WO2014188831A1 - Ultraviolet shielding film - Google Patents

Ultraviolet shielding film Download PDF

Info

Publication number
WO2014188831A1
WO2014188831A1 PCT/JP2014/061073 JP2014061073W WO2014188831A1 WO 2014188831 A1 WO2014188831 A1 WO 2014188831A1 JP 2014061073 W JP2014061073 W JP 2014061073W WO 2014188831 A1 WO2014188831 A1 WO 2014188831A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
resin
index layer
ultraviolet shielding
Prior art date
Application number
PCT/JP2014/061073
Other languages
French (fr)
Japanese (ja)
Inventor
美佳 本田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015518161A priority Critical patent/JPWO2014188831A1/en
Publication of WO2014188831A1 publication Critical patent/WO2014188831A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/283Interference filters designed for the ultraviolet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2590/00Signboards, advertising panels, road signs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to an ultraviolet shielding film.
  • ultraviolet rays contained in the region of a wavelength of about 10 to 400 nm have higher energy than visible rays and infrared rays having a long wavelength, and excite molecular bonds such as plastics and organic compounds or break them. It has energy of the same strength. For this reason, ultraviolet rays cause discoloration and discoloration of polymer materials and the like contained in various products, and cause a decrease in strength.
  • an ultraviolet shielding film in which a layer containing an organic ultraviolet absorber is disposed on the surface of the base material of the resin support has been conventionally used.
  • Bleed-out refers to a phenomenon in which an ultraviolet absorber floats on the surface.
  • the UV protection function is lost because the UV absorber flows out of the resin as well as poor appearance such as cloudiness and surface roughness of the film.
  • the organic ultraviolet absorber which can be used for the ultraviolet shielding film is often restricted by the compatibility with the resin.
  • metal oxide particles are used as an alternative material for organic ultraviolet absorbers.
  • a method of producing an ultraviolet shielding part by a coating method using a resin has come to be used.
  • a layer that reflects ultraviolet rays is formed by alternately combining two types of polymer layers having different refractive indexes.
  • the ultraviolet shielding region can be easily set by controlling the film thickness and the number of layers of the polymer layer, and the area can be increased by stretching the film.
  • This production method is characterized by heating and stretching near the glass transition point of the polymer.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultraviolet shielding film that has excellent ultraviolet shielding properties and maintains good light reflection characteristics even when irradiated with sunlight or the like. Is to provide. Another object of the present invention is to provide an ultraviolet shielding film having high adhesion between the resin support and the ultraviolet shielding portion.
  • an ultraviolet shielding film reflecting one aspect of the present invention includes: a resin support, and a laminate of a high refractive index layer and a low refractive index layer An ultraviolet shielding film having an ultraviolet shielding laminated portion including at least one unit, wherein at least one of the high refractive index layer and the low refractive index layer contains a water-soluble resin and metal oxide particles, and the resin support And an ultraviolet shielding film in which a resin layer substantially not containing metal oxide particles and having a film thickness of 0.5 ⁇ m or more is provided between the ultraviolet shielding laminate.
  • FIG. 1 is an ultraviolet shielding film
  • 2 is a substrate (resin support)
  • 3 is a resin layer
  • 4 is an ultraviolet shielding laminate.
  • One embodiment of the present invention is an ultraviolet shielding film having an ultraviolet shielding laminated portion including at least one unit obtained by laminating a resin support and a high refractive index layer and a low refractive index layer, the high refractive index layer And at least one layer of the low refractive index layer contains a water-soluble resin and metal oxide particles, and does not substantially contain metal oxide particles and has a film thickness between the resin support and the ultraviolet shielding laminate. It is an ultraviolet shielding film provided with a resin layer of 0.5 ⁇ m or more.
  • the ultraviolet shielding film stretched by alternately combining two kinds of polymer layers having different refractive indexes as described in International Publication No. 2011/062836 has remarkably optical characteristics when irradiated for a long time. The inventor has found that this is reduced.
  • the film described in WO 2011/062836 is heated and stretched near the glass transition point of the polymer to produce a film. Radicals are generated to heat the polymer to near the glass transition temperature. Such radicals are considered to be the cause of promoting the oxidative degradation of the polymer in the ultraviolet shielding laminate. And it is thought that deterioration of the polymer itself resulting from a radical is accelerated more by light irradiation, and a ultraviolet-ray shielding characteristic is reduced remarkably.
  • the lower layer resin support body may turn yellow by oxidation degradation etc., and the transmittance
  • a metal oxide particle having a low refractive index and a metal oxide particle having a high refractive index can be appropriately selected and dispersed in an aqueous solution, a film having a large refractive index difference can be formed in a large area.
  • the present inventor examined the UV shielding film obtained by coating from the viewpoint of weather resistance, which is the above problem. Specifically, a water-soluble resin containing low-refractive-index metal oxide particles and high-refractive-index metal oxide particles is alternately applied to the surface of the polyester film, and then exposed to ultraviolet rays using a xenon lamp similar to sunlight. went. As a result, the polyester film turned yellow when irradiated with ultraviolet rays corresponding to 10 years of Phoenix, Arizona, USA. When the polymer layer containing metal oxide particles was analyzed in order to search for the cause of yellowing, the ultraviolet rays that could not be reflected hit the metal oxide particles in the film, and the oxygen atoms of the metal oxide particles were desorbed. It has been found by examination of the present inventors that the oxidative deterioration of the polyester film is promoted.
  • a resin layer that is substantially free of metal oxide particles and has a certain thickness is provided between the ultraviolet shielding laminated portion and the resin support.
  • the light reflectivity of a desired wavelength is excellent, and good light reflection characteristics are maintained because the oxidative deterioration of the resin support due to irradiation with sunlight or the like is suppressed.
  • An ultraviolet shielding film can be provided.
  • the ultraviolet shielding film with high adhesiveness of a base material and an ultraviolet shielding part can be provided.
  • water-based coating since water-based coating is possible, it can be applied to simultaneous multi-layer coating with excellent environmental conservation during production and high productivity.
  • the term “ultraviolet shielding film” means that the amount of ultraviolet light on the opposite side of the light incident on the film is reduced by the reflection or reflection and absorption of the ultraviolet shielding film with respect to the amount of ultraviolet light of the incident light. Means film.
  • the “ultraviolet shielding laminate” refers to a laminate that reflects or reflects ultraviolet rays. In addition, this invention is not limited to the said guess.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of an ultraviolet shielding film.
  • the ultraviolet shielding film 1 in FIG. 1 includes a base material 2 that is a resin support, a resin layer 3, and an ultraviolet shielding laminated portion 4 in this order.
  • the ultraviolet shielding laminated portion 4 is disposed on a surface on which light is incident.
  • the resin layer 3, the ultraviolet shielding laminate 4, and the substrate 2 are disposed adjacent to each other in this order, but between the substrate 2 and the resin layer 3, the resin layer 3 and the ultraviolet shielding laminate. Another layer may be interposed between the portions 4.
  • the resin layer is substantially free of metal oxide particles.
  • substantially free includes the case where the metal oxide particles are contained by contamination.
  • the phrase “substantially free of metal oxide particles” means containing 0 to 1% by mass of metal oxide particles with respect to 100% by mass of the resin layer solid content, preferably 0 -0.5% by mass, more preferably 0-0.1% by mass.
  • the metal oxide particle described in the column of the following ultraviolet-ray shielding laminated part is mentioned.
  • the thickness of the resin layer is 0.5 ⁇ m or more.
  • the thickness of the resin layer is 0.5 ⁇ m or more.
  • the resin layer when the resin layer is 0.5 ⁇ m or more, a certain strength can be imparted.
  • the imparting of such strength is important for a film that requires a thin film of each refractive index layer in terms of optical characteristics such as an ultraviolet shielding film. That is, when the thickness of the resin layer is less than 0.5 ⁇ m, when the produced film is dried and the film is cured, the film may be curled with the curing. The occurrence of such curling becomes a serious problem in proportion to the reduction in the thickness of the refractive index layer. Then, curling makes it difficult to bond the film to the substrate, and the cured film is hard and brittle, so that cracks may occur, which may be a problem. Under high-temperature and high-humidity conditions, it is considered that the cracks generated further progress due to the expansion of the base material and the like, which may affect the optical characteristics.
  • the upper limit of the thickness of the resin layer is not particularly limited, but it is preferably 5 ⁇ m or less in consideration of the thickness and transparency of the entire film.
  • the thickness of the resin layer is more preferably 0.5 to 1 ⁇ m.
  • the thickness of the resin layer is preferably 3 to 20 times the average thickness of each refractive index layer constituting the ultraviolet shielding laminated portion, since the effects of the present invention can be further obtained. It is more preferable that
  • the average thickness of each refractive index layer means the average thickness of all refractive index layers of the ultraviolet shielding laminated portion located on the side of the resin support on which the resin layer is provided.
  • the refractive index layer is formed on the side opposite to the side where the resin layer is provided and the resin support (when the refractive index layer is formed on both sides of the resin support), the refractive index on the opposite side The layer is not included in the refractive index layer when considering the average thickness.
  • the resin layer contains a resin.
  • the resin used for the resin layer is preferably a polymer that does not have an aromatic ring in the main chain because it is resistant to photodegradation, and more preferably a resin composed of monomer components that do not have an aromatic ring. is there. In the present invention, this is a non-aromatic resin.
  • Specific examples of the resin used as the resin layer include water-soluble resins, silicone resins, acrylic resins, olefin resins, vinyl chloride resins, acrylic / urethane resins, and fluorine-containing polymers.
  • the ultraviolet shielding laminated portion contains a water-soluble resin and can be applied in water, and when used as an adjacent layer, the adhesion with the ultraviolet shielding laminated portion is improved. It is preferable to include a water-soluble resin.
  • the solvent of the water-soluble polymer is water, there is an advantage that it does not cause corrosion, dissolution or penetration into the lower layer resin support. Therefore, when the water-soluble polymer is used, the deterioration of the resin support can be prevented for a longer period than when other resins are used.
  • the water-soluble resin is preferable because it has high flexibility and thus improves the durability of the film when bent.
  • water-soluble resins include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, potassium acrylate-acrylonitrile copolymers, vinyl acetate-acrylic ester copolymers, or Acrylic resins such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene- Styrene acrylic resin such as acrylic acid copolymer or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer , St
  • the polyvinyl alcohol preferably used in the present invention includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • the polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably has an average degree of polymerization of 1,500 to 5,000.
  • the degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.5 mol%.
  • the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS-K6726 (1994). After the PVA is completely re-saponified and purified, the intrinsic viscosity [ ⁇ ] measured in water at 30 ° C. It can be obtained from (dl / g) by the following equation.
  • Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383.
  • Polyvinyl alcohol which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, as described in JP-A-61-237681 and JP-A-63-307979, Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795.
  • the vinyl alcohol polymer include Exeval (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Polyvinyl alcohol can be used in combination of two or more, such as the degree of polymerization and the type of modification.
  • gelatin in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
  • thickening polysaccharides examples include natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides that are generally known. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21.
  • the thickening polysaccharide referred to in the present invention is a polymer of saccharides and has many hydrogen bonding groups in the molecule, and the viscosity at low temperature and the viscosity at high temperature due to the difference in hydrogen bonding force between molecules depending on the temperature. It is a polysaccharide with a large difference in characteristics, and when adding metal oxide fine particles, it causes a viscosity increase that seems to be due to hydrogen bonding with the metal oxide fine particles at a low temperature. It is a polysaccharide that causes a viscosity increase at 40 ° C. of 1.0 mPa ⁇ s or more by addition, preferably 5.0 mPa ⁇ s or more, more preferably 10.0 mPa ⁇ s or more. Polysaccharides.
  • thickening polysaccharide examples include ⁇ 1-4 glucan (eg, carboxymethylcellulose, carboxyethylcellulose, etc.), galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xylo Glucan (eg, tamarind gum, etc.), glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan (eg, soybean) Glycans derived from microorganisms, glycans derived from microorganisms, etc.), glucoraminoglycans (eg, gellan gum, etc.), glycosaminoglycans (eg, hyaluronic acid, keratan sul
  • the weight average molecular weight of the water-soluble resin is preferably 1,000 or more and 200,000 or less. Furthermore, 3,000 or more and 40,000 or less are more preferable. In this specification, the value measured on the following measurement conditions using gel permeation chromatography (GPC) is employ
  • Solvent 0.2M NaNOH 3 , NaH 2 P0 4 , pH 7
  • Flow rate 1 ml / min
  • Calibration curve Standard P-82 standard curve for Shodex standard GFC (aqueous GPC) column Use of calibration curve with pullulan standard substance
  • a curing agent may be used to cure the water-soluble resin as a binder.
  • the curing agent is not particularly limited as long as it causes a curing reaction with a water-soluble resin.
  • the curing agent that can be used is not particularly limited as long as it causes a curing reaction with polyvinyl alcohol, but a group consisting of boric acid, borate, and borax. Is preferably selected from.
  • boric acid, borate, and borax can be used, and generally compounds having a group capable of reacting with polyvinyl alcohol or compounds that promote the reaction between different groups possessed by polyvinyl alcohol These are appropriately selected and used.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom, and specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaborate. Boric acid and their salts.
  • Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
  • Boric acid having a boron atom, borate, and borax as a curing agent may be used alone or as a mixture of two or more.
  • An aqueous solution of boric acid or a mixed aqueous solution of boric acid and borax is preferred.
  • the aqueous solutions of boric acid and borax can be added only as relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, the pH of the aqueous solution to be added can be controlled relatively freely.
  • boric acid and a salt thereof and / or borax it is preferable to use boric acid and a salt thereof and / or borax in order to obtain the effects of the present invention.
  • boric acid and its salts and / or borax preferable ultraviolet shielding properties can be achieved more.
  • the film surface temperature of the coating film is once cooled to about 15 ° C., and then the set surface coating process is used to dry the film surface. Can express an effect more preferably.
  • the total amount of the curing agent used is preferably 1 to 600 mg, more preferably 100 to 500 mg, per gram of polyvinyl alcohol resin.
  • water-soluble resin is gelatin
  • organic hardeners such as vinyl sulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, isocyanate compounds
  • examples thereof include inorganic polyvalent metal salts such as chromium, aluminum and zirconium.
  • the resin used for the resin layer is not limited to the above water-soluble resin, and may be other polymers.
  • the resin used for the resin layer is, for example, a silicone resin, an acrylic resin, an olefin resin (particularly, a cycloolefin resin), a vinyl chloride resin, an acrylic / urethane resin from the viewpoint of preventing yellowing due to ultraviolet rays. And fluorine-containing polymers.
  • a silicone resin having a siloxane bond or an acrylic copolymer obtained by copolymerizing at least two or more acrylic monomers can be suitably used as a material particularly excellent in weather resistance.
  • Silicone resin hydrolyzes a compound represented by R X Si (OR ′) 4-X , where R and R ′ are organic groups such as methyl and ethyl groups, and X is an integer of 0 to 4. -It is preferable that it is obtained by polycondensation.
  • silicone resin for example, commercially available products such as trimethoxysilane (Kanto Chemical), Solgard NP-730 (Nihon Dacro Shamrock), Tosgard 510 (Toshiba Silicone), KP-64 (Shin-Etsu Chemical Co., Ltd.) Good.
  • acrylic resin examples include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate.
  • monomers having no functional group in the side chain such as alkyl (meth) acrylate such as 2-ethylhexyl methacrylate (hereinafter referred to as non-functional monomer)
  • side chains of one or more monomers selected from monomers such as 2-hydroxyethyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid, and itaconic acid.
  • monomers having a functional group such as OH or COOH (hereinafter referred to as functional monomers) may be combined in some cases, such as solution polymerization method, suspension polymerization method, emulsion polymerization method, bulk polymerization method, etc.
  • acrylic copolymers having a weight average molecular weight of 40,000 to 1,000,000, preferably 100,000 to 400,000, obtained by copolymerization by a polymerization method.
  • non-functional monomers that give a relatively low Tg polymer such as ethyl acrylate, methyl acrylate, 2-ethylhexyl methacrylate, etc.
  • polymers having a relatively high Tg such as methyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, etc.
  • an acrylic polymer containing 10 to 50% by mass of the non-functional monomer to be provided and 0 to 10% by mass of a functional monomer such as 2-hydroxyethyl methacrylate, acrylic acid or itaconic acid.
  • the cycloolefin resin is a polymer resin containing an alicyclic structure.
  • a preferred cycloolefin resin is a resin obtained by polymerizing or copolymerizing a cyclic olefin.
  • the cyclic olefin include norbornene, dicyclopentadiene, tetracyclododecene, ethyltetracyclododecene, ethylidenetetracyclododecene, tetracyclo [7.4.0.110, 13.02,7] trideca-2,4, Unsaturated hydrocarbons of polycyclic structures such as 6,11-tetraene and derivatives thereof, cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2- (2-methylbutyl) -1-cyclohexene, cyclo Examples thereof include monocyclic
  • Preferred cycloolefin resins may be those obtained by addition copolymerization of monomers other than cyclic olefins.
  • addition copolymerizable monomers include ethylene such as ethylene, propylene, 1-butene and 1-pentene or ⁇ -olefin, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl- And dienes such as 1,4-hexadiene and 1,7-octadiene.
  • cycloolefin resins include the following norbornene resins.
  • the norbornene-based resin preferably has a norbornene skeleton as a repeating unit. Specific examples thereof include, for example, JP-A Nos. 2003-139950, 2003-14901, and 2003-161832.
  • ZEONEX ZEONOR manufactured by Nippon Zeon Co., Ltd., Arton manufactured by JSR Corporation
  • APPEL manufactured by Mitsui Chemicals, Inc. APL8008T, APL6509T, APL6013T, APL5014DP, APL6015T
  • APL8008T APL6509T, APL6013T, APL5014DP, APL6015T
  • APL8008T APL6509T
  • APL6013T APL6013T
  • APL5014DP APL6015T
  • vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer.
  • vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer.
  • vinyl chloride monomer in the polymer examples include graft copolymers obtained by graft copolymerization, and (co) polymers composed of chlorinated vinyl chloride monomer units. These may be used alone or in combination of two or more. Chlorination of the vinyl chloride monomer unit may be performed before polymerization or may be performed after polymerization.
  • the content of the monomer units other than the vinyl chloride monomer unit is within a range that does not impair the original performance, and the unit derived from the vinyl chloride monomer is 50% by mass or more and 60% by mass. % Or more or 70% by mass or more, for example, about 50 to 99% by mass, preferably 60 to 99% by mass or 70 to 99% by mass (in the mass calculation here, the vinyl chloride resin contains a plasticizer. And other polymers blended with the copolymer resin).
  • Examples of monomers having an unsaturated bond copolymerizable with vinyl chloride monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) ) Acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, neopentyl (meth) acrylate, cyclopentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate , N-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-decyl (meth) acrylate,
  • acrylic / urethane resin examples include acrylic / urethane copolymer resins described in the column of the ultraviolet absorber-containing layer described later.
  • fluorine-containing polymer examples include the fluorine-containing polymers described in the column of the water-soluble resin described later.
  • the undercoat layer described in the column of the resin support described later, the adhesive layer described later, the ultraviolet absorber-containing layer, and the like are also resin layers containing a resin and have a thickness of 0.5 ⁇ m or more. In the case of being disposed between the reflective laminated portion, the resin layer of the present invention can be obtained.
  • At least one layer does not substantially contain metal oxide particles between the resin support and the ultraviolet shielding laminate, and the film thickness is 0.00. What is necessary is just 5 micrometers or more.
  • a plurality of resin layers may be present, and as a form in which two or more resin layers exist, a resin support, an ultraviolet absorber-containing adhesive layer (resin layer), a water-soluble resin-containing layer (resin layer), an ultraviolet shielding An ultraviolet shielding film in which the laminated portions are laminated in this order is exemplified.
  • a resin layer does not indicate the whole formed from a plurality of layers, but means each single layer composed of a resin.
  • the content of the resin contained in the resin layer is preferably 50 to 100% by mass, and preferably 80 to 100% by mass with respect to the solid content of the resin layer. If it is 50 mass% or more, layer formation is possible.
  • the resin layer preferably contains a surfactant from the viewpoint of applicability.
  • anionic surfactant a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant used for adjusting the surface tension during coating, but an anionic surfactant is more preferable.
  • Preferable compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
  • Anionic surfactants include alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkane or olefin sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl or alkyl aryl ether sulfate ester, alkyl phosphate, alkyl diphenyl ether
  • a surfactant selected from the group consisting of disulfonates, ether carboxylates, alkylsulfosuccinates, ⁇ -sulfo fatty acid esters and fatty acid salts, condensates of higher fatty acids with amino acids, naphthenates, etc. may be used. it can.
  • Anionic surfactants preferably used are alkylbenzene sulfonates (especially those of linear alkyls), alkanes or olefin sulfonates (especially secondary alkane sulfonates, ⁇ -olefin sulfonates), alkyl sulfates Salts, polyoxyethylene alkyl or alkylaryl ether sulfates (especially polyoxyethylene alkyl ether sulfates), alkyl phosphates (especially monoalkyl type), ether carboxylates, alkyl sulfosuccinates, ⁇ -sulfo fatty acid esters and A surfactant selected from the group consisting of fatty acid salts, and alkylsulfosuccinate is particularly preferable.
  • the content of the surfactant in each resin layer is preferably 0.001 to 0.5% by mass, preferably 0.005 to 0.3% by mass, as the solid content of the refractive index layer is 100% by mass. Is more preferable.
  • the resin layer may contain an ultraviolet absorber in order to more effectively protect the member in the lower layer of the film from ultraviolet rays and from the deterioration of the resin support.
  • an ultraviolet absorber the ultraviolet absorber as described in the column of the following ultraviolet absorber content layer is mentioned.
  • the content of the resin layer of the ultraviolet absorber is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass.
  • the arrangement of the resin layer in the film is not particularly limited as long as it is between the resin support and the ultraviolet shielding laminate, but the resin layer may be formed adjacent to the ultraviolet shielding laminate. preferable.
  • the influence on the resin support of the oxygen generation by the ultraviolet-ray from the metal oxide which exists in an ultraviolet-ray shielding laminated part can be suppressed effectively.
  • it is preferable to form the resin layer adjacent to the ultraviolet shielding laminated portion because the resin layer can be formed together with the ultraviolet shielding laminated portion by simultaneous multilayer coating, and the production efficiency is improved.
  • the resin layer When the resin layer is adjacent to the ultraviolet shielding laminate, the resin layer preferably has a refractive index different from that of the refractive index layer in contact with the resin layer constituting the ultraviolet shielding laminate.
  • the refractive index layer in contact with the resin layer is preferably a high refractive index layer, and the refractive index of the resin layer is preferably lower than the refractive index of the high refractive index layer.
  • Such a configuration is preferable because the adhesion between the resin layer and the resin support is improved. From the viewpoint of suppressing aggregation of metal oxide particles contained in the refractive index layer in contact with the resin layer, it is more preferable to control the configuration of the water-soluble resin applied to the refractive index layer in contact with the resin layer.
  • the structure of the water-soluble resin applied to the refractive index layer in contact with the resin layer may be controlled in order to suppress aggregation.
  • the refractive index layer in contact with the resin layer preferably includes at least two types of water-soluble resins.
  • the refractive index layer in contact with the resin layer preferably contains water-soluble resins having different average polymerization degrees (water-soluble resins having a low average polymerization degree and water-soluble resins having a high average polymerization degree).
  • the average degree of polymerization of one of the at least two water-soluble resins is preferably 100 to 700, more preferably 200 to 500.
  • the water-soluble resin is preferably polyvinyl alcohol from the viewpoint of adsorptivity.
  • polyvinyl alcohol having an average degree of polymerization of 100 to 700 preferably has a saponification degree of 95 mol% or more.
  • the other water-soluble resin of at least two types of water-soluble resins preferably has an average degree of polymerization of 1500 to 5000, and more preferably 1500 to 4000.
  • the water-soluble resin is preferably polyvinyl alcohol, and is preferably unmodified polyvinyl alcohol from the viewpoint of applicability. Further, the polyvinyl alcohol preferably has a saponification degree of 85 to 99.5 mol%.
  • the ultraviolet shielding laminated portion has at least one unit in which a low refractive index layer and a high refractive index layer are laminated.
  • a preferred form of the ultraviolet shielding laminated portion is an alternate laminated body in which low refractive index layers and high refractive index layers are alternately laminated. That is, the preferable ultraviolet shielding part of the present invention can be said to be an ultraviolet reflecting part using the refractive index difference of each refractive index layer. Needless to say, even the ultraviolet reflecting part using the difference in refractive index may have ultraviolet absorbing ability depending on the selection of the metal oxide.
  • the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that, in each refractive index layer constituting the ultraviolet shielding laminated part, when each refractive index layer is focused on two adjacent refractive index layers, All forms other than those having the same refractive index are included.
  • the thickness of the ultraviolet shielding laminated portion is preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less from the viewpoint of flexibility. Such thinning of the film can increase the difference in refractive index between the refractive index layers when each refractive index layer contains water-soluble resin and metal oxide particles. It is easy to realize in a form containing resin and metal oxide particles. Further, the lower limit of the thickness of the ultraviolet shielding laminated portion is not particularly limited, but is usually 1 ⁇ m or more from the viewpoint of ensuring reflection characteristics. The thickness of the ultraviolet shielding laminate is preferably 1 to 3 ⁇ m.
  • the high refractive index layer and the low refractive index layer contains a water-soluble resin, but since production by simultaneous multilayer coating is possible, the high refractive index layer and the low refractive index layer It is preferable that both contain water-soluble resin.
  • curing agent described in the column of the said resin layer can be used similarly, and a suitable hardening
  • water-soluble resin examples include the water-soluble resins described in the column of the resin layer. Of these, polyvinyl alcohol is preferably used because of its good optical reflection characteristics.
  • the average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer are preferably different.
  • Water-soluble coating such as polyvinyl alcohol is possible.
  • each coating liquid that can form a high-refractive index layer and a low-refractive index layer is usually used.
  • the coating film obtained by multilayer coating tends to cause mixing between adjacent layers and interface disturbance (unevenness).
  • the upper layer coating solution when the upper layer coating solution is applied, the lower layer formed is redissolved, the upper layer and lower layer liquids are mixed together, and mixing between adjacent layers and interface disturbance (unevenness) occur. May occur.
  • the coating film obtained by simultaneous multilayer coating is stacked in an undried liquid state, mixing between adjacent layers and interface disturbance (unevenness) are more likely to occur.
  • each refractive index layer of the ultraviolet shielding laminated portion reflects the ultraviolet region
  • the thickness of the refractive index layer is thinner than when reflecting a long wavelength region such as the near infrared region. Therefore, the mixing between the adjacent layers can affect the optical characteristics more.
  • the reflection characteristics are improved by making the average saponification degree of polyvinyl alcohol contained in the high refractive index layer different from the average saponification degree of polyvinyl alcohol contained in the low refractive index layer.
  • Such an effect is considered to be a result of suppression of interlayer mixing.
  • interlayer mixing is suppressed, and the disturbance of the interface is reduced, so that the ultraviolet shielding film of the present invention is excellent in light reflectivity at a desired wavelength. Moreover, since interlayer mixing is suppressed, it is thought that the haze of a film also falls.
  • the difference (absolute value) between the average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer is preferably 1 mol% or more, and is 3 mol% or more. Preferably, it is 5 mol% or more, more preferably 8 mol% or more. If it is such a range, the effect of this invention will increase further and film characteristics (a reflection characteristic, visible light transmittance, etc.) will improve more.
  • the difference between the average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer is preferably as far as possible, but the dissolution of polyvinyl alcohol in water is preferable. From the viewpoint of properties, it is preferably 20 mol% or less.
  • the content of the water-soluble resin in the refractive index layer is not particularly limited, but is preferably 1 to 50% by mass, more preferably, based on the total mass (solid content) of each refractive index layer. 5 to 30% by mass.
  • a fluorine-containing polymer may be used in order to adjust the refractive index difference.
  • the fluorine-containing polymer include a polymer mainly containing a fluorine-containing unsaturated ethylenic monomer component.
  • fluorine-containing unsaturated ethylenic monomer examples include a fluorine-containing alkene, a fluorine-containing acrylic acid ester, a fluorine-containing methacrylate ester, a fluorine-containing vinyl ester, a fluorine-containing vinyl ether, and the like. And fluorine-containing unsaturated ethylenic monomers described in paragraph “0181” of the No.
  • Examples of monomers that can be copolymerized with fluorine-containing monomers include, for example, ethylene, propylene, butene, vinyl acetate, vinyl ethyl ether, vinyl ethyl ketone, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl- ⁇ -fluoroacrylate, ethyl- ⁇ -fluoroacrylate, propyl- ⁇ -fluoroacrylate, butyl- ⁇ -fluoroacrylate, cyclohexyl- ⁇ -fluoroacrylate, hexyl- ⁇ -fluoroacrylate , Benzyl- ⁇ -fluoroacrylate, acrylic acid, methacrylic acid, ⁇ -fluoroacrylic acid, styrene, styrene sulfonic acid, me
  • the refractive index of a single resin of a fluorine-containing ethylenically unsaturated monomer is in the range of approximately 1.33 to 1.42, and the refractive index of a single resin polymer of a fluorine-free monomer that can be copolymerized.
  • At least one of the high refractive index layer and the low refractive index layer preferably contains a metal oxide (particle) together with the water-soluble resin.
  • a metal oxide particle
  • the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved.
  • metal oxides such as titanium oxide and zirconium oxide absorb ultraviolet rays and improve ultraviolet shielding properties. Therefore, at least the high refractive index layer preferably contains metal oxide particles, and the refractive index difference is further increased. Therefore, it is more preferable that both the high refractive index layer and the low refractive index layer contain metal oxide particles.
  • the metal oxide particles preferably have an average particle size of 100 nm or less.
  • an average particle diameter refers to a primary average particle diameter.
  • the primary average particle size referred to in this specification is the measurement of the particle size of 1,000 arbitrary particles by a method of observing a particle image appearing on the cross section or surface of the particle itself or the refractive index layer with an electron microscope. , The average value.
  • the particle diameter of each particle is a diameter (projected area circle equivalent diameter) when a circle equal to the projected area is assumed.
  • the metal oxide particles are coated (for example, silica-attached titanium dioxide described later), the average particle diameter of the metal oxide particles is the base (the silica-attached titanium dioxide). In this case, it means the average particle diameter of titanium dioxide before treatment).
  • Silica (silicon dioxide) is preferably used as the metal oxide for the low refractive index layer, and specific examples include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use acidic colloidal silica sol, and it is particularly preferable to use colloidal silica dispersed in an organic solvent. In order to further reduce the refractive index, hollow fine particles having pores inside the particles may be used as the metal oxide fine particles of the low refractive index layer, and hollow fine particles of silica (silicon dioxide) are particularly preferable. Moreover, well-known metal oxide particles other than a silica can also be used.
  • the metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm.
  • the average particle size of primary particles of silicon dioxide dispersed in a primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the particle diameter of the metal oxide particles of the low refractive index layer can be determined by the volume average particle diameter in addition to the primary average particle diameter.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284 JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 , JP-A-7-179029, JP-A-7-137431, and International Publication No. 94/26530. It is intended.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow particles can also be used as the metal oxide particles of the low refractive index layer.
  • the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
  • the content of the metal oxide particles in the low refractive index layer is preferably 20 to 90% by mass, and more preferably 30 to 85% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is 40 to 70% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, the coatability is good, which is preferable.
  • Metal oxide in the high refractive index layer for example, titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, oxidized oxide
  • metal oxide particles such as titanium dioxide and zirconium oxide are preferable because they can absorb light in the ultraviolet region.
  • the high refractive index layer is made of high refractive index metal oxide fine particles such as titanium dioxide and zirconium oxide, that is, fine particles of titanium oxide and fine particles of zirconium oxide. It is preferable to contain. In that case, it is preferable to contain rutile (tetragonal) titanium oxide particles.
  • the primary average particle diameter of the metal oxide particles used for the metal oxide particles used in the high refractive index layer is preferably 30 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. Further preferred. A primary average particle diameter of 1 nm or more and 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • titanium oxide particles of the present invention it is preferable to use particles in which the surface of an aqueous titanium oxide sol is modified to stabilize the dispersion state.
  • any conventionally known method can be used.
  • JP-A-63-17221, JP-A-7-819, JP-A-9-165218 See the matters described in Kaihei 11-43327, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, etc. Can do.
  • titanium oxide—physical properties and applied technology Kiyono Manabu, p. 255 to 258 (2000), Gihodo Publishing Co., Ltd., or paragraph number 0011 to WO2007 / 039953.
  • the method of the step (2) described in 0023 can be referred to.
  • titanium dioxide hydrate is treated with at least one basic compound selected from the group consisting of alkali metal hydroxides or alkaline earth metal hydroxides.
  • the titanium dioxide dispersion obtained comprises a step (2) of treating with a carboxylic acid group-containing compound and an inorganic acid.
  • JP-A-2000-053421 comprising alkyl silicate as a dispersion stabilizer, and silicon in the alkyl silicate is changed to SiO 2.
  • a titanium oxide sol having a weight ratio (SiO 2 / TiO 2 ) of 0.7 to 10 of the amount converted to TiO 2 and the amount converted to TiO 2 in titanium oxide), JP 2000-063119 A (TiO 2 -ZrO 2 -SnO 2 composite colloidal particles as the core, and the surface thereof coated with the composite oxide colloidal particles of WO 3 -SnO 2 -SiO 2 ) can be referred to .
  • the titanium oxide particles may be coated with a silicon-containing hydrated oxide.
  • the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type.
  • the titanium oxide particles coated with a silicon-containing hydrated oxide are more preferably rutile-type titanium oxide particles coated with a silicon-containing hydrated oxide. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, and therefore the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased, and the refractive index is further increased. Because.
  • the “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and in order to obtain the effects of the present invention. More preferably has a silanol group.
  • the coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass. This is because when the coating amount is 30% by mass or less, the desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% or more, particles can be stably formed.
  • titanium oxide particles with a silicon-containing hydrated oxide it can be produced by a conventionally known method.
  • JP-A-10-158015 Si / Al hydration to rutile titanium oxide) Oxide treatment
  • a method of producing a titanium oxide sol in which a hydrous oxide of silicon and / or aluminum is deposited on the surface of titanium oxide after peptization in the alkali region of the titanate cake JP 2000-204301 A (A sol in which a rutile-type titanium oxide is coated with a complex oxide of Si and Zr and / or Al.
  • JP 2007-246351 Oxidation obtained by peptizing hydrous titanium oxide
  • titanium to hydrosol
  • R 1 n SiX 4-n wherein R 1 as stabilizer C 1 -C 8 alkyl group, glycidyloxy substituted C 1 -C Alkyl or C 2 -C 8 alkenyl group, X is an alkoxy group, n is 1 or 2.
  • core-shell particles produced by a known method can be used as the metal oxide particles contained in the high refractive index layer.
  • core-shell particles produced by a known method can be used.
  • An aqueous solution containing titanium oxide particles is hydrolyzed by heating, or an aqueous solution containing titanium oxide particles is neutralized by adding an alkali, so that the average particle size is
  • the titanium oxide particles and the mineral acid were mixed so that the molar ratio of titanium oxide particles / mineral acid was in the range of 1 / 0.5 to 1/2.
  • the slurry is heat-treated at a temperature not lower than the boiling point of the slurry and not higher than the boiling point of the slurry, and then a silicon compound (for example, an aqueous sodium silicate solution) is added to the obtained slurry containing the titanium oxide particles.
  • a silicon compound for example, an aqueous sodium silicate solution
  • hydrous titanium oxide A method of neutralizing a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a titanium oxide of a monobasic acid or a salt thereof and an alkyl silicate as a dispersion stabilizer by a conventional method
  • Hydrogen peroxide and tin metal are maintained at a H 2 O 2 / Sn molar ratio of 2 to 3 at the same time or alternately, such as a titanium salt (eg, titanium tetrachloride).
  • the mixture is added to the aqueous solution to form a basic salt aqueous solution containing titanium, and the basic salt aqueous solution is kept at a temperature of 50 to 100 ° C.
  • a stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing selenium and removing cations present in the aqueous solution; the resulting composite aqueous sol containing titanium oxide 100 parts by weight in terms of metal oxide TiO 2 and 2 to 100 parts by weight of the resulting composite aqueous sol containing silicon dioxide in terms of metal oxide SiO 2 are mixed to remove anions (Iv) Hydrogen peroxide is added to a hydrous titanic acid gel or sol to dissolve the hydrous titanic acid, and the resulting aqueous peroxotitanic acid solution is heated and aged at 80 ° C.
  • silicates eg, sodium silicate aqueous solution
  • the core-shell particles may be those in which the entire surface of the titanium oxide particles as a core is coated with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles as a core is covered with a silicon-containing hydrated oxide. It may be coated with.
  • the metal oxide particles used in the present invention are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • the content of the metal oxide particles in the high refractive index layer is preferably 15 to 90% by mass and more preferably 20 to 85% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the content is preferably 30 to 85% by mass from the viewpoint of improving the reflectance.
  • Each refractive index layer preferably contains a surfactant from the viewpoint of coatability.
  • anionic surfactant a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant used for adjusting the surface tension during coating, but an anionic surfactant is more preferable.
  • Preferable compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
  • Anionic surfactants include alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkane or olefin sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl or alkyl aryl ether sulfate ester, alkyl phosphate, alkyl diphenyl ether
  • a surfactant selected from the group consisting of disulfonates, ether carboxylates, alkylsulfosuccinates, ⁇ -sulfo fatty acid esters and fatty acid salts, condensates of higher fatty acids with amino acids, naphthenates, etc. may be used. it can.
  • Anionic surfactants preferably used are alkylbenzene sulfonates (especially those of linear alkyls), alkanes or olefin sulfonates (especially secondary alkane sulfonates, ⁇ -olefin sulfonates), alkyl sulfates Salts, polyoxyethylene alkyl or alkylaryl ether sulfates (especially polyoxyethylene alkyl ether sulfates), alkyl phosphates (especially monoalkyl type), ether carboxylates, alkyl sulfosuccinates, ⁇ -sulfo fatty acid esters and A surfactant selected from the group consisting of fatty acid salts, and alkylsulfosuccinate is particularly preferable.
  • the content of the surfactant in each refractive index layer is preferably 0.001 to 0.5% by mass, and preferably 0.005 to 0.3% by mass, based on 100% by mass of the solid content of the refractive index layer. It is more preferable.
  • Each refractive index layer preferably contains a polymer dispersant from the viewpoint of dispersion stability of the coating solution.
  • the polymer dispersant refers to a polymer dispersant having a weight average molecular weight of 10,000 or more.
  • the polymer has a hydroxyl group substituted at the side chain or terminal.
  • examples include polyethers such as polypropylene glycol, polyvinyl alcohol, and the like.
  • polymer dispersants may be used, and examples of such polymer dispersants include Marialim AKM-0531 (manufactured by NOF Corporation).
  • the content of the polymer dispersant is preferably 0.1 to 10% by mass in terms of solid content with respect to the refractive index layer.
  • the high refractive index layer or the low refractive index layer may further contain an emulsion resin.
  • the emulsion resin By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
  • An emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 ⁇ m, for example, are dispersed in an emulsion state in an aqueous medium. Obtained by emulsion polymerization using a molecular dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used.
  • the dispersant used in the polymerization of the emulsion include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkylsulfonate, alkylbenzenesulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt.
  • Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone.
  • emulsion polymerization is performed using a polymer dispersant having a hydroxyl group, the presence of hydroxyl groups is estimated on at least the surface of fine particles, and the emulsion resin polymerized using other dispersants has chemical and physical properties of the emulsion. Different.
  • the polymer dispersant containing a hydroxyl group is a polymer dispersant having a weight average molecular weight of 10,000 or more, and has a hydroxyl group substituted at the side chain or terminal.
  • an acrylic polymer such as sodium polyacrylate or polyacrylamide is used.
  • examples of such polymers include 2-ethylhexyl acrylate copolymer, polyethers such as polyethylene glycol and polypropylene glycol, and polyvinyl alcohol. Polyvinyl alcohol is particularly preferable.
  • Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group is also included. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when forming the ink absorbing layer when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and at the time of production Easy to handle.
  • the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500.
  • the saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
  • Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene.
  • Examples of the polymer include acrylic resins, styrene-butadiene resins, and ethylene-vinyl acetate resins.
  • the high refractive index layer and the low refractive index layer according to the present invention can contain various additives as required.
  • Fluorescent brighteners sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide described in JP-A-62-280069, JP-A-61-228771 and JP-A-4-219266
  • pH adjusters such as potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents and matting agents It may contain.
  • the resin support is used as a base material for the ultraviolet shielding laminate.
  • the resin support is preferably transparent in at least one of the infrared and visible wavelength regions. If it is transparent in the visible light region, it is useful for applications that require light in the visible light region, such as solar cell units, without impairing the design of the lower layer. Moreover, if it is transparent in the infrared region, light in the wavelength region of the infrared region is not blocked, so that it is useful in applications that require light in the infrared region. Therefore, for which wavelength range the resin support is transparent is appropriately selected depending on the use of the substrate on which the ultraviolet shielding film is used.
  • Transparent in the visible light region means that the average transmittance in the visible light region (400 to 800 nm) measured by a spectrophotometer is 75% or more, more preferably 80% or more, particularly 85%. The above is preferable. Further, being transparent in the infrared light region means that the average transmittance in the infrared light region (800 to 1400 nm) measured by a spectrophotometer is 75% or more, more preferably 80% or more. In particular, it is preferably 85% or more.
  • the resin support various resin supports can be used, and polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc. can be used. Since the effect of the present invention that suppresses the deterioration of the resin support is remarkably obtained, the resin used for the resin support is preferably polyester. Although it does not specifically limit as polyester, It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • the thickness of the resin support used in the present invention is preferably 10 to 300 ⁇ m, particularly 20 to 150 ⁇ m.
  • two resin supports may be stacked, and in this case, the type may be the same or different.
  • the resin support using the above resin or the like may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the resin support can be produced by a conventionally known general method.
  • an unstretched resin support that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding with an annular die or a T-die, and quenching.
  • the unsupported resin support is uniaxially stretched, tenter-type sequential biaxial stretch, tenter-type simultaneous biaxial stretch, tubular-type simultaneous biaxial stretch, and other known methods such as resin support flow (vertical axis) direction.
  • a stretched resin support can be produced by stretching in the direction perpendicular to the flow direction of the resin support (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin used as the raw material of the resin support, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the resin support may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
  • the resin support subjected to the relaxation treatment is improved in heat resistance by performing the following off-line heat treatment, and the dimensional stability is improved.
  • the resin support is preferably coated with the undercoat layer coating solution inline on one side or both sides during the film forming process.
  • the undercoating during the film forming process is referred to as inline undercoating.
  • the resin used for the undercoat layer coating solution is polyester resin, acrylic modified polyester resin, polyurethane resin, acrylic resin, vinyl resin, vinylidene chloride resin, polyethyleneimine vinylidene resin, polyethyleneimine resin, polyvinyl alcohol resin, modified polyvinyl alcohol resin. And gelatin, and any of them can be preferably used.
  • a conventionally well-known additive can also be added to these undercoat layers.
  • the undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating.
  • the coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
  • the method for producing the ultraviolet shielding film of the present invention is not particularly limited, and at least one unit composed of a resin layer, a high refractive index layer, and a low refractive index layer can be formed on the resin support. Any method can be used.
  • the method of laminating the ultraviolet shielding laminate and the resin layer is preferably a film formation method by coating because it can increase the area and preferably contains a water-soluble resin.
  • Application or simultaneous multi-layer application may be used, but simultaneous multi-layer application is preferable because productivity is improved.
  • Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the solvent for preparing the high refractive index layer coating solution, the low refractive index layer coating solution and the resin layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • a water-soluble resin can be used as a suitable resin
  • an aqueous solvent can be used. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%.
  • volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
  • the concentration of the resin in the high refractive index layer coating solution is preferably 0.5 to 10% by mass.
  • the concentration of the metal oxide particles in the high refractive index layer coating solution is preferably 1 to 50% by mass.
  • the concentration of the resin in the low refractive index layer coating solution is preferably 0.5 to 10% by mass.
  • the concentration of the metal oxide particles in the low refractive index layer coating solution is preferably 1 to 50% by mass.
  • the concentration of the resin in the resin layer coating solution is preferably 0.5 to 10% by mass.
  • the method for preparing the high refractive index layer coating solution, the low refractive index layer coating solution, and the resin layer coating solution is not particularly limited.
  • the method of adding and stirring and mixing is mentioned.
  • the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
  • the high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing rutile type titanium oxide having a volume average particle size of 100 nm or less.
  • the temperature of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., and a temperature range of 30 to 45 ° C. Is more preferable.
  • a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is not particularly limited.
  • the preferable temperature range of the coating solution is preferably 5 to 100 mPa ⁇ s, more preferably 10 to 50 mPa ⁇ s.
  • the preferable temperature range of the coating solution is preferably 5 to 1200 mPa ⁇ s, more preferably 25 to 500 mPa ⁇ s. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity of the coating solution at 15 ° C. is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, still more preferably 3,000 to 30,000 mPa ⁇ s, and most preferably 10 , 30,000 to 30,000 mPa ⁇ s.
  • the conditions for the coating and drying method are not particularly limited.
  • a resin layer coating solution heated to 30 to 60 ° C. is coated on the substrate and dried to form a layer.
  • either one of the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer is coated on this layer and dried, and further, the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer
  • the other coating liquid is applied onto this layer and dried to form a laminated film precursor (unit).
  • the number of units necessary for expressing the desired shielding performance is successively applied and dried by the above method to obtain a laminated film precursor.
  • drying it is preferable to dry the formed coating film at 30 ° C. or higher.
  • drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.).
  • hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
  • warm air drying, infrared drying, and microwave drying are used.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the rate-decreasing drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the conditions of the coating and drying method when performing simultaneous multilayer coating are as follows: the resin layer coating solution, the high refractive index layer coating solution, and the low refractive index layer coating solution are heated to 30 to 60 ° C.
  • the temperature of the formed coating film is preferably cooled to 1 to 15 ° C. ( Set) and then drying at 10 ° C. or higher is preferred. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is too short, mixing of the components in the layer may be insufficient. On the other hand, if the set time is too long, the interlayer diffusion of the metal oxide particles proceeds, and the refractive index difference between the high refractive index layer and the low refractive index layer may be insufficient. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
  • the set time is adjusted by adjusting the concentration of the water-soluble resin and the metal oxide particles, and adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the coating thickness of the resin layer coating solution, the coating solution for the high refractive index layer, and the coating solution for the low refractive index layer may be applied so as to have a preferable dry thickness as described above.
  • the ultraviolet shielding film of the present invention has an ultraviolet shielding laminated portion including at least one unit obtained by laminating a high refractive index layer and a low refractive index layer.
  • it has a multilayer optical interference film in which a high refractive index layer and a low refractive index layer are alternately laminated on one side or both sides of a resin support.
  • the total number of layers of the high refractive index layer and the low refractive index layer per side of the resin support is preferably 100 layers or less, more preferably 45 layers or less.
  • the lower limit of the total number of layers of the high refractive index layer and the low refractive index layer per side of the resin support is not particularly limited, but is preferably 5 layers or more.
  • the range of the total number of high refractive index layers and low refractive index layers per side is preferably 7 to 23 layers.
  • the preferable range of the total number of the high refractive index layer and the low refractive index layer is applicable even when laminated on only one side of the resin support, and is simultaneously laminated on both sides of the resin support. Even in cases, it can be adapted.
  • the total number of high refractive index layers and low refractive index layers on one surface of the resin support and the other surface may be the same or different.
  • the lowermost layer and the outermost layer of the ultraviolet shielding laminated part may be either a high refractive index layer or a low refractive index layer.
  • the ultraviolet shielding film of the present invention preferably has a layer structure in which the lowermost layer and the outermost layer are low refractive index layers.
  • the lowermost layer here refers to the lowermost layer when the ultraviolet shielding laminated portion is formed by coating
  • the outermost layer refers to the outermost layer when the ultraviolet shielding laminated portion is formed by coating.
  • the difference in refractive index between at least two adjacent layers is preferably 0.1 or more, more preferably 0.25 or more, and further preferably 0. .3 or more, more preferably 0.35 or more, and most preferably 0.4 or more.
  • the upper limit is not particularly limited, but is usually 1.4 or less.
  • the refractive index difference between the refractive index layers in the ultraviolet shielding film and the required number of layers can be calculated using commercially available optical design software.
  • the refractive index difference between the high refractive index layer and the low refractive index layer is within the range of the preferred refractive index difference. Is preferred. However, for example, when the outermost layer is formed as a layer for protecting the film or when the lowermost layer is formed as an adhesion improving layer with the substrate, the above-mentioned preferable refraction is performed with respect to the outermost layer and the lowermost layer. A configuration outside the range of the rate difference may be used.
  • n ⁇ d wavelength / 4 when viewed as a single layer film
  • the reflected light is controlled to be strengthened by the phase difference.
  • reflectivity can be increased.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the relationship between the average thickness dH of the high refractive index layer and the average thickness dL of the low refractive index layer satisfies the following formulas (1) and (2).
  • the reflectance in the ultraviolet region can be increased.
  • is more preferably 25 nm or less.
  • is not particularly limited, but is preferably 5 nm or more in order to ensure an optical path difference. Further,
  • the wavelength having the maximum reflectance in the spectrum of the ultraviolet shielding film of the present invention is not particularly limited as long as it is in the ultraviolet shielding wavelength region, but is preferably designed to be 350 to 380 nm. This is because light with a wavelength shorter than 340 nm out of 280 nm to 380 nm, which is ultraviolet light harmful to the resin support, is absorbed by high refractive index metal oxides such as titanium oxide and zirconium oxide contained in the high refractive index layer. Alternatively, it is preferable to design the film so that a region of 350 to 380 nm which is difficult to cut with a metal oxide or an ultraviolet absorber can be reflected.
  • the ultraviolet shielding film of the present invention preferably has a high visible light transmittance.
  • a formed body in which an ultraviolet shielding laminated portion is formed on a resin support is prepared, and the average transmittance of the formed body at 400 to 2500 nm is preferably 60% or more, more preferably 70% or more, and 80 % Or more is more preferable.
  • the average reflectance in the ultraviolet region (280 to 400 nm) is preferably 10% or more, and more preferably 20% or more.
  • the refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55.
  • the high refractive index layer preferably has a refractive index of 1.80 to 2.50, more preferably 1.80 to 2.20.
  • each low refractive index layer thickness after drying is preferably 20 to 80 nm, more preferably 30 to 70 nm, and even more preferably 40 to 60 nm.
  • the thickness (thickness after drying) of the high refractive index layer is preferably 40 to 100 nm, more preferably 50 to 90 nm, and more preferably 60 to 80 nm.
  • the total thickness of the ultraviolet shielding film of the present invention is preferably 12 ⁇ m to 315 ⁇ m, more preferably 15 ⁇ m to 200 ⁇ m, and still more preferably 20 ⁇ m to 100 ⁇ m.
  • the ultraviolet shielding film includes at least one unit in which a high refractive index layer and a low refractive index layer are laminated on a resin support.
  • the ultraviolet shielding laminated portion may be formed only on one side of the resin support, or may be formed on both sides. In order to improve the reflectivity of the ultraviolet wavelength, it is preferable that the ultraviolet shielding laminated portion is formed on both surfaces of the resin support.
  • a resin layer may be provided on at least one of the ultraviolet shielding laminated portion and the resin support. Is preferably provided.
  • the ultraviolet shielding film is an easy adhesion layer (adhesive layer), a hard coat layer, UV absorber-containing layer, conductive layer, antistatic layer, gas barrier layer, antifouling layer, deodorant layer, drip layer, slippery layer, wear resistant layer, antireflection layer, electromagnetic wave shielding layer, infrared absorbing layer, Printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, adhesive layer, infrared cut layer (metal layer, liquid crystal layer), colored layer (visible light absorbing layer), interlayer film layer used for laminated glass, etc.
  • One or more functional layers may be included.
  • a hard coat layer on the ultraviolet shielding laminated portion for the purpose of protecting the ultraviolet shielding laminated portion from scratches and the like. That is, a preferred embodiment of the present invention is an ultraviolet shielding film having a hard coat layer disposed on the ultraviolet light incident side with respect to the ultraviolet shielding laminated portion.
  • the ultraviolet shielding film preferably contains an ultraviolet absorber.
  • an ultraviolet absorber As a form which contains a ultraviolet absorber in a film, you may make it contain in a resin layer as mentioned above, and you may provide a ultraviolet absorber content layer separately.
  • the arrangement position of the ultraviolet absorber-containing layer is not particularly limited, but the resin layer and the resin support are capable of absorbing the ultraviolet rays that do not hinder the incidence of ultraviolet rays to the ultraviolet shielding laminated portion and are not completely shielded by the ultraviolet shielding laminated portion. It is preferable to arrange
  • the surface roughness (center line average roughness: Ra) of the layer adjacent to the resin layer is preferably less than 0.1 ⁇ m.
  • the film thickness of the refractive index layer of the ultraviolet shielding film is thinner than the film thickness of the refractive index layer of the film that shields a wavelength region having a longer wavelength than the ultraviolet region. For this reason, when the surface roughness of the resin layer side surface of the lower layer of the resin layer is 0.1 ⁇ m or more, it is difficult to smoothly laminate the refractive index layers, which may affect the optical characteristics.
  • an adhesive layer is usually interposed between the resin support and the ultraviolet shielding laminated portion.
  • the surface roughness of the resin layer is less than 0.1 ⁇ m.
  • the adhesive layer described in the column of the following ultraviolet absorber content layer can be used as an adhesive layer.
  • the surface roughness of the resin layer side surface of the lower layer of the resin layer is usually 0.01 ⁇ m or more.
  • the ultraviolet shielding film preferably has at least a hard coat layer.
  • the curable resin used in the hard coat layer examples include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because of easy molding.
  • Such curable resins can be used singly or in combination of two or more.
  • the curable resin a commercially available product may be used, or a synthetic product may be used.
  • the active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. Is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin, an electron beam curable resin, and the like, and an ultraviolet curable resin that is cured by ultraviolet irradiation is preferable.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
  • the UV curable urethane acrylate resin generally includes 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in addition to a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It is easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It is done.
  • the UV curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxyl group at the end of the polyester (see, for example, JP-A No. 1987-101). 59-151112).
  • the ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • UV curable polyol acrylate resins are ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol. It is obtained by reacting monomers such as pentaacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate and the like.
  • thermosetting resins include inorganic materials typified by polysiloxane.
  • the starting material of the polysiloxane hard coat is represented by the general formula RmSi (OR ′) n.
  • a state in which a hydrolyzable group such as methoxy group or ethoxy group is substituted with a hydroxyl group is generally referred to as a polyorganosiloxane hard coat.
  • a hydrolyzable group such as methoxy group or ethoxy group
  • a hard coat is formed by curing and crosslinking.
  • these polyorganosiloxane hard coats those having an organic group that is not eliminated by hydrolysis are methyl groups have the highest weather resistance. Moreover, if it is a methyl group, since the methyl group is uniformly and densely distributed on the surface after the hard coat film formation, the falling angle is also low. Therefore, in this application, it is preferable to use methylpolysiloxane.
  • the thickness is preferably 1 to 5 ⁇ m, and more preferably 1.5 to 3 ⁇ m.
  • polyorganosiloxane hard coat examples include Surcoat Series (manufactured by Doken), SR2441 (Toray Dow Corning), KF-86 (Shin-Etsu Silicone), Perma-New (registered trademark) 6000 (California Hardcoating Company). Etc. can be used.
  • the blending amount of the cured resin in the hard coat layer is preferably 20 to 100% by mass and more preferably 30 to 99% by mass with respect to 100% by mass (in terms of solid content) of the hard coat layer. preferable.
  • benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl methyl ketal and the like Alkyl ethers; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone (trade name Irgacure 184; BASF), 2-methyl-1 [4- (methylthio) phenyl] -2-mori Acetophenones such as folinopropan-1-one (trade name Irgacure 907; BASF); anthraquinones such as methylanthraquinone, 2-ethylanthraquinone and 2-amylanthraquinone; thioxanthone, 2,4-diethylthioxanthone, 2 Thioxanthone
  • tertiary amines such as triethanolamine and methyldiethanolamine
  • photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate
  • the use amount of these radical polymerization initiators is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable component of the resin.
  • the thickness of the hard coat layer is preferably 0.1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, and more preferably 3 to 10 ⁇ m. If it is 0.1 ⁇ m or more, the hard coat property tends to be improved, and if it is 20 ⁇ m or less, the curl of the hard coat layer is large and the bending resistance tends to be lowered.
  • the hard coat layer can be produced by applying a cured resin layer forming composition (coating solution) by wire bar coating, spin coating or dip coating, and can also be produced by a dry film forming method such as vapor deposition. it can.
  • the composition (coating liquid) can be applied and formed into a film by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater.
  • a heat treatment is required for 30 minutes to several days at a temperature of 50 ° C. or more and 150 ° C. or less in order to promote curing and crosslinking of the hard coat. To do.
  • the treatment In consideration of the heat resistance of the coated substrate and the stability of the substrate when it is made into a roll, it is preferable to perform the treatment at 40 ° C. or more and 80 ° C. or less for 2 days or more.
  • the reactivity varies depending on the irradiation wavelength, the illuminance, and the light amount of the active energy ray, and therefore it is necessary to select an optimum condition depending on the resin to be used.
  • the composition for forming the cured resin layer may contain a solvent, or may be appropriately contained and diluted as necessary.
  • the organic solvent contained in the coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), It can be appropriately selected from esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used.
  • an anchor layer (primer layer) can be formed before laminating the cured resin layer.
  • the thickness of the anchor layer is not particularly limited, but is about 0.1 to 10 ⁇ m.
  • the resin constituting the anchor layer include polyvinyl acetal resin and acrylic resin.
  • the ultraviolet absorber-containing layer may be in any form as long as it contains an ultraviolet absorber.
  • the adhesive layer contains an ultraviolet absorber.
  • the pressure-sensitive adhesive constituting the adhesive layer is not particularly limited.
  • acrylic pressure-sensitive adhesive, urethane acrylate pressure-sensitive adhesive, silicone pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyvinyl butyral pressure-sensitive adhesive, ethylene-vinyl acetate pressure-sensitive adhesive An agent etc. can be illustrated.
  • the adhesive layer containing an acryl-urethane copolymer resin and a crosslinking agent (preferably 2 or more types) is used preferably.
  • the acrylic / urethane copolymer resin can be obtained by reacting a polyvalent isocyanate compound or polyurethane having an isocyanate group with an acrylic monomer.
  • acrylic monomers used for acrylic / urethane copolymer resins include alkyl acrylates (alkyl groups such as methyl, ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.), alkyl Methacrylate (Methyl, ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.
  • the copolymerization ratio of N-methylolacrylamide is preferably 0.5 to 5% by mass in terms of copolymerizability and the degree of crosslinking, and more preferably 1 to 3% by mass in view of the coating appearance.
  • the crosslinking agent include melamine crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolized or alkylolized urea, acrylamide, polyamide resin, oxazoline crosslinking agent, and carbodiimide.
  • Cross-linking agents various silane coupling agents, various titanate coupling agents and the like can be used. It is preferable that at least one of the crosslinking agents contains an oxazoline-based crosslinking agent and a carbodiimide-based crosslinking agent.
  • the ultraviolet absorber is not particularly limited, and examples of the organic type include benzophenone type, benzotriazole type, phenyl salicylate type, triazine type, hindered amine type, benzoate type, etc., and inorganic types include titanium oxide, zinc oxide, and oxide. Examples include cerium and iron oxide.
  • a high molecular weight ultraviolet absorber having a weight average molecular weight of 1000 or more.
  • the weight average molecular weight is preferably 1000 or more and 3000 or less.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorbers examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol], 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, and the like.
  • Commercially available products include “LA31” from ADEKA Corporation, “Tinubin 234” from BASF, and the like.
  • Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • Examples of commercially available products include “SEASORB 201” and “SEASORB 202” manufactured by Sipro Kasei Co., Ltd., “CHEMISORB 21” and “CHEMISORB 22” manufactured by Chemipro Kasei.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • Examples of commercially available products include “LA-46” manufactured by Adeka, “Tinubin 1577ED”, “Tinubin 400”, “Tinubin 405”, “Tinubin 460”, “Tinubin 477”, and “Tinubin 479” manufactured by BASF. .
  • benzoate-based ultraviolet absorber examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; examples of commercially available products) Sumisorb 400) from Sumitomo Chemical Co., Ltd.
  • the ultraviolet absorber a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination.
  • quenchers light stabilizers acting as a light energy conversion agent
  • each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary.
  • an ultraviolet absorber other than the above-described ultraviolet absorber for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
  • the content of the ultraviolet absorber in the ultraviolet absorber-containing layer is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass.
  • the thickness of the ultraviolet absorber-containing layer is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the ultraviolet shielding film of the present invention can be applied to a wide range of fields, and its use is not particularly limited.
  • UV shielding films are useful, but UV shielding films do not block the necessary visible light (the visible light transmittance is difficult to decrease), and are environmentally resistant for long-term use and long-term storage. There is a demand for a surface protective film excellent in the above.
  • the ultraviolet shielding film of the present invention is useful as a protective film for solar cells because of its excellent weather resistance and low visible light transmittance.
  • the flexible solar cell As one form of the solar cell. Since the flexible solar cell can form a curved surface, the flexible solar cell is configured so that it can be installed in a place where it cannot be applied to a crystalline silicon type battery manufactured using a glass plate. Moreover, since it is flexible, application to the portable use which can be rounded and folded is considered.
  • a film used to make a flexible solar cell an expensive fluorine-based film must be used, and when a fluorine-based film is used as a cover film, the film is used to prevent water vapor transmission. It was necessary to increase the thickness of the film or to use a plurality of films.
  • the UV shielding film of the present invention is useful as a protective film.
  • Image display media used for marking films used on the surfaces of exterior signage surface protection films, railway vehicles, automobiles, vending machines, etc. are dyes and inks made of ultraviolet rays. It is easy to fade. In addition, these image display media are often used outdoors for a long time, and exposure to ultraviolet rays is large.
  • the ultraviolet shielding film of the present invention is useful as a protective film for such an image display medium.
  • the ultraviolet shielding film of the present invention can be used for the purpose of ultraviolet sterilization. That is, a preferred embodiment of the present invention is an ultraviolet shielding film for ultraviolet sterilization.
  • Ultraviolet rays have a higher energy than other types of sunlight, and thus affect various things and the human body.
  • the sterilizing action of ultraviolet rays has been well known.
  • High-power, high-performance UV sterilization lamps have been developed, and sterilization by ultraviolet rays is used in various fields such as food and medicine.
  • Many devices for sterilization using an ultraviolet lamp have been developed.
  • the irradiation area is limited, and a power source is required to operate the lamp, and the places where it can be used are limited.
  • the ultraviolet shielding film of the present invention is flexible and is a polymer film, the shape can be changed with light weight. Moreover, if the ultraviolet rays contained in sunlight can be used, ultraviolet sterilization is possible without the need for a power supply or lamp replacement.
  • the ultraviolet shielding film of the present invention preferably includes metal oxide particles that absorb ultraviolet rays having a short wavelength from around 340 nm, such as titanium oxide particles and zirconium oxide particles, in the ultraviolet shielding laminated portion. As described above, ultraviolet light having a wavelength longer than 340 nm is reflected by the interface between the high refractive index layer and the low refractive index layer of the ultraviolet shielding laminated portion.
  • ultraviolet light having a wavelength longer than 340 nm is used for ultraviolet sterilization.
  • the effect of the UV shielding film is that the UV light harmful to the polymer reflects light of the wavelength used for UV sterilization, and the more harmful UV light from near 340 nm is absorbed by the metal oxide particles. Compared to the case where it is not contained, the ultraviolet durability is high.
  • the ultraviolet shielding film of the present invention is also suitably used in a light collecting device (solar thermal power generation) that reflects sunlight by a reflector (mirror) and condenses it in one place.
  • Such a resinous light reflecting film preferably has a reflective metal layer (metal vapor deposition film) in order to reflect light in a wide wavelength range. That is, when used as a solar reflective film, the ultraviolet shielding film of the present invention preferably has a reflective metal layer (metal vapor deposition film) in addition to the resin support, the resin layer, and the ultraviolet shielding laminate. Furthermore, as a metal vapor deposition film, the thing which has silver with favorable sunlight reflectivity as a main component is preferable.
  • Preparation of coating solution (Preparation of coating liquid L1 for low refractive index layer) While heating and stirring 10 parts by weight of 3% by weight boric acid aqueous solution at 45 ° C., a 5% by weight aqueous solution of polyvinyl alcohol (PVA-117H, polymerization degree 1700, saponification degree 99.5 mol%, manufactured by Kuraray Co., Ltd.) 80 After adding parts by mass, 1 part by mass of a 1% by weight aqueous solution of a surfactant (Lapisol A30, manufactured by NOF Corporation) was added, and 9 parts by mass of pure water was added to prepare a coating solution L1 for a low refractive index layer. .
  • PVA-117H polyvinyl alcohol
  • a surfactant Liapisol A30, manufactured by NOF Corporation
  • the single-film refractive index of the coating liquid L1 for the low refractive index layer was 1.50. In addition, the measurement of refractive index was described below.
  • coating liquid L2 for low refractive index layer 22.5 parts by mass of colloidal silica (Snowtex OS, manufactured by Nissan Chemical Industries, solid content 20% by mass, average particle size 9.5 nm), 22.5 parts by mass of pure water, polyoxyalkylene dispersant (Marialim AKM- After adding 10 parts by weight of a 5% by weight aqueous solution of 0531, manufactured by NOF Corporation, and 10 parts by weight of a 3% by weight aqueous boric acid solution, the mixture was heated to 45 ° C.
  • colloidal silica Snowtex OS, manufactured by Nissan Chemical Industries, solid content 20% by mass, average particle size 9.5 nm
  • polyoxyalkylene dispersant Malarialim AKM- After adding 10 parts by weight of a 5% by weight aqueous solution of 0531, manufactured by NOF Corporation, and 10 parts by weight of a 3% by weight aqueous boric acid solution, the mixture was heated to 45 ° C.
  • polyvinyl alcohol JC-25 (degree of polymerization) 2500, a saponification degree of 99.5 mol%, manufactured by Nippon Bijutsu Poval Co., Ltd.
  • JM-17 polymerization degree of 1700, a saponification degree of 96.4 mol%, manufactured by Nihon Acetate Bipoval Co., Ltd.
  • JP-15 polymerization degree
  • the single film refractive index of the coating liquid L2 for the low refractive index layer was 1.45.
  • the single-film refractive index of the coating liquid L3 for the low refractive index layer was 1.40.
  • silica-attached titanium dioxide sol After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size 5 nm, rutile type titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.), the mixture was heated to 90 ° C. . Subsequently, 1.3 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 2.0% by mass) was gradually added. In an autoclave, heat treatment was performed at 175 ° C.
  • Titanium sol (hereinafter, silica-attached titanium dioxide sol) was obtained in a solid content concentration of 20% by mass.
  • a rate layer coating solution H1 was prepared.
  • the single film refractive index of the coating liquid H1 for the high refractive index layer was 1.95.
  • the single-film refractive index of the coating liquid H2 for the high refractive index layer was 1.85.
  • Example 1 (Preparation of sample 1) Using a slide hopper coating apparatus capable of coating 21 layers, the low refractive index layer coating liquids L1 and L2 and the high refractive index layer coating liquid H1 are heated to 45 ° C. and heated to 45 ° C. On the polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesion layer), so that L1 is in contact with the polyethylene terephthalate film, then H1 is on L1, and H1 and L2 are alternated, Simultaneous multi-layer coating was performed. Immediately after coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to prepare Sample 1 having 21 layers. Therefore, the layer to which the coating liquid L1 for low refractive index layer is applied becomes a resin layer (a form in which the resin layer is formed adjacent to the ultraviolet shielding laminated portion).
  • a resin layer a form in which the resin layer is formed adjacent to the ultraviolet shielding
  • the polyethylene terephthalate film had an average transmittance in the visible light region (400 to 800 nm) of 89% and an average transmittance in the infrared light region (800 to 1400 nm) of 88%.
  • the film thickness after drying is 0.5 ⁇ m for the layer coated with the coating liquid L1 for the low refractive index layer, the layer coated with the coating liquid L2 for the low refractive index layer is 64 nm for each layer, and the layer coated with the coating liquid H1 for the high refractive index. Each layer was 47 nm.
  • Example 2 (Preparation of sample 2) Sample 2 was prepared in the same manner as Sample 1 except that the coating liquid extrusion pump flow rate was changed.
  • the film thickness after drying is 0.5 ⁇ m for the layer coated with the coating liquid L1 for the low refractive index layer, the layer coated with the coating liquid L2 for the low refractive index layer is 64 nm for each layer, and the layer coated with the coating liquid H1 for the high refractive index.
  • Each layer was 42 nm.
  • Example 3 (Preparation of sample 3) Sample 3 was prepared in the same manner as Sample 1, except that the coating liquid extrusion pump flow rate of the low refractive index layer coating liquid L1 was changed. The film thickness after drying was 0.8 ⁇ m for the layer coated with the coating solution L1 for the low refractive index layer.
  • Example 4 (Preparation of sample 4) Sample 4 was produced in the same manner as Sample 1 except that the coating liquid extrusion pump flow rate of the coating liquid L1 for the low refractive index layer was changed. The film thickness after drying was 1.0 ⁇ m for the layer coated with the coating solution L1 for the low refractive index layer.
  • Example 5 (Preparation of sample 5) An acrylic / urethane copolymer resin easy-adhesive layer containing 1% by mass of an ultraviolet absorber tinuvin 477 (manufactured by BASF) as an ultraviolet absorber-containing layer on the surface of a 50 ⁇ m thick polyethylene terephthalate film instead of a polyethylene terephthalate film having a thickness of 50 ⁇ m Sample 5 was prepared in the same manner as Sample 1 except that a resin support formed by coating so as to have a dry film thickness of 1 ⁇ m was used.
  • an ultraviolet absorber tinuvin 477 manufactured by BASF
  • a reaction vessel equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas inlet tube is 320.3 parts of polycarbonate diol having a molecular weight of 1000 (product name: Nippon Polan 981 manufactured by Nippon Polyurethane Industry Co., Ltd.), isophorone diisocyanate (Sumitomo Bayer Urethane Co., Ltd.) Product name: Dismodule I) 75.1 parts and 500 parts of toluene were added and reacted in a nitrogen atmosphere at 80 ° C. for 6 hours or more.
  • the mixture was reacted at the same temperature for 6 hours to obtain an acrylic / urethane copolymer resin solution having a resin solid content concentration of 35%, a viscosity of 4000 mPa ⁇ s (25 ° C.), and a weight average molecular weight of 84000.
  • Example 6 (Preparation of sample 6) Instead of a polyethylene terephthalate film having a thickness of 50 ⁇ m, a UV absorber Tinuvin 477 (manufactured by BASF) is used as a UV absorber-containing layer on the surface of a polyethylene naphthalate (PEN film) having a thickness of 100 ⁇ m (Teonex Q51 made by Teijin DuPont Films). Sample 6 was prepared in the same manner as Sample 1, except that a resin support formed by coating an acrylic / urethane copolymer resin easy-adhesion layer containing 1% by dry weight to a thickness of 1 ⁇ m was used.
  • PEN film polyethylene naphthalate
  • Sample 6 was prepared in the same manner as Sample 1, except that a resin support formed by coating an acrylic / urethane copolymer resin easy-adhesion layer containing 1% by dry weight to a thickness of 1 ⁇ m was used.
  • the PEN film had an average transmittance in the visible light region (400 to 800 nm) of 86% and an average transmittance in the infrared light region (800 to 1400 nm) of 85%.
  • Example 7 (Preparation of sample 7)
  • the curable resin liquid described below is applied to the surface of the ultraviolet reflection laminated portion of sample 1 with a die coater, dried for 1 minute in a drying furnace having an average temperature of 85 ° C., and then the illuminance of the irradiated portion is 100 mW / Sample 7 was prepared in the same manner as Sample 1 except that the curable resin liquid coating layer was cured at cm 2 with an irradiation dose of 0.5 J / cm 2 to form a hard coat layer with a dry film thickness of 3 ⁇ m.
  • (Curable resin liquid) 165 parts by mass of MEK (methyl ethyl ketone) was mixed with 100 parts by mass of dipentaerythritol hexaacrylate (A-DPH solid content 100%, manufactured by Shin-Nakamura Chemical Co., Ltd.) and stirred.
  • As a curing initiator 5 parts by mass of Irgacure 907 (manufactured by BASF) was added to obtain a curable resin liquid having a viscosity of 5 mPa ⁇ s.
  • Example 8 (Preparation of sample 8) Using a slide hopper coating apparatus capable of coating 21 layers, the low refractive index layer coating liquids L1 and L3 and the high refractive index layer coating liquid H2 are heated to 45 ° C. and heated to 45 ° C. On the polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesion layer), L1 is in contact with the polyethylene terephthalate film, then H2 is on L1, and H2 and L3 are alternately arranged. Simultaneous multi-layer coating was performed. Immediately after coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to prepare Sample 8 consisting of 21 layers.
  • Toyobo A4300 double-sided easy-adhesion layer
  • the film thickness after drying is 0.5 ⁇ m for the layer coated with the coating liquid L1 for the low refractive index layer, the layer coated with the coating liquid L3 for the low refractive index layer is 66 nm, and the layer coated with the coating liquid H2 for the high refractive index.
  • Each layer was 50 nm.
  • the average saponification degree of polyvinyl alcohol in the low refractive index layer liquid L3 is 89.9 mol%, and the average saponification degree of polyvinyl alcohol in H2 of the coating liquid for high refractive index is 88.0 mol%.
  • the difference in the average saponification degree of each refractive index layer is 1.9 mol%.
  • Example 9 (Preparation of sample 9) Sample 9 was prepared in the same manner as Sample 8, except that the coating liquid extrusion pump flow rate was changed.
  • the film thickness after drying is 0.5 ⁇ m for the layer coated with the coating solution L1 for the low refractive index layer, the layer coated with the coating solution L3 for the low refractive index layer is 59 nm, and the layer coated with the coating solution H2 for the high refractive index. Each layer was 45 nm.
  • Comparative Example 1 (Preparation of sample 10) Polyethylene terephthalate with a thickness of 50 ⁇ m heated to 45 ° C. while keeping the low refractive index layer coating solution L2 and the high refractive index layer coating solution H1 at 45 ° C. using a slide hopper coating device capable of coating 21 layers.
  • a slide hopper coating device capable of coating 21 layers.
  • On the film Toyobo's A4300: double-sided easy-adhesion layer), a total of 21 layers were coated alternately so that the dry film thickness was 71 nm for each low refractive index layer and 53 nm for each high refractive index layer. Went.
  • Sample 10 is an example that does not have a resin layer of 0.5 ⁇ m or more.
  • Comparative Example 2 (Preparation of sample 11)
  • Sample 11 was prepared in the same manner as Sample 1 except that the coating liquid extrusion pump flow rate was changed and the thickness of the layer coated with coating liquid L1 for low refractive index layer was changed to 0.3 ⁇ m. did.
  • Comparative Example 3 (Preparation of sample 12) Using the same material as that of Example 1 of JP 2011-521289, an ultraviolet reflective film was manufactured by the same manufacturing method as that of Example 6 of JP 2011-521289.
  • PEN Polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • the optical film was formed with a birefringent layer formed from PEN and a second polymer layer formed from PMMA.
  • PEN and PMMA were coextruded through a multilayer polymer melt manifold to form a multilayer melt stream having 275 alternating layers of birefringent layers and second polymer layers.
  • a pair of non-optical layers, also consisting of PEN were coextruded as a protective surface layer on either side of the optical layer stack.
  • This multilayer coextrusion melt stream was cast onto a chill roll at 22 meters per minute to form a multilayer molded web about 300 ⁇ m thick.
  • the multilayer molded web was then heated at 135 ° C. for 10 seconds in a tenter oven before being biaxially oriented for a stretch ratio of 3.8 ⁇ 3.8.
  • the oriented multilayer film was further heated to 225 ° C. for 10 seconds to increase the crystallinity of the PEN layer.
  • Sample 13 was prepared in the same manner as Sample 1 except that Sample 1 was coated with the low refractive index layer coating liquid L2 instead of the low refractive index layer coating liquid L1.
  • the refractive index was determined according to the following method. Using Hitachi spectrophotometer U-4100 (solid sample measurement system), the surface opposite to the measurement surface (back surface) of each sample is roughened and then light absorption is performed with a black spray. Then, the reflection of light on the back surface was prevented, the reflectance at 550 nm was measured under the condition of regular reflection at 5 degrees, the average value was obtained, the average reflectance was obtained from the result, and the refractive index was further obtained.
  • the transmittance, the 5-degree regular reflectance and the transmittance on the light incident surface side of the produced laminated film were measured.
  • the spectrophotometer U-4100 (solid sample measurement system) manufactured by Hitachi was used for the measurement. Both the transmittance and reflectance were measured in the wavelength range of 300 to 2000 nm.
  • the produced laminated film is allowed to stand for 30 days in an environment at a temperature of 85 ° C. and a relative humidity of 85%, and then irradiated with a xenon lamp (using a Suga Tester SX75, a black panel temperature of 63 ° C.). , Radiation intensity 180 W / m 2 , 5000 hours) in an environment with a relative humidity of 50%.
  • the specular reflectance and transmittance are measured at 5 degrees in the same manner as described above, and the initial spectrum is compared in terms of spectrum shift, maximum transmittance and maximum reflectance, and according to the following evaluation.
  • the film was evaluated.
  • the number of peeled grids is 1 or more and 5 or less 3: The number of peeled grids is 6 or more and 10 or less 2: Stripped grids The number is 11 or more and 20 or less 1: The number of peeled grids is 21 or more (Evaluation of scratch resistance) Using a friction and wear tester (Tribo Station TYPE: 32, moving speed 4000 mm / min.) Using Shinto Kagaku Co., Ltd. A load of 2 was applied and 20 reciprocations were made over a length of 10 cm. The scratch resistance evaluation of the ultraviolet shielding film was evaluated according to the following criteria.
  • Scratches are not recognized at all 4: 1 cm or more scratches are 1 or more and 5 or less 3: 1 cm or more scratches are 6 or more and 10 or less 2: 1 cm or more The number of scratches is 11 or more and 20 or less. The number of scratches of 1: 1 centimeter or more is 21 or more. Table 1 shows the evaluation results. In addition, it can be said that it is favorable if the evaluation rank is 3 or more in each evaluation.
  • Comparative Example 1 contains a metal oxide in the coating layer in contact with the polymer film located below the reflective layer, and the ultraviolet rays that could not be reflected reacted with the metal oxide to oxidize the polymer film. It is considered that the deterioration of the polymer film caused yellowing, resulting in a spectral shift, a decrease in transmittance, and a decrease in reflectance.
  • Comparative Example 2 had a resin layer but did not satisfy the thickness specified in the present invention, and discoloration of the polyethylene terephthalate film occurred, resulting in a spectral shift, a decrease in transmittance, and a decrease in reflectance. This is presumably because the oxygen atoms bonded to the metal oxide particles contained in the ultraviolet shielding laminate were desorbed and promoted the oxidative deterioration of the adjacent polyethylene terephthalate film.
  • Comparative Example 3 is an ultraviolet reflective film in a film laminate, in which the ultraviolet shielding laminate does not contain a water-soluble resin. Comparative Example 3 did not show the desired performance in any of the evaluation items.
  • Comparative Example 4 had a resin-containing layer but contained metal particles, so that discoloration of the polyethylene terephthalate film occurred, causing a spectral shift, a decrease in transmittance, and a decrease in reflectance. This is considered to be because the metal oxide particles in the resin-containing layer promoted the oxidative deterioration of the adjacent polyethylene terephthalate film.

Abstract

[Problem] The purpose of the present invention is to provide an ultraviolet shielding film which exhibits excellent ultraviolet shielding performance and maintains good light reflection characteristics even after being irradiated with sunlight or the like. [Solution] An ultraviolet shielding film which comprises a resin supporting body and an ultraviolet shielding multilayer part that contains at least one unit wherein a high refractive index layer and a low refractive index layer are laminated. The high refractive index layer and/or the low refractive index layer contains a water-soluble resin and metal oxide particles, and a resin layer that substantially contains no metal oxide particles and has a film thickness of 0.5 μm or more is provided between the resin supporting body and the ultraviolet shielding multilayer part.

Description

紫外線遮蔽フィルムUV shielding film
 本発明は、紫外線遮蔽フィルムに関するものである。 The present invention relates to an ultraviolet shielding film.
 太陽光線の中で、波長約10~400nmの領域に含まれる紫外線は、波長の長い可視光線や赤外線よりもエネルギーが大きく、たとえばプラスチックや有機化合物などの分子結合を励起したり、切断するのと同等の強度のエネルギーを有している。このため、紫外線は、各種製品に含まれる高分子材料等の変退色を招き、また強度低下を引き起こす原因となっている。 Among the sun rays, ultraviolet rays contained in the region of a wavelength of about 10 to 400 nm have higher energy than visible rays and infrared rays having a long wavelength, and excite molecular bonds such as plastics and organic compounds or break them. It has energy of the same strength. For this reason, ultraviolet rays cause discoloration and discoloration of polymer materials and the like contained in various products, and cause a decrease in strength.
 このため、紫外線から部材を保護するために、従来より樹脂支持体の基材表面に有機紫外線吸収剤を含有する層を配置した紫外線遮蔽フィルムが用いられている。 For this reason, in order to protect the member from ultraviolet rays, an ultraviolet shielding film in which a layer containing an organic ultraviolet absorber is disposed on the surface of the base material of the resin support has been conventionally used.
 しかしながら、有機紫外線吸収剤を含有するフィルムにおいては、樹脂との相溶性不良に起因する、「ブリードアウト」と呼ばれる現象が起きる。ブリードアウトは、紫外線吸収剤が表面に浮き出る現象をいう。ブリードアウトが起きると、フィルムの白濁、表面ざらつきといった外観不良のほか、紫外線吸収剤が樹脂の外へと流出するため、紫外線保護機能が失われる。このため紫外線遮蔽フィルムに利用できる有機紫外線吸収剤は樹脂との相溶性により制約されることが多い。 However, in a film containing an organic ultraviolet absorber, a phenomenon called “bleed out” occurs due to poor compatibility with the resin. Bleed-out refers to a phenomenon in which an ultraviolet absorber floats on the surface. When bleed-out occurs, the UV protection function is lost because the UV absorber flows out of the resin as well as poor appearance such as cloudiness and surface roughness of the film. For this reason, the organic ultraviolet absorber which can be used for the ultraviolet shielding film is often restricted by the compatibility with the resin.
 最近では、有機の紫外線吸収剤の代替材料として金属酸化物粒子を使用する場合もよく知られている。 Recently, it is well known that metal oxide particles are used as an alternative material for organic ultraviolet absorbers.
 国際公開第00/27771号では、チタニアおよびシリカをスパッタリングにより積層させたチタニアとシリカとの交互積層層を有する紫外線遮蔽フィルムが記載されている。しかしながら、スパッタ等のドライ製膜法は製造コストが高く、大面積化が困難であり、耐熱性素材に限定される等の課題がある。また、金属酸化物粒子の吸収波長は固有であり、制御できないため、所望の紫外線波長を反射するフィルムを作製することは難しい。例えば、樹脂支持体がポリエチレンテレフタレートの場合、360nm以下の短波長の吸収波長を吸収し、該吸収によりフィルムが黄変するが、チタニアの吸収波長は340nmまでの短波長であり、ポリエチレンテレフタレートフィルムに対する紫外線吸収能が十分ではないため、樹脂支持体の黄変が進行する。 International Publication No. 00/27771 describes an ultraviolet shielding film having an alternately laminated layer of titania and silica in which titania and silica are laminated by sputtering. However, dry film forming methods such as sputtering have high manufacturing costs, are difficult to increase in area, and are limited to heat-resistant materials. Moreover, since the absorption wavelength of metal oxide particles is unique and cannot be controlled, it is difficult to produce a film that reflects a desired ultraviolet wavelength. For example, when the resin support is polyethylene terephthalate, it absorbs a short absorption wavelength of 360 nm or less, and the film turns yellow due to the absorption, but the absorption wavelength of titania is a short wavelength up to 340 nm. Since the ultraviolet absorbing ability is not sufficient, yellowing of the resin support proceeds.
 そこで紫外線遮蔽部を樹脂を用いた塗布法で作製する方法が用いられるようになってきた。例えば、国際公開第2011/062836号では、屈折率の異なる2種のポリマー層を交互に組み合わせて紫外線を反射する層を形成している。これによるとポリマー層の膜厚や層数の制御により、紫外線遮蔽領域を容易に設定することができ、フィルムを延伸することで大面積化も可能である。この製法はポリマーのガラス転移点付近に加熱し延伸する点が特徴である。 Therefore, a method of producing an ultraviolet shielding part by a coating method using a resin has come to be used. For example, in International Publication No. 2011/062836, a layer that reflects ultraviolet rays is formed by alternately combining two types of polymer layers having different refractive indexes. According to this, the ultraviolet shielding region can be easily set by controlling the film thickness and the number of layers of the polymer layer, and the area can be increased by stretching the film. This production method is characterized by heating and stretching near the glass transition point of the polymer.
 しかしながら、上記国際公開第2011/062836号に記載のフィルムでは、光照射により樹脂支持体の酸化劣化が促進され、フィルムの光学スペクトルが変化し、最大反射率が低下することがわかった。また、上記国際公開第2011/062836号に記載のフィルムでは、光照射により遮蔽フィルム内での樹脂支持体とポリマー層との密着性が低下する場合があった。 However, it was found that in the film described in International Publication No. 2011/062836, the oxidative deterioration of the resin support was promoted by light irradiation, the optical spectrum of the film was changed, and the maximum reflectance was lowered. In addition, in the film described in International Publication No. 2011/062836, the adhesiveness between the resin support and the polymer layer in the shielding film may be reduced due to light irradiation.
 本発明は上記の事情に鑑みてなされたものであり、本発明の一目的は、紫外線遮蔽性に優れ、さらに太陽光等の照射を受けても良好な光反射特性を維持する紫外線遮蔽フィルムを提供することである。また、本発明の他の目的は、樹脂支持体と紫外線遮蔽部との密着性が高い紫外線遮蔽フィルムを提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultraviolet shielding film that has excellent ultraviolet shielding properties and maintains good light reflection characteristics even when irradiated with sunlight or the like. Is to provide. Another object of the present invention is to provide an ultraviolet shielding film having high adhesion between the resin support and the ultraviolet shielding portion.
 本発明の上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した紫外線遮蔽フィルムは以下を有する;樹脂支持体、および高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む紫外線遮蔽積層部を有する紫外線遮蔽フィルムであって、前記高屈折率層および前記低屈折率層の少なくとも一層は水溶性樹脂および金属酸化物粒子を含み、前記樹脂支持体と前記紫外線遮蔽積層部との間に、金属酸化物粒子を実質的に含まずかつ膜厚が0.5μm以上である樹脂層が設けられてなる、紫外線遮蔽フィルム。 In order to achieve at least one of the above-described objects of the present invention, an ultraviolet shielding film reflecting one aspect of the present invention includes: a resin support, and a laminate of a high refractive index layer and a low refractive index layer An ultraviolet shielding film having an ultraviolet shielding laminated portion including at least one unit, wherein at least one of the high refractive index layer and the low refractive index layer contains a water-soluble resin and metal oxide particles, and the resin support And an ultraviolet shielding film in which a resin layer substantially not containing metal oxide particles and having a film thickness of 0.5 μm or more is provided between the ultraviolet shielding laminate.
紫外線遮蔽フィルムの一実施形態の断面概略図である。図1において、1は紫外線遮蔽フィルム、2は基材(樹脂支持体)、3は樹脂層、4は紫外線遮蔽積層部を示す。It is a section schematic diagram of one embodiment of an ultraviolet shielding film. In FIG. 1, 1 is an ultraviolet shielding film, 2 is a substrate (resin support), 3 is a resin layer, and 4 is an ultraviolet shielding laminate.
 本発明の一実施形態は、樹脂支持体、および高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む紫外線遮蔽積層部を有する紫外線遮蔽フィルムであって、前記高屈折率層および前記低屈折率層の少なくとも一層は水溶性樹脂および金属酸化物粒子を含み、前記樹脂支持体と前記紫外線遮蔽積層部との間に、金属酸化物粒子を実質的に含まずかつ膜厚が0.5μm以上である樹脂層が設けられてなる、紫外線遮蔽フィルムである。 One embodiment of the present invention is an ultraviolet shielding film having an ultraviolet shielding laminated portion including at least one unit obtained by laminating a resin support and a high refractive index layer and a low refractive index layer, the high refractive index layer And at least one layer of the low refractive index layer contains a water-soluble resin and metal oxide particles, and does not substantially contain metal oxide particles and has a film thickness between the resin support and the ultraviolet shielding laminate. It is an ultraviolet shielding film provided with a resin layer of 0.5 μm or more.
 上述したように、国際公開第2011/062836号に記載のような屈折率の異なる2種のポリマー層を交互に組み合わせて延伸させた紫外線遮蔽フィルムは、長時間の光照射により、光学特性が著しく低下することを本発明者は見出した。国際公開第2011/062836号に記載のフィルムは、ポリマーのガラス転移点付近に加熱し延伸してフィルムを製造している。ポリマーをガラス転移点温度付近まで加熱するために、ラジカルが発生する。かようなラジカルが紫外線遮蔽積層部におけるポリマーの酸化劣化を促進する原因であると考えられる。そして、光照射により、ラジカルに起因するポリマー自身の劣化がより加速され、紫外線遮蔽特性を顕著に低下させるものと考えられる。そして、かような紫外線遮蔽特性の低下により、国際公開第2011/062836号に記載のフィルムにおいては、下層の樹脂支持体が酸化劣化等により黄変し、可視光における透過率が低下することがわかった。さらに、光照射により遮蔽フィルム内での樹脂支持体とポリマー層との密着性が低下する場合があった。 As described above, the ultraviolet shielding film stretched by alternately combining two kinds of polymer layers having different refractive indexes as described in International Publication No. 2011/062836 has remarkably optical characteristics when irradiated for a long time. The inventor has found that this is reduced. The film described in WO 2011/062836 is heated and stretched near the glass transition point of the polymer to produce a film. Radicals are generated to heat the polymer to near the glass transition temperature. Such radicals are considered to be the cause of promoting the oxidative degradation of the polymer in the ultraviolet shielding laminate. And it is thought that deterioration of the polymer itself resulting from a radical is accelerated more by light irradiation, and a ultraviolet-ray shielding characteristic is reduced remarkably. And by such a fall of an ultraviolet-ray shielding characteristic, in the film as described in international publication 2011/062836, the lower layer resin support body may turn yellow by oxidation degradation etc., and the transmittance | permeability in visible light may fall. all right. Furthermore, the adhesiveness between the resin support and the polymer layer in the shielding film may be reduced by light irradiation.
 このため、本発明者は、紫外線遮蔽フィルムの製造において、紫外線遮蔽積層部の加熱が不要な方法について探索を行った。ここで着目したのが、塗布により紫外線遮蔽フィルムを製造する方法である。塗布により光学遮蔽フィルムを形成させる方法は例えば、国際公開第2012/014607号に、水溶性樹脂に金属酸化物粒子を混ぜ、基材に水系塗布して得られる近赤外反射フィルムが開示されている。この製法によれば高温加熱が必要ではないので延伸加熱によって発生するラジカルがフィルム劣化に影響を及ぼすことは極めて小さいと考えられる。さらに屈折率の低い金属酸化物粒子と屈折率の高い金属酸化物粒子を適宜選択して水溶液に分散させることが可能なので、屈折率差の大きい膜を大面積で製膜できる。 For this reason, the present inventor has searched for a method that does not require heating of the ultraviolet shielding laminate in the production of the ultraviolet shielding film. Attention was paid to a method for producing an ultraviolet shielding film by coating. As a method for forming an optical shielding film by coating, for example, International Publication No. 2012/014607 discloses a near-infrared reflective film obtained by mixing metal oxide particles with a water-soluble resin and applying aqueous coating to a substrate. Yes. According to this production method, heating at a high temperature is not required, and thus it is considered that radicals generated by stretching heating have a very small effect on film deterioration. Furthermore, since a metal oxide particle having a low refractive index and a metal oxide particle having a high refractive index can be appropriately selected and dispersed in an aqueous solution, a film having a large refractive index difference can be formed in a large area.
 次いで、本発明者は、塗布によって得られる紫外線遮蔽フィルムにおいて、上記課題である耐候性の観点から検討した。詳細には、ポリエステルフィルムの表面に屈折率の低い金属酸化物粒子と屈折率の高い金属酸化物粒子を含む水溶性樹脂を交互に塗布して、太陽光に類似したキセノンランプにて紫外線曝露を行った。その結果、米国アリゾナ州フェニックスの10年分に相当する紫外線を照射したところで、ポリエステルフィルムが黄色に変色した。黄変の原因について探索すべく、金属酸化物粒子を含むポリマー層を分析したところ、反射しきれなかった紫外線が、フィルム中の金属酸化物粒子にあたり、金属酸化物粒子の酸素原子が脱離してポリエステルフィルムの酸化劣化を促進していることが本発明者の検討によりわかった。 Next, the present inventor examined the UV shielding film obtained by coating from the viewpoint of weather resistance, which is the above problem. Specifically, a water-soluble resin containing low-refractive-index metal oxide particles and high-refractive-index metal oxide particles is alternately applied to the surface of the polyester film, and then exposed to ultraviolet rays using a xenon lamp similar to sunlight. went. As a result, the polyester film turned yellow when irradiated with ultraviolet rays corresponding to 10 years of Phoenix, Arizona, USA. When the polymer layer containing metal oxide particles was analyzed in order to search for the cause of yellowing, the ultraviolet rays that could not be reflected hit the metal oxide particles in the film, and the oxygen atoms of the metal oxide particles were desorbed. It has been found by examination of the present inventors that the oxidative deterioration of the polyester film is promoted.
 すなわち、紫外線遮蔽部にある金属酸化物が紫外線を受けることにより酸素を発生させ、発生した酸素が樹脂支持体をアタックして劣化するという問題があることがわかった。 That is, it has been found that there is a problem that the metal oxide in the ultraviolet shielding part generates oxygen by receiving ultraviolet rays, and the generated oxygen attacks the resin support and deteriorates.
 このような問題を防ぐため、本発明では、紫外線遮蔽積層部と樹脂支持体との間に金属酸化物粒子を実質的に含まず、かつ、ある程度厚みのある樹脂層を設けたものである。 In order to prevent such a problem, in the present invention, a resin layer that is substantially free of metal oxide particles and has a certain thickness is provided between the ultraviolet shielding laminated portion and the resin support.
 したがって、本発明の構成によれば、所望の波長の光反射性に優れており、また、太陽光等の照射による樹脂支持体の酸化劣化が抑制されるため良好な光反射特性が維持される紫外線遮蔽フィルムを提供することができる。また、本発明の構成によれば、基材と紫外線遮蔽部との密着性が高い紫外線遮蔽フィルムを提供することができる。また、水系塗布が可能であるため、製造時の環境保全性に優れるとともに、生産性が高い同時重層塗布に適用可能である。 Therefore, according to the configuration of the present invention, the light reflectivity of a desired wavelength is excellent, and good light reflection characteristics are maintained because the oxidative deterioration of the resin support due to irradiation with sunlight or the like is suppressed. An ultraviolet shielding film can be provided. Moreover, according to the structure of this invention, the ultraviolet shielding film with high adhesiveness of a base material and an ultraviolet shielding part can be provided. In addition, since water-based coating is possible, it can be applied to simultaneous multi-layer coating with excellent environmental conservation during production and high productivity.
 本明細書において、「紫外線遮蔽フィルム」とは、入射光の紫外線量に対して、紫外線遮蔽フィルムの反射または反射と吸収により、フィルムへの光の入射側と反対側の紫外線量が低減されているフィルムを意味する。また、「紫外線遮蔽積層部」とは紫外線の反射または反射と吸収を行う積層部を指す。なお、本発明は上記推察に限定されない。 In this specification, the term “ultraviolet shielding film” means that the amount of ultraviolet light on the opposite side of the light incident on the film is reduced by the reflection or reflection and absorption of the ultraviolet shielding film with respect to the amount of ultraviolet light of the incident light. Means film. The “ultraviolet shielding laminate” refers to a laminate that reflects or reflects ultraviolet rays. In addition, this invention is not limited to the said guess.
 以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
 図1は、紫外線遮蔽フィルムの一実施形態の断面概略図である。図1の紫外線遮蔽フィルム1は、樹脂支持体である基材2、樹脂層3、および紫外線遮蔽積層部4をこの順に有する。紫外線遮蔽積層部4は、光が入射する面に配置される。 FIG. 1 is a schematic cross-sectional view of an embodiment of an ultraviolet shielding film. The ultraviolet shielding film 1 in FIG. 1 includes a base material 2 that is a resin support, a resin layer 3, and an ultraviolet shielding laminated portion 4 in this order. The ultraviolet shielding laminated portion 4 is disposed on a surface on which light is incident.
 図1の形態においては、樹脂層3、紫外線遮蔽積層部4、および基材2はこの順に隣接して配置されるが、基材2と樹脂層3との間、樹脂層3と紫外線遮蔽積層部4との間には他の層が介在していてもよい。 In the form of FIG. 1, the resin layer 3, the ultraviolet shielding laminate 4, and the substrate 2 are disposed adjacent to each other in this order, but between the substrate 2 and the resin layer 3, the resin layer 3 and the ultraviolet shielding laminate. Another layer may be interposed between the portions 4.
 [樹脂層]
 樹脂層は、金属酸化物粒子を実質的に含まない。ここで、「実質的に含まない」とは、金属酸化物粒子をコンタミネーションにより含有する場合を含む。具体的には、本発明において金属酸化物粒子を実質的に含まないとは、樹脂層固形分100質量%に対して、金属酸化物粒子を0~1質量%含むことを指し、好ましくは0~0.5質量%含むことを指し、より好ましくは0~0.1質量%含むことを指す。なお、ここでいう金属酸化物粒子としては、下記紫外線遮蔽積層部の欄に記載した金属酸化物粒子が挙げられる。
[Resin layer]
The resin layer is substantially free of metal oxide particles. Here, “substantially free” includes the case where the metal oxide particles are contained by contamination. Specifically, in the present invention, the phrase “substantially free of metal oxide particles” means containing 0 to 1% by mass of metal oxide particles with respect to 100% by mass of the resin layer solid content, preferably 0 -0.5% by mass, more preferably 0-0.1% by mass. In addition, as a metal oxide particle here, the metal oxide particle described in the column of the following ultraviolet-ray shielding laminated part is mentioned.
 樹脂層の厚さは0.5μm以上である。樹脂層の厚さが0.5μm以上であることで、紫外線遮蔽積層部に含有される金属酸化物粒子の下層樹脂支持体への影響を物理的に遮断することができ、樹脂支持体の酸化劣化を抑制することができる。このため、光等の照射後であっても、良好な光反射特性が維持され、また、基材と紫外線遮蔽部との密着性も高く維持される。 The thickness of the resin layer is 0.5 μm or more. When the thickness of the resin layer is 0.5 μm or more, it is possible to physically block the influence of the metal oxide particles contained in the ultraviolet shielding laminated portion on the lower layer resin support, and the oxidation of the resin support Deterioration can be suppressed. For this reason, even after irradiation with light or the like, good light reflection characteristics are maintained, and adhesion between the substrate and the ultraviolet shielding part is also maintained high.
 また、樹脂層が0.5μm以上であることによって、一定の強度を付与することができる。かような強度の付与は紫外線遮蔽フィルムのように光学特性上、各屈折率層の薄膜化が要求されるフィルムにおいては重要である。すなわち、樹脂層の厚みが0.5μm未満であると、製造したフィルムを乾燥してフィルムを硬化させると、硬化に伴いフィルムにカールが発生する場合がある。かようなカールの発生は屈折率層の薄膜化に比例して深刻な問題となる。そして、カールの発生によりフィルムの基体への貼り合わせが困難となり、硬化したフィルムは固く、脆いため、クラックが発生し、問題となる場合がある。高温高湿条件下では、基材等の膨張により、発生したクラックがさらに進行し、光学特性に影響を与える場合があると考えられる。 Further, when the resin layer is 0.5 μm or more, a certain strength can be imparted. The imparting of such strength is important for a film that requires a thin film of each refractive index layer in terms of optical characteristics such as an ultraviolet shielding film. That is, when the thickness of the resin layer is less than 0.5 μm, when the produced film is dried and the film is cured, the film may be curled with the curing. The occurrence of such curling becomes a serious problem in proportion to the reduction in the thickness of the refractive index layer. Then, curling makes it difficult to bond the film to the substrate, and the cured film is hard and brittle, so that cracks may occur, which may be a problem. Under high-temperature and high-humidity conditions, it is considered that the cracks generated further progress due to the expansion of the base material and the like, which may affect the optical characteristics.
 樹脂層の厚さの上限は特に限定されるものではないが、フィルム全体の厚みおよび透明性を考慮すると、5μm以下であることが好ましい。樹脂層の厚さはより好ましくは0.5~1μmである。また、樹脂層の厚さは、本発明の効果がより得られることから、紫外線遮蔽積層部を構成する各屈折率層の平均厚さの3~20倍であることが好ましく、5~10倍であることがより好ましい。ここで、上記各屈折率層の平均厚さとは、樹脂支持体の樹脂層を設けた側に位置する紫外線遮蔽積層部のすべての屈折率層の平均厚さを意味する。したがって、樹脂層を設けた側と樹脂支持体を介して反対の側に屈折率層を形成した場合(樹脂支持体の両面に屈折率層を形成した場合)には、当該反対側の屈折率層は平均厚さを考慮する際の屈折率層には含まれないものとする。 The upper limit of the thickness of the resin layer is not particularly limited, but it is preferably 5 μm or less in consideration of the thickness and transparency of the entire film. The thickness of the resin layer is more preferably 0.5 to 1 μm. Further, the thickness of the resin layer is preferably 3 to 20 times the average thickness of each refractive index layer constituting the ultraviolet shielding laminated portion, since the effects of the present invention can be further obtained. It is more preferable that Here, the average thickness of each refractive index layer means the average thickness of all refractive index layers of the ultraviolet shielding laminated portion located on the side of the resin support on which the resin layer is provided. Therefore, when the refractive index layer is formed on the side opposite to the side where the resin layer is provided and the resin support (when the refractive index layer is formed on both sides of the resin support), the refractive index on the opposite side The layer is not included in the refractive index layer when considering the average thickness.
 樹脂層は、樹脂を含有する。ここで、樹脂層に用いられる樹脂は、光劣化に強いことから、芳香環を主鎖に持たない高分子であることが望ましく、さらに好ましくは芳香環を持たないモノマー成分で構成された樹脂である。本発明ではこれを非芳香族性樹脂とする。樹脂層として用いられる樹脂としては、具体的には水溶性樹脂、シリコーン系樹脂、アクリル系樹脂、オレフィン系樹脂、塩化ビニル系樹脂、アクリル・ウレタン系樹脂、含フッ素ポリマーなどが挙げられる。 The resin layer contains a resin. Here, the resin used for the resin layer is preferably a polymer that does not have an aromatic ring in the main chain because it is resistant to photodegradation, and more preferably a resin composed of monomer components that do not have an aromatic ring. is there. In the present invention, this is a non-aromatic resin. Specific examples of the resin used as the resin layer include water-soluble resins, silicone resins, acrylic resins, olefin resins, vinyl chloride resins, acrylic / urethane resins, and fluorine-containing polymers.
 本発明においては紫外線遮蔽積層部が水溶性樹脂を含み、水系塗布が可能であり、また隣接層として用いた場合には、紫外線遮蔽積層部との密着性が向上することから、樹脂層においても水溶性樹脂を含むことが好ましい。また、水溶性高分子の溶剤は水であるから下層の樹脂支持体に対して腐食、溶解、浸透を起こさないという利点もある。したがって水溶性高分子を使用するとその他の樹脂を使用するよりもさらに長期に樹脂支持体の劣化を防止することができる。さらに、水溶性樹脂は、柔軟性が高いため、屈曲時の膜の耐久性が向上するため好ましい。 In the present invention, the ultraviolet shielding laminated portion contains a water-soluble resin and can be applied in water, and when used as an adjacent layer, the adhesion with the ultraviolet shielding laminated portion is improved. It is preferable to include a water-soluble resin. In addition, since the solvent of the water-soluble polymer is water, there is an advantage that it does not cause corrosion, dissolution or penetration into the lower layer resin support. Therefore, when the water-soluble polymer is used, the deterioration of the resin support can be prevented for a longer period than when other resins are used. Furthermore, the water-soluble resin is preferable because it has high flexibility and thus improves the durability of the film when bent.
 水溶性樹脂としては、例えば、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩などの合成水溶性樹脂;ゼラチン、増粘多糖類などの天然水溶性樹脂などが挙げられる。これらの中で、特に好ましい例としては、製造時のハンドリングと膜の柔軟性の点から、ポリビニルアルコール、ポリビニルピロリドン類及びそれを含有する共重合体、ゼラチン、増粘多糖類(特にセルロース類)が挙げられ、中でも、光学特性の観点からポリビニルアルコールであることがより好ましい。これらの水溶性樹脂は、1種単独で用いてもよいし、2種以上併用して用いてもよい。 Examples of water-soluble resins include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, potassium acrylate-acrylonitrile copolymers, vinyl acetate-acrylic ester copolymers, or Acrylic resins such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene- Styrene acrylic resin such as acrylic acid copolymer or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer , Styrene-2 -Hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer, vinyl acetate -Synthetic water-soluble resins such as maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-based copolymers such as vinyl acetate-acrylic acid copolymers and their salts; gelatin, thickening polysaccharides Natural water-soluble resins such as Among these, particularly preferred examples include polyvinyl alcohol, polyvinylpyrrolidones and copolymers containing them, gelatin, thickening polysaccharides (particularly celluloses) from the viewpoint of handling during production and film flexibility. Among these, polyvinyl alcohol is more preferable from the viewpoint of optical properties. These water-soluble resins may be used alone or in combination of two or more.
 本発明で好ましく用いられるポリビニルアルコールには、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、変性ポリビニルアルコールも含まれる。変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。 The polyvinyl alcohol preferably used in the present invention includes modified polyvinyl alcohol in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. Examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol polymers.
 酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1,000以上のものが好ましく用いられ、特に平均重合度が1,500~5,000のものが好ましく用いられる。また、ケン化度は、70~100モル%のものが好ましく、80~99.5モル%のものが特に好ましい。 The polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably has an average degree of polymerization of 1,500 to 5,000. The degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.5 mol%.
 ここで、重合度とは粘度平均重合度を指し、JIS-K6726(1994)に準じて測定され、PVAを完全に再鹸化し、精製した後、30℃の水中で測定した極限粘度[η](dl/g)から次式により求められるものである。 Here, the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS-K6726 (1994). After the PVA is completely re-saponified and purified, the intrinsic viscosity [η] measured in water at 30 ° C. It can be obtained from (dl / g) by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383. Polyvinyl alcohol, which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%、好ましくは0.2~5モル%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号および同63-307979号に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, as described in JP-A-61-237681 and JP-A-63-307979, Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。またビニルアルコール系ポリマーとして、エクセバール(商品名:(株)クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業(株)製)などが挙げられる。ポリビニルアルコールは、重合度や変性の種類違いなど二種類以上を併用することもできる。 Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol modified polyvinyl alcohol having silanol group, reactive group modified polyvinyl alcohol having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Etc. Examples of the vinyl alcohol polymer include Exeval (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.). Polyvinyl alcohol can be used in combination of two or more, such as the degree of polymerization and the type of modification.
 ゼラチンとしては、石灰処理ゼラチンのほか、酸処理ゼラチンを使用してもよく、さらにゼラチンの加水分解物、ゼラチンの酵素分解物を用いることもできる。 As the gelatin, in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
 増粘多糖類としては、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類及び合成複合多糖類に挙げることができ、これら多糖類の詳細については、「生化学事典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。 Examples of thickening polysaccharides include natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides and synthetic complex polysaccharides that are generally known. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21.
 本発明でいう増粘多糖類とは、糖類の重合体であり分子内に水素結合基を多数有するもので、温度により分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度差が大きな特性を備えた多糖類であり、さらに金属酸化物微粒子を添加すると、低温時にその金属酸化物微粒子との水素結合によると思われる粘度上昇を起こすものであり、その粘度上昇幅は、添加することにより40℃における粘度が1.0mPa・s以上の上昇を生じる多糖類であり、好ましくは5.0mPa・s以上であり、更に好ましくは10.0mPa・s以上の粘度上昇能を備えた多糖類である。 The thickening polysaccharide referred to in the present invention is a polymer of saccharides and has many hydrogen bonding groups in the molecule, and the viscosity at low temperature and the viscosity at high temperature due to the difference in hydrogen bonding force between molecules depending on the temperature. It is a polysaccharide with a large difference in characteristics, and when adding metal oxide fine particles, it causes a viscosity increase that seems to be due to hydrogen bonding with the metal oxide fine particles at a low temperature. It is a polysaccharide that causes a viscosity increase at 40 ° C. of 1.0 mPa · s or more by addition, preferably 5.0 mPa · s or more, more preferably 10.0 mPa · s or more. Polysaccharides.
 増粘多糖類としては、例えば、β1-4グルカン(例えば、カルボキシメチルセルロース、カルボキシエチルセルロース等)、ガラクタン(例えば、アガロース、アガロペクチン等)、ガラクトマンノグリカン(例えば、ローカストビーンガム、グアラン等)、キシログルカン(例えば、タマリンドガム等)、グルコマンノグリカン(例えば、蒟蒻マンナン、木材由来グルコマンナン、キサンタンガム等)、ガラクトグルコマンノグリカン(例えば、針葉樹材由来グリカン)、アラビノガラクトグリカン(例えば、大豆由来グリカン、微生物由来グリカン等)、グルコラムノグリカン(例えば、ジェランガム等)、グリコサミノグリカン(例えば、ヒアルロン酸、ケラタン硫酸等)、アルギン酸及びアルギン酸塩、寒天、κ-カラギーナン、λ-カラギーナン、ι-カラギーナン、ファーセレラン等の紅藻類に由来する天然高分子多糖類等が挙げられる。 Examples of the thickening polysaccharide include β1-4 glucan (eg, carboxymethylcellulose, carboxyethylcellulose, etc.), galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xylo Glucan (eg, tamarind gum, etc.), glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan (eg, soybean) Glycans derived from microorganisms, glycans derived from microorganisms, etc.), glucoraminoglycans (eg, gellan gum, etc.), glycosaminoglycans (eg, hyaluronic acid, keratan sulfate, etc.), alginic acid and alginates, agar, κ-carrageenan, Examples thereof include natural polymer polysaccharides derived from red algae such as λ-carrageenan, ι-carrageenan, and far cerulean.
 水溶性樹脂の重量平均分子量は、1,000以上200,000以下が好ましい。さらには、3,000以上40,000以下がより好ましい。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて下記測定条件下で測定した値を採用する。 The weight average molecular weight of the water-soluble resin is preferably 1,000 or more and 200,000 or less. Furthermore, 3,000 or more and 40,000 or less are more preferable. In this specification, the value measured on the following measurement conditions using gel permeation chromatography (GPC) is employ | adopted for a weight average molecular weight.
 溶媒:0.2M
 NaNOH,NaHP0,pH7
 カラム:Shodex Column Ohpak SB-802.5 HQ, 8×300 mmとShodex Column Ohpak SB-805 HQ, 8×300 mmの組み合わせ
 カラム温度:45℃
 試料濃度:0.1質量%
 検出器:RID-10A(株式会社島津製作所製)
 ポンプ:LC-20AD(株式会社島津製作所製)
 流量:1ml/min
 校正曲線: Shodex スタンダード GFC(水系 GPC)カラム用 Standard P-82 標準物質プルランによる校正曲線を使用
 本発明においては、バインダーである水溶性樹脂を硬化させるため、硬化剤を使用してもよい。
Solvent: 0.2M
NaNOH 3 , NaH 2 P0 4 , pH 7
Column: Combination of Shodex Column Ohpak SB-802.5 HQ, 8 × 300 mm and Shodex Column Ohpak SB-805 HQ, 8 × 300 mm Column temperature: 45 ° C.
Sample concentration: 0.1% by mass
Detector: RID-10A (manufactured by Shimadzu Corporation)
Pump: LC-20AD (manufactured by Shimadzu Corporation)
Flow rate: 1 ml / min
Calibration curve: Standard P-82 standard curve for Shodex standard GFC (aqueous GPC) column Use of calibration curve with pullulan standard substance In the present invention, a curing agent may be used to cure the water-soluble resin as a binder.
 硬化剤としては、水溶性樹脂と硬化反応を起こすものであれば特に制限はない。 The curing agent is not particularly limited as long as it causes a curing reaction with a water-soluble resin.
 水溶性樹脂がポリビニルアルコールの場合には、用いることのできる硬化剤としては、ポリビニルアルコールと硬化反応を起こすものであれば特に制限はないが、ホウ酸、ホウ酸塩、およびホウ砂からなる群から選択されることが好ましい。ホウ酸、ホウ酸塩、およびホウ砂以外にも公知のものが使用でき、一般的にはポリビニルアルコールと反応し得る基を有する化合物あるいはポリビニルアルコールが有する異なる基同士の反応を促進するような化合物であり、適宜選択して用いられる。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬等が挙げられる。 When the water-soluble resin is polyvinyl alcohol, the curing agent that can be used is not particularly limited as long as it causes a curing reaction with polyvinyl alcohol, but a group consisting of boric acid, borate, and borax. Is preferably selected from. Known compounds other than boric acid, borate, and borax can be used, and generally compounds having a group capable of reacting with polyvinyl alcohol or compounds that promote the reaction between different groups possessed by polyvinyl alcohol These are appropriately selected and used. Specific examples of the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
 ホウ酸またはホウ酸塩とは、硼素原子を中心原子とする酸素酸およびその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸および八ホウ酸およびそれらの塩が挙げられる。 Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom, and specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaborate. Boric acid and their salts.
 ホウ砂とは、Na(OH)・8HO(四ホウ酸ナトリウム Naの十水和物)で表される鉱物である。 Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
 硬化剤としてのホウ素原子を有するホウ酸、ホウ酸塩、およびホウ砂は、単独の水溶液でも、また、2種以上を混合して使用しても良い。ホウ酸の水溶液またはホウ酸とホウ砂の混合水溶液が好ましい。ホウ酸とホウ砂の水溶液は、それぞれ比較的希薄水溶液でしか添加することができないが、両者を混合することで濃厚な水溶液にすることができ、塗布液を濃縮化することができる。また、添加する水溶液のpHを比較的自由にコントロールすることができる。 Boric acid having a boron atom, borate, and borax as a curing agent may be used alone or as a mixture of two or more. An aqueous solution of boric acid or a mixed aqueous solution of boric acid and borax is preferred. The aqueous solutions of boric acid and borax can be added only as relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, the pH of the aqueous solution to be added can be controlled relatively freely.
 本発明では、ホウ酸およびその塩並びに/またはホウ砂を用いることが本発明の効果を得るためには好ましい。ホウ酸およびその塩並びに/またはホウ砂を用いた場合には、好ましい紫外線遮蔽特性がより達成されうる。特に、高屈折率層と低屈折率層の多層重層をコーターで塗布後、一旦塗膜の膜面温度を15℃程度に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。 In the present invention, it is preferable to use boric acid and a salt thereof and / or borax in order to obtain the effects of the present invention. When boric acid and its salts and / or borax are used, preferable ultraviolet shielding properties can be achieved more. In particular, when a multilayer coating of a high refractive index layer and a low refractive index layer is applied with a coater, the film surface temperature of the coating film is once cooled to about 15 ° C., and then the set surface coating process is used to dry the film surface. Can express an effect more preferably.
 上記硬化剤の総使用量は、ポリビニルアルコール系樹脂1g当たり1~600mgが好ましく、100~500mgがより好ましい。 The total amount of the curing agent used is preferably 1 to 600 mg, more preferably 100 to 500 mg, per gram of polyvinyl alcohol resin.
 水溶性樹脂がゼラチンの場合には、例えば、ビニルスルホン化合物、尿素-ホルマリン縮合物、メラニン-ホルマリン縮合物、エポキシ系化合物、アジリジン系化合物、活性オレフィン類、イソシアネート系化合物などの有機硬膜剤、クロム、アルミニウム、ジルコニウムなどの無機多価金属塩類などを挙げることができる。 When the water-soluble resin is gelatin, for example, organic hardeners such as vinyl sulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, isocyanate compounds, Examples thereof include inorganic polyvalent metal salts such as chromium, aluminum and zirconium.
 樹脂層に用いられる樹脂としては、上記水溶性樹脂に限定されず、その他のポリマーであってもよい。樹脂層に用いられる樹脂としては、紫外線による黄変を防止する観点では、例えば、シリコーン系樹脂、アクリル系樹脂、オレフィン系樹脂(特に、シクロオレフィン樹脂)、塩化ビニル系樹脂、アクリル・ウレタン系樹脂、含フッ素ポリマー等が挙げられる。これらの中でも、特に耐候性に優れる材料として、シロキサン結合を持ったシリコーン系樹脂、または少なくとも二種以上のアクリル系モノマーを共重合したアクリル系共重合体を好適に用いることができる。 The resin used for the resin layer is not limited to the above water-soluble resin, and may be other polymers. The resin used for the resin layer is, for example, a silicone resin, an acrylic resin, an olefin resin (particularly, a cycloolefin resin), a vinyl chloride resin, an acrylic / urethane resin from the viewpoint of preventing yellowing due to ultraviolet rays. And fluorine-containing polymers. Among these, a silicone resin having a siloxane bond or an acrylic copolymer obtained by copolymerizing at least two or more acrylic monomers can be suitably used as a material particularly excellent in weather resistance.
 シリコーン系樹脂は、R、R’をメチル基、エチル基等の有機基、Xを0~4の整数とすれば、RSi(OR’)4-Xで表される化合物を、加水分解・重縮合することによって得られるものであることが好ましい。 Silicone resin hydrolyzes a compound represented by R X Si (OR ′) 4-X , where R and R ′ are organic groups such as methyl and ethyl groups, and X is an integer of 0 to 4. -It is preferable that it is obtained by polycondensation.
 シリコーン系樹脂としては、例えば、トリメトキシシラン(関東化学)、ソルガードNP-730(日本ダクロシャムロック)、トスガード510(東芝シリコーン)、KP-64(信越化学工業)等の市販品を用いてもよい。 As the silicone resin, for example, commercially available products such as trimethoxysilane (Kanto Chemical), Solgard NP-730 (Nihon Dacro Shamrock), Tosgard 510 (Toshiba Silicone), KP-64 (Shin-Etsu Chemical Co., Ltd.) Good.
 アクリル系樹脂としては、具体的には、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート等のアルキル(メタ)アクリレートのような側鎖中に官能性基を有しないモノマー(以下、非官能性モノマーという)から選ばれる一種又は二種以上のモノマーを主成分とし、これに2-ヒドロキシエチルメタクリレート、グリシジルメタクリレート、アクリル酸、メタクリル酸、イタコン酸、等のモノマーから選ばれる一種又は二種以上のモノマーの側鎖中にOHやCOOHなどの官能性基を有するモノマー(以下、官能性モノマーという)の一種又は二種以上を場合により組み合せて、溶液重合法、懸濁重合法、乳化重合法、塊状重合法等の重合法により共重合させることにより得られる重量平均分子量が4万~100万、好ましくは10万~40万のアクリル系共重合体が挙げられる。中でも、エチルアクリレート、メチルアクリレート、2-エチルヘキシルメタクリレート等の比較的Tgの低いポリマーを与える非官能性モノマーを50~90質量%、メチルメタクリレート、イソブチルメタクリレート、シクロヘキシルメタクリレート等の比較的Tgの高いポリマーを与える非官能性モノマーを10~50質量%、2-ヒドロキシエチルメタクリレート、アクリル酸、イタコン酸等の官能性モノマーを0~10質量%含有するようなアクリル系重合体が最も好適である。 Specific examples of the acrylic resin include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate. 1 or two or more monomers selected from monomers having no functional group in the side chain such as alkyl (meth) acrylate such as 2-ethylhexyl methacrylate (hereinafter referred to as non-functional monomer), In addition, side chains of one or more monomers selected from monomers such as 2-hydroxyethyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid, and itaconic acid. In addition, one or more monomers having a functional group such as OH or COOH (hereinafter referred to as functional monomers) may be combined in some cases, such as solution polymerization method, suspension polymerization method, emulsion polymerization method, bulk polymerization method, etc. Examples thereof include acrylic copolymers having a weight average molecular weight of 40,000 to 1,000,000, preferably 100,000 to 400,000, obtained by copolymerization by a polymerization method. Among them, non-functional monomers that give a relatively low Tg polymer such as ethyl acrylate, methyl acrylate, 2-ethylhexyl methacrylate, etc., and polymers having a relatively high Tg such as methyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, etc. Most preferred is an acrylic polymer containing 10 to 50% by mass of the non-functional monomer to be provided and 0 to 10% by mass of a functional monomer such as 2-hydroxyethyl methacrylate, acrylic acid or itaconic acid.
 シクロオレフィン樹脂は、脂環式構造を含有する重合体樹脂からなるものである。好ましいシクロオレフィン樹脂は、環状オレフィンを重合又は共重合した樹脂である。環状オレフィンとしては、ノルボルネン、ジシクロペンタジエン、テトラシクロドデセン、エチルテトラシクロドデセン、エチリデンテトラシクロドデセン、テトラシクロ〔7.4.0.110,13.02,7〕トリデカ-2,4,6,11-テトラエンなどの多環構造の不飽和炭化水素及びその誘導体、シクロブテン、シクロペンテン、シクロヘキセン、3,4-ジメチルシクロペンテン、3-メチルシクロヘキセン、2-(2-メチルブチル)-1-シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン、シクロヘプテン、シクロペンタジエン、シクロヘキサジエンなどの単環構造の不飽和炭化水素及びその誘導体等が挙げられる。好ましいシクロオレフィン樹脂は、環状オレフィン以外の単量体を付加共重合したものであってもよい。付加共重合可能な単量体としては、エチレン、プロピレン、1-ブテン、1-ペンテンなどのエチレン又はα-オレフィン、1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエンなどのジエン等が挙げられる。 The cycloolefin resin is a polymer resin containing an alicyclic structure. A preferred cycloolefin resin is a resin obtained by polymerizing or copolymerizing a cyclic olefin. Examples of the cyclic olefin include norbornene, dicyclopentadiene, tetracyclododecene, ethyltetracyclododecene, ethylidenetetracyclododecene, tetracyclo [7.4.0.110, 13.02,7] trideca-2,4, Unsaturated hydrocarbons of polycyclic structures such as 6,11-tetraene and derivatives thereof, cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2- (2-methylbutyl) -1-cyclohexene, cyclo Examples thereof include monocyclic unsaturated hydrocarbons such as octene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H-indene, cycloheptene, cyclopentadiene, cyclohexadiene, and derivatives thereof. Preferred cycloolefin resins may be those obtained by addition copolymerization of monomers other than cyclic olefins. Examples of addition copolymerizable monomers include ethylene such as ethylene, propylene, 1-butene and 1-pentene or α-olefin, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl- And dienes such as 1,4-hexadiene and 1,7-octadiene.
 シクロオレフィン樹脂として、下記のノルボルネン系樹脂も挙げられる。ノルボルネン系樹脂は、ノルボルネン骨格を繰り返し単位として有していることが好ましく、その具体例としては、例えば、特開2003-139950号公報、特開2003-14901号公報、特開2003-161832号公報、特開2003-195268号公報、特開2003-211588号公報、特開2003-211589号公報、特開2003-268187号公報、特開2004-133209号公報、特開2004-309979号公報、特開2005-121813号公報、特開2005-164632号公報、特開2006-72309号公報、特開2006-178191号公報、特開2006-215333号公報、特開2006-268065号公報、特開2006-299199号公報等に記載されたものが挙げられるが、これらに限定されるものではない。又、これらは、一種単独で使用してもよいし、二種以上を併用してもよい。具体的には、日本ゼオン(株)製ゼオネックス、ゼオノア、JSR(株)製アートン、三井化学(株)製アペル(APL8008T、APL6509T、APL6013T、APL5014DP、APL6015T)などが好ましく用いられる。 Examples of cycloolefin resins include the following norbornene resins. The norbornene-based resin preferably has a norbornene skeleton as a repeating unit. Specific examples thereof include, for example, JP-A Nos. 2003-139950, 2003-14901, and 2003-161832. JP-A-2003-195268, JP-A-2003-212588, JP-A-2003-211589, JP-A-2003-268187, JP-A-2004-133209, JP-A-2004-3091979, JP 2005-121813, JP 2005-164632, JP 2006-72309, JP 2006-178191, JP 2006-215333, JP 2006-268065, JP 2006. -299199 etc. Including without being limited thereto. Moreover, these may be used individually by 1 type and may use 2 or more types together. Specifically, ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., Arton manufactured by JSR Corporation, APPEL manufactured by Mitsui Chemicals, Inc. (APL8008T, APL6509T, APL6013T, APL5014DP, APL6015T) and the like are preferably used.
 塩化ビニル系樹脂としては、塩化ビニル単独重合体(塩化ビニルホモポリマー)、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体、これらの塩化ビニルモノマー単位が塩素化されたものからなる(共)重合体等が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。塩化ビニルモノマー単位の塩素化は、重合前に行われていてもよいし、重合した後に行われていてもよい。また、塩化ビニルの共重合体とする場合には、塩化ビニルモノマー単位以外のモノマー単位の含有率は、本来の性能を阻害しない範囲とし、塩化ビニルモノマー由来の単位を50質量%以上、60質量%以上又は70質量%以上、例えば、50~99質量%程度、60~99質量%又は70~99質量%含むことが好ましい(ここでの質量計算では、塩化ビニル系樹脂中には、可塑剤、当該共重合体樹脂にブレンドされるその他の重合体を含まない)。塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、フェニル(メタ)アクリレート、トルイル(メタ)アクリレート、キシリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシ(メタ)アクリレート、2-フェノキシ(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-エトキシプロピル(メタ)アクリレート等の(メタ)アクリル酸誘導体;エチレン、プロピレン、ブチレン等のα-オレフィン類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;ブチルビニルエーテル、セチルビニルエーテル等のビニルエーテル類;スチレン、α-メチルスチレン等の芳香族ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニルビニル類;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-置換マレイミド類、(メタ)アクリル酸、無水マレイン酸、アクリロニトリル等が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。 Examples of vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer. Examples thereof include graft copolymers obtained by graft copolymerization, and (co) polymers composed of chlorinated vinyl chloride monomer units. These may be used alone or in combination of two or more. Chlorination of the vinyl chloride monomer unit may be performed before polymerization or may be performed after polymerization. When the vinyl chloride copolymer is used, the content of the monomer units other than the vinyl chloride monomer unit is within a range that does not impair the original performance, and the unit derived from the vinyl chloride monomer is 50% by mass or more and 60% by mass. % Or more or 70% by mass or more, for example, about 50 to 99% by mass, preferably 60 to 99% by mass or 70 to 99% by mass (in the mass calculation here, the vinyl chloride resin contains a plasticizer. And other polymers blended with the copolymer resin). Examples of monomers having an unsaturated bond copolymerizable with vinyl chloride monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) ) Acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, neopentyl (meth) acrylate, cyclopentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate , N-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate , Tridecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, phenyl (meth) acrylate, toluyl (meth) acrylate, xylyl (meth) acrylate, benzyl (meth) acrylate (Meth) acrylic acid such as 2-ethoxyethyl (meth) acrylate, 2-butoxy (meth) acrylate, 2-phenoxy (meth) acrylate, 3-methoxypropyl (meth) acrylate, 3-ethoxypropyl (meth) acrylate Derivatives; α-olefins such as ethylene, propylene and butylene; vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as butyl vinyl ether and cetyl vinyl ether; styrene, α-methyls Aromatic vinyls such as len; vinyl vinyl halides such as vinylidene chloride and vinylidene fluoride; N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide, (meth) acrylic acid, maleic anhydride, acrylonitrile, etc. Is mentioned. These may be used alone or in combination of two or more.
 アクリル・ウレタン系樹脂としては、後述の紫外線吸収剤含有層の欄に記載したアクリル・ウレタン共重合樹脂が挙げられる。 Examples of the acrylic / urethane resin include acrylic / urethane copolymer resins described in the column of the ultraviolet absorber-containing layer described later.
 含フッ素ポリマーとしては、後述の水溶性樹脂の欄に記載した含フッ素ポリマーが挙げられる。 Examples of the fluorine-containing polymer include the fluorine-containing polymers described in the column of the water-soluble resin described later.
 なお、後述の樹脂支持体の欄に記載の下引層、後述の接着層、紫外線吸収剤含有層なども樹脂を含む樹脂層であり、厚みが0.5μm以上であり、樹脂支持体と紫外線反射積層部との間に配置されてなる場合には、本発明の樹脂層となり得る。 In addition, the undercoat layer described in the column of the resin support described later, the adhesive layer described later, the ultraviolet absorber-containing layer, and the like are also resin layers containing a resin and have a thickness of 0.5 μm or more. In the case of being disposed between the reflective laminated portion, the resin layer of the present invention can be obtained.
 また、樹脂を含む層が2層以上存在する場合には、少なくとも一層が、樹脂支持体と紫外線遮蔽積層部との間に、金属酸化物粒子を実質的に含まず、かつ膜厚が0.5μm以上であればよい。樹脂層は複数層存在してもよく、樹脂層が2層以上存在する形態としては、樹脂支持体、紫外線吸収剤含有接着層(樹脂層)、水溶性樹脂含有層(樹脂層)、紫外線遮蔽積層部がこの順に積層される紫外線遮蔽フィルムが挙げられる。また、本明細書において、樹脂層とは、複数層から形成される全体を指すものではなく、樹脂から構成される各単層を意味する。 Further, when there are two or more layers containing a resin, at least one layer does not substantially contain metal oxide particles between the resin support and the ultraviolet shielding laminate, and the film thickness is 0.00. What is necessary is just 5 micrometers or more. A plurality of resin layers may be present, and as a form in which two or more resin layers exist, a resin support, an ultraviolet absorber-containing adhesive layer (resin layer), a water-soluble resin-containing layer (resin layer), an ultraviolet shielding An ultraviolet shielding film in which the laminated portions are laminated in this order is exemplified. Moreover, in this specification, a resin layer does not indicate the whole formed from a plurality of layers, but means each single layer composed of a resin.
 樹脂層に含有される樹脂の含有量は、樹脂層固形分に対して50~100質量%であることが好ましく、80~100質量%であることが好ましい。50質量%以上であれば層形成が可能である。 The content of the resin contained in the resin layer is preferably 50 to 100% by mass, and preferably 80 to 100% by mass with respect to the solid content of the resin layer. If it is 50 mass% or more, layer formation is possible.
 樹脂層は、塗布性の観点から界面活性剤を含有することが好ましい。 The resin layer preferably contains a surfactant from the viewpoint of applicability.
 塗布時の表面張力調整のため用いられる界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などを用いることができるが、アニオン系界面活性剤がより好ましい。好ましい化合物としては、1分子中に炭素数8~30の疎水性基とスルホン酸基又はその塩を含有するものが挙げられる。 An anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant used for adjusting the surface tension during coating, but an anionic surfactant is more preferable. Preferable compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
 アニオン系界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンまたはオレフィンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキル又はアルキルアリールエーテル硫酸エステル塩、アルキルリン酸塩、アルキルジフェニルエーテルジスルホン酸塩、エーテルカルボキシレート、アルキルスルホコハク酸エステル塩、α-スルホ脂肪酸エステルおよび脂肪酸塩よりなる群から選ばれる界面活性剤や、高級脂肪酸とアミノ酸との縮合物、ナフテン酸塩等を用いることができる。好ましく用いられるアニオン系界面活性剤は、アルキルベンゼンスルホン酸塩(とりわけ直鎖アルキルのもの)、アルカン又はオレフィンスルホン酸塩(とりわけ第2級アルカンスルホン酸塩、α-オレフィンスルホン酸塩)、アルキル硫酸エステル塩、ポリオキシエチレンアルキル又はアルキルアリールエーテル硫酸エステル塩(とりわけポリオキシエチレンアルキルエーテル硫酸エステル塩)、アルキル燐酸塩(とりわけモノアルキルタイプ)、エーテルカルボキシレート、アルキルスルホコハク酸塩、α-スルホ脂肪酸エステルおよび脂肪酸塩よりなる群から選ばれる界面活性剤であり、特に好ましくは、アルキルスルホコハク酸塩である。 Anionic surfactants include alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkane or olefin sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl or alkyl aryl ether sulfate ester, alkyl phosphate, alkyl diphenyl ether A surfactant selected from the group consisting of disulfonates, ether carboxylates, alkylsulfosuccinates, α-sulfo fatty acid esters and fatty acid salts, condensates of higher fatty acids with amino acids, naphthenates, etc. may be used. it can. Anionic surfactants preferably used are alkylbenzene sulfonates (especially those of linear alkyls), alkanes or olefin sulfonates (especially secondary alkane sulfonates, α-olefin sulfonates), alkyl sulfates Salts, polyoxyethylene alkyl or alkylaryl ether sulfates (especially polyoxyethylene alkyl ether sulfates), alkyl phosphates (especially monoalkyl type), ether carboxylates, alkyl sulfosuccinates, α-sulfo fatty acid esters and A surfactant selected from the group consisting of fatty acid salts, and alkylsulfosuccinate is particularly preferable.
 各樹脂層における界面活性剤の含有量は、屈折率層の固形分100質量%として、0.001~0.5質量%であることが好ましく、0.005~0.3質量%であることがより好ましい。 The content of the surfactant in each resin layer is preferably 0.001 to 0.5% by mass, preferably 0.005 to 0.3% by mass, as the solid content of the refractive index layer is 100% by mass. Is more preferable.
 また、樹脂層には下記紫外線遮蔽積層部の欄に記載の各種添加剤を添加してもよい。さらに、フィルム下層の部材の紫外線からの保護や、樹脂支持体の劣化からの保護をより効果的に行うために、樹脂層は、紫外線吸収剤を含有してもよい。紫外線吸収剤としては、下記紫外線吸収剤含有層の欄に記載の紫外線吸収剤が挙げられる。紫外線吸収剤の樹脂層の含有量は、0.1~20質量%であることが好ましく、より好ましくは1~15質量%である。 In addition, various additives described in the column of the ultraviolet shielding laminate below may be added to the resin layer. Furthermore, the resin layer may contain an ultraviolet absorber in order to more effectively protect the member in the lower layer of the film from ultraviolet rays and from the deterioration of the resin support. As an ultraviolet absorber, the ultraviolet absorber as described in the column of the following ultraviolet absorber content layer is mentioned. The content of the resin layer of the ultraviolet absorber is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass.
 (樹脂層が紫外線遮蔽積層部に隣接して形成されてなる形態)
 樹脂層のフィルム内での配置は、樹脂支持体と紫外線遮蔽積層部との間であれば特にその配置は限定されないが、樹脂層は、紫外線遮蔽積層部に隣接して形成されてなることが好ましい。かような形態とすることにより、紫外線遮蔽積層部に存在する金属酸化物からの紫外線による酸素発生の樹脂支持体への影響を効果的に抑制することができる。また、紫外線遮蔽積層部に隣接して形成することで、紫外線遮蔽積層部とともに樹脂層を同時重層塗布により形成することができ、生産効率性が向上するため好ましい。
(A form in which the resin layer is formed adjacent to the ultraviolet shielding laminate)
The arrangement of the resin layer in the film is not particularly limited as long as it is between the resin support and the ultraviolet shielding laminate, but the resin layer may be formed adjacent to the ultraviolet shielding laminate. preferable. By setting it as such a form, the influence on the resin support of the oxygen generation by the ultraviolet-ray from the metal oxide which exists in an ultraviolet-ray shielding laminated part can be suppressed effectively. Further, it is preferable to form the resin layer adjacent to the ultraviolet shielding laminated portion because the resin layer can be formed together with the ultraviolet shielding laminated portion by simultaneous multilayer coating, and the production efficiency is improved.
 樹脂層が紫外線遮蔽積層部に隣接する場合、樹脂層の屈折率は、紫外線遮蔽積層物を構成する樹脂層に接する屈折率層と異なる屈折率を有することが好ましい。また、樹脂層に接する屈折率層が高屈折率層であることが好ましく、樹脂層の屈折率は高屈折率層の屈折率よりも低いことが好ましい。このような構成とすることにより、樹脂層と樹脂支持体との密着性が向上するため好ましい。また、樹脂層に接する屈折率層に含まれる金属酸化物粒子の凝集を抑制するという観点から、樹脂層に接する屈折率層に適用される水溶性樹脂の構成を制御することがより好ましい。特に、金属酸化物粒子が凝集しやすいシリカ付着二酸化チタンゾルを用いた場合には、凝集を抑制するために、樹脂層に接する屈折率層に適用される水溶性樹脂の構成を制御することがより好ましい。具体的には、一実施形態において、樹脂層に接する屈折率層は、少なくとも2種の水溶性樹脂を含むことが好ましい。少なくとも2種の水溶性樹脂を併用することで金属酸化物粒子を安定化し凝集等を抑制することができ、ひび割れおよびヘイズ等の性質が向上しうる。 When the resin layer is adjacent to the ultraviolet shielding laminate, the resin layer preferably has a refractive index different from that of the refractive index layer in contact with the resin layer constituting the ultraviolet shielding laminate. The refractive index layer in contact with the resin layer is preferably a high refractive index layer, and the refractive index of the resin layer is preferably lower than the refractive index of the high refractive index layer. Such a configuration is preferable because the adhesion between the resin layer and the resin support is improved. From the viewpoint of suppressing aggregation of metal oxide particles contained in the refractive index layer in contact with the resin layer, it is more preferable to control the configuration of the water-soluble resin applied to the refractive index layer in contact with the resin layer. In particular, when a silica-attached titanium dioxide sol that easily aggregates metal oxide particles is used, the structure of the water-soluble resin applied to the refractive index layer in contact with the resin layer may be controlled in order to suppress aggregation. preferable. Specifically, in one embodiment, the refractive index layer in contact with the resin layer preferably includes at least two types of water-soluble resins. By using at least two water-soluble resins in combination, the metal oxide particles can be stabilized and aggregation and the like can be suppressed, and properties such as cracks and haze can be improved.
 好適には、樹脂層に接する屈折率層は、平均重合度の異なる水溶性樹脂(平均重合度の低い水溶性樹脂および平均重合度の高い水溶性樹脂)を含むことが好ましい。 Preferably, the refractive index layer in contact with the resin layer preferably contains water-soluble resins having different average polymerization degrees (water-soluble resins having a low average polymerization degree and water-soluble resins having a high average polymerization degree).
 平均重合度が低い水溶性樹脂と、平均重合度が高い水溶性樹脂との混合質量比は特に限定されるものではないが、平均重合度が低い水溶性樹脂:平均重合度が高い水溶性樹脂=1:5~20であることが好ましい。 The mixing mass ratio of the water-soluble resin having a low average degree of polymerization and the water-soluble resin having a high average degree of polymerization is not particularly limited, but the water-soluble resin having a low average degree of polymerization: a water-soluble resin having a high average degree of polymerization = 1: 5 to 20 is preferable.
 前記少なくとも2種の水溶性樹脂の一方の水溶性樹脂は、平均重合度が100~700であることが好ましく、200~500であることがより好ましい。また、水溶性樹脂は、吸着性の観点からポリビニルアルコールが好ましい。さらに、平均重合度が100~700であるポリビニルアルコールは、ケン化度が95mol%以上であることが好ましい。 The average degree of polymerization of one of the at least two water-soluble resins is preferably 100 to 700, more preferably 200 to 500. The water-soluble resin is preferably polyvinyl alcohol from the viewpoint of adsorptivity. Furthermore, polyvinyl alcohol having an average degree of polymerization of 100 to 700 preferably has a saponification degree of 95 mol% or more.
 少なくとも2種の水溶性樹脂のもう一方の水溶性樹脂は、平均重合度が1500~5000であることが好ましく、1500~4000であることがより好ましい。また、水溶性樹脂は、ポリビニルアルコールが好ましく、塗布性の観点から、未変性ポリビニルアルコールであることが好ましい。さらに、前記ポリビニルアルコールは、ケン化度が85~99.5mol%であることが好ましい。 The other water-soluble resin of at least two types of water-soluble resins preferably has an average degree of polymerization of 1500 to 5000, and more preferably 1500 to 4000. The water-soluble resin is preferably polyvinyl alcohol, and is preferably unmodified polyvinyl alcohol from the viewpoint of applicability. Further, the polyvinyl alcohol preferably has a saponification degree of 85 to 99.5 mol%.
 [紫外線遮蔽積層部]
 紫外線遮蔽積層部は、低屈折率層と高屈折率層とを積層したユニットを少なくとも1つ有する。紫外線遮蔽積層部の好適な形態は、低屈折率層と高屈折率層とが交互に積層された交互積層体の形態を有する。すなわち、本発明の好適な紫外線遮蔽部は、各屈折率層の屈折率差を利用した紫外線反射部ともいえる。なお、屈折率差を利用した紫外線反射部であっても、金属酸化物の選択によって、紫外線吸収能を有していてもよいことは言うまでもない。
[Ultraviolet shielding laminate]
The ultraviolet shielding laminated portion has at least one unit in which a low refractive index layer and a high refractive index layer are laminated. A preferred form of the ultraviolet shielding laminated portion is an alternate laminated body in which low refractive index layers and high refractive index layers are alternately laminated. That is, the preferable ultraviolet shielding part of the present invention can be said to be an ultraviolet reflecting part using the refractive index difference of each refractive index layer. Needless to say, even the ultraviolet reflecting part using the difference in refractive index may have ultraviolet absorbing ability depending on the selection of the metal oxide.
 本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、紫外線遮蔽積層部を構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。 In this specification, the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that, in each refractive index layer constituting the ultraviolet shielding laminated part, when each refractive index layer is focused on two adjacent refractive index layers, All forms other than those having the same refractive index are included.
 紫外線遮蔽積層部の厚さは、屈曲性の観点から、10μm以下であることが好ましく、9μm以下であることがより好ましい。かようなフィルムの薄膜化は、各屈折率層が水溶性樹脂および金属酸化物粒子を含有する場合に各屈折率層間の屈折率差を大きくすることができるため、各屈折率層が水溶性樹脂および金属酸化物粒子を含有する形態において実現しやすい。また、紫外線遮蔽積層部の厚さの下限は特に限定されるものではないが、反射特性を確保する観点から通常1μm以上である。紫外線遮蔽積層部の厚さは好ましくは1~3μmである。 The thickness of the ultraviolet shielding laminated portion is preferably 10 μm or less, more preferably 9 μm or less from the viewpoint of flexibility. Such thinning of the film can increase the difference in refractive index between the refractive index layers when each refractive index layer contains water-soluble resin and metal oxide particles. It is easy to realize in a form containing resin and metal oxide particles. Further, the lower limit of the thickness of the ultraviolet shielding laminated portion is not particularly limited, but is usually 1 μm or more from the viewpoint of ensuring reflection characteristics. The thickness of the ultraviolet shielding laminate is preferably 1 to 3 μm.
 (水溶性樹脂)
 本発明においては、高屈折率層および低屈折率層の少なくとも一層が水溶性樹脂を含めば足りるが、同時重層塗布での生産が可能であることから、高屈折率層および低屈折率層の双方が水溶性樹脂を含むことが好ましい。また、上記樹脂層の欄に記載した硬化剤を同様に用いることができ、好適な硬化剤も同様である。
(Water-soluble resin)
In the present invention, it is sufficient that at least one of the high refractive index layer and the low refractive index layer contains a water-soluble resin, but since production by simultaneous multilayer coating is possible, the high refractive index layer and the low refractive index layer It is preferable that both contain water-soluble resin. Moreover, the hardening | curing agent described in the column of the said resin layer can be used similarly, and a suitable hardening | curing agent is also the same.
 水溶性樹脂としては、上記樹脂層の欄に記載した水溶性樹脂が挙げられる。中でも、光学反射特性が良好であることから、ポリビニルアルコールを用いることが好ましい。 Examples of the water-soluble resin include the water-soluble resins described in the column of the resin layer. Of these, polyvinyl alcohol is preferably used because of its good optical reflection characteristics.
 また、高屈折率層および低屈折率層の双方がポリビニルアルコールを含む場合には、高屈折率層に含まれるポリビニルアルコールの平均鹸化度と、低屈折率層に含まれるポリビニルアルコールの平均鹸化度とが、異なることが好ましい。 Further, when both the high refractive index layer and the low refractive index layer contain polyvinyl alcohol, the average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer. And are preferably different.
 ポリビニルアルコールなどの水溶性樹脂では、水系塗布が可能となる。水系塗布の場合、通常、高屈折率層、低屈折率層を形成し得るそれぞれの塗布液を用い、前記各塗布液を逐次塗布または同時重層塗布によって高屈折率層と低屈折率層とを積層することによって製造される。しかしながら、重層塗布で得られる塗膜は、隣接する層間での混合や界面の乱れ(凹凸)が発生しがちである。逐次重層塗布の場合は、上層の塗布液を塗布した際に、形成された下層が再溶解し、上層および下層の液同士が混合し、隣接する層間での混合や界面の乱れ(凹凸)が発生する場合がある。また、同時重層塗布で得られる塗膜は、未乾燥の液状態で重ねられるために、隣接する層間での混合や界面の乱れ(凹凸)がより発生してしまう。 Water-soluble coating such as polyvinyl alcohol is possible. In the case of aqueous coating, each coating liquid that can form a high-refractive index layer and a low-refractive index layer is usually used. Manufactured by stacking. However, the coating film obtained by multilayer coating tends to cause mixing between adjacent layers and interface disturbance (unevenness). In the case of sequential multilayer coating, when the upper layer coating solution is applied, the lower layer formed is redissolved, the upper layer and lower layer liquids are mixed together, and mixing between adjacent layers and interface disturbance (unevenness) occur. May occur. Moreover, since the coating film obtained by simultaneous multilayer coating is stacked in an undried liquid state, mixing between adjacent layers and interface disturbance (unevenness) are more likely to occur.
 紫外線遮蔽積層部の各屈折率層は、紫外線領域を反射するために、近赤外領域等の長波長域を反射する場合と比較して屈折率層の膜厚が薄くなる。したがって、上記隣接する層間の混合はより光学特性に影響を与えうる。 Since each refractive index layer of the ultraviolet shielding laminated portion reflects the ultraviolet region, the thickness of the refractive index layer is thinner than when reflecting a long wavelength region such as the near infrared region. Therefore, the mixing between the adjacent layers can affect the optical characteristics more.
 高屈折率層に含まれるポリビニルアルコールの平均鹸化度と、低屈折率層に含まれるポリビニルアルコールの平均鹸化度とを、異なる構成とすることにより、反射特性が向上する。このような効果は、層間混合が抑制された結果であると考えられる。鹸化度の異なるポリビニルアルコール樹脂を用いることによって、高屈折率層と低屈折率層が未乾燥の液状態で重ねられた際に各層が多少混合したとしても、乾燥過程で溶媒である水が揮発して濃縮されると鹸化度の異なるポリビニルアルコール樹脂同士が相分離を起こし、各層の界面の面積を最小にしようとする力が働くようになるため、層間混合が抑制され界面の乱れも小さくなったものと推定される。このように層間混合が抑制され、界面の乱れが小さくなったことで本発明の紫外線遮蔽フィルムは所望の波長の光反射性に優れたものとなる。また、層間混合が抑制されるために、フィルムのヘイズも低下するものと考えられる。 The reflection characteristics are improved by making the average saponification degree of polyvinyl alcohol contained in the high refractive index layer different from the average saponification degree of polyvinyl alcohol contained in the low refractive index layer. Such an effect is considered to be a result of suppression of interlayer mixing. By using polyvinyl alcohol resins with different degrees of saponification, even when the high refractive index layer and the low refractive index layer are stacked in an undried liquid state, even if the layers are mixed somewhat, the solvent water is volatilized during the drying process. When concentrated, polyvinyl alcohol resins with different degrees of saponification undergo phase separation, and the force to minimize the area of the interface of each layer is activated, so inter-layer mixing is suppressed and interface disturbance is reduced. Estimated. Thus, interlayer mixing is suppressed, and the disturbance of the interface is reduced, so that the ultraviolet shielding film of the present invention is excellent in light reflectivity at a desired wavelength. Moreover, since interlayer mixing is suppressed, it is thought that the haze of a film also falls.
 ただし、上記メカニズムは推定であり、本発明の範囲を何ら制限するものではない。 However, the above mechanism is an estimation and does not limit the scope of the present invention.
 各屈折率層中のポリビニルアルコールの平均鹸化度は、屈折率層中の含有質量比を考慮して求められる。すなわち、平均鹸化度=Σ(各ポリビニルアルコールの鹸化度(mol%)×各ポリビニルアルコールの各屈折率層中の含有質量(%)/100質量(%))となる。例えば、屈折率層がポリビニルアルコールA(屈折率層中の含有質量比(各ポリビニルアルコールの各屈折率層中の含有質量(%)/100質量(%)):Wa、鹸化度:Sa(mol%))、ポリビニルアルコールB(屈折率層中の含有質量比:Wb、鹸化度:Sb(mol%))、ポリビニルアルコールC(屈折率層中の含有質量比:Wc、鹸化度:Sc(mol%))を含む場合、平均鹸化度=(Wa×Sa+Wb×Sb+Wc×Sc/(Wa+Wb+Wc)となる。 The average degree of saponification of polyvinyl alcohol in each refractive index layer is determined in consideration of the content ratio in the refractive index layer. That is, the average degree of saponification = Σ (degree of saponification of each polyvinyl alcohol (mol%) × content of each polyvinyl alcohol in each refractive index layer (%) / 100 mass (%)). For example, the refractive index layer is polyvinyl alcohol A (the mass ratio in the refractive index layer (the mass content (%) of each polyvinyl alcohol in each refractive index layer / 100 mass (%)): Wa, the saponification degree: Sa (mol %)), Polyvinyl alcohol B (mass ratio in the refractive index layer: Wb, saponification degree: Sb (mol%)), polyvinyl alcohol C (mass ratio in the refractive index layer: Wc, saponification degree: Sc (mol) %)), The average degree of saponification = (Wa × Sa + Wb × Sb + Wc × Sc / (Wa + Wb + Wc)).
 高屈折率層に含まれるポリビニルアルコールの平均鹸化度と、低屈折率層に含まれるポリビニルアルコールの平均鹸化度との差(絶対値)は、1mol%以上であることが好ましく、3mol%以上であることが好ましく、より好ましくは5mol%以上であり、さらに好ましくは8mol%以上である。かような範囲であれば、本発明の効果が一層高まり、フィルム特性(反射特性、可視光線透過率など)がより向上する。高屈折率層に含まれるポリビニルアルコールの平均鹸化度と、低屈折率層に含まれるポリビニルアルコールの平均鹸化度との差は離れていれば離れているほど好ましいが、ポリビニルアルコールの水への溶解性の点からは20mol%以下であることが好ましい。 The difference (absolute value) between the average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer is preferably 1 mol% or more, and is 3 mol% or more. Preferably, it is 5 mol% or more, more preferably 8 mol% or more. If it is such a range, the effect of this invention will increase further and film characteristics (a reflection characteristic, visible light transmittance, etc.) will improve more. The difference between the average saponification degree of polyvinyl alcohol contained in the high refractive index layer and the average saponification degree of polyvinyl alcohol contained in the low refractive index layer is preferably as far as possible, but the dissolution of polyvinyl alcohol in water is preferable. From the viewpoint of properties, it is preferably 20 mol% or less.
 屈折率層中の水溶性樹脂の含有量は、特に限定されるものではないが、各屈折率層の全質量(固形分)に対し、好ましくは1~50質量%であり、より好ましくは、5~30質量%である。 The content of the water-soluble resin in the refractive index layer is not particularly limited, but is preferably 1 to 50% by mass, more preferably, based on the total mass (solid content) of each refractive index layer. 5 to 30% by mass.
 低屈折率層には、屈折率差を調整するために、含フッ素ポリマーを用いてもよい。含フッ素ポリマーとしては、フッ素含有不飽和エチレン性単量体成分を主として含有する重合物を挙げることが出来る。 In the low refractive index layer, a fluorine-containing polymer may be used in order to adjust the refractive index difference. Examples of the fluorine-containing polymer include a polymer mainly containing a fluorine-containing unsaturated ethylenic monomer component.
 フッ素含有不飽和エチレン性単量体としては、含フッ素アルケン、含フッ素アクリル酸エステル、含フッ素メタクリル酸エステル、含フッ素ビニルエステル、含フッ素ビニルエーテル等を挙げることができ、例えば、特開2013-057969号の段落「0181」に記載のフッ素含有不飽和エチレン性単量体を挙げることができる。 Examples of the fluorine-containing unsaturated ethylenic monomer include a fluorine-containing alkene, a fluorine-containing acrylic acid ester, a fluorine-containing methacrylate ester, a fluorine-containing vinyl ester, a fluorine-containing vinyl ether, and the like. And fluorine-containing unsaturated ethylenic monomers described in paragraph “0181” of the No.
 フッ素含有単量体と共重合し得る単量体としては、例えば、エチレン、プロピレン、ブテン、酢酸ビニル、ビニルエチルエーテル、ビニルエチルケトン、メチルアクリレート、メチルメタクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、メチル-α-フルオロアクリレート、エチル-α-フルオロアクリレート、プロピル-α-フルオロアクリレート、ブチル-α-フルオロアクリレート、シクロヘキシル-α-フルオロアクリレート、ヘキシル-α-フルオロアクリレート、ベンジル-α-フルオロアクリレート、アクリル酸、メタクリル酸、α-フルオロアクリル酸、スチレン、スチレンスルホン酸、メトキシポリエチレングリコールメタクリレート等が挙げられる。 Examples of monomers that can be copolymerized with fluorine-containing monomers include, for example, ethylene, propylene, butene, vinyl acetate, vinyl ethyl ether, vinyl ethyl ketone, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl-α-fluoroacrylate, ethyl-α-fluoroacrylate, propyl-α-fluoroacrylate, butyl-α-fluoroacrylate, cyclohexyl-α-fluoroacrylate, hexyl-α-fluoroacrylate , Benzyl-α-fluoroacrylate, acrylic acid, methacrylic acid, α-fluoroacrylic acid, styrene, styrene sulfonic acid, methoxypolyethyleneglycol And rumethacrylate.
 フッ素含有エチレン性不飽和単量体の単独の樹脂の屈折率は、ほぼ1.33~1.42の範囲にあり、又共重合し得るフッ素を含有しない単量体の単独樹脂ポリマーの屈折率は、1.44以上で、これらを任意の割合で共重合して目的の屈折率の含フッ素ポリマーとして用いることができ、上記ポリビニルアルコールと任意の割合で混合して目的の屈折率のものとして使用できる。かような含フッ素ポリマーとポリビニルアルコールとの屈折率層における含有質量比(固形分換算)は、好適にはポリビニルアルコール:含フッ素ポリマー=1:0.1~5である。 The refractive index of a single resin of a fluorine-containing ethylenically unsaturated monomer is in the range of approximately 1.33 to 1.42, and the refractive index of a single resin polymer of a fluorine-free monomer that can be copolymerized. Can be used as a fluorine-containing polymer having a desired refractive index by copolymerizing these at an arbitrary ratio of 1.44 or more, and having a desired refractive index by mixing with the polyvinyl alcohol at an arbitrary ratio. Can be used. The content ratio (in terms of solid content) in the refractive index layer of such a fluoropolymer and polyvinyl alcohol is preferably polyvinyl alcohol: fluoropolymer = 1: 0.1-5.
 (金属酸化物)
 高屈折率層および低屈折率層のうち少なくとも一層は水溶性樹脂とともに金属酸化物(粒子)を含有することが好ましい。金属酸化物粒子を含有することで各屈折率層間の屈折率差を大きくすることができ、反射特性が向上する。特に、酸化チタンや酸化ジルコニウムといった金属酸化物は紫外線を吸収し、紫外線遮蔽性が向上するため、少なくとも高屈折率層が金属酸化物粒子を含有することが好ましく、屈折率差をより大きくすることができることから、高屈折率層および低屈折率層の双方が金属酸化物粒子を含有することがより好ましい。
(Metal oxide)
At least one of the high refractive index layer and the low refractive index layer preferably contains a metal oxide (particle) together with the water-soluble resin. By containing metal oxide particles, the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved. In particular, metal oxides such as titanium oxide and zirconium oxide absorb ultraviolet rays and improve ultraviolet shielding properties. Therefore, at least the high refractive index layer preferably contains metal oxide particles, and the refractive index difference is further increased. Therefore, it is more preferable that both the high refractive index layer and the low refractive index layer contain metal oxide particles.
 金属酸化物粒子は平均粒径が100nm以下であることが好ましい。用いる金属酸化物粒子の平均粒径が100nm以下であることで、光散乱を抑制し、また紫外線遮蔽フィルムにおける各屈折率層の膜厚制御の際の精度を向上させることができる。ここで、本明細書書において平均粒径は、一次平均粒径を指す。本明細書でいう一次平均粒径とは、粒子そのものや屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1,000個の任意の粒子の粒径を測定し、その平均を求めた値である。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したもの(投影面積円相当径)である。金属酸化物粒子の平均粒径は、金属酸化物粒子が被覆処理されている場合(例えば、後述のシリカ付着二酸化チタン等)、金属酸化物粒子の平均粒径とは母体(上記シリカ付着二酸化チタンの場合は、処理前の二酸化チタン)の平均粒径を指すものとする。 The metal oxide particles preferably have an average particle size of 100 nm or less. When the average particle diameter of the metal oxide particles to be used is 100 nm or less, light scattering can be suppressed and the accuracy in controlling the film thickness of each refractive index layer in the ultraviolet shielding film can be improved. Here, in this specification, an average particle diameter refers to a primary average particle diameter. The primary average particle size referred to in this specification is the measurement of the particle size of 1,000 arbitrary particles by a method of observing a particle image appearing on the cross section or surface of the particle itself or the refractive index layer with an electron microscope. , The average value. Here, the particle diameter of each particle is a diameter (projected area circle equivalent diameter) when a circle equal to the projected area is assumed. When the metal oxide particles are coated (for example, silica-attached titanium dioxide described later), the average particle diameter of the metal oxide particles is the base (the silica-attached titanium dioxide). In this case, it means the average particle diameter of titanium dioxide before treatment).
 (低屈折率層中の金属酸化物)
 低屈折率層には金属酸化物としてシリカ(二酸化ケイ素)を用いることが好ましく、具体的な例として合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカを用いることが特に好ましい。また、屈折率をより低減させるために、低屈折率層の金属酸化物微粒子として、粒子の内部に空孔を有する中空微粒子を用いてもよく、特にシリカ(二酸化ケイ素)の中空微粒子が好ましい。また、シリカ以外の公知の金属酸化物粒子も使用することができる。
(Metal oxide in the low refractive index layer)
Silica (silicon dioxide) is preferably used as the metal oxide for the low refractive index layer, and specific examples include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use acidic colloidal silica sol, and it is particularly preferable to use colloidal silica dispersed in an organic solvent. In order to further reduce the refractive index, hollow fine particles having pores inside the particles may be used as the metal oxide fine particles of the low refractive index layer, and hollow fine particles of silica (silicon dioxide) are particularly preferable. Moreover, well-known metal oxide particles other than a silica can also be used.
 低屈折率層に含まれる金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであるのがより好ましく、3~40nmであるのがさらに好ましく、3~20nmであるのが特に好ましく、4~10nmであるのがもっとも好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm. The average particle size of primary particles of silicon dioxide dispersed in a primary particle state (particle size in a dispersion state before coating) is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 また、低屈折率層の金属酸化物粒子の粒径は、一次平均粒径の他に、体積平均粒径により求めることもできる。 Further, the particle diameter of the metal oxide particles of the low refractive index layer can be determined by the volume average particle diameter in addition to the primary average particle diameter.
 本発明で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、たとえば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号などに記載されているものである。 The colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091, JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284 JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 , JP-A-7-179029, JP-A-7-137431, and International Publication No. 94/26530. It is intended.
 この様なコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 また、低屈折率層の金属酸化物粒子として、中空粒子を用いることもできる。中空微粒子を用いる場合には、平均粒子空孔径が、3~70nmであるのが好ましく、5~50nmがより好ましく、5~45nmがさらに好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 Moreover, hollow particles can also be used as the metal oxide particles of the low refractive index layer. When hollow fine particles are used, the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm. The average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained. The average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
 低屈折率層における金属酸化物粒子の含有量は、低屈折率層の固形分100質量%に対して、20~90質量%であることが好ましく、30~85質量%であることがより好ましく、40~70質量%であることがさらに好ましい。20質量%以上であると、所望の屈折率が得られ90質量%以下であると塗布性が良好となり好ましい。 The content of the metal oxide particles in the low refractive index layer is preferably 20 to 90% by mass, and more preferably 30 to 85% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is 40 to 70% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, the coatability is good, which is preferable.
 (高屈折率層中の金属酸化物)
 本発明に係る高屈折率層の金属酸化物粒子としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。中でも、紫外線領域の光を吸収することができるので、二酸化チタン、酸化ジルコニウム等の金属酸化物粒子が好ましい。
(Metal oxide in the high refractive index layer)
As the metal oxide particles of the high refractive index layer according to the present invention, for example, titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, oxidized oxide Examples thereof include ferric iron, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. Among these, metal oxide particles such as titanium dioxide and zirconium oxide are preferable because they can absorb light in the ultraviolet region.
 本発明では透明でより屈折率の高い高屈折率層を形成するために、高屈折率層は、二酸化チタン、酸化ジルコニウム等の高屈折率金属酸化物微粒子、すなわち、酸化チタン微粒子、酸化ジルコニウム微粒子を含有することが好ましい。その場合には、ルチル型(正方晶形)酸化チタン粒子を含有することが好ましい。 In the present invention, in order to form a transparent and higher refractive index layer having a higher refractive index, the high refractive index layer is made of high refractive index metal oxide fine particles such as titanium dioxide and zirconium oxide, that is, fine particles of titanium oxide and fine particles of zirconium oxide. It is preferable to contain. In that case, it is preferable to contain rutile (tetragonal) titanium oxide particles.
 高屈折率層で用いられる金属酸化物粒子に用いられる金属酸化物粒子の一次平均粒径は、30nm以下であることが好ましく、1~30nmであることがより好ましく、5~15nmであることがさらに好ましい。一次平均粒径が1nm以上30nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The primary average particle diameter of the metal oxide particles used for the metal oxide particles used in the high refractive index layer is preferably 30 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. Further preferred. A primary average particle diameter of 1 nm or more and 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
 本発明の酸化チタン粒子としては、水系の酸化チタンゾルの表面を変性して分散状態を安定にしたものを用いることが好ましい。 As the titanium oxide particles of the present invention, it is preferable to use particles in which the surface of an aqueous titanium oxide sol is modified to stabilize the dispersion state.
 水系の酸化チタンゾルの調製方法としては、従来公知のいずれの方法も用いることができ、たとえば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等に記載された事項を参照にすることができる。 As the method for preparing the aqueous titanium oxide sol, any conventionally known method can be used. For example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, See the matters described in Kaihei 11-43327, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, etc. Can do.
 また、酸化チタン粒子のその他の製造方法については、たとえば、「酸化チタン-物性と応用技術」清野学 p255~258(2000年)技報堂出版株式会社、またはWO2007/039953号明細書の段落番号0011~0023に記載の工程(2)の方法を参考にすることができる。 As for other methods for producing titanium oxide particles, for example, “Titanium oxide—physical properties and applied technology”, Kiyono Manabu, p. 255 to 258 (2000), Gihodo Publishing Co., Ltd., or paragraph number 0011 to WO2007 / 039953. The method of the step (2) described in 0023 can be referred to.
 上記工程(2)による製造方法とは、二酸化チタン水和物をアルカリ金属の水酸物またはアルカリ土類金属の水酸化物からなる群から選択される、少なくとも1種の塩基性化合物で処理する工程(1)の後に、得られた二酸化チタン分散物を、カルボン酸基含有化合物および無機酸で処理する工程(2)からなる。 In the production method according to the above step (2), titanium dioxide hydrate is treated with at least one basic compound selected from the group consisting of alkali metal hydroxides or alkaline earth metal hydroxides. After the step (1), the titanium dioxide dispersion obtained comprises a step (2) of treating with a carboxylic acid group-containing compound and an inorganic acid.
 さらに、酸化チタン粒子を含めた金属酸化物粒子のその他の製造方法としては、特開2000-053421号公報(分散安定化剤としてアルキルシリケートを配合してなり、該アルキルシリケート中のケイ素をSiOに換算した量と酸化チタン中のチタンをTiOに換算した量との重量比(SiO/TiO)が0.7~10である酸化チタンゾル)、特開2000-063119号公報(TiO-ZrO-SnOの複合体コロイド粒子を核としてその表面を、WO-SnO-SiOの複合酸化物コロイド粒子で被覆したゾル)等に記載された事項を参照にすることができる。 Furthermore, another method for producing metal oxide particles including titanium oxide particles is disclosed in JP-A-2000-053421 (comprising alkyl silicate as a dispersion stabilizer, and silicon in the alkyl silicate is changed to SiO 2. A titanium oxide sol having a weight ratio (SiO 2 / TiO 2 ) of 0.7 to 10 of the amount converted to TiO 2 and the amount converted to TiO 2 in titanium oxide), JP 2000-063119 A (TiO 2 -ZrO 2 -SnO 2 composite colloidal particles as the core, and the surface thereof coated with the composite oxide colloidal particles of WO 3 -SnO 2 -SiO 2 ) can be referred to .
 さらに、酸化チタン粒子を含ケイ素の水和酸化物で被覆してもよい。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、金属酸化物粒子として用いられる酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。 Further, the titanium oxide particles may be coated with a silicon-containing hydrated oxide. Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよい。含ケイ素の水和酸化物で被覆された酸化チタン粒子は、含ケイ素の水和酸化物で被覆されたルチル型の酸化チタン粒子がより好ましい。これは、ルチル型の酸化チタン粒子が、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率が高くなるという理由からである。 The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type. The titanium oxide particles coated with a silicon-containing hydrated oxide are more preferably rutile-type titanium oxide particles coated with a silicon-containing hydrated oxide. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, and therefore the weather resistance of the high refractive index layer and the adjacent low refractive index layer is increased, and the refractive index is further increased. Because.
 本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、本発明の効果を得るためにはシラノール基を有することがより好ましい。 The “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and in order to obtain the effects of the present invention. More preferably has a silanol group.
 含ケイ素の水和酸化物の被覆量は、3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率層の所望の屈折率化が得られ、被覆量が3%以上であると粒子を安定に形成することができるからである。 The coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass. This is because when the coating amount is 30% by mass or less, the desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% or more, particles can be stably formed.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報(ルチル型酸化チタンへのSi/Al水和酸化物処理;チタン酸ケーキのアルカリ領域での解膠後酸化チタンの表面にケイ素および/又はアルミニウムの含水酸化物を析出させて表面処理する酸化チタンゾルの製造方法)、特開2000-204301号公報(ルチル型酸化チタンにSiとZrおよび/またはAlの酸化物との複合酸化物を被覆したゾル。水熱処理。)、特開2007-246351号公報(含水酸化チタンを解膠して得られる酸化チタンのヒドロゾルへ、安定剤として式R SiX4-n(式中RはC-Cアルキル基、グリシジルオキシ置換C-Cアルキル基またはC-Cアルケニル基、Xはアルコキシ基、nは1または2である。)のオルガノアルコキシシランまたは酸化チタンに対して錯化作用を有する化合物を添加、アルカリ領域でケイ酸ナトリウムまたはシリカゾルの溶液へ添加・pH調整・熟成することにより、ケイ素の含水酸化物で被覆された酸化チタンヒドロゾルを製造する方法)等に記載された事項を参照することができる。 As a method of coating titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015 (Si / Al hydration to rutile titanium oxide) Oxide treatment; a method of producing a titanium oxide sol in which a hydrous oxide of silicon and / or aluminum is deposited on the surface of titanium oxide after peptization in the alkali region of the titanate cake), JP 2000-204301 A (A sol in which a rutile-type titanium oxide is coated with a complex oxide of Si and Zr and / or Al. Hydrothermal treatment), JP 2007-246351 (Oxidation obtained by peptizing hydrous titanium oxide) titanium to hydrosol, wherein R 1 n SiX 4-n (wherein R 1 as stabilizer C 1 -C 8 alkyl group, glycidyloxy substituted C 1 -C Alkyl or C 2 -C 8 alkenyl group, X is an alkoxy group, n is 1 or 2. Sodium silicate added in the alkaline range the compound having a complexing effect on organoalkoxysilanes or titanium oxide) Alternatively, it is possible to refer to matters described in, for example, a method for producing a titanium oxide hydrosol coated with a hydrous oxide of silicon by adding, adjusting pH, and aging a silica sol solution.
 また、高屈折率層に含まれる金属酸化物粒子としては、公知の方法で製造されたコアシェル粒子を用いることもできる。例えば、以下の(i)~(v);(i)酸化チタン粒子を含有する水溶液を加熱加水分解し、または酸化チタン粒子を含有する水溶液にアルカリを添加し中和して、平均粒径が1~30nmの酸化チタンを得た後、モル比で表して酸化チタン粒子/鉱酸が1/0.5~1/2の範囲になるように、前記酸化チタン粒子と鉱酸とを混合したスラリーを、50℃以上該スラリーの沸点以下の温度で加熱処理し、その後得られた酸化チタン粒子を含むスラリーに、ケイ素の化合物(例えば、ケイ酸ナトリウム水溶液)を添加し、酸化チタン粒子の表面にケイ素の含水酸化物を析出させて表面処理し、次いで、得られた表面処理された酸化チタン粒子のスラリーから不純物を除去する方法(特開平10-158015号);(ii)含水酸化チタンなどの酸化チタンを一塩基酸またはその塩で解膠処理して得られる酸性域のpHで安定した酸化チタンゾルと、分散安定化剤としてのアルキルシリケートを常法により混合し、中性化する方法(特開2000-053421号);(iii)過酸化水素および金属スズを、2~3のH/Snモル比に保持しつつ同時にまたは交互にチタン塩(例えば、四塩化チタン)等の混合物水溶液に添加し、チタンを含む塩基性塩水溶液を生成し、該塩基性塩水溶液を0.1~100時間かけて50~100℃の温度で保持して酸化チタンを含む複合体コロイドの凝集体を生成させ、次いで、該凝集体スラリー中の電解質を除去し、酸化チタンを含む複合体コロイド粒子の安定な水性ゾルを製造する;ケイ酸塩(例えば、ケイ酸ナトリウム水溶液)等を含有する水溶液を調製し、水溶液中に存在する陽イオンを除去することで、二酸化ケイ素を含む複合体コロイド粒子の安定な水性ゾルが製造する;得られた酸化チタンを含む複合体水性ゾルを金属酸化物TiOに換算して100重量部と、得られた二酸化ケイ素を含む複合体水性ゾルを金属酸化物SiOに換算して2~100重量部とを混合し、陰イオンを除去後、80℃で1時間加熱熟成する方法(特開2000-063119号);(iv)含水チタン酸のゲルまたはゾルに過酸化水素を加えて含水チタン酸を溶解し、得られたペルオキソチタン酸水溶液に、ケイ素化合物等を添加し加熱し、ルチル型構造をとる複合固溶体酸化物からなるコア粒子の分散液が得られ、次いで、該コア粒子の分散液にケイ素化合物等を添加した後、加熱しコア粒子表面に被覆層を形成し、複合酸化物粒子が分散されたゾルを得て、さらに、加熱する方法(特開2000-204301号);(v)含水酸化チタンを解膠して得られた酸化チタンのヒドロゾルに、安定剤としてのオルガノアルコキシシラン(RnSiX4-n)または過酸化水素および脂肪族もしくは芳香族ヒドロキシカルボン酸から選ばれた化合物を添加し、溶液のpHを3以上9未満へ調節し熟成させた後に脱塩処理を行う方法(特開4550753号);で製造されたコアシェル粒子が挙げられる。 In addition, as the metal oxide particles contained in the high refractive index layer, core-shell particles produced by a known method can be used. For example, the following (i) to (v): (i) An aqueous solution containing titanium oxide particles is hydrolyzed by heating, or an aqueous solution containing titanium oxide particles is neutralized by adding an alkali, so that the average particle size is After obtaining 1 to 30 nm of titanium oxide, the titanium oxide particles and the mineral acid were mixed so that the molar ratio of titanium oxide particles / mineral acid was in the range of 1 / 0.5 to 1/2. The slurry is heat-treated at a temperature not lower than the boiling point of the slurry and not higher than the boiling point of the slurry, and then a silicon compound (for example, an aqueous sodium silicate solution) is added to the obtained slurry containing the titanium oxide particles. A method of removing impurities from the slurry of the obtained surface-treated titanium oxide particles (Japanese Patent Laid-Open No. 10-158015); (ii) hydrous titanium oxide A method of neutralizing a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a titanium oxide of a monobasic acid or a salt thereof and an alkyl silicate as a dispersion stabilizer by a conventional method ( (Iii) Hydrogen peroxide and tin metal are maintained at a H 2 O 2 / Sn molar ratio of 2 to 3 at the same time or alternately, such as a titanium salt (eg, titanium tetrachloride). The mixture is added to the aqueous solution to form a basic salt aqueous solution containing titanium, and the basic salt aqueous solution is kept at a temperature of 50 to 100 ° C. for 0.1 to 100 hours to coagulate the composite colloid containing titanium oxide. An aggregate is formed, and then the electrolyte in the aggregate slurry is removed to produce a stable aqueous sol of composite colloidal particles comprising titanium oxide; silicates (eg, sodium silicate aqueous solution) A stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing selenium and removing cations present in the aqueous solution; the resulting composite aqueous sol containing titanium oxide 100 parts by weight in terms of metal oxide TiO 2 and 2 to 100 parts by weight of the resulting composite aqueous sol containing silicon dioxide in terms of metal oxide SiO 2 are mixed to remove anions (Iv) Hydrogen peroxide is added to a hydrous titanic acid gel or sol to dissolve the hydrous titanic acid, and the resulting aqueous peroxotitanic acid solution is heated and aged at 80 ° C. for 1 hour (Japanese Patent Laid-Open No. 2000-063119). After adding a silicon compound or the like and heating to obtain a dispersion of a core particle composed of a composite solid solution oxide having a rutile structure, and then adding the silicon compound or the like to the dispersion of the core particle Heating, forming a coating layer on the surface of the core particles, obtaining a sol in which the composite oxide particles are dispersed, and further heating (JP 2000-204301); (v) peptizing hydrous titanium oxide To the obtained titanium oxide hydrosol, an organoalkoxysilane (R 1 nSiX 4-n ) as a stabilizer or a compound selected from hydrogen peroxide and an aliphatic or aromatic hydroxycarboxylic acid is added, and the pH of the solution is increased. The core-shell particles produced by the method of performing desalting treatment after adjusting to 3 to less than 9 and performing aging (Japanese Patent No. 4550753).
 上記コアシェル粒子は、コアである酸化チタン粒子の表面全体を含ケイ素の水和酸化物で被覆したものでもよく、また、コアである酸化チタン粒子の表面の一部を含ケイ素の水和酸化物で被覆したものでもよい。 The core-shell particles may be those in which the entire surface of the titanium oxide particles as a core is coated with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles as a core is covered with a silicon-containing hydrated oxide. It may be coated with.
 さらに、本発明で用いられる金属酸化物粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%である。 Furthermore, the metal oxide particles used in the present invention are preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 高屈折率層における金属酸化物粒子の含有量としては、高屈折率層の固形分100質量%に対して、15~90質量%であることが好ましく、20~85質量%であることがより好ましく、30~85質量%であることが反射率向上の観点から、さらに好ましい。 The content of the metal oxide particles in the high refractive index layer is preferably 15 to 90% by mass and more preferably 20 to 85% by mass with respect to 100% by mass of the solid content of the high refractive index layer. The content is preferably 30 to 85% by mass from the viewpoint of improving the reflectance.
 〔界面活性剤〕
 各屈折率層は、塗布性の観点から界面活性剤を含有することが好ましい。
[Surfactant]
Each refractive index layer preferably contains a surfactant from the viewpoint of coatability.
 塗布時の表面張力調整のため用いられる界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などを用いることができるが、アニオン系界面活性剤がより好ましい。好ましい化合物としては、1分子中に炭素数8~30の疎水性基とスルホン酸基又はその塩を含有するものが挙げられる。 An anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant used for adjusting the surface tension during coating, but an anionic surfactant is more preferable. Preferable compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
 アニオン系界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンまたはオレフィンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキル又はアルキルアリールエーテル硫酸エステル塩、アルキルリン酸塩、アルキルジフェニルエーテルジスルホン酸塩、エーテルカルボキシレート、アルキルスルホコハク酸エステル塩、α-スルホ脂肪酸エステルおよび脂肪酸塩よりなる群から選ばれる界面活性剤や、高級脂肪酸とアミノ酸との縮合物、ナフテン酸塩等を用いることができる。好ましく用いられるアニオン系界面活性剤は、アルキルベンゼンスルホン酸塩(とりわけ直鎖アルキルのもの)、アルカン又はオレフィンスルホン酸塩(とりわけ第2級アルカンスルホン酸塩、α-オレフィンスルホン酸塩)、アルキル硫酸エステル塩、ポリオキシエチレンアルキル又はアルキルアリールエーテル硫酸エステル塩(とりわけポリオキシエチレンアルキルエーテル硫酸エステル塩)、アルキル燐酸塩(とりわけモノアルキルタイプ)、エーテルカルボキシレート、アルキルスルホコハク酸塩、α-スルホ脂肪酸エステルおよび脂肪酸塩よりなる群から選ばれる界面活性剤であり、特に好ましくは、アルキルスルホコハク酸塩である。 Anionic surfactants include alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkane or olefin sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl or alkyl aryl ether sulfate ester, alkyl phosphate, alkyl diphenyl ether A surfactant selected from the group consisting of disulfonates, ether carboxylates, alkylsulfosuccinates, α-sulfo fatty acid esters and fatty acid salts, condensates of higher fatty acids with amino acids, naphthenates, etc. may be used. it can. Anionic surfactants preferably used are alkylbenzene sulfonates (especially those of linear alkyls), alkanes or olefin sulfonates (especially secondary alkane sulfonates, α-olefin sulfonates), alkyl sulfates Salts, polyoxyethylene alkyl or alkylaryl ether sulfates (especially polyoxyethylene alkyl ether sulfates), alkyl phosphates (especially monoalkyl type), ether carboxylates, alkyl sulfosuccinates, α-sulfo fatty acid esters and A surfactant selected from the group consisting of fatty acid salts, and alkylsulfosuccinate is particularly preferable.
 各屈折率層における界面活性剤の含有量は、屈折率層の固形分100質量%として、0.001~0.5質量%であることが好ましく、0.005~0.3質量%であることがより好ましい。 The content of the surfactant in each refractive index layer is preferably 0.001 to 0.5% by mass, and preferably 0.005 to 0.3% by mass, based on 100% by mass of the solid content of the refractive index layer. It is more preferable.
 〔高分子分散剤〕
 各屈折率層には、塗布液の分散安定性の観点から高分子分散剤を含有することが好ましい。高分子分散剤とは、重量平均分子量が10,000以上の高分子の分散剤を指す。好適には、側鎖または末端に水酸基が置換された高分子であり、例えばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテル、ポリビニルアルコールなどが挙げられる。高分子分散剤は市販品を用いてもよく、かような高分子分散剤としては、マリアリムAKM-0531(日油社製)などが挙げられる。高分子分散剤の含有量は屈折率層に対して固形分換算で0.1~10質量%であることが好ましい。
(Polymer dispersant)
Each refractive index layer preferably contains a polymer dispersant from the viewpoint of dispersion stability of the coating solution. The polymer dispersant refers to a polymer dispersant having a weight average molecular weight of 10,000 or more. Preferably, the polymer has a hydroxyl group substituted at the side chain or terminal. For example, a polymer obtained by copolymerizing 2-ethylhexyl acrylate with an acrylic polymer such as sodium polyacrylate or polyacrylamide, polyethylene glycol or the like. Examples include polyethers such as polypropylene glycol, polyvinyl alcohol, and the like. Commercially available polymer dispersants may be used, and examples of such polymer dispersants include Marialim AKM-0531 (manufactured by NOF Corporation). The content of the polymer dispersant is preferably 0.1 to 10% by mass in terms of solid content with respect to the refractive index layer.
 〔エマルジョン樹脂〕
 高屈折率層または低屈折率層は、エマルジョン樹脂をさらに含有していてもよい。エマルジョン樹脂を含むことにより、膜の柔軟性が高くなりガラスへの貼りつけ等の加工性がよくなる。
[Emulsion resin]
The high refractive index layer or the low refractive index layer may further contain an emulsion resin. By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
 エマルジョン樹脂とは、水系媒体中に微細な、例えば、平均粒径が0.01~2.0μm程度の樹脂粒子がエマルジョン状態で分散されている樹脂で、油溶性のモノマーを、水酸基を有する高分子分散剤を用いてエマルジョン重合して得られる。用いる分散剤の種類によって、得られるエマルジョン樹脂のポリマー成分に基本的な違いは見られない。エマルジョンの重合時に使用される分散剤としては、例えば、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。水酸基を有する高分子分散剤を用いてエマルジョン重合すると、微細な微粒子の少なくとも表面に水酸基の存在が推定され、他の分散剤を用いて重合したエマルジョン樹脂とはエマルジョンの化学的、物理的性質が異なる。 An emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 μm, for example, are dispersed in an emulsion state in an aqueous medium. Obtained by emulsion polymerization using a molecular dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used. Examples of the dispersant used in the polymerization of the emulsion include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkylsulfonate, alkylbenzenesulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt. , Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone. When emulsion polymerization is performed using a polymer dispersant having a hydroxyl group, the presence of hydroxyl groups is estimated on at least the surface of fine particles, and the emulsion resin polymerized using other dispersants has chemical and physical properties of the emulsion. Different.
 水酸基を含む高分子分散剤とは、重量平均分子量が10000以上の高分子の分散剤で、側鎖または末端に水酸基が置換されたものであり、例えばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテル、ポリビニルアルコールなどが挙げられ、特にポリビニルアルコールが好ましい。 The polymer dispersant containing a hydroxyl group is a polymer dispersant having a weight average molecular weight of 10,000 or more, and has a hydroxyl group substituted at the side chain or terminal. For example, an acrylic polymer such as sodium polyacrylate or polyacrylamide is used. Examples of such polymers include 2-ethylhexyl acrylate copolymer, polyethers such as polyethylene glycol and polypropylene glycol, and polyvinyl alcohol. Polyvinyl alcohol is particularly preferable.
 高分子分散剤として使用されるポリビニルアルコールは、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、カチオン変性したポリビニルアルコールやカルボキシル基のようなアニオン性基を有するアニオン変性ポリビニルアルコール、シリル基を有するシリル変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。ポリビニルアルコールは、平均重合度は高い方がインク吸収層を形成する際のクラックの発生を抑制する効果が大きいが、平均重合度が5000以内であると、エマルジョン樹脂の粘度が高くなく、製造時に取り扱いやすい。したがって、平均重合度は300~5000のものが好ましく、1500~5000のものがより好ましく、3000~4500のものが特に好ましい。ポリビニルアルコールのケン化度は70~100モル%のものが好ましく、80~99.5モル%のものがより好ましい。 Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group is also included. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when forming the ink absorbing layer when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and at the time of production Easy to handle. Accordingly, the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500. The saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
 上記の高分子分散剤で乳化重合される樹脂としては、アクリル酸エステル、メタクリル酸エステル、ビニル系化合物、スチレン系化合物といったエチレン系単量体、ブタジエン、イソプレンといったジエン系化合物の単独重合体または共重合体が挙げられ、例えばアクリル系樹脂、スチレン-ブタジエン系樹脂、エチレン-酢酸ビニル系樹脂等が挙げられる。 Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene. Examples of the polymer include acrylic resins, styrene-butadiene resins, and ethylene-vinyl acetate resins.
 〔屈折率層のその他の添加剤〕
 本発明に係る高屈折率層と低屈折率層には、必要に応じて各種の添加剤を含有させることが出来る。
[Other additives for refractive index layer]
The high refractive index layer and the low refractive index layer according to the present invention can contain various additives as required.
 例えば、特開昭57-74193号公報、同57-87988号公報および同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。 For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57-87989, JP-A-60- No. 72785, 61-146591, JP-A-1-95091 and 3-13376, etc., and JP-A-59-42993 and 59-52689. Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide described in JP-A-62-280069, JP-A-61-228771 and JP-A-4-219266 Various known additives such as pH adjusters such as potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents and matting agents It may contain.
 〔樹脂支持体〕
 樹脂支持体は紫外線遮蔽積層部の基材として用いられる。
(Resin support)
The resin support is used as a base material for the ultraviolet shielding laminate.
 樹脂支持体は、赤外および可視の波長域の少なくとも一方で透明であることが好ましい。可視光域で透明であれば、下層の意匠性を損なわず、また、太陽電池ユニットなど可視光領域の光を必要とする用途の場合に有用である。また、赤外領域で透明であれば、赤外領域の波長域の光を遮断しないため、赤外領域の波長の光を必要とする用途で有用である。したがって、樹脂支持体がどの波長域に対して透明であるか否かは、紫外線遮蔽フィルムが用いられる基体の用途によって適宜選択されるものである。 The resin support is preferably transparent in at least one of the infrared and visible wavelength regions. If it is transparent in the visible light region, it is useful for applications that require light in the visible light region, such as solar cell units, without impairing the design of the lower layer. Moreover, if it is transparent in the infrared region, light in the wavelength region of the infrared region is not blocked, so that it is useful in applications that require light in the infrared region. Therefore, for which wavelength range the resin support is transparent is appropriately selected depending on the use of the substrate on which the ultraviolet shielding film is used.
 可視光領域で透明であるとは、分光光度計により測定される、可視光領域(400~800nm)の平均透過率が75%以上であることを指し、より好ましくは80%以上、特に85%以上であることが好ましい。また、赤外光領域で透明であるとは、分光光度計により測定される、赤外光領域(800~1400nm)の平均透過率が75%以上であることを指し、より好ましくは80%以上、特に85%以上であることが好ましい。 Transparent in the visible light region means that the average transmittance in the visible light region (400 to 800 nm) measured by a spectrophotometer is 75% or more, more preferably 80% or more, particularly 85%. The above is preferable. Further, being transparent in the infrared light region means that the average transmittance in the infrared light region (800 to 1400 nm) measured by a spectrophotometer is 75% or more, more preferably 80% or more. In particular, it is preferably 85% or more.
 樹脂支持体としては、種々の樹脂支持体を用いることができ、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができる。樹脂支持体の劣化を抑制するという本発明の効果が顕著に得られることから、好ましくは樹脂支持体に用いられる樹脂がポリエステルである。ポリエステルとしては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。 As the resin support, various resin supports can be used, and polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose acetate, etc. can be used. Since the effect of the present invention that suppresses the deterioration of the resin support is remarkably obtained, the resin used for the resin support is preferably polyester. Although it does not specifically limit as polyester, It is preferable that it is polyester which has the film formation property which has a dicarboxylic acid component and a diol component as main structural components.
 主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。 The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters having these as main components, from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 本発明に用いられる樹脂支持体の厚みは、10~300μm、特に20~150μmであることが好ましい。また、樹脂支持体は、2枚重ねたものであっても良く、この場合、その種類が同じでも異なってもよい。 The thickness of the resin support used in the present invention is preferably 10 to 300 μm, particularly 20 to 150 μm. In addition, two resin supports may be stacked, and in this case, the type may be the same or different.
 また、上記樹脂等を用いた樹脂支持体は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。 In addition, the resin support using the above resin or the like may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
 樹脂支持体は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の樹脂支持体を製造することができる。また、未延伸の樹脂支持体を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、樹脂支持体の流れ(縦軸)方向、または樹脂支持体の流れ方向と直角(横軸)方向に延伸することにより延伸樹脂支持体を製造することができる。この場合の延伸倍率は、樹脂支持体の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The resin support can be produced by a conventionally known general method. For example, an unstretched resin support that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding with an annular die or a T-die, and quenching. The unsupported resin support is uniaxially stretched, tenter-type sequential biaxial stretch, tenter-type simultaneous biaxial stretch, tubular-type simultaneous biaxial stretch, and other known methods such as resin support flow (vertical axis) direction. Alternatively, a stretched resin support can be produced by stretching in the direction perpendicular to the flow direction of the resin support (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin used as the raw material of the resin support, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 また、樹脂支持体は、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、より好ましくは処理温度が100~180℃である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%で処理されることである。弛緩処理された樹脂支持体は、下記のオフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。 Also, the resin support may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability. It is preferable that the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C. In addition, the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%. The resin support subjected to the relaxation treatment is improved in heat resistance by performing the following off-line heat treatment, and the dimensional stability is improved.
 樹脂支持体は、製膜過程で片面または両面にインラインで下引層塗布液を塗布することが好ましい。なお、製膜工程中での下引塗布をインライン下引という。下引層塗布液に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂およびゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01~2g/m(乾燥状態)程度が好ましい。 The resin support is preferably coated with the undercoat layer coating solution inline on one side or both sides during the film forming process. The undercoating during the film forming process is referred to as inline undercoating. The resin used for the undercoat layer coating solution is polyester resin, acrylic modified polyester resin, polyurethane resin, acrylic resin, vinyl resin, vinylidene chloride resin, polyethyleneimine vinylidene resin, polyethyleneimine resin, polyvinyl alcohol resin, modified polyvinyl alcohol resin. And gelatin, and any of them can be preferably used. A conventionally well-known additive can also be added to these undercoat layers. The undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating. The coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
 〔紫外線遮蔽フィルムの製造方法〕
 本発明の紫外線遮蔽フィルムの製造方法について特に制限はなく、樹脂支持体上に、樹脂層および高屈折率層と低屈折率層とから構成されるユニットを少なくとも1つ形成することができるのであれば、いかなる方法でも用いられうる。
[Method for producing ultraviolet shielding film]
The method for producing the ultraviolet shielding film of the present invention is not particularly limited, and at least one unit composed of a resin layer, a high refractive index layer, and a low refractive index layer can be formed on the resin support. Any method can be used.
 紫外線遮蔽積層部および樹脂層の積層方法は、大面積化が可能であること、および好適には水溶性樹脂を含むことから、塗布による膜形成法が好ましく、また、塗布の方法としては、逐次塗布でも同時重層塗布でもよいが、生産性が向上することから、同時重層塗布であることが好ましい。 The method of laminating the ultraviolet shielding laminate and the resin layer is preferably a film formation method by coating because it can increase the area and preferably contains a water-soluble resin. Application or simultaneous multi-layer application may be used, but simultaneous multi-layer application is preferable because productivity is improved.
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791. A slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
 高屈折率層塗布液、低屈折率層塗布液および樹脂層塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本発明においては、好適な樹脂として水溶性樹脂を用いることができるために、水系溶媒を用いることができる。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。 The solvent for preparing the high refractive index layer coating solution, the low refractive index layer coating solution and the resin layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In the present invention, since a water-soluble resin can be used as a suitable resin, an aqueous solvent can be used. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒が好ましく、水がより好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
 水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、ハンドリングが向上し、また、99.9質量%以下にすることで、液添加時の均質性が増し、安定した液物性を得ることができるからである。 When using a mixed solvent of water and a small amount of an organic solvent, the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%. Here, by setting it to 80% by mass or more, volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
 高屈折率層塗布液中の樹脂の濃度は、0.5~10質量%であることが好ましい。また、高屈折率層塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the resin in the high refractive index layer coating solution is preferably 0.5 to 10% by mass. The concentration of the metal oxide particles in the high refractive index layer coating solution is preferably 1 to 50% by mass.
 低屈折率層塗布液中の樹脂の濃度は、0.5~10質量%であることが好ましい。また、低屈折率層塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the resin in the low refractive index layer coating solution is preferably 0.5 to 10% by mass. The concentration of the metal oxide particles in the low refractive index layer coating solution is preferably 1 to 50% by mass.
 また、樹脂層塗布液中の樹脂の濃度は、0.5~10質量%であることが好ましい。 Further, the concentration of the resin in the resin layer coating solution is preferably 0.5 to 10% by mass.
 高屈折率層塗布液、低屈折率層塗布液および樹脂層塗布液の調製方法は、特に制限されず、例えば、金属酸化物粒子、樹脂、および必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。必要に応じて、さらに溶媒を用いて、適当な粘度に調製される。 The method for preparing the high refractive index layer coating solution, the low refractive index layer coating solution, and the resin layer coating solution is not particularly limited. For example, metal oxide particles, a resin, and other additives that are added as necessary. The method of adding and stirring and mixing is mentioned. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
 本発明においては、体積平均粒径が100nm以下のルチル型の酸化チタンを添加、分散して調製した水系の高屈折率層塗布液を用いて、高屈折率層を形成することが好ましい。 In the present invention, it is preferable to form the high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing rutile type titanium oxide having a volume average particle size of 100 nm or less.
 同時重層塗布を行う際の高屈折率層塗布液および低屈折率層塗布液の温度は、スライドビード塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 When using the slide bead coating method, the temperature of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is preferably a temperature range of 25 to 60 ° C., and a temperature range of 30 to 45 ° C. Is more preferable. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗布を行う際の高屈折率層塗布液と低屈折率層塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~100mPa・sの範囲が好ましく、さらに好ましくは10~50mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 The viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution during simultaneous multilayer coating is not particularly limited. However, when the slide bead coating method is used, the preferable temperature range of the coating solution is preferably 5 to 100 mPa · s, more preferably 10 to 50 mPa · s. When the curtain coating method is used, the preferable temperature range of the coating solution is preferably 5 to 1200 mPa · s, more preferably 25 to 500 mPa · s. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは3,000~30,000mPa・sであり、最も好ましいのは10,000~30,000mPa・sである。 The viscosity of the coating solution at 15 ° C. is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, still more preferably 3,000 to 30,000 mPa · s, and most preferably 10 , 30,000 to 30,000 mPa · s.
 塗布および乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、30~60℃に加温した樹脂層塗布液を基材上に塗布、乾燥して層を形成した後、高屈折率層用塗布液および低屈折率層用塗布液のいずれか一方の塗布液をこの層上に塗布、乾燥し、さらに高屈折率層用塗布液および低屈折率層用塗布液の他方の塗布液をこの層上に塗布、乾燥し、積層膜前駆体(ユニット)を形成する。次に、所望の遮蔽性能を発現するために必要なユニット数を、前記方法にて逐次塗布、乾燥して積層させて積層膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥するのが好ましく、例えば、40~60℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にするのがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にするのが好ましい。 The conditions for the coating and drying method are not particularly limited. For example, in the case of the sequential coating method, first, a resin layer coating solution heated to 30 to 60 ° C. is coated on the substrate and dried to form a layer. Thereafter, either one of the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer is coated on this layer and dried, and further, the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer The other coating liquid is applied onto this layer and dried to form a laminated film precursor (unit). Next, the number of units necessary for expressing the desired shielding performance is successively applied and dried by the above method to obtain a laminated film precursor. When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. Further, drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section <the temperature of the rate-decreasing drying section. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗布を行う場合の塗布および乾燥方法の条件は、樹脂層塗布液、高屈折率層用塗布液、および低屈折率層用塗布液を30~60℃に加温して、基材上に樹脂層塗布液、高屈折率層用塗布液/低屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 In addition, the conditions of the coating and drying method when performing simultaneous multilayer coating are as follows: the resin layer coating solution, the high refractive index layer coating solution, and the low refractive index layer coating solution are heated to 30 to 60 ° C. After simultaneous multi-layer coating of a resin layer coating solution and a coating solution for a high refractive index layer / a coating solution for a low refractive index layer on the material, the temperature of the formed coating film is preferably cooled to 1 to 15 ° C. ( Set) and then drying at 10 ° C. or higher is preferred. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性を低下させたり、またゲル化する工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間が短すぎると、層中の成分の混合が不十分となる虞がある。一方、セット時間が長すぎると、金属酸化物粒子の層間拡散が進み、高屈折率層と低屈折率層との屈折率差が不十分となるおそれがある。なお、高屈折率層と低屈折率層との間の中間層の高弾性化が素早く起こるのであれば、セットさせる工程は設けなくてもよい。 The time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is too short, mixing of the components in the layer may be insufficient. On the other hand, if the set time is too long, the interlayer diffusion of the metal oxide particles proceeds, and the refractive index difference between the high refractive index layer and the low refractive index layer may be insufficient. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
 セット時間の調整は、水溶性樹脂の濃度や金属酸化物粒子の濃度を調整したり、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加することにより調整することができる。 The set time is adjusted by adjusting the concentration of the water-soluble resin and the metal oxide particles, and adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。 The temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. The time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 樹脂層塗布液、高屈折率層用塗布液および低屈折率層用塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚みとなるように塗布すればよい。 The coating thickness of the resin layer coating solution, the coating solution for the high refractive index layer, and the coating solution for the low refractive index layer may be applied so as to have a preferable dry thickness as described above.
 〔膜設計〕
 本発明の紫外線遮蔽フィルムは、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む紫外線遮蔽積層部を有する。好適には樹脂支持体の片面上または両面上に、高屈折率層と低屈折率層が交互に積層して形成された多層の光学干渉膜を有する。
[Membrane design]
The ultraviolet shielding film of the present invention has an ultraviolet shielding laminated portion including at least one unit obtained by laminating a high refractive index layer and a low refractive index layer. Preferably, it has a multilayer optical interference film in which a high refractive index layer and a low refractive index layer are alternately laminated on one side or both sides of a resin support.
 生産性の観点から、樹脂支持体の片面あたりの好ましい高屈折率層および低屈折率層の総層数の範囲は、100層以下、より好ましくは45層以下である。樹脂支持体の片面あたりの好ましい高屈折率層および低屈折率層の総層数の範囲の下限は特に限定されるものではないが、5層以上であることが好ましい。光散乱および反射強度を考慮すると、片面あたりの高屈折率層および低屈折率層の総層数の範囲は、7~23層であることが好ましい。 From the viewpoint of productivity, the total number of layers of the high refractive index layer and the low refractive index layer per side of the resin support is preferably 100 layers or less, more preferably 45 layers or less. The lower limit of the total number of layers of the high refractive index layer and the low refractive index layer per side of the resin support is not particularly limited, but is preferably 5 layers or more. In consideration of light scattering and reflection intensity, the range of the total number of high refractive index layers and low refractive index layers per side is preferably 7 to 23 layers.
 なお、前記の好ましい高屈折率層および低屈折率層の総層数の範囲は、樹脂支持体の片面にのみ積層される場合においても適応可能であり、樹脂支持体の両面に同時に積層される場合においても適応可能である。樹脂支持体の両面に積層される場合において、樹脂支持体一の面と他の面との高屈折率層および低屈折率層の総層数は、同じであってもよく、異なっていてもよい。また、本発明の紫外線遮蔽フィルムにおいて、紫外線遮蔽積層部の最下層および最表層は、高屈折率層および低屈折率層のいずれであってもよい。しかしながら、低屈折率層が最下層および最表層に位置する層構成とすることにより、最下層の樹脂支持体への密着性、最上層の吹かれ耐性、さらには最表層へのハードコート層等の塗布性や密着性に優れるという観点から、本発明の紫外線遮蔽フィルムとしては、最下層および最表層が低屈折率層である層構成が好ましい。ここでいう最下層とは紫外線遮蔽積層部を塗布にて形成する際の最下層を指し、最表層とは紫外線遮蔽積層部を塗布にて形成する際の最表層を指す。 Note that the preferable range of the total number of the high refractive index layer and the low refractive index layer is applicable even when laminated on only one side of the resin support, and is simultaneously laminated on both sides of the resin support. Even in cases, it can be adapted. When laminated on both surfaces of the resin support, the total number of high refractive index layers and low refractive index layers on one surface of the resin support and the other surface may be the same or different. Good. In the ultraviolet shielding film of the present invention, the lowermost layer and the outermost layer of the ultraviolet shielding laminated part may be either a high refractive index layer or a low refractive index layer. However, by adopting a layer structure in which the low refractive index layer is located in the lowermost layer and the outermost layer, adhesion to the lowermost resin support, blowing resistance of the uppermost layer, hard coat layer to the uppermost layer, etc. From the viewpoint of excellent coating properties and adhesiveness, the ultraviolet shielding film of the present invention preferably has a layer structure in which the lowermost layer and the outermost layer are low refractive index layers. The lowermost layer here refers to the lowermost layer when the ultraviolet shielding laminated portion is formed by coating, and the outermost layer refers to the outermost layer when the ultraviolet shielding laminated portion is formed by coating.
 一般に、紫外線遮蔽フィルムにおいては、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で所望の光線に対する反射率を高くすることができるという観点から好ましい。本発明においては、少なくとも隣接した2層(高屈折率層および低屈折率層)の屈折率差が0.1以上であることが好ましく、より好ましくは0.25以上であり、さらに好ましくは0.3以上であり、よりさらに好ましくは0.35以上であり、もっとも好ましくは0.4以上である。また、上限には特に制限はないが通常1.4以下である。 In general, in an ultraviolet shielding film, it is preferable to design a large difference in refractive index between a high refractive index layer and a low refractive index layer from the viewpoint that the reflectance for a desired light beam can be increased with a small number of layers. . In the present invention, the difference in refractive index between at least two adjacent layers (high refractive index layer and low refractive index layer) is preferably 0.1 or more, more preferably 0.25 or more, and further preferably 0. .3 or more, more preferably 0.35 or more, and most preferably 0.4 or more. The upper limit is not particularly limited, but is usually 1.4 or less.
 紫外線遮蔽フィルムにおける各屈折率層間の屈折率差と、必要な層数とについては、市販の光学設計ソフトを用いて計算することができる。 The refractive index difference between the refractive index layers in the ultraviolet shielding film and the required number of layers can be calculated using commercially available optical design software.
 紫外線遮蔽フィルムにおいて高屈折率層および低屈折率層を交互に積層する場合には、高屈折率層と低屈折率層との屈折率差が、上記好適な屈折率差の範囲内にあることが好ましい。ただし、例えば、最表層はフィルムを保護するための層として形成される場合または最下層が基板との接着性改良層として形成される場合などにおいて、最表層や最下層に関しては、上記好適な屈折率差の範囲外の構成であってもよい。 When the high refractive index layer and the low refractive index layer are alternately laminated in the ultraviolet shielding film, the refractive index difference between the high refractive index layer and the low refractive index layer is within the range of the preferred refractive index difference. Is preferred. However, for example, when the outermost layer is formed as a layer for protecting the film or when the lowermost layer is formed as an adhesion improving layer with the substrate, the above-mentioned preferable refraction is performed with respect to the outermost layer and the lowermost layer. A configuration outside the range of the rate difference may be used.
 隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御出来、反射率を上げることができる。ここで、nは屈折率、またdは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御出来る。この関係を利用して、各層の屈折率と膜厚を制御して、可視光の透過や、紫外線の反射を制御する。 Since reflection at the interface between adjacent layers depends on the refractive index ratio between layers, the larger this refractive index ratio, the higher the reflectance. In addition, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is a relationship expressed by n · d = wavelength / 4 when viewed as a single layer film, the reflected light is controlled to be strengthened by the phase difference. And reflectivity can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By using this optical path difference, reflection can be controlled. Using this relationship, the refractive index and film thickness of each layer are controlled to control the transmission of visible light and the reflection of ultraviolet light.
 また、高屈折率層の平均厚さdHと、低屈折率層の平均厚さdLとの関係が、下記式(1)および(2)を満たすことが好ましい。 Further, it is preferable that the relationship between the average thickness dH of the high refractive index layer and the average thickness dL of the low refractive index layer satisfies the following formulas (1) and (2).
 |dH-dL|<40nm  式(1)
 |dH+dL|<150nm  式(2)
 上記式(1)および(2)を満たすことで、紫外域の反射率を高くすることができる。|dH-dL|は25nm以下であることがより好ましい。|dH-dL|の下限は特に限定されないが、光路差を確保するために、5nm以上であることが好ましい。また、|dH+dL|は130nm以下であることがより好ましい。|dH+dL|の下限は通常100nm以上となる。
| DH−dL | <40 nm Formula (1)
| DH + dL | <150 nm Formula (2)
By satisfying the above formulas (1) and (2), the reflectance in the ultraviolet region can be increased. | DH−dL | is more preferably 25 nm or less. The lower limit of | dH−dL | is not particularly limited, but is preferably 5 nm or more in order to ensure an optical path difference. Further, | dH + dL | is more preferably 130 nm or less. The lower limit of | dH + dL | is usually 100 nm or more.
 本発明の紫外線遮蔽フィルムのスペクトルにおいて最大反射率となる波長は、紫外線遮蔽波長域であれば特に限定されるものではないが、350~380nmになるように設計することが好ましい。これは、樹脂支持体にとって有害な紫外線となる280nm~380nmのうち、340nmよりも短波長の光は、高屈折率層に含まれる酸化チタンや酸化ジルコニウムといった高屈折率の金属酸化物の光吸収、または紫外線吸収剤によって遮蔽することができるため、金属酸化物や紫外線吸収剤によってカットすることが難しい350~380nmの領域を反射できるように膜設計を行うことが好ましい。 The wavelength having the maximum reflectance in the spectrum of the ultraviolet shielding film of the present invention is not particularly limited as long as it is in the ultraviolet shielding wavelength region, but is preferably designed to be 350 to 380 nm. This is because light with a wavelength shorter than 340 nm out of 280 nm to 380 nm, which is ultraviolet light harmful to the resin support, is absorbed by high refractive index metal oxides such as titanium oxide and zirconium oxide contained in the high refractive index layer. Alternatively, it is preferable to design the film so that a region of 350 to 380 nm which is difficult to cut with a metal oxide or an ultraviolet absorber can be reflected.
 本発明の紫外線遮蔽フィルムは、可視光線透過率が高いことが好ましい。樹脂支持体に紫外線遮蔽積層部を形成した形成体を作製し、該形成体の400~2500nmでの平均透過率が60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。また、紫外域(280~400nm)の平均反射率が10%以上であることが好ましく、20%以上であることがより好ましい。 The ultraviolet shielding film of the present invention preferably has a high visible light transmittance. A formed body in which an ultraviolet shielding laminated portion is formed on a resin support is prepared, and the average transmittance of the formed body at 400 to 2500 nm is preferably 60% or more, more preferably 70% or more, and 80 % Or more is more preferable. The average reflectance in the ultraviolet region (280 to 400 nm) is preferably 10% or more, and more preferably 20% or more.
 低屈折率層は、屈折率が1.10~1.60であることが好ましく、より好ましくは1.30~1.55である。高屈折率層は、屈折率が1.80~2.50であることが好ましく、より好ましくは1.80~2.20である。 The refractive index of the low refractive index layer is preferably 1.10 to 1.60, more preferably 1.30 to 1.55. The high refractive index layer preferably has a refractive index of 1.80 to 2.50, more preferably 1.80 to 2.20.
 低屈折率層の1層あたりの厚み(乾燥後の厚み)は、20~80nmであることが好ましく、30~70nmであることがより好ましく、40~60nmであることがより好ましい。 The thickness of each low refractive index layer (thickness after drying) is preferably 20 to 80 nm, more preferably 30 to 70 nm, and even more preferably 40 to 60 nm.
 高屈折率層の1層あたりの厚み(乾燥後の厚み)は、40~100nmであることが好ましく、50~90nmであることがより好ましく、60~80nmであることがより好ましい。 The thickness (thickness after drying) of the high refractive index layer is preferably 40 to 100 nm, more preferably 50 to 90 nm, and more preferably 60 to 80 nm.
 本発明の紫外線遮蔽フィルムの全体の厚みは、好ましくは12μm~315μm、より好ましくは15μm~200μm、さらに好ましくは20μm~100μmである。 The total thickness of the ultraviolet shielding film of the present invention is preferably 12 μm to 315 μm, more preferably 15 μm to 200 μm, and still more preferably 20 μm to 100 μm.
 〔紫外線遮蔽フィルムの層構成〕
 紫外線遮蔽フィルムは、樹脂支持体上に高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む。紫外線遮蔽積層部は、樹脂支持体の片面にのみ形成されていてもよいし、両面に形成されていてもよい。紫外線波長の反射率が向上することから、紫外線遮蔽積層部が樹脂支持体の両面に形成されてなることが好ましい。また、紫外線遮蔽積層部が樹脂支持体の両面に形成されている場合、各紫外線遮蔽積層部と樹脂支持体との間の少なくとも一方に樹脂層を設ければよいが、双方の間に樹脂層が設けられる形態であることが好ましい。
[Layer structure of UV shielding film]
The ultraviolet shielding film includes at least one unit in which a high refractive index layer and a low refractive index layer are laminated on a resin support. The ultraviolet shielding laminated portion may be formed only on one side of the resin support, or may be formed on both sides. In order to improve the reflectivity of the ultraviolet wavelength, it is preferable that the ultraviolet shielding laminated portion is formed on both surfaces of the resin support. In addition, when the ultraviolet shielding laminated portion is formed on both surfaces of the resin support, a resin layer may be provided on at least one of the ultraviolet shielding laminated portion and the resin support. Is preferably provided.
 紫外線遮蔽フィルムは、樹脂支持体上、樹脂支持体の下または樹脂支持体と反対側の最表面層の上に、さらなる機能の付加を目的として、易接着層(接着層)、ハードコート層、紫外線吸収剤含有層、導電性層、帯電防止層、ガスバリア層、防汚層、消臭層、流滴層、易滑層、耐摩耗性層、反射防止層、電磁波シールド層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、赤外線カット層(金属層、液晶層)、着色層(可視光線吸収層)、合わせガラスに利用される中間膜層などの機能層の1つ以上を有していてもよい。 For the purpose of adding further functions on the resin support, on the resin support, under the resin support or on the outermost surface layer opposite to the resin support, the ultraviolet shielding film is an easy adhesion layer (adhesive layer), a hard coat layer, UV absorber-containing layer, conductive layer, antistatic layer, gas barrier layer, antifouling layer, deodorant layer, drip layer, slippery layer, wear resistant layer, antireflection layer, electromagnetic wave shielding layer, infrared absorbing layer, Printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, adhesive layer, infrared cut layer (metal layer, liquid crystal layer), colored layer (visible light absorbing layer), interlayer film layer used for laminated glass, etc. One or more functional layers may be included.
 紫外線遮蔽積層部が物理的力を受けやすいフィルム表面に露出する形態の場合には、擦傷等から紫外線遮蔽積層部を保護する目的で、ハードコート層を紫外線遮蔽積層部に積層することが好ましい。すなわち、本発明の好適な一実施形態は、紫外線遮蔽積層部よりも紫外光入射側に配置されてなるハードコート層を有する紫外線遮蔽フィルムである。 In the case where the ultraviolet shielding laminated portion is exposed on the surface of a film that is susceptible to physical force, it is preferable to laminate a hard coat layer on the ultraviolet shielding laminated portion for the purpose of protecting the ultraviolet shielding laminated portion from scratches and the like. That is, a preferred embodiment of the present invention is an ultraviolet shielding film having a hard coat layer disposed on the ultraviolet light incident side with respect to the ultraviolet shielding laminated portion.
 また、フィルム下層の部材の紫外線からの保護や、樹脂支持体の劣化からの保護をより効果的に行うために、紫外線遮蔽フィルムは紫外線吸収剤を含有することが好ましい。紫外線吸収剤をフィルムに含有させる形態としては、上述のように樹脂層に含有させてもよいし、別途紫外線吸収剤含有層を設けてもよい。紫外線吸収剤含有層の配置位置は特に限定されないが、紫外線遮蔽積層部への紫外線入射を阻害せず、かつ紫外線遮蔽積層部で遮蔽しきれなかった紫外線を吸収できることから、樹脂層と樹脂支持体との間に配置されることが好ましい。紫外線入射面から見て紫外線遮蔽積層部よりも下層に配置されることが望ましい。 Further, in order to more effectively protect the member in the lower layer of the film from ultraviolet rays and from the deterioration of the resin support, the ultraviolet shielding film preferably contains an ultraviolet absorber. As a form which contains a ultraviolet absorber in a film, you may make it contain in a resin layer as mentioned above, and you may provide a ultraviolet absorber content layer separately. The arrangement position of the ultraviolet absorber-containing layer is not particularly limited, but the resin layer and the resin support are capable of absorbing the ultraviolet rays that do not hinder the incidence of ultraviolet rays to the ultraviolet shielding laminated portion and are not completely shielded by the ultraviolet shielding laminated portion. It is preferable to arrange | position between. It is desirable that it be disposed below the ultraviolet shielding laminate as viewed from the ultraviolet incident surface.
 また、樹脂層に隣接する層の表面粗さ(中心線平均粗さ:Ra)は、0.1μm未満であることが好ましい。紫外線遮蔽フィルムの屈折率層の膜厚は、紫外域よりも長波長の波長域を遮蔽するフィルムの屈折率層の膜厚よりも薄い。このため、樹脂層の下層の樹脂層側表面の表面粗さが0.1μm以上であると、各屈折率層を平滑に積層させることが困難となり、光学特性に影響を与える可能性がある。紫外線遮蔽積層部および樹脂層が樹脂支持体上に積層されてなる形態では、通常、樹脂支持体と紫外線遮蔽積層部との間に接着層が介在するため、好適な一実施形態は、接着層の樹脂層側の表面粗さが0.1μm未満である。なお、接着層としては、下記紫外線吸収剤含有層の欄に記載した接着層を用いることができる。樹脂層の下層の樹脂層側表面の表面粗さは、通常0.01μm以上である。 Further, the surface roughness (center line average roughness: Ra) of the layer adjacent to the resin layer is preferably less than 0.1 μm. The film thickness of the refractive index layer of the ultraviolet shielding film is thinner than the film thickness of the refractive index layer of the film that shields a wavelength region having a longer wavelength than the ultraviolet region. For this reason, when the surface roughness of the resin layer side surface of the lower layer of the resin layer is 0.1 μm or more, it is difficult to smoothly laminate the refractive index layers, which may affect the optical characteristics. In the form in which the ultraviolet shielding laminated portion and the resin layer are laminated on the resin support, an adhesive layer is usually interposed between the resin support and the ultraviolet shielding laminated portion. The surface roughness of the resin layer is less than 0.1 μm. In addition, as an adhesive layer, the adhesive layer described in the column of the following ultraviolet absorber content layer can be used. The surface roughness of the resin layer side surface of the lower layer of the resin layer is usually 0.01 μm or more.
 (ハードコート層)
 紫外線遮蔽積層部を擦傷から保護する目的で、紫外線遮蔽フィルムは、少なくともハードコート層を有することが好ましい。
(Hard coat layer)
For the purpose of protecting the ultraviolet shielding laminate from scratches, the ultraviolet shielding film preferably has at least a hard coat layer.
 ハードコート層で使用される硬化樹脂としては、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。かような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。また、硬化型樹脂は市販品を用いてもよいし、合成品を用いてもよい。 Examples of the curable resin used in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because of easy molding. Such curable resins can be used singly or in combination of two or more. As the curable resin, a commercially available product may be used, or a synthetic product may be used.
 活性エネルギー線樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。 The active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. Is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin, an electron beam curable resin, and the like, and an ultraviolet curable resin that is cured by ultraviolet irradiation is preferable.
 紫外線硬化性樹脂としては、例えば、紫外線硬化性ウレタンアクリレート系樹脂、紫外線硬化性ポリエステルアクリレート系樹脂、紫外線硬化性エポキシアクリレート系樹脂、紫外線硬化性ポリオールアクリレート系樹脂、または紫外線硬化性エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化性アクリレート系樹脂が好ましい。 As the ultraviolet curable resin, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
 紫外線硬化性ウレタンアクリレート系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載の、ユニディック17-806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。 The UV curable urethane acrylate resin generally includes 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in addition to a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It is easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, a mixture of 100 parts Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It is done.
 紫外線硬化性ポリエステルアクリレート系樹脂は、一般にポリエステル末端の水酸基やカルボキシル基に2-ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号公報)。 The UV curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxyl group at the end of the polyester (see, for example, JP-A No. 1987-101). 59-151112).
 紫外線硬化性エポキシアクリレート系樹脂は、エポキシ樹脂の末端の水酸基にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。 The ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
 紫外線硬化性ポリオールアクリレート系樹脂は、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等のモノマーを反応させて得られる。 UV curable polyol acrylate resins are ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol. It is obtained by reacting monomers such as pentaacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate and the like.
 熱硬化性樹脂としては、ポリシロキサンに代表される無機系材料が挙げられる。 Examples of thermosetting resins include inorganic materials typified by polysiloxane.
 ポリシロキサン系ハードコートは、一般式RmSi(OR’)nで示されるものが出発原料である。RおよびR’は、炭素数1~10のアルキル基を表し、mおよびnは、m+n=4の関係を満たす整数である。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-ポロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テロラペンタエトキシシラン、テトラペンタ-iso-プロポキシシラン、テトラペンタ-n-プロポキシシラン、テトラペンタ-n-ブトキシシラン、テトラペンタ-sec-ブトキシシラン、テトラペンタ-tert-ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。また、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-β-(N-アミノベンジルアミノエチル)-γ-アミノプロピルメトキシシラン・塩酸塩、γ-グリシドキシプロピルトリメトキシシラン、アミノシラン、メチルメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリリメトキシシラン、ヘキサメチルジシラザン、ビニルトリス(β-メトキシエトキシ)シラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライドを用いることもできる。これらのメトキシ基、エトキシ基などの加水分解性基が水酸基に置換した状態のものが、一般的にポリオルガノシロキサン系ハードコートといわれている。これを基板上に塗布し、加熱硬化させることで、脱水縮合反応が促進し、硬化・架橋することで、ハードコートが製膜される。これらのポリオルガノシロキサン系ハードコート中でも、加水分解によって脱離しない有機基がメチル基のものが最も耐候性が高い。また、メチル基であれば、ハードコート製膜後の表面にメチル基が均一且密に分布するため、転落角も低い。そのため、本用途では、メチルポリシロキサンを用いることが好ましい。 The starting material of the polysiloxane hard coat is represented by the general formula RmSi (OR ′) n. R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and m and n are integers satisfying the relationship of m + n = 4. Specifically, tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-polopoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, terapentaethoxy Silane, tetrapenta-iso-propoxysilane, tetrapenta-n-propoxysilane, tetrapenta-n-butoxysilane, tetrapenta-sec-butoxysilane, tetrapenta-tert-butoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxy Silane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethylpropoxysilane, dimethylbutoxysilane, dimethyl Dimethoxysilane, dimethyl diethoxy silane, hexyl trimethoxy silane and the like. Γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N-β- ( N-aminobenzylaminoethyl) -γ-aminopropylmethoxysilane / hydrochloride, γ-glycidoxypropyltrimethoxysilane, aminosilane, methylmethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloro Propyltrilimethoxysilane, hexamethyldisilazane, vinyltris (β-methoxyethoxy) silane, and octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride can also be used. A state in which a hydrolyzable group such as methoxy group or ethoxy group is substituted with a hydroxyl group is generally referred to as a polyorganosiloxane hard coat. When this is applied onto a substrate and cured by heating, a dehydration condensation reaction is promoted, and a hard coat is formed by curing and crosslinking. Among these polyorganosiloxane hard coats, those having an organic group that is not eliminated by hydrolysis are methyl groups have the highest weather resistance. Moreover, if it is a methyl group, since the methyl group is uniformly and densely distributed on the surface after the hard coat film formation, the falling angle is also low. Therefore, in this application, it is preferable to use methylpolysiloxane.
 ポリシロキサン系ハードコートの膜厚として、厚すぎれば、応力によってハードコート層が割れる危険性があり、薄すぎれば硬度が維持できない。そのため、厚さとして、1~5μmが好ましく、1.5~3μmであることが好ましい。 If the polysiloxane hard coat is too thick, there is a risk that the hard coat layer will break due to stress, and if it is too thin, the hardness cannot be maintained. Therefore, the thickness is preferably 1 to 5 μm, and more preferably 1.5 to 3 μm.
 ポリオルガノシロキサン系ハードコートとして具体的には、サーコートシリーズ(動研製)、SR2441(東レ・ダウコーニング社)、KF-86(信越シリコン社)、Perma‐New(登録商標)6000(California Hardcoating Company)などを利用することができる。 Specific examples of the polyorganosiloxane hard coat include Surcoat Series (manufactured by Doken), SR2441 (Toray Dow Corning), KF-86 (Shin-Etsu Silicone), Perma-New (registered trademark) 6000 (California Hardcoating Company). Etc. can be used.
 硬化樹脂のハードコート層中の配合量は、ハードコート層の合計100質量%(固形分換算)に対して、20~100質量%であることが好ましく、30~99質量%であることがより好ましい。 The blending amount of the cured resin in the hard coat layer is preferably 20 to 100% by mass and more preferably 30 to 99% by mass with respect to 100% by mass (in terms of solid content) of the hard coat layer. preferable.
 さらにまた、これらの樹脂の光増感剤(ラジカル重合開始剤)として、ペンゾイン、べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンジルメチルケタールなどのべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン(商品名イルガキュア184;BASF社)、2-メチル-1〔4-(メチルチオ)フェニル〕-2-モリフォリノプロパン-1-オン(商品名イルガキュア907、;BASF社)などのアセトフェノン類;メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノンなどのアントラキノン類;チオキサントン、2,4―ジエチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4,4-ビスメチルアミノべンゾフェノンなどのベンゾフェノン類およびアゾ化合物等を用いることができる。これらは単独でもまたは2種以上組み合わせても使用することができる。加えて、トリエタノールアミン、メチルジエタノールアミンなどの第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体等の光開始助剤などと組み合わせて使用することができる。これらラジカル重合開始剤の使用量は、樹脂の重合性成分100質量部に対して好ましくは0.5~20質量部、より好ましくは1~15質量部である。 Furthermore, as photosensitizers (radical polymerization initiators) for these resins, benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl methyl ketal and the like Alkyl ethers; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone (trade name Irgacure 184; BASF), 2-methyl-1 [4- (methylthio) phenyl] -2-mori Acetophenones such as folinopropan-1-one (trade name Irgacure 907; BASF); anthraquinones such as methylanthraquinone, 2-ethylanthraquinone and 2-amylanthraquinone; thioxanthone, 2,4-diethylthioxanthone, 2 Thioxanthones such as 4-diisopropyl thioxanthone; can be used benzophenone, 4,4-bis benzophenones such as methylamino benzophenone and azo compounds; acetophenone dimethyl ketal, benzil ketals such as dimethyl ketal. These may be used alone or in combination of two or more. In addition, tertiary amines such as triethanolamine and methyldiethanolamine; photoinitiators such as 2-dimethylaminoethylbenzoic acid and benzoic acid derivatives such as ethyl 4-dimethylaminobenzoate can be used in combination. it can. The use amount of these radical polymerization initiators is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable component of the resin.
 ハードコート層の厚みは0.1~20μmが好ましく、1~15μmがより好ましく、3~10μmであることがより好ましい。0.1μm以上であればハードコート性が向上する傾向にあり、20μm以下であればハードコート層のカールが大きく、耐屈曲性が低下する傾向にある。 The thickness of the hard coat layer is preferably 0.1 to 20 μm, more preferably 1 to 15 μm, and more preferably 3 to 10 μm. If it is 0.1 μm or more, the hard coat property tends to be improved, and if it is 20 μm or less, the curl of the hard coat layer is large and the bending resistance tends to be lowered.
 ハードコート層は、硬化樹脂層形成用組成物(塗布液)をワイヤーバーによるコーティング、スピンコーティング、ディップコーティングにより塗布することで作製することができ、蒸着などの乾式製膜法でも作製することができる。また、上記の組成物(塗布液)をダイコーター、グラビアコーター、コンマコーターなどの連続塗布装置でも塗布・製膜することは可能である。ポリシロキサン系ハードコートの場合、塗布後、溶剤を乾燥させた後、該ハードコートの硬化・架橋を促進するため、50℃以上、150℃以下の温度で30分~数日間の熱処理を必要とする。塗布基材の耐熱性やロールにした時の基材の安定性を考慮して、40℃以上80℃以下で2日間以上処理することが好ましい。活性エネルギー線硬化樹脂の場合、活性エネルギー線の照射波長、照度、光量によってその反応性が変わるため、使用する樹脂によって最適な条件を選択する必要がある。 The hard coat layer can be produced by applying a cured resin layer forming composition (coating solution) by wire bar coating, spin coating or dip coating, and can also be produced by a dry film forming method such as vapor deposition. it can. The composition (coating liquid) can be applied and formed into a film by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater. In the case of a polysiloxane hard coat, after application, after drying the solvent, a heat treatment is required for 30 minutes to several days at a temperature of 50 ° C. or more and 150 ° C. or less in order to promote curing and crosslinking of the hard coat. To do. In consideration of the heat resistance of the coated substrate and the stability of the substrate when it is made into a roll, it is preferable to perform the treatment at 40 ° C. or more and 80 ° C. or less for 2 days or more. In the case of an active energy ray curable resin, the reactivity varies depending on the irradiation wavelength, the illuminance, and the light amount of the active energy ray, and therefore it is necessary to select an optimum condition depending on the resin to be used.
 硬化樹脂層形成用組成物(塗布液)には溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。 The composition for forming the cured resin layer (coating liquid) may contain a solvent, or may be appropriately contained and diluted as necessary. Examples of the organic solvent contained in the coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), It can be appropriately selected from esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used.
 ハードコート層の下層への密着性が得られない場合、硬化樹脂層を積層する前にアンカー層(プライマー層)を形成することができる。アンカー層の膜厚は特に限定されるものではないが、0.1~10μm程度である。好適な例として、アンカー層を構成する樹脂としては、ポリビニルアセタール樹脂、アクリル樹脂が挙げられる。 When adhesion to the lower layer of the hard coat layer is not obtained, an anchor layer (primer layer) can be formed before laminating the cured resin layer. The thickness of the anchor layer is not particularly limited, but is about 0.1 to 10 μm. Preferable examples of the resin constituting the anchor layer include polyvinyl acetal resin and acrylic resin.
 (紫外線吸収剤含有層)
 紫外線吸収剤含有層は、紫外線吸収剤を含有する層であればいかなる形態であってもよい。本発明の好適な一実施形態は、接着層が紫外線吸収剤を含有する形態である。
(UV absorber layer)
The ultraviolet absorber-containing layer may be in any form as long as it contains an ultraviolet absorber. In a preferred embodiment of the present invention, the adhesive layer contains an ultraviolet absorber.
 接着層を構成する粘着剤としては、特に制限されず、例えば、アクリル系粘着剤、ウレタンアクリレート系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリビニルブチラール系粘着剤、エチレン-酢酸ビニル系粘着剤などを例示することができる。中でも、耐久性、柔軟性、強靱性を持つことから、アクリル・ウレタン共重合樹脂と架橋剤(好適には2種以上)とを含む接着層が好ましく用いられる。 The pressure-sensitive adhesive constituting the adhesive layer is not particularly limited. For example, acrylic pressure-sensitive adhesive, urethane acrylate pressure-sensitive adhesive, silicone pressure-sensitive adhesive, urethane pressure-sensitive adhesive, polyvinyl butyral pressure-sensitive adhesive, ethylene-vinyl acetate pressure-sensitive adhesive An agent etc. can be illustrated. Especially, since it has durability, a softness | flexibility, and toughness, the adhesive layer containing an acryl-urethane copolymer resin and a crosslinking agent (preferably 2 or more types) is used preferably.
 アクリル・ウレタン共重合樹脂は、多価イソシアネート化合物またはイソシアネート基を有するポリウレタンと、アクリル系モノマーと、を反応させて得ることができるものである。アクリル・ウレタン共重合樹脂に用いられるアクリル系モノマーとしては、例えばアルキルアクリレート(アルキル基としてはメチル、エチル、n-プロピル、n-ブチル、イソブチル、t-ブチル、2-エチルヘキシル、シクロヘキシルなど)、アルキルメタクリレート(アルキル基としてはメチル、エチル、n-プロピル、n-ブチル、イソブチル、t-ブチル、2-エチルヘキシル、シクロヘキシルなど)、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレートなどのヒドロキシ基含有モノマー、アクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、N-メチルアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-ブトキシメチルアクリルアミド、N-フェニルアクリルアミドなどのアミド基含有モノマー、N,N-ジエチルアミノエチルアクリレート、N,N-ジエチルアミノエチルメタクリレートなどのアミノ基含有モノマー、グリシジルアクリレート、グリシジルメタクリレートなどのグリシジル基含有モノマー、アクリル酸、メタクリル酸およびそれらの塩(ナトリウム塩、カリウム塩、アンモニウム塩など)などのカルボキシル基またはその塩を含有するモノマーなどを用いることができる。架橋性官能基を共重合することが好ましく、特にN-メチロールアクリルアミドを共重合することが、自己架橋性や架橋密度向上点で特に好ましい。N-メチロールアクリルアミドの共重合比率は、共重合性や架橋度の点で0.5~5質量%が好ましく、特に塗布外観の点を考慮すると、1~3質量%がより好ましい。架橋剤としては、例えば、メラミン系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、メチロール化あるいはアルキロール化した尿素系、アクリルアミド系、ポリアミド系樹脂、オキサゾリン系架橋剤、カルボジイミド系架橋剤、各種シランカップリング剤、各種チタネート系カップリング剤などを用いることができる。架橋剤の少なくとも1種がオキサゾリン系架橋剤およびカルボジイミド系架橋剤を含有していることが好ましい。 The acrylic / urethane copolymer resin can be obtained by reacting a polyvalent isocyanate compound or polyurethane having an isocyanate group with an acrylic monomer. Examples of acrylic monomers used for acrylic / urethane copolymer resins include alkyl acrylates (alkyl groups such as methyl, ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.), alkyl Methacrylate (Methyl, ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc. as alkyl groups), 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, Hydroxy group-containing monomers such as 2-hydroxypropyl methacrylate, acrylamide, methacrylamide, N-methyl methacrylamide, N-methyl acrylamide, N-methylol acrylamide, N Amide group-containing monomers such as methylol methacrylamide, N, N-dimethylol acrylamide, N-methoxymethyl acrylamide, N-methoxymethyl methacrylamide, N-butoxymethyl acrylamide, N-phenyl acrylamide, N, N-diethylaminoethyl acrylate, Carboxyl groups such as amino group-containing monomers such as N, N-diethylaminoethyl methacrylate, glycidyl group-containing monomers such as glycidyl acrylate and glycidyl methacrylate, acrylic acid, methacrylic acid and salts thereof (sodium salt, potassium salt, ammonium salt, etc.) Alternatively, a monomer containing a salt thereof can be used. It is preferable to copolymerize a crosslinkable functional group, and it is particularly preferable to copolymerize N-methylolacrylamide in terms of improving self-crosslinking property and crosslinking density. The copolymerization ratio of N-methylolacrylamide is preferably 0.5 to 5% by mass in terms of copolymerizability and the degree of crosslinking, and more preferably 1 to 3% by mass in view of the coating appearance. Examples of the crosslinking agent include melamine crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolized or alkylolized urea, acrylamide, polyamide resin, oxazoline crosslinking agent, and carbodiimide. Cross-linking agents, various silane coupling agents, various titanate coupling agents and the like can be used. It is preferable that at least one of the crosslinking agents contains an oxazoline-based crosslinking agent and a carbodiimide-based crosslinking agent.
 紫外線吸収剤としては特に限定されず、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ヒンダードアミン系、ベンゾエート系等が挙げられ、また無機系として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等が挙げられる。尚、紫外線吸収剤を多量に含有させた際にブリードアウトしてしまうという問題を低減するためには、重量平均分子量1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、重量平均分子量1000以上、3000以下である。 The ultraviolet absorber is not particularly limited, and examples of the organic type include benzophenone type, benzotriazole type, phenyl salicylate type, triazine type, hindered amine type, benzoate type, etc., and inorganic types include titanium oxide, zinc oxide, and oxide. Examples include cerium and iron oxide. In order to reduce the problem of bleeding out when a large amount of the ultraviolet absorber is contained, it is preferable to use a high molecular weight ultraviolet absorber having a weight average molecular weight of 1000 or more. The weight average molecular weight is preferably 1000 or more and 3000 or less.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-ベンゾフェノン、2,2’,4,4’-テトラヒドロキシ-ベンゾフェノン等が挙げられる。市販品としては、シプロ化成社製「シーソーブ100」、「シーソーブ101」、「シーソーブ101S」、「シーソーブ102」、「シーソーブ103」、共同薬品社製「バイオソーブ100」、「バイオソーブ110」、「バイオソーブ130」、ケミプロ化成社製「ケミソーブ10」、「ケミソーブ11」、「ケミソーブ11S」、「ケミソーブ12」、「ケミソーブ13」、「ケミソーブ111」、BASF社製「ユビヌル400」、BASF社製「ユビヌルM-40」、BASF社製「ユビヌルMS-40」、サイテックインダストリーズ社製「サイアソーブUV9」、「サイアソーブUV284」、「サイアソーブUV531」、「サイアソーブUV24」、アデカ社製「アデカスタブ1413」、「アデカスタブLA-51」等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone. Commercially available products include “Seasorb 100”, “Seasorb 101”, “Seasorb 101S”, “Seasorb 102”, “Seasorb 103” manufactured by Sipro Kasei Co., Ltd., “Biosorb 100”, “Biosorb 110”, “Biosorb” manufactured by Kyodo Pharmaceutical. "130", Chemipro Kasei Corporation "Chemsorb 10", "Chemsorb 11", "Chemsorb 11S", "Chemsorb 12", "Chemsorb 13", "Chemsorb 111", BASF "Ubinur 400", BASF "Ubinur" "M-40", BASF "Ubinur MS-40", Cytec Industries "Thiasorb UV9", "Thiasorb UV284", "Thiasorb UV531", "Thiasorb UV24", Adeka "Adeka Stub 1413", "Adeka Stub LA" -51 " And the like.
 ベンゾトリアゾール系紫外線吸収剤の例としては、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどが挙げられる。市販品としては、株式会社ADEKAの「LA31」、BASF社の「チヌビン234」などが挙げられる。 Examples of benzotriazole ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol], 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, and the like. Commercially available products include “LA31” from ADEKA Corporation, “Tinubin 234” from BASF, and the like.
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。市販品としては、シプロ化成社製「シーソーブ201」、「シーソーブ202」、ケミプロ化成社製「ケミソーブ21」、「ケミソーブ22」等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate. Examples of commercially available products include “SEASORB 201” and “SEASORB 202” manufactured by Sipro Kasei Co., Ltd., “CHEMISORB 21” and “CHEMISORB 22” manufactured by Chemipro Kasei.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、〔2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノール〕(チヌビン1577FF、商品名、チバ・スペシャルティーケミカルズ製)、〔2-[4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール〕等が挙げられる。市販品としては、アデカ社製「LA-46」、BASF社製「チヌビン1577ED」、「チヌビン400」、「チヌビン405」、「チヌビン460」、「チヌビン477」、「チヌビン479」等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (Tinuvine 1577FF, trade name, Ciba Specialty) Chemicals), [2- [4,6-bis (2,4dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol] and the like. Examples of commercially available products include “LA-46” manufactured by Adeka, “Tinubin 1577ED”, “Tinubin 400”, “Tinubin 405”, “Tinubin 460”, “Tinubin 477”, and “Tinubin 479” manufactured by BASF. .
 また、上記ベンゾエート系紫外線吸収剤の例としては、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(分子量438.7;市販品の例としては住友化学株式会社のSumisorb400)などが挙げられる。 Examples of the benzoate-based ultraviolet absorber include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; examples of commercially available products) Sumisorb 400) from Sumitomo Chemical Co., Ltd.
 また、紫外線吸収剤としては上記以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギー等として放出する機能を有する化合物を用いることもできる。さらに、酸化防止剤あるいは着色剤等との併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In addition to the above, as the ultraviolet absorber, a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator. When a normal ultraviolet absorber is used, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 なお、上記紫外線吸収剤はそれぞれ、必要に応じてそれらの2種以上を用いることもできる。また、必要により、上記紫外線吸収剤以外の紫外線吸収剤、例えば、サリチル酸誘導体、置換アクリロニトリル、ニッケル錯体などを含有させることもできる。 In addition, each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary. Further, if necessary, an ultraviolet absorber other than the above-described ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
 紫外線吸収剤の紫外線吸収剤含有層への含有量は、0.1~20質量%であることが好ましく、より好ましくは1~15質量%である。 The content of the ultraviolet absorber in the ultraviolet absorber-containing layer is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass.
 紫外線吸収剤含有層の厚みは0.1μm~100μmが好ましく、より好ましくは0.5~10μmである。 The thickness of the ultraviolet absorber-containing layer is preferably 0.1 μm to 100 μm, more preferably 0.5 to 10 μm.
 〔紫外線遮蔽フィルムの用途〕
 本発明の紫外線遮蔽フィルムは、幅広い分野に応用することができ、その用途は特に限定されない。
[Usage of UV shielding film]
The ultraviolet shielding film of the present invention can be applied to a wide range of fields, and its use is not particularly limited.
 (1)太陽電池の保護フィルム
 紫外線遮蔽フィルムの一用途として太陽電池の保護フィルムが挙げられる。
(1) Protective film for solar cell As one application of the ultraviolet shielding film, a protective film for solar cell may be mentioned.
 屋外に設置される太陽電池は、紫外線や赤外線などの太陽光輻射線に対する耐久性が必要とされる。このため、紫外線遮蔽フィルムは有用であるが、さらに、紫外線遮蔽フィルムにおいては、必要な可視光を遮断することなく(可視光透過率が低下しにくく)、長期使用また長期保管等の耐環境性能に優れた表面保護フィルムが求められている。 Solar cells installed outdoors are required to have durability against solar radiation such as ultraviolet rays and infrared rays. For this reason, UV shielding films are useful, but UV shielding films do not block the necessary visible light (the visible light transmittance is difficult to decrease), and are environmentally resistant for long-term use and long-term storage. There is a demand for a surface protective film excellent in the above.
 本発明の紫外線遮蔽フィルムは、耐候性に優れ、また可視光線透過率も低下しにくいことから、太陽電池の保護フィルムとして有用である。 The ultraviolet shielding film of the present invention is useful as a protective film for solar cells because of its excellent weather resistance and low visible light transmittance.
 また、太陽電池の一形態としてフレキシブル太陽電池がある。フレキシブル太陽電池は、電池自体が曲面を形成することができるため、ガラス板を使用して作製される結晶シリコン型電池には、適用のできない場所への設置ができるように構成されている。また、フレキシブルであるため、丸めることや、折りたたみ可能な携帯用途への適用が考えられる。しかしながら、フレキシブルな太陽電池とするために用いるフィルムとしては、高価なフッ素系のフィルムを用いなければならず、また、フッ素系のフィルムをカバーフィルムとして用いる場合には、水蒸気の透過を防ぐためにフィルムを厚くするか、フィルムを複数枚用いる必要があった。一方、フッ素系ではない光透過率の高い材料、例えばポリエチレンテレフタレート(PET)などを使用することを考えた場合には、水分の影響による劣化の他、紫外線による劣化も挙げられる。 Moreover, there is a flexible solar cell as one form of the solar cell. Since the flexible solar cell can form a curved surface, the flexible solar cell is configured so that it can be installed in a place where it cannot be applied to a crystalline silicon type battery manufactured using a glass plate. Moreover, since it is flexible, application to the portable use which can be rounded and folded is considered. However, as a film used to make a flexible solar cell, an expensive fluorine-based film must be used, and when a fluorine-based film is used as a cover film, the film is used to prevent water vapor transmission. It was necessary to increase the thickness of the film or to use a plurality of films. On the other hand, when considering the use of a non-fluorine-based material having high light transmittance, such as polyethylene terephthalate (PET), there is a deterioration due to ultraviolet rays in addition to a deterioration due to the influence of moisture.
 このように、フレキシブル太陽電池においてPETなどの紫外線劣化を受けやすい樹脂支持体を用いる場合に、本発明の紫外線遮蔽フィルムは保護フィルムとして有用である。 Thus, when using a resin support that is susceptible to UV degradation such as PET in a flexible solar cell, the UV shielding film of the present invention is useful as a protective film.
 (2)画像表示媒体の保護フィルム
 外装看板の表面保護用フィルム、鉄道車両、自動車、自動販売機等の表面に貼付して用いられるマーキング用フィルムに使われる画像表示媒体は、色素やインクが紫外線により褪色しやすい。また、これらの画像表示媒体は、長時間屋外で使用されることも多く、紫外線曝露が大きい。このような画像表示媒体の保護フィルムとして本発明の紫外線遮蔽フィルムは有用である。
(2) Protective film for image display media Image display media used for marking films used on the surfaces of exterior signage surface protection films, railway vehicles, automobiles, vending machines, etc. are dyes and inks made of ultraviolet rays. It is easy to fade. In addition, these image display media are often used outdoors for a long time, and exposure to ultraviolet rays is large. The ultraviolet shielding film of the present invention is useful as a protective film for such an image display medium.
 (3)紫外線殺菌
 本発明の紫外線遮蔽フィルムは、紫外線殺菌を目的として用いることができる。すなわち本発明の好適な一実施形態は、紫外線殺菌用紫外線遮蔽フィルムである。
(3) Ultraviolet sterilization The ultraviolet shielding film of the present invention can be used for the purpose of ultraviolet sterilization. That is, a preferred embodiment of the present invention is an ultraviolet shielding film for ultraviolet sterilization.
 紫外線は、太陽光のその他の光に比べ、エネルギーが高いために、様々なものや人体に影響を与える。紫外線の殺菌作用は、従来から良く知られている。高出力・高性能な紫外線殺菌ランプが開発され、紫外線による殺菌は食品・医療他、様々な分野で利用されている。紫外線ランプを用いて殺菌する装置は数多く開発されているが、照射面積が限られているのと、ランプを稼働させるために電源を必要とし使用できる場所が限定されている点が難点である。紫外線を拡散反射ではなく狙ったところに反射するためにガラスや金属表面に紫外線反射層をスパッタで形成する工業製品がある。このような紫外線反射層は屈曲性に劣るため、形状の変化をさせにくい。本発明の紫外線遮蔽フィルムは、フレキシブルであり、またポリマーフィルムであるため、軽量で形状を変化させることができる。また太陽光に含まれる紫外線を利用することができれば、電源不要、ランプ交換不要の紫外線殺菌が可能である。また、本発明の紫外線遮蔽フィルムは、好適には、酸化チタン粒子、酸化ジルコニウム粒子等の340nm近傍から短波長の紫外線を吸収する金属酸化物粒子を紫外線遮蔽積層部に含む。340nmよりも長波長の紫外線は上述したように紫外線遮蔽積層部の高屈折率層、低屈折率層の界面によって反射される。好適には紫外線殺菌に用いられる波長は340nmよりも長波長の紫外線を使用する。紫外線遮蔽フィルムの効果はポリマーにとって有害な紫外線のうち、紫外線殺菌に用いる波長の光は反射し、より有害な340nm近傍から短波長の紫外線は金属酸化物粒子が吸収するため、金属酸化物粒子を含有しない場合と比較して紫外線耐久性が高い。 ◎ Ultraviolet rays have a higher energy than other types of sunlight, and thus affect various things and the human body. The sterilizing action of ultraviolet rays has been well known. High-power, high-performance UV sterilization lamps have been developed, and sterilization by ultraviolet rays is used in various fields such as food and medicine. Many devices for sterilization using an ultraviolet lamp have been developed. However, the irradiation area is limited, and a power source is required to operate the lamp, and the places where it can be used are limited. There is an industrial product in which an ultraviolet reflection layer is formed on a glass or metal surface by sputtering in order to reflect ultraviolet rays at a target location instead of diffuse reflection. Since such an ultraviolet reflective layer is inferior in flexibility, it is difficult to change the shape. Since the ultraviolet shielding film of the present invention is flexible and is a polymer film, the shape can be changed with light weight. Moreover, if the ultraviolet rays contained in sunlight can be used, ultraviolet sterilization is possible without the need for a power supply or lamp replacement. In addition, the ultraviolet shielding film of the present invention preferably includes metal oxide particles that absorb ultraviolet rays having a short wavelength from around 340 nm, such as titanium oxide particles and zirconium oxide particles, in the ultraviolet shielding laminated portion. As described above, ultraviolet light having a wavelength longer than 340 nm is reflected by the interface between the high refractive index layer and the low refractive index layer of the ultraviolet shielding laminated portion. Preferably, ultraviolet light having a wavelength longer than 340 nm is used for ultraviolet sterilization. The effect of the UV shielding film is that the UV light harmful to the polymer reflects light of the wavelength used for UV sterilization, and the more harmful UV light from near 340 nm is absorbed by the metal oxide particles. Compared to the case where it is not contained, the ultraviolet durability is high.
 (4)太陽光反射フィルム(フィルムミラー)
 本発明の紫外線遮蔽フィルムは、太陽光を反射体(鏡)により反射させて一か所に集光する集光装置(太陽熱発電)においても好適に用いられる。
(4) Sunlight reflecting film (film mirror)
The ultraviolet shielding film of the present invention is also suitably used in a light collecting device (solar thermal power generation) that reflects sunlight by a reflector (mirror) and condenses it in one place.
 太陽光発電において用いられる集光装置に係る技術おいて、ガラス製光反射体に代えて耐久性を高めた樹脂製光反射フィルムを支持体に貼付して光反射体として用いるという試みがなされている。かような樹脂製光反射フィルムは、広い波長範囲の光を反射するため、反射性金属層(金属蒸着膜)をさらに有していると好ましい。すなわち、太陽光反射フィルムとして用いる場合、本発明の紫外線遮蔽フィルムは、樹脂支持体、樹脂層、紫外線遮蔽積層部に加えて、反射性金属層(金属蒸着膜)を有することが好ましい。さらに、金属蒸着膜としては、太陽光の反射性の良好な銀を主成分とするものが好ましい。 In the technology related to the light collecting device used in solar power generation, an attempt has been made to attach a resin light reflecting film with improved durability instead of a glass light reflecting member to a support and use it as a light reflecting member. Yes. Such a resinous light reflecting film preferably has a reflective metal layer (metal vapor deposition film) in order to reflect light in a wide wavelength range. That is, when used as a solar reflective film, the ultraviolet shielding film of the present invention preferably has a reflective metal layer (metal vapor deposition film) in addition to the resin support, the resin layer, and the ultraviolet shielding laminate. Furthermore, as a metal vapor deposition film, the thing which has silver with favorable sunlight reflectivity as a main component is preferable.
 以下実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 [塗布液の調製]
 (低屈折率層用塗布液L1の調製)
 3質量%ホウ酸水溶液10質量部を45℃で加熱・撹拌している中に、ポリビニルアルコール(PVA-117H、重合度1700、鹸化度99.5mol%、クラレ社製)の5質量%水溶液80質量部を添加した後、界面活性剤(ラピゾールA30、日油社製)の1質量%水溶液1質量部を添加し、純水9質量部を加えて低屈折率層用塗布液L1を調製した。
[Preparation of coating solution]
(Preparation of coating liquid L1 for low refractive index layer)
While heating and stirring 10 parts by weight of 3% by weight boric acid aqueous solution at 45 ° C., a 5% by weight aqueous solution of polyvinyl alcohol (PVA-117H, polymerization degree 1700, saponification degree 99.5 mol%, manufactured by Kuraray Co., Ltd.) 80 After adding parts by mass, 1 part by mass of a 1% by weight aqueous solution of a surfactant (Lapisol A30, manufactured by NOF Corporation) was added, and 9 parts by mass of pure water was added to prepare a coating solution L1 for a low refractive index layer. .
 低屈折率層用塗布液L1の単膜屈折率は1.50であった。なお、屈折率の測定は下記に記載した。 The single-film refractive index of the coating liquid L1 for the low refractive index layer was 1.50. In addition, the measurement of refractive index was described below.
 (低屈折率層用塗布液L2の調製)
 コロイダルシリカ(スノーテックスOS、日産化学工業製、固形分20質量%、平均粒子径9.5nm)22.5質量部に、純水22.5質量部、ポリオキシアルキレン系分散剤(マリアリムAKM-0531、日油社製)の5質量%水溶液10質量部、3質量%ホウ酸水溶液10質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(JC-25(重合度2500、鹸化度99.5mol%、日本酢ビ・ポバール社製)と、JM-17(重合度1700、鹸化度96.4mol%、日本酢ビ・ポバール社製)と、JP-15(重合度1500、鹸化度89.8mol%、日本酢ビ・ポバール社製)と、JL-25E(重合度2500、鹸化度79.5mol%、日本酢ビ・ポバール社製)との、43:5:9:43(固形分質量比)の混合物)の5質量%水溶液40質量部、界面活性剤(ラピゾールA30、日油製)の1質量%水溶液1質量部を添加し、純水2質量部を加えて低屈折率層用塗布液L2を調製した。
(Preparation of coating liquid L2 for low refractive index layer)
22.5 parts by mass of colloidal silica (Snowtex OS, manufactured by Nissan Chemical Industries, solid content 20% by mass, average particle size 9.5 nm), 22.5 parts by mass of pure water, polyoxyalkylene dispersant (Marialim AKM- After adding 10 parts by weight of a 5% by weight aqueous solution of 0531, manufactured by NOF Corporation, and 10 parts by weight of a 3% by weight aqueous boric acid solution, the mixture was heated to 45 ° C. and stirred while polyvinyl alcohol (JC-25 (degree of polymerization) 2500, a saponification degree of 99.5 mol%, manufactured by Nippon Bijutsu Poval Co., Ltd.), JM-17 (polymerization degree of 1700, a saponification degree of 96.4 mol%, manufactured by Nihon Acetate Bipoval Co., Ltd.), and JP-15 (polymerization degree). 1500: 1500, degree of saponification 89.8 mol%, manufactured by Nihon Azuma Bi-Poval) and JL-25E (degree of polymerization 2500, degree of saponification 79.5 mol%, manufactured by Nihon Acetate-Poval) 43: 5: 40 parts by mass of a 5% by weight aqueous solution of 43 (solid content mass ratio), 1 part by mass of a 1% by weight aqueous solution of a surfactant (Rapidol A30, manufactured by NOF Corporation), and 2 parts by mass of pure water were added. Thus, a coating solution L2 for a low refractive index layer was prepared.
 低屈折率層用塗布液L2の単膜屈折率は1.45であった。 The single film refractive index of the coating liquid L2 for the low refractive index layer was 1.45.
 (低屈折率層用塗布液L3の調製)
 下記10質量%含フッ素ポリマー1水溶液45質量部に、3質量%ホウ酸水溶液10質量部を添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(JC-25(重合度2500、鹸化度99.5mol%、日本酢ビ・ポバール社製)と、JM-17(重合度1700、鹸化度96.4mol%、日本酢ビ・ポバール社製)と、JP-15(重合度1500、鹸化度89.8mol%、日本酢ビ・ポバール社製)と、JL-25E(重合度2500、鹸化度79.5mol%、日本酢ビ・ポバール社製)との、43:5:9:43(固形分質量比)の混合物)の5質量%水溶液40質量部、界面活性剤(ラピゾールA30、日油製)の1質量%水溶液1質量部を添加し、純水2質量部を加えて低屈折率層用塗布液L3を調製した。
(Preparation of coating liquid L3 for low refractive index layer)
After adding 10 parts by weight of a 3% by weight boric acid aqueous solution to 45 parts by weight of the following 10% by weight fluorine-containing polymer 1 aqueous solution, the mixture is heated to 45 ° C. and stirred with polyvinyl alcohol (JC-25 (degree of polymerization 2500, saponification). Degree 99.5 mol%, manufactured by Nihon Acetate Bi-Poval), JM-17 (degree of polymerization 1700, degree of saponification 96.4 mol%, Nihon Acetate-Poval), JP-15 (degree of polymerization 1500, saponification) Degree: 89.8 mol%, manufactured by Nihon Vitamin Bi-Poval) and JL-25E (polymerization degree: 2500, saponification degree: 79.5 mol%, Nihon Acetate: Poval) 43: 5: 9: 43 ( (Solid content mass ratio) mixture) 5 mass% aqueous solution 40 mass parts, surfactant (Lapisol A30, manufactured by NOF Corporation) 1 mass% aqueous solution 1 mass part is added, pure water 2 mass parts is added and low refraction Prepare coating liquid L3 for rate layer .
 低屈折率層用塗布液L3の単膜屈折率は1.40であった。 The single-film refractive index of the coating liquid L3 for the low refractive index layer was 1.40.
 (含フッ素ポリマー1水溶液の調製)
 窒素雰囲気下、還流冷却管を備えた1Lのフラスコに6.4gの1H,1H,2H,2H-ヘプタデカフルオロデシルアクリレートと、26.4gのメトキシポリエチレングリコール#1000メタクリレートと、34.9gのメチルメタクリレートを、150mlのイソプロパノールと100mlの純水の混合溶媒に加えた。1時間室温で撹拌した後、10mlの純水に溶かした1.2gの過硫酸アンモニウムを加え、65℃で16時間加熱撹拌した。得られた反応混合物を冷ました後、ロータリーエバポレーターでイソプロパノールを留去し、さらに純水を加えて、10質量%含フッ素ポリマー1水溶液を調製した。GPCを用いて分子量を測定したところ、16,000であった。
(Preparation of fluoropolymer 1 aqueous solution)
In a 1 L flask equipped with a reflux condenser under a nitrogen atmosphere, 6.4 g of 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate, 26.4 g of methoxypolyethylene glycol # 1000 methacrylate, and 34.9 g of methyl The methacrylate was added to a mixed solvent of 150 ml of isopropanol and 100 ml of pure water. After stirring at room temperature for 1 hour, 1.2 g of ammonium persulfate dissolved in 10 ml of pure water was added, and the mixture was heated and stirred at 65 ° C. for 16 hours. After cooling the obtained reaction mixture, isopropanol was distilled off with a rotary evaporator, and pure water was further added to prepare a 10% by mass aqueous solution containing a fluoropolymer 1. It was 16,000 when molecular weight was measured using GPC.
 (シリカ付着二酸化チタンゾルの調製)
 15.0質量%酸化チタンゾル(SRD-W、体積平均粒径5nm、ルチル型二酸化チタン粒子、堺化学社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学社製)をSiO濃度が2.0質量%となるように純水で希釈したもの)1.3質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、SiOを表面に付着させた(含ケイ素の水和物被覆量は4質量%)二酸化チタンゾル(以下シリカ付着二酸化チタンゾル)を固形分濃度で20質量%得た。
(Preparation of silica-attached titanium dioxide sol)
After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size 5 nm, rutile type titanium dioxide particles, manufactured by Sakai Chemical Co., Ltd.), the mixture was heated to 90 ° C. . Subsequently, 1.3 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 2.0% by mass) was gradually added. In an autoclave, heat treatment was performed at 175 ° C. for 18 hours, and after cooling, SiO 2 was adhered to the surface by concentrating with an ultrafiltration membrane (the coating amount of silicon-containing hydrate was 4% by mass). Titanium sol (hereinafter, silica-attached titanium dioxide sol) was obtained in a solid content concentration of 20% by mass.
 (高屈折率層用塗布液H1の調製)
 前記シリカ付着二酸化チタンゾル(固形分20.0質量%)45質量部に、ポリビニルアルコール(PVA-103、重合度300、鹸化度98.5mol%、クラレ社製)の5質量%水溶液2質量部、3質量%ホウ酸水溶液10質量部、2質量%クエン酸水溶液10質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(PVA-117、重合度1700、鹸化度98.5mol%、クラレ社製)の5質量%水溶液20質量部、界面活性剤(ラピゾールA30、日油社製)の1質量%水溶液1質量部を添加し、純水12質量部を加えて高屈折率層用塗布液H1を調製した。
(Preparation of coating liquid H1 for high refractive index layer)
45 parts by mass of the silica-attached titanium dioxide sol (solid content 20.0% by mass), 2 parts by mass of a 5% by mass aqueous solution of polyvinyl alcohol (PVA-103, polymerization degree 300, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.) After adding 10 parts by weight of a 3% by weight aqueous boric acid solution and 10 parts by weight of a 2% by weight aqueous citric acid solution, the mixture was heated to 45 ° C. with stirring, and polyvinyl alcohol (PVA-117, polymerization degree 1700, saponification degree 98.98). 5 mol%, manufactured by Kuraray Co., Ltd.), 20 parts by mass of 5% by mass aqueous solution, 1 part by mass of 1% by mass aqueous solution of surfactant (Rapidol A30, manufactured by NOF Corporation), added with 12 parts by mass of pure water, and highly refractive. A rate layer coating solution H1 was prepared.
 高屈折率層用塗布液H1の単膜屈折率は1.95であった。 The single film refractive index of the coating liquid H1 for the high refractive index layer was 1.95.
 (高屈折率層用塗布液H2の調製)
 ジルコニアゾル(SZR-W、固形分30質量%、堺化学工業製、一次平均粒径3nm)30質量部に、ポリオキシアルキレン系分散剤(マリアリムAKM-0531、日油社製)の5質量%水溶液10質量部、3質量%ホウ酸水溶液10質量部、2質量%クエン酸水溶液10質量部を順に添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(PVA-217、重合度1700、鹸化度88.0mol%、クラレ製)の5質量%水溶液20質量部、界面活性剤(ラピゾールA30、日油社製)の1質量%水溶液1質量部を添加し、純水19質量部を加えて高屈折率層用塗布液H2を調製した。
(Preparation of coating liquid H2 for high refractive index layer)
30% by mass of zirconia sol (SZR-W, solid content 30% by mass, manufactured by Sakai Chemical Industry Co., Ltd., primary average particle size 3 nm), 5% by mass of polyoxyalkylene dispersant (Marialim AKM-053, manufactured by NOF Corporation) 10 parts by weight of an aqueous solution, 10 parts by weight of a 3% by weight aqueous solution of boric acid and 10 parts by weight of an aqueous solution of 2% by weight citric acid were added in this order, and the mixture was then heated to 45 ° C. and stirred with polyvinyl alcohol (PVA-217, polymerization degree 1700). 20 parts by weight of a 5% by weight aqueous solution of a saponification degree of 88.0 mol%, manufactured by Kuraray), and 1 part by weight of a 1% by weight aqueous solution of a surfactant (Rapidol A30, manufactured by NOF Corporation) were added, and 19 parts by weight of pure water was added. In addition, a coating liquid H2 for a high refractive index layer was prepared.
 高屈折率層用塗布液H2の単膜屈折率は1.85であった。 The single-film refractive index of the coating liquid H2 for the high refractive index layer was 1.85.
 [紫外線遮蔽フィルムの作製]
 実施例1
 (試料1の作製)
 21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L1、L2及び高屈折率層用塗布液H1を45℃に保温しながら、45℃に加温した厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層)上に、L1はポリエチレンテレフタレートフィルムに接するように、次いで、L1上にH1となるように、かつ、H1とL2はそれぞれ交互になるように、同時重層塗布を行った。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層からなる試料1を作製した。したがって、低屈折率層用塗布液L1を塗布した層が樹脂層となる(樹脂層が紫外線遮蔽積層部に隣接して形成されてなる形態)。
[Production of UV shielding film]
Example 1
(Preparation of sample 1)
Using a slide hopper coating apparatus capable of coating 21 layers, the low refractive index layer coating liquids L1 and L2 and the high refractive index layer coating liquid H1 are heated to 45 ° C. and heated to 45 ° C. On the polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesion layer), so that L1 is in contact with the polyethylene terephthalate film, then H1 is on L1, and H1 and L2 are alternated, Simultaneous multi-layer coating was performed. Immediately after coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to prepare Sample 1 having 21 layers. Therefore, the layer to which the coating liquid L1 for low refractive index layer is applied becomes a resin layer (a form in which the resin layer is formed adjacent to the ultraviolet shielding laminated portion).
 なお、ポリエチレンテレフタレートフィルムは、可視光領域(400~800nm)の平均透過率が89%であり、赤外光領域(800~1400nm)の平均透過率が88%であった。 The polyethylene terephthalate film had an average transmittance in the visible light region (400 to 800 nm) of 89% and an average transmittance in the infrared light region (800 to 1400 nm) of 88%.
 乾燥後の膜厚は低屈折率層用塗布液L1を塗布した層は0.5μm、低屈折率層用塗布液L2を塗布した層は各層64nm、高屈折率用塗布液H1を塗布した層は各層47nmであった。 The film thickness after drying is 0.5 μm for the layer coated with the coating liquid L1 for the low refractive index layer, the layer coated with the coating liquid L2 for the low refractive index layer is 64 nm for each layer, and the layer coated with the coating liquid H1 for the high refractive index. Each layer was 47 nm.
 また、低屈折率層液L2のポリビニルアルコールの平均鹸化度は、89.9mol%(=99.5mol%×0.43+96.4mol%×0.05+89.8mol%×0.09+79.5mol%×0.43)であり、高屈折率用塗布液のH1のポリビニルアルコールの平均鹸化度は、98.5mol%であることから、各屈折率層の平均鹸化度の差は8.6mol%となる。 The average saponification degree of the polyvinyl alcohol of the low refractive index layer liquid L2 is 89.9 mol% (= 99.5 mol% × 0.43 + 96.4 mol% × 0.05 + 89.8 mol% × 0.09 + 79.5 mol% × 0). .43), and the average saponification degree of the polyvinyl alcohol of H1 in the coating solution for high refractive index is 98.5 mol%, so the difference in the average saponification degree of each refractive index layer is 8.6 mol%.
 実施例2
 (試料2の作製)
 塗布液押し出しポンプ流量を変更した以外は試料1と同様にして試料2を作製した。乾燥後の膜厚は低屈折率層用塗布液L1を塗布した層は0.5μm、低屈折率層用塗布液L2を塗布した層は各層64nm、高屈折率用塗布液H1を塗布した層は各層42nmであった。
Example 2
(Preparation of sample 2)
Sample 2 was prepared in the same manner as Sample 1 except that the coating liquid extrusion pump flow rate was changed. The film thickness after drying is 0.5 μm for the layer coated with the coating liquid L1 for the low refractive index layer, the layer coated with the coating liquid L2 for the low refractive index layer is 64 nm for each layer, and the layer coated with the coating liquid H1 for the high refractive index. Each layer was 42 nm.
 実施例3
 (試料3の作製)
 低屈折率層用塗布液L1の塗布液押し出しポンプ流量を変更した以外は試料1と同様にして試料3を作製した。乾燥後の膜厚は低屈折率層用塗布液L1を塗布した層は0.8μmであった。
Example 3
(Preparation of sample 3)
Sample 3 was prepared in the same manner as Sample 1, except that the coating liquid extrusion pump flow rate of the low refractive index layer coating liquid L1 was changed. The film thickness after drying was 0.8 μm for the layer coated with the coating solution L1 for the low refractive index layer.
 実施例4
 (試料4の作製)
 低屈折率層用塗布液L1の塗布液押し出しポンプ流量を変更した以外は試料1と同様にして試料4を作製した。乾燥後の膜厚は低屈折率層用塗布液L1を塗布した層は1.0μmであった。
Example 4
(Preparation of sample 4)
Sample 4 was produced in the same manner as Sample 1 except that the coating liquid extrusion pump flow rate of the coating liquid L1 for the low refractive index layer was changed. The film thickness after drying was 1.0 μm for the layer coated with the coating solution L1 for the low refractive index layer.
 実施例5
 (試料5の作製)
 厚さ50μmのポリエチレンテレフタレートフィルムに代えて、厚さ50μmのポリエチレンテレフタレートフィルムの表面に紫外線吸収剤含有層として紫外線吸収剤チヌビン477(BASF製)を1質量%含むアクリル・ウレタン共重合樹脂易接着層を乾燥膜厚1μmになるように塗布により形成した樹脂支持体を用いたほかは試料1と同様にして試料5を作製した。
Example 5
(Preparation of sample 5)
An acrylic / urethane copolymer resin easy-adhesive layer containing 1% by mass of an ultraviolet absorber tinuvin 477 (manufactured by BASF) as an ultraviolet absorber-containing layer on the surface of a 50 μm thick polyethylene terephthalate film instead of a polyethylene terephthalate film having a thickness of 50 μm Sample 5 was prepared in the same manner as Sample 1 except that a resin support formed by coating so as to have a dry film thickness of 1 μm was used.
 (アクリル・ウレタン共重合体の作成)
 攪拌機、温度計、冷却器及び窒素ガス導入管を備えた反応容器に分子量1000のポリカーボネートジオール(日本ポリウレタン工業(株)製 商品名:ニッポラン981)320.3部、イソホロンジイソシアネート(住友バイエルウレタン(株)製 商品名:ディスモジュールI)75.1部、トルエン500部を入れ、窒素雰囲気下80℃、6時間以上反応させた。イソシアネート(NCO)濃度が理論量に到達した時点で2-ヒドロキシエチルメタアクリレート4.6部、トルエン100部を仕込み、ウレタンプレポリマーの両末端のNCOが消滅するまでさらに80℃、6時間反応させ、樹脂固形分濃度40%、粘度4000mPa・s(25℃)、重量平均分子量34000の高分子直鎖状ウレタンプレポリマー溶液を得た。
(Creation of acrylic / urethane copolymer)
A reaction vessel equipped with a stirrer, a thermometer, a cooler, and a nitrogen gas inlet tube is 320.3 parts of polycarbonate diol having a molecular weight of 1000 (product name: Nippon Polan 981 manufactured by Nippon Polyurethane Industry Co., Ltd.), isophorone diisocyanate (Sumitomo Bayer Urethane Co., Ltd.) Product name: Dismodule I) 75.1 parts and 500 parts of toluene were added and reacted in a nitrogen atmosphere at 80 ° C. for 6 hours or more. When the isocyanate (NCO) concentration reaches the theoretical amount, 4.6 parts of 2-hydroxyethyl methacrylate and 100 parts of toluene are added, and further reacted at 80 ° C. for 6 hours until NCO at both ends of the urethane prepolymer disappears. A polymer linear urethane prepolymer solution having a resin solid content concentration of 40%, a viscosity of 4000 mPa · s (25 ° C.), and a weight average molecular weight of 34,000 was obtained.
 次に、攪拌機、温度計、冷却器及び窒素ガス導入管、および滴下装置を備えた反応容器に、高分子直鎖状ウレタンプレポリマー溶液393.8部、メチルメタアクリレート184.4部、2-ヒドロキシエチルメタアクリレート8.1部、1-チオグリセロール1.75部、トルエン82.7部を仕込み、攪拌しながら105℃まで昇温した。そこにラジカル開始剤(商品名:ABN-E、日本ヒドラジン工業(株)製)3.5部およびトルエン331部からなる混合液を4時間かけて滴下した。滴下終了後、同温度で6時間反応させ、樹脂固形分濃度35%、粘度4000mPa・s(25℃)、重量平均分子量84000のアクリル・ウレタン共重合樹脂溶液を得た。 Next, in a reaction vessel equipped with a stirrer, a thermometer, a cooler, a nitrogen gas introduction pipe, and a dropping device, 393.8 parts of a polymer linear urethane prepolymer solution, 184.4 parts of methyl methacrylate, 2- 8.1 parts of hydroxyethyl methacrylate, 1.75 parts of 1-thioglycerol and 82.7 parts of toluene were charged, and the temperature was raised to 105 ° C. with stirring. A mixed solution consisting of 3.5 parts of a radical initiator (trade name: ABN-E, manufactured by Nippon Hydrazine Industry Co., Ltd.) and 331 parts of toluene was added dropwise over 4 hours. After completion of the dropwise addition, the mixture was reacted at the same temperature for 6 hours to obtain an acrylic / urethane copolymer resin solution having a resin solid content concentration of 35%, a viscosity of 4000 mPa · s (25 ° C.), and a weight average molecular weight of 84000.
 実施例6
 (試料6の作製)
 厚さ50μmのポリエチレンテレフタレートフィルムに代えて、厚さ100μmのポリエチレンナフタレート(PENフィルム)(帝人デュポンフィルム製 テオネックスQ51)の表面に紫外線吸収剤含有層として紫外線吸収剤チヌビン477(BASF製)を1%含むアクリル・ウレタン共重合樹脂易接着層を乾燥膜厚1μmになるように塗布により形成した樹脂支持体を用いたほかは試料1と同様にして試料6を作製した。
Example 6
(Preparation of sample 6)
Instead of a polyethylene terephthalate film having a thickness of 50 μm, a UV absorber Tinuvin 477 (manufactured by BASF) is used as a UV absorber-containing layer on the surface of a polyethylene naphthalate (PEN film) having a thickness of 100 μm (Teonex Q51 made by Teijin DuPont Films). Sample 6 was prepared in the same manner as Sample 1, except that a resin support formed by coating an acrylic / urethane copolymer resin easy-adhesion layer containing 1% by dry weight to a thickness of 1 μm was used.
 なお、PENフィルムは、可視光領域(400~800nm)の平均透過率が86%であり、赤外光領域(800~1400nm)の平均透過率が85%であった。 The PEN film had an average transmittance in the visible light region (400 to 800 nm) of 86% and an average transmittance in the infrared light region (800 to 1400 nm) of 85%.
 実施例7
 (試料7の作製)
 試料1の紫外線反射積層部の表面に、下記に記載の硬化性樹脂液をダイコーターで塗布し、平均温度85℃の乾燥炉で1分乾燥後、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.5J/cmとして硬化性樹脂液塗布層を硬化させ、乾燥膜厚3μmのハードコート層を形成させたほかは試料1と同様にして試料7を作製した。
Example 7
(Preparation of sample 7)
The curable resin liquid described below is applied to the surface of the ultraviolet reflection laminated portion of sample 1 with a die coater, dried for 1 minute in a drying furnace having an average temperature of 85 ° C., and then the illuminance of the irradiated portion is 100 mW / Sample 7 was prepared in the same manner as Sample 1 except that the curable resin liquid coating layer was cured at cm 2 with an irradiation dose of 0.5 J / cm 2 to form a hard coat layer with a dry film thickness of 3 μm.
 (硬化性樹脂液)
 ジペンタエリスリトールヘキサアクリレート(新中村化学工業製 A-DPH 固形分100%)100質量部に対し、MEK(メチルエチルケトン)を165質量部混合し撹拌した。硬化開始剤としてIrgacure907(BASF製)を5質量部加え、粘度5mPa・sの硬化性樹脂液を得た。
(Curable resin liquid)
165 parts by mass of MEK (methyl ethyl ketone) was mixed with 100 parts by mass of dipentaerythritol hexaacrylate (A-DPH solid content 100%, manufactured by Shin-Nakamura Chemical Co., Ltd.) and stirred. As a curing initiator, 5 parts by mass of Irgacure 907 (manufactured by BASF) was added to obtain a curable resin liquid having a viscosity of 5 mPa · s.
 実施例8
 (試料8の作製)
 21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L1、L3及び高屈折率層用塗布液H2を45℃に保温しながら、45℃に加温した厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層)上に、L1はポリエチレンテレフタレートフィルムに接するように、次いで、L1上にH2となるように、かつ、H2とL3はそれぞれ交互になるように、同時重層塗布を行った。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層からなる試料8を作製した。
Example 8
(Preparation of sample 8)
Using a slide hopper coating apparatus capable of coating 21 layers, the low refractive index layer coating liquids L1 and L3 and the high refractive index layer coating liquid H2 are heated to 45 ° C. and heated to 45 ° C. On the polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesion layer), L1 is in contact with the polyethylene terephthalate film, then H2 is on L1, and H2 and L3 are alternately arranged. Simultaneous multi-layer coating was performed. Immediately after coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to prepare Sample 8 consisting of 21 layers.
 乾燥後の膜厚は低屈折率層用塗布液L1を塗布した層は0.5μm、低屈折率層用塗布液L3を塗布した層は各層66nm、高屈折率用塗布液H2を塗布した層は各層50nmであった。 The film thickness after drying is 0.5 μm for the layer coated with the coating liquid L1 for the low refractive index layer, the layer coated with the coating liquid L3 for the low refractive index layer is 66 nm, and the layer coated with the coating liquid H2 for the high refractive index. Each layer was 50 nm.
 また、低屈折率層液L3のポリビニルアルコールの平均鹸化度は、89.9mol%であり、高屈折率用塗布液のH2のポリビニルアルコールの平均鹸化度は、88.0mol%であることから、各屈折率層の平均鹸化度の差は1.9mol%となる。 The average saponification degree of polyvinyl alcohol in the low refractive index layer liquid L3 is 89.9 mol%, and the average saponification degree of polyvinyl alcohol in H2 of the coating liquid for high refractive index is 88.0 mol%. The difference in the average saponification degree of each refractive index layer is 1.9 mol%.
 実施例9
 (試料9の作製)
 塗布液押し出しポンプ流量を変更した以外は試料8と同様にして試料9を作製した。乾燥後の膜厚は低屈折率層用塗布液L1を塗布した層は0.5μm、低屈折率層用塗布液L3を塗布した層は各層59nm、高屈折率用塗布液H2を塗布した層は各層45nmであった。
Example 9
(Preparation of sample 9)
Sample 9 was prepared in the same manner as Sample 8, except that the coating liquid extrusion pump flow rate was changed. The film thickness after drying is 0.5 μm for the layer coated with the coating solution L1 for the low refractive index layer, the layer coated with the coating solution L3 for the low refractive index layer is 59 nm, and the layer coated with the coating solution H2 for the high refractive index. Each layer was 45 nm.
 比較例1
 (試料10の作製)
 21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L2及び高屈折率層用塗布液H1を45℃に保温しながら、45℃に加温した厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層)上に、それぞれ交互に、乾燥時の膜厚が低屈折率層は各層71nm、高屈折率層は各層53nmになるように計21層の同時重層塗布を行った。
Comparative Example 1
(Preparation of sample 10)
Polyethylene terephthalate with a thickness of 50 μm heated to 45 ° C. while keeping the low refractive index layer coating solution L2 and the high refractive index layer coating solution H1 at 45 ° C. using a slide hopper coating device capable of coating 21 layers. On the film (Toyobo's A4300: double-sided easy-adhesion layer), a total of 21 layers were coated alternately so that the dry film thickness was 71 nm for each low refractive index layer and 53 nm for each high refractive index layer. Went.
 塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層からなる重層塗布品を作製した。試料10は0.5μm以上の樹脂層を持ち合わせていない例である。 Immediately after application, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to produce a multi-layer coated product consisting of 21 layers. Sample 10 is an example that does not have a resin layer of 0.5 μm or more.
 比較例2
 (試料11の作製)
 試料1において、塗布液押し出しポンプ流量を変更して、低屈折率層用塗布液L1を塗布した層の乾燥後の膜厚を0.3μmとした以外は試料1と同様にして試料11を作製した。
Comparative Example 2
(Preparation of sample 11)
In Sample 1, Sample 11 was prepared in the same manner as Sample 1 except that the coating liquid extrusion pump flow rate was changed and the thickness of the layer coated with coating liquid L1 for low refractive index layer was changed to 0.3 μm. did.
 比較例3
 (試料12の作製)
 特表2011-521289の実施例1と同じ材料を用い、特表2011-521289の実施例6と同じ作製方法で紫外線反射フィルムを作製した。
Comparative Example 3
(Preparation of sample 12)
Using the same material as that of Example 1 of JP 2011-521289, an ultraviolet reflective film was manufactured by the same manufacturing method as that of Example 6 of JP 2011-521289.
 ポリエチレンナフタレート(PEN)(3M Company,St.Paul,MN製)と、商品名VO44 Acrylic Resin(Arkema Inc.Philadelphia,PA製)として市販されているポリメチルメタクリレート(PMMA)を使用して、多層光学フィルムをPENから形成される複屈折層と、PMMAから形成される第2のポリマー層で形成した。多層ポリマー溶解マニホールドを通してPEN及びPMMAを共押出し、複屈折層と第2のポリマー層の275の交互層を有する多層溶解ストリームを形成した。加えて、同じくPENからなる一対の非光学層を、光学層スタックのいずれかの側面上に保護表面層として共押出した。この多層共押出溶解ストリームを、1分当たり22メートルで冷却ロール上に流し込み、多層成形ウェブを約300μm厚に形成した。次に、3.8×3.8の延伸比に対して2軸配向とする前に、多層成形ウェブをテンターオーブンにおいて、135℃で10秒間加熱した。配向された多層フィルムを、更に225℃まで10秒間加熱し、PEN層の結晶化度を増加させた。いずれもCIBA Specialty Chemicals Corp,Tarryton,NY(PMMA-UVA/HALS)から入手される、商品名TINUVIN 1577として得られる5重量%紫外線吸収剤、及び商品名CHIMASSORB 944として得られる0.15重量%ヒンダードアミン光安定剤を用いて押出化合されるArkema Inc.Philadelphia,PAからのPMMA(VO44)、及びE.l.duPont de Nemours & Co.,Inc.,Wilmington,DEから商品名BYNEL E418として市販される接着結合層は、上述されるように形成された多層フィルム上に共押出被覆すると同時に、仕上げ表面を有する成形ツールに対して893kg/m(線インチ当たり50パウンド)の圧力下、32℃の温度で、0.38メートル/秒(1分当たり75フィート)の成形ライン速度でニップに配向した。この多層フィルムの反射率は、360nmの波長で95%の平均反射率を得た。 Polyethylene naphthalate (PEN) (manufactured by 3M Company, St. Paul, MN) and polymethyl methacrylate (PMMA) commercially available as trade name VO44 acrylic resin (manufactured by Arkema Inc. Philadelphia, PA) The optical film was formed with a birefringent layer formed from PEN and a second polymer layer formed from PMMA. PEN and PMMA were coextruded through a multilayer polymer melt manifold to form a multilayer melt stream having 275 alternating layers of birefringent layers and second polymer layers. In addition, a pair of non-optical layers, also consisting of PEN, were coextruded as a protective surface layer on either side of the optical layer stack. This multilayer coextrusion melt stream was cast onto a chill roll at 22 meters per minute to form a multilayer molded web about 300 μm thick. The multilayer molded web was then heated at 135 ° C. for 10 seconds in a tenter oven before being biaxially oriented for a stretch ratio of 3.8 × 3.8. The oriented multilayer film was further heated to 225 ° C. for 10 seconds to increase the crystallinity of the PEN layer. All are obtained from CIBA Specialty Chemicals Corp, Tarryton, NY (PMMA-UVA / HALS), 5 wt% UV absorber obtained under the trade name TINUVIN 1577, and 0.15 wt% hindered amine obtained under the trade name CHIMASSORB 944 Arkema Inc., which is extrusion compounded with a light stabilizer. PMMA (VO44) from Philadelphia, PA; l. duPont de Nemours & Co. , Inc. , Wilmington, DE, under the trade name BYNEL E418, is co-extrusion coated on a multilayer film formed as described above, and at the same time for a forming tool with a finished surface of 893 kg / m (line Oriented into the nip at a molding line speed of 0.38 meters / second (75 feet per minute) at a temperature of 32 ° C. under a pressure of 50 pounds per inch. As for the reflectance of this multilayer film, an average reflectance of 95% was obtained at a wavelength of 360 nm.
 比較例4
 (試料13の作製)
 試料1において、低屈折率層用塗布液L1の代わりに低屈折率層用塗布液L2を塗布した層以外は試料1と同様にして試料13を作製した。
Comparative Example 4
(Preparation of Sample 13)
Sample 13 was prepared in the same manner as Sample 1 except that Sample 1 was coated with the low refractive index layer coating liquid L2 instead of the low refractive index layer coating liquid L1.
 〔紫外線遮蔽フィルムの評価〕
 上記で作製した各紫外線遮蔽フィルム(試料1~13)について、下記の性能評価を行った。
[Evaluation of UV shielding film]
The following performance evaluation was performed on each of the ultraviolet shielding films (samples 1 to 13) produced above.
 (各層の単膜屈折率の測定)
 基材上に屈折率を測定するため各層を単層で塗布したサンプルを作製し、このサンプルを10cm×10cmに裁断した後、下記の方法に従って屈折率を求めた。日立製の分光光度計 U-4100(固体試料測定システム)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて550nmの反射率を測定して平均値を求め、その結果より平均反射率を求め、さらに屈折率を求めた。
(Measurement of single film refractive index of each layer)
In order to measure the refractive index on the substrate, a sample in which each layer was applied as a single layer was prepared. After cutting this sample into 10 cm × 10 cm, the refractive index was determined according to the following method. Using Hitachi spectrophotometer U-4100 (solid sample measurement system), the surface opposite to the measurement surface (back surface) of each sample is roughened and then light absorption is performed with a black spray. Then, the reflection of light on the back surface was prevented, the reflectance at 550 nm was measured under the condition of regular reflection at 5 degrees, the average value was obtained, the average reflectance was obtained from the result, and the refractive index was further obtained.
 (初期の透過率、5度正反射率の測定)
 上記作製した積層フィルムの透過率と光入射面側における5度正反射率と透過率を測定した。測定は日立製の分光光度計 U-4100(固体試料測定システム)を用いた。透過率、反射率ともに波長範囲は300~2000nmで測定した。
(Measurement of initial transmittance, 5 degree regular reflectance)
The transmittance, the 5-degree regular reflectance and the transmittance on the light incident surface side of the produced laminated film were measured. The spectrophotometer U-4100 (solid sample measurement system) manufactured by Hitachi was used for the measurement. Both the transmittance and reflectance were measured in the wavelength range of 300 to 2000 nm.
 (耐候性の評価)
 上記作製した積層フィルムを、温度85℃、相対湿度85%の環境下で30日間放置したのち、フィルムの光入射面側に対しキセノンランプ照射(スガ試験機 SX75を用いて、ブラックパネル温度63℃、相対湿度50%の環境下で放射強度180W/m、5000時間)を行った。次いで、キセノンランプ照射後に上記と同様の方法で5度正反射率と透過率を測定し、初期のスペクトルとを、スペクトルシフト、最大透過率および最大反射率の点で比較し、下記評価にしたがって、フィルムを評価した。
(Evaluation of weather resistance)
The produced laminated film is allowed to stand for 30 days in an environment at a temperature of 85 ° C. and a relative humidity of 85%, and then irradiated with a xenon lamp (using a Suga Tester SX75, a black panel temperature of 63 ° C.). , Radiation intensity 180 W / m 2 , 5000 hours) in an environment with a relative humidity of 50%. Next, after irradiation with a xenon lamp, the specular reflectance and transmittance are measured at 5 degrees in the same manner as described above, and the initial spectrum is compared in terms of spectrum shift, maximum transmittance and maximum reflectance, and according to the following evaluation. The film was evaluated.
 ・スペクトルシフト(初期最大反射率波長からの耐候性試験後の最大反射率波長の変化)
 5:初期スペクトルからのスペクトルシフトが30nm未満
 4:初期スペクトルからのスペクトルシフトが50nm未満
 3:初期スペクトルからのスペクトルシフトが50nm以上100nm未満
 2:初期スペクトルからのスペクトルシフトが100nm以上150nm未満
 1:初期スペクトルからのスペクトルシフトが150nm以上
 ・初期最大反射率に対する耐候性試験後の最大反射率の低下(=初期最大反射率-耐候性試験後の最大反射率(%))
 5:最大反射率低下が10%未満
 4:最大反射率低下が30%未満
 3:最大反射率低下が30%以上50%未満
 2:最大反射率低下が50%以上70%未満
 1:最大反射率低下が70%以上
 ・初期最大透過率に対する耐候性試験後の最大透過率の低下(=初期最大透過率-耐候性試験後の最大透過率(%))
 5:最大透過率低下が10%未満
 4:最大透過率低下が30%未満
 3:最大透過率低下が30%以上50%未満
 2:最大透過率低下が50%以上70%未満
 1:最大透過率低下が70%以上
 (密着性の評価)
 上記耐候性の評価の後、JIS K 5600-5-6:1999に準拠した碁盤目試験を行った。具体的には、紫外線遮蔽積層部を形成した面側に、1mm間隔で縦、横に11本の切れ目を入れ、1mm角の碁盤目を100個作製した。この上にセロハンテープを貼り付け、90度の角度で素早く剥がし、剥がれずに残った碁盤目の数を測定し、下記の基準に従って、基材と紫外線遮蔽積層部との密着性評価を評価した。
・ Spectral shift (change in the maximum reflectance wavelength after the weather resistance test from the initial maximum reflectance wavelength)
5: Spectral shift from initial spectrum is less than 30 nm 4: Spectral shift from initial spectrum is less than 50 nm 3: Spectral shift from initial spectrum is from 50 nm to less than 100 nm 2: Spectral shift from initial spectrum is from 100 nm to less than 150 nm 1: Spectral shift from initial spectrum is 150 nm or more ・ Decrease in maximum reflectivity after weather resistance test relative to initial maximum reflectivity (= initial maximum reflectivity−maximum reflectivity after weather resistance test (%))
5: Maximum reflectivity decrease is less than 10% 4: Maximum reflectivity decrease is less than 30% 3: Maximum reflectivity decrease is 30% or more and less than 50% 2: Maximum reflectivity decrease is 50% or more and less than 70% 1: Maximum reflectivity 70% or more reduction in the rate ・ Reduction in maximum transmittance after the weather resistance test with respect to the initial maximum transmittance (= initial maximum transmittance−maximum transmittance after the weather resistance test (%))
5: Maximum transmittance decrease is less than 10% 4: Maximum transmittance decrease is less than 30% 3: Maximum transmittance decrease is 30% to less than 50% 2: Maximum transmittance decrease is 50% to less than 70% 1: Maximum transmission Rate reduction is 70% or more (Evaluation of adhesion)
After the above weather resistance evaluation, a cross-cut test based on JIS K 5600-5-6: 1999 was performed. Specifically, 11 cuts were made vertically and horizontally at intervals of 1 mm on the surface side on which the ultraviolet shielding laminate was formed, and 100 1 mm square grids were produced. A cellophane tape was affixed thereon, quickly peeled off at an angle of 90 degrees, the number of grids remaining without peeling was measured, and the evaluation of adhesion between the substrate and the ultraviolet shielding laminate was evaluated according to the following criteria. .
 5:剥離がまったく認められない
 4:剥離した碁盤目数が、1個以上、5個以下である
 3:剥離した碁盤目数が、6個以上、10個以下である
 2:剥離した碁盤目数が、11個以上、20個以下である
 1:剥離した碁盤目数が、21個以上である
 (耐擦過性の評価)
 新東科学株式会社摩擦摩耗試験機(トライボステーションTYPE:32、移動速度4000mm/min.)を使用し、2センチ角にカットした日本スチールウール株式会社製の品番#0000のスチールウールに1000g/cmの荷重をかけ10センチの長さにわたって20往復させた。下記の基準に従って、紫外線遮蔽フィルムの耐擦過性評価を評価した。
5: No separation is observed 4: The number of peeled grids is 1 or more and 5 or less 3: The number of peeled grids is 6 or more and 10 or less 2: Stripped grids The number is 11 or more and 20 or less 1: The number of peeled grids is 21 or more (Evaluation of scratch resistance)
Using a friction and wear tester (Tribo Station TYPE: 32, moving speed 4000 mm / min.) Using Shinto Kagaku Co., Ltd. A load of 2 was applied and 20 reciprocations were made over a length of 10 cm. The scratch resistance evaluation of the ultraviolet shielding film was evaluated according to the following criteria.
 5:傷がまったく認められない
 4:1センチ以上の傷が、1本以上、5本以下である
 3:1センチ以上の傷が、6本以上、10本以下である
 2:1センチ以上の傷が、11本以上、20本以下である
 1:1センチ以上の傷が、21本以上である
 評価結果を、表1に示す。なお、各評価において評価ランク3以上であれば良好であると言える。
5: Scratches are not recognized at all 4: 1 cm or more scratches are 1 or more and 5 or less 3: 1 cm or more scratches are 6 or more and 10 or less 2: 1 cm or more The number of scratches is 11 or more and 20 or less. The number of scratches of 1: 1 centimeter or more is 21 or more. Table 1 shows the evaluation results. In addition, it can be said that it is favorable if the evaluation rank is 3 or more in each evaluation.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から明らかなように、実施例1~9のすべての耐候性評価は3~5の範囲に収まっている。このことは以下の理由であると考えられる。 As is clear from the results in Table 1, all the weather resistance evaluations of Examples 1 to 9 are within the range of 3 to 5. This is considered to be the following reason.
 本発明である実施例1~9の紫外線遮蔽フィルムは、高温高湿条件下に保存しても、スペクトルシフト、最大透過率低下、および最大反射率の低下が抑制された。 In the ultraviolet shielding films of Examples 1 to 9 according to the present invention, even when stored under high temperature and high humidity conditions, the spectral shift, the maximum transmittance decrease, and the maximum reflectance decrease were suppressed.
 これに対して比較例1は反射層よりも下層に位置するポリマーフィルムと接する塗布層に金属酸化物が含有されており、反射しきれなかった紫外線が金属酸化物と反応してポリマーフィルムの酸化劣化を引き起こし、ポリマーフィルムが黄変をおこしてスペクトルシフト、透過率低下、反射率低下がおきたものと考えられる。 On the other hand, Comparative Example 1 contains a metal oxide in the coating layer in contact with the polymer film located below the reflective layer, and the ultraviolet rays that could not be reflected reacted with the metal oxide to oxidize the polymer film. It is considered that the deterioration of the polymer film caused yellowing, resulting in a spectral shift, a decrease in transmittance, and a decrease in reflectance.
 比較例2は樹脂層はあるが本発明にて規定した厚みを満たしておらず、ポリエチレンテレフタレートフィルムの変色が発生し、スペクトルシフト、透過率低下、反射率低下が発生した。これは、紫外線遮蔽積層部に含まれる金属酸化物粒子に結合している酸素原子が脱離して、隣接するポリエチレンテレフタレートフィルムの酸化劣化を促進させたためであると考えられる。 Comparative Example 2 had a resin layer but did not satisfy the thickness specified in the present invention, and discoloration of the polyethylene terephthalate film occurred, resulting in a spectral shift, a decrease in transmittance, and a decrease in reflectance. This is presumably because the oxygen atoms bonded to the metal oxide particles contained in the ultraviolet shielding laminate were desorbed and promoted the oxidative deterioration of the adjacent polyethylene terephthalate film.
 比較例3は紫外線遮蔽積層部が水溶性樹脂を含んでおらず、フィルム積層体における紫外線反射フィルムである。比較例3は、いずれの評価項目においても所望の性能が示されなかった。 Comparative Example 3 is an ultraviolet reflective film in a film laminate, in which the ultraviolet shielding laminate does not contain a water-soluble resin. Comparative Example 3 did not show the desired performance in any of the evaluation items.
 比較例4は樹脂含有層はあるが金属粒子が入っているため、ポリエチレンテレフタレートフィルムの変色が発生し、スペクトルシフト、透過率低下、反射率低下が発生した。これは、樹脂含有層の金属酸化物粒子が、隣接するポリエチレンテレフタレートフィルムの酸化劣化を促進させたためであると考えられる。 Comparative Example 4 had a resin-containing layer but contained metal particles, so that discoloration of the polyethylene terephthalate film occurred, causing a spectral shift, a decrease in transmittance, and a decrease in reflectance. This is considered to be because the metal oxide particles in the resin-containing layer promoted the oxidative deterioration of the adjacent polyethylene terephthalate film.
 本出願は、2013年5月22日に出願された日本特許出願番号2013-107958号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-107958 filed on May 22, 2013, the disclosure content of which is incorporated by reference as a whole.

Claims (8)

  1.  樹脂支持体、および高屈折率層と低屈折率層とを積層した少なくとも1つのユニットを含む紫外線遮蔽積層部を有する紫外線遮蔽フィルムであって、
     前記高屈折率層および前記低屈折率層の少なくとも一層は水溶性樹脂および金属酸化物粒子を含み、
     前記樹脂支持体と前記紫外線遮蔽積層部との間に、金属酸化物粒子を実質的に含まずかつ膜厚が0.5μm以上である樹脂層が設けられてなる、紫外線遮蔽フィルム。
    An ultraviolet shielding film having an ultraviolet shielding laminated portion including a resin support and at least one unit obtained by laminating a high refractive index layer and a low refractive index layer,
    At least one of the high refractive index layer and the low refractive index layer contains a water-soluble resin and metal oxide particles,
    An ultraviolet shielding film in which a resin layer substantially free of metal oxide particles and having a film thickness of 0.5 μm or more is provided between the resin support and the ultraviolet shielding laminated portion.
  2.  前記樹脂層が、水溶性樹脂を含む、請求項1に記載の紫外線遮蔽フィルム。 The ultraviolet shielding film according to claim 1, wherein the resin layer contains a water-soluble resin.
  3.  前記樹脂層が、前記紫外線遮蔽積層部に隣接して形成されてなる、請求項1または2に記載の紫外線遮蔽フィルム。 The ultraviolet shielding film according to claim 1 or 2, wherein the resin layer is formed adjacent to the ultraviolet shielding laminated portion.
  4.  前記金属酸化物粒子は、平均粒径が100nm以下である、請求項1~3のいずれか1項に記載の紫外線遮蔽フィルム。 4. The ultraviolet shielding film according to claim 1, wherein the metal oxide particles have an average particle size of 100 nm or less.
  5.  前記樹脂支持体は、赤外および可視の波長域の少なくとも一方において透明である、請求項1~4のいずれか1項に記載の紫外線遮蔽フィルム。 The ultraviolet shielding film according to any one of claims 1 to 4, wherein the resin support is transparent in at least one of an infrared wavelength region and a visible wavelength region.
  6.  前記樹脂支持体に用いられる樹脂がポリエステルである、請求項1~5のいずれか1項に記載の紫外線遮蔽フィルム。 The ultraviolet shielding film according to any one of claims 1 to 5, wherein the resin used for the resin support is polyester.
  7.  さらに、前記紫外線遮蔽積層部よりも紫外光入射側に配置されてなるハードコート層を有する、請求項1~6のいずれか1項に記載の紫外線遮蔽フィルム。 The ultraviolet shielding film according to any one of claims 1 to 6, further comprising a hard coat layer disposed on the ultraviolet light incident side of the ultraviolet shielding laminated portion.
  8.  紫外線吸収剤を含有する、請求項1~7のいずれか1項に記載の紫外線遮蔽フィルム。 The ultraviolet shielding film according to any one of claims 1 to 7, comprising an ultraviolet absorber.
PCT/JP2014/061073 2013-05-22 2014-04-18 Ultraviolet shielding film WO2014188831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518161A JPWO2014188831A1 (en) 2013-05-22 2014-04-18 UV shielding film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013107958 2013-05-22
JP2013-107958 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014188831A1 true WO2014188831A1 (en) 2014-11-27

Family

ID=51933395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061073 WO2014188831A1 (en) 2013-05-22 2014-04-18 Ultraviolet shielding film

Country Status (2)

Country Link
JP (1) JPWO2014188831A1 (en)
WO (1) WO2014188831A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148141A1 (en) * 2015-03-17 2016-09-22 東レ株式会社 Layered film, liquid crystal display using same, touch panel, and organic el display
JP2017125882A (en) * 2016-01-12 2017-07-20 住友ベークライト株式会社 screen
WO2018110984A1 (en) * 2016-12-16 2018-06-21 엘지이노텍 주식회사 Display cover substrate and display device including same
JP2018169579A (en) * 2017-03-30 2018-11-01 住友ベークライト株式会社 Optical layer
US11549025B2 (en) 2018-06-29 2023-01-10 Lg Chem, Ltd. Film for blocking ultraviolet rays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194526A (en) * 1999-10-29 2001-07-19 Nidek Co Ltd Multilayer film reflective mirror
JP2003515754A (en) * 1999-11-22 2003-05-07 スリーエム イノベイティブ プロパティズ カンパニー Multilayer optical body
WO2010106866A1 (en) * 2009-03-18 2010-09-23 コニカミノルタホールディングス株式会社 Dielectric film laminate and method for producing same
JP2012215733A (en) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc Infrared shield film and infrared shield body
JP2012220706A (en) * 2011-04-08 2012-11-12 Konica Minolta Holdings Inc Infrared reflection film and infrared reflector using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194526A (en) * 1999-10-29 2001-07-19 Nidek Co Ltd Multilayer film reflective mirror
JP2003515754A (en) * 1999-11-22 2003-05-07 スリーエム イノベイティブ プロパティズ カンパニー Multilayer optical body
WO2010106866A1 (en) * 2009-03-18 2010-09-23 コニカミノルタホールディングス株式会社 Dielectric film laminate and method for producing same
JP2012215733A (en) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc Infrared shield film and infrared shield body
JP2012220706A (en) * 2011-04-08 2012-11-12 Konica Minolta Holdings Inc Infrared reflection film and infrared reflector using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148141A1 (en) * 2015-03-17 2016-09-22 東レ株式会社 Layered film, liquid crystal display using same, touch panel, and organic el display
KR20170126460A (en) * 2015-03-17 2017-11-17 도레이 카부시키가이샤 Laminated film, liquid crystal display using same, touch panel and organic EL display
CN107407755A (en) * 2015-03-17 2017-11-28 东丽株式会社 Stack membrane, the liquid crystal display for having used the stack membrane, touch panel and organic el display
JPWO2016148141A1 (en) * 2015-03-17 2017-12-28 東レ株式会社 Laminated film, liquid crystal display using the same, touch panel and organic EL display
KR102534378B1 (en) * 2015-03-17 2023-05-19 도레이 카부시키가이샤 Laminate film, liquid crystal display using the same, touch panel and organic EL display
JP2017125882A (en) * 2016-01-12 2017-07-20 住友ベークライト株式会社 screen
WO2018110984A1 (en) * 2016-12-16 2018-06-21 엘지이노텍 주식회사 Display cover substrate and display device including same
US11217766B2 (en) 2016-12-16 2022-01-04 Lg Innotek Co., Ltd. Display cover substrate and display device including same
JP2018169579A (en) * 2017-03-30 2018-11-01 住友ベークライト株式会社 Optical layer
US11549025B2 (en) 2018-06-29 2023-01-10 Lg Chem, Ltd. Film for blocking ultraviolet rays

Also Published As

Publication number Publication date
JPWO2014188831A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US9902869B2 (en) Methods of layer by layer self-assembly of polyelectrolyte comprising light absorbing or stabilizing compound and articles
US9829604B2 (en) Method of making multilayer optical film comprising layer-by-layer self-assembled layers and articles
JP6115675B2 (en) Optical reflection film and optical reflector using the same
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
US20150177433A1 (en) Infrared shielding film
WO2013111735A1 (en) Optical film
WO2014188831A1 (en) Ultraviolet shielding film
WO2015002053A1 (en) Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film
WO2015198762A1 (en) Optical reflective film, method for producing optical reflective film, and optical reflector using same
WO2015159647A1 (en) Light-reflecting film roll and packaged light-reflecting film roll
JP2015011271A (en) Light-reflecting film, and light-reflecting body and light-reflecting device using the same
WO2014171494A1 (en) Optical reflective film, method for manufacturing same, and optical reflector using same
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
WO2017110651A1 (en) Optical reflection film
JP2015125168A (en) Dielectric multilayer film
JP2015150851A (en) Method of producing functional film
JP6176256B2 (en) Optical reflection film and optical reflector using the same
JP6344069B2 (en) Optical reflective film
JP2016155256A (en) Heat shielding film, and method for producing the same
JP6759697B2 (en) Roll-shaped optical reflective film
JP6326780B2 (en) Window pasting film
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
JPWO2017086048A1 (en) Optical reflective film and optical reflector
WO2015098767A1 (en) Optical reflection film
JP6683249B2 (en) Optical reflective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801209

Country of ref document: EP

Kind code of ref document: A1