JP2008139525A - Multilayer film optical element - Google Patents

Multilayer film optical element Download PDF

Info

Publication number
JP2008139525A
JP2008139525A JP2006325144A JP2006325144A JP2008139525A JP 2008139525 A JP2008139525 A JP 2008139525A JP 2006325144 A JP2006325144 A JP 2006325144A JP 2006325144 A JP2006325144 A JP 2006325144A JP 2008139525 A JP2008139525 A JP 2008139525A
Authority
JP
Japan
Prior art keywords
film
optical
stress
scf
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325144A
Other languages
Japanese (ja)
Inventor
Hirotaka Fukushima
浩孝 福島
Yasuyuki Suzuki
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006325144A priority Critical patent/JP2008139525A/en
Publication of JP2008139525A publication Critical patent/JP2008139525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a multilayer film optical element which is little deformed by reducing stress of an optical multilayer film constituting an antireflection film and a mirror. <P>SOLUTION: A stress relaxation layer 4 comprising an amorphous ScF3 film is inserted in the optical multilayer film comprising a high refractive index film 2 and a low refractive index film 3 layered on a substrate 1. Since ScF3 has larger compressive stress compared with other materials, tensile stress of the optical multilayer film can be canceled even when film thickness is small. When the substrate 1 has a metal film 5 thereon, effect of moisture prevention and rust prevention are expectable by inserting the stress relaxation layer 4 comprising the amorphous ScF3 film between the optical multilayer film and the metal film 5 so that the stress relaxation layer 4 lies on the metal film 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、反射防止膜やミラーなどの光学特性を有する多層膜光学素子に関するものである。   The present invention relates to a multilayer optical element having optical characteristics such as an antireflection film and a mirror.

様々な製品に光学薄膜を用いたミラーや反射防止膜などの多層膜光学素子が用いられており、これらは、屈折率が異なる光学薄膜を組み合わせることで所望の光学特性を実現するものである。そして、光学素子が所望の品質を得るために、光学多層膜には光吸収や光散乱等の光学損失が低いこと、設計値通りの光学特性、美しい外観、環境耐久性、レーザー耐久性などが求められる。   Multilayer film optical elements such as mirrors and antireflection films using optical thin films are used in various products, and these realize desired optical characteristics by combining optical thin films having different refractive indexes. In order to obtain the desired quality of the optical element, the optical multilayer film has low optical loss such as light absorption and light scattering, optical characteristics as designed, beautiful appearance, environmental durability, laser durability, etc. Desired.

しかし、光学多層膜によっては強い膜応力を持つものがある。膜応力が大きいと膜にクラックや剥離が生じて外観異常、環境耐久性の劣化、素子形状の歪みが生じたりする。また、応力の問題が解決されても、場合によっては屈折率や膜厚が期待通りの値とならず、設計値通りの光学特性が得られないことがある。   However, some optical multilayer films have strong film stress. When the film stress is large, cracks and peeling occur in the film, resulting in abnormal appearance, deterioration of environmental durability, and distortion of the element shape. Even if the problem of stress is solved, the refractive index and film thickness may not be as expected in some cases, and optical characteristics as designed may not be obtained.

さらに、設計値通りの光学特性が得られても、その後の環境耐久性やレーザー耐久性などに問題がある場合がある。特に金属膜は、雰囲気中の酸素、窒素、水などとその表面が反応して特性が劣化したりする場合が多い。   Furthermore, even if optical characteristics as designed are obtained, there may be problems with subsequent environmental durability and laser durability. In particular, the properties of metal films often deteriorate due to reaction of the surface with oxygen, nitrogen, water, etc. in the atmosphere.

これらの問題を解決するために、例えば応力問題であれば、特許文献1に開示されているような逆向きの応力を持った膜を応力緩和層として挿入する方法が知られている。
特開2003−29024号公報
In order to solve these problems, for example, in the case of a stress problem, a method of inserting a film having a reverse stress as disclosed in Patent Document 1 as a stress relaxation layer is known.
JP 2003-29024 A

しかし、応力緩和層が対象とする波長に対して光吸収がある場合や、所望の屈折率を持っていない場合は、挿入することで所望の光学特性が実現できない膜構成になることがある。   However, when the stress relaxation layer absorbs light with respect to a target wavelength or does not have a desired refractive index, a film configuration in which desired optical characteristics cannot be realized by insertion may be obtained.

例えば、波長が紫外域の光に対しては、光吸収やレーザー耐久性などの問題から酸化物膜の応力緩和層は用いることができない。また、紫外域の光に対して光吸収が低い弗化物膜であっても、例えば、特許文献1に記載されているSrF2 を用いた応力緩和層では、SrF2 膜の応力が十分に強くないため、基板を加熱した場合の熱応力などの外部要因に左右されて所望の応力が得られない場合が多い。所望の応力を得ようとするとSrF2 膜の膜厚を大きくする必要があるが、この場合は、SrF2 によって素子の光学特性が制限されてしまう。このように、光学設計上自由に応力緩和層を挿入することができないことが多い。 For example, for light in the ultraviolet region, an oxide film stress relaxation layer cannot be used due to problems such as light absorption and laser durability. Even in the case of a fluoride film having low light absorption with respect to light in the ultraviolet region, for example, in the stress relaxation layer using SrF 2 described in Patent Document 1, the stress of the SrF 2 film is sufficiently strong. Therefore, the desired stress is often not obtained depending on external factors such as thermal stress when the substrate is heated. In order to obtain a desired stress, it is necessary to increase the film thickness of the SrF 2 film. In this case, however, the optical characteristics of the element are limited by SrF 2 . Thus, in many cases, the stress relaxation layer cannot be freely inserted in optical design.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、低光学損失で、設計値通りの光学特性および美しい外観、環境耐久性、レーザー耐久性、適切な形状等を備えた多層膜光学素子を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and has low optical loss, optical characteristics as designed, beautiful appearance, environmental durability, laser durability, appropriate shape, etc. An object of the present invention is to provide a multilayer optical element provided.

本発明の多層膜光学素子は、基板上に積層された、屈折率の異なる少なくとも2層の薄膜を有する光学多層膜と、前記光学多層膜の応力を相殺するために前記光学多層膜に挿入された、少なくとも一層のScF3 膜からなる応力緩和層と、を有することを特徴とする。 The multilayer optical element of the present invention is inserted into the optical multilayer film in order to cancel the stress of the optical multilayer film, and the optical multilayer film having at least two thin films having different refractive indexes laminated on the substrate. And a stress relaxation layer made of at least one layer of ScF 3 film.

図11に示すように、ScF3 の膜応力は他の弗化物膜に対して逆向きの強い応力である。SrF2 等に比べるとその大きさが判る。このため、ScF3 膜を応力緩和層として用いることで、応力が抑制された光学素子を得ることができる。 As shown in FIG. 11, the film stress of ScF 3 is a strong stress in the opposite direction with respect to other fluoride films. Compared to SrF 2 etc., its size can be seen. For this reason, an optical element in which stress is suppressed can be obtained by using the ScF 3 film as a stress relaxation layer.

このScF3 からなる挿入膜は強い応力を持つため比較的薄い膜厚であっても応力緩和の効果が得られる。そして、その膜厚を光学的膜厚0.01λ以上0.11λ以下と限定することにより、応力緩和層が無い場合と同等な光学特性を得ることができる。 Since the insertion film made of ScF 3 has a strong stress, the effect of stress relaxation can be obtained even with a relatively thin film thickness. Then, by limiting the film thickness to an optical film thickness of 0.01λ or more and 0.11λ or less, it is possible to obtain optical characteristics equivalent to the case without the stress relaxation layer.

ScF3 膜は非晶質であるとよい。非晶質膜は、結晶質膜のように結晶粒が成長することにより表面が荒れることがないため、比較的平滑な表面が得やすい。そして、ScF3 は基板温度が250℃程度までなら非晶質膜であるため、ScF3 の挿入膜により、光学多層膜を設計値通りに成膜しやすくなり、設計値通りの光学特性を持った素子が得られる。 The ScF 3 film is preferably amorphous. Since an amorphous film does not become rough due to the growth of crystal grains unlike a crystalline film, a relatively smooth surface is easily obtained. Since ScF 3 is an amorphous film if the substrate temperature is up to about 250 ° C., the insertion film of ScF 3 makes it easy to form an optical multilayer film as designed, and has optical characteristics as designed. The obtained device is obtained.

このように、応力が制御され、しかも設計どおりの光学特性を持った光学素子を得ることができる。   In this way, an optical element with controlled stress and optical characteristics as designed can be obtained.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1の(a)は第1の実施の形態による膜構成を示す。この多層膜光学素子は、基板1に、光学多層膜を構成する高屈折率膜2および低屈折率膜3が積層され、両者の間にScF3 膜からなる応力緩和層4が挿入された膜構成を有する。素子を構成する光学多層膜の光学特性は高屈折率膜2と低屈折率膜3によってほぼ実現される。応力緩和層4は、高屈折率膜2と低屈折率膜3により生じた合計の応力(引張応力)を相殺する逆向きの応力(圧縮応力)を持つ。このように、応力緩和層4により素子の応力が抑制され、クラックや剥離などによる外観異常や環境耐久性の問題、さらには素子形状歪みを抑えることができる。 FIG. 1A shows a film configuration according to the first embodiment. This multilayer optical element is a film in which a high refractive index film 2 and a low refractive index film 3 constituting an optical multilayer film are laminated on a substrate 1, and a stress relaxation layer 4 made of a ScF 3 film is inserted therebetween. It has a configuration. The optical characteristics of the optical multilayer film constituting the element are substantially realized by the high refractive index film 2 and the low refractive index film 3. The stress relaxation layer 4 has a reverse stress (compressive stress) that cancels out the total stress (tensile stress) generated by the high refractive index film 2 and the low refractive index film 3. As described above, the stress relaxation layer 4 suppresses the stress of the element, and it is possible to suppress abnormal appearance and environmental durability due to cracks and peeling and further distortion of the element shape.

応力緩和層4は、対象波長をλとした場合に光学的膜厚が0.02λ以上0.11λ以下である。このため、素子全体の光学特性にはほとんど影響しない。   The stress relaxation layer 4 has an optical film thickness of 0.02λ or more and 0.11λ or less when the target wavelength is λ. For this reason, the optical characteristics of the entire element are hardly affected.

膜材料は、高屈折率膜としてLaF3 、低屈折率膜としてMgF2 、応力緩和膜としてScF3 を用いて、真空蒸着法などにより成膜される。 The film material is formed by vacuum deposition or the like using LaF 3 as a high refractive index film, MgF 2 as a low refractive index film, and ScF 3 as a stress relaxation film.

基板は、0.6×10-6/K以下の非常に小さい線熱膨張係数を持ったものが望ましい。基板の線熱膨張係数が0.6×10-6/K以下の非常に小さい場合、成膜時の温度変化による膜と基板との熱膨張率の違いにより膜応力が生じやすい。しかし、本実施の形態によれば、0.6×10-6/K以下の非常小さい線熱膨張係数の基板を用いた場合であっても応力が十分に制御される。このため、環境温度変化による熱膨張が少ない、つまり形状変化が少ない所望の光学特性を持った光学素子を得ることができる。 The substrate preferably has a very small coefficient of linear thermal expansion of 0.6 × 10 −6 / K or less. When the linear thermal expansion coefficient of the substrate is very small of 0.6 × 10 −6 / K or less, film stress is likely to occur due to the difference in thermal expansion coefficient between the film and the substrate due to temperature change during film formation. However, according to the present embodiment, the stress is sufficiently controlled even when a substrate having a very small linear thermal expansion coefficient of 0.6 × 10 −6 / K or less is used. Therefore, it is possible to obtain an optical element having desired optical characteristics that has little thermal expansion due to environmental temperature changes, that is, little shape change.

このようにして、応力、光学特性等の問題を解決することで、光吸収や光散乱が少なくて低光学損失であり、しかも、設計値通りの光学特性、美しい外観、レーザー耐久性等を備えた多層膜光学素子を実現することができる。   In this way, by solving problems such as stress and optical characteristics, it has low optical loss with less light absorption and light scattering, and also has optical characteristics as designed, beautiful appearance, laser durability, etc. A multilayer optical element can be realized.

図1の(b)は第2の実施の形態を示す。この多層膜光学素子は、基板1上に金属膜5を有し、その上に、非晶質のScF3 からなる応力緩和層4を介して低屈折率膜3と高屈折率膜2とが積層された膜構成を有する。素子の光学特性は、金属膜5と低屈折率膜3と高屈折率膜2とによって実現される。ScF3 からなる応力緩和層4は、金属膜5と低屈折率膜3と高屈折率膜2により生じた合計の応力(引張応力)を相殺する逆向きの応力(圧縮応力)を持つ。応力緩和層4により素子の応力が制御され、クラックや剥離などによる外観異常や環境耐久性の問題、さらには素子形状歪みを抑えることができる。また、ScF3 からなる応力緩和層4は非晶質であるため、水、酸素などの素子雰囲気中ガスの金属膜5への浸透を効果的に防ぐことができる。 FIG. 1B shows a second embodiment. This multilayer optical element has a metal film 5 on a substrate 1, and a low refractive index film 3 and a high refractive index film 2 are formed on the metal film 5 via a stress relaxation layer 4 made of amorphous ScF 3. It has a laminated film structure. The optical characteristics of the element are realized by the metal film 5, the low refractive index film 3, and the high refractive index film 2. The stress relaxation layer 4 made of ScF 3 has a reverse stress (compressive stress) that cancels out the total stress (tensile stress) generated by the metal film 5, the low refractive index film 3, and the high refractive index film 2. The stress relaxation layer 4 controls the stress of the element, and it is possible to suppress the appearance abnormality due to cracks and peeling, the problem of environmental durability, and the distortion of the element shape. Further, since the stress relaxation layer 4 made of ScF 3 is amorphous, it is possible to effectively prevent the penetration of gas in the element atmosphere such as water and oxygen into the metal film 5.

金属膜を含む多層膜においては、金属膜よりも入射光側に多層膜とは逆向きの応力を持った非晶質のScF3 膜を挿入した膜構成が望ましい。 In a multilayer film including a metal film, a film configuration in which an amorphous ScF 3 film having a stress opposite to that of the multilayer film is inserted on the incident light side of the metal film is desirable.

金属膜は雰囲気中の酸素、窒素、水分その他のガスと反応して特性が変化しやすい。また紫外域用の金属膜の保護膜として弗化物誘電体膜が用いられるが、それら弗化物誘電体膜は柱状構造などのガスを透過しやすい構造であることが多い。そこで、柱状構造をとらない非晶質のScF3 膜を挿入することで、応力を制御すると同時に耐久性を向上させるとよい。 The metal film reacts with oxygen, nitrogen, moisture and other gases in the atmosphere, and its characteristics are likely to change. In addition, fluoride dielectric films are used as protective films for metal films for the ultraviolet region, and these fluoride dielectric films often have a structure such as a columnar structure that easily transmits gas. Therefore, by inserting an amorphous ScF 3 film that does not have a columnar structure, it is preferable to control the stress and simultaneously improve the durability.

膜材料は、金属膜としてAl、低屈折率膜としてMgF2 、高屈折率膜としてLaF3 、応力緩和膜としてScF3 を用いて、真空蒸着法などにより成膜される。 The film material is formed by vacuum deposition or the like using Al as the metal film, MgF 2 as the low refractive index film, LaF 3 as the high refractive index film, and ScF 3 as the stress relaxation film.

基板は、第1の実施の形態と同様に、0.6×10-6/K以下の非常に小さい線熱膨張係数を持ったものが望ましい。 As in the first embodiment, the substrate preferably has a very small linear thermal expansion coefficient of 0.6 × 10 −6 / K or less.

図2は実施例1によるミラーの膜構成を示す。本実施例の基板11は、0.02×10-6/Kの非常に小さい線熱膨張係数を持ったショット社製 zerodur基板(商品名)であり、その上に光学的膜厚1.38λのScF3 膜16が積層される。次に、光学的膜厚0.25λのLaF3 膜(高屈折率膜)12と光学的膜厚0.05λのScF3 膜(応力緩和層)14と光学的膜厚0.22λのMgF2 膜13(低屈折率膜)と光学的膜厚0.05λのScF3 膜(応力緩和層)14の計4層を一つの構成層17として、この構成層17が17層積層される。そして、光学的膜厚0.26λのLaF3 膜18の表面層を有する。 FIG. 2 shows the film configuration of the mirror according to the first embodiment. The substrate 11 of this embodiment is a zerodur substrate (trade name) manufactured by Schott with a very small coefficient of linear thermal expansion of 0.02 × 10 −6 / K, and an optical film thickness of 1.38λ is formed thereon. The ScF 3 film 16 is laminated. Next, an LaF 3 film (high refractive index film) 12 having an optical film thickness of 0.25λ, an ScF 3 film (stress relaxation layer) 14 having an optical film thickness of 0.05λ, and MgF 2 having an optical film thickness of 0.22λ. A total of four layers of the film 13 (low refractive index film) and the ScF 3 film (stress relaxation layer) 14 having an optical film thickness of 0.05λ are used as one constituent layer 17, and 17 constituent layers 17 are laminated. A surface layer of the LaF 3 film 18 having an optical film thickness of 0.26λ is provided.

ScF3 膜14、16は非晶質、LaF3 膜12、18と、MgF2 膜13は結晶質である。 The ScF 3 films 14 and 16 are amorphous, and the LaF 3 films 12 and 18 and the MgF 2 film 13 are crystalline.

(比較例1)
実施例1の比較例として、図3に比較例1によるミラーの膜構成を示す。本比較例は、ショット社製zerodur基板からなる基板11aに、光学的膜厚0.28λのLaF3膜12aと光学的膜厚0.29λのMgF2 膜13aを交互に17層積層し、最終層として、光学的膜厚0.28λのLaF3 膜18aを積層したものである。
(Comparative Example 1)
As a comparative example of Example 1, FIG. 3 shows a film configuration of a mirror according to Comparative Example 1. In this comparative example, 17 layers of an LaF 3 film 12a with an optical film thickness of 0.28λ and an MgF 2 film 13a with an optical film thickness of 0.29λ are alternately stacked on a substrate 11a made of a shotd zerodur substrate. As a layer, a LaF 3 film 18a having an optical film thickness of 0.28λ is laminated.

LaF3 膜12a、18aとMgF2 膜13aは結晶質である。 The LaF 3 films 12a and 18a and the MgF 2 film 13a are crystalline.

(比較例2)
実施例1の比較例として、図4に比較例2のミラーの膜構成を示す。比較例2の基板21は、ショット社製zerodur基板であり、その上に光学的膜厚2.91λのScF3膜26が積層される。次に、光学的膜厚0.28λのLaF3 膜22と光学的膜厚0.29λのMgF2 膜23を交互に17層ずつ積層し、最終層として、光学的膜厚0.28λのLaF3 膜28を積層したものである。
(Comparative Example 2)
As a comparative example of Example 1, FIG. 4 shows a film configuration of a mirror of Comparative Example 2. The substrate 21 of Comparative Example 2 is a zerodur substrate manufactured by Schott, on which an ScF 3 film 26 having an optical film thickness of 2.91λ is laminated. Next, 17 layers of LaF 3 films 22 with an optical film thickness of 0.28λ and MgF 2 films 23 with an optical film thickness of 0.29λ are alternately stacked, and the final layer is LaF with an optical film thickness of 0.28λ. Three films 28 are laminated.

ScF3 膜26の膜厚は、実施例1のScF3 膜の総膜厚と同じである。 The film thickness of the ScF 3 film 26 is the same as the total film thickness of the ScF 3 film of Example 1.

LaF3 膜22、28とMgF2 膜23は結晶質である。 The LaF 3 films 22 and 28 and the MgF 2 film 23 are crystalline.

λ=193nmとした場合の、実施例1の反射率のシミュレイション値と実測値、比較例1の反射率のシミュレイション値と実測値、および比較例2の実測値を図5に示す。素子への入射光の角度は45°である。   FIG. 5 shows the simulation value and actual measurement value of the reflectance of Example 1, the simulation value and actual measurement value of the reflectance of Comparative Example 1, and the actual measurement value of Comparative Example 2 when λ = 193 nm. The angle of light incident on the element is 45 °.

実施例1のシミュレイション値の反射率は、応力緩和層であるScF3 膜が無い場合の比較例1のシミュレイション値とほぼ同じ反射率となっており、ScF3 膜が光学特性に影響していないことが判る。また、実施例1の実測値もその設計シミュレイション値に近い値である。 The reflectance of the simulation value of Example 1 is almost the same as the simulation value of Comparative Example 1 when there is no ScF 3 film as the stress relaxation layer, and the ScF 3 film affects the optical characteristics. You can see that it is not. Moreover, the actual measurement value of Example 1 is also a value close to the design simulation value.

しかし、比較例1の実測値の反射率は、そのシミュレイション値に比べて低いことが判る。   However, it can be seen that the reflectance of the actually measured value in Comparative Example 1 is lower than the simulation value.

表1に実施例1と比較例1の全応力のシミュレイション値を示す。実施例1は比較例1の1/3程度の全応力値に軽減されている。   Table 1 shows simulation values of total stress in Example 1 and Comparative Example 1. In Example 1, the total stress value is reduced to about 1/3 that of Comparative Example 1.

Figure 2008139525
Figure 2008139525

この応力差のため、実施例1の外観ではクラックが見られなかったが、比較例1の外観ではクラックが見られた。   Due to this stress difference, no cracks were seen in the appearance of Example 1, but cracks were seen in the appearance of Comparative Example 1.

また、実施例1と比較例2について、温度60℃、湿度90%の高湿高温環境で保管した後の外観異常の有無を調べると、表2に示すように、実施例1では異常が見られないが、比較例2では膜にクラックや砂目が生じていた。   Further, regarding Example 1 and Comparative Example 2, when the presence or absence of appearance abnormality after storage in a high humidity and high temperature environment of 60 ° C. and 90% humidity was examined, as shown in Table 2, abnormality was found in Example 1. However, in Comparative Example 2, cracks and grain were generated in the film.

Figure 2008139525
Figure 2008139525

このように、実施例1の膜構成は、高い光学設計自由度と、設計値通りの良好な光学特性と、応力が制御された美しい外観を持った素子が得られるものであることが判った。   Thus, it was found that the film configuration of Example 1 provides an element having a high optical design freedom, good optical characteristics as designed, and a beautiful appearance with controlled stress. .

(比較例3)
実施例1の比較例として、図6に比較例3のミラーの膜構成を示す。本比較例の基板31は、ショット社製zerodur基板であり、その上にScF3膜36が積層される。次に、LaF3 膜32とScF3 膜34とMgF2 膜33とScF3 膜34の計4層を一つの構成層37としてこの構成層37が17層積層される。そしてLaF3 膜38が表面層として積層された構成である。この膜構成において、応力緩和層であるScF3 膜34の光学的膜厚を0.01λ〜0.21λまで変化させ、これに合わせて、ScF3 膜36、LaF3 膜32、MgF2 膜33、LaF3 膜38の光学的膜厚をその都度最適化してシミュレイション値を求めた。
(Comparative Example 3)
As a comparative example of Example 1, FIG. 6 shows a film configuration of a mirror of Comparative Example 3. The substrate 31 in this comparative example is a zerodur substrate manufactured by Schott, on which the ScF 3 film 36 is laminated. Next, a total of four layers of the LaF 3 film 32, the ScF 3 film 34, the MgF 2 film 33, and the ScF 3 film 34 are used as one constituent layer 37, and 17 constituent layers 37 are laminated. The LaF 3 film 38 is laminated as a surface layer. In this film configuration, the optical film thickness of the ScF 3 film 34 serving as a stress relaxation layer is changed from 0.01λ to 0.21λ, and the ScF 3 film 36, LaF 3 film 32, and MgF 2 film 33 are adjusted accordingly. The simulation value was obtained by optimizing the optical film thickness of the LaF 3 film 38 each time.

図7に、λ=193nmでのシミュレイションによる反射率を示す。ScF3 膜34の膜厚が0.11λ以下であれば、応力緩和層であるScF3 膜34が無い場合の反射率に対してあまり低下しないことが判る。 FIG. 7 shows the reflectance by the simulation at λ = 193 nm. If the film thickness of the ScF 3 film 34 is 0.11λ or less, it can be seen that the reflectance does not decrease much when there is no ScF 3 film 34 as a stress relaxation layer.

また、ScF3 膜34の膜厚が小さければ小さいほど光学設計上有利になるが、応力緩和と膜厚制御の問題から0.02λ以上が望ましい。 Further, the smaller the film thickness of the ScF 3 film 34 is, the more advantageous in optical design, but 0.02λ or more is desirable from the viewpoint of stress relaxation and film thickness control.

図8は実施例2によるミラーの膜構成を示す。本実施例は、基板41として線熱膨張係数0.55×10-6/K、厚さ2mm、直径100mmの円形合成石英基板を用いて、その上にAlの金属膜45が物理的膜厚で180nmが積層される。次にScF3 膜46が光学的膜厚で0.52λが積層される。次にLaF3 膜(高屈折率膜)42が光学的膜厚で0.29λ、ScF3 膜44が光学的膜厚で0.13λ、MgF2 膜(低屈折率膜)43が光学的膜厚で0.03λ、ScF3 膜44が光学的膜厚で0.13λ積層された計4層からなる構成層47が3層積層される。そしてLaF3 膜48が表面層として光学的膜厚で0.24λ積層されている構成である。 FIG. 8 shows the film configuration of the mirror according to the second embodiment. In this embodiment, a circular synthetic quartz substrate having a linear thermal expansion coefficient of 0.55 × 10 −6 / K, a thickness of 2 mm, and a diameter of 100 mm is used as the substrate 41, and an Al metal film 45 is formed on the physical film thickness. 180 nm is stacked. Next, the ScF 3 film 46 is laminated with an optical thickness of 0.52λ. Next, the LaF 3 film (high refractive index film) 42 has an optical film thickness of 0.29λ, the ScF 3 film 44 has an optical film thickness of 0.13λ, and the MgF 2 film (low refractive index film) 43 has an optical film thickness. Three constituent layers 47 each having a total thickness of 0.03λ and an ScF 3 film 44 having an optical thickness of 0.13λ are stacked. The LaF 3 film 48 is laminated as a surface layer with an optical film thickness of 0.24λ.

ScF3 膜44、46は非晶質、MgF2 膜43とLaF3 膜42、48は結晶質である。 The ScF 3 films 44 and 46 are amorphous, and the MgF 2 film 43 and the LaF 3 films 42 and 48 are crystalline.

(比較例4)
実施例2の比較例として、図9に比較例4を示す。本比較例は厚さ2mm、基板41aとして直径100mmの円形合成石英基板を用いて、その上にAlの金属膜45aが物理的膜厚で180nm積層される。次にLaF3 膜42aが光学的膜厚で0.28λ、MgF2 膜43aが光学的膜厚で0.29λ積層された計2層からなる構成層47aが3層積層され、LaF3 膜48aが表面層として光学的膜厚で0.28λ積層されている構成である。
(Comparative Example 4)
As a comparative example of Example 2, Comparative Example 4 is shown in FIG. In this comparative example, a circular synthetic quartz substrate having a thickness of 2 mm and a diameter of 100 mm is used as the substrate 41a, and an Al metal film 45a is laminated thereon with a physical thickness of 180 nm. Next, the LaF 3 film 42a has an optical film thickness of 0.28λ, and the MgF 2 film 43a has an optical film thickness of 0.29λ. A total of two constituent layers 47a are stacked, and the LaF 3 film 48a is stacked. Is a structure in which 0.28λ is laminated as the surface layer with an optical film thickness.

MgF2 膜43aとLaF3 膜42a、48aは結晶質である。 The MgF 2 film 43a and the LaF 3 films 42a and 48a are crystalline.

実施例2と比較例4の反射率の実測値を図10に示す。これらは共に入射角度45°のArF、KrFレーザー用ミラーであるが、同様な特性を有している。   The measured values of the reflectance of Example 2 and Comparative Example 4 are shown in FIG. These are both mirrors for ArF and KrF lasers with an incident angle of 45 °, but have similar characteristics.

しかし、実施例2と比較例4の素子にフルーエンスが1mJ/cm2 のArFレーザーを1 billionショット照射したところ、実施例2では反射率の変化が1%未満であったが、比較例4では反射率の変化が5%程度見られた。 However, when the elements of Example 2 and Comparative Example 4 were irradiated with 1 billion shots of ArF laser with a fluence of 1 mJ / cm 2 , the change in reflectance was less than 1% in Example 2, but in Comparative Example 4 The change in reflectivity was about 5%.

また、膜を積層したことによる基板の変形量は、表3に示すように、実施例2が0.9λ(λ=193nm)、0.7λ(λ=248nm)で、比較例4が9.6λ(λ=193nm)、7.5λ(λ=248nm)であった。実施例2は比較例4に対して1/10以下の変形量であることが判る。   Further, as shown in Table 3, the deformation amount of the substrate due to the lamination of the films is 0.9λ (λ = 193 nm) and 0.7λ (λ = 248 nm) in Example 2, and 9. They were 6λ (λ = 193 nm) and 7.5λ (λ = 248 nm). It can be seen that the deformation amount of Example 2 is 1/10 or less of that of Comparative Example 4.

Figure 2008139525
Figure 2008139525

このように実施例2の構成は、光学特性とレーザー耐久性を満たし、しかも応力が制御されている素子であるといえる。   Thus, it can be said that the structure of Example 2 is an element that satisfies the optical characteristics and laser durability, and is controlled in stress.

第1および第2の実施形態による膜構成を示す図である。It is a figure which shows the film | membrane structure by 1st and 2nd embodiment. 実施例1による膜構成を示す図である。1 is a diagram illustrating a film configuration according to Example 1. FIG. 比較例1による膜構成を示す図である。6 is a diagram showing a film configuration according to Comparative Example 1. FIG. 比較例2による膜構成を示す図である。6 is a diagram showing a film configuration according to Comparative Example 2. FIG. 実施例1、比較例1、2の反射率を示すグラフである。It is a graph which shows the reflectance of Example 1 and Comparative Examples 1 and 2. FIG. 比較例3による膜構成を示す図である。6 is a diagram showing a film configuration according to Comparative Example 3. FIG. 比較例3による反射率と応力緩和層の光学的膜厚関係を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the optical film thickness relationship of the reflectance by the comparative example 3, and the stress relaxation layer. 実施例2による膜構成を示す図である。6 is a diagram showing a film configuration according to Example 2. FIG. 比較例3による膜構成を示す図である。6 is a diagram showing a film configuration according to Comparative Example 3. FIG. 実施例2と比較例4の反射率を示すグラフである。6 is a graph showing the reflectance of Example 2 and Comparative Example 4. 弗化物膜の応力値を示すグラフである。It is a graph which shows the stress value of a fluoride film | membrane.

符号の説明Explanation of symbols

1、11、11a、21、31、41、41a 基板
2 高屈折率膜
3 低屈折率膜
4 応力緩和層
5 金属膜
1, 11, 11a, 21, 31, 41, 41a Substrate 2 High refractive index film 3 Low refractive index film 4 Stress relaxation layer 5 Metal film

Claims (5)

基板上に積層された、屈折率の異なる少なくとも2層の薄膜を有する光学多層膜と、前記光学多層膜の応力を相殺するために前記光学多層膜に挿入された、少なくとも一層のScF3 膜からなる応力緩和層と、を有することを特徴とする多層膜光学素子。 An optical multilayer film having at least two thin films having different refractive indexes laminated on a substrate, and at least one ScF 3 film inserted in the optical multilayer film to cancel the stress of the optical multilayer film A multilayer optical element, comprising: a stress relaxation layer. 前記光学多層膜の引張応力を、前記ScF3 膜の圧縮応力によって相殺することを特徴とする請求項1記載の多層膜光学素子。 The multilayer optical element according to claim 1, wherein the tensile stress of the optical multilayer film is canceled by the compressive stress of the ScF 3 film. 前記ScF3 膜の光学的膜厚は、対象波長λに対して、0.02λ以上0.11λ以下であることを特徴とする請求項1または2記載の多層膜光学素子。 3. The multilayer optical element according to claim 1, wherein an optical film thickness of the ScF 3 film is 0.02λ or more and 0.11λ or less with respect to a target wavelength λ. 前記ScF3 膜は、非晶質であることを特徴とする請求項1ないし3いずれか1項記載の多層膜光学素子。 The multilayer optical element according to any one of claims 1 to 3, wherein the ScF 3 film is amorphous. 前記光学多層膜は、金属膜と、屈折率の異なる少なくとも2層の薄膜と、を有することを特徴とする請求項1ないし4いずれか1項記載の多層膜光学素子。   5. The multilayer optical element according to claim 1, wherein the optical multilayer film includes a metal film and at least two thin films having different refractive indexes.
JP2006325144A 2006-12-01 2006-12-01 Multilayer film optical element Pending JP2008139525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325144A JP2008139525A (en) 2006-12-01 2006-12-01 Multilayer film optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325144A JP2008139525A (en) 2006-12-01 2006-12-01 Multilayer film optical element

Publications (1)

Publication Number Publication Date
JP2008139525A true JP2008139525A (en) 2008-06-19

Family

ID=39601063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325144A Pending JP2008139525A (en) 2006-12-01 2006-12-01 Multilayer film optical element

Country Status (1)

Country Link
JP (1) JP2008139525A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084647A (en) * 2016-11-22 2018-05-31 京セラ株式会社 Infrared cut filter and optical element package
CN111630415A (en) * 2018-01-25 2020-09-04 三菱电机株式会社 Optical component and laser processing machine
CN112028648A (en) * 2020-08-28 2020-12-04 江苏苏嘉集团新材料有限公司 Refractory brick with thermal shrinkage effect and preparation process thereof
KR20210057811A (en) * 2019-04-08 2021-05-21 샤먼 산안 옵토일렉트로닉스 컴퍼니 리미티드 Composite insulating reflective layer
JP2022506900A (en) * 2018-11-13 2022-01-17 レイセオン カンパニー Reduction of coating stress by front coating operation on ultra-high reflectors and other optical devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084647A (en) * 2016-11-22 2018-05-31 京セラ株式会社 Infrared cut filter and optical element package
CN111630415A (en) * 2018-01-25 2020-09-04 三菱电机株式会社 Optical component and laser processing machine
JP2022506900A (en) * 2018-11-13 2022-01-17 レイセオン カンパニー Reduction of coating stress by front coating operation on ultra-high reflectors and other optical devices
JP7200372B2 (en) 2018-11-13 2023-01-06 レイセオン カンパニー Reducing coating stress by front coating operations on ultra-high reflectors and other optical devices
KR20210057811A (en) * 2019-04-08 2021-05-21 샤먼 산안 옵토일렉트로닉스 컴퍼니 리미티드 Composite insulating reflective layer
JP2021536139A (en) * 2019-04-08 2021-12-23 廈門三安光電有限公司Xiamen San’An Optoelectronics Co., Ltd. Composite insulating reflective layer
KR102539043B1 (en) * 2019-04-08 2023-05-31 샤먼 산안 옵토일렉트로닉스 컴퍼니 리미티드 composite insulating reflective layer
JP7480125B2 (en) 2019-04-08 2024-05-09 廈門三安光電有限公司 Composite insulating reflective layer
CN112028648A (en) * 2020-08-28 2020-12-04 江苏苏嘉集团新材料有限公司 Refractory brick with thermal shrinkage effect and preparation process thereof

Similar Documents

Publication Publication Date Title
JP2009086533A (en) Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
JP2008139525A (en) Multilayer film optical element
US20220373723A1 (en) Optical element having a protective coating, method for the production thereof and optical arrangement
JPWO2017018393A1 (en) Silver reflector, manufacturing method and inspection method thereof
US20070236799A1 (en) Mirror for solid-state laser
US20060087739A1 (en) Low net stress multilayer thin film optical filter
EP2535745B1 (en) Optical component
JP2008260978A (en) Method for forming reflection film
JP6358914B2 (en) Thin film formation method, porous thin film, and optical element
JP2006317603A (en) Front surface mirror
JP2004334012A (en) Antireflection film and optical filter
JP2005031298A (en) Transparent substrate with antireflection film
WO2006092919A1 (en) Optical element and method for manufacturing optical element
JP5730147B2 (en) Optical element and antireflection film for transmitting carbon dioxide laser beam
JPH06273601A (en) Antireflection film of optical parts made of synthetic resin
JP4118008B2 (en) Multilayer reflection mirror
JP2004198778A (en) Two-wavelength reflection preventing film and forming method of the film
JP2005232565A (en) Method of producing thin film
EP3605154B1 (en) Thin film forming method and porous thin film
JP2019059986A (en) Method for forming thin film, and optical element
JP3069641B2 (en) Dielectric multilayer film
JP2005221867A (en) Reflection type optical device
JP2008192280A5 (en) Aperture filter
JP2005345492A (en) Optical element, mirror, and antireflection film
JP2014098756A (en) Optical component

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527