JP2009139925A - Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus - Google Patents

Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus Download PDF

Info

Publication number
JP2009139925A
JP2009139925A JP2008201556A JP2008201556A JP2009139925A JP 2009139925 A JP2009139925 A JP 2009139925A JP 2008201556 A JP2008201556 A JP 2008201556A JP 2008201556 A JP2008201556 A JP 2008201556A JP 2009139925 A JP2009139925 A JP 2009139925A
Authority
JP
Japan
Prior art keywords
density
layer
low
oxide layer
optical multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008201556A
Other languages
Japanese (ja)
Inventor
Munehiro Shibuya
宗裕 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008201556A priority Critical patent/JP2009139925A/en
Priority to KR1020080113292A priority patent/KR100991056B1/en
Priority to CN 200810176318 priority patent/CN101435888B/en
Priority to US12/272,153 priority patent/US7990616B2/en
Publication of JP2009139925A publication Critical patent/JP2009139925A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical multilayer film filter which reduces adhesion of dust, and allows adhering dust to be easily removed, and a production method of the same. <P>SOLUTION: The optical multilayer filter 10 is composed of an inorganic thin film 2 having a plurality of layers formed on a glass substrate 1. The inorganic thin film 2 has a TiO<SB>2</SB>layer and an SiO<SB>2</SB>layer laminated sequentially alternately on the surface of the glass substrate in such a manner that an outermost surface layer is an SiO<SB>2</SB>layer (2L30), and a fluorine-containing organosilicon compound film 5 is formed on the surface of the outermost surface layer of the inorganic thin film 2. The density of the SiO<SB>2</SB>layer of the outermost surface layer is 1.9 to 2.1 g/cm<SP>3</SP>. When the SiO<SB>2</SB>layer of the outermost surface layer of the inorganic thin film 2 is determined as a first layer, a TiO<SB>2</SB>layer having a density of 4.1 to 4.8 g/cm<SP>3</SP>is selectively formed in a second layer (2H30) and a fourth layer (2H29) below the SiO<SB>2</SB>layer of the first layer, and an SiO<SB>2</SB>layer having a density of 1.9 to 2.1 g/cm<SP>3</SP>is selectively formed in a third layer (2L29). These SiO<SB>2</SB>layer and TiO<SB>2</SB>layers are formed by a vacuum deposition method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学多層膜フィルタ、光学多層膜フィルタの製造方法、および光学多層膜フ
ィルタが組み込まれた電子機器装置に関する。
The present invention relates to an optical multilayer filter, a method for manufacturing an optical multilayer filter, and an electronic device apparatus incorporating the optical multilayer filter.

光学多層膜フィルタとしてハーフミラー、IRカットフィルタ、ローパスフィルタ等が
知られ、これらは電子機器装置に多用されている。この光学多層膜フィルタは基板と、そ
の基板上に蒸着等により形成された無機薄膜とから構成されている。
無機薄膜は、酸化チタン(TiO2)等からなる高屈折率膜と、酸化珪素(SiO2)等
からなる低屈折率膜とが交互に積層された多層の膜構造を有している。一般に、この無機
薄膜の最表層には保護膜として機能する酸化珪素膜が形成されることから、その表面は導
電性がなく静電気を帯びやすい。このため、光学多層膜フィルタの表面にほこりが吸引さ
れやすく、このほこりが光学多層膜フィルタを組み込んだ電子機器の光学特性に悪影響を
及ぼすことがある。
このような、基板に無機薄膜が形成された表面の静電気対策技術として、例えば防塵ガ
ラスの外表面にITO(Indium Tin Oxide)などの透明導電膜を設けた例が知られてい
る(特許文献1参照)。この透明導電膜は、ガラスの透明性を損なわずに、しかも導電性
を有することで、透明導電膜の表面に帯電する静電気を効果的に除去することができる。
As an optical multilayer filter, a half mirror, an IR cut filter, a low-pass filter, and the like are known, and these are frequently used in electronic equipment. This optical multilayer filter is composed of a substrate and an inorganic thin film formed on the substrate by vapor deposition or the like.
The inorganic thin film has a multilayer film structure in which a high refractive index film made of titanium oxide (TiO 2 ) or the like and a low refractive index film made of silicon oxide (SiO 2 ) or the like are alternately stacked. In general, a silicon oxide film functioning as a protective film is formed on the outermost surface layer of the inorganic thin film, so that the surface thereof is not conductive and is easily charged with static electricity. For this reason, dust is easily attracted to the surface of the optical multilayer filter, and this dust may adversely affect the optical characteristics of an electronic apparatus incorporating the optical multilayer filter.
As a countermeasure against static electricity on the surface of the substrate on which the inorganic thin film is formed, for example, an example in which a transparent conductive film such as ITO (Indium Tin Oxide) is provided on the outer surface of dust-proof glass is known (Patent Document 1). reference). The transparent conductive film can effectively remove static electricity charged on the surface of the transparent conductive film without impairing the transparency of the glass and having conductivity.

特開2004−233501号公報JP 20042333501 A

しかしながら、多層膜の表面を構成する膜の光学的性質が重要な光学多層膜フィルタで
は、特許文献1に記載されたような透明導電膜を表面に設けると、光学多層膜フィルタ自
体の光学特性が変化してしまうおそれがある。
また、上記の構造において、表面の静電気を抑制することで静電気に起因するほこりの
付着を低減できるが、透明導電膜は最表層の表面エネルギーが大きいため、一旦付着した
ほこりは脱離しにくくなる。よって、上記の構造は、ほこりの付着を低減し、かつ付着し
たほこりを容易に除去する構造としては十分といえない。
However, in an optical multilayer filter in which the optical properties of the film constituting the surface of the multilayer film are important, if a transparent conductive film as described in Patent Document 1 is provided on the surface, the optical characteristics of the optical multilayer filter itself are reduced. May change.
In the above structure, the surface static electricity can be suppressed to reduce the adhesion of dust due to static electricity. However, since the transparent conductive film has a large surface energy of the outermost layer, the dust once adhered is difficult to be detached. Therefore, the above structure is not sufficient as a structure that reduces the adhesion of dust and easily removes the adhered dust.

本発明は上記課題の少なくとも一部を解決するためになされたものであり、以下の形態
または適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
本適用例にかかる光学多層膜フィルタは、基板上に複数層からなる無機薄膜を有する光
学多層膜フィルタであって、前記無機薄膜は、低密度形成部と高密度形成部とから構成さ
れ、前記無機薄膜の表面上にフッ素含有有機珪素化合物膜が形成され、前記低密度形成部
は、前記無機薄膜の最表層または該最表層を含む複数の層が、低密度の酸化チタン層また
は低密度の酸化珪素層の少なくともいずれかより形成され、前記高密度形成部は、前記低
密度形成部と前記基板との間に、前記低密度の酸化珪素よりも高密度の酸化珪素層と前記
低密度の酸化チタン層よりも高密度の酸化チタン層とを積層して形成され、前記低密度形
成部の総膜厚が280nm以内であることを特徴とする。
[Application Example 1]
The optical multilayer filter according to this application example is an optical multilayer filter having an inorganic thin film composed of a plurality of layers on a substrate, and the inorganic thin film is composed of a low density forming portion and a high density forming portion, A fluorine-containing organosilicon compound film is formed on the surface of the inorganic thin film, and the low-density forming portion includes a top layer of the inorganic thin film or a plurality of layers including the top layer, a low-density titanium oxide layer or a low-density layer. Formed of at least one of a silicon oxide layer, and the high-density forming portion includes a silicon oxide layer having a higher density than the low-density silicon oxide and the low-density forming portion between the low-density forming portion and the substrate. It is formed by laminating a titanium oxide layer having a density higher than that of the titanium oxide layer, and the total film thickness of the low density forming portion is within 280 nm.

この構成によれば、無機薄膜の最表層または該最表層を含む複数の層が、低密度の酸化
チタン層または低密度の酸化珪素層の少なくともいずれかより形成された低密度形成部で
あることによって、無機薄膜の最表層または該最表層を含む複数の層の絶縁性が低下する
(導電性が高くなる)。そのため、静電気等によって表面に存在する電荷が最表層または
該最表層を含む複数の層を移動することができる。この電荷をアース(地落)することで
、光学多層膜フィルタの最表面に電荷がたまりにくくなり、静電気に起因したほこり等が
つきにくくなる。さらに、低密度形成部の総膜厚が280nm以内であれば、低密度層に
よる表面防塵効果が得られる。
一方、無機薄膜の最表層の表面にフッ素含有有機珪素化合物膜が形成されていることに
より表面エネルギーが低下し、ほこりの付着が抑制され、一旦付着したほこりも容易に取
り除くことができるようになる。さらに、形成されるフッ素含有有機珪素化合物膜は薄く
(<10nm)、無機物に比べ密度も低いため、下層に電荷を通すことが容易であり、分
光特性にも影響を与えない。
そして、無機薄膜における最表層の密度が低いと、最表層の表面積が増加し(ミクロ的
に凹凸が増加することに相当)、フッ素含有有機珪素化合物膜が付着する面積が大きくな
る。そのためフッ素含有有機珪素化合物膜の密着性が向上し、耐久性が向上する。
従来、低密度の層で構成された無機薄膜は波長シフト等が発生しやすいが、上述の構成
では、低密度形成層以外に高密度形成層も形成し、高密度による高い光学品質をも兼ね備
えた無機薄膜を形成しているので、光学多層膜フィルタに必要な低波長シフトおよび低H
AZE等の良好な特性と防塵性とを両立している。
According to this configuration, the outermost layer of the inorganic thin film or the plurality of layers including the outermost layer is a low density formation portion formed from at least one of a low density titanium oxide layer and a low density silicon oxide layer. As a result, the insulating property of the outermost layer of the inorganic thin film or a plurality of layers including the outermost layer is lowered (conductivity is increased). Therefore, the charge existing on the surface due to static electricity or the like can move between the outermost layer or a plurality of layers including the outermost layer. By grounding this charge, it is difficult for the charge to accumulate on the outermost surface of the optical multilayer filter, and dust and the like due to static electricity are less likely to be attached. Furthermore, if the total film thickness of the low density formation part is within 280 nm, the surface dust-proof effect by the low density layer can be obtained.
On the other hand, the formation of the fluorine-containing organosilicon compound film on the surface of the outermost layer of the inorganic thin film reduces the surface energy, suppresses the adhesion of dust, and can easily remove the dust once adhered. . Furthermore, since the fluorine-containing organic silicon compound film to be formed is thin (<10 nm) and has a density lower than that of the inorganic material, it is easy to pass charges through the lower layer, and the spectral characteristics are not affected.
If the density of the outermost layer in the inorganic thin film is low, the surface area of the outermost layer increases (corresponding to the increase in microscopic unevenness), and the area to which the fluorine-containing organic silicon compound film adheres increases. Therefore, the adhesion of the fluorine-containing organosilicon compound film is improved and the durability is improved.
Conventionally, inorganic thin films composed of low-density layers are prone to wavelength shifts, etc., but the above-mentioned structure also forms a high-density formed layer in addition to the low-density formed layer, and has high optical quality due to high density. The low wavelength shift and low H required for an optical multilayer filter
Good characteristics such as AZE and dust resistance are compatible.

[適用例2]
上記適用例にかかる光学多層膜フィルタにおいて、前記低密度の酸化珪素層の密度が1
.9〜2.1g/cm3、前記低密度の酸化チタン層の密度が4.1〜4.8g/cm3
あり、前記無機薄膜の最表層は前記低密度の酸化珪素層で形成され、前記低密度形成部の
層数が、2層から4層のいずれかを選択して形成されることが望ましい。
[Application Example 2]
In the optical multilayer filter according to the application example described above, the density of the low-density silicon oxide layer is 1
. 9 to 2.1 g / cm 3 , the density of the low-density titanium oxide layer is 4.1 to 4.8 g / cm 3 , and the outermost layer of the inorganic thin film is formed of the low-density silicon oxide layer, It is desirable that the number of layers of the low density forming portion is formed by selecting any one of two to four layers.

この構成によれば、前記低密度の酸化珪素層の密度が1.9〜2.1g/cm3、前記
低密度の酸化チタン層の密度が4.1〜4.8g/cm3であり、前記低密度形成部では
、前記最表層を構成する層を1層目とした時、低密度の酸化チタン層または低密度の酸化
珪素層が2層目から4層目の範囲に選択的に形成されることにより、上述したように、静
電気に起因したほこり等がつきにくく、しかも一旦付着したほこりも容易に取り除くこと
ができる光学多層膜フィルタが得られる。
According to this configuration, the density of the low-density silicon oxide layer is 1.9 to 2.1 g / cm 3 , and the density of the low-density titanium oxide layer is 4.1 to 4.8 g / cm 3 , In the low density formation portion, when the layer constituting the outermost layer is the first layer, a low density titanium oxide layer or a low density silicon oxide layer is selectively formed in the second to fourth layers. By doing so, as described above, it is possible to obtain an optical multilayer filter in which dust or the like due to static electricity is difficult to adhere, and dust once attached can be easily removed.

[適用例3]
上記適用例にかかる光学多層膜フィルタにおいて、前記基板が、ガラス基板または水晶
基板であることが望ましい。
[Application Example 3]
In the optical multilayer filter according to the application example described above, it is preferable that the substrate is a glass substrate or a quartz substrate.

この構成によれば、基板がガラス基板で構成されることにより、ほこりの付きにくい例
えばCCD(電荷結合素子)などの映像素子の防塵ガラスとして、しかも所望のフィルタ
機能を一体的に構成した、例えばUV−IRカットフィルタ及びIRカットフィルタ機能
を含む光学多層膜フィルタを得ることができる。また、基板が水晶基板で構成されること
により、ほこりの付きにくい例えば光学ローパスフィルタとして、しかも所望のフィルタ
機能を一体的に構成した、例えばUV−IRカットフィルタ及びIRカットフィルタ機能
を含む光学ローパスフィルタを得ることができる。さらに本適用例は反射防止膜の形成に
も適用できる。
According to this configuration, since the substrate is formed of a glass substrate, a dust filter glass for a video device such as a CCD (Charge Coupled Device) that is not easily dusted, and a desired filter function are integrally configured. An optical multilayer filter including a UV-IR cut filter and an IR cut filter function can be obtained. Further, since the substrate is made of a quartz substrate, for example, as an optical low-pass filter that is not easily dusted, and an optical low-pass filter including, for example, a UV-IR cut filter and an IR cut filter function, which are integrally configured with a desired filter function. A filter can be obtained. Furthermore, this application example can also be applied to the formation of an antireflection film.

[適用例4]
本適用例にかかる光学多層膜フィルタの製造方法において、基板上に複数層からなる無
機薄膜を有する光学多層膜フィルタの製造方法であって、前記基板の表面に高密度の酸化
チタン層と高密度の酸化珪素層とを積層した高密度形成部を形成し、次に、前記高密度形
成部の表面に真空蒸着法によって、前記高密度の酸化チタン層よりも低密度の酸化チタン
層または前記高密度の酸化珪素層よりも低密度の酸化珪素層の少なくともいずれかより形
成された低密度形成部を、総膜厚が280nm以内で形成し、さらに前記低密度形成部の
最表層の表面にフッ素含有有機珪素化合物膜を形成することを特徴とする。
[Application Example 4]
In the manufacturing method of the optical multilayer filter according to this application example, an optical multilayer filter having an inorganic thin film composed of a plurality of layers on a substrate, wherein a high-density titanium oxide layer and a high-density on the surface of the substrate A high-density formed portion is formed by laminating a silicon oxide layer, and then a titanium oxide layer having a lower density than the high-density titanium oxide layer or the high-density formed portion is formed on the surface of the high-density formed portion by a vacuum deposition method. A low density formation portion formed of at least one of a silicon oxide layer having a density lower than that of the silicon oxide layer having a low density is formed within a total film thickness of 280 nm, and fluorine is further formed on the surface of the outermost layer of the low density formation portion. A containing organosilicon compound film is formed.

この光学多層膜フィルタの製造方法によれば、高密度形成層の表面に真空蒸着法によっ
て、低密度の酸化チタン層または低密度の酸化珪素層の少なくともいずれかを形成するこ
とによって、無機薄膜の最表層または該最表層を含む複数の層を構成する低密度形成部を
得ることができる。これにより、本来高い絶縁性を示す最表層または該最表層を含む複数
の層の絶縁性が低下する。そのため、静電気等によって表面に存在する電荷が最表層また
は該最表層を含む複数の層を移動することができる。この電荷をアース(地落)すること
で、光学多層膜フィルタの最表面に電荷がたまりにくくなり、静電気に起因したほこり等
がつきにくい光学多層膜フィルタを得ることができる。さらに、低密度形成部の総膜厚が
280nm以内であることにより、上記した効果が得られる。
また、無機薄膜の最表層を構成する酸化珪素層上にフッ素含有有機珪素化合物膜が形成
されていることにより表面エネルギーが低下し、ほこりの付着が抑制され、一旦付着した
ほこりも容易に取り除くことができるようになる。形成されるフッ素含有有機珪素化合物
膜の膜厚は薄く(<10nm)、無機物に比べ密度も低いため、電荷を下層に通すことが
容易であり、分光特性にも影響を与えない。また、無機薄膜における最表層の酸化珪素層
の密度が低いと、酸化珪素層の表面積が増加し(ミクロ的に凹凸が増加することに相当)
、フッ素含有有機珪素化合物膜が付着する面積が大きくなる。そのためフッ素含有有機珪
素化合物膜の密着性が向上し、耐久性が向上した光学多層膜フィルタを得ることができる
According to this method for producing an optical multilayer filter, an inorganic thin film is formed by forming at least one of a low-density titanium oxide layer and a low-density silicon oxide layer on the surface of a high-density formation layer by vacuum deposition. A low density formation part which constitutes the outermost layer or a plurality of layers including the outermost layer can be obtained. As a result, the insulation of the outermost layer that originally exhibits high insulation or a plurality of layers including the outermost layer is lowered. Therefore, the charge existing on the surface due to static electricity or the like can move between the outermost layer or a plurality of layers including the outermost layer. By grounding this electric charge (ground), it becomes difficult for the electric charge to collect on the outermost surface of the optical multilayer filter, and an optical multilayer filter that is less likely to be dusted due to static electricity can be obtained. Furthermore, when the total film thickness of the low density forming portion is within 280 nm, the above-described effect can be obtained.
In addition, the formation of a fluorine-containing organosilicon compound film on the silicon oxide layer that forms the outermost layer of the inorganic thin film reduces the surface energy, suppresses the adhesion of dust, and easily removes dust that has once adhered. Will be able to. Since the formed fluorine-containing organic silicon compound film is thin (<10 nm) and has a lower density than inorganic materials, it is easy to pass charges through the lower layer and does not affect the spectral characteristics. In addition, when the density of the outermost silicon oxide layer in the inorganic thin film is low, the surface area of the silicon oxide layer increases (corresponding to an increase in microscopic unevenness).
The area to which the fluorine-containing organosilicon compound film adheres increases. Therefore, the adhesiveness of the fluorine-containing organosilicon compound film is improved, and an optical multilayer filter having improved durability can be obtained.

[適用例5]
上記適用例にかかる光学多層膜フィルタの製造方法において、前記低密度の酸化珪素層
の密度を1.9〜2.1g/cm3、前記低密度の酸化チタン層の密度が4.1〜4.8
g/cm3とし、前記低密度形成部の層数が、2層から4層のいずれかを選択して形成す
るのが望ましい。
[Application Example 5]
In the manufacturing method of the optical multilayer filter according to the application example, the density of the low-density silicon oxide layer is 1.9 to 2.1 g / cm 3 , and the density of the low-density titanium oxide layer is 4.1 to 4 .8
and g / cm 3, the low-density layer number of the forming portion, to form by selecting one of the two layers 4 layers is desirable.

この光学多層膜フィルタの製造方法によれば、低密度形成部を構成する酸化チタン層お
よび酸化珪素層を、真空蒸着法を用いて形成することによって、密度が1.9〜2.1g
/cm3の低密度の酸化珪素層および密度が4.1〜4.8g/cm3の低密度の酸化チタ
ン層を得ることができる。そして、低密度形成部が、最表層を構成する層を1層目とした
時、低密度の酸化チタン層または低密度の酸化珪素層が1層目から4層目の範囲に選択的
に形成されることによって、上述したように、静電気に起因したほこり等がつきにくく、
しかも一旦付着したほこりも容易に取り除くことができる光学多層膜フィルタを得ること
ができる。
According to this method for producing an optical multilayer filter, a titanium oxide layer and a silicon oxide layer constituting the low density forming portion are formed by using a vacuum evaporation method, whereby the density is 1.9 to 2.1 g.
/ Silicon oxide layer and density of the low density cm 3 can be obtained titanium oxide layer having a low density of 4.1~4.8G / cm 3. Then, when the low-density forming portion has the layer constituting the outermost layer as the first layer, the low-density titanium oxide layer or the low-density silicon oxide layer is selectively formed in the first to fourth layers. As described above, it is difficult for dust and the like due to static electricity to adhere,
In addition, it is possible to obtain an optical multilayer filter that can easily remove dust once adhered.

[適用例6]
上記適用例にかかる光学多層膜フィルタの製造方法において、前記低密度の酸化珪素層
を前記真空蒸着法によって成膜する際の圧力が、5×10-4〜5×10-2Paであり、前
記低密度の酸化チタン層を前記真空蒸着法によって成膜する際の圧力が、1.4×10-2
〜3×10-2Paであることが望ましい。
[Application Example 6]
In the method for producing an optical multilayer filter according to the application example, a pressure when the low-density silicon oxide layer is formed by the vacuum deposition method is 5 × 10 −4 to 5 × 10 −2 Pa. The pressure when the low-density titanium oxide layer is formed by the vacuum deposition method is 1.4 × 10 −2.
It is desirable that it is ˜3 × 10 −2 Pa.

この光学多層膜フィルタの製造方法によれば、酸化珪素層を真空蒸着法によって成膜す
る際の圧力を5×10-4〜5×10-2Paとすることで、密度が1.9〜2.1g/cm
3の低密度の酸化珪素層を得ることができる。また、酸化チタン層を真空蒸着法によって
成膜する際の圧力を1.4×10-2〜3×10-2Paとすることで、密度が4.1〜4.
8g/cm3の低密度の酸化チタン層を得ることができる。
According to this method for manufacturing an optical multilayer filter, the density when the silicon oxide layer is formed by vacuum deposition is 5 × 10 −4 to 5 × 10 −2 Pa, so that the density is 1.9 to 2.1 g / cm
3 low-density silicon oxide layers can be obtained. Further, by setting the pressure when the titanium oxide layer is formed by vacuum deposition to 1.4 × 10 −2 to 3 × 10 −2 Pa, the density is 4.1 to 4.
A low density titanium oxide layer of 8 g / cm 3 can be obtained.

[適用例7]
本適用例にかかる電子機器装置において、前記光学多層膜フィルタは基板上に複数層か
らなる無機薄膜と該無機薄膜表面に形成されたフッ素含有有機珪素化合物膜とで構成され
、前記無機薄膜は低密度形成部と高密度形成部とから構成され、前記低密度形成部は、前
記無機薄膜の最表層または該最表層を含む複数の層が、低密度の酸化チタン層または低密
度の酸化珪素層の少なくともいずれかより形成され、前記高密度形成部は、前記低密度形
成部と前記基板との間に、前記低密度の酸化珪素よりも高密度の酸化珪素層と前記低密度
の酸化チタン層よりも高密度の酸化チタン層とを積層して形成され、前記低密度形成部の
総膜厚が280nm以内である光学多層膜フィルタが組み込まれたことを特徴とする。
[Application Example 7]
In the electronic device according to this application example, the optical multilayer filter is composed of an inorganic thin film composed of a plurality of layers on a substrate and a fluorine-containing organosilicon compound film formed on the surface of the inorganic thin film. The low-density formation portion includes a top layer of the inorganic thin film or a plurality of layers including the top layer, a low-density titanium oxide layer or a low-density silicon oxide layer. The high-density formation portion is formed between the low-density formation portion and the substrate, and the high-density silicon oxide layer and the low-density titanium oxide layer are lower than the low-density silicon oxide. An optical multi-layer film filter formed by laminating a higher density titanium oxide layer and having a total film thickness of the low density forming portion within 280 nm is incorporated.

この電子機器装置によれば、光学多層膜フィルタは基板上に複数層からなる無機薄膜と
該無機薄膜表面に形成されたフッ素含有有機珪素化合物膜とを有し、低密度形成部は、無
機薄膜の最表層または該最表層を含む複数の層に、低密度の酸化チタン層または低密度の
酸化珪素層の少なくともいずれかより形成され、高密度形成部は、低密度形成部と基板と
の間に、高密度の酸化珪素層または高密度の酸化チタン層の少なくともいずれかより形成
され、前記低密度形成部の総膜厚が280nm以内である光学多層膜フィルタを組み込ん
でいるので、静電気に起因したほこり等がつきにくい。しかも一旦付着したほこりも容易
に取り除くことができ、例えば、デジタルスチルカメラ、デジタルビデオカメラなどの撮
像装置、カメラ付携帯電話、カメラ付携帯型パソコン(パーソナルコンピュータ)などと
して、ほこりの影響を抑制した電子機器装置として有効に活用できる。
According to this electronic apparatus device, the optical multilayer film filter has an inorganic thin film composed of a plurality of layers on the substrate and a fluorine-containing organosilicon compound film formed on the surface of the inorganic thin film, and the low-density forming portion is an inorganic thin film. The outermost layer or a plurality of layers including the outermost layer is formed of at least one of a low-density titanium oxide layer and a low-density silicon oxide layer, and the high-density formed portion is between the low-density formed portion and the substrate. In addition, an optical multilayer film filter formed of at least one of a high-density silicon oxide layer and a high-density titanium oxide layer and having a total film thickness of the low-density formation portion of 280 nm or less is incorporated, and thus, due to static electricity Dust is difficult to stick. In addition, dust that has once adhered can be easily removed. For example, imaging devices such as digital still cameras and digital video cameras, camera-equipped mobile phones, camera-equipped personal computers (personal computers), etc. have reduced the effects of dust. It can be effectively used as an electronic device.

[適用例8]
上記適用例にかかる電子機器装置において、前記低密度の酸化珪素層の密度を1.9〜
2.1g/cm3、前記低密度の酸化チタン層の密度が4.1〜4.8g/cm3とし、前
記低密度形成部の層数が、2層から4層のいずれかを選択して形成された光学多層膜フィ
ルタが組み込まれるのが望ましい。
[Application Example 8]
In the electronic device according to the application example described above, the density of the low-density silicon oxide layer is 1.9 to
2.1 g / cm 3, the density of the low density titanium oxide layer of the 4.1~4.8g / cm 3, the number of layers of low-density forming unit, select one of the two layers 4 layers It is desirable to incorporate an optical multilayer filter formed in this way.

この電子機器装置によれば、低密度の酸化珪素層の密度が1.9〜2.1g/cm3
低密度の酸化チタン層の密度が4.1〜4.8g/cm3であり、低密度形成部は、最表
層を構成する層を1層目とした時、低密度の酸化チタン層または低密度の酸化珪素層が1
層目から4層目の範囲に選択的に形成された光学多層膜フィルタが組み込まれているので
、静電気に起因したほこり等がつきにくく、しかも一旦付着したほこりも容易に取り除く
ことができ、例えば、デジタルスチルカメラ、デジタルビデオカメラなどの撮像装置、カ
メラ付携帯電話、カメラ付携帯型パソコン(パーソナルコンピュータ)などとして、ほこ
りの影響を抑制した電子機器装置として有効に活用できる。
According to this electronic device, the density of the low-density silicon oxide layer is 1.9 to 2.1 g / cm 3 ,
The density of the low-density titanium oxide layer is 4.1 to 4.8 g / cm 3 , and the low-density formation portion has a low-density titanium oxide layer or a low density when the layer constituting the outermost layer is the first layer. 1 density silicon oxide layer
Since an optical multilayer filter selectively formed in the range from the fourth layer to the fourth layer is incorporated, dust caused by static electricity is difficult to adhere, and dust once attached can be easily removed, for example, It can be effectively used as an electronic apparatus device that suppresses the influence of dust, such as an imaging device such as a digital still camera and a digital video camera, a mobile phone with a camera, and a portable personal computer with a camera (personal computer).

以下、本発明を具体化した実施形態を図面に従って説明する。なお、本実施形態は、可
視波長域を通過し、所定波長以下の紫外波長域と所定波長以上の赤外波長域での良好な反
射特性を有する光学多層膜フィルタ(UV−IRカットフィルタ)に適用した一例である
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings. The present embodiment is an optical multilayer filter (UV-IR cut filter) that passes through the visible wavelength range and has good reflection characteristics in an ultraviolet wavelength range of a predetermined wavelength or less and an infrared wavelength range of a predetermined wavelength or more. It is an applied example.

(光学多層膜フィルタの構成)
図1は、本実施形態に係る光学多層膜フィルタの構成を模式的に示す断面図である。
光学多層膜フィルタ10は、光を透過させるための基板としてのガラス基板1と、多層
の無機薄膜2とフッ素含有有機珪素化合物膜5を備えて構成される。
(Configuration of optical multilayer filter)
FIG. 1 is a cross-sectional view schematically showing the configuration of the optical multilayer filter according to the present embodiment.
The optical multilayer filter 10 includes a glass substrate 1 as a substrate for transmitting light, a multilayer inorganic thin film 2 and a fluorine-containing organic silicon compound film 5.

無機薄膜2の材料は、高屈折材料からなる高屈折率層(H)が酸化チタン層としてのT
iO2層(n=2.40)、低屈折材料からなる低屈折率層(L)が酸化珪素層としての
SiO2層(n=1.46)から構成される。
この無機薄膜2は、ガラス基板1側から、高屈折率材料のTiO2層2H1がまず積層
され、積層された高屈折率材料のTiO2層2H1の上面に、低屈折率材料のSiO2層2
L1が積層される。以下、低屈折率材料のSiO2層2L1の上面に高屈折率材料のTi
2層と低屈折率材料のSiO2層が順次、交互に積層され、無機薄膜2の最上膜層は、低
屈折率材料のSiO2層2L30が積層されて、各々30層、計60層の無機薄膜2を形
成している。
The material of the inorganic thin film 2 is such that a high refractive index layer (H) made of a high refractive material is used as a titanium oxide layer.
An iO 2 layer (n = 2.40) and a low refractive index layer (L) made of a low refractive material are composed of a SiO 2 layer (n = 1.46) as a silicon oxide layer.
The inorganic thin film 2, from the glass substrate 1 side, TiO 2 layer 2H1 of the high-refractive-index material is first laminated on the upper surface of the TiO 2 layer 2H1 of stacked high refractive index material, SiO 2 layer of low refractive index material 2
L1 is laminated. Hereinafter, Ti of high refractive index material is formed on the upper surface of the low refractive index material SiO 2 layer 2L1.
O 2 layers and SiO 2 layers of low refractive index material are sequentially laminated alternately, and the top film layer of the inorganic thin film 2 is laminated with SiO 2 layers 2L30 of low refractive index material, 30 layers each, a total of 60 layers The inorganic thin film 2 is formed.

次に、この無機薄膜2の構成について詳細に説明する。
以下に説明する膜厚構成の表記では、光学膜厚nd=1/4λの値を用いる。具体的に
は、高屈折率層(H)の膜厚を1Hとして表記し、低屈折率層(L)の膜厚を同様に1L
と表記する。また、(xH、yL)SのSの表記は、スタック数と呼ばれる繰り返しの回
数で、括弧内の構成を周期的に繰り返すことを表している。
Next, the configuration of the inorganic thin film 2 will be described in detail.
In the description of the film thickness configuration described below, a value of optical film thickness nd = 1 / 4λ is used. Specifically, the film thickness of the high refractive index layer (H) is expressed as 1H, and the film thickness of the low refractive index layer (L) is similarly 1L.
Is written. In addition, the notation of S in (xH, yL) S indicates that the configuration in parentheses is periodically repeated by the number of repetitions called the number of stacks.

無機薄膜2の膜厚構成(光学膜厚)は、設計波長λは550nm、第1層の高屈折率材
料のTiO2層2H1が0.60H、第2層の低屈折率材料のSiO2層2L1が0.20
L、以下、順次1.05H、0.37L、(0.68H、0.53L)4、0.69H、
0.42L、0.59H、1.92L、(1.38H、1.38L)6、1.48H、1
.52L、1.65H、1.71L、1.54H、1.59L、1.42H、1.58L
、1.51H、1.72L、1.84H、1.80L、1.67H、1.77L、(1.
87H、1.87L)7、1.89H、1.90L、1.90H、最表層の低屈折率材料
のSiO2層2L30が0.96Lの、計60層が形成されている。
そして、無機薄膜2における最表層のSiO2層2L30の上には、フッ素含有有機珪
素化合物膜5が真空蒸着法により、厚さ約5nmで形成されている。
The film thickness configuration (optical film thickness) of the inorganic thin film 2 is such that the design wavelength λ is 550 nm, the first layer high refractive index material TiO 2 layer 2H1 is 0.60H, and the second layer low refractive index material SiO 2 layer. 2L1 is 0.20
L, hereinafter 1.05H, 0.37L, (0.68H, 0.53L) 4, 0.69H,
0.42L, 0.59H, 1.92L, (1.38H, 1.38L) 6, 1.48H, 1
. 52L, 1.65H, 1.71L, 1.54H, 1.59L, 1.42H, 1.58L
1.51H, 1.72L, 1.84H, 1.80L, 1.67H, 1.77L, (1.
87H, 1.87L) 7, 1.89H, 1.90L, 1.90H, and the SiO 2 layer 2L30, which is the outermost low refractive index material, is 0.96L, for a total of 60 layers.
On the outermost SiO 2 layer 2L30 in the inorganic thin film 2, a fluorine-containing organic silicon compound film 5 is formed with a thickness of about 5 nm by vacuum deposition.

このように構成された光学多層膜フィルタ10は、以下のような機能を有する。
図2は、光学多層膜フィルタにアースを設けたときの断面図である。
光学多層膜フィルタ10のフッ素含有有機珪素化合物膜5の膜厚は薄く、またその下に
形成されたSiO2層2L30は密度が低く絶縁性が低い状態となっている。
このため、フッ素含有有機珪素化合物膜5の表面に発生した電荷は、フッ素含有有機珪
素化合物膜5およびSiO2層2L30を通過し、TiO2層2H30に移動する。このT
iO2層2H30はSiO2に比べ抵抗が低いことから電荷がこのTiO2層2H30内を
移動が可能となる。そして、フッ素含有有機珪素化合物膜5の表面にアースケーブル15
0を接続することで、電荷がTiO2層2H30からSiO2層2L30およびフッ素含有
有機珪素化合物膜5を通過して、アースケーブル150を経て外部に逃がすことができる

このようにして、光学多層膜フィルタ10におけるフッ素含有有機珪素化合物膜5の表
面に発生した電荷量(帯電量)を減らすことができる。
また、光学多層膜フィルタ10の表面がフッ素含有有機珪素化合物膜5であることから
、表面エネルギーが小さく、一旦付着したほこりを容易に除去することが可能である。
The optical multilayer filter 10 thus configured has the following functions.
FIG. 2 is a cross-sectional view of the optical multilayer filter provided with a ground.
The film thickness of the fluorine-containing organosilicon compound film 5 of the optical multilayer filter 10 is thin, and the SiO 2 layer 2L30 formed thereunder is in a state of low density and low insulation.
For this reason, the electric charge generated on the surface of the fluorine-containing organic silicon compound film 5 passes through the fluorine-containing organic silicon compound film 5 and the SiO 2 layer 2L30 and moves to the TiO 2 layer 2H30. This T
Since the iO 2 layer 2H30 has a lower resistance than SiO 2 , charges can move in the TiO 2 layer 2H30. The ground cable 15 is attached to the surface of the fluorine-containing organosilicon compound film 5.
By connecting 0, electric charge can pass from the TiO 2 layer 2H30 through the SiO 2 layer 2L30 and the fluorine-containing organosilicon compound film 5 to the outside through the ground cable 150.
In this manner, the amount of charge (charge amount) generated on the surface of the fluorine-containing organosilicon compound film 5 in the optical multilayer filter 10 can be reduced.
In addition, since the surface of the optical multilayer filter 10 is the fluorine-containing organic silicon compound film 5, the surface energy is small, and dust once attached can be easily removed.

(光学多層膜フィルタの製造方法)
以下、光学多層膜フィルタの製造方法について説明する。
まず、一般的なイオンアシストを用いた電子ビーム蒸着(いわゆるIAD法)によりガ
ラス基板1の上に無機薄膜2を形成する。
具体的には、ガラス基板1を真空蒸着チャンバ(図示せず)内に取り付けた後、真空蒸
着チャンバ内の下部に蒸着材料を充填したるつぼを配置し、電子ビームにより蒸発させた
。同時にイオン銃によりイオン化した酸素(TiO2の成膜時はアルゴンを付加する)を
加速照射することにより、ガラス基板1上にTiO2の高屈折率材料層2H1〜2H30
とSiO2の低屈折率材料層2L1〜2L30を、前記した膜厚構成で交互に成膜する。
(Method for producing optical multilayer filter)
Hereinafter, a method for manufacturing the optical multilayer filter will be described.
First, the inorganic thin film 2 is formed on the glass substrate 1 by electron beam vapor deposition (so-called IAD method) using general ion assist.
Specifically, after the glass substrate 1 was mounted in a vacuum deposition chamber (not shown), a crucible filled with a deposition material was placed in the lower portion of the vacuum deposition chamber and evaporated by an electron beam. At the same time, accelerated irradiation with oxygen ionized by an ion gun (adding argon when forming a TiO 2 film) causes the TiO 2 high refractive index material layers 2H1 to 2H30 on the glass substrate 1.
And SiO 2 low refractive index material layers 2L1 to 2L30 are alternately formed in the above-described film thickness configuration.

以下に、SiO2層とTiO2層の成膜条件を示すが、高密度形成部は、下記の標準条件
で成膜した。
<SiO2層の成膜条件(標準条件)>
成膜速度:0.8nm/sec
加速電圧:1000V
加速電流:1200mA
酸素(O2)流量:70sccm
成膜温度:150℃
The film forming conditions for the SiO 2 layer and the TiO 2 layer are shown below. The high density forming part was formed under the following standard conditions.
<SiO 2 layer deposition conditions (standard conditions)>
Deposition rate: 0.8 nm / sec
Acceleration voltage: 1000V
Acceleration current: 1200mA
Oxygen (O 2 ) flow rate: 70 sccm
Deposition temperature: 150 ° C

<TiO2層の成膜条件(標準条件)>
成膜速度:0.3nm/sec
加速電圧:1000V
加速電流:1200mA
酸素(O2)流量:60sccm
アルゴン(Ar)流量:20sccm
成膜温度:150℃
<TiO 2 layer deposition conditions (standard conditions)>
Deposition rate: 0.3 nm / sec
Acceleration voltage: 1000V
Acceleration current: 1200mA
Oxygen (O 2 ) flow rate: 60 sccm
Argon (Ar) flow rate: 20 sccm
Deposition temperature: 150 ° C

ここで、無機薄膜2における最表層のSiO2層(図1における2L30)を成膜する
際は、イオン銃の加速電圧および加速電流を0(ゼロ)とした状態で(導入する酸素ガス
流量を制御することによって)成膜装置内の圧力を変化させ、密度を制御する。すなわち
、最表層のSiO2層の成膜はイオンアシスト蒸着ではない真空蒸着法によって行われる
。このときのSiO2層を成膜する際の圧力は5×10-4〜5×10-2Paである。なお
、イオンアシスト蒸着ではない真空蒸着法によって成膜されるSiO2層は、イオンアシ
スト蒸着法を用いて成膜したSiO2層に比べて低密度のSiO2層が形成される。
Here, when forming the outermost SiO 2 layer (2L30 in FIG. 1) in the inorganic thin film 2, the acceleration voltage and acceleration current of the ion gun are set to 0 (zero) (the oxygen gas flow rate to be introduced is By controlling), the pressure in the film forming apparatus is changed to control the density. That is, the outermost SiO 2 layer is formed by a vacuum deposition method that is not ion-assisted deposition. The pressure at the time of forming the SiO 2 layer at this time is 5 × 10 −4 to 5 × 10 −2 Pa. Incidentally, the SiO 2 layer which is deposited by vacuum evaporation are not ion-assisted deposition, low-density SiO 2 layer is formed in comparison with the SiO 2 layer was deposited by ion-assisted deposition.

次に、最表層のSiO2層(図1における2L30)とフッ素含有有機珪素化合物膜(
図1における符号5)の密着性の向上を図るために最表層のSiO2層の表面に表面処理
を行う。そして、表面処理を行った最表層のSiO2層の表面にフッ素含有有機珪素化合
物膜を成膜する。最終的に図1に示すような光学多層膜フィルタ10が得られる。
最表層のSiO2層の表面処理はイオン銃を用いて、以下の条件で行う。
<SiO2層の表面処理条件>
酸素(O2)流量:50sccm
加速電圧:1000V
加速電流:1000mA
チャンバ内温度:150℃
処理時間:3分
Next, the outermost SiO 2 layer (2L30 in FIG. 1) and the fluorine-containing organosilicon compound film (
In order to improve the adhesiveness of 5) in FIG. 1, surface treatment is performed on the surface of the outermost SiO 2 layer. Then, a fluorine-containing organosilicon compound film is formed on the surface of the outermost SiO 2 layer subjected to the surface treatment. Finally, an optical multilayer filter 10 as shown in FIG. 1 is obtained.
The surface treatment of the outermost SiO 2 layer is performed using an ion gun under the following conditions.
<Surface treatment conditions for SiO 2 layer>
Oxygen (O 2 ) flow rate: 50 sccm
Acceleration voltage: 1000V
Acceleration current: 1000 mA
Chamber temperature: 150 ° C
Processing time: 3 minutes

フッ素含有有機珪素化合物膜の成膜は、例えば、信越化学工業株式会社製フッ素含有有
機珪素化合物(製品名KY−130)をフッ素系溶剤(住友スリーエム株式会社製:ノベ
ックHFE−7200)で希釈して固形分濃度3%の溶液を調製し、これを多孔質セラミ
ックス製のペレットに1g含浸させ乾燥させたものを蒸発源として使用する。
なお、他のフッ素含有有機珪素化合物として、信越化学工業株式会社製フッ素含有有機
珪素化合物である製品名:KP−801、ダイキン工業株式会社製フッ素含有有機珪素化
合物である製品名:オプツールDSX,デムナムシリーズS−100等を用いることがで
きる。
フッ素含有有機珪素化合物膜5の成膜では、まず、無機薄膜2が形成されたガラス基板
1および蒸発源を真空装置内にセットして減圧排気を行う。そして基板の温度を約60℃
とした状態で蒸発源を約600℃に加熱し、フッ素含有有機珪素化合物を蒸発させ、基板
上に成膜する。
本実施形態では減圧雰囲気内で接続された2室の真空蒸着装置を用い、第1室で無機薄
膜の多層膜成膜とフッ素含有有機珪素化合物膜の形成前の表面処理を行い、第2室でフッ
素含有有機珪素化合物膜の形成を行った。
なお、上記の2室を分離した別々の装置を利用しても良いし、同一の真空室内で無機薄
膜の多層膜成膜とフッ素含有有機珪素化合物膜の形成前の表面処理および、フッ素含有有
機珪素化合物膜の成膜を行っても良い。
For example, the fluorine-containing organic silicon compound film is formed by diluting a fluorine-containing organic silicon compound (product name KY-130) manufactured by Shin-Etsu Chemical Co., Ltd. with a fluorine-based solvent (manufactured by Sumitomo 3M Limited: Novec HFE-7200). Then, a solution having a solid content concentration of 3% is prepared, and 1 g of this is impregnated into a porous ceramic pellet and dried, and then used as an evaporation source.
As other fluorine-containing organosilicon compounds, product name: KP-801, which is a fluorine-containing organosilicon compound manufactured by Shin-Etsu Chemical Co., Ltd. Product name: Optool DSX, dem, which is a fluorine-containing organosilicon compound manufactured by Daikin Industries, Ltd. Nam series S-100 or the like can be used.
In the formation of the fluorine-containing organic silicon compound film 5, first, the glass substrate 1 on which the inorganic thin film 2 is formed and the evaporation source are set in a vacuum apparatus and evacuated under reduced pressure. And the temperature of the substrate is about 60 ℃
In this state, the evaporation source is heated to about 600 ° C. to evaporate the fluorine-containing organosilicon compound and form a film on the substrate.
In this embodiment, a vacuum deposition apparatus having two chambers connected in a reduced-pressure atmosphere is used, and a surface treatment is performed in the first chamber before forming a multilayered inorganic thin film and forming a fluorine-containing organosilicon compound film in the second chamber. Then, a fluorine-containing organosilicon compound film was formed.
In addition, you may utilize the separate apparatus which isolate | separated said 2 chambers, surface treatment before formation of multilayer film formation of an inorganic thin film and a fluorine-containing organosilicon compound film in the same vacuum chamber, and fluorine-containing organic A silicon compound film may be formed.

[確認試験1]
確認試験1は、無機薄膜2における最表層のSiO2層(図1における2L30)の形
成条件を変化させた多数のサンプルを作成し、形成された各サンプル(無機薄膜2)の性
能評価を行った。
サンプルの作成は、直径30mm、厚さ0.3mmの白板ガラス(屈折率、n=1.5
2)の表面に、形成条件の異なる最表層のSiO2層を有する無機薄膜2を形成した。最
表層のSiO2層以外は上記した標準条件で成膜し、最表層のSiO2層の成膜は、導入す
るO2ガス流量を制御することによって成膜装置内の圧力(真空度)を変化させて行った
[Verification test 1]
Confirmation test 1 creates a large number of samples in which the formation conditions of the outermost SiO 2 layer (2L30 in FIG. 1) in the inorganic thin film 2 are changed, and evaluates the performance of each formed sample (inorganic thin film 2). It was.
Samples were prepared using white plate glass having a diameter of 30 mm and a thickness of 0.3 mm (refractive index, n = 1.5).
An inorganic thin film 2 having an outermost SiO 2 layer with different formation conditions was formed on the surface of 2). Except the SiO 2 layer of the outermost layer is formed under standard conditions as described above, formation of the outermost layer of the SiO 2 layer, the pressure in the film forming apparatus by controlling the O 2 gas flow rate of introducing (vacuum) Changed and went.

作成したサンプルは、イオン銃の加速電圧および加速電流を0(ゼロ)とした状態で、
成膜装置内の真空度0.0005Pa、0.0010Pa、0.0030Pa、0.01
00Pa、0.0300Pa、0.0500Paで最表層のSiO2層を形成した後、上
記した方法でフッ素含有有機珪素化合物膜を形成した。作成したサンプルをこの順に、実
施例1〜6と表す。
The created sample is in a state where the acceleration voltage and acceleration current of the ion gun are 0 (zero),
Degree of vacuum in film forming apparatus 0.0005 Pa, 0.0010 Pa, 0.0030 Pa, 0.01
After forming the outermost SiO 2 layer at 00 Pa, 0.0300 Pa, and 0.0500 Pa, a fluorine-containing organosilicon compound film was formed by the method described above. The created samples are represented as Examples 1 to 6 in this order.

併せて、実施例1〜6と同じ圧力になるようにガスを導入した状態でイオン銃を動作(
加速電圧1000V、加速電流1200mA)させて無機薄膜2の最表層のSiO2層を
成膜し、その表面にフッ素含有有機珪素化合物膜を成膜したサンプルを作成した。実施例
1〜6に対応した真空度で作成したサンプルを、この順に、比較例1〜6と表す。但し、
比較例1〜3は圧力が低すぎるためにイオン銃が動作しなかったため、最表層のSiO2
膜が形成ができなかった。
In addition, the ion gun is operated with the gas introduced so as to have the same pressure as in Examples 1 to 6 (
An outermost SiO 2 layer of the inorganic thin film 2 was formed with an acceleration voltage of 1000 V and an acceleration current of 1200 mA, and a sample in which a fluorine-containing organosilicon compound film was formed on the surface was prepared. Samples prepared at a degree of vacuum corresponding to Examples 1 to 6 are represented as Comparative Examples 1 to 6 in this order. However,
In Comparative Examples 1 to 3, since the ion gun did not operate because the pressure was too low, the outermost layer SiO 2
A film could not be formed.

さらに、比較例として、実施例1〜6および比較例1〜6に対してフッ素含有有機珪素
化合物膜が形成されていないサンプルを作成した。実施例1〜6および比較例1〜6に対
応したサンプルを、この順に、比較例7〜18と表す。但し、比較例13〜15は圧力が
低すぎるためにイオン銃が動作しなかったため、最表層のSiO2膜の形成ができなかっ
た。
Furthermore, the sample in which the fluorine-containing organosilicon compound film | membrane was not formed with respect to Examples 1-6 and Comparative Examples 1-6 was created as a comparative example. Samples corresponding to Examples 1 to 6 and Comparative Examples 1 to 6 are represented as Comparative Examples 7 to 18 in this order. However, in Comparative Examples 13 to 15, since the ion gun did not operate because the pressure was too low, the outermost SiO 2 film could not be formed.

このように作成した実施例1〜6、比較例1〜6および比較例7〜18のサンプルを、
拭き試験、表面抵抗(シート抵抗)測定、表面電位測定の評価項目によって性能評価を行
った。また、Siウエハー上に各々の最表層のSiO2膜の形成条件でSiO2膜を作成し
た別サンプルを用いたSiO2膜の密度測定による評価を併せて行った。
各評価項目毎の評価方法を以下に示す。
Samples of Examples 1 to 6, Comparative Examples 1 to 6 and Comparative Examples 7 to 18 thus created were
Performance evaluation was performed according to evaluation items of a wiping test, surface resistance (sheet resistance) measurement, and surface potential measurement. In addition, evaluation was also performed by measuring the density of the SiO 2 film using another sample in which the SiO 2 film was formed on the Si wafer under the conditions for forming the outermost SiO 2 film.
The evaluation method for each evaluation item is shown below.

(評価方法)
(1)拭き試験
拭き試験は、拭き試験前後における接触角測定と、静電気(静電気試験)によるビーズ
の付着数測定と、静電気試験後のエアブロー(エアブロー試験)によるビーズの付着数測
定とを行った。
(1−1)接触角測定
接触角計(「CA−D型」、協和科学株式会社製)を用い液滴法による純水の接触角を
測定した。
(1−2)静電気試験
ベンコット(セルロース100%)で無機薄膜2表面を1kgの荷重をかけながら30
往復こすった後(60秒待機)に、ポリエチレンビーズ(平均粒径10μm)に静かに接
触させる。その後ビーズ付着面を下向きにした状態で10秒静止した後に顕微鏡で3mm
×2.3mmの領域を観察し付着したビーズを計数した。10箇所計数を行い、平均を付
着量とした。測定時の環境は湿度55%±5%、気温25℃±3℃である。なお、多層膜
表面と人体が電気的に接触するようにして測定を行った。
(1−3)エアブロー試験
静電気試験後に、エアーガンと無機薄膜が形成された各サンプル表面との距離を50c
mとし、0.1MPaの圧力で乾燥空気を基材表面に10秒間吹き付けた後、表面に残っ
た(付着した)ビーズを計数した。測定時の環境は湿度55%±5%、気温25℃±3℃
である。
(2)表面抵抗(シート抵抗)測定
各サンプルの表面抵抗を測定した。図3は、サンプルの表面抵抗を測定する態様を示す
説明図である。
図3において、表面抵抗の測定は、表面抵抗測定装置(三菱ケミカル製、ハイレスター
UP MCP−HT45)504を用いた。この表面抵抗測定装置504はプローブ50
1がサンプル502の表面と当接している。サンプル502を載置するステージ506は
テフロン(登録商標)製である。この測定条件は1000V、30secである。測定時
の環境は湿度55%±5%、気温25℃±3℃である。
(3)表面電位測定
ベンコット(セルロース100%)で無機薄膜が形成された各サンプルの表面を強くこ
すり、初期値として表面電位が2000Vと程度になるように静電気を与えた後、60秒
経過後に、各無機薄膜の表面電位を測定した。
図4は、サンプルの表面電位を測定する態様を示す説明図である。
図4において、表面電位の測定は、表面電位計(トレックジャパン製、Model34
1)500を用いた。この表面電位計500の測定は、プローブ501とサンプル502
の表面との距離を10mmに設定して行った。なお、サンプル502を載置するステージ
503は金属製であり、ステージ503をアースした状態で測定した。測定時の環境は湿
度55%±5%、気温25℃±3℃である。
(Evaluation methods)
(1) Wiping test The wiping test was carried out by measuring the contact angle before and after the wiping test, measuring the number of beads attached by static electricity (electrostatic test), and measuring the number of beads attached by air blow (air blow test) after the electrostatic test. .
(1-1) Contact angle measurement Using a contact angle meter ("CA-D type", manufactured by Kyowa Kagaku Co., Ltd.), the contact angle of pure water was measured by the droplet method.
(1-2) Static electricity test While applying a load of 1 kg to the surface of the inorganic thin film 2 with Bencott (100% cellulose), 30
After rubbing back and forth (waiting for 60 seconds), gently contact the polyethylene beads (average particle size 10 μm). After that, with the bead-attached surface facing down, it was stopped for 10 seconds and then 3 mm with a microscope.
The area | region of * 2.3mm was observed and the adhering bead was counted. Ten locations were counted and the average was taken as the amount of adhesion. The environment at the time of measurement is humidity 55% ± 5% and air temperature 25 ° C. ± 3 ° C. The measurement was performed such that the surface of the multilayer film was in electrical contact with the human body.
(1-3) Air blow test After the static electricity test, the distance between the air gun and the surface of each sample on which the inorganic thin film is formed is 50c.
m, and dry air was blown onto the substrate surface for 10 seconds at a pressure of 0.1 MPa, and then the beads remaining on (attached to) the surface were counted. Measurement environment is 55% ± 5% humidity, 25 ° C ± 3 ° C
It is.
(2) Surface resistance (sheet resistance) measurement The surface resistance of each sample was measured. FIG. 3 is an explanatory view showing an aspect of measuring the surface resistance of a sample.
In FIG. 3, the surface resistance was measured using a surface resistance measuring device (manufactured by Mitsubishi Chemical, Hirester UP MCP-HT45) 504. The surface resistance measuring device 504 is a probe 50
1 is in contact with the surface of the sample 502. A stage 506 on which the sample 502 is placed is made of Teflon (registered trademark). The measurement conditions are 1000 V and 30 sec. The environment at the time of measurement is humidity 55% ± 5% and air temperature 25 ° C. ± 3 ° C.
(3) Surface potential measurement The surface of each sample on which an inorganic thin film was formed was strongly rubbed with Bencott (100% cellulose), and after applying static electricity so that the initial surface potential was about 2000 V, 60 seconds later The surface potential of each inorganic thin film was measured.
FIG. 4 is an explanatory diagram showing an aspect of measuring the surface potential of a sample.
In FIG. 4, the surface potential is measured by a surface potentiometer (manufactured by Trek Japan, Model 34).
1) 500 was used. The surface potential meter 500 measures the probe 501 and the sample 502.
The distance from the surface was set to 10 mm. Note that the stage 503 on which the sample 502 is placed is made of metal, and measurement was performed with the stage 503 grounded. The environment at the time of measurement is humidity 55% ± 5% and air temperature 25 ° C. ± 3 ° C.

なお、以上の各評価項目に併せて行った最表層のSiO2層の密度測定は、Siウエハ
ー上に、最表層の各SiO2層形成条件でSiO2膜を約200nmの厚みに形成した後、
GIXR(X線反射率法測定装置:理学電機製、ATX−G)によって密度を測定した。
The density measurement of the outermost SiO 2 layer performed in combination with each of the above evaluation items was performed after forming the SiO 2 film to a thickness of about 200 nm on the Si wafer under the conditions for forming each outermost SiO 2 layer. ,
The density was measured by GIXR (X-ray reflectometry method apparatus: manufactured by Rigaku Corporation, ATX-G).

図5に、最表層のSiO2層の密度測定を含み、拭き試験(接触角測定、静電気試験お
よびエアブロー試験)、表面抵抗(シート抵抗)測定、表面電位測定における評価結果を
、実施例1〜6および比較例1〜18の無機薄膜形成条件と共に示す。
FIG. 5 includes the measurement of the density of the outermost SiO 2 layer. The evaluation results in the wiping test (contact angle measurement, electrostatic test and air blow test), surface resistance (sheet resistance) measurement, and surface potential measurement are shown in Examples 1 to 3. 6 and the conditions for forming an inorganic thin film of Comparative Examples 1 to 18.

図5において、イオン銃によるアシストを行いながらSiO2膜を形成(IAD法)し
た場合(比較例4〜6、比較例16〜18)のSiO2膜の膜密度は理論密度2.2g/
cm3を超えている。この原因は、アシストによるO(酸素)原子の打ち込みによると考
えられる。イオン銃の出力を0(ゼロ)にした場合、密度は低下する。また成膜時の圧力
(真空度)にも依存し、圧力が高くなるほど、密度は低下している。これは圧力が低くな
るに従って蒸発した粒子の平均自由行程が長くなり、基材に到達したときのエネルギーが
高くなるためであると考えられる。なお、本確認試験1において実施例6より高い圧力で
は成膜速度が低下し、一般的な許容成膜速度0.8nm/secを維持できなかった。
In FIG. 5, when the SiO 2 film is formed (IAD method) while assisting with an ion gun (Comparative Examples 4 to 6, Comparative Examples 16 to 18), the film density of the SiO 2 film is 2.2 g / theoretical density.
It exceeds cm 3 . This cause is considered to be due to implantation of O (oxygen) atoms by assist. When the output of the ion gun is set to 0 (zero), the density decreases. Further, depending on the pressure (degree of vacuum) during film formation, the higher the pressure, the lower the density. This is considered to be because the mean free path of the evaporated particles becomes longer as the pressure becomes lower, and the energy when reaching the substrate becomes higher. In the confirmation test 1, the film formation rate decreased at a pressure higher than that in Example 6, and the general allowable film formation rate of 0.8 nm / sec could not be maintained.

拭き試験前のビーズの付着数は、実施例1〜6において100〜300個程度であり、
比較例4〜6および比較例16〜18では500〜600個程度となっている。このよう
に、実施例1〜6は比較例4〜6および比較例16〜18と比べてビーズの付着数が少な
いことがわかる。
これは無機薄膜2における最表層のSiO2層の密度差によるもので、最表層のSiO2
層の密度が低い実施例1〜6の場合、シート抵抗が低く、表面電位も低いことから、帯電
量の差に起因していると考えられる。したがってフッ素含有有機珪素化合物膜の無い比較
例7〜12でもビーズの付着数は、実施例1〜6と差はほとんど無い。
The number of beads attached before the wiping test is about 100 to 300 in Examples 1 to 6,
In Comparative Examples 4 to 6 and Comparative Examples 16 to 18, the number is about 500 to 600. Thus, it can be seen that Examples 1-6 have a smaller number of beads attached than Comparative Examples 4-6 and Comparative Examples 16-18.
This is due to the density difference of the uppermost layer of the SiO 2 layer in the inorganic thin film 2, the outermost layer SiO 2
In Examples 1 to 6 in which the layer density is low, the sheet resistance is low and the surface potential is also low, which is considered to be caused by the difference in charge amount. Therefore, even in Comparative Examples 7 to 12 having no fluorine-containing organosilicon compound film, the number of beads attached is almost the same as that of Examples 1 to 6.

次に、ビーズが付着した試料にエアブロー試験を行った場合について考察する。
実施例1〜6ではエアブロー試験を行った後のビーズの付着数が10〜30個であり、
急激に付着数が減少している。それに対し、比較例7〜12はエアブロー試験でビーズの
付着数は減少しているものの、実施例1〜6より多い。これは表面のフッ素含有有機珪素
化合物膜の有無によるもので、フッ素含有有機珪素化合物膜の形成された実施例1〜6は
表面エネルギーが小さいためにビーズを保持する能力が低くなり、付着したビーズを容易
に取り除くことができる。一方、フッ素含有有機珪素化合物膜がない比較例7〜12は表
面エネルギーが大きいためにビーズを保持する能力が高くなり、付着したビーズを容易に
取り除くことができない。このことは接触角の測定結果からも明らかであり、実施例1〜
6では接触角が107〜110°であるのに対し、比較例7〜12では42〜49°にな
っている。また両者で、シート抵抗および表面電位に大きな差が無いことから、帯電量に
起因する差ではないことがわかる。また、比較例16〜18に比べ比較例4〜6のエアブ
ロー試験後の付着量が少ないのも同様の理由である。
Next, a case where an air blow test is performed on a sample to which beads are attached will be considered.
In Examples 1 to 6, the number of adhered beads after performing the air blow test is 10 to 30,
The number of adhesions has decreased rapidly. On the other hand, Comparative Examples 7 to 12 have more beads than Examples 1 to 6 although the number of beads attached decreased in the air blow test. This is due to the presence or absence of a fluorine-containing organosilicon compound film on the surface. In Examples 1 to 6 in which the fluorine-containing organosilicon compound film was formed, the surface energy was small, so the ability to hold the beads was lowered, and the attached beads Can be easily removed. On the other hand, Comparative Examples 7 to 12 having no fluorine-containing organosilicon compound film have a high surface energy, so the ability to hold the beads is high, and the attached beads cannot be easily removed. This is clear from the measurement results of the contact angle, and Examples 1 to
6, the contact angle is 107 to 110 °, whereas in Comparative Examples 7 to 12, the contact angle is 42 to 49 °. Moreover, since there is no big difference in sheet resistance and surface potential in both, it turns out that it is not the difference resulting from a charge amount. Moreover, it is the same reason that the adhesion amount after the air blow test of Comparative Examples 4 to 6 is smaller than that of Comparative Examples 16 to 18.

こうしたことから、無機薄膜2を構成する最表層のSiO2層の密度は、1.9〜2.
1g/cm3の範囲であることが好ましいと言える。これは、実施例6におけるSiO2
の密度が1.981g/cm3であり、IAD法により成膜されたSiO2膜の理論密度が
2.2g/cm3(比較例4〜7および比較例16〜18)を超えていることによる。
Therefore, the density of the outermost SiO 2 layer constituting the inorganic thin film 2 is 1.9-2.
It can be said that the range of 1 g / cm 3 is preferable. This is a SiO 2 film density 1.981g / cm 3 of the Example 6, the theoretical density of the SiO 2 film is 2.2 g / cm 3 (Comparative Examples 4 to 7 and Comparative deposited by IAD process Exceeds Examples 16-18).

また、実施例1〜6と比較例7〜12、および比較例4〜6と比較例16〜18の間で
シート抵抗および表面電位に大きな差は無い。したがってフッ素含有有機珪素化合物膜は
SiO2層の低密度化による除電効果に対して影響を与えていない。
このように、表面に塵やほこりが付着するのを防止するためには、無機薄膜2の最表層
のSiO2層を低密度化し、静電気等による電荷を除去することが有効であり、さらに付
着した塵やほこりを容易に取り除くことができるように表面にフッ素含有有機珪素化合物
膜を形成することが有効である。
Moreover, there is no big difference in sheet resistance and surface potential between Examples 1-6 and Comparative Examples 7-12, and Comparative Examples 4-6 and Comparative Examples 16-18. Therefore, the fluorine-containing organosilicon compound film does not affect the static elimination effect due to the low density of the SiO 2 layer.
As described above, in order to prevent dust and dust from adhering to the surface, it is effective to reduce the density of the outermost SiO 2 layer of the inorganic thin film 2 and remove charges due to static electricity, etc. It is effective to form a fluorine-containing organosilicon compound film on the surface so that the dust and dust can be easily removed.

実施例1〜6の場合、拭き試験前後でビーズの付着レベル、エアブロー試験後のビーズ
の付着レベル、接触角に大きな差は無い。それに対し比較例4〜6では拭き試験前後で接
触角が大きく低下しており、それに伴ってエアブロー試験後のビーズ付着数も多くなって
いる。したがって実施例1〜6の場合、フッ素含有有機珪素化合物膜の耐久性が高いこと
がわかる。
In the case of Examples 1 to 6, there is no great difference in the adhesion level of beads before and after the wiping test, the adhesion level of beads after the air blow test, and the contact angle. On the other hand, in Comparative Examples 4 to 6, the contact angle greatly decreased before and after the wiping test, and accordingly, the number of beads attached after the air blow test increased. Therefore, in Examples 1-6, it turns out that durability of a fluorine-containing organosilicon compound film is high.

[確認試験2]
確認試験2は、確認試験1において得られた結果(無機薄膜2を構成する最表層のSi
2層の密度が1.9〜2.1g/cm3程度であることが好ましい)に基づいて、無機薄
膜2を構成する最表層のSiO2層の下層に形成されるTiO2層を含むSiO2層を、低
密度に形成した場合のサンプルを作成し、その性能評価を行った。この最表層の低密度の
SiO2層、その下層に形成される低密度のTiO2層および低密度のSiO2層が、低密
度形成部である。
[Confirmation test 2]
Confirmation Test 2 is the result obtained in Confirmation Test 1 (the outermost layer Si constituting the inorganic thin film 2).
A density of the O 2 layer is preferably about 1.9 to 2.1 g / cm 3 ), and a TiO 2 layer formed under the outermost SiO 2 layer constituting the inorganic thin film 2 is included. A sample in the case where the SiO 2 layer was formed at a low density was prepared and its performance was evaluated. The outermost low-density SiO 2 layer, the low-density TiO 2 layer formed in the lower layer, and the low-density SiO 2 layer are the low-density formation portion.

先ず、確認試験2に先立って、低密度のSiO2層および低密度のTiO2層の密着性の
確認を行った。
低密度のSiO2層の密着性確認は、直径30mm、厚さ0.3mmの白板ガラスの表
面に、上記に示したTiO2層の標準条件で膜厚が約100nmのTiO2層を成膜し、そ
の表面に、確認試験1における実施例1〜6と同じ成膜条件(図5参照)で、膜厚が約1
00nmの低密度のSiO2層を成膜した6種類の試料を作成した。したがって、形成さ
れたSiO2層の密度は実施例1〜6と同じである(図5参照)。作成した試料を実施例
1〜6に対応した形成条件の順に、試料1〜6と呼称する。
First, prior to the confirmation test 2, the adhesion of the low density SiO 2 layer and the low density TiO 2 layer was confirmed.
Check adhesion of the low-density SiO 2 layer is deposited to a diameter 30 mm, the surface of the white plate glass having a thickness of 0.3 mm, a TiO 2 layer of thickness at standard conditions of the TiO 2 layer is about 100nm indicated above On the surface, the film thickness is about 1 under the same film formation conditions as in Examples 1 to 6 in the confirmation test 1 (see FIG. 5).
Six types of samples in which a low-density SiO 2 layer of 00 nm was formed were prepared. Therefore, the density of the formed SiO 2 layer is the same as in Examples 1 to 6 (see FIG. 5). The prepared samples are referred to as Samples 1 to 6 in the order of formation conditions corresponding to Examples 1 to 6.

一方、低密度のTiO2層の密着性確認は、同様に直径30mm、厚さ0.3mmの白
板ガラスを用いその表面に、同様に上記に示したSiO2層の標準条件で膜厚が約100
nmのSiO2膜を成膜し、そのSiO2膜の表面に、比較試料としてTiO2層の標準条
件で膜厚が約100nmのTiO2層を成膜した試料と、イオン銃の加速電圧および加速
電流を0(ゼロ)とした状態で、成膜装置内の真空度0.014Pa,0.030Pa,
0.040Pa,0.050Paの成膜条件で、膜厚がそれぞれ約100nmの低密度の
TiO2層を成膜した4種類の試料との計5種類の試料を作成した。すなわち、低密度の
TiO2層は、イオンアシスト蒸着ではない真空蒸着法によって成膜した。なお、イオン
アシスト蒸着ではない真空蒸着法によって成膜されるTiO2層は、イオンアシスト蒸着
法を用いて成膜したTiO2層に比べて低密度のTiO2層が形成される。
作成した試料をこの順に、試料11〜15と呼称する。
On the other hand, ensure adhesion of the low-density TiO 2 layer of likewise diameter 30 mm, on the surface using a white plate glass having a thickness of 0.3 mm, similarly thickness at standard conditions of the SiO 2 layer shown above is about 100
The nm of SiO 2 film is formed on the surface of the SiO 2 film, and the sample thickness at standard conditions of the TiO 2 layer was deposited a TiO 2 layer of about 100nm as a comparative sample, the acceleration voltage of the ion gun and With the acceleration current set to 0 (zero), the degree of vacuum in the film forming apparatus is 0.014 Pa, 0.030 Pa,
A total of five types of samples were prepared including four types of samples in which low-density TiO 2 layers each having a thickness of about 100 nm were formed under film forming conditions of 0.040 Pa and 0.050 Pa. That is, the low-density TiO 2 layer was formed by a vacuum deposition method that is not ion-assisted deposition. Incidentally, the TiO 2 layer which is deposited by vacuum evaporation are not ion-assisted deposition, low-density TiO 2 layer is formed as compared to the TiO 2 layer was deposited by ion-assisted deposition.
The prepared samples are referred to as Samples 11 to 15 in this order.

作成した試料1〜6および試料11〜15を、JIS規格K5600−5−6に準拠し
たクロスカットテープ試験により、SiO2膜およびのTiO2膜の密着性を評価した。
クロスカットテープ試験は、それぞれの試料の表面に形成されたSiO2膜およびのT
iO2膜の表面を、カッターを用いて1mm間隔で縦横に傷を形成(100マスのクロス
カット)し、その表面にテープを貼った後、テープを引き剥がすことによって生じた膜剥
がれを以下の3段階の評価基準によって評価した。
A:クロスカットの縁が完全に滑らかで、どの格子の目にも剥がれがない。
B:クロスカットの交差点における膜の小さな剥がれがある(100マスの内、5%以
下)。
C:膜がクロスカットの縁に沿って、及び/又は交差点において剥がれている(100
マスの内、5%を超え15%未満)。
The prepared samples 1 to 6 and samples 11 to 15 were evaluated for the adhesion of the SiO 2 film and the TiO 2 film by a cross-cut tape test based on JIS standard K5600-5-6.
The cross-cut tape test was performed using a SiO 2 film formed on the surface of each sample and T
The surface of the iO 2 film was scratched vertically and horizontally with a cutter (100-mass cross-cut) using a cutter, and after the tape was applied to the surface, the film peeling caused by peeling the tape was as follows: Evaluation was performed according to a three-level evaluation standard.
A: The edge of the crosscut is completely smooth, and there is no peeling in any lattice eye.
B: There is a small peeling of the film at the cross-cut intersection (5% or less out of 100 squares).
C: The film is peeled along the edge of the crosscut and / or at the intersection (100
Of the mass, more than 5% and less than 15%).

図6に、SiO2層が形成された試料1〜6の密着性評価結果を、膜の形成条件と共に
示す。図7に、TiO2層が形成された試料11〜15の密着性評価結果を、膜の形成条
件と共に示す。
図6において、表面に低密度のSiO2層が形成された試料1〜6は、成膜条件によら
ず、全てが良好な密着性(A)を示す。
一方、図7において、TiO2層の場合は、TiO2膜の密度が低下するに従って密着性
が低下している。そして、試料13の密着性評価結果がAであることから、低密度のTi
2層として用いる場合のTiO2膜の密度は、4.1g/cm3以上であることが望まし
いと言える。またイオンアシストを用いて高密度のTiO2膜を形成した試料11におけ
るTiO2膜の密度は、4.89g/cm3である。この値は、イオンアシストの条件等を
変更することによって、さらに密度を向上することも可能であるが、密度が高くなるに従
って、圧縮応力の増加やHAZE値(透明度)の低下を引き起こすために好ましくない。
したがって低密度のTiO2層における密度の好ましい範囲は、4.1〜4.8g/cm3
であると言える。
FIG. 6 shows the adhesion evaluation results of Samples 1 to 6 with the SiO 2 layer formed together with the film formation conditions. FIG. 7 shows the adhesion evaluation results of Samples 11 to 15 with the TiO 2 layer formed together with the film formation conditions.
In FIG. 6, samples 1 to 6 having a low-density SiO 2 layer formed on the surface all show good adhesion (A) regardless of the film forming conditions.
On the other hand, in FIG. 7, in the case of the TiO 2 layer, the adhesiveness is lowered in accordance with the density of the TiO 2 film is reduced. And since the adhesive evaluation result of the sample 13 is A, low density Ti
It can be said that the density of the TiO 2 film when used as the O 2 layer is preferably 4.1 g / cm 3 or more. The density of the TiO 2 film also in the sample 11 formed a dense TiO 2 film by ion-assisted deposition are 4.89 g / cm 3. This value can be further improved by changing ion assist conditions, etc., but is preferable because it causes an increase in compressive stress and a decrease in HAZE value (transparency) as the density increases. Absent.
Therefore, the preferable range of the density in the low density TiO 2 layer is 4.1 to 4.8 g / cm 3.
It can be said that.

以上の結果を踏まえて、最表層のSiO2層の下層に形成される低密度のTiO2層とし
て、例えば試料12における形成条件(イオン銃の加速電圧および加速電流が0(ゼロ)
、真空度0.014Pa)を用い、最表層のSiO2層を含み、その下層に形成される低
密度のSiO2層を、前述の実施例3と同じ形成条件(イオン銃の加速電圧および加速電
流が0(ゼロ)、真空度0.003Pa)として、新たな試料を作成した。
Based on the above results, as a low-density TiO 2 layer formed below the outermost SiO 2 layer, for example, formation conditions in the sample 12 (the acceleration voltage and acceleration current of the ion gun are 0 (zero))
, The degree of vacuum is 0.014 Pa), and includes the outermost SiO 2 layer, and the low-density SiO 2 layer formed below the SiO 2 layer is formed under the same formation conditions (acceleration voltage and acceleration of the ion gun). A new sample was prepared with an electric current of 0 (zero) and a degree of vacuum of 0.003 Pa.

試料は、標準条件で成膜したTiO2層と標準条件で成膜したSiO2層が順次、交互に
積層され、最表層が低密度のSiO2層より成る計60層の無機薄膜2(図1参照)の内
、最表層の低密度のSiO2層(2L30)を1層目とした時、その下層の2層目(2H
30)から6層目(2H28)までの間の、標準条件で成膜したTiO2層および標準条
件で成膜したSiO2層に代えて、2層目から6層目までの間を1層目毎に順次、低密度
のTiO2層および低密度のSiO2層で形成した4種類の試料と、無機薄膜2を形成する
全ての形成層(最表層が低密度のSiO2層を含む60層)を、低密度のTiO2層および
低密度のSiO2層で形成した試料を作成した。
Samples, SiO 2 layer are sequentially formed under TiO 2 layer and the standard conditions formed under standard conditions, are alternately stacked, the inorganic thin film 2 (Fig. Total 60 layers outermost layer is made of SiO 2 layer of a low density 1)), when the outermost low-density SiO 2 layer (2L30) is the first layer, the second lower layer (2H)
30) to the sixth layer (2H28), instead of the TiO 2 layer formed under the standard conditions and the SiO 2 layer formed under the standard conditions, one layer between the second layer and the sixth layer Sequentially, four types of samples formed with a low-density TiO 2 layer and a low-density SiO 2 layer and all the formation layers forming the inorganic thin film 2 (the outermost layer includes a low-density SiO 2 layer 60) Layer) was formed with a low-density TiO 2 layer and a low-density SiO 2 layer.

すなわち、低密度形成部の層数が1層の試料は、最表層(2L30)が低密度のSiO
2層より成る。この試料は、確認試験1における実施例3と同じである。低密度形成部の
層数が2層の試料は、2L30が低密度のSiO2層より成り、2H30が低密度のTi
2層より成る。また、低密度形成部の層数が3層の試料は、2L30および2L29が
低密度のSiO2層より成り、2H30が低密度のTiO2層より成る。以下、低密度のS
iO2層および低密度のTiO2層より成る低密度形成部の層数を順次第6層まで形成され
ている。さらに、低密度の層数が60層の試料は、2L30〜2L1が低密度のSiO2
層で形成され、2H30〜2H1が低密度のTiO2層で形成されている。
That is, the sample having one layer of the low density forming portion is composed of SiO 2 having the outermost layer (2L30) having a low density.
It consists of two layers. This sample is the same as Example 3 in Confirmation Test 1. In the sample having two layers of the low density formation portion, 2L30 is composed of a low density SiO 2 layer, and 2H30 is a low density Ti.
It consists of an O 2 layer. Further, in the sample having three layers of the low density forming portion, 2L30 and 2L29 are composed of a low density SiO 2 layer, and 2H30 is composed of a low density TiO 2 layer. Hereinafter, low density S
The number of layers in the low-density forming portion composed of the iO 2 layer and the low-density TiO 2 layer is sequentially formed up to the sixth layer. Furthermore, in the sample having 60 low-density layers, 2L30 to 2L1 are low-density SiO 2.
2H30 to 2H1 are formed of a low-density TiO 2 layer.

このように無機薄膜が形成された試料は、低密度形成部の層数が1層の試料を実施例3
、低密度の層数が2層〜6層および60層の試料を、この順に試料21〜26と呼称する

それぞれの試料は、確認試験1と同様に、直径30mm、厚さ0.3mmの白板ガラス
の表面に無機薄膜を形成した後、その表面にフッ素含有有機珪素化合物膜を成膜した。
The sample in which the inorganic thin film is formed in this way is a sample in which the number of layers of the low density forming portion is one layer.
Samples having 2 to 6 layers and 60 layers of low density layers are referred to as Samples 21 to 26 in this order.
In each sample, an inorganic thin film was formed on the surface of a white plate glass having a diameter of 30 mm and a thickness of 0.3 mm, and then a fluorine-containing organosilicon compound film was formed on the surface in the same manner as in Confirmation Test 1.

なお、低密度形成部のSiO2層の屈折率(n)を1.43、低密度形成部のTiO2
屈折率(n)を2.28、設計波長λを550nmとした時、各試料に成膜された低密度
形成部のSiO2層および低密度形成部のTiO2層の各層毎の物理膜厚を以下に示す(光
学膜厚は上記した無機薄膜2の膜厚構成に示す)。
1層目(2L30):62.8nm、2層目(2H30):50.6nm、3層目(2
L29):31.7nm、4層目(2H29):50.9nm、5層目(2L28):3
2.2nm、6層目(2H28):51.4nm。
すなわち、低密度形成部の総膜厚は、層数が1層(試料21)〜6層(試料25)およ
び60層(試料26)の順に、62.8nm、113.4nm、145.2nm、196
.0nm、228.3nm、279.7nm、4374.6nmである。
When the refractive index (n) of the SiO 2 layer of the low density forming portion is 1.43, the refractive index (n) of TiO 2 of the low density forming portion is 2.28, and the design wavelength λ is 550 nm, each sample The physical film thickness of each layer of the SiO 2 layer of the low density forming portion and the TiO 2 layer of the low density forming portion formed in FIG. 1 is shown below (the optical film thickness is shown in the film thickness configuration of the inorganic thin film 2 described above). .
1st layer (2L30): 62.8 nm, 2nd layer (2H30): 50.6 nm, 3rd layer (2
L29): 31.7 nm, 4th layer (2H29): 50.9 nm, 5th layer (2L28): 3
2.2 nm, 6th layer (2H28): 51.4 nm.
That is, the total film thickness of the low-density formation part is 62.8 nm, 113.4 nm, 145.2 nm in the order of the number of layers of 1 layer (sample 21) to 6 layers (sample 25) and 60 layers (sample 26). 196
. 0 nm, 228.3 nm, 279.7 nm, and 4374.6 nm.

そして、作成した試料21〜26を、確認試験1と同様に、拭き試験(接触角測定、静
電気試験およびエアブロー試験)、表面抵抗(シート抵抗)測定、表面電位測定による評
価項目によって性能評価を行った。
図8は、確認試験2における評価結果を示す図である。
図8には、試料21〜26における拭き試験、表面抵抗(シート抵抗)測定、表面電位
測定における評価結果を、確認試験1における実施例3の評価結果および形成した低密度
のSiO2層とTiO2層の密度測定値を含み、それぞれの無機薄膜形成条件と共に示す。
And, in the same manner as the confirmation test 1, the prepared samples 21 to 26 are evaluated by the evaluation items by the wiping test (contact angle measurement, electrostatic test and air blow test), surface resistance (sheet resistance) measurement, and surface potential measurement. It was.
FIG. 8 is a diagram showing the evaluation results in confirmation test 2. As shown in FIG.
FIG. 8 shows the evaluation results of the wiping test, surface resistance (sheet resistance) measurement, and surface potential measurement in samples 21 to 26, the evaluation result of Example 3 in confirmation test 1, the formed low-density SiO 2 layer, and TiO 2. It includes the measured density of two layers and shows the conditions for forming each inorganic thin film.

図8において、低密度層の層数が増加するに従ってシート抵抗が減少する。しかし、4
層以上ではほとんど変化していない。
図9は、確認試験2における低密度形成部の層数とシート抵抗の関係を示すグラフであ
り、図10は確認試験2における低密度形成部の総膜厚とシート抵抗の関係を示すグラフ
である。
図9は、横軸に低密度形成部の層数、縦軸にシート抵抗(ohm/□)を示し、実施例
3(低密度形成部の層数1)および試料21〜26(低密度形成部の層数が2層〜6層お
よび60層)におけるシート抵抗値のプロット点を結んだ線図で示す。図10は、横軸に
低密度形成部の総膜厚、縦軸にシート抵抗(ohm/□)を示し、図9と同様に、各試料
におけるシート抵抗値のプロット点を結んだ線図で示す。
In FIG. 8, the sheet resistance decreases as the number of low density layers increases. But 4
Almost no change from layer to layer.
FIG. 9 is a graph showing the relationship between the number of layers of the low density forming portion and the sheet resistance in the confirmation test 2, and FIG. 10 is a graph showing the relationship between the total film thickness of the low density forming portion and the sheet resistance in the confirmation test 2. is there.
FIG. 9 shows the number of layers of the low density forming portion on the horizontal axis and the sheet resistance (ohm / □) on the vertical axis. Example 3 (number of layers of the low density forming portion 1) and samples 21 to 26 (low density forming) The number of layers is 2 to 6 and 60), and is a line diagram connecting plot points of sheet resistance values. FIG. 10 is a diagram in which the horizontal axis represents the total film thickness of the low-density forming portion, the vertical axis represents the sheet resistance (ohm / □), and the plot of the sheet resistance value of each sample is connected as in FIG. Show.

この図9に示す線図より、低密度形成部の層数が4層以上では、シート抵抗値が飽和し
て、ほとんど変化していないことが顕著に示されている。
次に、これらの試料の内、低密度形成部の層数が1層の場合(実施例3)と、低密度形
成部の層数が4層の場合(試料23)および60層の全てが低密度形成部の場合(試料2
6)における波長分光特性の経時変化の確認を行った。波長分光特性は、積分球式分光透
過率測定器を用いて測定した。
The diagram shown in FIG. 9 clearly shows that the sheet resistance value is saturated and hardly changed when the number of low-density forming portions is four or more.
Next, among these samples, the case where the number of layers of the low density formation part is 1 (Example 3), the case where the number of layers of the low density formation part is 4 (Sample 23), and all of the 60 layers In the case of a low density formation part (Sample 2
The time-dependent change in wavelength spectral characteristics in 6) was confirmed. The wavelength spectral characteristics were measured using an integrating sphere type spectral transmittance measuring device.

図11は、確認試験1の実施例3における波長分散特性を示すグラフである。
図11は、横軸に波長(nm)、縦軸に透過率(%)を示し、波長300nm〜120
0nm(可視光領域から一部の近赤外光領域の間)における、波長2nm毎の透過率をプ
ロットした線図である。
したがって、実施例3および試料23〜26の試料に形成された無機薄膜は、いずれも
IRカット機能を有している。
FIG. 11 is a graph showing wavelength dispersion characteristics in Example 3 of Confirmation Test 1.
FIG. 11 shows the wavelength (nm) on the horizontal axis and the transmittance (%) on the vertical axis.
It is the diagram which plotted the transmittance | permeability for every wavelength 2nm in 0 nm (between a visible light region and a part of near-infrared light region).
Therefore, all of the inorganic thin films formed on the samples of Example 3 and Samples 23 to 26 have an IR cut function.

経時変化の確認は、図11に示す線図において、A点で示すUV(紫外線)側の半値(
透過率50%)と、B点で示すIR(赤外線)側の半値におけるそれぞれの試料の成膜直
後の波長と、成膜後30日経過した時の波長を測定した。
図12は、UV側の半値における波長の経時変化を示すグラフである。
図12中に破線で示す線図a1は実施例3(低密度形成部の層数が1層)における経時
変化を示し、実線で示す線図b1は試料23(低密度形成部の層数が4層)、一点鎖線で
示す線図c1は試料26(60層の全てが低密度形成部)における経時変化を示す。
The confirmation of the change with time is the half value on the UV (ultraviolet ray) side indicated by point A in the diagram shown in FIG.
Transmittance 50%), the wavelength immediately after film formation of each sample at the half value on the IR (infrared) side indicated by point B, and the wavelength when 30 days had elapsed after film formation.
FIG. 12 is a graph showing the change with time of the wavelength at the half value on the UV side.
A diagram a1 shown by a broken line in FIG. 12 shows a change over time in Example 3 (the number of layers of the low density forming portion is one layer), and a diagram b1 shown by a solid line is the sample 23 (the number of layers of the low density forming portion is (4 layers), a diagram c1 indicated by a one-dot chain line shows a change with time in the sample 26 (all of the 60 layers are low density formation portions).

一方、図13は、IR側の半値における波長の経時変化を示すグラフであり、図13中
に破線で示す線図a2は実施例3における経時変化を示し、実線で示す線図b2は試料2
3、一点鎖線で示す線図c2は試料26における経時変化を示す。
なお、各グラフには、図12の縦軸に波長400〜420nmの範囲を示し、図13の
縦軸には、波長670〜690nmの範囲を示す。
On the other hand, FIG. 13 is a graph showing the change with time of the wavelength at the half value on the IR side. In FIG. 13, a diagram a2 shown by a broken line shows a change with time in Example 3, and a diagram b2 shown by a solid line shows Sample 2
3. A diagram c2 indicated by a one-dot chain line shows a change with time in the sample 26.
In each graph, the vertical axis in FIG. 12 indicates a wavelength range of 400 to 420 nm, and the vertical axis in FIG. 13 indicates a wavelength range of 670 to 690 nm.

図12および図13において、UV側の半値における波長の経時変化、およびIR側の
半値における波長の経時変化は、共に低密度膜の層数が増加するに従って大きくなってい
る。このことから、線図b1および線図b2で示す4層までは、いずれも半値の変化がほ
とんどないこと、および4層でシート抵抗が飽和している(図9参照)ことから、低密度
形成部の層数は1層〜4層であることが好ましいと言える。すなわち、最表層が少なくと
も低密度のSiO2層より成る無機薄膜2、または最表層のSiO2層を含み、最表層のS
iO2層を1層目とした時、その下層の2層目〜4層目に形成されるTiO2層およびSi
2層を選択的に低密度形成部で形成するのが好ましいと言える。換言すれば、最表層の
SiO2層を1層目とした時、1層目〜4層目に選択的に低密度形成部が形成されるのが
好ましいと言える。
一方、図10に示す線図より、低密度形成部の総膜厚の面から換言すると、低密度形成
部の総膜厚(物理膜厚)は、最表層のSiO2層を含み、最表層のSiO2層の下層側に2
80nm以内であるのが好ましいと言える。
In FIGS. 12 and 13, both the wavelength change with time at the UV half value and the wavelength change with time at the IR half value increase as the number of low-density films increases. For this reason, there is almost no change in half value up to the four layers shown in the diagrams b1 and b2, and the sheet resistance is saturated in the four layers (see FIG. 9). It can be said that the number of layers is preferably 1 to 4 layers. That is, the outermost layer includes the inorganic thin film 2 composed of at least a low-density SiO 2 layer, or the outermost SiO 2 layer, and the outermost layer S
When the iO 2 layer is the first layer, the TiO 2 layer and Si formed in the second to fourth layers below the iO 2 layer
It can be said that it is preferable to selectively form the O 2 layer in the low density formation portion. In other words, when the outermost SiO 2 layer is the first layer, it can be said that it is preferable that the low density formation portion is formed selectively in the first to fourth layers.
On the other hand, from the diagram shown in FIG. 10, in other words from the aspect of the total film thickness of the low-density formation part, the total film thickness (physical film thickness) of the low-density formation part includes the outermost SiO 2 layer and the outermost layer. 2 on the lower layer side of the SiO 2 layer
It can be said that the thickness is preferably within 80 nm.

以上の実施形態において、ガラス基板1として白板ガラスを用いて説明したが、これに
限定されず、BK7、サファイアガラス、ホウ珪酸ガラス、青板ガラス、SF3、及びS
F7等の透明基板であってもよいし、一般に市販されている光学ガラスも使用できる。
また、高屈折率層の材料としてTiO2を用いた場合で説明したが、他にTa25、N
25を適用することもできる。
さらに、無機薄膜2の最表層のSiO2層(2L30)上にフッ素含有有機珪素化合物
膜5を設けたが、撥水膜としてアルキル系化合物(例えば、信越化学工業株式会社製:K
F−96)を利用することができ、上記実施形態と同様な効果を得ることができる。
In the above embodiment, although it demonstrated using white plate glass as the glass substrate 1, it is not limited to this, BK7, sapphire glass, borosilicate glass, blue plate glass, SF3, and S
A transparent substrate such as F7 may be used, and commercially available optical glass may also be used.
Moreover, although the case where TiO 2 was used as the material of the high refractive index layer has been described, Ta 2 O 5 , N
b 2 O 5 can also be applied.
Further, a fluorine-containing organic silicon compound film 5 was provided on the outermost SiO 2 layer (2L30) of the inorganic thin film 2, but an alkyl compound (for example, manufactured by Shin-Etsu Chemical Co., Ltd .: K
F-96) can be used, and the same effect as in the above embodiment can be obtained.

以上、本実施形態によれば、少なくとも無機薄膜2の最表層を構成するSiO2層(2
L30)の密度を1.9g/cm3〜2.1g/cm3とすることによって、本来高い絶縁
性を示すSiO2層の絶縁性が低下する(導電性が高くなる)。そのため、静電気等によ
って表面に存在する電荷が最表面のSiO2層を通り抜け下層に到達できるようになる。
下層の高屈折率材料はSiO2層に比べ絶縁性が低いため高屈折率膜の表面で電荷が移動
することができる。この電荷をアース(地落)することで、光学多層膜フィルタの最表面
に電荷がたまりにくくなり、静電気に起因したほこり等がつきにくくなる。
また、無機薄膜2の最表層を構成するSiO2層(2L30)の上にフッ素含有有機珪
素化合物膜5が形成されていることにより表面エネルギーが低下し、ほこりの付着が抑制
され、一旦付着したほこりも容易に取り除くことができるようになる。さらに、形成され
るフッ素含有有機珪素化合物膜5は薄く(<10nm)、無機物に比べ密度も低いため、
電荷を下層に通すことが容易であり、分光特性にも影響を与えない。
そして、無機薄膜2における最表層のSiO2の密度が低いと、SiO2の表面積が増加
し(ミクロ的に凹凸が増加することに相当)、フッ素含有有機珪素化合物膜5が付着する
面積が大きくなる。そのためフッ素含有有機珪素化合物膜5の密着性が向上し、耐久性が
向上する。
さらにまた、無機薄膜2の最表層のSiO2層を1層目とした時、1層目のSiO2層(
2L30)の下層の2層目(2H30)および4層目(2H29)に、密度が4.1g/
cm3〜4.8g/cm3のTiO2層、および3層目(2L29)に密度が1.9g/c
3〜2.1g/cm3のSiO2層が選択的に形成されることにより、上記したと同様の
効果が得られると共に、波長分散特性の経時変化の少ない光学多層膜フィルタが得られる

また、無機薄膜2の1層目(2L30)、2層目(2H30)と4層目(2H29)に
形成されたTiO2層および3層目のSiO2層(2L29)以外は、高品質な膜を形成で
きるため、光学多層膜フィルタ10に必要な低波長シフトおよび低HAZEというような
特性も得やすい。
As described above, according to the present embodiment, at least the SiO 2 layer (2
By the density of the L30) and 1.9g / cm 3 ~2.1g / cm 3 , an insulating SiO 2 layer showing the original high insulating property decreases (conductivity increases). Therefore, charges existing on the surface due to static electricity or the like can pass through the outermost SiO 2 layer and reach the lower layer.
The lower high-refractive index material has a lower insulating property than the SiO 2 layer, so that charges can move on the surface of the high-refractive index film. By grounding this charge, it is difficult for the charge to accumulate on the outermost surface of the optical multilayer filter, and dust and the like due to static electricity are less likely to be attached.
Further, since the fluorine-containing organosilicon compound film 5 is formed on the SiO 2 layer (2L30) constituting the outermost layer of the inorganic thin film 2, the surface energy is reduced, dust adhesion is suppressed, and once adhered. Dust can be easily removed. Furthermore, since the fluorine-containing organic silicon compound film 5 to be formed is thin (<10 nm) and has a lower density than inorganic materials,
It is easy to pass charges through the lower layer, and the spectral characteristics are not affected.
If the density of the outermost SiO 2 layer in the inorganic thin film 2 is low, the surface area of the SiO 2 increases (corresponding to the increase in microscopic unevenness), and the area to which the fluorine-containing organosilicon compound film 5 adheres is large. Become. Therefore, the adhesiveness of the fluorine-containing organosilicon compound film 5 is improved and the durability is improved.
Furthermore, when the outermost SiO 2 layer of the inorganic thin film 2 is the first layer, the first SiO 2 layer (
2L30) in the lower layer (2H30) and the fourth layer (2H29), the density is 4.1 g /
The density is 1.9 g / c in the TiO 2 layer of cm 3 to 4.8 g / cm 3 and the third layer (2L29).
By selectively forming the SiO 2 layer of m 3 to 2.1 g / cm 3 , the same effect as described above can be obtained, and an optical multilayer filter with little change in wavelength dispersion characteristics with time can be obtained.
In addition to the TiO 2 layer formed in the first layer (2L30), the second layer (2H30) and the fourth layer (2H29) of the inorganic thin film 2, and the third SiO 2 layer (2L29), high quality Since a film can be formed, characteristics such as low wavelength shift and low HAZE necessary for the optical multilayer filter 10 are easily obtained.

また、本実施形態の光学多層膜フィルタ10において、基板がガラス基板1で構成され
ることにより、ほこりの付きにくい例えばCCD(電荷結合素子)などの映像素子の防塵
ガラスとして、しかも所望のフィルタ機能を一体的に構成した、例えばUV−IRカット
フィルタおよびIRカットフィルタ機能を含む光学多層膜フィルタを得ることができる。
また、ガラス基板1が水晶基板で構成されることにより、ほこりの付きにくい、例えば光
学ローパスフィルタとして、しかも所望のフィルタ機能を一体的に構成した、例えばUV
−IRカットフィルタおよびIRカットフィルタ機能を含む光学ローパスフィルタを得る
ことができる。また本実施形態は反射防止膜の形成にも適用できる。
Further, in the optical multilayer filter 10 of the present embodiment, the substrate is composed of the glass substrate 1, so that it can be used as a dust-proof glass for a video device such as a CCD (Charge Coupled Device) that is not easily dusted and has a desired filter function. For example, an optical multilayer filter including a UV-IR cut filter and an IR cut filter function can be obtained.
Further, since the glass substrate 1 is made of a quartz substrate, for example, an optical low-pass filter which is not easily dusty and has a desired filter function integrally formed, for example, UV
An optical low-pass filter including an IR cut filter and an IR cut filter function can be obtained. The present embodiment can also be applied to the formation of an antireflection film.

また、本実施形態の光学多層膜フィルタの製造方法によれば、少なくとも無機薄膜2の
最表層を構成するSiO2層(2L30)を真空蒸着法で形成することによって、密度が
1.9g/cm3〜2.1g/cm3のSiO2層を得ることができる。これにより、本来
高い絶縁性を示すSiO2層の絶縁性が低下する(導電性が高くなる)。そのため、静電
気等によって表面に存在する電荷が最表面のSiO2層を通り抜け、下層に到達できるよ
うになる。下層の高屈折率材料はSiO2層に比べ絶縁性が低いため高屈折率膜の表面で
電荷が移動することができる。この電荷をアース(地落)することで、光学多層膜フィル
タ10の最表面に電荷がたまりにくくなり、静電気に起因したほこり等がつきにくい光学
多層膜フィルタが得られる。
また、無機薄膜2の最表層のSiO2層(2L30)の下層に形成されるTiO2層を、
真空蒸着法を用いて形成することによって、密度が4.1g/cm3〜4.8g/cm3
TiO2層を得ることができる。そして、無機薄膜2の最表層のSiO2層(2L30)を
1層目とした時、1層目のSiO2層の下層の2層目(2H30)および4層目(2H2
9)に形成されるTiO2層、および3層目(2L29)に形成されるSiO2層を、真空
蒸着法を用いて選択的に形成することによって、少なくとも無機薄膜2の最表層のSiO
2層を真空蒸着法で形成した場合と同様の効果を備えた光学多層膜フィルタが得られる。
さらにまた、無機薄膜2の最表層を構成するSiO2層上にフッ素含有有機珪素化合物
膜5が形成されていることにより表面エネルギーが低下し、ほこりの付着が抑制され、一
旦付着したほこりも容易に取り除くことができる光学多層膜フィルタが得られる。なお、
形成されるフッ素含有有機珪素化合物膜5の膜厚は薄く、無機物に比べ密度も低いため、
電荷を下層に通すことが容易であり、分光特性にも影響を与えない。また、無機薄膜2に
おける最表層のSiO2層の密度が低いと、SiO2層の表面積が増加し、フッ素含有有機
珪素化合物膜5が付着する面積が大きくなる。そのためフッ素含有有機珪素化合物膜5の
密着性が向上し、耐久性が向上した光学多層膜フィルタが得られる。
Further, according to the method for manufacturing an optical multilayer filter of the present embodiment, the density is 1.9 g / cm by forming the SiO 2 layer (2L30) constituting at least the outermost layer of the inorganic thin film 2 by a vacuum deposition method. A SiO 2 layer of 3 to 2.1 g / cm 3 can be obtained. As a result, the insulating property of the SiO 2 layer, which originally exhibits high insulating properties, is lowered (conductivity is increased). Therefore, charges existing on the surface due to static electricity or the like can pass through the outermost SiO 2 layer and reach the lower layer. The lower high-refractive index material has a lower insulating property than the SiO 2 layer, so that charges can move on the surface of the high-refractive index film. By grounding (depressing) this electric charge, it becomes difficult for the electric charge to collect on the outermost surface of the optical multilayer filter 10, and an optical multilayer filter that is less likely to be dusted due to static electricity is obtained.
Further, a TiO 2 layer formed under the outermost SiO 2 layer (2L30) of the inorganic thin film 2,
By forming by a vacuum deposition method, it is possible to density obtain TiO 2 layer of 4.1g / cm 3 ~4.8g / cm 3 . Then, when the outermost SiO 2 layer (2L30) of the inorganic thin film 2 is the first layer, the second layer (2H30) and the fourth layer (2H2) below the first SiO 2 layer
The TiO 2 layer formed in 9) and the SiO 2 layer formed in the third layer (2L29) are selectively formed using a vacuum deposition method, so that at least the outermost SiO 2 layer of the inorganic thin film 2 is formed.
An optical multilayer filter having the same effect as that obtained when the two layers are formed by vacuum deposition is obtained.
Furthermore, since the fluorine-containing organosilicon compound film 5 is formed on the SiO 2 layer constituting the outermost layer of the inorganic thin film 2, the surface energy is reduced, dust adhesion is suppressed, and dust once adhered is easy. Thus, an optical multilayer filter that can be removed easily is obtained. In addition,
Since the film thickness of the fluorine-containing organic silicon compound film 5 to be formed is thin and the density is lower than that of the inorganic material,
It is easy to pass charges through the lower layer, and the spectral characteristics are not affected. Further, when the density of the outermost SiO 2 layer in the inorganic thin film 2 is low, the surface area of the SiO 2 layer increases and the area to which the fluorine-containing organosilicon compound film 5 adheres increases. Therefore, the adhesiveness of the fluorine-containing organosilicon compound film 5 is improved, and an optical multilayer filter with improved durability is obtained.

また、無機薄膜2の最表層を構成するSiO2層(2L30)および最表層のSiO2
を1層目とした時、1層目のSiO2層の下層の3層目(2L29)に選択的に形成され
るSiO2層を成膜する際の圧力が5×10-4〜5×10-2Paとすることで、密度を1
.9〜2.1g/cm3とすることができる。また、最表層のSiO2層(2L30)を1
層目とした時、1層目のSiO2層の下層の2層目(2H30)および4層目(2H29
)に選択的に形成されるTiO2層を成膜する際の圧力を1.4×10-2Pa〜3×10-
2Paとすることで、密度を4.1〜4.8g/cm3とすることができる。
In addition, when the SiO 2 layer (2L30) constituting the outermost layer of the inorganic thin film 2 and the SiO 2 layer of the outermost layer are set as the first layer, it is selected as the third layer (2L29) below the first SiO 2 layer When the pressure at the time of forming the SiO 2 layer to be formed is 5 × 10 −4 to 5 × 10 −2 Pa, the density is 1
. It can be set to 9 to 2.1 g / cm 3 . Also, the outermost SiO 2 layer (2L30) is 1
As the first layer, the second layer (2H30) and the fourth layer (2H29) below the first SiO 2 layer
The pressure at the time of forming the TiO 2 layer that is selectively formed in the above is 1.4 × 10 −2 Pa to 3 × 10 −.
By setting it to 2 Pa, the density can be set to 4.1 to 4.8 g / cm 3 .

このように、本実施形態の光学多層膜フィルタの製造方法によって製造された光学多層
膜フィルタ10は、例えば、デジタルスチルカメラ、デジタルビデオカメラなどの撮像装
置、カメラ付携帯電話、カメラ付携帯型パソコン(パーソナルコンピュータ)などとして
、ほこりの影響を抑制した電子機器装置として有効に活用できる。
これらの電子機器装置の内、静止画の撮影を行うデジタルスチルカメラの撮像装置に光
学多層膜フィルタを用いた一例を説明する。
図14は、本実施形態に係る光学多層膜フィルタを用いたデジタルスチルカメラの構成
を示す説明図であり、撮像モジュール100と、この撮像モジュール100を含む撮像装
置の構成を示したものである。
撮像モジュール100は、カバーガラス115と、光学ローパスフィルタ110と、光
学像を電気的に変換する撮像素子のCCD(電荷結合素子)120を含んで構成されてい
る。
As described above, the optical multilayer filter 10 manufactured by the method for manufacturing the optical multilayer filter according to the present embodiment includes, for example, an imaging device such as a digital still camera and a digital video camera, a mobile phone with a camera, and a portable personal computer with a camera. As a (personal computer), it can be effectively used as an electronic device apparatus in which the influence of dust is suppressed.
An example in which an optical multilayer filter is used in an imaging device of a digital still camera that captures a still image among these electronic device devices will be described.
FIG. 14 is an explanatory diagram showing a configuration of a digital still camera using the optical multilayer film filter according to the present embodiment, and shows the configuration of the imaging module 100 and an imaging apparatus including the imaging module 100.
The imaging module 100 includes a cover glass 115, an optical low-pass filter 110, and a CCD (charge coupled device) 120 that is an imaging device that electrically converts an optical image.

光学ローパスフィルタ110は、表面に前記無機薄膜2(図1参照)の最表層を構成す
るSiO2層(2L30)の密度が1.9〜2.1g/cm3であり、かつ無機薄膜2の最
表層を構成するSiO2層上にフッ素含有有機珪素化合物膜5が形成された、UV−IR
カットフィルタが形成されている。この場合フィルタの基板は水晶基板になっている。
この光学ローパスフィルタ110はデジタルスチルカメラのレンズ交換等によって外気
に直接触れる部分であり、最もほこりの付着しやすい部分である。光学ローパスフィルタ
110を固定するための固定治具140は金属などの導電材料で構成されており、光学ロ
ーパスフィルタ110の最外層(表面)と電気的に接続されている。そして、固定治具1
40は、アースケーブル150によってアース(地落)されている。
The optical low-pass filter 110 has a density of 1.9 to 2.1 g / cm 3 of the SiO 2 layer (2L30) constituting the outermost layer of the inorganic thin film 2 (see FIG. 1) on the surface thereof. UV-IR in which a fluorine-containing organosilicon compound film 5 is formed on the SiO 2 layer constituting the outermost layer
A cut filter is formed. In this case, the filter substrate is a quartz substrate.
The optical low-pass filter 110 is a part that directly touches the outside air by changing a lens of a digital still camera or the like, and is a part where dust is most easily attached. The fixing jig 140 for fixing the optical low-pass filter 110 is made of a conductive material such as metal and is electrically connected to the outermost layer (surface) of the optical low-pass filter 110. And fixing jig 1
40 is grounded by a ground cable 150.

この撮像モジュール100と、光入射側に配置されるレンズ200と、撮像モジュール
100のCCD120を駆動する駆動部130と、撮像モジュール100から出力される
撮像信号の記録・再生等を行う本体部300とを含んで、撮像装置が構成される。なお、
図示しないが、本体部300には、撮像信号の補正等を行う信号処理部と、撮像信号を磁
気テープ等の記録媒体に記録する記録部と、この撮像信号を再生する再生部と、再生され
た映像を表示する表示部などの構成要素が含まれる。このように構成されたデジタルスチ
ルカメラは、外気に直接触れ、ほこりが付着しやすい光学ローパスフィルタ110表面に
ほこりがつきにくく、ついたほこりをエアブローで簡単に除去することができるデジタル
スチルカメラを提供することができる。
The imaging module 100, a lens 200 disposed on the light incident side, a drive unit 130 that drives the CCD 120 of the imaging module 100, and a main body unit 300 that records and reproduces an imaging signal output from the imaging module 100 The image pickup apparatus is configured. In addition,
Although not shown, the main body 300 is reproduced by a signal processing unit that corrects an imaging signal, a recording unit that records the imaging signal on a recording medium such as a magnetic tape, and a reproducing unit that reproduces the imaging signal. This includes components such as a display unit that displays the video. The digital still camera configured as described above provides a digital still camera that can be easily removed by air blow, and the surface of the optical low-pass filter 110 that is likely to be directly attached to the outside air and is likely to adhere dust is less likely to adhere to the dust. can do.

なお、撮像モジュール100は、レンズ200を分離して配置した構造で説明したが、
レンズ200も含めて撮像モジュールが構成されていてもよい。
また、カバーガラス115の表面に形成される反射防止膜に本実施形態を適用すること
ができる。
また、カバーガラス115の表面に多層膜フィルタを形成して実施することができる。
また、カバーガラス115を水晶として、光学ローパスフィルタの一部を兼用するカバ
ーガラスとしても良い。そして表面に形成する反射防止膜や多層膜フィルタ(UV−IR
カットフィルタ)等に適用することができる。
これらカバーガラスに本実施形態を適用した場合、撮像装置の組立工程において付着す
るほこりを低減することができる。
さらに、光学ローパスフィルタの表面側に反射防止膜を形成する構成であっても実施す
ることができる。
The imaging module 100 has been described with a structure in which the lens 200 is disposed separately.
The imaging module including the lens 200 may be configured.
In addition, the present embodiment can be applied to an antireflection film formed on the surface of the cover glass 115.
In addition, a multilayer filter can be formed on the surface of the cover glass 115.
Further, the cover glass 115 may be made of quartz and may be a cover glass that also serves as a part of the optical low-pass filter. And antireflection film and multilayer filter (UV-IR) formed on the surface
(Cut filter) and the like.
When this embodiment is applied to these cover glasses, dust adhering in the assembly process of the imaging device can be reduced.
Furthermore, even if it is the structure which forms an anti-reflective film in the surface side of an optical low-pass filter, it can implement.

本実施形態に係る光学多層膜フィルタの構成を示す断面図。Sectional drawing which shows the structure of the optical multilayer filter which concerns on this embodiment. 本実施形態に係る光学多層膜フィルタにアースを設けたときの断面図。Sectional drawing when earth | ground is provided in the optical multilayer film filter which concerns on this embodiment. サンプルの表面抵抗を測定する態様を示す説明図。Explanatory drawing which shows the aspect which measures the surface resistance of a sample. サンプルの表面電位を測定する態様を示す説明図。Explanatory drawing which shows the aspect which measures the surface potential of a sample. 確認試験1における評価結果を示す図。The figure which shows the evaluation result in the confirmation test 1. FIG. SiO2層が形成された試料の密着性評価結果および膜の形成条件を示す図。It shows the formation conditions of adhesion of the sample SiO 2 layer formed evaluation results and film. 低密度TiO2層が形成された試料の密着性評価結果および膜の形成条件を示す図。It shows a low-density TiO 2 layer adhesion of the formed sample evaluation results and film formation conditions. 確認試験2における評価結果を示す図。The figure which shows the evaluation result in the confirmation test 2. FIG. 確認試験2における低密度形成部の層数とシート抵抗の関係を示すグラフ。The graph which shows the relationship between the number of layers of the low density formation part in the confirmation test 2, and sheet resistance. 確認試験2における低密度形成部の総膜厚とシート抵抗の関係を示すグラフ。The graph which shows the relationship between the total film thickness of the low density formation part in the confirmation test 2, and sheet resistance. 確認試験1の実施例3における波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic in Example 3 of the confirmation test 1. FIG. UV側の半値における波長の経時変化を示すグラフ。The graph which shows the time-dependent change of the wavelength in the half value on the UV side. IR側の半値における波長の経時変化を示すグラフ。The graph which shows the time-dependent change of the wavelength in the half value by the side of IR. 本実施形態に係る光学多層膜フィルタを用いたデジタルスチルカメラの構成を示す説明図。Explanatory drawing which shows the structure of the digital still camera using the optical multilayer film filter which concerns on this embodiment.

符号の説明Explanation of symbols

1…基板としてのガラス基板、2…無機薄膜、5…フッ素含有有機珪素化合物膜、10
…光学多層膜フィルタ、100…撮像モジュール、110…光学ローパスフィルタ、11
5…カバーガラス、120…CCD、130…駆動部、140…固定治具、150…アー
スケーブル、200…レンズ。
DESCRIPTION OF SYMBOLS 1 ... Glass substrate as a substrate, 2 ... Inorganic thin film, 5 ... Fluorine containing organosilicon compound film, 10
... optical multilayer filter, 100 ... imaging module, 110 ... optical low-pass filter, 11
5 ... cover glass, 120 ... CCD, 130 ... drive unit, 140 ... fixing jig, 150 ... earth cable, 200 ... lens.

Claims (8)

基板上に複数層からなる無機薄膜を有する光学多層膜フィルタであって、
前記無機薄膜は、低密度形成部と高密度形成部とから構成され、
前記無機薄膜の表面上にフッ素含有有機珪素化合物膜が形成され、
前記低密度形成部は、前記無機薄膜の最表層または該最表層を含む複数の層が、低密度
の酸化チタン層または低密度の酸化珪素層の少なくともいずれかより形成され、
前記高密度形成部は、前記低密度形成部と前記基板との間に、前記低密度の酸化珪素よ
りも高密度の酸化珪素層と前記低密度の酸化チタン層よりも高密度の酸化チタン層とを積
層して形成され、
前記低密度形成部の総膜厚が280nm以内であることを特徴とする光学多層膜フィル
タ。
An optical multilayer filter having an inorganic thin film composed of a plurality of layers on a substrate,
The inorganic thin film is composed of a low density formation part and a high density formation part,
A fluorine-containing organosilicon compound film is formed on the surface of the inorganic thin film;
In the low density formation portion, the outermost layer of the inorganic thin film or a plurality of layers including the outermost layer is formed from at least one of a low density titanium oxide layer or a low density silicon oxide layer,
The high-density formed portion includes a silicon oxide layer having a higher density than the low-density silicon oxide and a titanium oxide layer having a higher density than the low-density titanium oxide layer between the low-density formed portion and the substrate. And is formed by stacking
An optical multilayer filter, wherein the total film thickness of the low density forming portion is within 280 nm.
請求項1に記載の光学多層膜フィルタにおいて、
前記低密度の酸化珪素層の密度が1.9〜2.1g/cm3、前記低密度の酸化チタン
層の密度が4.1〜4.8g/cm3であり、
前記無機薄膜の最表層は前記低密度の酸化珪素層で形成され、
前記低密度形成部の層数が、2層から4層目のいずれかを選択して形成されたことを特
徴とする光学多層膜フィルタ。
The optical multilayer filter according to claim 1, wherein
The density of the low density silicon oxide layer is 1.9 to 2.1 g / cm 3 , and the density of the low density titanium oxide layer is 4.1 to 4.8 g / cm 3 ,
The outermost layer of the inorganic thin film is formed of the low density silicon oxide layer,
An optical multilayer filter, wherein the number of layers of the low density forming portion is selected by selecting any one of the second to fourth layers.
請求項1または請求項2に記載の光学多層膜フィルタにおいて、
前記基板が、ガラス基板または水晶基板であることを特徴とする光学多層膜フィルタ。
The optical multilayer filter according to claim 1 or 2,
An optical multilayer filter, wherein the substrate is a glass substrate or a quartz substrate.
基板上に複数層からなる無機薄膜を有する光学多層膜フィルタの製造方法であって、
前記基板の表面に高密度の酸化チタン層と高密度の酸化珪素層とを積層した高密度形成
部を形成し、
次に、前記高密度形成部の表面に真空蒸着法によって、前記高密度の酸化チタン層より
も低密度の酸化チタン層または前記高密度の酸化珪素層よりも低密度の酸化珪素層の少な
くともいずれかより形成された低密度形成部を、総膜厚が280nm以内で形成し、
さらに前記低密度形成部の最表層の表面にフッ素含有有機珪素化合物膜を形成すること
を特徴とする光学多層膜フィルタの製造方法。
A method for producing an optical multilayer filter having an inorganic thin film comprising a plurality of layers on a substrate,
Forming a high-density forming portion in which a high-density titanium oxide layer and a high-density silicon oxide layer are stacked on the surface of the substrate;
Next, at least one of a titanium oxide layer having a density lower than that of the high-density titanium oxide layer and a silicon oxide layer having a density lower than that of the high-density silicon oxide layer is formed on the surface of the high-density forming portion by vacuum deposition. The low density formation part formed from the above is formed with a total film thickness within 280 nm,
Furthermore, a fluorine-containing organic silicon compound film is formed on the surface of the outermost layer of the low-density forming part.
請求項4に記載の光学多層膜フィルタの製造方法において、
前記低密度の酸化珪素層の密度を1.9〜2.1g/cm3、前記低密度の酸化チタン
層の密度が4.1〜4.8g/cm3とし、前記低密度形成部の層数が、2層から4層の
いずれかを選択して形成することを特徴とする光学多層膜フィルタの製造方法。
In the manufacturing method of the optical multilayer filter according to claim 4,
The density of the low density silicon oxide layer is 1.9 to 2.1 g / cm 3 , the density of the low density titanium oxide layer is 4.1 to 4.8 g / cm 3 , and the layer of the low density formation portion A method for producing an optical multilayer filter, wherein the number is selected from two to four layers.
請求項4また請求項5に記載の光学多層膜フィルタの製造方法であって、
前記低密度の酸化珪素層を前記真空蒸着法によって成膜する際の圧力が、5×10-4
5×10-2Paであり、
前記低密度の酸化チタン層を前記真空蒸着法によって成膜する際の圧力が、1.4×1
-2〜3×10-2Paであることを特徴とする光学多層膜フィルタの製造方法。
A method for producing an optical multilayer filter according to claim 4 or claim 5,
The pressure when the low-density silicon oxide layer is formed by the vacuum evaporation method is 5 × 10 −4 to
5 × 10 −2 Pa,
The pressure when forming the low-density titanium oxide layer by the vacuum deposition method is 1.4 × 1.
The manufacturing method of the optical multilayer filter characterized by being 0 <-2 > -3 * 10 <-2 > Pa.
光学多層膜フィルタが組み込まれた電子機器装置であって
前記光学多層膜フィルタは基板上に複数層からなる無機薄膜と該無機薄膜表面に形成さ
れたフッ素含有有機珪素化合物膜とで構成され、
前記無機薄膜は低密度形成部と高密度形成部とから構成され、
前記低密度形成部は、前記無機薄膜の最表層または該最表層を含む複数の層が、低密度
の酸化チタン層または低密度の酸化珪素層の少なくともいずれかより形成され、
前記高密度形成部は、前記低密度形成部と前記基板との間に、前記低密度の酸化珪素よ
りも高密度の酸化珪素層と前記低密度の酸化チタン層よりも高密度の酸化チタン層とを積
層して形成され、
前記低密度形成部の総膜厚が280nm以内である光学多層膜フィルタが組み込まれた
ことを特徴とする電子機器装置。
An electronic device in which an optical multilayer filter is incorporated, wherein the optical multilayer filter is composed of an inorganic thin film composed of a plurality of layers on a substrate and a fluorine-containing organosilicon compound film formed on the surface of the inorganic thin film,
The inorganic thin film is composed of a low density forming portion and a high density forming portion,
In the low density formation portion, the outermost layer of the inorganic thin film or a plurality of layers including the outermost layer is formed from at least one of a low density titanium oxide layer or a low density silicon oxide layer,
The high-density formed portion includes a silicon oxide layer having a higher density than the low-density silicon oxide and a titanium oxide layer having a higher density than the low-density titanium oxide layer between the low-density formed portion and the substrate. And is formed by stacking
An electronic device apparatus, wherein an optical multilayer filter having a total film thickness of 280 nm or less in the low density forming portion is incorporated.
請求項7に記載の電子機器装置であって、
前記低密度の酸化珪素層の密度を1.9〜2.1g/cm3、前記低密度の酸化チタン
層の密度が4.1〜4.8g/cm3とし、前記低密度形成部の層数が、2層から4層の
いずれかを選択して形成された光学多層膜フィルタが組み込まれたことを特徴とする電子
機器装置。
The electronic apparatus device according to claim 7,
The density of the low density silicon oxide layer is 1.9 to 2.1 g / cm 3 , the density of the low density titanium oxide layer is 4.1 to 4.8 g / cm 3 , and the layer of the low density formation portion An electronic apparatus comprising an optical multilayer filter formed by selecting any one of two to four layers.
JP2008201556A 2007-11-16 2008-08-05 Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus Pending JP2009139925A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008201556A JP2009139925A (en) 2007-11-16 2008-08-05 Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus
KR1020080113292A KR100991056B1 (en) 2007-11-16 2008-11-14 Optical multilayer filter, method for manufacturing the same, and electronic apparatus
CN 200810176318 CN101435888B (en) 2007-11-16 2008-11-14 Optical multilayer filter, method of manufacturing the same, and electronic apparatus
US12/272,153 US7990616B2 (en) 2007-11-16 2008-11-17 IR-UV cut multilayer filter with dust repellent property

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007297611 2007-11-16
JP2008201556A JP2009139925A (en) 2007-11-16 2008-08-05 Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2009139925A true JP2009139925A (en) 2009-06-25

Family

ID=40710415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201556A Pending JP2009139925A (en) 2007-11-16 2008-08-05 Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2009139925A (en)
CN (1) CN101435888B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055726A1 (en) * 2009-11-04 2011-05-12 旭硝子株式会社 Near infrared cut-off filters
JP2011100111A (en) * 2009-10-09 2011-05-19 Seiko Epson Corp Optical article, method for manufacturing the optical article, and electronic apparatus
WO2013039215A1 (en) * 2011-09-15 2013-03-21 富士フイルム株式会社 Heat-ray shielding material
KR101382209B1 (en) * 2013-04-29 2014-04-07 주식회사 옵트론텍 Manufacturing method of transparent electrode structure for touch screen using electron beam evaporation
WO2014192670A1 (en) * 2013-05-31 2014-12-04 旭硝子株式会社 Optical filter and optical filter manufacturing method
WO2016017791A1 (en) * 2014-08-01 2016-02-04 Jsr株式会社 Optical filter
JP2017129791A (en) * 2016-01-21 2017-07-27 株式会社日本触媒 Light selective transmission filter and method for producing the same
WO2021024834A1 (en) * 2019-08-08 2021-02-11 Hoya株式会社 Antireflection film-equipped optical member and production method therefor
WO2023054468A1 (en) * 2021-09-30 2023-04-06 大日本印刷株式会社 Multilayer body for display devices, and display device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383475B (en) * 2012-05-03 2017-12-12 赛恩倍吉科技顾问(深圳)有限公司 Ultraviolet cut-off filter and camera lens module
CN103576226B (en) * 2012-08-10 2017-07-11 赛恩倍吉科技顾问(深圳)有限公司 Infrared cut-off light filtering films, cutoff filter and camera lens module
JP6317875B2 (en) * 2012-09-06 2018-04-25 日本板硝子株式会社 Infrared cut filter, imaging device, and method of manufacturing infrared cut filter
US10544501B2 (en) * 2013-12-31 2020-01-28 Essilor International Multi-layer assembly and method for controlling layer thicknesses
US10571619B2 (en) * 2014-10-16 2020-02-25 Toppan Printing Co., Ltd. Quantum dot protective film, quantum dot film using same, and backlight unit
CN105738993A (en) * 2014-12-09 2016-07-06 鸿富锦精密工业(深圳)有限公司 Optical filter and lens module with optical filter
CN107017343B (en) * 2016-01-27 2019-04-02 周卓辉 The production method of the organic layer of organic illuminating element
CN105738996A (en) * 2016-05-11 2016-07-06 中国科学技术大学 Detector filtering window
WO2020184727A1 (en) * 2019-03-13 2020-09-17 パナソニックIpマネジメント株式会社 Optical element and method for producing same
US11314004B2 (en) * 2019-04-08 2022-04-26 Visera Technologies Company Limited Optical filters and methods for forming the same
CN110484869B (en) * 2019-07-11 2021-07-16 湖北久之洋红外系统股份有限公司 Mildew-proof and damp-proof optical film and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107403A (en) * 1991-10-16 1993-04-30 Asahi Glass Co Ltd High refractivity conductive film or low reflective anti-static film and manufacture thereof
JPH11258405A (en) * 1998-03-12 1999-09-24 Toppan Printing Co Ltd Antireflection film
JP2000147245A (en) * 1998-11-12 2000-05-26 Mitsui Chemicals Inc Optical filter
JP2005031462A (en) * 2003-07-07 2005-02-03 Minebea Co Ltd Method for manufacturing dielectric optical thin film
JP2005298929A (en) * 2004-04-14 2005-10-27 Olympus Corp Film deposition method
JP2006012371A (en) * 2004-05-25 2006-01-12 Konica Minolta Opto Inc Objective optical element and optical pickup apparatus
WO2006117979A1 (en) * 2005-04-12 2006-11-09 Tokai Kogaku Co., Ltd. Infrared blocking filter
JP2007093804A (en) * 2005-09-27 2007-04-12 Epson Toyocom Corp Ultraviolet/infrared cut filter and manufacturing method thereof
JP2007298951A (en) * 2006-04-04 2007-11-15 Seiko Epson Corp Optical multilayer filter, method for manufacturing the same and electronic equipment apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107403A (en) * 1991-10-16 1993-04-30 Asahi Glass Co Ltd High refractivity conductive film or low reflective anti-static film and manufacture thereof
JPH11258405A (en) * 1998-03-12 1999-09-24 Toppan Printing Co Ltd Antireflection film
JP2000147245A (en) * 1998-11-12 2000-05-26 Mitsui Chemicals Inc Optical filter
JP2005031462A (en) * 2003-07-07 2005-02-03 Minebea Co Ltd Method for manufacturing dielectric optical thin film
JP2005298929A (en) * 2004-04-14 2005-10-27 Olympus Corp Film deposition method
JP2006012371A (en) * 2004-05-25 2006-01-12 Konica Minolta Opto Inc Objective optical element and optical pickup apparatus
WO2006117979A1 (en) * 2005-04-12 2006-11-09 Tokai Kogaku Co., Ltd. Infrared blocking filter
JP2007093804A (en) * 2005-09-27 2007-04-12 Epson Toyocom Corp Ultraviolet/infrared cut filter and manufacturing method thereof
JP2007298951A (en) * 2006-04-04 2007-11-15 Seiko Epson Corp Optical multilayer filter, method for manufacturing the same and electronic equipment apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134462B2 (en) 2009-10-09 2015-09-15 Seiko Epson Corporation Optical component having a low-density silicon oxide layer as the outermost layer of an inorganic thin-film, method of manufacturing optical component and electronic apparatus
JP2011100111A (en) * 2009-10-09 2011-05-19 Seiko Epson Corp Optical article, method for manufacturing the optical article, and electronic apparatus
CN102597823A (en) * 2009-11-04 2012-07-18 旭硝子株式会社 Near infrared cut-off filters
US20120199929A1 (en) * 2009-11-04 2012-08-09 Asahi Glass Company, Limited Near infrared cutoff filter
WO2011055726A1 (en) * 2009-11-04 2011-05-12 旭硝子株式会社 Near infrared cut-off filters
JPWO2011055726A1 (en) * 2009-11-04 2013-03-28 旭硝子株式会社 Near-infrared cut filter
WO2013039215A1 (en) * 2011-09-15 2013-03-21 富士フイルム株式会社 Heat-ray shielding material
KR101382209B1 (en) * 2013-04-29 2014-04-07 주식회사 옵트론텍 Manufacturing method of transparent electrode structure for touch screen using electron beam evaporation
WO2014192670A1 (en) * 2013-05-31 2014-12-04 旭硝子株式会社 Optical filter and optical filter manufacturing method
JPWO2014192670A1 (en) * 2013-05-31 2017-02-23 旭硝子株式会社 Optical filter and optical filter manufacturing method
US10241245B2 (en) 2013-05-31 2019-03-26 AGC Inc. Optical filter and method for manufacturing optical filter
WO2016017791A1 (en) * 2014-08-01 2016-02-04 Jsr株式会社 Optical filter
JPWO2016017791A1 (en) * 2014-08-01 2017-06-01 Jsr株式会社 Optical filter
JP2017129791A (en) * 2016-01-21 2017-07-27 株式会社日本触媒 Light selective transmission filter and method for producing the same
WO2021024834A1 (en) * 2019-08-08 2021-02-11 Hoya株式会社 Antireflection film-equipped optical member and production method therefor
WO2023054468A1 (en) * 2021-09-30 2023-04-06 大日本印刷株式会社 Multilayer body for display devices, and display device

Also Published As

Publication number Publication date
CN101435888B (en) 2013-08-21
CN101435888A (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP2009139925A (en) Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus
JP4207083B2 (en) Optical multilayer filter, optical multilayer filter manufacturing method, and electronic apparatus
US7990616B2 (en) IR-UV cut multilayer filter with dust repellent property
US8233219B2 (en) Optical multilayer thin-film filters and methods for manufacturing same
JP2010231172A (en) Optical article and method for producing the same
KR20060083132A (en) Optical device, lens-barrel, image pickup apparatus and electronic apparatus
TWI408404B (en) Imaging device
JP2012027300A (en) Lens manufacturing method and lens
US8128225B2 (en) Optical article and process for producing the same
JP2009073090A (en) Functional film, manufacturing method of functional film, laminated body, and electronic device
JP2015175865A (en) Optical component, method for manufacturing optical component, electronic equipment, and traveling object
JP5433943B2 (en) Optical member, imaging system optical article, imaging module, camera, and optical member manufacturing method
CN100474003C (en) Optical multilayer filter, and electronic apparatus
JP2010237637A (en) Optical article and method of manufacturing the same
JP5269933B2 (en) Optical multilayer filter
JP2010237639A (en) Optical multi-layer filter and method of manufacturing the same
JP2007316107A (en) Infrared light cut filter, method of manufacturing the same and optical component having infrared cut filer
JP2007156321A (en) Method for manufacturing optical multilayer filter
JP2010231173A (en) Optical article and method for producing the same
JP5452240B2 (en) Optical article and manufacturing method thereof
JP2007248495A (en) Method for manufacturing optical multilayer filter, optical multilayer filter, and solid state image pickup device
CN100388013C (en) Optical device, transmission lens, image pickup device and electronic device
JP2012185254A (en) Optical element, optical module and imaging apparatus, and optical multilayer film
JP7098129B2 (en) Antireflection film and optical element having it
JP2011145443A (en) Optical article and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813