrO2、Ta205 またはZrO2とT
lO2とノ混合物よりなる層7.1 を、真空度IX 
IQ−〜3×lO→Torrの酸素環境の高周波プラズ
マ(印加高周波13.58 MHz、 100W)雰囲
気にて、それぞれの金属または低次酸化物の活性化反応
性蒸着を光学的膜厚金(設計波長入= 450na+ 
)に達するまでそれぞれ行うことにより成膜した以外は
、実施例4と同様に積層膜を形成することにより、本発
明のポリゴンミラーを得た。
CeO2, ZrO2, Ta205 or ZrO2 and T
Layer 7.1 consisting of a mixture of lO2 and
In a high-frequency plasma (applied high frequency 13.58 MHz, 100 W) atmosphere in an oxygen environment of IQ-~3×1O → Torr, the activated reactive vapor deposition of each metal or lower oxide was performed to an optical thickness of gold (designed). Wavelength input = 450na+
) A polygon mirror of the present invention was obtained by forming a laminated film in the same manner as in Example 4, except that the film was formed by performing the following steps until reaching ).

第4図は実施例4および5で得られた反射鏡の分光反射
率特性(S偏光)を示したもので、図を見てわかるよう
に該反射鏡は近赤外波長城において高反射率を有してい
る。又、従来の近赤外反射鏡の増反射膜が光学部材を2
50℃前後に加熱し、その後成膜し、数時間除冷後蒸着
装置より取り出しているのに対し、実施例4および5で
は低温で成膜処理が行われるため成膜後即時蒸着装置よ
り取り出すことが出来るため、コストの大幅な低減が出
来ると同時に従来の光学部材(ガラス材、軽金属研削部
材)に対しても本発明が適用できる。
Figure 4 shows the spectral reflectance characteristics (S polarization) of the reflectors obtained in Examples 4 and 5. As can be seen from the figure, the reflectors have a high reflectance at near-infrared wavelengths. have. In addition, the reflection-enhancing film of the conventional near-infrared reflector makes the optical member 2
The film was heated to around 50°C, then formed, and then cooled for several hours before being taken out of the evaporation apparatus, whereas in Examples 4 and 5, the film formation process was performed at a low temperature, so the film was taken out of the evaporation apparatus immediately after film formation. Therefore, it is possible to significantly reduce costs, and at the same time, the present invention can be applied to conventional optical members (glass materials, light metal grinding members).

実施例4および5で得た合成樹脂部材の反射鏡の強度を
調べるために、T:前件テスト、耐摩耗テスト、耐溶剤
性テスト、耐環境性テストの4つのテストを行った。各
テストの内容は以下に示すとおりである。
In order to examine the strength of the reflective mirrors of the synthetic resin members obtained in Examples 4 and 5, four tests were conducted: T: antecedent test, abrasion resistance test, solvent resistance test, and environmental resistance test. The contents of each test are as shown below.

1)密着性テスト:上記反射鏡の表面にセロハンテープ
にチバン)を接着させた後この表面にほぼ垂直な角度で
、すばやくとりのぞくテストを15回繰返し、蒸着膜の
剥離が生ずるかを調べる。
1) Adhesion test: After adhering cellophane tape to the surface of the reflector, the test is repeated 15 times by quickly removing it at an angle almost perpendicular to the surface to determine whether the deposited film peels off.

2)耐摩耗テスト:上記反射鏡の表面をレンズ拭き紙(
シルポン紙)で包んだ測定子で耐摩耗往復動試験機を用
い3 kg/am’の圧で50往復こすり、異状が生ず
るか調べる。
2) Abrasion resistance test: Wipe the surface of the above reflector with lens wiping paper (
Using a reciprocating abrasion tester, rub the measuring tip wrapped in Silpon paper 50 times at a pressure of 3 kg/am' to see if any abnormalities occur.

3)#溶剤テスト:上記反射鏡の表面をニーチル、アル
;−ル(7: 3)混合液をふくんだレンズ拭き紙(シ
ルポン紙)で500 g / c m’圧で50往復こ
すり、異状が生ずるか調べる。
3) #Solvent test: Rub the surface of the above reflecting mirror 50 times with a lens wiping paper (silpon paper) containing a mixture of nityl and alcohol (7:3) at a pressure of 500 g/cm' to detect any abnormalities. Check whether this occurs.

4)耐環境テスト二上記反射鏡を温度45℃、相対湿度
95%の恒温恒湿槽中に1000時間放置し、異状が生
ずるか調べる。
4) Environmental Resistance Test 2 The above reflecting mirror is left in a constant temperature and humidity chamber at a temperature of 45° C. and a relative humidity of 95% for 1000 hours, and it is examined whether any abnormality occurs.

この4テストの結果はどのテストにおいても異状がみら
れず、従来のガラス部材及軽金属(主としてアルミ)に
対する高温成膜法で作られた膜に比べて、実施例4およ
び5で得た反射鏡の膜は、極めて強い膜であることが判
明した。
The results of these four tests showed that no abnormality was observed in any of the tests, and the reflectors obtained in Examples 4 and 5 were superior to the films made by conventional high-temperature film formation methods on glass members and light metals (mainly aluminum). The film was found to be extremely strong.

【図面の簡単な説明】[Brief explanation of the drawing]

第1乃至第3図は本発明の反射鏡の構造断面図であり、
第4図は本発明の実施例4および5で得られた反射鏡の
分光反射率特性を示すグラフで。 横軸は波長、たて軸は反射率、θは光の入射角を表わす
。 1.1=合成樹脂部材の基板 2.1:SiO 3,1:Or 3.2:Cuの酸化物 4.1:Cu 5.1:Cuの酸化物 6.1;低屈折率の金属酸化物 7.1:高屈折率の金属酸化物 8.1:低屈折率の金属酸化物
1 to 3 are structural cross-sectional views of the reflecting mirror of the present invention,
FIG. 4 is a graph showing the spectral reflectance characteristics of the reflecting mirrors obtained in Examples 4 and 5 of the present invention. The horizontal axis represents wavelength, the vertical axis represents reflectance, and θ represents the incident angle of light. 1.1 = Substrate of synthetic resin member 2.1: SiO 3,1: Or 3.2: Cu oxide 4.1: Cu 5.1: Cu oxide 6.1; Low refractive index metal oxide Material 7.1: High refractive index metal oxide 8.1: Low refractive index metal oxide

Claims (1)

【特許請求の範囲】 1、合成樹脂部材よりなる基板面上に、SiO、Crお
よびCuの各層がこの順序に形成されており、かつ少く
ともCu層の上層として更にCuの酸化物層が形成され
ていることを特徴とする合成樹脂部材の反射鏡。 2、Cr層とCu層との間にもCuの酸化物層が更に形
成されている特許請求の範囲第1項記載の反射鏡。 3、Cu層の上層として形成されているCuの酸化物層
の上に、更に低屈折率で光学的膜厚λ/4の金属酸化物
被膜、高屈折率で光学的膜厚λ/2の金属酸化物被膜、
および低屈折率で光学的膜厚約0.05λの金属酸化物
被膜よりなる各層がこの順序に形成されている特許請求
の範囲第1項または第2項記載の反射鏡。 4、上記低屈折率で光学的膜厚λ/4の金属酸化物がA
l_2O_3またはSiO_2であり、上記高屈折率で
光学的膜厚λ/2の金属酸化物がTiO_2、CeO_
2、ZrO_2、Ta_2O_5またはZrO_2とT
iO_2の混合物であり、上記低屈折率で光学的膜厚約
0.05λの金属酸化物がSiO_2である特許請求の
範囲第3項記載の反射鏡。
[Claims] 1. Each layer of SiO, Cr and Cu is formed in this order on the surface of a substrate made of a synthetic resin member, and at least a Cu oxide layer is further formed as an upper layer of the Cu layer. A reflective mirror made of a synthetic resin member, characterized in that: 2. The reflecting mirror according to claim 1, wherein a Cu oxide layer is further formed between the Cr layer and the Cu layer. 3. On the Cu oxide layer formed as the upper layer of the Cu layer, a metal oxide film with a low refractive index and an optical thickness of λ/4, and a metal oxide film with a high refractive index and an optical thickness of λ/2 are further applied. metal oxide coating,
and a metal oxide coating having a low refractive index and an optical thickness of approximately 0.05λ, each layer being formed in this order. 4. The metal oxide with a low refractive index and an optical thickness of λ/4 is A
l_2O_3 or SiO_2, and the metal oxide with the high refractive index and optical thickness λ/2 is TiO_2, CeO_2.
2, ZrO_2, Ta_2O_5 or ZrO_2 and T
4. The reflecting mirror according to claim 3, wherein the metal oxide is a mixture of iO_2 and has a low refractive index and an optical thickness of about 0.05λ is SiO_2.
JP15173186A 1986-06-30 1986-06-30 Synthetic resin reflector Expired - Fee Related JPH077126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15173186A JPH077126B2 (en) 1986-06-30 1986-06-30 Synthetic resin reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15173186A JPH077126B2 (en) 1986-06-30 1986-06-30 Synthetic resin reflector

Publications (2)

Publication Number Publication Date
JPS638605A true JPS638605A (en) 1988-01-14
JPH077126B2 JPH077126B2 (en) 1995-01-30

Family

ID=15525057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15173186A Expired - Fee Related JPH077126B2 (en) 1986-06-30 1986-06-30 Synthetic resin reflector

Country Status (1)

Country Link
JP (1) JPH077126B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469603A (en) * 1990-07-10 1992-03-04 Copal Co Ltd Reflecting mirror consisting of multilayer film
JPH04253001A (en) * 1991-01-30 1992-09-08 Seikosha Co Ltd Infrared reflection mirror
JPH05313013A (en) * 1992-05-09 1993-11-26 Horiba Ltd Multilayer film optical filter
JP2013083922A (en) * 2011-09-30 2013-05-09 Fujifilm Corp Liquid crystal display device and optical film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469603A (en) * 1990-07-10 1992-03-04 Copal Co Ltd Reflecting mirror consisting of multilayer film
JPH04253001A (en) * 1991-01-30 1992-09-08 Seikosha Co Ltd Infrared reflection mirror
JPH05313013A (en) * 1992-05-09 1993-11-26 Horiba Ltd Multilayer film optical filter
JP2013083922A (en) * 2011-09-30 2013-05-09 Fujifilm Corp Liquid crystal display device and optical film

Also Published As

Publication number Publication date
JPH077126B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US4128303A (en) Anti reflection coating with a composite middle layer
US4979802A (en) Synthetic resin half-mirror
JPH0534650B2 (en)
US4944581A (en) Rear face reflection mirror of multilayer film for synthetic resin optical parts
JPH05188202A (en) Multilayered optical thin film
JPS638605A (en) Reflection mirror consisting of synthetic resin member
JPH02109003A (en) Reflection mirror
JPS60131501A (en) Reflective mirror of synthetic resin base
JPS6326603A (en) Reflection mirror consisting of synthetic resin member
JPH06273601A (en) Antireflection film of optical parts made of synthetic resin
JP2000171622A (en) Internal reflection type optical element and its production
JPS58223101A (en) Production of polygonal mirror
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JPS60130704A (en) Antireflection film for plastic substrate
JPH10123303A (en) Antireflection optical parts
JPH05173005A (en) Aluminum surface reflection mirror
JPS638604A (en) Semipermeable film exhibiting flat spectral characteristic in visible region
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JPH04166901A (en) Optical parts having antireflection coating
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
KR20230149557A (en) Optical article based on plastitcs
JP3560638B2 (en) Reflective film
JPS6296901A (en) Synthetic resin lens
JPS60130703A (en) Antireflection film for plastic substrate
JP3353948B2 (en) Beam splitter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees