WO2015002053A1 - Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film - Google Patents

Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film Download PDF

Info

Publication number
WO2015002053A1
WO2015002053A1 PCT/JP2014/066902 JP2014066902W WO2015002053A1 WO 2015002053 A1 WO2015002053 A1 WO 2015002053A1 JP 2014066902 W JP2014066902 W JP 2014066902W WO 2015002053 A1 WO2015002053 A1 WO 2015002053A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
film
index layer
silver
Prior art date
Application number
PCT/JP2014/066902
Other languages
French (fr)
Japanese (ja)
Inventor
美佳 本田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015525171A priority Critical patent/JPWO2015002053A1/en
Publication of WO2015002053A1 publication Critical patent/WO2015002053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a light reflecting film capable of efficiently reflecting sunlight, and a light reflector and a light reflecting device using the same.
  • Power generation technology that uses natural energy such as sunlight, wind power, and geothermal heat is being developed as an alternative energy to fossil fuels.
  • power generation using sunlight is particularly focused because of its abundance of stability and energy. Has been.
  • a condensing device that reflects sunlight by a reflector (mirror) and condenses it in one place is used. Since the reflector is exposed to ultraviolet rays, heat, wind and rain, and sandstorms caused by sunlight, a glass light reflector has been conventionally used from the viewpoint of durability. However, the light reflector made of glass has a problem that it is damaged during transportation, and because it is heavy, a high-strength gantry is required to install it, which increases the construction cost of the plant.
  • Patent Document 1 discloses a resinous highly reflective film including a silver reflective layer.
  • the uppermost layer absorbs ultraviolet rays.
  • Patent Document 2 discloses a high refractive index as a means for reflecting ultraviolet light in order to reflect ultraviolet light in the same direction as visible light or infrared light and collect it in the light receiving unit.
  • a technique is described in which an ultraviolet reflective layer is formed by laminating a refractive index material and a low refractive index material. Sunlight can be effectively reflected by the laminate reflecting ultraviolet to infrared.
  • Patent Document 3 describes an invention in which a metal plate made of aluminum or stainless steel is polished, and a multilayer reflective layer having a different refractive index is applied to the surface as a reflective coating.
  • Patent Document 4 discloses an ultraviolet reflective layer characterized in that two types of polymer layers having different refractive indexes are alternately laminated, and heated and stretched near the glass transition point of the polymer. Has been proposed (see Comparative Example 4).
  • a multilayer film that reflects ultraviolet rays is formed of a dielectric, while a silver thin film is used in the wavelength range of visible light and infrared light, and these two layers having different functions are combined.
  • a method for efficiently reflecting sunlight is disclosed.
  • the multilayer film reflecting ultraviolet rays has a structure in which a high refractive index layer and a low refractive index layer are alternately laminated, and the low refractive index layer includes a barrier layer having an oxygen barrier property and a water vapor barrier property. Also serves as. By adopting such a configuration, it is excellent in durability against sunlight degradation.
  • Patent Document 4 an ultraviolet reflection layer can be produced in a large area and in a large amount.
  • it is necessary to heat and stretch near the glass transition point of the polymer. . It was found that when the polymer was heated to near the glass transition temperature, radicals were generated, and the resulting ultraviolet reflective layer deteriorated with time. Therefore, when a multilayer ultraviolet reflective film formed by heating and stretching this polymer is exposed with a xenon lamp similar to sunlight, peeling of the layer interface occurs when irradiated with ultraviolet rays corresponding to 20 years of Phoenix, Arizona, USA. There was a problem that occurred. This is presumed that the radical generated at the time of manufacture caused deterioration.
  • an object of the present invention is to provide a solar reflective film that is excellent in the efficient use of sunlight, large-area production, durability, and easy manufacture.
  • the present inventor conducted intensive research to solve the above problems. As a result, it is possible to produce a highly durable solar reflective film that can be produced in a large area using an ultraviolet reflective laminate that uses inorganic oxide and is laminated by coating a high refractive index material and a low refractive index material. The inventors have found that the above problems can be solved and the above object can be achieved, and the present invention has been completed.
  • the solar reflective film of the present invention has, in order from the light incident surface, an ultraviolet reflective laminate formed by coating, and a silver reflective layer, At least one layer of the ultraviolet reflective laminate includes at least one inorganic oxide.
  • FIG. 4 is a cross-sectional view schematically showing a configuration of a sunlight reflecting film formed in Comparative Example 1.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Example 1.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Example 2.
  • FIG. 6 is a cross-sectional view schematically showing a configuration of a sunlight reflecting film formed in Comparative Example 2.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Example 3.
  • FIG. It is sectional drawing which represented typically the structure of the sunlight reflective film formed in Example 4.
  • FIG. It is sectional drawing which represented typically the structure of the sunlight reflective film formed in the comparative example 4.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Comparative Example 5.
  • FIG. It is sectional drawing which represented typically the structure of the sunlight reflective film formed in the comparative example 6.
  • FIG. 1 is a cross-sectional view schematically showing one aspect of a sunlight reflecting film according to an embodiment of the present invention.
  • a solar reflective film 10 shown in FIG. 1 includes, in order from the surface on which sunlight 100 is incident, an ultraviolet reflective laminated portion 11 formed by coating and a silver reflective layer 13, and includes at least the ultraviolet reflective laminated portion 11.
  • One layer has a structure including at least one inorganic oxide 11a. According to the present invention having such a configuration, it is possible to provide a solar reflective film that is excellent in efficient use of sunlight, large-area production, durability, and easy to manufacture.
  • the ultraviolet reflective lamination part 11 can reflect an ultraviolet-ray efficiently, without absorbing an ultraviolet-ray. Moreover, by reflecting the ultraviolet rays in the sunlight 100, deterioration of the lower layer material can be prevented and durability can be enhanced. Moreover, since the ultraviolet reflection laminated portion can be formed by coating, large area production can be performed in a short time.
  • the ultraviolet reflection laminated portion can be formed by coating, a process of exposing the ultraviolet reflective laminated portion to a high temperature such as heating and stretching near the glass transition point of the polymer (225 ° C.) as in Patent Document 4. This is excellent in that it can reduce deterioration factors and improve durability. Furthermore, since the ultraviolet reflection laminated portion can be formed by coating, the solar reflective film can be prevented from curling or greatly reduced. Furthermore, the vacuum reflective laminate (especially the low refractive index layer) can be formed by coating, so that vacuum deposition that requires a lot of electric power is required to form a low refractive index layer that also serves as a barrier layer as in Patent Document 5. Manufacturing can be easily performed without using film forming means such as sputtering, ion beam sputtering, CVD, and atmospheric pressure plasma.
  • film forming means such as sputtering, ion beam sputtering, CVD, and atmospheric pressure plasma.
  • the sunlight 100 is incident on the silver reflective layer 13 side from the ultraviolet reflective laminated portion 11 side formed by coating containing the inorganic oxide 11a (without being heated and stretched) as indicated by an arrow.
  • the ultraviolet reflective laminate portion 11 including the inorganic oxide 11a and the silver reflective layer 13 are provided so that the ultraviolet rays can cause the inorganic oxide 11a of the solar reflective film 10 to pass through. It is possible to prevent the solar reflective film 10 from being deteriorated by preventing it from penetrating deeper than the ultraviolet reflective laminated portion 11 that is included.
  • the ultraviolet reflection laminated portion 11 including the inorganic oxide 11 a has a unit in which a low refractive index layer 111 and a high refractive index layer 112 are laminated. As shown in FIG. 1, by laminating layers 111 and 112 having different refractive indexes, light is reflected at the boundary surface, and an ultraviolet reflection function is exhibited. In FIG. 1, a multilayer of a high refractive index layer, a low refractive index layer,..., A high refractive index layer is laminated in order from the light incident direction as the ultraviolet reflecting laminated portion 11.
  • Example 1 is a configuration example in which the inorganic oxide 112a (11a) is included only on the high refractive index layer 112 side.
  • Example 1 the inclusion of the inorganic oxide 112a (11a) on the high refractive index layer 112 side increases the refractive index difference (the refractive index difference between the low refractive index layer and the high refractive index layer). This is effective in increasing the ultraviolet reflection efficiency at the interface.
  • the high refractive index layer 112 and the low refractive index layer 111 constituting the ultraviolet reflection laminated portion 11 both contain inorganic oxides 112a and 111a as in this embodiment shown in FIG.
  • the large refractive index difference of the refractive index layer 111 and the increased ultraviolet reflection efficiency it is more effective in that the light resistance is further improved (the same applies to the embodiment of FIG. 2; see Examples 2 to 4).
  • At least one of the low refractive index layer 111 or the high refractive index layer 112 constituting the ultraviolet reflective laminated portion 11 is made of a resin that is soluble in at least one of water or a solvent compatible with water. It is preferable to include.
  • a specific resin it is possible to form a thin film at a low temperature of 100 ° C. or lower, and it is possible to prevent radicals from remaining in the polymer without being exposed to a high-temperature heating process during production.
  • a coating method can be employed for forming the layer of the ultraviolet reflecting laminated portion 11 (without heating and stretching) by coating.
  • the ultraviolet reflecting laminated portion 11 by adopting a coating method (without heating and stretching) for forming the layer of the ultraviolet reflecting laminated portion 11, large area production of the obtained laminated body (ultraviolet reflecting laminated portion 11) is performed in a short time. It is possible.
  • a coating method in which the ultraviolet reflecting laminated portion is formed by coating the ultraviolet reflecting laminated portion is heated and stretched near the glass transition point of the polymer (225 ° C.) as in Patent Document 4. Since there is no process to be exposed to high temperatures, deterioration factors can be reduced and durability can be improved. Furthermore, curling of the entire sunlight reflecting film 10 can be reduced.
  • a resin film support (polymer film) 12 is disposed between the ultraviolet reflective laminate 11 and the silver reflective layer 13. That is, the ultraviolet reflecting laminated portion 11 is formed on one side (light incident surface side) of the resin film-like support 12, and the silver reflecting layer 13 is formed on the other side of the resin film-like support 12.
  • one or more corrosion prevention layers 14 are disposed on the silver reflection layer 13 in order to prevent corrosion of silver constituting the silver reflection layer 13.
  • an adhesive layer 15 is disposed on the corrosion prevention layer 14 for sticking to a supporting base material (a constituent member of a solar reflector; not shown).
  • a release material (release film, release paper, etc.) 16 is provided on the pressure-sensitive adhesive layer 15 so as to facilitate storage, transportation, and handling until sticking to the support substrate.
  • the scratch-resistant layer 17 is disposed on the ultraviolet reflecting laminated portion 11 (light incident surface side).
  • the scratch-resistant layer 17 is disposed on the outermost surface of the sunlight reflecting film 10.
  • FIG. 2 is a cross-sectional view schematically showing another aspect of the solar reflective film according to the embodiment of the present invention.
  • the ultraviolet reflecting laminated portion 11 and the silver reflecting layer 13 are included, and at least one layer of the ultraviolet reflecting laminated portion 11 includes: It has a structure including at least one inorganic oxide 11a.
  • FIG. 2 similarly to FIG. 1, a form in which the high refractive index layer 112 and the low refractive index layer 111 constituting the ultraviolet reflecting laminated portion 11 contain inorganic oxides 112 a and 111 a is illustrated.
  • FIG. 1 shows a configuration in which an ultraviolet reflective laminated portion 11 is formed on one surface of a resin film-like support 12 and a silver reflective layer 13 is formed on the other surface (Examples 1 and 2 have the same configuration). is there).
  • FIG. 2 shows a configuration in which the silver reflective layer 13 and the ultraviolet reflective laminated portion 11 are formed in this order on one surface of the resin film-like support 12 (Examples 3 and 4 have the same configuration).
  • a solar reflective film 10 'shown in FIG. 2 has the same configuration (arrangement) as FIG. 1 except that the solar reflective film 10 shown in FIG. Therefore, the same description as in FIG. 1 is repeated, and the description thereof is omitted.
  • the solar reflective film of the present invention is not limited to the form shown in FIGS. 1 and 2 and can take any configuration within the range satisfying the requirements of the present invention. .
  • each component of the solar reflective film 10, 10 'of the present embodiment will be described in detail.
  • the solar reflective films 10, 10 ′ of this embodiment essentially have the ultraviolet reflective laminated portion 11 on the light incident surface side with respect to the silver reflective layer 13.
  • the ultraviolet reflection laminated portion 11 has a function of reflecting at least a part of the wavelength (light) in the ultraviolet region (280 to 400 nm) included in sunlight, preferably 50% or more of the ultraviolet ray of 360 to 400 nm, preferably Has a function of reflecting 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the reflectance in the ultraviolet region (280 to 400 nm) contained in sunlight can be measured with a spectrophotometer having an integrating sphere.
  • the ultraviolet light reflection laminated portion 11 provided on the light incident surface side is particularly visible light to infrared light so that sunlight (particularly visible light to light in the infrared region) can be reflected by the lower silver reflection layer 13. It is desirable to transmit the light in the area.
  • the transmittance of light in the visible to infrared region (wavelength of 400 to 2500 nm) of the ultraviolet reflecting laminated portion 11 is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and particularly preferably. Is in the range of 80% or more.
  • the transmittance at a wavelength of 400 to 2500 nm can be measured by a spectrophotometer having an integrating sphere.
  • the ultraviolet reflecting laminated portion 11 preferably has at least one unit in which the low refractive index layer 111 and the high refractive index layer 112 are laminated.
  • the ultraviolet reflecting laminated portion 11 has a form of an alternating laminated body in which low refractive index layers 111 and high refractive index layers 112 are alternately laminated.
  • the ultraviolet reflection function is expressed by the difference in refractive index between the low refractive index layer 111 and the high refractive index layer 112.
  • “low refractive index layer” and “high refractive index layer” mean that a refractive index layer having a lower refractive index is a low refractive index when the difference in refractive index between two adjacent layers is compared. This means that the higher refractive index layer is the higher refractive index layer.
  • the solar reflective films 10 and 10 ′ of the present embodiment are used in at least one of water or a solvent in which at least one of the low refractive index layer 111 and the high refractive index layer 112 constituting the ultraviolet reflective laminated portion 11 is compatible with water. It is preferable to include a soluble resin 11b (111b to 112b).
  • solvent having compatibility with water means a solvent which does not form an interface when mixed with water and contains a hydroxyl group, a carbonyl group, a carboxyl group, an aldehyde group, etc. in the chemical structure. To do.
  • resin that is soluble in at least one of water or a solvent compatible with water means that the resin does not precipitate after mixing with water or a solvent compatible with water and agitation and light scattering. Means a resin that is not visible. In other words, it is defined here as being compatible if it has a very small particle size, the same refractive index, and no white turbidity or light scattering when visually mixed and stirred.
  • the resin 11b soluble in at least one of water or a solvent compatible with water may be contained in only one of the low refractive index layer 111 and the high refractive index layer 112 or in both. It doesn't matter.
  • the low refractive index layer 111 and the high refractive index layer 112 includes a resin that is soluble in at least one of water or a solvent compatible with water
  • the low refractive index layer 111 and / or the high refractive index layer 111 are used.
  • the refractive index layer 112 may contain a resin that is insoluble in either water or a solvent compatible with water.
  • water soluble resin also referred to as “water-soluble resin”.
  • the resin 11b is preferably excellent in light resistance, and specifically, is preferably a resin that does not contain an aromatic ring in the main chain. It is more preferable that the resin is composed of a monomer component that does not have any.
  • examples of such resins include water-soluble resins, silicone resins, acrylic resins, olefin resins, vinyl chloride resins, acrylic / urethane resins, and fluorine-containing polymers.
  • the resins 11 soluble in at least one of these water or water-compatible solvents it is preferable to use a water-soluble resin as will be described later, but among the resins other than the water-soluble resin, particularly weather resistance.
  • a silicone resin having a siloxane bond or an acrylic copolymer obtained by copolymerizing at least two kinds of acrylic monomers is suitably used.
  • the ultraviolet reflective laminated portion 11 (respective refractive index layers 111, 112) is formed by coating.
  • the resin 11b is preferably a water-soluble resin from the viewpoint that aqueous coating can be used to form the ultraviolet reflecting laminated portion 11 (respective refractive index layers 111 and 112) by coating.
  • water-soluble resin examples include polyvinyl alcohol (PVA), polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, or Acrylic resins such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene- Styrene acrylic resin such as acrylic acid copolymer or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrene sulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer , Styrene-2-hydroxye Ty
  • Examples include natural water-soluble resins.
  • polyvinyl alcohols, copolymers containing the same, gelatin, and thickening polysaccharides (particularly celluloses) are preferable from the viewpoint of handling during production and film flexibility, and in particular, from the viewpoint of optical properties.
  • These water-soluble resins may be used alone or in combination of two or more.
  • modified polyvinyl alcohol partially modified can be used in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate is also simply referred to as “polyvinyl alcohol” unless otherwise specified.
  • the polyvinyl alcohol having the highest content in the low refractive index layer 111 when both the low refractive index layer 111 and the high refractive index layer 112 contain at least one polyvinyl alcohol, the polyvinyl alcohol having the highest content in the low refractive index layer 111.
  • the polyvinyl alcohol (A) is the polyvinyl alcohol (B) having the highest content in the high refractive index layer 112, the saponification degree of the polyvinyl alcohol (A) and the saponification of the polyvinyl alcohol (B) The degree is preferably different.
  • the degree of saponification is the ratio of hydroxyl groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxyl groups in polyvinyl alcohol.
  • the stacked portion 11 can be formed.
  • the polyvinyl alcohol for comparing the difference in saponification degree in each of the refractive index layers 111 and 112 is a case where each refractive index layer contains a plurality of polyvinyl alcohols (that is, two or more kinds of polyvinyl alcohols having different saponification degrees or polymerization degrees). ) Is polyvinyl alcohol having the highest content in the refractive index layer.
  • polyvinyl alcohol having the highest content in the refractive index layer is referred to, the degree of polymerization is calculated assuming that the polyvinyl alcohol having a difference in saponification degree of 3 mol% or less is the same polyvinyl alcohol.
  • a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (if the difference in saponification degree is 3 mol% or less, the same polyvinyl alcohol is not used).
  • polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively, these 3
  • the two polyvinyl alcohols are the same polyvinyl alcohol, and the mixture of these three is polyvinyl alcohol (A) or (B).
  • polyvinyl alcohol having a saponification degree difference of 3 mol% or less is sufficient if it is within 3 mol% when attention is paid to any polyvinyl alcohol, for example, 90, 91, 92, 94 mol% vinyl alcohol.
  • any polyvinyl alcohol for example, 90, 91, 92, 94 mol% vinyl alcohol.
  • any polyvinyl alcohol is within 3 mol% when focusing on 91 mol% of vinyl alcohol, the same polyvinyl alcohol is obtained.
  • the polyvinyl alcohol having the highest content when the polyvinyl alcohol having the highest content is composed of a plurality of polyvinyl alcohol species having a saponification degree difference of 3 mol% or less, the polyvinyl alcohol having the highest content has the highest polyvinyl alcohol content.
  • the sum is obtained by multiplying the saponification degree of each polyvinyl alcohol constituting the alcohol by the content of the polyvinyl alcohol. Specifically, it is calculated as follows.
  • Polyvinyl alcohol having the highest content is composed of polyvinyl alcohol (1) and polyvinyl alcohol (2).
  • Polyvinyl alcohol (1) content of polyvinyl alcohol (1) with respect to the total amount (solid content) of the refractive index layer: Wa, saponification Degree: Sa (mol%)
  • polyvinyl alcohol (2) content of polyvinyl alcohol (2) with respect to the total amount (solid content) of the refractive index layer: Wb, saponification degree: Sb (mol%)
  • the highest saponification degree of polyvinyl alcohol is as shown in the following formula.
  • the numbers at the beginning of the brand represent the classification of the degree of saponification, and the next two numbers multiplied by 100 represent the degree of polymerization.
  • This mixture becomes polyvinyl alcohol (A) or (B).
  • the combination of any one of the polyvinyl alcohol (group) is obtained by combining the low refractive index layer 111 and the high refractive index layer 112.
  • the degree of saponification may be different.
  • polyvinyl alcohol (1) degree of saponification 98.5 mol%): 20% by mass
  • polyvinyl alcohol (2) degree of saponification 88 mol%): 20% by mass
  • polyvinyl alcohol (1) (Saponification degree: 79.5 mol%): 20% by mass (when a plurality of polyvinyl alcohols (group) having the highest content are present in the same content), polyvinyl alcohol (1) Any one of (2) and (3) may be different from the saponification degree of the polyvinyl alcohol (B) having the highest content contained in the high refractive index layer 112.
  • the difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 1 mol% or more, and more preferably 3 mol% or more. More preferably, it is 5 mol% or more. Further, it is more preferably 8 mol% or more, and most preferably 10 mol% or more. If it is such a range, it is preferable in order to make the interlayer mixing state of the low refractive index layer 111 and the high refractive index layer 112 into a preferable level.
  • the difference in the degree of saponification between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably as far as possible, but is preferably 20 mol% or less from the viewpoint of the solubility of polyvinyl alcohol in water.
  • the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, it is preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more, and the other has a saponification degree lower than that of polyvinyl alcohol having a saponification degree of 90 mol% or more. In such a form, interlayer mixing is further suppressed.
  • one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more and the other has a ratio of 90 mol% or less, which is an interlayer mixed state of the low refractive index layer 111 and the high refractive index layer 112. Is preferable because the reflectance of a specific wavelength (ultraviolet ray) is improved.
  • One of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more, and the other is preferably 90 mol% or less from the viewpoint of improving the reflectance at a specific wavelength (ultraviolet light).
  • the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol% and is about 99.9 mol% or less.
  • the polymerization degree of the two types of polyvinyl alcohols having different saponification degrees is preferably 1000 or more, particularly preferably having an average polymerization degree of 1500 to 5000, and more preferably 2000 to 5000.
  • the coating film is not cracked, and when it is 5000 or less, handling properties are good and work efficiency is improved, which is preferable.
  • the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is 2000 to 5000, it is preferable because cracks of the coating film are reduced and the reflectance at a specific wavelength (ultraviolet ray) is improved.
  • the degree of polymerization of both polyvinyl alcohol (A) and polyvinyl alcohol (B) is 2000 to 5000 because the layers are further separated and the above effects are more prominently exhibited.
  • the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS-K6726 (1994). Specifically, after the polyvinyl alcohol is completely re-saponified and purified, it is obtained from the intrinsic viscosity [ ⁇ ] (dl / g) measured in water at 30 ° C. by the following formula.
  • the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are preferably contained in a range of 5.0% by mass or more, more preferably 10% by mass or more with respect to the total mass of each refractive index layer. It is preferable. When the content is 5.0% by mass or more, the effect that inter-layer mixing is suppressed and the disturbance of the interface is reduced appears significantly. Moreover, 50 mass% or less is preferable with respect to the total mass of each refractive index layer, and, as for polyvinyl alcohol (A) and polyvinyl alcohol (B), 40 mass% or less is more preferable.
  • the content is 50% by mass or less, the content of the relative inorganic oxide (111a, 112a) is appropriate, and the difference in refractive index between the low refractive index layer 111 and the high refractive index layer 112 may be increased. It becomes easy.
  • the polymerization degree is 100 to 1000, more preferably, the polymerization degree is 100 to 500, and the saponification degree is 95 mol% or more. It is preferable that at least one of the respective refractive index layers contains (also simply referred to as a low polymerization degree, highly saponified polyvinyl alcohol). When such a low degree of polymerization and high saponified polyvinyl alcohol is contained, the stability of the coating solution is improved. More preferably, both refractive index layers contain a low degree of polymerization and a highly saponified polyvinyl alcohol from the viewpoint of the stability of the coating solution.
  • the content of the saponified polyvinyl alcohol having a low polymerization degree is not particularly limited, but is preferably 0.5 to 5% by mass with respect to the total mass (solid content) of each refractive index layer. If it is such a range, the said effect will be exhibited more.
  • the upper limit of the saponification degree of the low polymerization degree and high saponification polyvinyl alcohol is not particularly limited, but is usually less than 100 mol% and about 99.9 mol% or less.
  • either the low refractive index layer 111 or the high refractive index layer 112 has a saponification degree of 90 mol%. It is preferable to further contain the above (more preferably 95 mol% or more) polyvinyl alcohol. By containing such a high saponification degree polyvinyl alcohol, the coating solution is stabilized, inter-layer mixing is further suppressed, and the reflectance is further improved.
  • each refractive index layer may contain modified polyvinyl alcohol partially modified in addition to normal polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • modified polyvinyl alcohol partially modified in addition to normal polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonionic-modified polyvinyl alcohol, and vinyl alcohol polymers. These modified polyvinyl alcohols can be used in combination of two or more types having different degrees of polymerization and modification.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in, for example, JP-A-61-110483. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol is, for example, a polyvinyl alcohol derivative obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795.
  • vinyl alcohol polymers examples include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • the content of the modified polyvinyl alcohol is not particularly limited, but is preferably 1 to 30% by mass with respect to the total mass (solid content) of each refractive index layer. If it is such a range, the adhesiveness of said film
  • the two types of polyvinyl alcohol having different saponification degrees may be contained in a range of 40% by mass to 100% by mass with respect to the total mass of the total polyvinyl alcohol and the modified polyvinyl alcohol in the refractive index layer. 60 mass% or more and 95 mass% or less are more preferable.
  • content is 40% by mass or more, the effect that inter-layer mixing is suppressed and the turbulence of the interface is reduced is remarkably exhibited.
  • content is 95 mass% or less, stability of a coating liquid will improve.
  • gelatin in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
  • thickening polysaccharides examples include generally known natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides, and synthetic complex polysaccharides. For details on these polysaccharides, see “Biochemistry”. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21.
  • the thickening polysaccharide is a saccharide polymer having a large number of hydrogen bonding groups in the molecule. It refers to a polysaccharide with characteristics that have a large difference from the viscosity of time.
  • the polysaccharide is preferably a polysaccharide that causes an increase of 1.0 mPa ⁇ s or more, more preferably 5.0 mPa ⁇ s or more, and still more preferably a polysaccharide having a viscosity increasing ability of 10.0 mPa ⁇ s or more.
  • thickening polysaccharides examples include ⁇ 1-4 glucan (eg, carboxymethylcellulose, carboxyethylcellulose, etc.), galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.).
  • glucan eg, carboxymethylcellulose, carboxyethylcellulose, etc.
  • galactan eg, agarose, agaropectin, etc.
  • galactomannoglycan eg, locust bean gum, guaran, etc.
  • Xyloglucan eg, tamarind gum, etc.
  • glucomannoglycan eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.
  • galactoglucomannoglycan eg, softwood-derived glycan
  • arabinogalactoglycan For example, soybean-derived glycans, microbial-derived glycans, etc.
  • glucoraminoglycans eg, gellan gum
  • glycosaminoglycans eg, hyaluronic acid, keratan sulfate, etc.
  • alginic acid and alginate agar, ⁇ -ca
  • examples thereof include natural high molecular polysaccharides derived from red algae such as laginan, ⁇ -carrageenan, ⁇ -carrageenan, and far cerulean.
  • the weight average molecular weight of the water-soluble resin is not particularly limited, but is preferably from 1,000 to 200,000, more preferably from 3,000 to 40,000, from the viewpoint of production by adjusting the viscosity to be coatable.
  • the value measured on the following measurement conditions using gel permeation chromatography (GPC) is employ
  • Solvent 0.2M NaNOH 3 , NaH 2 P0 4 , pH 7 ⁇
  • Flow rate 1 ml / min ⁇
  • Calibration curve Standard P-82 standard substance pullulan calibration curve for Shodex standard GFC (aqueous GPC) column is used.
  • a curing agent for curing the water-soluble resin may be used.
  • the kind of the curing agent is not particularly limited, and any curing agent can be used as long as it causes a curing reaction with the water-soluble resin.
  • Examples of the curing agent when the water-soluble resin is polyvinyl alcohol include boric acid having a boron atom, borate, and borax. When these are used, more excellent ultraviolet reflection characteristics can be exhibited.
  • the film surface temperature of the coating film was once cooled to about 15 ° C. and then the film surface was dried. In some cases, the effect can be expressed more preferably.
  • Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom. Specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid and octaboric acid are used. Examples include boric acid and salts thereof.
  • Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
  • Boric acid, borate, and borax may be used alone or in combination of two or more.
  • a compound having a group capable of reacting with polyvinyl alcohol or a compound that accelerates the reaction between different groups of polyvinyl alcohol is suitably used as the curing agent.
  • Specific examples include epoxy curing agents, active halogen curing agents, active vinyl compounds, and aluminum alum.
  • the total amount of the curing agent used is preferably 1 to 600 mg, more preferably 100 to 500 mg, per gram of polyvinyl alcohol resin.
  • Examples of the hardener when the water-soluble resin is gelatin include organic hardeners such as vinyl sulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, and isocyanate compounds.
  • Examples of the film agent include inorganic polyvalent metal salts such as chromium, aluminum, and zirconium.
  • silicone resins include, for example, trimethoxysilane (Kanto Chemical), Solguard NP-730 (Nippon Dacro Shamrock), Tosgard 510 (Toshiba Silicone), KP-64 (Shin-Etsu Chemical). ) Etc.
  • the main component of such a silicone resin is represented by RXSi (OR ') 4-X, where R and R' are organic groups such as methyl and ethyl groups, and X is 0 and a natural number.
  • acrylic resins include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and 2-ethylhexyl methacrylate.
  • the main component is one or two or more monomers selected from monomers having no functional group in the side chain such as alkyl (meth) acrylate such as non-functional monomers (hereinafter referred to as non-functional monomers).
  • OH is present in the side chain of one or more monomers selected from monomers such as hydroxyethyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid, and itaconic acid.
  • Copolymers such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method are used in combination of one or more monomers having a functional group such as COOH (hereinafter referred to as functional monomers).
  • functional monomers include acrylic copolymers having a weight average molecular weight of 40,000 to 1,000,000, preferably 100,000 to 400,000, obtained by polymerization.
  • a non-functional monomer that gives a polymer having a relatively low glass transition point (Tg) such as ethyl acrylate, methyl acrylate, and 2-ethylhexyl methacrylate, and a comparison of methyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, etc.
  • Tg glass transition point
  • An acrylic polymer containing 10 to 50% by mass of a non-functional monomer that gives a polymer having a high Tg and 0 to 10% by mass of a functional monomer such as 2-hydroxyethyl methacrylate, acrylic acid, and itaconic acid is the most.
  • Commercially available acrylic resins may also be used. For example, BR-85 manufactured by Mitsubishi Rayon, Delpet SRB215 manufactured by Asahi Kasei Chemicals, etc. may be used.
  • the cycloolefin resin is a polymer resin containing an alicyclic structure.
  • a preferred cycloolefin resin is a resin obtained by polymerizing or copolymerizing a cyclic olefin.
  • Examples of the cyclic olefin include norbornene, dicyclopentadiene, tetracyclododecene, ethyltetracyclododecene, ethylidenetetracyclododecene, and tetracyclo [7.4.0.110, 13.02,7] trideca-2,4.
  • Unsaturated hydrocarbons having a polycyclic structure such as 6,11-tetraene and derivatives thereof, cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2- (2-methylbutyl) -1-cyclohexene, cyclo Examples thereof include monocyclic unsaturated hydrocarbons such as octene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H-indene, cycloheptene, cyclopentadiene, cyclohexadiene, and derivatives thereof.
  • Preferred cycloolefin resins may be those obtained by addition copolymerization of monomers other than cyclic olefins.
  • addition copolymerizable monomers include ethylene such as ethylene, propylene, 1-butene and 1-pentene, or ⁇ -olefin, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl- Examples include dienes such as 1,4-hexadiene and 1,7-octadiene. It is not limited to these. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., Arton manufactured by JSR Corporation, APPEL manufactured by Mitsui Chemicals, Inc. (APL8008T, APL6509T, APL6013T, APL5014DP, APL6015T) and the like are preferably used.
  • vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer.
  • vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer.
  • vinyl chloride monomer examples include graft copolymers obtained by graft copolymerization, and (co) polymers composed of chlorinated vinyl chloride monomer units. These may be used alone or in combination of two or more.
  • the acrylic / urethane resin can be used without limitation as long as it can be obtained by reacting a polyvalent isocyanate compound or polyurethane having an isocyanate group with an acrylic monomer.
  • acrylic monomers include alkyl acrylates (methyl groups such as methyl, ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.), alkyl methacrylates (methyl as the alkyl group, Hydroxy such as ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.), 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, etc.
  • Group-containing monomers acrylamide, methacrylamide, N-methyl methacrylamide, N-methyl acrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethyl Amide group-containing monomers such as acrylamide, N-methoxymethylacrylamide, N-methoxymethylmethacrylamide, N-butoxymethylacrylamide, N-phenylacrylamide, N, N-diethylaminoethyl acrylate, N, N-diethylaminoethyl methacrylate, etc.
  • Amino group-containing monomers such as glycidyl acrylate and glycidyl methacrylate, monomers containing a carboxyl group such as acrylic acid, methacrylic acid and salts thereof (sodium salt, potassium salt, ammonium salt, etc.) or salts thereof, etc. Can be used. It is preferable to copolymerize a crosslinkable functional group, and it is particularly preferable to copolymerize N-methylolacrylamide in terms of improving self-crosslinking property and crosslinking density.
  • the copolymerization ratio of N-methylolacrylamide is preferably 0.5 to 5% by weight from the viewpoint of copolymerizability and the degree of crosslinking, and more preferably 1 to 3% by weight in view of the coating appearance.
  • the crosslinking agent include melamine crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolized or alkylolized urea, acrylamide, polyamide resin, oxazoline crosslinking agent, and carbodiimide.
  • Cross-linking agents, various silane coupling agents, various titanate coupling agents and the like can be used. It is preferable that at least one of the crosslinking agents contains an oxazoline-based crosslinking agent and a carbodiimide-based crosslinking agent.
  • fluorine-containing polymer examples include a polymer mainly containing a fluorine-containing unsaturated ethylenic monomer component.
  • fluorine-containing unsaturated ethylenic monomer examples include a fluorine-containing alkene, a fluorine-containing acrylic acid ester, a fluorine-containing methacrylate ester, a fluorine-containing vinyl ester, a fluorine-containing vinyl ether, and the like. And fluorine-containing unsaturated ethylenic monomers described in paragraph “0181” of the No.
  • Examples of monomers that can be copolymerized with fluorine-containing monomers include, for example, ethylene, propylene, butene, vinyl acetate, vinyl ethyl ether, vinyl ethyl ketone, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl- ⁇ -fluoroacrylate, ethyl- ⁇ -fluoroacrylate, propyl- ⁇ -fluoroacrylate, butyl- ⁇ -fluoroacrylate, acrylic acid, methacrylic acid, ⁇ -fluoroacrylic acid, styrene Styrene sulfonic acid, methoxypolyethylene glycol methacrylate and the like.
  • the refractive index of a single resin of a fluorine-containing ethylenically unsaturated monomer is in the range of approximately 1.33 to 1.42, and the refractive index of a single resin polymer of a fluorine-free monomer that can be copolymerized.
  • the solid content in each refractive index layer is from the viewpoint of viscosity adjustment during coating.
  • the total amount is preferably 50 to 100% by mass, more preferably 80 to 100% by mass. If it is 50 mass% or more, layer formation is possible.
  • the content of the resin in each refractive index layer is 30 to the total solid content in each refractive index layer when each refractive index layer contains an inorganic oxide (111a to 112a). It is preferably 70% by mass, and preferably 40-50% by mass. Even when the inorganic oxide (111a to 112a) is contained, the layer can be formed if the resin content is 30% by mass or more.
  • At least one layer of the ultraviolet reflecting portion 11 in the sunlight reflecting films 10, 10 ′ of the present embodiment includes at least one inorganic oxide 11a.
  • stacking part 11 reflects an ultraviolet-ray efficiently, and the efficient utilization of sunlight is achieved.
  • the inorganic oxide 11a can increase the refractive index of the layer (refractive index layer) containing the inorganic oxide 11a.
  • At least one of the low-refractive index layer 111 or the high-refractive index layer 112 constituting the ultraviolet ray reflecting section 11 preferably includes the inorganic oxide 11a (111a to 112a) and the resin 11b described above.
  • at least one of the low refractive index layer 111 and the high refractive index layer 112 is preferably formed by applying a solution containing the inorganic oxide 11a (111a to 112a) and a resin component, respectively.
  • the inorganic oxide particles 11a preferably have an average particle size of 100 nm or less so as to be suitable for ultraviolet reflection.
  • an average particle diameter refers to a primary average particle diameter.
  • the primary average particle size refers to a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a cross section or surface of the refractive index layer (111, 112).
  • the average particle size is a value obtained by measuring the particle size of 1000 arbitrary particles by a method of observing the appearing particle image with an electron microscope.
  • the average particle diameter of the inorganic oxide particles 11a is the matrix (the silica described above).
  • an attached titanium dioxide sol it means the average particle diameter of titanium dioxide before treatment).
  • the inorganic oxide 111a for example, colloidal silica particles
  • the inorganic oxide 112a for example, titanium oxide particles in the high refractive index layer 112). Etc.
  • silica (silicon dioxide) is preferably used as the inorganic oxide 111a, and specific examples include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use acidic colloidal silica sol, and it is particularly preferable to use colloidal silica dispersed in an organic solvent.
  • hollow fine particles having pores inside the particles may be used as the inorganic oxide fine particles 111a of the low refractive index layer 111. In particular, hollow fine particles of silica (silicon dioxide) may be used. preferable.
  • inorganic oxide particles other than a silica can also be used.
  • the inorganic oxide 111a it is preferable to use silicon dioxide from the viewpoint of a low refractive index and a small particle size, and a low refractive index, a small particle size, and high transparency. From the viewpoint of easy handling without forming secondary particles, it is particularly preferable to use colloidal silica.
  • the inorganic oxide particles 111a (preferably silicon dioxide) contained in the low refractive index layer 111 preferably have an average particle size of 3 to 100 nm.
  • the average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the colloidal silica used in the present embodiment is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis with an acid of sodium silicate or the like passes through an ion exchange resin layer.
  • JP-A-57-14091, JP-A-60-219083 and the like are examples of JP-A-57-14091, JP-A-60-219083 and the like.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow particles can also be used as the inorganic oxide particles 111 a of the low refractive index layer 111.
  • the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
  • the content of the inorganic oxide particles 111a in the low refractive index layer 111 is preferably 20 to 90% by mass and preferably 30 to 85% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferred is 40 to 70% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, the coatability is good, which is preferable.
  • Inorganic oxide 112a in the high refractive index layer 112 for example, titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, Examples thereof include ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • inorganic oxide particles 112a such as titanium dioxide and zirconium oxide that can form a transparent and higher refractive index layer 112 having a higher refractive index are preferable.
  • titanium dioxide rutile type (tetragonal) titanium oxide particles are preferable.
  • the primary average particle diameter of the inorganic oxide particles 112a used in the inorganic oxide particles 112a used in the high refractive index layer 112 is preferably 30 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. More preferably it is.
  • a primary average particle diameter of 1 nm or more and 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • titanium oxide particles of this embodiment it is preferable to use particles in which the surface of an aqueous titanium oxide sol is modified to stabilize the dispersion state.
  • particles having a core-shell structure in which titanium oxide particles are coated with a silicon-containing hydrated oxide may be used.
  • the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the inorganic oxide particles 112a may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be covered with. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, so that the weather resistance of the high refractive index layer 112 and the adjacent low refractive index layer 111 is increased, and the refractive index is further increased. Because.
  • silicon-containing hydrated oxide in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound. More preferably has a silanol group.
  • the coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass. This is because when the coating amount is 30% by mass or less, the desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% or more, particles can be stably formed.
  • the titanium oxide particles As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method.
  • JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
  • the content of the inorganic oxide particles 112a in the high refractive index layer 112 is preferably 15 to 90% by mass, and preferably 20 to 85% by mass with respect to 100% by mass of the solid content of the high refractive index layer 112. More preferably, the content is 30 to 85% by mass from the viewpoint of improving the reflectance.
  • Each refractive index layer (111, 112) preferably contains a surfactant from the viewpoint of applicability when formed by coating.
  • Anionic surfactants, nonionic surfactants, amphoteric surfactants, and the like can be used as the surfactant used for adjusting the surface tension during coating, but anionic surfactants are more preferable.
  • Preferred compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
  • Anionic surfactants include alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkane or olefin sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl or alkyl aryl ether sulfate salt, alkyl phosphate, alkyl diphenyl ether
  • a surfactant selected from the group consisting of disulfonates, ether carboxylates, alkylsulfosuccinates, ⁇ -sulfo fatty acid esters and fatty acid salts, condensates of higher fatty acids with amino acids, naphthenates, etc. may be used. it can.
  • Preferred anionic surfactants are alkylbenzene sulfonates (especially those of linear alkyls), alkanes or olefin sulfonates (especially secondary alkane sulfonates, ⁇ -olefin sulfonates), alkyl sulfates Salts, polyoxyethylene alkyl or alkylaryl ether sulfates (especially polyoxyethylene alkyl ether sulfates), alkyl phosphates (especially monoalkyl type), ether carboxylates, alkyl sulfosuccinates, ⁇ -sulfo fatty acid esters and A surfactant selected from the group consisting of fatty acid salts, and alkylsulfosuccinate is particularly preferable.
  • the content of the surfactant in each refractive index layer is preferably 0.001 to 0.5 mass%, and preferably 0.005 to 0.3 mass% with respect to the total solid content in each refractive index layer. % Is more preferable.
  • Each refractive index layer preferably contains a polymer dispersant from the viewpoint of dispersion stability of the coating solution.
  • the polymer dispersant refers to a polymer dispersant having a weight average molecular weight of 10,000 or more.
  • the polymer has a hydroxyl group substituted at the side chain or terminal.
  • examples include polyethers such as polypropylene glycol, polyvinyl alcohol, and the like.
  • a commercially available polymer dispersant may be used, and examples of such a polymer dispersant include Marialim AKM-0531 (manufactured by NOF Corporation).
  • the content of the polymer dispersant is preferably 0.1 to 10% by mass in terms of solid content with respect to the refractive index layer.
  • Each refractive index layer may further contain an emulsion resin.
  • the emulsion resin By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
  • An emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 ⁇ m, for example, are dispersed in an emulsion state in an aqueous medium. Obtained by emulsion polymerization using a molecular dispersant.
  • polymer dispersant containing a hydroxyl group examples include those obtained by copolymerizing 2-ethylhexyl acrylate with an acrylic polymer such as sodium polyacrylate and polyacrylamide, polyethers such as polyethylene glycol and polypropylene glycol, polyvinyl Examples thereof include alcohol, and polyvinyl alcohol is particularly preferable.
  • Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group is also included. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when forming each refractive index layer when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and the production Sometimes easy to handle.
  • the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500.
  • the saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
  • Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene.
  • Examples thereof include acrylic resins, styrene-butadiene resins, ethylene-vinyl acetate resins, and these resins can also be used as resins constituting each refractive index layer.
  • each refractive index layer includes, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No.
  • optical brighteners such as sulfuric acid, phosphoric acid, acetic acid , PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents, Tsu DOO agent may contain various known additives such as a light stabilizer such as hindered amine.
  • the solar reflective film 10, 10 ′ of this embodiment has an ultraviolet reflective laminated portion 11 having at least one unit in which a low refractive index layer 111 and a high refractive index layer 112 are laminated.
  • the range of the total number of layers of the low refractive index layer 111 and the high refractive index layer 112 is 100 layers or less, more preferably 45 layers or less. Although a minimum is not specifically limited, It is preferable that it is 5 layers or more.
  • the total number of layers of the low refractive index layer 111 and the high refractive index layer 112 per one ultraviolet reflection laminated portion 11 is preferably 7 to 23 layers.
  • the difference in refractive index between at least two adjacent layers is preferably 0.1 or more, more preferably 0.25 or more, and further preferably Is 0.3 or more, more preferably 0.35 or more.
  • the upper limit is not particularly limited, but is usually 1.4 or less.
  • the outermost layer is formed as a layer for protecting the film or when the lowermost layer is formed as an adhesion improving layer with the substrate, the above-mentioned preferred refraction is performed with respect to the outermost layer and the lowermost layer.
  • a configuration outside the range of the rate difference may be used.
  • the refractive index difference between each refractive index layer in the ultraviolet reflective lamination part 11, and a required number of layers it can calculate using commercially available optical design software.
  • the low refractive index layer 111 preferably has a refractive index of 1.10 to 1.60, more preferably 1.30 to 1.55.
  • the high refractive index layer 112 preferably has a refractive index of 1.80 to 2.50, more preferably 1.80 to 2.20.
  • n ⁇ d wavelength / 4 when viewed as a single layer film
  • the reflected light is controlled to be strengthened by the phase difference.
  • the reflectance can be increased.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the relationship between the average thickness dH of the high refractive index layer 112 and the average thickness dL of the low refractive index layer 111 satisfies the following formulas (1) and (2).
  • the reflectance in the ultraviolet region can be increased.
  • is more preferably 25 nm or less.
  • is not particularly limited, but is preferably 5 nm or more in order to ensure an optical path difference. Further,
  • the thickness per layer of the high refractive index layer 112 is preferably 20 to 80 nm, more preferably 30 to 70 nm, and more preferably 40 to 60 nm.
  • the thickness per layer of the low refractive index layer 11121 is preferably 40 to 100 nm, more preferably 50 to 90 nm, and more preferably 60 to 80 nm.
  • a film forming method by coating is preferable because it contains a functional resin.
  • the coating method may be sequential coating or simultaneous multi-layer coating, but simultaneous multi-layer coating is preferable because productivity is improved.
  • Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the solvent for preparing the coating solution for the low refractive index layer, the coating solution for the high refractive index layer, and the coating solution for the resin layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • a water-soluble resin can be used as a suitable resin
  • an aqueous solvent can be used. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment, simplicity of operation, etc., the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
  • the concentration of the resin (water-soluble resin or the like) in the coating solution for the low refractive index layer is preferably 0.5 to 10% by mass.
  • the concentration of the inorganic oxide particles in the coating solution for the low refractive index layer is preferably 1 to 50% by mass.
  • the concentration of the resin (water-soluble resin or the like) in the coating solution for the high refractive index layer is preferably 0.5 to 10% by mass.
  • the concentration of the inorganic oxide particles in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
  • the method for preparing the coating solution for the low refractive index layer and the coating solution for the high refractive index layer is not particularly limited.
  • inorganic oxide particles, resins (such as water-soluble resins), and other additives added as necessary The method of adding an additive and stirring and mixing is mentioned.
  • the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
  • the temperature of the coating solution for the low refractive index layer and the coating solution for the high refractive index layer during simultaneous multilayer coating is preferably 25 to 60 ° C. when using the slide bead coating method or the curtain coating method, and 30 A temperature range of ⁇ 45 ° C. is more preferred.
  • the viscosity of the coating solution for the low refractive index layer and the coating solution for the high refractive index layer when performing simultaneous multilayer coating is not particularly limited. However, when the slide bead coating method is used, it is preferably in the range of 5 to 100 mPa ⁇ s, more preferably in the range of 10 to 50 mPa ⁇ s in the preferred temperature range (25 to 60 ° C.) of the above coating solution. is there. When the curtain coating method is used, in the preferable temperature range (25 to 60 ° C.) of the above coating solution, a range of 5 to 1200 mPa ⁇ s is preferable, and a range of 25 to 500 mPa ⁇ s is more preferable. . If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity of the coating solution at 15 ° C. is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, still more preferably 3,000 to 30,000 mPa ⁇ s, and most preferably 10 , 30,000 to 30,000 mPa ⁇ s.
  • the conditions for the coating and drying method are not particularly limited.
  • the silver reflective layer 13 and the corrosion prevention layer 14 are formed on one surface of the resin film support 12 as shown in FIG. Is formed on the other surface (light incident surface side) of the resin film-like support 12 on which is formed, or on one side of the resin film-like support 12 as shown in FIG.
  • the corrosion prevention layer 14 on which the layer 14 is formed either the low refractive index layer coating liquid or the high refractive index layer coating liquid is applied to the resin film-like support 12 or the corrosion prevention layer 14.
  • the other coating liquid of the coating solution for the low refractive index layer and the coating liquid for the high refractive index layer is coated and dried on the coating film made of the one coating liquid, and the laminated film precursor (unit ).
  • the number of units necessary for expressing the desired ultraviolet reflection performance is sequentially applied and dried by the above method to obtain a laminated film precursor.
  • drying it is preferable to dry the formed coating film at 30 ° C. or higher.
  • drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.).
  • hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the rate-decreasing drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the conditions for the coating and drying method when simultaneous multilayer coating is performed are as follows.
  • the coating solution for low refractive index layer and the coating solution for high refractive index layer are heated to 30 to 60 ° C.
  • the temperature of the formed coating film is preferably cooled to 1 to 15 ° C. (set) )
  • drying at 10 ° C. or higher is preferred.
  • More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air of 80 ° C.
  • the drying time is not particularly limited, but for example, about 1 to 5 seconds is preferable from the viewpoint of productivity.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the silver reflective layer 13 in the solar reflective film 10, 10 ′ of this embodiment is a layer mainly composed of silver or silver having a function of reflecting light in the visible to infrared region; a wavelength of 280 to 2500 nm.
  • the silver reflecting layer 13 only needs to be provided on the lower layer side than the ultraviolet reflecting laminated portion 11 on the light incident surface side.
  • the main component of silver is that the silver content in the silver-containing alloy constituting the silver reflecting layer 13 is the largest, preferably the silver content is 70% by mass or more, more preferably 80%. It is 90 mass% or more, More preferably, it is 90 mass% or more, Most preferably, it is 100 mass%.
  • the other alloy components contained in the silver-containing alloy are elements composed of Al, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au from the viewpoint of film formation temperature, solar reflectance, and corrosion resistance.
  • a material containing any element selected from the group is preferable, and Al is preferable.
  • the surface reflectance of the silver reflective layer 13 (specifically, the reflectance in the visible light to infrared region; the reflectance at a wavelength of 280 to 2500 nm) is preferably 80% or more, and more preferably 90% or more.
  • the surface reflectance of the silver reflective layer 13 can be measured using a commercially available spectrophotometer.
  • a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided on the silver reflecting layer 13 to further improve the reflectance.
  • both a wet method and a dry method can be used.
  • the wet method is a general term for a plating method or a metal complex solution coating method, and is a method of forming a film by depositing a metal from a solution.
  • Specific examples include silver mirror reaction and silver layer formation by firing of a silver complex ink (specifically, firing of a coating film formed by applying a silver coating liquid composition containing a silver complex compound).
  • the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. That is, in the manufacturing method of the sunlight reflective film 10 of this invention, it is preferable to form the silver reflection layer 13 by vapor deposition of silver.
  • the thickness of the silver reflecting layer 13 is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of sunlight reflectance, corrosion resistance, and the like.
  • the silver reflective layer 13 may be formed by heating and firing a coating film containing a silver complex compound from which a ligand can be vaporized and desorbed.
  • “Silver complex compound having a ligand that can be vaporized / desorbed” has a ligand for stably dissolving silver in a solution, but the ligand is removed by removing the solvent and heating and firing. Is a silver complex compound that can be thermally decomposed into CO 2 or a low molecular weight amine compound, vaporized / desorbed, and only metallic silver remains.
  • a silver complex compound and a method for producing the same for example, a silver complex compound and a method for producing the same described in paragraphs “0064” to “0089” of JP-A-2012-137579, which are publicly known, can be used as appropriate. .
  • the corrosion prevention layer 14 prevents intrusion of moisture and chemicals in the air into the silver reflection layer 13 (mirror surface) (and thus prevents the silver reflection layer 13 from corroding silver and silver-containing alloy materials (particularly silver)). Furthermore, it is provided for the purpose of protection from external mechanical pressure such as impact and scratching. That is, the corrosion prevention layer 14 can prevent the silver reflection of the silver reflection layer 13 and maintain the reflection of sunlight. As a result, the durability of the sunlight reflecting films 10, 10 ′ can be improved.
  • the corrosion prevention layer 14 is desirably provided adjacent to the silver reflective layer 3. However, as long as it is within the range that can achieve the above object, it may be provided apart from (without adjoining) the silver reflecting layer 13, and in such a case, it may contain a silver corrosion inhibitor. preferable.
  • the corrosion prevention layer 14 may be composed of only one layer or may be composed of a plurality of layers.
  • the corrosion prevention layer 14a When the corrosion prevention layer 14 composed of a plurality of layers is provided, as the corrosion prevention layer 14a provided on the surface in contact with the silver reflective layer 13, the corrosion prevention layer 14b provided on the corrosion prevention layer 14a after achieving the above-mentioned purpose. And the silver reflection layer 13. Therefore, the corrosion prevention layer 14a needs to have an adhesive property for bringing the corrosion prevention layer 14b and the silver reflection layer 13 into close contact with each other and a smoothness for drawing out the high reflection performance that the silver reflection layer 13 originally has. Moreover, in the aspect shown in FIG. 2, since it is located in the light-incidence surface side rather than the silver reflection layer 13, what is excellent in transparency (especially sunlight transmittance
  • the binder (resin) used for the corrosion prevention layer 14a is not particularly limited as long as it satisfies the above conditions of adhesion, smoothness, and (and further transparency). It can be selected appropriately. Of these, acrylic, silicone, olefin, and polyester are preferable. Further, the corrosion prevention layer 14a contains an appropriate amount of a later-described corrosion inhibitor.
  • the thickness of the corrosion prevention layer 14a is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m. By satisfying this range, it is possible to cover the unevenness of the surface of the silver reflecting layer 13 (silver vapor deposition surface) while maintaining adhesion, to improve smoothness, and to sufficiently cure the corrosion prevention layer 14a. As a result, the reflectance of the solar reflective film 10 of the present embodiment can be increased.
  • the corrosion prevention layer 14b In the case of providing the corrosion prevention layer 14 composed of a plurality of layers, the corrosion prevention layer 14b provided via the silver reflection layer 13 and the corrosion prevention layer 14a achieves the above-mentioned purpose, and in particular, adherence to the ultraviolet reflection laminated portion. It is a layer provided for maintaining the above. Accordingly, the corrosion prevention layer 14b needs to have good adhesion to improve the adhesion to the ultraviolet reflective laminate, and smoothness and hydrophilicity to enable uniform application of the ultraviolet reflective laminate by coating.
  • the binder (resin) used for the corrosion prevention layer 14b is not particularly limited as long as the original purpose of the corrosion prevention layer can be achieved, and can be appropriately selected from binders (resins) described later. . Among them, an acrylic resin having a hydroxyl group or a carboxyl group is preferable. Further, the corrosion prevention layer 14b also contains an appropriate amount of a later-described corrosion inhibitor.
  • the thickness of the corrosion prevention layer 14b is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m. By satisfying this range, the corrosion prevention layer 14b can be sufficiently cured while maintaining adhesion, and as a result, intrusion of moisture and chemical substances in the air into the silver reflective layer 13 (mirror surface) is prevented ( As a result, the silver reflecting layer 13 can be protected from silver and silver-containing alloy materials (especially silver) and further protected from external mechanical pressure, such as impact and scratches. It becomes possible to improve the weather resistance (durability), scratch resistance, and reflectance of the reflective film 10.
  • the thickness of the corrosion prevention layer 14 (when there are two or more layers) is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m. If the thickness of the corrosion prevention layer 14 is 1 ⁇ m or more, moisture in the air or chemical substances enter the silver reflecting layer 13 (mirror surface), and mechanical pressure from the outside, for example, impact or scratching, etc. Can be protected from. If the thickness of the corrosion prevention layer 14 is 10 ⁇ m or less, the flexibility can be sufficiently maintained, so that cracks and cracks can be effectively prevented.
  • the contact angle is preferably less than 90 °, more preferably 85 to 40 °, even more preferably 80 to 40 °, and particularly preferably 75 to 40 °.
  • the water contact angle of the corrosion prevention layer 14 can be measured using an existing measuring apparatus, and can be measured using, for example, DM300 manufactured by Kyowa Interface Chemical Co., Ltd.
  • the corrosion prevention layer 14 is mainly composed of a binder (resin) so that it can maintain high film adhesion with the silver reflective layer 13 even when installed for a long time in an outdoor environment, and can achieve the above-mentioned purpose. Further, it contains a corrosion inhibitor of the same metal as the silver or silver-containing alloy material of the silver reflecting layer 13 (particularly silver).
  • the binder (resin) of the corrosion prevention layer 14 for example, the following resins can be preferably used.
  • Cellulose ester polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyethylene naphthalate, polyester, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose Acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyether ketone, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, An acrylic resin etc. can be mentioned. Of these, acrylic resin and polyester are preferable.
  • Corrosion inhibitor As a corrosion inhibitor for the corrosion prevention layer 14, from the viewpoint of preventing corrosion of silver and the silver-containing alloy material of the silver reflection layer 13, the same kind of metal as the silver and silver-containing alloy material of the silver reflection layer 13 (particularly silver, If necessary, it has a corrosion inhibitor for any element selected from the group consisting of Al, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au), particularly an adsorbing group for silver. preferable.
  • corrosion refers to a phenomenon in which a metal (particularly silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004). .
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.001 to 0.1 g / m 2 .
  • the same kind of metal as the silver or silver-containing alloy material of the silver reflecting layer 13 (in particular, silver, and if necessary, selected from the element group consisting of Al, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au)
  • the corrosion inhibitor of any element is preferably selected from a silicone-modified resin, a silane coupling agent, a compound containing a plurality of thiol groups, and a corrosion inhibitor having an adsorbing group for silver described below.
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof.
  • the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin.
  • the silicone-modified resin is not particularly limited.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylamine
  • Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2-
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of compounds having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
  • Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4- Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto
  • -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, trimethylolpropane tris ( ⁇ -thiopropionate) or the like Of the mixture.
  • naphthalene-based compounds examples include thionalide.
  • the silver reflective layer 13 When forming the silver reflective layer 13, when the silver reflective layer 13 is formed by heating and baking a coating film containing a silver complex compound from which the above-described ligand can be vaporized and desorbed, the silver reflective layer 13 is adjacent. It is preferable to contain a nitrogen-containing cyclic compound in a layer (for example, the above-described corrosion prevention layer 14, an anchor layer (not shown) that can be applied between the silver reflection layer 13 and the corrosion prevention layer 14).
  • the content of the nitrogen-containing cyclic compound in the adjacent layer of the silver reflecting layer 13 is preferably 0.001 to 5% by mass, more preferably 0.01 to 1% by mass.
  • the rust prevention and corrosion prevention functions of silver can be effectively expressed.
  • the content of the nitrogen-containing cyclic compound in the adjacent layer of the silver reflective layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring.
  • a corrosion inhibitor and an antioxidant having an adsorptive group for silver are preferably used.
  • a desired silver corrosion prevention effect can be obtained by using a nitrogen-containing cyclic compound.
  • the content of the corrosion inhibitor having an adsorptive group for silver in the adjacent layer of the silver reflective layer 13 is preferably 0.001 to 5% by mass, more preferably 0.01 to 1% by mass. . If the content of the corrosion inhibitor having an adsorptive group for silver in the adjacent layer of the silver reflection layer 13 is 0.001% by mass or more, the silver corrosion prevention function can be effectively expressed. If the content of the corrosion inhibitor having an adsorptive group for silver in the adjacent layer of the silver reflecting layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring. it can.
  • a compound having a pyrrole ring for example, it is desirable to be selected from at least one of a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, a compound having an indazole ring, or a mixture thereof.
  • Adjacent layers of the silver reflective layer 13 in the solar reflective film 10 of this embodiment (for example, the above-described corrosion prevention layer 14, an anchor layer (not shown) that can be applied between the silver reflection layer 13 and the corrosion prevention layer 14), and the like.
  • an antioxidant can also be used as the nitrogen-containing cyclic compound contained in.
  • the content of the antioxidant in the adjacent layer of the silver reflective layer 13 is 0.001% by mass or more, the silver antioxidant function can be effectively expressed.
  • the content of the antioxidant in the adjacent layer of the silver reflective layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring.
  • phenol-based antioxidant examples include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione
  • thiol antioxidant examples include distearyl-3,3'-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • phosphite antioxidant examples include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
  • the above antioxidant and the following light stabilizer can be used in combination.
  • the content of the light stabilizer in the adjacent layer of the silver reflective layer 13 is 0.001% by mass or more, the light stabilizing function can be effectively expressed.
  • the content of the light stabilizer in the adjacent layer of the silver reflective layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring.
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-Tetrame Lupiperidine, tetrakis (2,2,2,
  • nickel-based UV stabilizers include [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
  • resin film-like support 12 As the resin film-like support 12, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
  • cellulose ester film polyester film
  • polycarbonate film polyary
  • polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable.
  • a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the resin film-like support 12 when the resin film-like support 12 is provided at a position farther from the light incident side than the silver reflection layer 13, ultraviolet rays hardly reach the resin film-like support 12. In particular, ultraviolet rays are less likely to reach the resin film-like support 12 by reflecting the ultraviolet rays by the ultraviolet reflecting portion 11 on the light incident side of the resin film-like support 12. Therefore, the resin film-like support 12 can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin film-like support 12.
  • the ultraviolet reflecting portion 11 having an excellent ultraviolet reflecting function is provided on the light incident side, as shown in FIG. Since the ultraviolet rays hardly reach the resin film-like support 12 even if the ultraviolet reflecting part 11 is provided on the surface side), various conventionally known resin films can be used.
  • the silver reflective layer 13 is provided on the side opposite to the light incident surface side of the resin film-like support 12, the resin film-like support 12 transmits sunlight (particularly, light in the visible to infrared region). It is desirable to use a resin film that can be used.
  • the transmittance of sunlight (particularly visible light to infrared light; wavelength of 400 to 2500 nm) of the resin film-like support 12 is preferably 70% or more, more preferably 80% or more, and still more preferably. It is 90% or more, particularly preferably 95% or more.
  • the transmittance of sunlight (wavelength of 400 to 2500 nm) can be measured with a spectrophotometer having an integrating sphere.
  • the thickness of the resin film-like support 12 is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 ⁇ m. The thickness is preferably 20 to 200 ⁇ m.
  • an anchor layer (not shown) In the solar reflective film 10, 10 ′ of this embodiment, an anchor layer (not shown in FIGS. 1 and 2) may be provided.
  • Such an anchor layer is made of a resin and is a layer provided for closely attaching the resin film-like support 12 and the silver reflecting layer 13. Therefore, the anchor layer has an adhesion property that allows the resin film-like support 12 and the silver reflective layer 13 to adhere to each other, heat resistance that can withstand heat when the silver reflective layer 13 is formed by a vacuum deposition method, and the silver reflective layer 13. Need to have smoothness and transparency (sunlight transmittance) in order to bring out the high reflection performance inherently.
  • the resin used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, transparency, and smoothness.
  • Polyester resin, acrylic resin, melamine resin, epoxy resin , Polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used.
  • a polyester resin and a melamine resin mixed resin or a polyester resin A mixed resin of acrylic resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
  • the thickness of the anchor layer is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 2 ⁇ m.
  • the anchor layer preferably contains the corrosion inhibitor described in the above (Corrosion prevention layer 14) (Corrosion prevention layer).
  • the layer can also transmit sunlight (particularly visible light to infrared light).
  • the transmittance of sunlight (particularly, visible light to infrared light; wavelength of 400 to 2500 nm) of the anchor layer is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, Especially preferably, it is 95% or more of range.
  • an anchor layer can use conventionally well-known coating methods, such as a gravure coat method, a reverse coat method, and a die coat method.
  • the solar reflective film 10, 10 ′ of this embodiment has an adhesive layer 15 for bonding to a support base material (a self-supporting base material that is a constituent member of the solar reflector) described later.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 15 is not particularly limited, and examples thereof include acrylic pressure-sensitive adhesives, silicon pressure-sensitive adhesives, urethane pressure-sensitive adhesives, polyvinyl butyral pressure-sensitive adhesives, and ethylene-vinyl acetate pressure-sensitive adhesives. be able to.
  • the adhesive layer 15 may be formed on the surface opposite to the sunlight incident surface side (outermost surface; except for the release material 16) in the sunlight reflecting films 10, 10 ′.
  • the acrylic pressure-sensitive adhesive may be either solvent-based or emulsion-based, but is preferably a solvent-based pressure-sensitive adhesive because it is easy to increase the adhesive strength and the like, and among them, those obtained by solution polymerization are preferable.
  • the raw material for producing such a solvent-based acrylic pressure-sensitive adhesive by solution polymerization include, for example, acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate as main monomers serving as a skeleton, As a comonomer to improve cohesive strength, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote crosslinking, to give stable adhesive strength, and to maintain a certain level of adhesive strength even in the presence of water
  • the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycidy
  • a stabilizer, a surfactant, an ultraviolet absorber, a flame retardant, an antistatic agent, an antioxidant, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion modifier, and the like are added to the adhesive layer 15 as additives. It can also be contained.
  • the thickness of the adhesive layer 15 is preferably 1 ⁇ m to 100 ⁇ m, more preferably 3 to 50 ⁇ m. If it is 1 micrometer or more, there exists a tendency for adhesiveness to improve and sufficient adhesive force is acquired. When the thickness is larger than 100 ⁇ m, the flatness of the silver reflecting layer tends to be lost due to the local shrinkage and expansion of the adhesive layer, so that it is preferably 100 ⁇ m or less.
  • the solar reflective film 10, 10 ′ of this embodiment may have a release material 16 on the side opposite to the light incident side of the adhesive layer 15.
  • the release material 16 is shipped in a state of sticking to the adhesive layer 15, and the solar reflective film 10 having the adhesive layer 15 is peeled from the release material 16 to form a solar reflector.
  • a solar reflector and further a solar reflector can be formed by bonding to a self-supporting base material (support base material) which is a member.
  • the release material 167 may be any material that can impart protection to the silver reflective layer 13.
  • a resin film or sheet subjected to surface processing such as is used.
  • the thickness of the release material 16 is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • the solar reflective film 10, 10 'of this embodiment is a scratch-resistant layer (hard coat layer; HC layer) on the side of the ultraviolet reflective laminated portion 11 where light is incident for the purpose of protecting the ultraviolet reflective laminated portion 11 from scratches. 17 is further preferable.
  • the curable resin used in the scratch-resistant layer 17 examples include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because of easy molding.
  • Such curable resins can be used singly or in combination of two or more.
  • the curable resin a commercially available product may be used, or a synthetic product may be used.
  • the active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. Is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin, an electron beam curable resin, and the like, and an ultraviolet curable resin that is cured by ultraviolet irradiation is preferable.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
  • UV-curable acrylic / urethane resins generally contain 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. Only acrylate is indicated), and it can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It is done.
  • the UV curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxyl group at the end of the polyester (see, for example, JP-A No. 1987-101). 59-151112).
  • the ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipenta.
  • examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
  • benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl methyl ketal and the like
  • Alkyl ethers acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone (trade name Irgacure 184; BASF), 2-methyl-1 [4- (methylthio) phenyl] -2-mori
  • Acetophenones such as folinopropan-1-one (trade name Irgacure 907; BASF); anthraquinones such as methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone; thioxanthone, 2,4-diethylthioxanthone, 2, 4- Thioxanth
  • tertiary amines such as triethanolamine and methyldiethanolamine
  • photoinitiators such as benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and ethyl 4-dimethylaminobenzoate
  • the amount of these radical polymerization initiators used is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the polymerizable component of the resin.
  • thermosetting resins include inorganic materials typified by polysiloxane.
  • Polysiloxane hard coat (HC layer 17) are those represented by the general formula R m Si (OR ') n is the starting material.
  • a state in which a hydrolyzable group such as methoxy group or ethoxy group is substituted with a hydroxyl group is generally called a polyorganosiloxane hard coat.
  • a polyorganosiloxane hard coat When this is applied onto a substrate and cured by heating, the dehydration condensation reaction is promoted, and the hard coat (HC layer 17) is formed by curing and crosslinking.
  • these polyorganosiloxane hard coats those having an organic group that is not eliminated by hydrolysis are methyl groups have the highest weather resistance. Moreover, if it is a methyl group, since the methyl group is uniformly and densely distributed on the surface after the hard coat film formation, the falling angle is also low. Therefore, in this application, it is preferable to use methylpolysiloxane.
  • the thickness is preferably 1 to 5 ⁇ m, and more preferably 1.5 to 3 ⁇ m.
  • polyorganosiloxane hard coat examples include Surcoat series (manufactured by Doken), SR2441 (Toray Dow Corning), KF-86 (Shin-Etsu Silicon), Perma-New (registered trademark) 6000. (California Hardcoating Company) can be used.
  • the blending amount of the cured resin in the scratch-resistant layer 17 is preferably 20 to 70% by weight and more preferably 30 to 50% by weight with respect to 100% by weight (in terms of solid content) of the scratch-resistant layer. .
  • the thickness of the scratch-resistant layer 17 is preferably 0.1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, and more preferably 3 to 10 ⁇ m. If it is 0.1 ⁇ m or more, the hard coat property tends to be improved, and if it is 20 ⁇ m or more, the scratch-resistant layer has a large curl and the flex resistance tends to be lowered.
  • the scratch-resistant layer 17 can be produced by applying a cured resin layer forming composition (coating solution) by wire bar coating, spin coating, or dip coating, and can also be produced by a dry film forming method such as vapor deposition. it can.
  • the composition (coating liquid) can be applied and formed into a film by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater.
  • a heat treatment is required for 30 minutes to several days at a temperature of 50 ° C. or more and 150 ° C. or less in order to promote curing and crosslinking of the hard coat. To do.
  • the treatment In consideration of the heat resistance of the coated substrate and the stability of the substrate when it is made into a roll, it is preferable to perform the treatment at 40 ° C. or more and 80 ° C. or less for 2 days or more.
  • the reactivity varies depending on the irradiation wavelength, the illuminance, and the light amount of the active energy ray, and therefore it is necessary to select an optimum condition depending on the resin to be used.
  • the composition for forming the cured resin layer may contain a solvent, or may be appropriately contained and diluted as necessary.
  • the organic solvent contained in the coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), It can be appropriately selected from esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used.
  • a second anchor layer (primer layer; not shown in FIGS. 1 and 2) can be formed before the cured resin layer is laminated.
  • the thickness of the second anchor layer is not particularly limited, but is about 0.1 to 10 ⁇ m.
  • Preferable examples of the resin constituting the anchor layer include polyvinyl acetal resin and acrylic resin.
  • a gas barrier layer (not shown in FIGS. 1 and 2) may be provided on the light incident side of the silver reflecting layer 13. It is preferable to provide a gas barrier layer between the scratch-resistant layer 17 and the silver reflective layer 13. Furthermore, it is preferable to provide a gas barrier layer between the adhesive layer 15 and the corrosion prevention layer 14. For details of the gas barrier layer, for example, paragraphs “0044” to “0096” of the publicly known international publication number WO2011 / 096151 A1 can be applied.
  • the solar reflective film 10, 10 ′ of the present embodiment includes an easy-adhesion layer (adhesive layer), an ultraviolet absorber-containing layer, a conductive layer, an antistatic layer, a gas barrier layer, depending on the environment and application used.
  • an easy-adhesion layer adheresive layer
  • an ultraviolet absorber-containing layer e.g., an ultraviolet absorber-containing layer
  • a conductive layer e.g., a conductive layer
  • an antistatic layer e.g., antistatic layer
  • a gas barrier layer e.g., a gas barrier layer
  • functional layers such as antifouling layer, deodorant layer, droplet layer, slippery layer, abrasion resistant layer, antireflection layer, electromagnetic wave shielding layer, printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, etc. You may have more than one.
  • a solar reflector characterized by having the above-described solar reflective film 10, 10 ′.
  • the solar reflector has a structure in which the solar reflective films 10 and 10 ′ are bonded to a self-supporting base material (support base material) through the adhesive layer 15.
  • self-supporting substrate means supporting the opposite edge portions when cut to a size used as a substrate for a solar reflector. By doing this, it indicates that the substrate has rigidity enough to carry the substrate.
  • the base material of the solar reflector has self-supporting properties, it is easy to handle when it is installed in a solar reflective device described later, and the holding member for holding the solar reflector has a simple configuration. Therefore, it is possible to reduce the weight of the solar reflective device. For example, when the solar reflective device is used as a solar reflective device for solar thermal power generation, power consumption during solar tracking can be suppressed.
  • the self-supporting base material may be a single layer or a shape in which a plurality of layers are laminated. Moreover, a single structure may be sufficient and it may be divided
  • the shape of the supporting base material it is preferable that the supporting substrate has a concave shape or can be a concave shape. Therefore, a support base material that is variable from a flat shape to a concave shape may be used, or a support base material that is fixed to a concave shape may be used.
  • the support base material which can be changed into the concave shape can adjust the curvature of the solar reflective films 10 and 10 'which are joined by adjusting the curvature of the support base material. It is preferable because the reflection efficiency can be adjusted and a high regular reflectance can be obtained. Since the support base material to which the concave shape is fixed is not necessary to adjust the curvature, it is preferable from the viewpoint of adjustment cost.
  • Materials for self-supporting substrates include steel plates, copper plates, aluminum plates, aluminum-plated steel plates, aluminum alloy-plated steel plates, copper-plated steel plates, tin-plated steel plates, chrome-plated steel plates, stainless steel plates, etc.
  • Examples thereof include wooden boards such as boards and plywood boards (preferably those that have been waterproofed), fiber reinforced plastic (FRP) boards, resin boards, and the like.
  • FRP fiber reinforced plastic
  • a metal plate from the viewpoint of high thermal conductivity. More preferably, it is a plated steel plate, stainless steel plate, aluminum plate or the like having not only high thermal conductivity but also good corrosion resistance. Most preferably, a steel plate combining a resin and a metal plate is used.
  • the material for the resin film as the surface layer various conventionally known resin films can be used.
  • the resin film mentioned to the resin film-like support body 12 mentioned above is mentioned.
  • polycarbonate films polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. It is particularly preferable to use a polyester film such as polyethylene terephthalate or an acrylic film.
  • the thickness of the resin film is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m.
  • a sunlight reflecting device having a sunlight reflector.
  • the solar light reflection device of this embodiment is suitably used for condensing sunlight in solar thermal power generation.
  • the sunlight reflecting device of this embodiment has a sunlight reflector and a holding member that holds the sunlight reflector.
  • a cylindrical member having a fluid inside is provided as a heat collecting part in the vicinity of the solar reflective film (film mirror) 10, and sunlight is applied to the cylindrical member.
  • the internal fluid is heated by reflecting the water, and the heat energy is converted to generate electricity to generate power.
  • mold is also mentioned as another form.
  • the tower-type configuration has at least one heat collecting part and at least one solar power solar reflection device for reflecting sunlight and irradiating the heat collecting part, and is collected in the heat collecting part. There is one that uses liquid heat to heat a liquid and turn a turbine to generate electricity.
  • a plurality of solar power generation solar reflective devices are arranged around the heat collection unit.
  • a plurality of solar reflective devices for solar thermal power generation are arranged concentrically or in a concentric fan shape.
  • the sunlight is reflected by the sunlight reflector (sunlight reflecting mirror) installed around the support tower, then reflected by the collector mirror, and then further reflected by the collector mirror and sent to the heat collector. And sent to a heat exchange facility.
  • the solar light reflection device of this embodiment can be used for both trough type and tower type. Of course, it can be used for various other types of solar thermal power generation.
  • the sunlight reflecting device has a holding member that holds the sunlight reflector.
  • the holding member is preferably held in a state where the sunlight reflector can track the sun.
  • the holding member preferably has a configuration for holding the solar reflector in a state where the sun can be tracked.
  • the holding member may be driven manually, or a separate driving device may be provided to automatically provide the sun. It is good also as a structure to track.
  • the refractive index of the low refractive index layer obtained from the coating liquid L1 for low refractive index layer was 1.49.
  • the measurement of refractive index was described below.
  • the refractive index of the low refractive index layer obtained from the coating liquid L2 for low refractive index layer was 1.50.
  • the measurement of refractive index was described below.
  • colloidal silica As inorganic oxide fine particles 111a, colloidal silica (Snowtex OS, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass, average particle size 8-11 nm) 22.5 parts by mass, pure water 22.5 parts by mass, polyoxy After adding 10 parts by mass of a 5% by mass aqueous solution of an alkylene dispersant (Marialim AKM-0531, manufactured by NOF Corporation) and 10 parts by mass of a 3% by mass boric acid aqueous solution, respectively, while heating to 45 ° C.
  • an alkylene dispersant Malarialim AKM-0531, manufactured by NOF Corporation
  • the refractive index of the low refractive index layer obtained from the coating liquid L3 for low refractive index layer was 1.45.
  • the measurement of refractive index was described below.
  • polyvinyl alcohol JC-25 ( JM-17 (polymerization degree 1700, saponification degree 96.4 mol%, manufactured by Nihon Acetate Bi-Poval Co., Ltd.), JP- 15 (polymerization degree 1500, saponification degree 89.8 mol%, manufactured by Nippon Vinegar Pover Co., Ltd.) and JL-25E (polymerization degree 2500, saponification degree 79.5 mol%, manufactured by Nihon Acetate Beverage Poval Co., Ltd.) , 43: 5: 9: 43 (mixture of solid content)) and 40 parts by mass of a 1% by mass aqueous solution of a surfactant (Lapisol A30, manufactured by NOF Corporation). ,Pure water
  • the coating solution for low refractive index layer L4 was prepared by adding the parts by weight.
  • the refractive index of the low refractive index layer obtained from the coating liquid L4 for low refractive index layer was 1.40.
  • the measurement of refractive index was described below.
  • silica-attached titanium dioxide sol After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.), Heated. Next, 1.3 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Industry Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 2.0% by mass) was gradually added. Then, heat treatment was carried out at 175 ° C.
  • SRD-W volume average particle size 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.
  • Titanium dioxide sol (hereinafter, silica-attached titanium dioxide sol) was obtained in a solid content concentration of 20% by mass.
  • polyvinyl alcohol 20 parts by weight of a 5% by weight aqueous solution of PVA-117, polymerization degree 1700, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd., 1 part by weight of a 1% by weight aqueous solution of a surfactant (Lapisol A30, manufactured by NOF Corporation) And 12 parts by mass of pure water was added to prepare a coating solution H1 for a high refractive index layer.
  • a surfactant Lapisol A30, manufactured by NOF Corporation
  • the refractive index of the high refractive index layer obtained from the coating liquid H1 for the high refractive index layer was 1.95.
  • the measurement of refractive index was described below.
  • coating liquid H2 for high refractive index layer As the inorganic oxide fine particles 252a, 30 parts by mass of zirconia sol (SZR-W, solid content 30% by mass, manufactured by Sakai Chemical Industry Co., Ltd., primary average particle size 3 nm), polyoxyalkylene dispersant (Marialim AKM-0531, JP 10 mass parts of 5 mass% aqueous solution (made by Yu Oil Co., Ltd.), 3 mass% boric acid aqueous solution 10 mass parts, and 2 mass% citric acid aqueous solution 10 mass parts in this order, and then heated to 45 ° C.
  • SZR-W solid content 30% by mass, manufactured by Sakai Chemical Industry Co., Ltd., primary average particle size 3 nm
  • polyoxyalkylene dispersant Malarialim AKM-0531, JP 10 mass parts of 5 mass% aqueous solution (made by Yu Oil Co., Ltd.), 3 mass% boric acid aqueous solution 10 mass parts, and 2 mass% citric acid
  • polyvinyl 20 parts by weight of a 5% by weight aqueous solution of alcohol (PVA-217, degree of polymerization 1700, degree of saponification 88.0 mol%, manufactured by Kuraray Co., Ltd.), 1% by weight aqueous solution 1 of a surfactant (Rapisol A30, manufactured by NOF Corporation)
  • PVA-217 degree of polymerization 1700, degree of saponification 88.0 mol%, manufactured by Kuraray Co., Ltd.
  • a surfactant Rosin A30, manufactured by NOF Corporation
  • the refractive index of the high refractive index layer obtained from the coating liquid H2 for high refractive index layer was 1.85.
  • the measurement of refractive index was described below.
  • coating liquid H3 for high refractive index layer 43 parts by mass of the silica-attached titanium dioxide sol (solid content 20.0% by mass) obtained as the inorganic oxide fine particles 262a, 55 parts by mass of the coating liquid L1 for the low refractive index layer, and UV absorber Tinuvin 479 (BASF) 2 parts by mass) was added, and the mixture was stirred for 2 hours while maintaining the solution temperature at 10 ° C. to prepare a coating solution H3 for a high refractive index layer.
  • silica-attached titanium dioxide sol solid content 20.0% by mass
  • the coating liquid L1 for the low refractive index layer 55 parts by mass of the coating liquid L1 for the low refractive index layer
  • UV absorber Tinuvin 479 BASF
  • the refractive index of the high refractive index layer obtained from the coating liquid H3 for the high refractive index layer was 1.90.
  • the measurement of refractive index was described below.
  • the silver reflective layer 13 On the silver reflective layer 13, a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) as a curing agent in a resin solid content ratio of 10: In the resin mixed in 2, an amount adjusted to 0.3 g / m 2 after applying glycol dimercaptoacetate as a corrosion inhibitor is added, and coating is performed so that the film thickness becomes 0.1 ⁇ m by the gravure coating method. Thus, the first corrosion prevention layer 14a was obtained.
  • a water-dispersed emulsion type benzotriazole-based polymer type UV-absorbing coating solution UVA-1383MG (manufactured by BASF) is coated by a gravure coating method, dried at 55 ° C. for 4 minutes, and then a second 3 ⁇ m thick second The corrosion prevention layer 14b was formed and the silver vapor deposition film 10a was produced.
  • the first and second corrosion prevention layers 14 a and 14 b are combined to form the corrosion prevention layer 14.
  • Comparative Example 1 Preparation of solar reflective film 30A (Sample 1; see FIG. 3)
  • a release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 ⁇ m was laminated on the surface of the corrosion prevention layer 14 of the silver deposited film 10a.
  • the pressure-sensitive adhesive layer 15 was formed, and a solar reflective film 30A (Sample 1) of Comparative Example 1 was obtained.
  • Example 1 Preparation of solar reflective film 10A (Sample 2; see FIG. 4)
  • a release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 ⁇ m was laminated on the surface of the corrosion prevention layer 14 of the silver deposited film 10a.
  • an adhesive layer 15 was formed. While maintaining the coating liquid H1 for the high refractive index layer at 45 ° C.
  • the low refractive index As the refractive index layer 111, the coating liquid L1 for the low refractive index layer is kept at 25 ° C. while keeping H1 and L1, H1 is in contact with the polyester film, and then L1 on H1 and H1 and L1. Are applied alternately, and the high refractive index layer 112 is dried by blowing hot air of 80 ° C. so that the dry film thickness is 46 nm, and the low refractive index layer 111 is 62 nm.
  • the ultraviolet reflective laminated part 11 which consists of a low-refractive-index layer 10 layer and a high-refractive-index layer 11 layer) was formed, and 10 A (sample 2) of solar reflective films of Example 1 was obtained.
  • Example 2 (Preparation of solar reflective film 10B) (Sample 3; see FIG. 5)
  • the step of forming the silver reflection layer 13, the corrosion prevention layer 14, and the adhesive layer 15 (further, the release film 16) on the polyester film film that is the resin film-like support 12 is the sunlight reflection of the silver deposited film 10a and Example 1. It produced similarly to the process of the film 10A.
  • the low refractive index layer coating liquid L3 and the high refractive index layer coating liquid H1 were heated to 45 ° C. while being kept at 45 ° C.
  • the polyethylene terephthalate film (Toyobo Co., Ltd. A4300: film having a double-sided easy-adhesion layer) having a thickness of 50 ⁇ m which is the resin film-like support 12, H1 is in contact with the polyethylene terephthalate film, and then L3 and H3
  • simultaneous multi-layer coating was performed so that H1 and L3 were alternated.
  • 5 ° C. cold air is blown for 5 minutes, and then 80 ° C.
  • Example 3 a solar reflective film 10B (sample 3) of Example 2 was obtained.
  • the low refractive index layer 111 coated with the low refractive index layer coating liquid L3 was 64 nm in each layer
  • the high refractive index layer 112 coated with the high refractive index coating liquid H1 was 47 nm in each layer.
  • Comparative Example 2 Preparation of solar reflective film 30B (Sample 4; see FIG. 6)
  • a release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 ⁇ m is applied to the silver reflective layer of the polyester film film 12 of the silver deposited film 10a.
  • the pressure-sensitive adhesive layer 15 was formed by laminating on the surface opposite to the surface on which 13 was deposited, and a solar reflective film 30B (sample 4) of Comparative Example 2 was obtained.
  • Comparative Example 3 (Production of Sunlight Reflecting Film 30C) (Sample 5; see FIG. 7)
  • the step of forming the silver reflection layer 13, the corrosion prevention layer 14, and the adhesive layer 15 (further, the release film 16) on the polyester film film that is the resin film-like support 12 is the sunlight reflection of the silver deposited film 10a and Example 1. It was produced in the same manner as the film 10A.
  • An adhesive layer 18 (film thickness: 7 ⁇ m) was applied to the surface opposite to the surface on which the silver reflective layer 13 of the polyester film film as the resin film-like support 12 was deposited.
  • the adhesive layer 18 was prepared by mixing LIS603 and CR-001 (both manufactured by Toyo Ink Co., Ltd.) at a ratio of 10: 1 and then applying an adhesive obtained by stirring for 1 hour while maintaining the liquid temperature at 25 ° C. The adhesive layer 18 was obtained by applying hot air at 30 ° C. for 30 seconds.
  • An ultraviolet absorber-containing acrylic film (S001G, manufactured by Sumitomo Chemical Co., Ltd .; thickness 50 ⁇ m) was bonded to the adhesive layer 18 as an ultraviolet protective layer 19 to obtain a solar reflective film 30C (sample 5) of Comparative Example 3. .
  • Example 3 Preparation of solar reflective film 10C (Sample 6; see FIG. 8)
  • a release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 ⁇ m is dried on the silver reflective layer 13 of the polyester film 12 of the silver deposited film 10a.
  • the pressure-sensitive adhesive layer 15 was formed by laminating on the surface opposite to the surface on which the material was deposited.
  • a slide hopper capable of applying 21 layers of high refractive index layer coating liquid H1 as a high refractive index layer and 21 layers of low refractive index layer coating liquid L3 as a low refractive index layer on the side where the corrosion prevention layer 14 is formed on the silver deposited film 10a.
  • Polyethylene terephthalate having a thickness of 50 ⁇ m, which is a resin film-like support 12 heated to 45 ° C. while keeping the coating solution L 3 for low refractive index layer and the coating solution H 1 for high refractive index layer at 45 ° C. using a coating apparatus.
  • Example 6 On the film (A4300 manufactured by Toyobo Co., Ltd .: film having a double-sided easy-adhesion layer), H1 is in contact with the polyethylene terephthalate film, and then L3 is formed on H1, and H1 and L2 are alternated. Thus, simultaneous multilayer coating was performed. Immediately after the coating, 5 ° C. cold air is blown for 5 minutes, and then 80 ° C. hot air is blown to dry, so that the ultraviolet reflecting laminated portion 11 composed of 21 layers (low refractive index layer 10 layers, high refractive index layer 11 layers). And a solar reflective film 10C (sample 6) of Example 3 was obtained. The film thickness after drying was 64 nm for each layer coated with the coating liquid L3 for low refractive index layer, and 47 nm for each layer coated with the coating liquid H1 for high refractive index.
  • Example 4 (Preparation of solar reflective film 10D) (Sample 7; see FIG. 9)
  • the following scratch-resistant layer curable hard coat solution was applied to the surface of the ultraviolet reflective laminate 11 of Example 3 to a dry film thickness of 3 ⁇ m and dried at 90 ° C. for 1 minute. Thereafter, the solar reflective film 10D (Sample 7) of Example 4 having a scratch-resistant layer 17 on the surface was placed for 7 days in a constant temperature environment of 45 ° C.
  • the liquid temperature was set to 20 ° C., 0.1 part by weight of a silicone-based surface conditioner (BIC Chemie Japan Co., Ltd .: BYK-300 (organically modified polysiloxane)), 0.05 part by weight of sodium acetate, n- 15 parts by weight of propanol was contained to obtain a curable hard coat solution for a scratch-resistant layer.
  • a silicone-based surface conditioner BIC Chemie Japan Co., Ltd .: BYK-300 (organically modified polysiloxane)
  • 0.05 part by weight of sodium acetate 0.05 part by weight of sodium acetate
  • n- 15 parts by weight of propanol was contained to obtain a curable hard coat solution for a scratch-resistant layer.
  • Comparative Example 4 production of solar reflective film 30D (Sample 8; see FIG. 10) An ultraviolet reflective film 30D (sample 8) was produced by the same production method as in Example 6 described in JP-T-2011-521289.
  • the ultraviolet reflective film 21 was formed of two types of polymer layers of PMMA and fluoropolymer available as trade name 3M (registered trademark) Dyneon (registered trademark) Fluoroplastic THVP 2030GZ.
  • PMMA layer 212 and THV layer 211 were alternately stacked and coextruded through a multilayer polymer melt manifold to form a multilayer melt stream having 150 alternating layers of two polymer layers.
  • a pair of non-optical layers 231, 232 made of PEN can be coextruded on either side of the optical stack as a protective surface layer 23.
  • This multilayer coextrusion melt stream was cast onto a chill roll at 22 meters per minute to form a multilayer molded web about 300 micrometers thick.
  • the multilayer molded web was heated at 135 ° C. for 10 seconds in a tenter oven and biaxially oriented with respect to a stretch ratio of 3.8 ⁇ 3.8 to obtain a heat stretched ultraviolet reflective film 11.
  • These PMMA thin films contain 2% by weight of an ultraviolet absorber available as the product Tinuvin 405.
  • a silver reflective layer 13 having a thickness of 80 nm was vacuum deposited as a silver reflective layer 13 by a vacuum deposition method at a deposition speed of 100 m / sec.
  • a polyester resin Polyethylene Teraphthalate (Polyester SP-181, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) as a curing agent in a resin solid content ratio of 10:
  • an amount adjusted to 0.3 g / m 2 after applying glycol dimercaptoacetate as a corrosion inhibitor is added and coated to a thickness of 0.1 ⁇ m by the gravure coating method.
  • the corrosion prevention layer 14a It was set as the corrosion prevention layer 14a. Further, a water-dispersed emulsion type benzotriazole polymer type UV absorbing coating solution UVA-1383MG (manufactured by BASF) is coated by a gravure coating method, dried at 55 ° C. for 4 minutes, and a corrosion prevention layer having a thickness of 3 ⁇ m. 14b was formed. The corrosion prevention layers 14a and 14b are combined to form the corrosion prevention layer 14.
  • a release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide) so as to have a film thickness of 25 ⁇ m after drying is laminated on the surface of the corrosion prevention layer 14 of the silver vapor-deposited film, and the pressure-sensitive adhesive layer 15 And a solar reflective film 30D of Comparative Example 4 (Sample 8) was obtained.
  • Comparative Example 5 Preparation of solar reflective film 30E (Sample 9; see FIG. 11) The process of forming the adhesion layer 15 (further peeling film 16) on the polyester film 12 was produced in the same manner as the solar reflective film 10A of Example 1.
  • a slide hopper coating apparatus capable of applying 21 layers of coating liquid L2 for coating, the thickness of the coating liquid L2 for low refractive index layer and the coating liquid H2 for high refractive index layer heated to 45 ° C. while being kept at 45 ° C.
  • a polyethylene terephthalate film (Toyobo A4300: film having a double-sided easy-adhesion layer) having a thickness of 50 ⁇ m so that H2 is in contact with the polyethylene terephthalate film, and then L3 on H2, and H2 and L2 are respectively Simultaneous multilayer coating was performed so as to alternate.
  • 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to form an infrared reflecting layer 25 composed of 21 layers.
  • the thickness of the infrared reflective layer 25 after drying was 180 nm for each layer 251 coated with the coating liquid L2 for low refractive index layer and 150 nm for each layer 252 coated with the coating liquid H2 for high refractive index.
  • a slide hopper coating apparatus capable of coating 21 layers of the high refractive index layer coating liquid H3 as the high refractive index layer and the low refractive index layer coating liquid L4 as the low refractive index layer is used.
  • a 50 ⁇ m thick polyethylene terephthalate film (Toyobo Co., Ltd.), which is a resin film-like support 12 heated to 45 ° C. while keeping the refractive index layer coating solution L 4 and the high refractive index layer coating solution H 3 at 45 ° C.
  • A4300 Double-sided easy-adhesive layer
  • L4 is in contact with the surface of the infrared reflective layer 25
  • H3 is on L4, and H3 and L4 are alternately Simultaneous multi-layer coating was performed.
  • 5 ° C. cold air was blown for 5 minutes
  • 80 ° C. hot air was blown to dry to form a 21-ray visible light reflecting layer 26.
  • the thickness of the visible light reflecting layer 26 after drying was 120 nm for each layer 261 coated with the coating liquid L4 for low refractive index layer, and 90 nm for each layer 262 coated with the coating liquid H3 for high refractive index.
  • the coating for the low refractive index layer is performed.
  • a 50 ⁇ m thick polyethylene terephthalate film (A4300 manufactured by Toyobo Co., Ltd .: double-sided easy adhesion) which is a resin film-like support 12 heated to 45 ° C. while keeping the liquid L3 and the coating solution H1 for the high refractive index layer at 45 ° C.
  • L3 is formed on the surface of the infrared ray reflection layer 25 and the visible ray reflection layer 26 formed in order on the layer), so that L3 is in contact with the surface of the visible ray reflection layer 26, and then H1 on L3, and H1 Simultaneous multi-layer coating was performed so that L3 alternated.
  • 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to form an ultraviolet reflecting laminated portion 11 composed of 21 layers.
  • the low refractive index layer 111 coated with the low refractive index layer coating liquid L3 was 64 nm in each layer, and the high refractive index layer 112 coated with the high refractive index coating liquid H1 was 47 nm in each layer. In this way, a solar reflective film 30E (Sample 9) of Comparative Example 5 was obtained.
  • Comparative Example 6 production of solar reflective film 30F (Sample 10; see FIG. 12)
  • the process up to the step of forming the visible light reflection layer 26 was the same as the method for manufacturing the solar reflective film 30E of Comparative Example 5.
  • An adhesive layer 27 (thickness 5 ⁇ m) is applied to the surface of the visible light reflection layer 26, and the ultraviolet reflection laminated portion 11 of Comparative Example 4 prepared in advance is laminated, so that the solar reflective film 30 F (Sample 10) of Comparative Example 6 is laminated. Obtained.
  • the refractive index was determined according to the following method. Using Hitachi spectrophotometer U-4100 (solid sample measurement system), the surface opposite to the measurement surface (back surface) of each sample is roughened and then light absorption is performed with a black spray. Then, the reflection of light on the back surface was prevented, the reflectance at 550 nm was measured under the condition of regular reflection at 5 degrees, the average value was obtained, the average reflectance was obtained from the result, and the refractive index was further obtained.
  • the transmittance of each of the solar reflective films prepared above and the 5 degree regular reflectance on the light incident surface side were measured.
  • the spectrophotometer U-4100 (solid sample measurement system) manufactured by Hitachi was used for the measurement.
  • the reflectance wavelength range was 280-2500 nm.
  • the average reflectance R (wavelength 280 to 2500 nm) calculated from the measured values in the reflectance wavelength range 280 to 2500 nm was ranked as follows.
  • the curl of the film was measured by using the curl measurement template of Method A in “Measuring Method of Curling of Photographic Film” of JIS K7619-1988.
  • the curl plus (+) means a curl where the light incident side of the film is inside the curve
  • the minus ( ⁇ ) means a curl where the light incident side is outside the curve.
  • the curl is expressed by the following mathematical formula.
  • the curl amount of the measurement result it was ranked as follows: 5: -5 or more to +5 or less 4: -10 or more to less than -5, more than +5 to less than +10 3: -15 or more to less than -10, more than +10 to less than +15 2: -20 or more to less than -15, more than +15 ⁇ + 20 or less 1: less than ⁇ 20, more than +20.
  • Reflectance after weathering test was the reflectance upon reaching ultraviolet integrated light amount 3450 mJ / m 2 as "UV3450MJ / m 2 after exposure”, the reflectance at the time it reaches the ultraviolet integrated light amount 6900MJ / m 2 “After UV6900 MJ / m 2 exposure”.
  • Comparative Example 1 the silver reflective layer and the resin film-like support, In Examples 1 and 2, an ultraviolet reflecting part and a resin film-like support, in Comparative Example 2 a silver reflecting layer (or corrosion prevention layer) and a resin film-like support, and in Comparative Example 3 a resin film via an ultraviolet protective layer and an adhesive layer
  • Example 3 the silver reflective layer via the UV reflective laminate and the corrosion prevention layer was used in Example 3
  • the UV reflective laminate and the scratch-resistant layer were used in Example 4
  • the heat-stretched UV reflective film and the silver reflective were used in Comparative Example 4.
  • Comparative Example 5 the evaluation of adhesion between the ultraviolet light reflection laminate and the visible light reflection layer was evaluated.
  • Comparative Example 6 the adhesion evaluation between the ultraviolet light reflection laminate and the visible light reflection layer via the adhesive layer was evaluated.
  • the number of peeled grids is 1 or more and 5 or less 3: The number of peeled grids is 6 or more and 10 or less 2: Stripped grids The number is 11 or more and 20 or less. 1: The number of peeled grids is 21 or more.
  • Scratches are not recognized at all 4: 1 cm or more scratches are 1 or more and 5 or less 3: 1 cm or more scratches are 6 or more and 10 or less 2: 1 cm or more The number of scratches is 11 or more and 20 or less. The number of scratches of 1: 1 cm or more is 21 or more.
  • Evaluation results are shown in Table 1 below. In addition, it can be said that it is favorable if the evaluation rank is 3 or more in each evaluation.
  • Example 2 In all the solar reflective films of Examples 1 to 4, good reflection efficiency, light resistance, and curl reduction were observed.
  • the refractive index difference between the high refractive index layer and the low refractive index layer is obtained by including an inorganic oxide in both the high refractive index layer and the low refractive index layer constituting the ultraviolet reflective laminate.
  • the light resistance was improved as compared with Example 1.
  • Example 3 the reflectance was improved without being affected by light absorption of the polyester film by providing an ultraviolet reflective layer on the corrosion prevention layer instead of the polyester film.
  • Example 4 the scratch resistance and adhesion were improved by providing the scratch resistant layer.
  • Comparative Examples 1 to 3 since there is no ultraviolet reflecting layer, usable sunlight is reduced (average reflectance is low and light resistance is low), and durability (adhesion and scratch resistance) is low (PET is yellow). (Variation), it can be seen that the number of items with a weather resistance evaluation of 1-2 was increased. In Comparative Example 4, since the ultraviolet reflecting layer was formed by heat stretching, the oxidation deterioration was accelerated under the influence of the remaining radicals, so that the ultraviolet durability was poor and the weather resistance evaluation was 1-2. I know that there is.
  • Comparative Example 5 since a coating layer of infrared rays, visible rays, and ultraviolet rays was laminated on one side of the polyester film, curling occurred in one direction, and the curl evaluation was 1.
  • Comparative Example 6 since the infrared ray, visible ray, and coating layer were laminated on one side of the polyester film, and the ultraviolet reflecting layer was formed by heat stretching, curling occurred in one direction, and the curl evaluation and weather resistance evaluation were 1-2. It can be seen that there are items.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Filters (AREA)

Abstract

[Problem] To provide a solar-light reflecting film that excels in efficient use of solar light, large surface-area production, and durability, and that is easy to manufacture. [Solution] This solar-light reflecting film has, in order from the light incident surface, an ultraviolet-ray reflecting laminate section formed by coating, and a silver reflecting layer, and the solar-light reflecting film is characterized in that at least one layer of the ultraviolet-ray reflecting laminate section includes at least one type of inorganic oxide.

Description

光反射フィルム、ならびにこれを用いた光反射体および光反射装置LIGHT REFLECTING FILM, LIGHT REFLECTOR AND LIGHT REFLECTION DEVICE USING THE SAME
 本発明は、太陽光を効率よく反射することが可能な光反射フィルム、ならびにこれを用いた光反射体および光反射装置に関する。 The present invention relates to a light reflecting film capable of efficiently reflecting sunlight, and a light reflector and a light reflecting device using the same.
 近年、地球温暖化は一層深刻化しており、その主因は、化石燃料の二酸化炭素といわれている。 In recent years, global warming has become more serious, and the main cause is said to be carbon dioxide, a fossil fuel.
 化石燃料の代替エネルギーとして、太陽光、風力、地熱等の自然エネルギーを利用した発電技術の開発が行われているが、太陽光を利用した発電は、安定性およびエネルギー量の豊富さから特に注目されている。 Power generation technology that uses natural energy such as sunlight, wind power, and geothermal heat is being developed as an alternative energy to fossil fuels. However, power generation using sunlight is particularly focused because of its abundance of stability and energy. Has been.
 太陽熱発電では、太陽光を反射体(鏡)により反射させて一か所に集光する集光装置が用いられる。当該反射体は太陽光による紫外線や熱、風雨、砂嵐等に晒されるため、耐久性の観点から従来はガラス製光反射体が用いられてきた。しかしながら、ガラス製光反射体は、輸送時に破損する、重いため設置するのに高強度の架台が必要となりプラントの建設費がかさむ、といった問題を有していた。 In solar thermal power generation, a condensing device that reflects sunlight by a reflector (mirror) and condenses it in one place is used. Since the reflector is exposed to ultraviolet rays, heat, wind and rain, and sandstorms caused by sunlight, a glass light reflector has been conventionally used from the viewpoint of durability. However, the light reflector made of glass has a problem that it is damaged during transportation, and because it is heavy, a high-strength gantry is required to install it, which increases the construction cost of the plant.
 上記問題を解決するために、ガラス製光反射体に代えて耐久性を高めた樹脂製光反射フィルムを支持体に貼付して光反射体として用いるという試みがなされている。例えば、特許文献1には、銀反射層を含む樹脂性高反射フィルムが開示されており、紫外線による樹脂の劣化や剥離損傷等を防止し耐環境性を克服するために、最上層に紫外線吸収剤を含む紫外線遮蔽アクリル層を備える構成とすることで、有害な紫外線を吸収している。 In order to solve the above problems, an attempt has been made to attach a resin light reflecting film with improved durability instead of a glass light reflecting member to a support and use it as a light reflecting member. For example, Patent Document 1 discloses a resinous highly reflective film including a silver reflective layer. In order to prevent deterioration of the resin due to ultraviolet rays, peeling damage, etc., and to overcome environmental resistance, the uppermost layer absorbs ultraviolet rays. By adopting a configuration including an ultraviolet shielding acrylic layer containing an agent, harmful ultraviolet rays are absorbed.
 また、紫外光線エネルギーを発電に利用するために、紫外光を可視光や赤外光と同じ方向に反射させて受光部に集めるべく、紫外光を反射する手段として、特許文献2には高屈折率材料と低屈折率材料を積層させて紫外線反射層を形成する手法が記載されている。この紫外~赤外を反射する積層体によって太陽光は効果的に反射できる。 In order to use ultraviolet light energy for power generation, Patent Document 2 discloses a high refractive index as a means for reflecting ultraviolet light in order to reflect ultraviolet light in the same direction as visible light or infrared light and collect it in the light receiving unit. A technique is described in which an ultraviolet reflective layer is formed by laminating a refractive index material and a low refractive index material. Sunlight can be effectively reflected by the laminate reflecting ultraviolet to infrared.
 更に、特許文献3には、アルミニウムやステンレス製の金属板を研磨し、表面に屈折率の異なる多層膜反射層を増反射コーティングとして付ける発明が記載されている。 Furthermore, Patent Document 3 describes an invention in which a metal plate made of aluminum or stainless steel is polished, and a multilayer reflective layer having a different refractive index is applied to the surface as a reflective coating.
 更にまた、多層膜形成手段として、特許文献4には、屈折率の異なる2種のポリマー層を交互に積層し、該ポリマーのガラス転移点付近に加熱し延伸することを特徴とする紫外線反射層の形成方法が提案されている(比較例4参照)。 Furthermore, as a means for forming a multilayer film, Patent Document 4 discloses an ultraviolet reflective layer characterized in that two types of polymer layers having different refractive indexes are alternately laminated, and heated and stretched near the glass transition point of the polymer. Has been proposed (see Comparative Example 4).
 また、特許文献5には紫外線を反射する多層膜を誘電体で形成し、一方で可視光、赤外光の波長範囲においては銀薄膜を用い、これら2つの異なる機能を持った層を組み合わせることで、効率良く太陽光を反射する方法が開示されている。さらに、この紫外線を反射する多層膜は、高屈折率層と低屈折率層を交互に積層した構成であり、このうちの低屈折率層は、酸素バリア性、水蒸気バリア性を持つバリア層を兼ねている。こうした構成とすることで、太陽光劣化に対して耐久性にも優れるというものである。 In Patent Document 5, a multilayer film that reflects ultraviolet rays is formed of a dielectric, while a silver thin film is used in the wavelength range of visible light and infrared light, and these two layers having different functions are combined. Thus, a method for efficiently reflecting sunlight is disclosed. Furthermore, the multilayer film reflecting ultraviolet rays has a structure in which a high refractive index layer and a low refractive index layer are alternately laminated, and the low refractive index layer includes a barrier layer having an oxygen barrier property and a water vapor barrier property. Also serves as. By adopting such a configuration, it is excellent in durability against sunlight degradation.
米国特許第7612937号明細書US Patent No. 7612937 欧州特許出願公開第2204624号明細書European Patent Application No. 2204624 米国特許第6848797号明細書US Pat. No. 6,848,797 特表2011-521289号公報Special table 2011-521289 特許第5424091号公報Japanese Patent No. 5424091
 しかしながら、上記特許文献1の技術によると最上層で紫外線を紫外線吸収剤により吸収しているため、紫外光線エネルギーを発電に利用できず、太陽光エネルギーの効率的な利用により、発電の効率を更に向上させるという点では不十分である。 However, according to the technique of Patent Document 1, ultraviolet rays are absorbed by the ultraviolet absorber in the uppermost layer, so that the ultraviolet light energy cannot be used for power generation, and the efficient use of solar energy further increases the efficiency of power generation. It is insufficient in terms of improvement.
 また、上記特許文献2の技術によると、紫外線反射層を緻密で精巧な膜を形成する方法で製造するには、真空下におけるスパッタ以外では難しく、製造に長時間を要する上、大面積及び大量生産が困難であり、実用的ではないという問題があった。 In addition, according to the technique of Patent Document 2, it is difficult to manufacture the ultraviolet reflecting layer by a method of forming a dense and elaborate film, except for sputtering under vacuum, which requires a long time for manufacturing, a large area and a large amount. There was a problem that production was difficult and impractical.
 更に、上記特許文献3の技術によると、アルミニウムやステンレスは太陽光の反射率はさほど高くなく、100%近い反射率を得るためには増反射に依存するところが大きい。またアルミニウム板やステンレス板を大面積にわたって研磨するにはコストが上がるという問題があった。 Furthermore, according to the technique of the above-mentioned Patent Document 3, aluminum and stainless steel are not so high in sunlight reflectivity, and in order to obtain a reflectivity close to 100%, the dependence on increased reflection is large. In addition, there is a problem that the cost increases when polishing an aluminum plate or a stainless steel plate over a large area.
 また、特許文献4の製法(技術)では、大面積かつ大量に紫外線反射層を製造することができるが、特許文献4の技術によると、ポリマーのガラス転移点付近に加熱し延伸する必要がある。該ポリマーをガラス転移点温度付近まで加熱するとラジカルが発生し、得られた紫外線反射層がラジカルにより経時的に劣化していくことがわかった。そのため、このポリマーを加熱延伸してなる多層紫外線反射フィルムを太陽光に類似したキセノンランプにて曝露した場合、米国アリゾナ州フェニックスの20年分に相当する紫外線を照射したところで、層界面の剥離が発生するという問題があった。これは、製造時に発生したラジカルが劣化を招いたと推測している。 Further, in the production method (technique) of Patent Document 4, an ultraviolet reflection layer can be produced in a large area and in a large amount. However, according to the technique of Patent Document 4, it is necessary to heat and stretch near the glass transition point of the polymer. . It was found that when the polymer was heated to near the glass transition temperature, radicals were generated, and the resulting ultraviolet reflective layer deteriorated with time. Therefore, when a multilayer ultraviolet reflective film formed by heating and stretching this polymer is exposed with a xenon lamp similar to sunlight, peeling of the layer interface occurs when irradiated with ultraviolet rays corresponding to 20 years of Phoenix, Arizona, USA. There was a problem that occurred. This is presumed that the radical generated at the time of manufacture caused deterioration.
 更に、上記特許文献5の技術では、上記紫外線を反射する多層膜のうち、酸素バリア性、水蒸気バリア性を持つバリア層を兼ねた低屈折率層を形成するにはプラズマ等の成膜手段により放電電力を多く必要とするため、製造が容易ではなかった。 Furthermore, in the technique of the above-mentioned Patent Document 5, in order to form a low refractive index layer that also serves as a barrier layer having an oxygen barrier property and a water vapor barrier property among the multilayer film reflecting ultraviolet rays, a film forming means such as plasma is used. Since a large amount of discharge power is required, manufacturing is not easy.
 そこで本発明は、太陽光の効率的利用、大面積生産、耐久性に優れ、製造容易な太陽光反射フィルムを提供することを目的とする。 Accordingly, an object of the present invention is to provide a solar reflective film that is excellent in the efficient use of sunlight, large-area production, durability, and easy manufacture.
 本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、無機酸化物を使い、コーティングによって形成した高屈折率材料と低屈折率材料を積層させた紫外線反射積層部を用い、大面積生産可能で、耐久性の高い太陽光反射フィルムとし得るなど上記諸問題が解決し、上記目的を達成し得ることを見出し、本発明を完成させた。 The present inventor conducted intensive research to solve the above problems. As a result, it is possible to produce a highly durable solar reflective film that can be produced in a large area using an ultraviolet reflective laminate that uses inorganic oxide and is laminated by coating a high refractive index material and a low refractive index material. The inventors have found that the above problems can be solved and the above object can be achieved, and the present invention has been completed.
 すなわち、本発明の太陽光反射フィルムは、光入射する面から順に、コーティングによって形成された紫外線反射積層部と、銀反射層とを有し、
 前記紫外線反射積層部の少なくとも1層が、少なくとも1種の無機酸化物を含むことを特徴とする。
That is, the solar reflective film of the present invention has, in order from the light incident surface, an ultraviolet reflective laminate formed by coating, and a silver reflective layer,
At least one layer of the ultraviolet reflective laminate includes at least one inorganic oxide.
本発明の実施形態に係る太陽光反射フィルムの1形態を模式的に表し断面図である。It is sectional drawing which represents typically 1 form of the sunlight reflective film which concerns on embodiment of this invention. 本発明の実施形態に係る太陽光反射フィルムの他の形態を模式的に表した断面図である。It is sectional drawing which represented typically the other form of the sunlight reflective film which concerns on embodiment of this invention. 比較例1で形成した太陽光反射フィルムの構成を模式的に表した断面図である。4 is a cross-sectional view schematically showing a configuration of a sunlight reflecting film formed in Comparative Example 1. FIG. 実施例1で形成した太陽光反射フィルムの構成を模式的に表した断面図である。3 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Example 1. FIG. 実施例2で形成した太陽光反射フィルムの構成を模式的に表した断面図である。4 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Example 2. FIG. 比較例2で形成した太陽光反射フィルムの構成を模式的に表した断面図である。6 is a cross-sectional view schematically showing a configuration of a sunlight reflecting film formed in Comparative Example 2. FIG. 比較例3で形成した太陽光反射フィルムの構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the sunlight reflective film formed in the comparative example 3. FIG. 実施例3で形成した太陽光反射フィルムの構成を模式的に表した断面図である。4 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Example 3. FIG. 実施例4で形成した太陽光反射フィルムの構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the sunlight reflective film formed in Example 4. FIG. 比較例4で形成した太陽光反射フィルムの構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the sunlight reflective film formed in the comparative example 4. FIG. 比較例5で形成した太陽光反射フィルムの構成を模式的に表した断面図である。10 is a cross-sectional view schematically showing the configuration of a sunlight reflecting film formed in Comparative Example 5. FIG. 比較例6で形成した太陽光反射フィルムの構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the sunlight reflective film formed in the comparative example 6. FIG.
 以下、本発明の好ましい形態について説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。 Hereinafter, preferred modes of the present invention will be described. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following modes.
 <太陽光反射フィルム>
 以下、図面を参照しながら本形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
<Sunlight reflection film>
Hereinafter, this embodiment will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 図1は、本発明の実施形態に係る太陽光反射フィルムの1態様を模式的に表した断面図である。図1に示す太陽光反射フィルム10は、太陽光100の入射する面から順に、コーティングによって形成された紫外線反射積層部11と、銀反射層13とを有し、前記紫外線反射積層部11の少なくとも1層が、少なくとも1種の無機酸化物11aを含む構造を有する。かかる構成を有する本発明によれば、太陽光の効率的利用、大面積生産、耐久性に優れ、製造容易な太陽光反射フィルムを提供することが可能となる。好ましくは紫外線反射積層部11を構成する屈折率の異なる2種の屈折率層111、112のうち、少なくとも一方の屈折率層が、上記無機酸化物11aを含む構造を有するのが望ましい。かかる構成とすることで、紫外線反射積層部11が紫外線を吸収することなく、効率的に紫外線を反射することができる。また太陽光100中の紫外線を反射することで、下層材料の劣化を防止し、耐久性を高めることができる。また紫外線反射積層部がコーティングによって形成し得るため、大面積生産を短時間で行うことが可能である。加えて、紫外線反射積層部をコーティングによって形成し得るため、特許文献4のように紫外線反射積層部をポリマーのガラス移転点付近(225℃)に加熱して延伸して形成するといった高温にさらす工程がないため劣化因子を減らすことができ、耐久性を改善できる点で優れている。更に、紫外線反射積層部をコーティングによって形成し得ることで、太陽光反射フィルムがカールされるのを防止ないし大幅に低減することができる。更に、紫外線反射積層部(特に低屈折率層)をコーティングによって形成し得ることで、特許文献5のようにバリア層を兼ねた低屈折率層を形成するために電力を多く必要とする真空蒸着、スパッタ、イオンビームスパッタ、CVD、大気圧プラズマ等の成膜手段を用いることなく、製造を容易に行うことができる。 FIG. 1 is a cross-sectional view schematically showing one aspect of a sunlight reflecting film according to an embodiment of the present invention. A solar reflective film 10 shown in FIG. 1 includes, in order from the surface on which sunlight 100 is incident, an ultraviolet reflective laminated portion 11 formed by coating and a silver reflective layer 13, and includes at least the ultraviolet reflective laminated portion 11. One layer has a structure including at least one inorganic oxide 11a. According to the present invention having such a configuration, it is possible to provide a solar reflective film that is excellent in efficient use of sunlight, large-area production, durability, and easy to manufacture. Preferably, it is desirable that at least one of the two refractive index layers 111 and 112 having different refractive indexes constituting the ultraviolet reflecting laminated portion 11 has a structure including the inorganic oxide 11a. By setting it as this structure, the ultraviolet reflective lamination part 11 can reflect an ultraviolet-ray efficiently, without absorbing an ultraviolet-ray. Moreover, by reflecting the ultraviolet rays in the sunlight 100, deterioration of the lower layer material can be prevented and durability can be enhanced. Moreover, since the ultraviolet reflection laminated portion can be formed by coating, large area production can be performed in a short time. In addition, since the ultraviolet reflection laminated portion can be formed by coating, a process of exposing the ultraviolet reflective laminated portion to a high temperature such as heating and stretching near the glass transition point of the polymer (225 ° C.) as in Patent Document 4. This is excellent in that it can reduce deterioration factors and improve durability. Furthermore, since the ultraviolet reflection laminated portion can be formed by coating, the solar reflective film can be prevented from curling or greatly reduced. Furthermore, the vacuum reflective laminate (especially the low refractive index layer) can be formed by coating, so that vacuum deposition that requires a lot of electric power is required to form a low refractive index layer that also serves as a barrier layer as in Patent Document 5. Manufacturing can be easily performed without using film forming means such as sputtering, ion beam sputtering, CVD, and atmospheric pressure plasma.
 太陽光反射フィルム10において、太陽光100は矢印で示すように、無機酸化物11aを含む(加熱延伸することなく)コーティングによって形成された紫外線反射積層部11側から銀反射層13側へと入射する。このように、太陽光100が入射する方向から順に、無機酸化物11aを含む紫外線反射積層部11と、銀反射層13とを有することにより、紫外線が太陽光反射フィルム10の無機酸化物11aを含む紫外線反射積層部11よりも更に深部にまで透過するのを防ぎ、太陽光反射フィルム10の劣化を抑制することができる。 In the solar reflective film 10, the sunlight 100 is incident on the silver reflective layer 13 side from the ultraviolet reflective laminated portion 11 side formed by coating containing the inorganic oxide 11a (without being heated and stretched) as indicated by an arrow. To do. Thus, in order from the direction in which the sunlight 100 is incident, the ultraviolet reflective laminate portion 11 including the inorganic oxide 11a and the silver reflective layer 13 are provided so that the ultraviolet rays can cause the inorganic oxide 11a of the solar reflective film 10 to pass through. It is possible to prevent the solar reflective film 10 from being deteriorated by preventing it from penetrating deeper than the ultraviolet reflective laminated portion 11 that is included.
 太陽光反射フィルム10において、無機酸化物11aを含む紫外線反射積層部11は、低屈折率層111および高屈折率層112が積層されたユニットを有する。図1に示すように異なる屈折率を有する層111及び112を積層させることによりその境界面で光の反射が起こり、紫外線反射射機能が発現される。なお、図1では、紫外線反射積層部11として、それぞれ光入射方向から順に高屈折率層、低屈折率層、・・・高屈折率層の多層が積層されているが、紫外線反射積層部11は低屈折率層111および高屈折率層112が積層された少なくとも1つのユニットを有していればよく、低屈折率層111および高屈折率層112の層数や積層順は特に制限されない。また図1に示す態様では、紫外線反射積層部11を構成する全ての低屈折率層111および高屈折率層112に無機酸化物11aが含まれている構成を示したが、本発明では、紫外線反射積層部11を構成する層の少なくとも1層に無機酸化物11aが含まれていればよい。例えば、実施例1では、高屈折率層112側にのみ無機酸化物112a(11a)が含まれている構成例である。即ち、実施例1に示したように、高屈折率層112側に無機酸化物112a(11a)を含むのが、屈折率差(低屈折率層と高屈折率層の屈折率差)を高め、界面での紫外線反射効率を高める点で有効である。また、図1に示す本態様のように紫外線反射積層部11を構成する高屈折率層112、低屈折率層111ともに無機酸化物112a,111aを含有することにより、高屈折率層112と低屈折率層111の屈折率差が大きく紫外線反射効率が高まる結果、より一層、耐光性が向上する点でより有効である(図2の態様においても同様である。実施例2~4参照)。 In the solar reflective film 10, the ultraviolet reflection laminated portion 11 including the inorganic oxide 11 a has a unit in which a low refractive index layer 111 and a high refractive index layer 112 are laminated. As shown in FIG. 1, by laminating layers 111 and 112 having different refractive indexes, light is reflected at the boundary surface, and an ultraviolet reflection function is exhibited. In FIG. 1, a multilayer of a high refractive index layer, a low refractive index layer,..., A high refractive index layer is laminated in order from the light incident direction as the ultraviolet reflecting laminated portion 11. Need only have at least one unit in which the low refractive index layer 111 and the high refractive index layer 112 are stacked, and the number of layers and the stacking order of the low refractive index layer 111 and the high refractive index layer 112 are not particularly limited. Further, in the embodiment shown in FIG. 1, the configuration in which the inorganic oxide 11a is included in all the low refractive index layers 111 and the high refractive index layers 112 constituting the ultraviolet reflective laminated portion 11 is shown. It is only necessary that the inorganic oxide 11 a is included in at least one of the layers constituting the reflective laminated portion 11. For example, Example 1 is a configuration example in which the inorganic oxide 112a (11a) is included only on the high refractive index layer 112 side. That is, as shown in Example 1, the inclusion of the inorganic oxide 112a (11a) on the high refractive index layer 112 side increases the refractive index difference (the refractive index difference between the low refractive index layer and the high refractive index layer). This is effective in increasing the ultraviolet reflection efficiency at the interface. In addition, the high refractive index layer 112 and the low refractive index layer 111 constituting the ultraviolet reflection laminated portion 11 both contain inorganic oxides 112a and 111a as in this embodiment shown in FIG. As a result of the large refractive index difference of the refractive index layer 111 and the increased ultraviolet reflection efficiency, it is more effective in that the light resistance is further improved (the same applies to the embodiment of FIG. 2; see Examples 2 to 4).
 太陽光反射フィルム10において、紫外線反射積層部11を構成する低屈折率層111または高屈折率層112の少なくとも1層が、水または水と相溶性を有する溶剤の少なくとも一方に可溶な樹脂を含むのが好ましい。このような特定の樹脂を含むことにより、100℃以下の低温にて薄膜形成ができ、製造時に高温加熱工程にさらすことなく、ポリマー内にラジカルが残存する点を防止することができる。また、このような樹脂を含むことにより、紫外線反射積層部11の層形成に(加熱延伸することなく)コーティングにより形成する塗布法を採用することができるという利点も有する。さらに、紫外線反射積層部11の層形成に(加熱延伸することなく)コーティングにより形成する塗布法を採用することにより、得られる積層体(紫外線反射積層部11)の大面積生産を短時間で行うことが可能である。加えて、紫外線反射積層部をコーティングにより形成する塗布法を採用することにより、特許文献4のように紫外線反射積層部をポリマーのガラス移転点付近(225℃)に加熱して延伸して形成するといった高温にさらす工程がないため劣化因子を減らすことができ、耐久性を改善できる。更には太陽光反射フィルム10全体のカールを低減させることができる。また、紫外線反射積層部11の層形成に(加熱延伸することなく)コーティングにより形成する塗布法を採用することにより、特許文献5のように成膜に電力を多く必要とする真空蒸着、スパッタ、イオンビームスパッタ、CVD、大気圧プラズマ等の手段を用いなくてもよいため、製造を容易に行うことができる。 In the solar reflective film 10, at least one of the low refractive index layer 111 or the high refractive index layer 112 constituting the ultraviolet reflective laminated portion 11 is made of a resin that is soluble in at least one of water or a solvent compatible with water. It is preferable to include. By including such a specific resin, it is possible to form a thin film at a low temperature of 100 ° C. or lower, and it is possible to prevent radicals from remaining in the polymer without being exposed to a high-temperature heating process during production. In addition, by including such a resin, there is an advantage that a coating method can be employed for forming the layer of the ultraviolet reflecting laminated portion 11 (without heating and stretching) by coating. Further, by adopting a coating method (without heating and stretching) for forming the layer of the ultraviolet reflecting laminated portion 11, large area production of the obtained laminated body (ultraviolet reflecting laminated portion 11) is performed in a short time. It is possible. In addition, by adopting a coating method in which the ultraviolet reflecting laminated portion is formed by coating, the ultraviolet reflecting laminated portion is heated and stretched near the glass transition point of the polymer (225 ° C.) as in Patent Document 4. Since there is no process to be exposed to high temperatures, deterioration factors can be reduced and durability can be improved. Furthermore, curling of the entire sunlight reflecting film 10 can be reduced. Further, by adopting a coating method for forming the layer of the ultraviolet reflecting laminated portion 11 by coating (without heating and stretching), as in Patent Document 5, vacuum deposition, sputtering, Since it is not necessary to use means such as ion beam sputtering, CVD, atmospheric pressure plasma, etc., manufacturing can be performed easily.
 図1に示す太陽光反射フィルム10の実施形態では、紫外線反射積層部11と銀反射層13との間に樹脂フィルム状支持体(高分子フィルム)12が配置されている。即ち、樹脂フィルム状支持体12の片面(光入射面側)に紫外線反射積層部11が形成され、樹脂フィルム状支持体12のもう一方の片面に銀反射層13が形成されている。 In the embodiment of the solar reflective film 10 shown in FIG. 1, a resin film support (polymer film) 12 is disposed between the ultraviolet reflective laminate 11 and the silver reflective layer 13. That is, the ultraviolet reflecting laminated portion 11 is formed on one side (light incident surface side) of the resin film-like support 12, and the silver reflecting layer 13 is formed on the other side of the resin film-like support 12.
 また、前記銀反射層13上には、当該銀反射層13を構成する銀の腐食を防止するために1層以上の腐食防止層14が配置されている。さらに上記腐食防止層14上には、支持基材(太陽光反射体の構成部材;図示せず)への貼付のために、粘着層15が配置されている。更に上記粘着層15上には、前記支持基材への貼付までの間、保管や輸送や取扱が容易なように剥離材(剥離フィルムや剥離紙など)16が備えられている。 Further, one or more corrosion prevention layers 14 are disposed on the silver reflection layer 13 in order to prevent corrosion of silver constituting the silver reflection layer 13. Further, an adhesive layer 15 is disposed on the corrosion prevention layer 14 for sticking to a supporting base material (a constituent member of a solar reflector; not shown). Further, a release material (release film, release paper, etc.) 16 is provided on the pressure-sensitive adhesive layer 15 so as to facilitate storage, transportation, and handling until sticking to the support substrate.
 また、図1に示す太陽光反射フィルム10の実施形態では、紫外線反射積層部11上(光入射面側)に、耐傷層17が配置されている。図1の形態では、太陽光反射フィルム10の最表面に耐傷層17が配置されている。このように耐傷層17を備えることにより擦傷等から紫外線反射積層部11を保護し、太陽光反射フィルム10の耐久性を向上させることができる。 Further, in the embodiment of the sunlight reflecting film 10 shown in FIG. 1, the scratch-resistant layer 17 is disposed on the ultraviolet reflecting laminated portion 11 (light incident surface side). In the form of FIG. 1, the scratch-resistant layer 17 is disposed on the outermost surface of the sunlight reflecting film 10. By providing the scratch-resistant layer 17 as described above, the ultraviolet reflective laminated portion 11 can be protected from scratches and the like, and the durability of the solar reflective film 10 can be improved.
 図2は、本発明の実施形態に係る太陽光反射フィルムの他の態様を模式的に表した断面図である。図2に示す太陽光反射フィルム10’でも、太陽光100の入射する面から順に、紫外線反射積層部11と、銀反射層13とを有し、前記紫外線反射積層部11の少なくとも1層が、少なくとも1種の無機酸化物11aを含む構造を有する。図2では、図1と同様に、紫外線反射積層部11を構成する高屈折率層112、低屈折率層111ともに無機酸化物112a,111aを含有する形態を図示している。 FIG. 2 is a cross-sectional view schematically showing another aspect of the solar reflective film according to the embodiment of the present invention. Also in the sunlight reflecting film 10 ′ shown in FIG. 2, in order from the surface on which sunlight 100 is incident, the ultraviolet reflecting laminated portion 11 and the silver reflecting layer 13 are included, and at least one layer of the ultraviolet reflecting laminated portion 11 includes: It has a structure including at least one inorganic oxide 11a. In FIG. 2, similarly to FIG. 1, a form in which the high refractive index layer 112 and the low refractive index layer 111 constituting the ultraviolet reflecting laminated portion 11 contain inorganic oxides 112 a and 111 a is illustrated.
 図1と図2は、共に光入射側から、紫外線反射積層部11、銀反射層13の順で形成されているが、樹脂フィルム状支持体12に対して紫外線反射積層部11と銀反射層13(さらに腐食防止層14)の配置が異なる態様(構成)となっている。図1は、樹脂フィルム状支持体12の片方の面に紫外線反射積層部11を形成し、もう一方の面に銀反射層13を形成した構成である(実施例1、2が同様の構成である)。一方、図2は、樹脂フィルム状支持体12の片面に、銀反射層13、紫外線反射積層部11の順で形成した構成である(実施例3、4が同様の構成である)。図1、2のいずれの構成(態様)も表1の実施例1~4に示す評価結果から本発明の作用効果を有効かつ効果的に発現し得るものである。図2に示す太陽光反射フィルム10’は、図1に示す太陽光反射フィルム10と上記した構成部材の配置が異なる以外は、図1と同様に構成(配置)を有するものである。そのため、上記した図1と同じ説明の繰り返しになるため、それらの説明については省略する。 1 and 2 are formed in the order of the ultraviolet reflection laminated portion 11 and the silver reflective layer 13 from the light incident side, but the ultraviolet reflective laminated portion 11 and the silver reflective layer with respect to the resin film-like support 12 are formed. 13 (further, the corrosion prevention layer 14) has a different arrangement (configuration). FIG. 1 shows a configuration in which an ultraviolet reflective laminated portion 11 is formed on one surface of a resin film-like support 12 and a silver reflective layer 13 is formed on the other surface (Examples 1 and 2 have the same configuration). is there). On the other hand, FIG. 2 shows a configuration in which the silver reflective layer 13 and the ultraviolet reflective laminated portion 11 are formed in this order on one surface of the resin film-like support 12 (Examples 3 and 4 have the same configuration). 1 and 2 can effectively and effectively express the effects of the present invention from the evaluation results shown in Examples 1 to 4 in Table 1. A solar reflective film 10 'shown in FIG. 2 has the same configuration (arrangement) as FIG. 1 except that the solar reflective film 10 shown in FIG. Therefore, the same description as in FIG. 1 is repeated, and the description thereof is omitted.
 上記したように、本発明の太陽光反射フィルムでは、図1、2に示す形態に何ら制限されるものではなく、本発明の要件を満足する範囲内において、いかなる構成をも取り得るものである。以下、本形態の太陽光反射フィルム10、10’の各構成部材について詳細に説明する。 As described above, the solar reflective film of the present invention is not limited to the form shown in FIGS. 1 and 2 and can take any configuration within the range satisfying the requirements of the present invention. . Hereinafter, each component of the solar reflective film 10, 10 'of the present embodiment will be described in detail.
 [紫外線反射積層部11]
 本形態の太陽光反射フィルム10、10’は、銀反射層13よりも光入射面側に紫外線反射積層部11を必須に有する。紫外線反射積層部11は、太陽光に含まれる紫外線領域(280~400nm)の少なくとも一部の波長(光)を反射する機能を有し、好ましくは、360~400nmの紫外線の50%以上、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上を反射する機能を有する。太陽光に含まれる紫外線領域(280~400nm)の反射率は、積分球を持つ分光光度計により測定することができる。
[Ultraviolet reflective laminate 11]
The solar reflective films 10, 10 ′ of this embodiment essentially have the ultraviolet reflective laminated portion 11 on the light incident surface side with respect to the silver reflective layer 13. The ultraviolet reflection laminated portion 11 has a function of reflecting at least a part of the wavelength (light) in the ultraviolet region (280 to 400 nm) included in sunlight, preferably 50% or more of the ultraviolet ray of 360 to 400 nm, preferably Has a function of reflecting 60% or more, more preferably 70% or more, and particularly preferably 80% or more. The reflectance in the ultraviolet region (280 to 400 nm) contained in sunlight can be measured with a spectrophotometer having an integrating sphere.
 また、光入射面側に設けられる紫外線反射積層部11は、より下層の銀反射層13により太陽光(特に可視光~赤外線領域の光線)を反射させることができるように、特に可視光~赤外線領域の光を透過するのが望ましい。かかる観点から、紫外線反射積層部11の可視~赤外線領域の光線(400~2500nmの波長)の透過率は、50%以上が好ましく、より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは80%以上の範囲である。波長400~2500nmの透過率は、積分球を持つ分光光度計により測定することができる。 In addition, the ultraviolet light reflection laminated portion 11 provided on the light incident surface side is particularly visible light to infrared light so that sunlight (particularly visible light to light in the infrared region) can be reflected by the lower silver reflection layer 13. It is desirable to transmit the light in the area. From this point of view, the transmittance of light in the visible to infrared region (wavelength of 400 to 2500 nm) of the ultraviolet reflecting laminated portion 11 is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and particularly preferably. Is in the range of 80% or more. The transmittance at a wavelength of 400 to 2500 nm can be measured by a spectrophotometer having an integrating sphere.
 紫外線反射積層部11は、低屈折率層111および高屈折率層112が積層されたユニットを少なくとも1つ有するのが好ましい。 The ultraviolet reflecting laminated portion 11 preferably has at least one unit in which the low refractive index layer 111 and the high refractive index layer 112 are laminated.
 紫外線反射積層部11は、低屈折率層111および高屈折率層112が交互に積層された交互積層体の形態を有する。このような低屈折率層111および高屈折率層112の屈折率差により紫外線反射機能が発現される。なお、本明細書において、「低屈折率層」および「高屈折率層」とは、隣接した2層の屈折率差を比較した場合に、屈折率が低い方の屈折率層を低屈折率層とし、高い方の屈折率層を高屈折率層とすることを意味する。 The ultraviolet reflecting laminated portion 11 has a form of an alternating laminated body in which low refractive index layers 111 and high refractive index layers 112 are alternately laminated. The ultraviolet reflection function is expressed by the difference in refractive index between the low refractive index layer 111 and the high refractive index layer 112. In the present specification, “low refractive index layer” and “high refractive index layer” mean that a refractive index layer having a lower refractive index is a low refractive index when the difference in refractive index between two adjacent layers is compared. This means that the higher refractive index layer is the higher refractive index layer.
 本形態の太陽光反射フィルム10、10’は、紫外線反射積層部11を構成する低屈折率層111または高屈折率層112の少なくとも1層が水または水と相溶性を有する溶剤の少なくとも一方に可溶な樹脂11b(111bないし112b)を含むのが好ましい。なお、本明細書において、「水と相溶性を有する溶剤」とは水と混合した際に界面を形成せず化学構造の中に水酸基、カルボニル基、カルボキシル基、アルデヒド基などを含む溶剤を意味する。また、「水または水と相溶性を有する溶剤の少なくとも一方に可溶な樹脂」とは、水または水と相溶性を有する溶剤と混合し撹拌した後に樹脂の沈降が発生せず白濁や光散乱が目視できない状態である樹脂を意味する。つまりごく微小なサイズの粒径を持ち屈折率が同じで混合撹拌した際に白濁や光散乱が目視できない状態であれば相溶しているとここでは定義する。水または水と相溶性を有する溶剤の少なくとも一方に可溶な樹脂11bは、低屈折率層111と高屈折率層112のいずれか一方のみに含まれていてもよいし、両方に含まれていても構わない。なお、低屈折率層111または高屈折率層112の少なくとも1層が水または水と相溶性を有する溶剤の少なくとも一方に可溶な樹脂を含む限りにおいては、低屈折率層111および/または高屈折率層112が水または水と相溶性を有する溶剤のいずれにも不溶な樹脂を含んでもよいことは勿論である。また、本明細書において「低屈折率層または高屈折率層の少なくとも1層が水または水と相溶性を有する溶剤の少なくとも一方に可溶な樹脂」のうち「水に可溶な樹脂」を「水溶性樹脂」とも称する。 The solar reflective films 10 and 10 ′ of the present embodiment are used in at least one of water or a solvent in which at least one of the low refractive index layer 111 and the high refractive index layer 112 constituting the ultraviolet reflective laminated portion 11 is compatible with water. It is preferable to include a soluble resin 11b (111b to 112b). In this specification, “solvent having compatibility with water” means a solvent which does not form an interface when mixed with water and contains a hydroxyl group, a carbonyl group, a carboxyl group, an aldehyde group, etc. in the chemical structure. To do. In addition, “resin that is soluble in at least one of water or a solvent compatible with water” means that the resin does not precipitate after mixing with water or a solvent compatible with water and agitation and light scattering. Means a resin that is not visible. In other words, it is defined here as being compatible if it has a very small particle size, the same refractive index, and no white turbidity or light scattering when visually mixed and stirred. The resin 11b soluble in at least one of water or a solvent compatible with water may be contained in only one of the low refractive index layer 111 and the high refractive index layer 112 or in both. It doesn't matter. As long as at least one of the low refractive index layer 111 and the high refractive index layer 112 includes a resin that is soluble in at least one of water or a solvent compatible with water, the low refractive index layer 111 and / or the high refractive index layer 111 are used. Of course, the refractive index layer 112 may contain a resin that is insoluble in either water or a solvent compatible with water. Further, in the present specification, among “resins that are soluble in at least one of the low refractive index layer and the high refractive index layer in at least one of water or a solvent compatible with water”, “water soluble resin” Also referred to as “water-soluble resin”.
 本形態の太陽光反射フィルム10、10’においては、当該樹脂11bは耐光性に優れていることが好ましく、具体的には、主鎖に芳香環を含まない樹脂であることが好ましく、芳香環を持たないモノマー成分から構成された樹脂であることがより好ましい。このような樹脂としては、例えば、水溶性樹脂、シリコーン系樹脂、アクリル系樹脂、オレフィン系樹脂、塩化ビニル系樹脂、アクリル・ウレタン系樹脂、含フッ素ポリマー等が挙げられる。これら水または水と相溶性を有する溶剤の少なくとも一方に可溶な樹脂11のなかでも、後述のように水溶性樹脂を使用することが好ましいが、水溶性樹脂以外の樹脂の中では、特に耐候性に優れる材料として、シロキサン結合を持ったシリコーン系樹脂、または少なくとも2種以上のアクリル系モノマーを共重合したアクリル系共重合体が好適に用いられる。 In the solar reflective films 10, 10 ′ of this embodiment, the resin 11b is preferably excellent in light resistance, and specifically, is preferably a resin that does not contain an aromatic ring in the main chain. It is more preferable that the resin is composed of a monomer component that does not have any. Examples of such resins include water-soluble resins, silicone resins, acrylic resins, olefin resins, vinyl chloride resins, acrylic / urethane resins, and fluorine-containing polymers. Among the resins 11 soluble in at least one of these water or water-compatible solvents, it is preferable to use a water-soluble resin as will be described later, but among the resins other than the water-soluble resin, particularly weather resistance. As a material having excellent properties, a silicone resin having a siloxane bond or an acrylic copolymer obtained by copolymerizing at least two kinds of acrylic monomers is suitably used.
 本形態の太陽光反射フィルム10、10’において、紫外線反射積層部11(各屈折率層111、112)は、コーティングにより形成されてなるものである。紫外線反射積層部11(各屈折率層111、112)をコーティングにより形成するのに水系塗布を用いることが可能になるという観点から、当該樹脂11bは水溶性樹脂であることが好ましい。紫外線反射積層部11をコーティングにより形成するのに水系塗布を用いることにより、被塗布層の有機溶剤による溶解を抑制することができる。 In the solar reflective film 10, 10 'of the present embodiment, the ultraviolet reflective laminated portion 11 (respective refractive index layers 111, 112) is formed by coating. The resin 11b is preferably a water-soluble resin from the viewpoint that aqueous coating can be used to form the ultraviolet reflecting laminated portion 11 (respective refractive index layers 111 and 112) by coating. By using water-based coating to form the ultraviolet reflecting laminated portion 11 by coating, dissolution of the coating layer with an organic solvent can be suppressed.
 上記水溶性樹脂としては、例えば、ポリビニルアルコール(PVA)類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、もしくはアクリル酸-アクリル酸エステル共重合体等のアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、もしくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体等のスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体等の酢酸ビニル系共重合体およびこれらの塩等の合成水溶性樹脂;ゼラチン、増粘多糖類等の天然水溶性樹脂等が挙げられる。このうち、製造時のハンドリングと膜の柔軟性の点から、ポリビニルアルコール類、およびこれを含有する共重合体、ゼラチン、増粘多糖類(特にセルロース類)が好ましく、なかでも、光学特性の観点からポリビニルアルコール類であることがより好ましい。これらの水溶性樹脂は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。 Examples of the water-soluble resin include polyvinyl alcohol (PVA), polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, or Acrylic resins such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene- Styrene acrylic resin such as acrylic acid copolymer or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrene sulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer , Styrene-2-hydroxye Tyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer, vinyl acetate-maleic Synthetic water-soluble resins such as acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers, and their salts; gelatin, thickening polysaccharides, etc. Examples include natural water-soluble resins. Of these, polyvinyl alcohols, copolymers containing the same, gelatin, and thickening polysaccharides (particularly celluloses) are preferable from the viewpoint of handling during production and film flexibility, and in particular, from the viewpoint of optical properties. To polyvinyl alcohols. These water-soluble resins may be used alone or in combination of two or more.
 本形態で使用されるポリビニルアルコール類としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、一部が変性された変性ポリビニルアルコールも使用することができる。なお、以下で特に断りがない限り、変性ポリビニルアルコールと区別して、「ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコール」を単に「ポリビニルアルコール」とも称する。本形態の太陽光反射フィルム10においては、低屈折率層111および高屈折率層112が、ともに少なくとも1種のポリビニルアルコールを含有する際、低屈折率層111中で最も含有量の多いポリビニルアルコールをポリビニルアルコール(A)とし、高屈折率層112中で最も含有量の多いポリビニルアルコールをポリビニルアルコール(B)とした場合に、ポリビニルアルコール(A)の鹸化度と、ポリビニルアルコール(B)の鹸化度とが異なることが好ましい。ここで鹸化度とはポリビニルアルコール中のアセチルオキシ基(原料の酢酸ビニル由来のもの)と水酸基の合計数に対する水酸基の割合のことである。このように鹸化度の異なるポリビニルアルコールを用いることにより、高屈折率層112と低屈折率層111の層間混合が小さく、高反射率を得ることができる。詳しくは、水系の重層塗布により各屈折率層111、112を形成した場合の層間混合が抑制され、界面の乱れが小さくなることにより、所望の波長の紫外線反射性に優れ、ヘイズの少ない紫外線反射積層部11を形成することができる。 As the polyvinyl alcohols used in this embodiment, modified polyvinyl alcohol partially modified can be used in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. Unless otherwise specified, “ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate” is also simply referred to as “polyvinyl alcohol” unless otherwise specified. In the solar reflective film 10 of this embodiment, when both the low refractive index layer 111 and the high refractive index layer 112 contain at least one polyvinyl alcohol, the polyvinyl alcohol having the highest content in the low refractive index layer 111. Is the polyvinyl alcohol (A), and the polyvinyl alcohol (B) is the polyvinyl alcohol (B) having the highest content in the high refractive index layer 112, the saponification degree of the polyvinyl alcohol (A) and the saponification of the polyvinyl alcohol (B) The degree is preferably different. Here, the degree of saponification is the ratio of hydroxyl groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxyl groups in polyvinyl alcohol. By using polyvinyl alcohol having different saponification degrees as described above, the interlayer mixing between the high refractive index layer 112 and the low refractive index layer 111 is small, and a high reflectance can be obtained. Specifically, interfacial mixing when the refractive index layers 111 and 112 are formed by water-based multilayer coating is suppressed, and interface disturbance is reduced, so that UV reflection with a desired wavelength is excellent and UV reflection with less haze is achieved. The stacked portion 11 can be formed.
 各屈折率層111、112中で鹸化度の相違を比較するポリビニルアルコールは、各屈折率層が複数のポリビニルアルコールを含む場合(すなわち、鹸化度または重合度が異なるポリビニルアルコールを2種以上含む場合)には、屈折率層中で最も含有量の多いポリビニルアルコールである。ここで、「屈折率層中で最も含有量が多いポリビニルアルコール」という際には、鹸化度の差が3mol%以内のポリビニルアルコールは同一のポリビニルアルコールであるとし、重合度を算出する。ただし、重合度1000以下の低重合度ポリビニルアルコールは異なるポリビニルアルコールとする(仮に鹸化度の差が3mol%以内のポリビニルアルコールがあったとしても同一のポリビニルアルコールとはしない)。具体的には、鹸化度が90mol%、鹸化度が91mol%、鹸化度が93mol%のポリビニルアルコールが同一層内にそれぞれ10質量%、40質量%、50質量%含まれる場合には、これら3つのポリビニルアルコールは同一のポリビニルアルコールとし、これら3つの混合物をポリビニルアルコール(A)または(B)とする。また、上記「鹸化度の差が3mol%以内のポリビニルアルコール」とは、いずれかのポリビニルアルコールに着目した場合に3mol%以内であれば足り、例えば、90、91、92、94mol%のビニルアルコールを含む場合には、91mol%のビニルアルコールに着目した場合にいずれのポリビニルアルコールも3mol%以内なので、同一のポリビニルアルコールとなる。 The polyvinyl alcohol for comparing the difference in saponification degree in each of the refractive index layers 111 and 112 is a case where each refractive index layer contains a plurality of polyvinyl alcohols (that is, two or more kinds of polyvinyl alcohols having different saponification degrees or polymerization degrees). ) Is polyvinyl alcohol having the highest content in the refractive index layer. Here, when “polyvinyl alcohol having the highest content in the refractive index layer” is referred to, the degree of polymerization is calculated assuming that the polyvinyl alcohol having a difference in saponification degree of 3 mol% or less is the same polyvinyl alcohol. However, a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (if the difference in saponification degree is 3 mol% or less, the same polyvinyl alcohol is not used). Specifically, when polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively, these 3 The two polyvinyl alcohols are the same polyvinyl alcohol, and the mixture of these three is polyvinyl alcohol (A) or (B). Further, the above-mentioned “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” is sufficient if it is within 3 mol% when attention is paid to any polyvinyl alcohol, for example, 90, 91, 92, 94 mol% vinyl alcohol. In the case of containing 91 mol% of vinyl alcohol, since any polyvinyl alcohol is within 3 mol% when focusing on 91 mol% of vinyl alcohol, the same polyvinyl alcohol is obtained.
 本形態において、含有量が最も高いポリビニルアルコールが、鹸化度差が3mol%以内の複数のポリビニルアルコール種から構成される場合、含有量が最も高いポリビニルアルコールの鹸化度は、含有量が最も高いポリビニルアルコールを構成する各ポリビニルアルコールの鹸化度に該ポリビニルアルコールの含有量を乗じたものの和とする。具体的には以下のように算出する。含有量が最も高いポリビニルアルコールがポリビニルアルコール(1)およびポリビニルアルコール(2)から構成され、ポリビニルアルコール(1)(屈折率層全量(固形分)に対するポリビニルアルコール(1)の含有量:Wa、鹸化度:Sa(mol%))およびポリビニルアルコール(2)(屈折率層全量(固形分)に対するポリビニルアルコール(2)の含有量:Wb、鹸化度:Sb(mol%))である場合、含有量が最も高いポリビニルアルコールの鹸化度は下記式のようになる。 In this embodiment, when the polyvinyl alcohol having the highest content is composed of a plurality of polyvinyl alcohol species having a saponification degree difference of 3 mol% or less, the polyvinyl alcohol having the highest content has the highest polyvinyl alcohol content. The sum is obtained by multiplying the saponification degree of each polyvinyl alcohol constituting the alcohol by the content of the polyvinyl alcohol. Specifically, it is calculated as follows. Polyvinyl alcohol having the highest content is composed of polyvinyl alcohol (1) and polyvinyl alcohol (2). Polyvinyl alcohol (1) (content of polyvinyl alcohol (1) with respect to the total amount (solid content) of the refractive index layer: Wa, saponification Degree: Sa (mol%)) and polyvinyl alcohol (2) (content of polyvinyl alcohol (2) with respect to the total amount (solid content) of the refractive index layer: Wb, saponification degree: Sb (mol%)) The highest saponification degree of polyvinyl alcohol is as shown in the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 1層内に鹸化度が3mol%を超える異なるポリビニルアルコールが含まれる場合、異なるポリビニルアルコールの混合物とみなし、それぞれに重合度と鹸化度を算出する。例えば、PVA103:5質量%、PVA117:25質量%、PVA217:10質量%、PVA220:10質量%、PVA224:10質量%、PVA235:20質量%、PVA245:20質量%が含まれる場合、最も含有量の多いPVAはPVA217~245の混合物であり(PVA217~245の鹸化度の差は3mol%以内なので同一のポリビニルアルコールである。ここで、PVA103~PVA245は、いずれも株式会社クラレの商品名(クラレポバール=PVA)と銘柄(103~245)を表しており、銘柄の始めの数字は鹸化度の分類を表し、次の二つの数字に100を掛けたものが重合度の目安を表す。銘柄の始めの数字1=鹸化度98~99mol%、平均値98.5mol%、銘柄の始めの数字2=鹸化度87~89mol%、平均値88mol%を表している。また、次の二つの数字が、例えば03=重合度300、17=重合度1700、45=重合度4500を表している。)、この混合物がポリビニルアルコール(A)または(B)となる。そして、PVA217~245の混合物(ポリビニルアルコール(A)/(B))においては、重合度は、(1700×0.1+2000×0.1+2400×0.1+3500×0.2+4500×0.2)/0.7=3200であり、鹸化度は、88mol%となる。 When different polyvinyl alcohols having a saponification degree exceeding 3 mol% are contained in one layer, they are regarded as a mixture of different polyvinyl alcohols, and the polymerization degree and the saponification degree are calculated for each. For example, PVA103: 5% by mass, PVA117: 25% by mass, PVA217: 10% by mass, PVA220: 10% by mass, PVA224: 10% by mass, PVA235: 20% by mass, PVA245: 20% by mass, most contained PVA having a large amount is a mixture of PVA 217 to 245 (the difference in the degree of saponification of PVA 217 to 245 is within 3 mol%, and thus is the same polyvinyl alcohol. Here, PVA103 to PVA245 are all trade names of Kuraray Co., Ltd. ( Kuraraypoval = PVA) and brands (103 to 245). The numbers at the beginning of the brand represent the classification of the degree of saponification, and the next two numbers multiplied by 100 represent the degree of polymerization. First number 1 = degree of saponification 98-99 mol%, average value 98.5 mol%, initial number 2 of brands = The degree of conversion is 87 to 89 mol% and the average value is 88 mol%, and the following two numbers are, for example, 03 = degree of polymerization 300, 17 = degree of polymerization 1700, 45 = degree of polymerization 4500). This mixture becomes polyvinyl alcohol (A) or (B). In the mixture of PVA 217 to 245 (polyvinyl alcohol (A) / (B)), the degree of polymerization is (1700 × 0.1 + 2000 × 0.1 + 2400 × 0.1 + 3500 × 0.2 + 4500 × 0.2) / 0. .7 = 3200, and the degree of saponification is 88 mol%.
 また、含有量が最も高いポリビニルアルコール(群)が同一の含有量で複数存在する場合には、いずれか一つのポリビニルアルコール(群)の組合せが、低屈折率層111と高屈折率層112との異なる鹸化度に該当すればよい。例えば、低屈折率層111中に、ポリビニルアルコールとして、ポリビニルアルコール(1)(鹸化度98.5mol%):20質量%、ポリビニルアルコール(2)(鹸化度88mol%):20質量%、ポリビニルアルコール(3)(鹸化度79.5mol%):20質量%、が含有されている場合(含有量が最も高いポリビニルアルコール(群)が同一の含有量で複数存在する場合)、ポリビニルアルコール(1)、(2)及び(3)のいずれかが、高屈折率層112中に含有される最も含有量の高いポリビニルアルコール(B)の鹸化度と異なっていればよい。 Further, when a plurality of polyvinyl alcohol (group) having the highest content is present at the same content, the combination of any one of the polyvinyl alcohol (group) is obtained by combining the low refractive index layer 111 and the high refractive index layer 112. The degree of saponification may be different. For example, in the low refractive index layer 111, polyvinyl alcohol (1) (degree of saponification 98.5 mol%): 20% by mass, polyvinyl alcohol (2) (degree of saponification 88 mol%): 20% by mass, polyvinyl alcohol as polyvinyl alcohol. (3) (Saponification degree: 79.5 mol%): 20% by mass (when a plurality of polyvinyl alcohols (group) having the highest content are present in the same content), polyvinyl alcohol (1) Any one of (2) and (3) may be different from the saponification degree of the polyvinyl alcohol (B) having the highest content contained in the high refractive index layer 112.
 ポリビニルアルコール(A)とポリビニルアルコール(B)との鹸化度の絶対値の差は、1mol%以上であることが好ましく、3mol%以上であることがより好ましい。さらに好ましくは5mol%以上である。また、さらに好ましくは8mol%以上であり、最も好ましくは10mol%以上である。かような範囲であれば、低屈折率層111と高屈折率層112との層間混合状態を好ましいレベルにするために好ましい。ポリビニルアルコール(A)とポリビニルアルコール(B)との鹸化度の差は離れていれば離れているほど好ましいが、ポリビニルアルコールの水への溶解性の点からは20mol%以下であることが好ましい。 The difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 1 mol% or more, and more preferably 3 mol% or more. More preferably, it is 5 mol% or more. Further, it is more preferably 8 mol% or more, and most preferably 10 mol% or more. If it is such a range, it is preferable in order to make the interlayer mixing state of the low refractive index layer 111 and the high refractive index layer 112 into a preferable level. The difference in the degree of saponification between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably as far as possible, but is preferably 20 mol% or less from the viewpoint of the solubility of polyvinyl alcohol in water.
 ポリビニルアルコール(A)およびポリビニルアルコール(B)の鹸化度は水への溶解性の点で75mol%以上が好ましい。さらにポリビニルアルコール(A)およびポリビニルアルコール(B)のうち一方が鹸化度90mol%以上であり、他方が該鹸化度が90mol%以上のポリビニルアルコールの鹸化度より低い鹸化度であることが好ましい。かような形態であると、層間混合がより抑制される。さらに、ポリビニルアルコール(A)およびポリビニルアルコール(B)のうち一方が鹸化度90mol%以上であり、他方が90mol%以下であることが低屈折率層111と高屈折率層112との層間混合状態をより好ましいレベルにし、特定の波長(紫外線)の反射率が向上するために好ましい。ポリビニルアルコール(A)およびポリビニルアルコール(B)のうち一方が鹸化度95mol%以上であり、他方が90mol%以下であることが特定波長(紫外線)の反射率向上の観点からより好ましい。なお、ポリビニルアルコールの鹸化度の上限は特に限定されるものではないが、通常100mol%未満であり、99.9mol%以下程度である。 The saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, it is preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more, and the other has a saponification degree lower than that of polyvinyl alcohol having a saponification degree of 90 mol% or more. In such a form, interlayer mixing is further suppressed. Further, one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more and the other has a ratio of 90 mol% or less, which is an interlayer mixed state of the low refractive index layer 111 and the high refractive index layer 112. Is preferable because the reflectance of a specific wavelength (ultraviolet ray) is improved. One of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more, and the other is preferably 90 mol% or less from the viewpoint of improving the reflectance at a specific wavelength (ultraviolet light). In addition, although the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol% and is about 99.9 mol% or less.
 また前記鹸化度の異なる2種のポリビニルアルコールの重合度は1000以上のものが好ましく用いられ、特に平均重合度が1500~5000のものが好ましく、2000~5000のものがさらに好ましく用いられる。ポリビニルアルコールの重合度が1000以上であると塗布膜のひび割れがなく、5000以下であるとハンドリング性がよく作業効率性が向上するため好ましい。また、ポリビニルアルコール(A)およびポリビニルアルコール(B)の少なくとも一方の重合度が2000~5000であると、塗膜のひび割れが減少し、特定の波長(紫外線)の反射率が向上するため好ましい。ポリビニルアルコール(A)およびポリビニルアルコール(B)の双方の重合度が2000~5000であると層間が一層分離され、上記効果はより顕著に発揮されるため好ましい。ここで、重合度とは粘度平均重合度を指し、JIS-K6726(1994)に準じて測定される。具体的には、ポリビニルアルコールを完全に再鹸化し、精製した後、30℃の水中で測定した極限粘度[η](dl/g)から次式により求められる。 Further, the polymerization degree of the two types of polyvinyl alcohols having different saponification degrees is preferably 1000 or more, particularly preferably having an average polymerization degree of 1500 to 5000, and more preferably 2000 to 5000. When the polymerization degree of polyvinyl alcohol is 1000 or more, the coating film is not cracked, and when it is 5000 or less, handling properties are good and work efficiency is improved, which is preferable. Further, when the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is 2000 to 5000, it is preferable because cracks of the coating film are reduced and the reflectance at a specific wavelength (ultraviolet ray) is improved. It is preferable that the degree of polymerization of both polyvinyl alcohol (A) and polyvinyl alcohol (B) is 2000 to 5000 because the layers are further separated and the above effects are more prominently exhibited. Here, the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS-K6726 (1994). Specifically, after the polyvinyl alcohol is completely re-saponified and purified, it is obtained from the intrinsic viscosity [η] (dl / g) measured in water at 30 ° C. by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本形態においては、上記ポリビニルアルコール(A)およびポリビニルアルコール(B)は、各屈折率層の全質量に対し、好ましくは5.0質量%以上、より好ましくは10質量%以上の範囲で含有させることが好ましい。含有量が5.0質量%以上であると、層間混合が抑制され界面の乱れが小さくなるという効果が顕著に現れる。また、ポリビニルアルコール(A)およびポリビニルアルコール(B)は、各屈折率層の全質量に対し、50質量%以下が好ましく、40質量%以下がより好ましい。含有量が50質量%以下であれば、相対的な無機酸化物(111a、112a)の含有量が適切となり、低屈折率層111と高屈折率層112との屈折率差を大きくすることが容易になる。 In this embodiment, the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are preferably contained in a range of 5.0% by mass or more, more preferably 10% by mass or more with respect to the total mass of each refractive index layer. It is preferable. When the content is 5.0% by mass or more, the effect that inter-layer mixing is suppressed and the disturbance of the interface is reduced appears significantly. Moreover, 50 mass% or less is preferable with respect to the total mass of each refractive index layer, and, as for polyvinyl alcohol (A) and polyvinyl alcohol (B), 40 mass% or less is more preferable. If the content is 50% by mass or less, the content of the relative inorganic oxide (111a, 112a) is appropriate, and the difference in refractive index between the low refractive index layer 111 and the high refractive index layer 112 may be increased. It becomes easy.
 本形態では前記鹸化度の異なる2種のポリビニルアルコールに加えて、重合度が100~1000、より好ましくは重合度100~500で鹸化度が95mol%以上である低重合度高鹸化ポリビニルアルコール(以下、単に低重合度高鹸化ポリビニルアルコールとも称する)を各屈折率層の少なくとも一方が含むことが好ましい。このような低重合度高鹸化ポリビニルアルコールを含有すると塗布液の安定性が向上する。より好ましくは、双方の屈折率層が低重合度高鹸化ポリビニルアルコールを含有することが塗布液の安定性の観点から好ましい。低重合度高鹸化ポリビニルアルコールの含有量は、特に限定されるものではないが、各屈折率層の全質量(固形分)に対し、好ましくは0.5~5質量%である。かような範囲であれば、上記効果がより発揮される。なお、低重合度高鹸化ポリビニルアルコールの鹸化度の上限は特に限定されるものではないが、通常100mol%未満であり、99.9mol%以下程度である。 In this embodiment, in addition to the two types of polyvinyl alcohols having different saponification degrees, the polymerization degree is 100 to 1000, more preferably, the polymerization degree is 100 to 500, and the saponification degree is 95 mol% or more. It is preferable that at least one of the respective refractive index layers contains (also simply referred to as a low polymerization degree, highly saponified polyvinyl alcohol). When such a low degree of polymerization and high saponified polyvinyl alcohol is contained, the stability of the coating solution is improved. More preferably, both refractive index layers contain a low degree of polymerization and a highly saponified polyvinyl alcohol from the viewpoint of the stability of the coating solution. The content of the saponified polyvinyl alcohol having a low polymerization degree is not particularly limited, but is preferably 0.5 to 5% by mass with respect to the total mass (solid content) of each refractive index layer. If it is such a range, the said effect will be exhibited more. The upper limit of the saponification degree of the low polymerization degree and high saponification polyvinyl alcohol is not particularly limited, but is usually less than 100 mol% and about 99.9 mol% or less.
 本形態では前記鹸化度の異なる2種のポリビニルアルコール(ポリビニルアルコール(A)およびポリビニルアルコール(B))以外に、低屈折率層111および高屈折率層112のいずれか一方に鹸化度が90mol%以上(より好ましくは95mol%以上)のポリビニルアルコールをさらに含むことが好ましい。かような高鹸化度のポリビニルアルコールを含有させることで、塗布液が安定し、層間混合がより抑制され、反射率がより向上する。 In this embodiment, in addition to the two types of polyvinyl alcohols (polyvinyl alcohol (A) and polyvinyl alcohol (B)) having different saponification degrees, either the low refractive index layer 111 or the high refractive index layer 112 has a saponification degree of 90 mol%. It is preferable to further contain the above (more preferably 95 mol% or more) polyvinyl alcohol. By containing such a high saponification degree polyvinyl alcohol, the coating solution is stabilized, inter-layer mixing is further suppressed, and the reflectance is further improved.
 さらに各屈折率層は、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、一部が変性された変性ポリビニルアルコールを含んでもよい。かような変性ポリビニルアルコールを含むと、膜(各屈折率層)の密着性や耐水性、柔軟性が改良される場合がある。このような変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。これらの変性ポリビニルアルコールは、重合度や変性の種類違うもの2種類以上を併用することもできる。 Further, each refractive index layer may contain modified polyvinyl alcohol partially modified in addition to normal polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate. When such modified polyvinyl alcohol is contained, the adhesion, water resistance, and flexibility of the film (each refractive index layer) may be improved. Examples of such modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonionic-modified polyvinyl alcohol, and vinyl alcohol polymers. These modified polyvinyl alcohols can be used in combination of two or more types having different degrees of polymerization and modification.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体を鹸化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in, for example, JP-A-61-110483. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%、好ましくは0.2~5モル%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および同63-307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基等の反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohol is, for example, a polyvinyl alcohol derivative obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795. Block copolymer of a vinyl compound having a hydrophobic group and vinyl alcohol, a silanol-modified polyvinyl alcohol having a silanol group, a reactive group-modified polyvinyl alcohol having a reactive group such as an acetoacetyl group, a carbonyl group or a carboxyl group Etc.
 またビニルアルコール系ポリマーとして、エクセバール(商品名:(株)クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業(株)製)等が挙げられる。 Examples of vinyl alcohol polymers include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 変性ポリビニルアルコールの含有量は、特に限定されるものではないが、各屈折率層の全質量(固形分)に対し、好ましくは1~30質量%である。かような範囲であれば、上記の膜の密着性や耐水性、柔軟性の向上効果がより発揮される。 The content of the modified polyvinyl alcohol is not particularly limited, but is preferably 1 to 30% by mass with respect to the total mass (solid content) of each refractive index layer. If it is such a range, the adhesiveness of said film | membrane, water resistance, and the improvement effect of a softness | flexibility will be exhibited more.
 本形態においては、上記鹸化度の異なる2種のポリビニルアルコールは、屈折率層の全ポリビニルアルコールおよび変性ポリビニルアルコールの全質量に対し、40質量%以上、100質量%以下の範囲で含有させることが好ましく、60質量%以上、95質量%以下がより好ましい。含有量が40質量%以上であると、層間混合が抑制され界面の乱れが小さくなるという効果が顕著に表れる。一方、含有量が95質量%以下であれば、塗布液の安定性が向上する。 In this embodiment, the two types of polyvinyl alcohol having different saponification degrees may be contained in a range of 40% by mass to 100% by mass with respect to the total mass of the total polyvinyl alcohol and the modified polyvinyl alcohol in the refractive index layer. 60 mass% or more and 95 mass% or less are more preferable. When the content is 40% by mass or more, the effect that inter-layer mixing is suppressed and the turbulence of the interface is reduced is remarkably exhibited. On the other hand, if content is 95 mass% or less, stability of a coating liquid will improve.
 ゼラチンとしては、石灰処理ゼラチンのほか、酸処理ゼラチンを使用してもよく、さらにゼラチンの加水分解物、ゼラチンの酵素分解物を用いることもできる。 As the gelatin, in addition to lime-processed gelatin, acid-processed gelatin may be used, and gelatin hydrolyzate and gelatin enzyme-decomposed product can also be used.
 増粘多糖類としては、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類および合成複合多糖類を挙げることができ、これら多糖類の詳細については、「生化学事典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。なお、本明細書において、増粘多糖類とは、糖類の重合体であり分子内に水素結合基を多数有するもので、温度による分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度との差が大きな特性を備えた多糖類をいう。さらに無機酸化物粒子111aないし112aを添加すると、低温時にその無機酸化物粒子111aないし112aとの水素結合によると思われる粘度上昇を起こし、その粘度上昇幅は、添加することにより40℃における粘度が好ましくは1.0mPa・s以上の上昇を生じる多糖類であり、より好ましくは5.0mPa・s以上であり、さらに好ましくは10.0mPa・s以上の粘度上昇能を備えた多糖類である。 Examples of thickening polysaccharides include generally known natural simple polysaccharides, natural complex polysaccharides, synthetic simple polysaccharides, and synthetic complex polysaccharides. For details on these polysaccharides, see “Biochemistry”. Reference can be made to the encyclopedia (2nd edition), Tokyo Kagaku Doujin Publishing, “Food Industry”, Vol. 31 (1988), p. 21. In the present specification, the thickening polysaccharide is a saccharide polymer having a large number of hydrogen bonding groups in the molecule. It refers to a polysaccharide with characteristics that have a large difference from the viscosity of time. Furthermore, when the inorganic oxide particles 111a to 112a are added, a viscosity increase caused by hydrogen bonding with the inorganic oxide particles 111a to 112a occurs at a low temperature. The polysaccharide is preferably a polysaccharide that causes an increase of 1.0 mPa · s or more, more preferably 5.0 mPa · s or more, and still more preferably a polysaccharide having a viscosity increasing ability of 10.0 mPa · s or more.
 このような増粘多糖類としては、例えば、β1-4グルカン(例えば、カルボキシメチルセルロース、カルボキシエチルセルロース等)、ガラクタン(例えば、アガロース、アガロペクチン等)、ガラクトマンノグリカン(例えば、ローカストビーンガム、グアラン等)、キシログルカン(例えば、タマリンドガム等)、グルコマンノグリカン(例えば、蒟蒻マンナン、木材由来グルコマンナン、キサンタンガム等)、ガラクトグルコマンノグリカン(例えば、針葉樹材由来グリカン)、アラビノガラクトグリカン(例えば、大豆由来グリカン、微生物由来グリカン等)、グルコラムノグリカン(例えば、ジェランガム等)、グリコサミノグリカン(例えば、ヒアルロン酸、ケラタン硫酸等)、アルギン酸およびアルギン酸塩、寒天、κ-カラギーナン、λ-カラギーナン、ι-カラギーナン、ファーセレラン等の紅藻類に由来する天然高分子多糖類等が挙げられる。 Examples of such thickening polysaccharides include β1-4 glucan (eg, carboxymethylcellulose, carboxyethylcellulose, etc.), galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.). ), Xyloglucan (eg, tamarind gum, etc.), glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan ( For example, soybean-derived glycans, microbial-derived glycans, etc.), glucoraminoglycans (eg, gellan gum), glycosaminoglycans (eg, hyaluronic acid, keratan sulfate, etc.), alginic acid and alginate, agar, κ-ca Examples thereof include natural high molecular polysaccharides derived from red algae such as laginan, λ-carrageenan, ι-carrageenan, and far cerulean.
 水溶性樹脂の重量平均分子量は、特に制限はないが、コーティング可能な粘度に調整して製造する観点から、1000~200000が好ましく、3000~40000がより好ましい。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて下記測定条件下で測定した値を採用する。 The weight average molecular weight of the water-soluble resin is not particularly limited, but is preferably from 1,000 to 200,000, more preferably from 3,000 to 40,000, from the viewpoint of production by adjusting the viscosity to be coatable. In this specification, the value measured on the following measurement conditions using gel permeation chromatography (GPC) is employ | adopted for a weight average molecular weight.
 ・溶媒:0.2M NaNOH,NaHP0,pH7
 ・カラム:Shodex Column Ohpak SB-802.5 HQ,8×300mmとShodex Column Ohpak SB-805 HQ,8×300mmの組み合わせ
 ・カラム温度:45℃
 ・試料濃度:0.1質量%
 ・検出器:RID-10A(株式会社島津製作所製)
 ・ポンプ:LC-20AD(株式会社島津製作所製)
 ・流量:1ml/min
 ・校正曲線: Shodex スタンダード GFC(水系 GPC)カラム用 Standard P-82 標準物質プルランによる校正曲線を使用。
Solvent: 0.2M NaNOH 3 , NaH 2 P0 4 , pH 7
・ Column: Combination of Shodex Column Ohpak SB-802.5 HQ, 8 × 300 mm and Shodex Column Ohpak SB-805 HQ, 8 × 300 mm ・ Column temperature: 45 ° C.
Sample concentration: 0.1% by mass
・ Detector: RID-10A (manufactured by Shimadzu Corporation)
・ Pump: LC-20AD (manufactured by Shimadzu Corporation)
・ Flow rate: 1 ml / min
・ Calibration curve: Standard P-82 standard substance pullulan calibration curve for Shodex standard GFC (aqueous GPC) column is used.
 本形態では、水溶性樹脂を硬化させるための硬化剤を使用してもよい。硬化剤の種類は特に制限はなく、水溶性樹脂と硬化反応を起こすものであればいずれの硬化剤も使用可能である。 In this embodiment, a curing agent for curing the water-soluble resin may be used. The kind of the curing agent is not particularly limited, and any curing agent can be used as long as it causes a curing reaction with the water-soluble resin.
 水溶性樹脂がポリビニルアルコールの場合の硬化剤としては、ホウ素原子を有するホウ酸、ホウ酸塩、およびホウ砂等が挙げられる。これらを使用した場合、より優れた紫外線反射特性が発揮されうる。特に、低屈折率層111と高屈折率層112の多層重層をコーターで塗布後、一旦塗膜の膜面温度を15℃程度に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。 Examples of the curing agent when the water-soluble resin is polyvinyl alcohol include boric acid having a boron atom, borate, and borax. When these are used, more excellent ultraviolet reflection characteristics can be exhibited. In particular, after applying a multi-layered multilayer of a low refractive index layer 111 and a high refractive index layer 112 with a coater, the film surface temperature of the coating film was once cooled to about 15 ° C. and then the film surface was dried. In some cases, the effect can be expressed more preferably.
 ホウ酸またはホウ酸塩とは、ホウ素原子を中心原子とする酸素酸およびその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸および八ホウ酸およびこれらの塩が挙げられる。 Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom. Specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid and octaboric acid are used. Examples include boric acid and salts thereof.
 ホウ砂とは、Na(OH)・8HO(四ホウ酸ナトリウム Naの十水和物)で表される鉱物である。 Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
 ホウ酸、ホウ酸塩、およびホウ砂は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。 Boric acid, borate, and borax may be used alone or in combination of two or more.
 これ以外にも、ポリビニルアルコールと反応し得る基を有する化合物あるいはポリビニルアルコールが有する異なる基同士の反応を促進するような化合物が硬化剤として適宜用いられる。具体例としては、エポキシ系硬化剤、活性ハロゲン系硬化剤、活性ビニル系化合物、アルミニウムミョウバン等が挙げられる。 In addition to this, a compound having a group capable of reacting with polyvinyl alcohol or a compound that accelerates the reaction between different groups of polyvinyl alcohol is suitably used as the curing agent. Specific examples include epoxy curing agents, active halogen curing agents, active vinyl compounds, and aluminum alum.
 上記硬化剤の総使用量は、ポリビニルアルコール系樹脂1g当たり1~600mgが好ましく、100~500mgがより好ましい。 The total amount of the curing agent used is preferably 1 to 600 mg, more preferably 100 to 500 mg, per gram of polyvinyl alcohol resin.
 水溶性樹脂がゼラチンの場合の硬化剤としては、例えば、ビニルスルホン化合物、尿素-ホルマリン縮合物、メラニン-ホルマリン縮合物、エポキシ系化合物、アジリジン系化合物、活性オレフィン類、イソシアネート系化合物等の有機硬膜剤、クロム、アルミニウム、ジルコニウム等の無機多価金属塩類等が挙げられる。 Examples of the hardener when the water-soluble resin is gelatin include organic hardeners such as vinyl sulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds, aziridine compounds, active olefins, and isocyanate compounds. Examples of the film agent include inorganic polyvalent metal salts such as chromium, aluminum, and zirconium.
 水溶性樹脂以外の樹脂のうち、シリコーン系樹脂としては、例えば、トリメトキシシラン(関東化学)、ソルガードNP-730(日本ダクロシャムロック)、トスガード510(東芝シリコーン)、KP-64(信越化学工業)等を採用することができる。かかるシリコーン系樹脂の主成分は、R、R’をメチル基、エチル基等の有機基、Xを0および自然数とすれば、RXSi(OR’)4-Xで表される。 Of the resins other than water-soluble resins, silicone resins include, for example, trimethoxysilane (Kanto Chemical), Solguard NP-730 (Nippon Dacro Shamrock), Tosgard 510 (Toshiba Silicone), KP-64 (Shin-Etsu Chemical). ) Etc. can be employed. The main component of such a silicone resin is represented by RXSi (OR ') 4-X, where R and R' are organic groups such as methyl and ethyl groups, and X is 0 and a natural number.
 アクリル系樹脂としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート等のアルキル(メタ)アクリレートのような側鎖中に官能性基を有しないモノマー(以下、非官能性モノマーという)から選ばれる1種または2種以上のモノマーを主成分とし、これに2-ヒドロキシエチルメタクリレート、グリシジルメタクリレート、アクリル酸、メタクリル酸、イタコン酸、等のモノマーから選ばれる1種または2種以上のモノマーの側鎖中にOHやCOOH等の官能性基を有するモノマー(以下、官能性モノマーという)の1種または2種以上を組み合せて、溶液重合法、懸濁重合法、乳化重合法、塊状重合法等の重合法により共重合させることにより得られる重量平均分子量が4万~100万、好ましくは10万~40万のアクリル系共重合体が挙げられる。なかでも、エチルアクリレート、メチルアクリレート、2-エチルヘキシルメタクリレート等の比較的ガラス転移点(Tg)の低いポリマーを与える非官能性モノマーを50~90質量%、メチルメタクリレート、イソブチルメタクリレート、シクロヘキシルメタクリレート等の比較的Tgの高いポリマーを与える非官能性モノマーを10~50質量%、2-ヒドロキシエチルメタクリレート、アクリル酸、イタコン酸等の官能性モノマーを0~10質量%含有するようなアクリル系重合体が最も好適である。また市販のアクリル系樹脂を用いてもよく、例えば、三菱レイヨン製のBR-85、旭化成ケミカルズ製のデルペットSRB215等を使用することもできる。 Examples of acrylic resins include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and 2-ethylhexyl methacrylate. The main component is one or two or more monomers selected from monomers having no functional group in the side chain such as alkyl (meth) acrylate such as non-functional monomers (hereinafter referred to as non-functional monomers). OH is present in the side chain of one or more monomers selected from monomers such as hydroxyethyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid, and itaconic acid. Copolymers such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method are used in combination of one or more monomers having a functional group such as COOH (hereinafter referred to as functional monomers). Examples thereof include acrylic copolymers having a weight average molecular weight of 40,000 to 1,000,000, preferably 100,000 to 400,000, obtained by polymerization. Among them, 50 to 90% by mass of a non-functional monomer that gives a polymer having a relatively low glass transition point (Tg) such as ethyl acrylate, methyl acrylate, and 2-ethylhexyl methacrylate, and a comparison of methyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, etc. An acrylic polymer containing 10 to 50% by mass of a non-functional monomer that gives a polymer having a high Tg and 0 to 10% by mass of a functional monomer such as 2-hydroxyethyl methacrylate, acrylic acid, and itaconic acid is the most. Is preferred. Commercially available acrylic resins may also be used. For example, BR-85 manufactured by Mitsubishi Rayon, Delpet SRB215 manufactured by Asahi Kasei Chemicals, etc. may be used.
 シクロオレフィン樹脂は、脂環式構造を含有する重合体樹脂からなるものである。好ましいシクロオレフィン樹脂は、環状オレフィンを重合または共重合した樹脂である。環状オレフィンとしては、ノルボルネン、ジシクロペンタジエン、テトラシクロドデセン、エチルテトラシクロドデセン、エチリデンテトラシクロドデセン、テトラシクロ[7.4.0.110,13.02,7]トリデカ-2,4,6,11-テトラエン等の多環構造の不飽和炭化水素およびその誘導体、シクロブテン、シクロペンテン、シクロヘキセン、3,4-ジメチルシクロペンテン、3-メチルシクロヘキセン、2-(2-メチルブチル)-1-シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン、シクロヘプテン、シクロペンタジエン、シクロヘキサジエン等の単環構造の不飽和炭化水素およびその誘導体等が挙げられる。好ましいシクロオレフィン樹脂は、環状オレフィン以外の単量体を付加共重合したものであってもよい。付加共重合可能な単量体としては、エチレン、プロピレン、1-ブテン、1-ペンテン等のエチレンまたはα-オレフィン、1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等のジエン等が挙げられる。これらに限定されるものではない。また、これらは、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。具体的には、日本ゼオン(株)製ゼオネックス、ゼオノア、JSR(株)製アートン、三井化学(株)製アペル(APL8008T、APL6509T、APL6013T、APL5014DP、APL6015T)等が好ましく用いられる。 The cycloolefin resin is a polymer resin containing an alicyclic structure. A preferred cycloolefin resin is a resin obtained by polymerizing or copolymerizing a cyclic olefin. Examples of the cyclic olefin include norbornene, dicyclopentadiene, tetracyclododecene, ethyltetracyclododecene, ethylidenetetracyclododecene, and tetracyclo [7.4.0.110, 13.02,7] trideca-2,4. Unsaturated hydrocarbons having a polycyclic structure such as 6,11-tetraene and derivatives thereof, cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2- (2-methylbutyl) -1-cyclohexene, cyclo Examples thereof include monocyclic unsaturated hydrocarbons such as octene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H-indene, cycloheptene, cyclopentadiene, cyclohexadiene, and derivatives thereof. Preferred cycloolefin resins may be those obtained by addition copolymerization of monomers other than cyclic olefins. Examples of addition copolymerizable monomers include ethylene such as ethylene, propylene, 1-butene and 1-pentene, or α-olefin, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl- Examples include dienes such as 1,4-hexadiene and 1,7-octadiene. It is not limited to these. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more type. Specifically, ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., Arton manufactured by JSR Corporation, APPEL manufactured by Mitsui Chemicals, Inc. (APL8008T, APL6509T, APL6013T, APL5014DP, APL6015T) and the like are preferably used.
 塩化ビニル系樹脂としては、塩化ビニル単独重合体(塩化ビニルホモポリマー)、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体、これらの塩化ビニルモノマー単位が塩素化されたものからなる(共)重合体等が挙げられる。これらは1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。 Examples of vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer. Examples thereof include graft copolymers obtained by graft copolymerization, and (co) polymers composed of chlorinated vinyl chloride monomer units. These may be used alone or in combination of two or more.
 アクリル・ウレタン系樹脂は、多価イソシアネート化合物またはイソシアネート基を有するポリウレタンと、アクリル系モノマーと、を反応させて得ることができるものであれば制限なく使用できる。アクリル系モノマーとしては、例えば、アルキルアクリレート(アルキル基としてはメチル、エチル、n-プロピル、n-ブチル、イソブチル、t-ブチル、2-エチルヘキシル、シクロヘキシル等)、アルキルメタクリレート(アルキル基としてはメチル、エチル、n-プロピル、n-ブチル、イソブチル、t-ブチル、2-エチルヘキシル、シクロヘキシル等)、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート等のヒドロキシ基含有モノマー、アクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、N-メチルアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-ブトキシメチルアクリルアミド、N-フェニルアクリルアミド等のアミド基含有モノマー、N,N-ジエチルアミノエチルアクリレート、N,N-ジエチルアミノエチルメタクリレート等のアミノ基含有モノマー、グリシジルアクリレート、グリシジルメタクリレート等のグリシジル基含有モノマー、アクリル酸、メタクリル酸およびそれらの塩(ナトリウム塩、カリウム塩、アンモニウム塩等)等のカルボキシル基またはその塩を含有するモノマー等を用いることができる。架橋性官能基を共重合することが好ましく、特にN-メチロールアクリルアミドを共重合することが、自己架橋性や架橋密度向上点で特に好ましい。N-メチロールアクリルアミドの共重合比率は、共重合性や架橋度の点で0.5~5重量%が好ましく、特に塗布外観の点を考慮すると、1~3重量%がより好ましい。架橋剤としては、例えば、メラミン系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、メチロール化あるいはアルキロール化した尿素系、アクリルアミド系、ポリアミド系樹脂、オキサゾリン系架橋剤、カルボジイミド系架橋剤、各種シランカップリング剤、各種チタネート系カップリング剤等を用いることができる。架橋剤の少なくとも1種がオキサゾリン系架橋剤およびカルボジイミド系架橋剤を含有していることが好ましい。 The acrylic / urethane resin can be used without limitation as long as it can be obtained by reacting a polyvalent isocyanate compound or polyurethane having an isocyanate group with an acrylic monomer. Examples of acrylic monomers include alkyl acrylates (methyl groups such as methyl, ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.), alkyl methacrylates (methyl as the alkyl group, Hydroxy such as ethyl, n-propyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.), 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, etc. Group-containing monomers, acrylamide, methacrylamide, N-methyl methacrylamide, N-methyl acrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethyl Amide group-containing monomers such as acrylamide, N-methoxymethylacrylamide, N-methoxymethylmethacrylamide, N-butoxymethylacrylamide, N-phenylacrylamide, N, N-diethylaminoethyl acrylate, N, N-diethylaminoethyl methacrylate, etc. Amino group-containing monomers, glycidyl group-containing monomers such as glycidyl acrylate and glycidyl methacrylate, monomers containing a carboxyl group such as acrylic acid, methacrylic acid and salts thereof (sodium salt, potassium salt, ammonium salt, etc.) or salts thereof, etc. Can be used. It is preferable to copolymerize a crosslinkable functional group, and it is particularly preferable to copolymerize N-methylolacrylamide in terms of improving self-crosslinking property and crosslinking density. The copolymerization ratio of N-methylolacrylamide is preferably 0.5 to 5% by weight from the viewpoint of copolymerizability and the degree of crosslinking, and more preferably 1 to 3% by weight in view of the coating appearance. Examples of the crosslinking agent include melamine crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolized or alkylolized urea, acrylamide, polyamide resin, oxazoline crosslinking agent, and carbodiimide. Cross-linking agents, various silane coupling agents, various titanate coupling agents and the like can be used. It is preferable that at least one of the crosslinking agents contains an oxazoline-based crosslinking agent and a carbodiimide-based crosslinking agent.
 含フッ素ポリマーとしては、フッ素含有不飽和エチレン性単量体成分を主として含有する重合物を挙げることができる。 Examples of the fluorine-containing polymer include a polymer mainly containing a fluorine-containing unsaturated ethylenic monomer component.
 フッ素含有不飽和エチレン性単量体としては、含フッ素アルケン、含フッ素アクリル酸エステル、含フッ素メタクリル酸エステル、含フッ素ビニルエステル、含フッ素ビニルエーテル等を挙げることができ、例えば、特開2013-057969号の段落「0181」に記載のフッ素含有不飽和エチレン性単量体を挙げることができる。 Examples of the fluorine-containing unsaturated ethylenic monomer include a fluorine-containing alkene, a fluorine-containing acrylic acid ester, a fluorine-containing methacrylate ester, a fluorine-containing vinyl ester, a fluorine-containing vinyl ether, and the like. And fluorine-containing unsaturated ethylenic monomers described in paragraph “0181” of the No.
 フッ素含有単量体と共重合し得る単量体としては、例えば、エチレン、プロピレン、ブテン、酢酸ビニル、ビニルエチルエーテル、ビニルエチルケトン、メチルアクリレート、メチルメタクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、メチル-α-フルオロアクリレート、エチル-α-フルオロアクリレート、プロピル-α-フルオロアクリレート、ブチル-α-フルオロアクリレート、アクリル酸、メタクリル酸、α-フルオロアクリル酸、スチレン、スチレンスルホン酸、メトキシポリエチレングリコールメタクリレート等が挙げられる。 Examples of monomers that can be copolymerized with fluorine-containing monomers include, for example, ethylene, propylene, butene, vinyl acetate, vinyl ethyl ether, vinyl ethyl ketone, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl-α-fluoroacrylate, ethyl-α-fluoroacrylate, propyl-α-fluoroacrylate, butyl-α-fluoroacrylate, acrylic acid, methacrylic acid, α-fluoroacrylic acid, styrene Styrene sulfonic acid, methoxypolyethylene glycol methacrylate and the like.
 フッ素含有エチレン性不飽和単量体の単独の樹脂の屈折率は、ほぼ1.33~1.42の範囲にあり、又共重合し得るフッ素を含有しない単量体の単独樹脂ポリマーの屈折率は、1.44以上で、これらを任意の割合で共重合して目的の屈折率の含フッ素ポリマーとして用いることができ、上記ポリビニルアルコールと任意の割合で混合して目的の屈折率のものとして使用できる。かような含フッ素ポリマーとポリビニルアルコールとの屈折率層における含有質量比(固形分換算)は、好適にはポリビニルアルコール:含フッ素ポリマー=1:0.1~5である。 The refractive index of a single resin of a fluorine-containing ethylenically unsaturated monomer is in the range of approximately 1.33 to 1.42, and the refractive index of a single resin polymer of a fluorine-free monomer that can be copolymerized. Can be used as a fluorine-containing polymer having a desired refractive index by copolymerizing these at an arbitrary ratio of 1.44 or more, and having a desired refractive index by mixing with the polyvinyl alcohol at an arbitrary ratio. Can be used. The content ratio (in terms of solid content) in the refractive index layer of such a fluoropolymer and polyvinyl alcohol is preferably polyvinyl alcohol: fluoropolymer = 1: 0.1-5.
 各屈折率層中の樹脂の含有量は、各屈折率層中に無機酸化物(111aないし112a)を含有しない場合においては、コーティング時の粘度調節の観点から、各屈折率層中の固形分の総量に対して50~100質量%であることが好ましく、80~100質量%であることが好ましい。50質量%以上であれば層形成が可能である。一方、各屈折率層中の樹脂の含有量は、各屈折率層中に無機酸化物(111aないし112a)を含有する場合においては、各屈折率層中の固形分の総量に対して30~70質量%であることが好ましく、40~50質量%であることが好ましい。無機酸化物(111aないし112a)を含有する場合でも、樹脂の含有量が30質量%以上であれば層形成が可能である。 When the refractive index layer does not contain an inorganic oxide (111a to 112a), the solid content in each refractive index layer is from the viewpoint of viscosity adjustment during coating. The total amount is preferably 50 to 100% by mass, more preferably 80 to 100% by mass. If it is 50 mass% or more, layer formation is possible. On the other hand, the content of the resin in each refractive index layer is 30 to the total solid content in each refractive index layer when each refractive index layer contains an inorganic oxide (111a to 112a). It is preferably 70% by mass, and preferably 40-50% by mass. Even when the inorganic oxide (111a to 112a) is contained, the layer can be formed if the resin content is 30% by mass or more.
 (無機酸化物11a(111aないし112a)
 本形態の太陽光反射フィルム10、10’における紫外線反射部11の少なくとも1層が、少なくとも1種の無機酸化物11aを含むことを特徴とするものである。かかる構成とすることで、紫外線反射積層部11が紫外線を効率的に反射し、太陽光の効率的利用が図られる。また紫外線を反射することで、下層材料の劣化を防止し、耐久性を高めることができる。特に無機酸化物11aにより、無機酸化物11aを含有する層(屈折率層)を高屈折率化することができる。また、無機酸化物11aを含有する層(屈折率層)の形成に用いる塗布液(屈折率層用塗布液)の粘度を調整することができる点で優れている。好ましくは、前記紫外線線反射部11を構成する低屈折率層111または高屈折率層112の少なくとも一方は、それぞれ無機酸化物11a(111aないし112a)および上述の樹脂11bを含むのが好ましい。更に低屈折率層111または高屈折率層112の少なくとも一方は、それぞれ無機酸化物11a(111aないし112a)および樹脂成分を含む溶液を塗布することにより形成されてなることが好ましい。これにより、紫外線反射積層部11がコーティングによって形成し得るため、大面積生産を短時間で行うことが可能である。
(Inorganic oxide 11a (111a to 112a)
At least one layer of the ultraviolet reflecting portion 11 in the sunlight reflecting films 10, 10 ′ of the present embodiment includes at least one inorganic oxide 11a. By setting it as this structure, the ultraviolet-ray reflection lamination | stacking part 11 reflects an ultraviolet-ray efficiently, and the efficient utilization of sunlight is achieved. Moreover, by reflecting the ultraviolet rays, deterioration of the lower layer material can be prevented and durability can be enhanced. In particular, the inorganic oxide 11a can increase the refractive index of the layer (refractive index layer) containing the inorganic oxide 11a. Moreover, it is excellent at the point which can adjust the viscosity of the coating liquid (refractive index layer coating liquid) used for formation of the layer (refractive index layer) containing the inorganic oxide 11a. Preferably, at least one of the low-refractive index layer 111 or the high-refractive index layer 112 constituting the ultraviolet ray reflecting section 11 preferably includes the inorganic oxide 11a (111a to 112a) and the resin 11b described above. Further, at least one of the low refractive index layer 111 and the high refractive index layer 112 is preferably formed by applying a solution containing the inorganic oxide 11a (111a to 112a) and a resin component, respectively. Thereby, since the ultraviolet reflective laminated part 11 can be formed by coating, large area production can be performed in a short time.
 無機酸化物粒子11aは、紫外線反射に適するように、平均粒径が100nm以下であることが好ましい。用いる無機酸化物粒子の平均粒径が100nm以下であることで、光散乱を抑制し、また紫外線反射フィルムにおける各屈折率層の膜厚制御の際の精度を向上させることができる。ここで、本明細書において平均粒径は、一次平均粒径を指す。本明細書でいう一次平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層(111、112)の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1000個の任意の粒子の粒径を測定し、その平均を求めた値である。無機酸化物粒子11aの平均粒径は、無機酸化物粒子11aが被覆処理されている場合(例えば、後述のシリカ付着二酸化チタンゾル等)、無機酸化物粒子11aの平均粒径とは母体(上記シリカ付着二酸化チタンゾルの場合は、処理前の二酸化チタン)の平均粒径を指すものとする。本実施形態において、低屈折率層111中の無機酸化物111a(例えば、コロイダルシリカ粒子など)は低屈折率材料として機能し、高屈折率層112中の無機酸化物112a(例えば、酸化チタン粒子など)は高屈折率材料として機能する。 The inorganic oxide particles 11a preferably have an average particle size of 100 nm or less so as to be suitable for ultraviolet reflection. When the average particle diameter of the inorganic oxide particles to be used is 100 nm or less, light scattering can be suppressed and the accuracy in controlling the film thickness of each refractive index layer in the ultraviolet reflective film can be improved. Here, in this specification, an average particle diameter refers to a primary average particle diameter. As used herein, the primary average particle size refers to a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a cross section or surface of the refractive index layer (111, 112). The average particle size is a value obtained by measuring the particle size of 1000 arbitrary particles by a method of observing the appearing particle image with an electron microscope. When the inorganic oxide particles 11a are coated (for example, a silica-attached titanium dioxide sol described later), the average particle diameter of the inorganic oxide particles 11a is the matrix (the silica described above). In the case of an attached titanium dioxide sol, it means the average particle diameter of titanium dioxide before treatment). In this embodiment, the inorganic oxide 111a (for example, colloidal silica particles) in the low refractive index layer 111 functions as a low refractive index material, and the inorganic oxide 112a (for example, titanium oxide particles in the high refractive index layer 112). Etc.) function as a high refractive index material.
 (低屈折率層111中の無機酸化物111a)
 低屈折率層111には無機酸化物111aとしてシリカ(二酸化ケイ素)を用いることが好ましく、具体的な例として合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカを用いることが特に好ましい。また、屈折率をより低減させるために、低屈折率層111の無機酸化物微粒子111aとして、粒子の内部に空孔を有する中空微粒子を用いてもよく、特にシリカ(二酸化ケイ素)の中空微粒子が好ましい。また、シリカ以外の公知の無機酸化物粒子も使用することができる。低屈折率層111において、無機酸化物111aとしては、屈折率が低く小粒径である観点から、二酸化ケイ素を用いることが好ましく、屈折率が低く小粒径であり更に透明性が高く、二次粒子を作らず扱いやすい観点から、コロイダルシリカを用いることが特に好ましい。
(Inorganic oxide 111a in the low refractive index layer 111)
In the low refractive index layer 111, silica (silicon dioxide) is preferably used as the inorganic oxide 111a, and specific examples include synthetic amorphous silica and colloidal silica. Among these, it is more preferable to use acidic colloidal silica sol, and it is particularly preferable to use colloidal silica dispersed in an organic solvent. In order to further reduce the refractive index, hollow fine particles having pores inside the particles may be used as the inorganic oxide fine particles 111a of the low refractive index layer 111. In particular, hollow fine particles of silica (silicon dioxide) may be used. preferable. Moreover, well-known inorganic oxide particles other than a silica can also be used. In the low refractive index layer 111, as the inorganic oxide 111a, it is preferable to use silicon dioxide from the viewpoint of a low refractive index and a small particle size, and a low refractive index, a small particle size, and high transparency. From the viewpoint of easy handling without forming secondary particles, it is particularly preferable to use colloidal silica.
 低屈折率層111に含まれる無機酸化物粒子111a(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであるのがより好ましく、3~40nmであるのがさらに好ましく、3~20nmであるのが特に好ましく、4~10nmであるのがもっとも好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The inorganic oxide particles 111a (preferably silicon dioxide) contained in the low refractive index layer 111 preferably have an average particle size of 3 to 100 nm. The average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state (particle diameter in a dispersion state before coating) is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 本形態で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、たとえば、特開昭57-14091号公報、特開昭60-219083号公報などに記載されているものである。 The colloidal silica used in the present embodiment is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091, JP-A-60-219083 and the like.
 この様なコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 また、低屈折率層111の無機酸化物粒子111aとして、中空粒子を用いることもできる。中空微粒子を用いる場合には、平均粒子空孔径が、3~70nmであるのが好ましく、5~50nmがより好ましく、5~45nmがさらに好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 Moreover, hollow particles can also be used as the inorganic oxide particles 111 a of the low refractive index layer 111. When hollow fine particles are used, the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm. The average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained. The average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
 低屈折率層111における無機酸化物粒子111aの含有量は、低屈折率層の固形分100質量%に対して、20~90質量%であることが好ましく、30~85質量%であることがより好ましく、40~70質量%であることがさらに好ましい。20質量%以上であると、所望の屈折率が得られ90質量%以下であると塗布性が良好となり好ましい。 The content of the inorganic oxide particles 111a in the low refractive index layer 111 is preferably 20 to 90% by mass and preferably 30 to 85% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferred is 40 to 70% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, the coatability is good, which is preferable.
 (高屈折率層112中の無機酸化物112a)
 本形態に係る高屈折率層112の無機酸化物粒子112aとしては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。中でも、透明でより屈折率の高い高屈折率層112を形成することのできる、二酸化チタン、酸化ジルコニウム等の無機酸化物粒子112aが好ましい。
(Inorganic oxide 112a in the high refractive index layer 112)
As the inorganic oxide particles 112a of the high refractive index layer 112 according to this embodiment, for example, titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, Examples thereof include ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. Among these, inorganic oxide particles 112a such as titanium dioxide and zirconium oxide that can form a transparent and higher refractive index layer 112 having a higher refractive index are preferable.
 二酸化チタンとしては、ルチル型(正方晶形)酸化チタン粒子が好ましい。 As titanium dioxide, rutile type (tetragonal) titanium oxide particles are preferable.
 高屈折率層112で用いられる無機酸化物粒子112aに用いられる無機酸化物粒子112aの一次平均粒径は、30nm以下であることが好ましく、1~30nmであることがより好ましく、5~15nmであることがさらに好ましい。一次平均粒径が1nm以上30nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The primary average particle diameter of the inorganic oxide particles 112a used in the inorganic oxide particles 112a used in the high refractive index layer 112 is preferably 30 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. More preferably it is. A primary average particle diameter of 1 nm or more and 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
 本形態の酸化チタン粒子としては、水系の酸化チタンゾルの表面を変性して分散状態を安定にしたものを用いることが好ましい。 As the titanium oxide particles of this embodiment, it is preferable to use particles in which the surface of an aqueous titanium oxide sol is modified to stabilize the dispersion state.
 さらに、酸化チタン粒子を含ケイ素の水和酸化物で被覆した、コアシェル構造を有する粒子を用いてもよい。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、無機酸化物粒子112aとして用いられる酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。以下ではこのような被覆された酸化チタン粒子を「シリカ付着二酸化チタンゾル」とも称する。 Further, particles having a core-shell structure in which titanium oxide particles are coated with a silicon-containing hydrated oxide may be used. Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the inorganic oxide particles 112a may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be covered with. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. . Hereinafter, such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよいが、ルチル型がより好ましい。これは、ルチル型の酸化チタン粒子が、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層112や隣接した低屈折率層111の耐候性が高くなり、さらに屈折率が高くなるためである。 The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because the rutile type titanium oxide particles have lower photocatalytic activity than the anatase type titanium oxide particles, so that the weather resistance of the high refractive index layer 112 and the adjacent low refractive index layer 111 is increased, and the refractive index is further increased. Because.
 本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、本形態の効果を得るためにはシラノール基を有することがより好ましい。 The term “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound. More preferably has a silanol group.
 含ケイ素の水和酸化物の被覆量は、3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率層の所望の屈折率化が得られ、被覆量が3%以上であると粒子を安定に形成することができるからである。 The coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass. This is because when the coating amount is 30% by mass or less, the desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% or more, particles can be stably formed.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された事項を参照することができる。 As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
 高屈折率層112における無機酸化物粒子112aの含有量としては、高屈折率層112の固形分100質量%に対して、15~90質量%であることが好ましく、20~85質量%であることがより好ましく、30~85質量%であることが反射率向上の観点から、さらに好ましい。 The content of the inorganic oxide particles 112a in the high refractive index layer 112 is preferably 15 to 90% by mass, and preferably 20 to 85% by mass with respect to 100% by mass of the solid content of the high refractive index layer 112. More preferably, the content is 30 to 85% by mass from the viewpoint of improving the reflectance.
 (他の添加剤)
 各屈折率層(111、112)は、塗布により形成する場合の塗布性の観点から界面活性剤を含有することが好ましい。塗布時の表面張力調整のため用いられる界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等を用いることができるが、アニオン系界面活性剤がより好ましい。好ましい化合物としては、1分子中に炭素数8~30の疎水性基とスルホン酸基またはその塩を含有するものが挙げられる。
(Other additives)
Each refractive index layer (111, 112) preferably contains a surfactant from the viewpoint of applicability when formed by coating. Anionic surfactants, nonionic surfactants, amphoteric surfactants, and the like can be used as the surfactant used for adjusting the surface tension during coating, but anionic surfactants are more preferable. Preferred compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
 アニオン系界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンまたはオレフィンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルまたはアルキルアリールエーテル硫酸エステル塩、アルキルリン酸塩、アルキルジフェニルエーテルジスルホン酸塩、エーテルカルボキシレート、アルキルスルホコハク酸エステル塩、α-スルホ脂肪酸エステルおよび脂肪酸塩よりなる群から選ばれる界面活性剤や、高級脂肪酸とアミノ酸との縮合物、ナフテン酸塩等を用いることができる。好ましく用いられるアニオン系界面活性剤は、アルキルベンゼンスルホン酸塩(とりわけ直鎖アルキルのもの)、アルカンまたはオレフィンスルホン酸塩(とりわけ第2級アルカンスルホン酸塩、α-オレフィンスルホン酸塩)、アルキル硫酸エステル塩、ポリオキシエチレンアルキルまたはアルキルアリールエーテル硫酸エステル塩(とりわけポリオキシエチレンアルキルエーテル硫酸エステル塩)、アルキル燐酸塩(とりわけモノアルキルタイプ)、エーテルカルボキシレート、アルキルスルホコハク酸塩、α-スルホ脂肪酸エステルおよび脂肪酸塩よりなる群から選ばれる界面活性剤であり、特に好ましくは、アルキルスルホコハク酸塩である。 Anionic surfactants include alkyl benzene sulfonate, alkyl naphthalene sulfonate, alkane or olefin sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl or alkyl aryl ether sulfate salt, alkyl phosphate, alkyl diphenyl ether A surfactant selected from the group consisting of disulfonates, ether carboxylates, alkylsulfosuccinates, α-sulfo fatty acid esters and fatty acid salts, condensates of higher fatty acids with amino acids, naphthenates, etc. may be used. it can. Preferred anionic surfactants are alkylbenzene sulfonates (especially those of linear alkyls), alkanes or olefin sulfonates (especially secondary alkane sulfonates, α-olefin sulfonates), alkyl sulfates Salts, polyoxyethylene alkyl or alkylaryl ether sulfates (especially polyoxyethylene alkyl ether sulfates), alkyl phosphates (especially monoalkyl type), ether carboxylates, alkyl sulfosuccinates, α-sulfo fatty acid esters and A surfactant selected from the group consisting of fatty acid salts, and alkylsulfosuccinate is particularly preferable.
 各屈折率層における界面活性剤の含有量は、各屈折率層中の固形分の総量に対して、0.001~0.5質量%であることが好ましく、0.005~0.3質量%であることがより好ましい。 The content of the surfactant in each refractive index layer is preferably 0.001 to 0.5 mass%, and preferably 0.005 to 0.3 mass% with respect to the total solid content in each refractive index layer. % Is more preferable.
 各屈折率層は、塗布液の分散安定性の観点から高分子分散剤を含有することが好ましい。高分子分散剤とは、重量平均分子量が10,000以上の高分子の分散剤を指す。好適には、側鎖または末端に水酸基が置換された高分子であり、例えばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテル、ポリビニルアルコール等が挙げられる。高分子分散剤は市販品を用いてもよく、かような高分子分散剤としては、マリアリムAKM-0531(日油社製)等が挙げられる。高分子分散剤の含有量は屈折率層に対して固形分換算で0.1~10質量%であることが好ましい。 Each refractive index layer preferably contains a polymer dispersant from the viewpoint of dispersion stability of the coating solution. The polymer dispersant refers to a polymer dispersant having a weight average molecular weight of 10,000 or more. Preferably, the polymer has a hydroxyl group substituted at the side chain or terminal. For example, a polymer obtained by copolymerizing 2-ethylhexyl acrylate with an acrylic polymer such as sodium polyacrylate or polyacrylamide, polyethylene glycol or the like. Examples include polyethers such as polypropylene glycol, polyvinyl alcohol, and the like. A commercially available polymer dispersant may be used, and examples of such a polymer dispersant include Marialim AKM-0531 (manufactured by NOF Corporation). The content of the polymer dispersant is preferably 0.1 to 10% by mass in terms of solid content with respect to the refractive index layer.
 各屈折率層は、エマルジョン樹脂をさらに含有していてもよい。エマルジョン樹脂を含むことにより、膜の柔軟性が高くなりガラスへの貼りつけ等の加工性がよくなる。 Each refractive index layer may further contain an emulsion resin. By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
 エマルジョン樹脂とは、水系媒体中に微細な、例えば、平均粒径が0.01~2.0μm程度の樹脂粒子がエマルジョン状態で分散されている樹脂で、油溶性のモノマーを、水酸基を有する高分子分散剤を用いてエマルジョン重合して得られる。 An emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 μm, for example, are dispersed in an emulsion state in an aqueous medium. Obtained by emulsion polymerization using a molecular dispersant.
 水酸基を含む高分子分散剤としては、例えばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテル、ポリビニルアルコール等が挙げられ、特にポリビニルアルコールが好ましい。 Examples of the polymer dispersant containing a hydroxyl group include those obtained by copolymerizing 2-ethylhexyl acrylate with an acrylic polymer such as sodium polyacrylate and polyacrylamide, polyethers such as polyethylene glycol and polypropylene glycol, polyvinyl Examples thereof include alcohol, and polyvinyl alcohol is particularly preferable.
 高分子分散剤として使用されるポリビニルアルコールは、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、カチオン変性したポリビニルアルコールやカルボキシル基のようなアニオン性基を有するアニオン変性ポリビニルアルコール、シリル基を有するシリル変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。ポリビニルアルコールは、平均重合度は高い方が各屈折率層を形成する際のクラックの発生を抑制する効果が大きいが、平均重合度が5000以内であると、エマルジョン樹脂の粘度が高くなく、製造時に取り扱いやすい。したがって、平均重合度は300~5000のものが好ましく、1500~5000のものがより好ましく、3000~4500のものが特に好ましい。ポリビニルアルコールの鹸化度は70~100mol%のものが好ましく、80~99.5mol%のものがより好ましい。 Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group is also included. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when forming each refractive index layer when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and the production Sometimes easy to handle. Accordingly, the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500. The saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
 上記の高分子分散剤で乳化重合される樹脂としては、アクリル酸エステル、メタクリル酸エステル、ビニル系化合物、スチレン系化合物といったエチレン系単量体、ブタジエン、イソプレンといったジエン系化合物の単独重合体または共重合体が挙げられ、例えばアクリル系樹脂、スチレン-ブタジエン系樹脂、エチレン-酢酸ビニル系樹脂等が挙げられ、これらの樹脂も各屈折率層を構成する樹脂として使用できる。 Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene. Examples thereof include acrylic resins, styrene-butadiene resins, ethylene-vinyl acetate resins, and these resins can also be used as resins constituting each refractive index layer.
 各屈折率層は、上記以外にも、例えば、特開昭57-74193号公報、同57-87988号公報および同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤、ヒンダードアミン系などの光安定剤等の公知の各種添加剤を含有していてもよい。 In addition to the above, each refractive index layer includes, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No. 42993, 59-52689, 62-280069, 61-242871, and JP-A 4-219266, etc., optical brighteners, sulfuric acid, phosphoric acid, acetic acid , PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents, Tsu DOO agent may contain various known additives such as a light stabilizer such as hindered amine.
 (膜設計)
 本形態の太陽光反射フィルム10、10’は、低屈折率層111および高屈折率層112が積層されたユニットを少なくとも1つ有する紫外線反射積層部11を有する。低屈折率層111および高屈折率層112の総層数の範囲は、100層以下、より好ましくは45層以下である。下限は特に限定されるものではないが、5層以上であることが好ましい。光散乱および反射強度を考慮すると、1つの紫外線反射積層部11あたりの低屈折率層111および高屈折率層112の総層数の範囲は、7~23層であることが好ましい。
(Membrane design)
The solar reflective film 10, 10 ′ of this embodiment has an ultraviolet reflective laminated portion 11 having at least one unit in which a low refractive index layer 111 and a high refractive index layer 112 are laminated. The range of the total number of layers of the low refractive index layer 111 and the high refractive index layer 112 is 100 layers or less, more preferably 45 layers or less. Although a minimum is not specifically limited, It is preferable that it is 5 layers or more. Considering light scattering and reflection intensity, the total number of layers of the low refractive index layer 111 and the high refractive index layer 112 per one ultraviolet reflection laminated portion 11 is preferably 7 to 23 layers.
 また、低屈折率層111と高屈折率層112との屈折率の差を大きく設計することが、少ない層数で所望の光線である紫外線に対する反射率を高くすることができるという観点から好ましい。本形態においては、少なくとも隣接した2層(低屈折率層111および高屈折率層112)の屈折率差が0.1以上であることが好ましく、より好ましくは0.25以上であり、さらに好ましくは0.3以上であり、よりさらに好ましくは0.35以上である。また、上限には特に制限はないが通常1.4以下である。ただし、例えば、最表層はフィルムを保護するための層として形成される場合または最下層が基板との接着性改良層として形成される場合等において、最表層や最下層に関しては、上記好適な屈折率差の範囲外の構成であってもよい。なお、紫外線反射積層部11における各屈折率層間の屈折率差と、必要な層数とについては、市販の光学設計ソフトを用いて計算することができる。 In addition, it is preferable to design a large difference in refractive index between the low refractive index layer 111 and the high refractive index layer 112 from the viewpoint that the reflectance with respect to ultraviolet rays that are desired light beams can be increased with a small number of layers. In this embodiment, the difference in refractive index between at least two adjacent layers (low refractive index layer 111 and high refractive index layer 112) is preferably 0.1 or more, more preferably 0.25 or more, and further preferably Is 0.3 or more, more preferably 0.35 or more. The upper limit is not particularly limited, but is usually 1.4 or less. However, for example, when the outermost layer is formed as a layer for protecting the film or when the lowermost layer is formed as an adhesion improving layer with the substrate, the above-mentioned preferred refraction is performed with respect to the outermost layer and the lowermost layer. A configuration outside the range of the rate difference may be used. In addition, about the refractive index difference between each refractive index layer in the ultraviolet reflective lamination part 11, and a required number of layers, it can calculate using commercially available optical design software.
 低屈折率層111は、屈折率が1.10~1.60であることが好ましく、より好ましくは1.30~1.55である。高屈折率層112は、屈折率が1.80~2.50であることが好ましく、より好ましくは1.80~2.20である。 The low refractive index layer 111 preferably has a refractive index of 1.10 to 1.60, more preferably 1.30 to 1.55. The high refractive index layer 112 preferably has a refractive index of 1.80 to 2.50, more preferably 1.80 to 2.20.
 隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御でき、反射率を上げることができる。ここで、nは屈折率、またdは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御できる。この関係を利用して、各層の屈折率と膜厚を制御して、可視光の透過や、紫外線の反射を制御する。 Since reflection at the interface between adjacent layers depends on the refractive index ratio between layers, the larger this refractive index ratio, the higher the reflectance. In addition, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is a relationship expressed by n · d = wavelength / 4 when viewed as a single layer film, the reflected light is controlled to be strengthened by the phase difference. The reflectance can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By utilizing this optical path difference, reflection can be controlled. Using this relationship, the refractive index and film thickness of each layer are controlled to control the transmission of visible light and the reflection of ultraviolet light.
 また、高屈折率層112の平均厚さdHと、低屈折率層111の平均厚さdLとの関係が、下記式(1)および(2)を満たすことが好ましい。 Further, it is preferable that the relationship between the average thickness dH of the high refractive index layer 112 and the average thickness dL of the low refractive index layer 111 satisfies the following formulas (1) and (2).
 |dH-dL|<40nm   式(1)
 |dH+dL|<150nm  式(2)
 上記式(1)および(2)を満たすことで、紫外域の反射率を高くすることができる。|dH-dL|は25nm以下であることがより好ましい。|dH-dL|の下限は特に限定されないが、光路差を確保するために、5nm以上であることが好ましい。また、|dH+dL|は130nm以下であることがより好ましい。|dH+dL|の下限は通常100nm以上となる。
| DH−dL | <40 nm Formula (1)
| DH + dL | <150 nm Formula (2)
By satisfying the above formulas (1) and (2), the reflectance in the ultraviolet region can be increased. | DH−dL | is more preferably 25 nm or less. The lower limit of | dH−dL | is not particularly limited, but is preferably 5 nm or more in order to ensure an optical path difference. Further, | dH + dL | is more preferably 130 nm or less. The lower limit of | dH + dL | is usually 100 nm or more.
 高屈折率層112の1層あたりの厚み(乾燥後の厚み)は、20~80nmであることが好ましく、30~70nmであることがより好ましく、40~60nmであることがより好ましい。低屈折率層11121層あたりの厚み(乾燥後の厚み)は、40~100nmであることが好ましく、50~90nmであることがより好ましく、60~80nmであることがより好ましい。 The thickness per layer of the high refractive index layer 112 (thickness after drying) is preferably 20 to 80 nm, more preferably 30 to 70 nm, and more preferably 40 to 60 nm. The thickness per layer of the low refractive index layer 11121 (thickness after drying) is preferably 40 to 100 nm, more preferably 50 to 90 nm, and more preferably 60 to 80 nm.
 (紫外線反射積層部の製造方法)
 本形態の太陽光反射フィルム10、10’における紫外線反射積層部11の製造方法は特に制限はないが、大面積かつ大量生産が可能であること、製造が容易であること、および好適には水溶性樹脂を含むことから、塗布による膜形成法が好ましい。また、塗布の方法としては、逐次塗布でも同時重層塗布でもよいが、生産性が向上することから、同時重層塗布であることが好ましい。
(Production method of UV reflection laminated part)
Although there is no restriction | limiting in particular in the manufacturing method of the ultraviolet reflective lamination | stacking part 11 in the sunlight reflective films 10 and 10 'of this form, Large area and mass production are possible, Manufacture is easy, and it is water-soluble suitably. A film forming method by coating is preferable because it contains a functional resin. The coating method may be sequential coating or simultaneous multi-layer coating, but simultaneous multi-layer coating is preferable because productivity is improved.
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791. A slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
 低屈折率層用塗布液、高屈折率層用塗布液および樹脂層塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本形態においては、好適な樹脂として水溶性樹脂を用いることができるために、水系溶媒を用いることができる。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。 The solvent for preparing the coating solution for the low refractive index layer, the coating solution for the high refractive index layer, and the coating solution for the resin layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In this embodiment, since a water-soluble resin can be used as a suitable resin, an aqueous solvent can be used. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノール等のアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン等のアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類等が挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性等から、塗布液の溶媒としては、特に水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒が好ましく、水がより好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment, simplicity of operation, etc., the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
 低屈折率層用塗布液中の樹脂(水溶性樹脂等)の濃度は、0.5~10質量%であることが好ましい。また、低屈折率層用塗布液中の無機酸化物粒子の濃度は、1~50質量%であることが好ましい。高屈折率層用塗布液中の樹脂(水溶性樹脂等)の濃度は、0.5~10質量%であることが好ましい。また、高屈折率層用塗布液中の無機酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the resin (water-soluble resin or the like) in the coating solution for the low refractive index layer is preferably 0.5 to 10% by mass. The concentration of the inorganic oxide particles in the coating solution for the low refractive index layer is preferably 1 to 50% by mass. The concentration of the resin (water-soluble resin or the like) in the coating solution for the high refractive index layer is preferably 0.5 to 10% by mass. The concentration of the inorganic oxide particles in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
 低屈折率層用塗布液、高屈折率層用塗布液の調製方法は、特に制限されず、例えば、無機酸化物粒子、樹脂(水溶性樹脂など)、および必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。必要に応じて、さらに溶媒を用いて、適当な粘度に調製される。 The method for preparing the coating solution for the low refractive index layer and the coating solution for the high refractive index layer is not particularly limited. For example, inorganic oxide particles, resins (such as water-soluble resins), and other additives added as necessary The method of adding an additive and stirring and mixing is mentioned. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
 同時重層塗布を行う際の低屈折率層用塗布液および高屈折率層用塗布液の温度は、スライドビード塗布方式、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 The temperature of the coating solution for the low refractive index layer and the coating solution for the high refractive index layer during simultaneous multilayer coating is preferably 25 to 60 ° C. when using the slide bead coating method or the curtain coating method, and 30 A temperature range of ˜45 ° C. is more preferred.
 同時重層塗布を行う際の低屈折率層用塗布液と高屈折率層用塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲(25~60℃)において、5~100mPa・sの範囲が好ましく、さらに好ましくは10~50mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲(25~60℃)において、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 The viscosity of the coating solution for the low refractive index layer and the coating solution for the high refractive index layer when performing simultaneous multilayer coating is not particularly limited. However, when the slide bead coating method is used, it is preferably in the range of 5 to 100 mPa · s, more preferably in the range of 10 to 50 mPa · s in the preferred temperature range (25 to 60 ° C.) of the above coating solution. is there. When the curtain coating method is used, in the preferable temperature range (25 to 60 ° C.) of the above coating solution, a range of 5 to 1200 mPa · s is preferable, and a range of 25 to 500 mPa · s is more preferable. . If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは3,000~30,000mPa・sであり、最も好ましいのは10,000~30,000mPa・sである。 The viscosity of the coating solution at 15 ° C. is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, still more preferably 3,000 to 30,000 mPa · s, and most preferably 10 , 30,000 to 30,000 mPa · s.
 塗布および乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、図1に示す形態のように樹脂フィルム状支持体12の片面に銀反射層13、腐食防止層14が形成された該樹脂フィルム状支持体12のもう一方の面(光入射面側)上に、あるいは図2に示す形態のように樹脂フィルム状支持体12の片面に銀反射層13、腐食防止層14が形成された当該腐食防止層14上に、低屈折率層用塗布液および高屈折率層用塗布液のいずれか一方の塗布液をこの樹脂フィルム状支持体12或いは腐食防止層14上に塗布、乾燥し、さらに低屈折率層用塗布液および高屈折率層用塗布液の他方の塗布液を前記一方の塗布液からなる塗膜上に塗布、乾燥し、積層膜前駆体(ユニット)を形成する。次に、所望の紫外線反射性能を発現するために必要なユニット数を、前記方法にて逐次塗布、乾燥して積層させて積層膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥するのが好ましく、例えば、40~60℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にするのがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にするのが好ましい。 The conditions for the coating and drying method are not particularly limited. For example, in the case of the sequential coating method, first, the silver reflective layer 13 and the corrosion prevention layer 14 are formed on one surface of the resin film support 12 as shown in FIG. Is formed on the other surface (light incident surface side) of the resin film-like support 12 on which is formed, or on one side of the resin film-like support 12 as shown in FIG. On the corrosion prevention layer 14 on which the layer 14 is formed, either the low refractive index layer coating liquid or the high refractive index layer coating liquid is applied to the resin film-like support 12 or the corrosion prevention layer 14. Then, the other coating liquid of the coating solution for the low refractive index layer and the coating liquid for the high refractive index layer is coated and dried on the coating film made of the one coating liquid, and the laminated film precursor (unit ). Next, the number of units necessary for expressing the desired ultraviolet reflection performance is sequentially applied and dried by the above method to obtain a laminated film precursor. When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. Further, drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section <the temperature of the rate-decreasing drying section. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗布を行う場合の塗布および乾燥方法の条件は、低屈折率層用塗布液、および高屈折率層用塗布液を30~60℃に加温して、樹脂フィルム状支持体12或いは腐食防止層14上に低屈折率層用塗布液と高屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、80℃の温風を吹き付けて乾燥する。乾燥時間は、特に制限されるものではないが、例えば、1~5秒程度が生産性の観点から好ましい。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 The conditions for the coating and drying method when simultaneous multilayer coating is performed are as follows. The coating solution for low refractive index layer and the coating solution for high refractive index layer are heated to 30 to 60 ° C. Alternatively, after the simultaneous application of the low refractive index layer coating liquid and the high refractive index layer coating liquid on the corrosion prevention layer 14, the temperature of the formed coating film is preferably cooled to 1 to 15 ° C. (set) ) And then drying at 10 ° C. or higher is preferred. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air of 80 ° C. The drying time is not particularly limited, but for example, about 1 to 5 seconds is preferable from the viewpoint of productivity. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 [銀反射層13]
 本形態の太陽光反射フィルム10、10’における銀反射層13は、特に可視光~赤外線領域の光;280~2500nmの波長を反射する機能を有する銀もしくは銀を主成分とする層である。銀反射層13は、図1、2に示すように、光入射面側の紫外線反射積層部11よりも下層側に設けられていればよい。ここで、銀を主成分とするとは、銀反射層13を構成する銀含有合金の中で最も銀の含有量が大きければよく、好ましくは銀の含有量が70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、最も好ましくは100質量%である。なお、銀含有合金に含まれる他合金成分としては、製膜時の温度、太陽光反射率、耐食性の観点から、Al、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料が好ましく、よい好ましくはAlである。
[Silver reflective layer 13]
The silver reflective layer 13 in the solar reflective film 10, 10 ′ of this embodiment is a layer mainly composed of silver or silver having a function of reflecting light in the visible to infrared region; a wavelength of 280 to 2500 nm. As shown in FIGS. 1 and 2, the silver reflecting layer 13 only needs to be provided on the lower layer side than the ultraviolet reflecting laminated portion 11 on the light incident surface side. Here, the main component of silver is that the silver content in the silver-containing alloy constituting the silver reflecting layer 13 is the largest, preferably the silver content is 70% by mass or more, more preferably 80%. It is 90 mass% or more, More preferably, it is 90 mass% or more, Most preferably, it is 100 mass%. The other alloy components contained in the silver-containing alloy are elements composed of Al, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au from the viewpoint of film formation temperature, solar reflectance, and corrosion resistance. A material containing any element selected from the group is preferable, and Al is preferable.
 銀反射層13の表面反射率(詳しくは、可視光~赤外線領域の反射率;280~2500nmの波長の反射率)は好ましくは80%以上、さらに好ましくは90%以上である。銀反射層13の上記表面反射率は、市販の分光光度計を用いて測定することができる。 The surface reflectance of the silver reflective layer 13 (specifically, the reflectance in the visible light to infrared region; the reflectance at a wavelength of 280 to 2500 nm) is preferably 80% or more, and more preferably 90% or more. The surface reflectance of the silver reflective layer 13 can be measured using a commercially available spectrophotometer.
 また、銀反射層13上にSiO、TiO等の金属酸化物からなる層(図1、2中には図示せず)を設けてさらに反射率を向上させてもよい。 Further, a layer made of a metal oxide such as SiO 2 or TiO 2 (not shown in FIGS. 1 and 2) may be provided on the silver reflecting layer 13 to further improve the reflectance.
 本発明における銀反射層13の形成法としては、例えば、湿式法及び乾式法のどちらも使用することができる。 As the method for forming the silver reflecting layer 13 in the present invention, for example, both a wet method and a dry method can be used.
 湿式法とは、めっき法または金属錯体溶液塗布法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例を挙げると銀鏡反応や、銀錯体インクの焼成(詳しくは銀錯体化合物を含有する銀コーティング液組成物を塗布して形成した塗布膜の焼成)による銀層形成等がある。 The wet method is a general term for a plating method or a metal complex solution coating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction and silver layer formation by firing of a silver complex ink (specifically, firing of a coating film formed by applying a silver coating liquid composition containing a silver complex compound).
 一方、乾式法とは、真空成膜法の総称であり、具体的には、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法等がある。とりわけ、本発明には連続的に成膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。すなわち、本発明の太陽光反射フィルム10の製造方法においては、銀反射層13を銀の蒸着により形成することが好ましい。 On the other hand, the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method. Etc. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. That is, in the manufacturing method of the sunlight reflective film 10 of this invention, it is preferable to form the silver reflection layer 13 by vapor deposition of silver.
 銀反射層13の厚さは、太陽光反射率、耐食性等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the silver reflecting layer 13 is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of sunlight reflectance, corrosion resistance, and the like.
 (気化・脱離しうる配位子を有する銀錯体化合物)
 銀反射層13を形成する際に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより銀反射層13を形成するようにしてもよい。
(Silver complex compound having a ligand that can be vaporized and eliminated)
When the silver reflective layer 13 is formed, the silver reflective layer 13 may be formed by heating and firing a coating film containing a silver complex compound from which a ligand can be vaporized and desorbed.
 「気化・脱離しうる配位子を有する銀錯体化合物」とは、溶液中では銀が安定に溶解するための配位子を有するが、溶媒を除去し、加熱焼成することによって、配位子が熱分解し、COや低分子量のアミン化合物となり、気化・脱離し、金属銀のみが残存することのできる銀錯体化合物のことをいう。 “Silver complex compound having a ligand that can be vaporized / desorbed” has a ligand for stably dissolving silver in a solution, but the ligand is removed by removing the solvent and heating and firing. Is a silver complex compound that can be thermally decomposed into CO 2 or a low molecular weight amine compound, vaporized / desorbed, and only metallic silver remains.
 このような銀錯体化合物およびその製造方法については、例えば、公知である特開2012-137579号公報の段落「0064」~「0089」に記載の銀錯体化合物およびその製造方法を適宜用いることができる。 As for such a silver complex compound and a method for producing the same, for example, a silver complex compound and a method for producing the same described in paragraphs “0064” to “0089” of JP-A-2012-137579, which are publicly known, can be used as appropriate. .
 [腐食防止層14]
 腐食防止層14は、空気中の水分や化学物質等の銀反射層13(ミラー面)への侵入を防止(ひいては銀反射層13の銀や銀含有合金材料(特に銀)の腐食を防止)し、更には外部からの機械的な圧力、例えば衝撃や引っ掻き等から保護する目的で設けられている。即ち、腐食防止層14により、銀反射層13の銀の腐食を防止して太陽光の反射を維持することができる。その結果、太陽光反射フィルム10、10’の耐久性を向上することができる。上記目的から、腐食防止層14は、銀反射層3に隣接して設けられているのが望ましい。但し、上記目的を達成し得る範囲内であれば、銀反射層13から離して(隣接することなく)設けられていてもよく、そうした場合にも銀の腐食防止剤を含有していることが好ましい。
[Corrosion prevention layer 14]
The corrosion prevention layer 14 prevents intrusion of moisture and chemicals in the air into the silver reflection layer 13 (mirror surface) (and thus prevents the silver reflection layer 13 from corroding silver and silver-containing alloy materials (particularly silver)). Furthermore, it is provided for the purpose of protection from external mechanical pressure such as impact and scratching. That is, the corrosion prevention layer 14 can prevent the silver reflection of the silver reflection layer 13 and maintain the reflection of sunlight. As a result, the durability of the sunlight reflecting films 10, 10 ′ can be improved. For the above purpose, the corrosion prevention layer 14 is desirably provided adjacent to the silver reflective layer 3. However, as long as it is within the range that can achieve the above object, it may be provided apart from (without adjoining) the silver reflecting layer 13, and in such a case, it may contain a silver corrosion inhibitor. preferable.
 腐食防止層14は、1層のみからなっていてもよいし、複数層からなっていてもよい。 The corrosion prevention layer 14 may be composed of only one layer or may be composed of a plurality of layers.
 (腐食防止層14a)
 複数層からなる腐食防止層14を設ける場合、銀反射層13と接する面上に設けられる腐食防止層14aとしては、上記目的を達成した上で、腐食防止層14a上に設けられる腐食防止層14bと銀反射層13とを密着させるために設けられる層である。従って、腐食防止層14aは上記腐食防止層14bと銀反射層13とを密着させる密着性、及び銀反射層13が本来有する高い反射性能を引き出すための平滑性が必要である。また、図2に示す態様では、銀反射層13よりも光入射面側に位置するため、透明性(特に太陽光透過率)に優れるものが望ましい。
(Corrosion prevention layer 14a)
When the corrosion prevention layer 14 composed of a plurality of layers is provided, as the corrosion prevention layer 14a provided on the surface in contact with the silver reflective layer 13, the corrosion prevention layer 14b provided on the corrosion prevention layer 14a after achieving the above-mentioned purpose. And the silver reflection layer 13. Therefore, the corrosion prevention layer 14a needs to have an adhesive property for bringing the corrosion prevention layer 14b and the silver reflection layer 13 into close contact with each other and a smoothness for drawing out the high reflection performance that the silver reflection layer 13 originally has. Moreover, in the aspect shown in FIG. 2, since it is located in the light-incidence surface side rather than the silver reflection layer 13, what is excellent in transparency (especially sunlight transmittance | permeability) is desirable.
 腐食防止層14aに使用するバインダー(樹脂)は、上記の密着性及び平滑性、(更には透明性)の条件を満足するものであれば特に制限はなく、後述するバインダー(樹脂)の中から適宜選択することができる。中でも、アクリル、シリコーン、オレフィン、ポリエステルが好ましい。また、腐食防止層14aは、後述する腐食防止剤が適量含有される。 The binder (resin) used for the corrosion prevention layer 14a is not particularly limited as long as it satisfies the above conditions of adhesion, smoothness, and (and further transparency). It can be selected appropriately. Of these, acrylic, silicone, olefin, and polyester are preferable. Further, the corrosion prevention layer 14a contains an appropriate amount of a later-described corrosion inhibitor.
 腐食防止層14aの厚さは、0.05~5μmが好ましく、より好ましくは0.1~3μmである。この範囲を満たすことにより、密着性を保ちつつ、銀反射層13表面(銀蒸着面)の凹凸を覆い隠すことができ、平滑性を良好にでき、腐食防止層14aの硬化も十分に行えるため、結果として本形態の太陽光反射フィルム10の反射率を高めることが可能となる。 The thickness of the corrosion prevention layer 14a is preferably 0.05 to 5 μm, more preferably 0.1 to 3 μm. By satisfying this range, it is possible to cover the unevenness of the surface of the silver reflecting layer 13 (silver vapor deposition surface) while maintaining adhesion, to improve smoothness, and to sufficiently cure the corrosion prevention layer 14a. As a result, the reflectance of the solar reflective film 10 of the present embodiment can be increased.
 (腐食防止層14b)
 複数層からなる腐食防止層14を設ける場合、銀反射層13と腐食防止層14aを介して設けられる腐食防止層14bとしては、上記目的を達成した上で、特に紫外線反射積層部との密着性を維持させるために設けられる層である。従って、腐食防止層14bは紫外線反射積層部との密着性を良好にするための密着性、コーティングによる紫外線反射積層部が均一に塗布可能になるための平滑性と親水性が必要である。
(Corrosion prevention layer 14b)
In the case of providing the corrosion prevention layer 14 composed of a plurality of layers, the corrosion prevention layer 14b provided via the silver reflection layer 13 and the corrosion prevention layer 14a achieves the above-mentioned purpose, and in particular, adherence to the ultraviolet reflection laminated portion. It is a layer provided for maintaining the above. Accordingly, the corrosion prevention layer 14b needs to have good adhesion to improve the adhesion to the ultraviolet reflective laminate, and smoothness and hydrophilicity to enable uniform application of the ultraviolet reflective laminate by coating.
 腐食防止層14bに使用するバインダー(樹脂)は、上記した腐食防止層本来の目的を達成ことができるものであれば特に制限はなく、後述するバインダー(樹脂)の中から適宜選択することができる。中でも、水酸基やカルボキシル基をもつアクリル樹脂が好ましい。また、腐食防止層14bも、後述する腐食防止剤が適量含有される。 The binder (resin) used for the corrosion prevention layer 14b is not particularly limited as long as the original purpose of the corrosion prevention layer can be achieved, and can be appropriately selected from binders (resins) described later. . Among them, an acrylic resin having a hydroxyl group or a carboxyl group is preferable. Further, the corrosion prevention layer 14b also contains an appropriate amount of a later-described corrosion inhibitor.
 腐食防止層14bの厚さは、0.05~5μmが好ましく、より好ましくは0.1~3μmである。この範囲を満たすことにより、密着性を保ちつつ、腐食防止層14bの硬化も十分に行えるため、結果として空気中の水分や化学物質等の銀反射層13(ミラー面)への侵入を防止(ひいては銀反射層13の銀や銀含有合金材料(特に銀)の腐食を防止)し、更には外部からの機械的な圧力、例えば衝撃や引っ掻き等から保護することができ、本形態の太陽光反射フィルム10の耐侯性(耐久性)、耐傷性、反射率を高めることが可能となる。 The thickness of the corrosion prevention layer 14b is preferably 0.05 to 5 μm, more preferably 0.1 to 3 μm. By satisfying this range, the corrosion prevention layer 14b can be sufficiently cured while maintaining adhesion, and as a result, intrusion of moisture and chemical substances in the air into the silver reflective layer 13 (mirror surface) is prevented ( As a result, the silver reflecting layer 13 can be protected from silver and silver-containing alloy materials (especially silver) and further protected from external mechanical pressure, such as impact and scratches. It becomes possible to improve the weather resistance (durability), scratch resistance, and reflectance of the reflective film 10.
 腐食防止層14の厚さ(2層以上の場合は合計厚さ)は、1~10μmが好ましく、より好ましくは2~8μmである。腐食防止層14の厚さが1μm以上であれば、空気中の水分や化学物質等の銀反射層13(ミラー面)への侵入、更には外部からの機械的な圧力、例えば衝撃や引っ掻き等から保護することができる。腐食防止層14の厚さが10μm以下であれば、フレキシブル性を十分に維持することができるため、クラックや割れを効果的に防止することができる。 The thickness of the corrosion prevention layer 14 (when there are two or more layers) is preferably 1 to 10 μm, more preferably 2 to 8 μm. If the thickness of the corrosion prevention layer 14 is 1 μm or more, moisture in the air or chemical substances enter the silver reflecting layer 13 (mirror surface), and mechanical pressure from the outside, for example, impact or scratching, etc. Can be protected from. If the thickness of the corrosion prevention layer 14 is 10 μm or less, the flexibility can be sufficiently maintained, so that cracks and cracks can be effectively prevented.
 腐食防止層14は、屋外環境下で長期にわたって設置しても銀反射層13との高い膜密着性を保つことができ、上記目的を達成でき。更に図2に示す態様のように水溶性高分子(=紫外線反射積層部11の構成部材)が腐食防止層14の上に形成できるように、銀反射層13を被覆する腐食防止層14の水接触角が、90°未満であるのが好ましく、より好ましくは85~40°、更に好ましくは80~40°、特に好ましくは75~40°の範囲である。腐食防止層14の水接触角は、既存の測定装置を用いて測ることができ、例えば、協和界面化学株式会社製のDM300等を使用して計測することができる。 The corrosion prevention layer 14 can maintain high film adhesion with the silver reflective layer 13 even if it is installed over a long period of time in an outdoor environment, and the above object can be achieved. Further, as shown in FIG. 2, the water in the corrosion prevention layer 14 that covers the silver reflection layer 13 is formed so that a water-soluble polymer (= a constituent member of the ultraviolet reflection laminated portion 11) can be formed on the corrosion prevention layer 14. The contact angle is preferably less than 90 °, more preferably 85 to 40 °, even more preferably 80 to 40 °, and particularly preferably 75 to 40 °. The water contact angle of the corrosion prevention layer 14 can be measured using an existing measuring apparatus, and can be measured using, for example, DM300 manufactured by Kyowa Interface Chemical Co., Ltd.
 腐食防止層14は、屋外環境下で長期にわたって設置しても銀反射層13との高い膜密着性を保つことができ、上記目的を達成できるように、主にバインダー(樹脂)から構成されており、更に銀反射層13の銀や銀含有合金材料と同種の金属(特に銀)の腐食防止剤を含む。このうち、腐食防止層14のバインダー(樹脂)としては、例えば、以下の樹脂を好ましく用いることができる。セルロースエステル、ポリエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系、ポリカーボネート、ノルボルネン系、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル樹脂等を挙げることができる。中でも、アクリル樹脂、ポリエステルが好ましい。 The corrosion prevention layer 14 is mainly composed of a binder (resin) so that it can maintain high film adhesion with the silver reflective layer 13 even when installed for a long time in an outdoor environment, and can achieve the above-mentioned purpose. Further, it contains a corrosion inhibitor of the same metal as the silver or silver-containing alloy material of the silver reflecting layer 13 (particularly silver). Among these, as the binder (resin) of the corrosion prevention layer 14, for example, the following resins can be preferably used. Cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyethylene naphthalate, polyester, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose Acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyether ketone, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, An acrylic resin etc. can be mentioned. Of these, acrylic resin and polyester are preferable.
 (腐食防止剤)
 腐食防止層14の腐食防止剤としては、銀反射層13の銀や銀含有合金材料の腐食を防止する観点から、銀反射層13の銀や銀含有合金材料と同種の金属(特に銀、更に必要に応じてAl、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素)の腐食防止剤、特に銀に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属(特に銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.001~0.1g/mの範囲内であることが好ましい。
(Corrosion inhibitor)
As a corrosion inhibitor for the corrosion prevention layer 14, from the viewpoint of preventing corrosion of silver and the silver-containing alloy material of the silver reflection layer 13, the same kind of metal as the silver and silver-containing alloy material of the silver reflection layer 13 (particularly silver, If necessary, it has a corrosion inhibitor for any element selected from the group consisting of Al, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au), particularly an adsorbing group for silver. preferable. Here, “corrosion” refers to a phenomenon in which a metal (particularly silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004). . The optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.001 to 0.1 g / m 2 .
 銀反射層13の銀や銀含有合金材料と同種の金属(特に銀、更に必要に応じてAl、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素)の腐食防止剤としては、シリコーン変性樹脂、シランカップリング剤、チオール基を複数含有する化合物及び以下に挙げる銀に対する吸着性基を有する腐食防止剤から選ばれることが望ましい。 The same kind of metal as the silver or silver-containing alloy material of the silver reflecting layer 13 (in particular, silver, and if necessary, selected from the element group consisting of Al, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au) The corrosion inhibitor of any element) is preferably selected from a silicone-modified resin, a silane coupling agent, a compound containing a plurality of thiol groups, and a corrosion inhibitor having an adsorbing group for silver described below.
 銀に対する吸着性基を有する腐食防止剤としては、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。シリコーン変性樹脂としては特に限定されない。 Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. The silicone-modified resin is not particularly limited.
 アミン類およびその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する化合物としては、N-ブチル-2,5-ジメチルピロール,N-フェニル-2,5ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール,N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ3’5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどが挙げられる。あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) benzotriazole 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol], 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, and the like. Alternatively, a mixture thereof can be mentioned.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of compounds having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4- Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc. These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
 チオ尿素類としては、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2‐エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン、トリメチロールプロパントリス(β-チオプロピオネート)等、あるいはこれらの混合物が挙げられる。 As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be used by adding the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, trimethylolpropane tris (β-thiopropionate) or the like Of the mixture.
 ナフタレン系としては、チオナリド等が挙げられる。 Examples of naphthalene-based compounds include thionalide.
 (銀反射層13の隣接層に用いられうる含窒素環状化合物)
 銀反射層13を形成する際に、上述した配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより銀反射層13を形成する場合、銀反射層13の隣接層(例えば、上記した腐食防止層14、銀反射層13と腐食防止層14との間に適用され得るアンカー層(図示せず)など)に含窒素環状化合物を含有することが好ましい。含窒素環状化合物の銀反射層13の隣接層への含有量は、0.001~5質量%であることが好ましく、より好ましくは0.01~1質量%である。含窒素環状化合物の銀反射層13の隣接層への含有量が0.001質量%以上であれば、銀の防錆および腐食防止機能を有効に発現することができる。含窒素環状化合物の銀反射層13の隣接層への含有量が5質量%以下であれば、着色することなく、隣接層の脆化防止機能を有効に発現することができる。当該含窒素環状化合物としては、大別して、銀に対する吸着性基を有する腐食防止剤と酸化防止剤が好ましく用いられる。
(Nitrogen-containing cyclic compound that can be used in the adjacent layer of the silver reflective layer 13)
When forming the silver reflective layer 13, when the silver reflective layer 13 is formed by heating and baking a coating film containing a silver complex compound from which the above-described ligand can be vaporized and desorbed, the silver reflective layer 13 is adjacent. It is preferable to contain a nitrogen-containing cyclic compound in a layer (for example, the above-described corrosion prevention layer 14, an anchor layer (not shown) that can be applied between the silver reflection layer 13 and the corrosion prevention layer 14). The content of the nitrogen-containing cyclic compound in the adjacent layer of the silver reflecting layer 13 is preferably 0.001 to 5% by mass, more preferably 0.01 to 1% by mass. When the content of the nitrogen-containing cyclic compound in the adjacent layer of the silver reflecting layer 13 is 0.001% by mass or more, the rust prevention and corrosion prevention functions of silver can be effectively expressed. When the content of the nitrogen-containing cyclic compound in the adjacent layer of the silver reflective layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring. As the nitrogen-containing cyclic compound, broadly, a corrosion inhibitor and an antioxidant having an adsorptive group for silver are preferably used.
 銀に対する吸着性基を有する腐食防止剤において、含窒素環状化合物を用いることで、所望の銀腐食防止効果を得ることができる。かかる銀に対する吸着性基を有する腐食防止剤の銀反射層13の隣接層への含有量は、0.001~5質量%であることが好ましく、より好ましくは0.01~1質量%である。銀に対する吸着性基を有する腐食防止剤の銀反射層13の隣接層への含有量が0.001質量%以上であれば、銀の腐食防止機能を有効に発現することができる。銀に対する吸着性基を有する腐食防止剤の銀反射層13の隣接層への含有量が5質量%以下であれば、着色することなく、隣接層の脆化防止機能を有効に発現することができる。例えば、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物の少なくとも一種又はこれらの混合物から選ばれることが望ましい。 In the corrosion inhibitor having an adsorptive group for silver, a desired silver corrosion prevention effect can be obtained by using a nitrogen-containing cyclic compound. The content of the corrosion inhibitor having an adsorptive group for silver in the adjacent layer of the silver reflective layer 13 is preferably 0.001 to 5% by mass, more preferably 0.01 to 1% by mass. . If the content of the corrosion inhibitor having an adsorptive group for silver in the adjacent layer of the silver reflection layer 13 is 0.001% by mass or more, the silver corrosion prevention function can be effectively expressed. If the content of the corrosion inhibitor having an adsorptive group for silver in the adjacent layer of the silver reflecting layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring. it can. For example, it is desirable to be selected from at least one of a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, a compound having an indazole ring, or a mixture thereof.
 ピロール環を有する化合物としては、上記した[腐食防止層14]の(腐食防止剤)の項で列挙した化合物のうち「ピロール環を有する化合物」に具体的に例示した化合物を用いることができる。 As the compound having a pyrrole ring, compounds specifically exemplified in “Compounds having a pyrrole ring” among the compounds listed in the section of (Corrosion inhibitor) of [Corrosion prevention layer 14] described above can be used.
 トリアゾール環を有する化合物としては、上記した[腐食防止層14]の(腐食防止剤)の項で列挙した化合物のうち「トリアゾール環を有する化合物」に具体的に例示した化合物を用いることができる。 As the compound having a triazole ring, compounds specifically exemplified as “compound having a triazole ring” among the compounds listed in the section of (Corrosion inhibitor) of [Corrosion prevention layer 14] can be used.
 ピラゾール環を有する化合物としては、上記した[腐食防止層14]の(腐食防止剤)の項で列挙した化合物のうち「ピラゾール環を有する化合物」に具体的に例示した化合物を用いることができる。 As the compound having a pyrazole ring, compounds specifically exemplified as “compound having a pyrazole ring” among the compounds listed in the section of (Corrosion inhibitor) of the above [Corrosion prevention layer 14] can be used.
 イミダゾール環を有する化合物としては、上記した[腐食防止層14]の(腐食防止剤)の項で列挙した化合物のうち「イミダゾール環を有する化合物」に具体的に例示した化合物を用いることができる。 As the compound having an imidazole ring, compounds specifically exemplified as “compound having an imidazole ring” among the compounds listed in the section of (Corrosion inhibitor) of [Corrosion prevention layer 14] described above can be used.
 インダゾール環を有する化合物としては、上記した[腐食防止層14]の(腐食防止剤)の項で列挙した化合物のうち「インダゾール環を有する化合物」に具体的に例示した化合物を用いることができる。 As the compound having an indazole ring, compounds specifically exemplified as “compound having an indazole ring” among the compounds listed in the section of (Corrosion inhibitor) of the above [Corrosion prevention layer 14] can be used.
 (酸化防止剤)
 本形態の太陽光反射フィルム10における銀反射層13の隣接層(例えば、上記した腐食防止層14、銀反射層13と腐食防止層14との間に適用され得るアンカー層(図示せず)など)に含まれる含窒素環状化合物としては、酸化防止剤を用いることもできる。かかる酸化防止剤の銀反射層13の隣接層への含有量が0.001質量%以上であれば、銀の酸化防止機能を有効に発現することができる。酸化防止剤の銀反射層13の隣接層への含有量が5質量%以下であれば、着色することなく、隣接層の脆化防止機能を有効に発現することができる。
(Antioxidant)
Adjacent layers of the silver reflective layer 13 in the solar reflective film 10 of this embodiment (for example, the above-described corrosion prevention layer 14, an anchor layer (not shown) that can be applied between the silver reflection layer 13 and the corrosion prevention layer 14), and the like. As the nitrogen-containing cyclic compound contained in), an antioxidant can also be used. When the content of the antioxidant in the adjacent layer of the silver reflective layer 13 is 0.001% by mass or more, the silver antioxidant function can be effectively expressed. When the content of the antioxidant in the adjacent layer of the silver reflective layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring.
 酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤及びホスファイト系酸化防止剤を使用することが好ましい。

 フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3’、5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3’、5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネー〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。
As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.

Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate ,bird Tylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-di-methyl-2- [β- (3-t-butyl -4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えば、ジステアリル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等が挙げられる。 Examples of the thiol antioxidant include distearyl-3,3'-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
 ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレン-ジホスホナイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
 なお、上記酸化防止剤と下記の光安定剤を併用することもできる。かかる光安定剤の銀反射層13の隣接層への含有量が0.001質量%以上であれば、光安定化機能を有効に発現することができる。光安定剤の銀反射層13の隣接層への含有量が5質量%以下であれば、着色することなく、隣接層の脆化防止機能を有効に発現することができる。 In addition, the above antioxidant and the following light stabilizer can be used in combination. When the content of the light stabilizer in the adjacent layer of the silver reflective layer 13 is 0.001% by mass or more, the light stabilizing function can be effectively expressed. When the content of the light stabilizer in the adjacent layer of the silver reflective layer 13 is 5% by mass or less, the embrittlement preventing function of the adjacent layer can be effectively expressed without coloring.
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2、6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。 Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-Tetrame Lupiperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 その他ニッケル系紫外線安定剤として、〔2,2’-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等も使用することが可能である。 Other nickel-based UV stabilizers include [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
 特にヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、又は1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。 In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, or A condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
 [樹脂フィルム状支持体12]
 樹脂フィルム状支持体12としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
[Resin film-like support 12]
As the resin film-like support 12, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. In particular, it is preferable to use a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
 樹脂フィルム状支持体12は、図2に示すように、銀反射層13よりも光入射側から遠い位置に設ける場合には、紫外線が樹脂フィルム状支持体12に到達しにくい。特に、樹脂フィルム状支持体12よりも光入射側にある紫外線反射部11により紫外線を反射させることで、紫外線が、樹脂フィルム状支持体12に、より到達しにくい。従って、樹脂フィルム状支持体12は、紫外線に対して劣化しやすい樹脂であっても用いることが可能となる。そのような観点から、樹脂フィルム状支持体12として、ポリエチレンテレフタレート等のポリエステルフィルムを用いることが可能となる。 As shown in FIG. 2, when the resin film-like support 12 is provided at a position farther from the light incident side than the silver reflection layer 13, ultraviolet rays hardly reach the resin film-like support 12. In particular, ultraviolet rays are less likely to reach the resin film-like support 12 by reflecting the ultraviolet rays by the ultraviolet reflecting portion 11 on the light incident side of the resin film-like support 12. Therefore, the resin film-like support 12 can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin film-like support 12.
 本形態の太陽光反射フィルム10、10’では、紫外線の反射機能に優れる紫外線反射部11を光入射側に設けることから、図1に示すように、樹脂フィルム状支持体12の片面(光入射面側)に紫外線反射部11を設けても紫外線が、樹脂フィルム状支持体12に到達しにくいことから、従来公知の種々の樹脂フィルムを用いることができる。特に樹脂フィルム状支持体12の光入射面側とは反対側に銀反射層13を設ける場合には、当該樹脂フィルム状支持体12が太陽光(特に可視光~赤外線領域の光線)を透過させることのできる樹脂フィルムを用いるのが望ましい。かかる観点から、樹脂フィルム状支持体12の太陽光(特に可視光~赤外線領域の光線;400~2500nmの波長)の透過率は、70%以上が好ましく、より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上の範囲である。太陽光(400~2500nmの波長)の透過率は、積分球を持つ分光光度計により測定することができる。 In the sunlight reflecting films 10 and 10 ′ of this embodiment, since the ultraviolet reflecting portion 11 having an excellent ultraviolet reflecting function is provided on the light incident side, as shown in FIG. Since the ultraviolet rays hardly reach the resin film-like support 12 even if the ultraviolet reflecting part 11 is provided on the surface side), various conventionally known resin films can be used. In particular, when the silver reflective layer 13 is provided on the side opposite to the light incident surface side of the resin film-like support 12, the resin film-like support 12 transmits sunlight (particularly, light in the visible to infrared region). It is desirable to use a resin film that can be used. From such a viewpoint, the transmittance of sunlight (particularly visible light to infrared light; wavelength of 400 to 2500 nm) of the resin film-like support 12 is preferably 70% or more, more preferably 80% or more, and still more preferably. It is 90% or more, particularly preferably 95% or more. The transmittance of sunlight (wavelength of 400 to 2500 nm) can be measured with a spectrophotometer having an integrating sphere.
 樹脂フィルム状支持体12の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~250μmの範囲内である。好ましくは20~200μmである。 The thickness of the resin film-like support 12 is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 μm. The thickness is preferably 20 to 200 μm.
 [アンカー層(図示せず)]
 本形態の太陽光反射フィルム10、10’では、アンカー層(図1、2中に図示せず)を設けてもよい。かかるアンカー層は、樹脂からなり、樹脂フィルム状支持体12と銀反射層13とを密着させるために設けられる層である。従って、アンカー層は樹脂フィルム状支持体12と銀反射層13とを密着させる密着性、銀反射層13を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び銀反射層13が本来有する高い反射性能を引き出すための平滑性、透明性(太陽光透過率)が必要である。
[Anchor layer (not shown)]
In the solar reflective film 10, 10 ′ of this embodiment, an anchor layer (not shown in FIGS. 1 and 2) may be provided. Such an anchor layer is made of a resin and is a layer provided for closely attaching the resin film-like support 12 and the silver reflecting layer 13. Therefore, the anchor layer has an adhesion property that allows the resin film-like support 12 and the silver reflective layer 13 to adhere to each other, heat resistance that can withstand heat when the silver reflective layer 13 is formed by a vacuum deposition method, and the silver reflective layer 13. Need to have smoothness and transparency (sunlight transmittance) in order to bring out the high reflection performance inherently.
 アンカー層に使用する樹脂は、上記の密着性、耐熱性、透明性及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂又はポリエステル系樹脂とアクリル系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, transparency, and smoothness. Polyester resin, acrylic resin, melamine resin, epoxy resin , Polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin or a polyester resin A mixed resin of acrylic resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
 アンカー層の厚さは、0.01~3μmが好ましく、より好ましくは0.1~2μmである。この範囲を満たすことにより、密着性を保ちつつ、樹脂フィルム状支持体11表面の凹凸を覆い隠すことができ、平滑性を良好にでき、アンカー層の硬化も十分に行えるため、結果として本形態の太陽光反射フィルム10の反射率を高めることが可能となる。 The thickness of the anchor layer is preferably 0.01 to 3 μm, more preferably 0.1 to 2 μm. By satisfying this range, the unevenness of the surface of the resin film-like support 11 can be concealed while maintaining the adhesiveness, smoothness can be improved, and the anchor layer can be sufficiently cured. It becomes possible to increase the reflectance of the solar reflective film 10.
 また、アンカー層には、上述の上記した[腐食防止層14]の(腐食防止剤)に記載した腐食防止剤を含有させることが好ましい。 The anchor layer preferably contains the corrosion inhibitor described in the above (Corrosion prevention layer 14) (Corrosion prevention layer).
 図1に示すように樹脂フィルム状支持体12の光入射面側とは反対側に銀反射層13を設ける場合には、当該樹脂フィルム状支持体12と銀反射層13の間に設けられるアンカー層も太陽光(特に可視光~赤外線領域の光線)を透過し得るのが望ましい。かかる観点から、アンカー層の太陽光(特に可視光~赤外線領域の光線;400~2500nmの波長)の透過率は、70%以上が好ましく、より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上の範囲である。 As shown in FIG. 1, when the silver reflective layer 13 is provided on the side opposite to the light incident surface side of the resin film support 12, the anchor provided between the resin film support 12 and the silver reflective layer 13. It is desirable that the layer can also transmit sunlight (particularly visible light to infrared light). From such a viewpoint, the transmittance of sunlight (particularly, visible light to infrared light; wavelength of 400 to 2500 nm) of the anchor layer is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, Especially preferably, it is 95% or more of range.
 尚、アンカー層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 In addition, the formation method of an anchor layer can use conventionally well-known coating methods, such as a gravure coat method, a reverse coat method, and a die coat method.
 [粘着層15]
 本形態の太陽光反射フィルム10、10’は、後述の支持基材(太陽光反射体の構成部材である自己支持性の基材)に接合するための粘着層15を有することが好ましい。粘着層15を構成する粘着剤としては、特に制限されず、例えば、アクリル系粘着剤、シリコン系粘着剤、ウレタン系粘着剤、ポリビニルブチラール系粘着剤、エチレン-酢酸ビニル系粘着剤等を例示することができる。粘着層15は、太陽光反射フィルム10、10’において、太陽光入射面側とは反対の面(最表面;但し離型材16は除く)に形成されていればよい。
[Adhesive layer 15]
It is preferable that the solar reflective film 10, 10 ′ of this embodiment has an adhesive layer 15 for bonding to a support base material (a self-supporting base material that is a constituent member of the solar reflector) described later. The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 15 is not particularly limited, and examples thereof include acrylic pressure-sensitive adhesives, silicon pressure-sensitive adhesives, urethane pressure-sensitive adhesives, polyvinyl butyral pressure-sensitive adhesives, and ethylene-vinyl acetate pressure-sensitive adhesives. be able to. The adhesive layer 15 may be formed on the surface opposite to the sunlight incident surface side (outermost surface; except for the release material 16) in the sunlight reflecting films 10, 10 ′.
 アクリル系粘着剤としては、溶剤系およびエマルジョン系どちらでも良いが、粘着力等を高め易いことから、溶剤系粘着剤が好ましく、その中でも溶液重合で得られたものが好ましい。このような溶剤系アクリル系粘着剤を溶液重合で製造する場合の原料としては、例えば、骨格となる主モノマーとして、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステル、凝集力を向上させるためのコモノマーとして、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等、さらに架橋を促進し、安定した粘着力を付与させ、また水の存在下でもある程度の粘着力を保持するために官能基含有モノマーとして、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等が挙げられる。該積層フィルムの粘着剤層には、主ポリマーとして、特に高タック性を要するため、ブチルアクリレート等のような低いガラス転移温度(Tg)を有するものが特に有用である。 The acrylic pressure-sensitive adhesive may be either solvent-based or emulsion-based, but is preferably a solvent-based pressure-sensitive adhesive because it is easy to increase the adhesive strength and the like, and among them, those obtained by solution polymerization are preferable. Examples of the raw material for producing such a solvent-based acrylic pressure-sensitive adhesive by solution polymerization include, for example, acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate as main monomers serving as a skeleton, As a comonomer to improve cohesive strength, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote crosslinking, to give stable adhesive strength, and to maintain a certain level of adhesive strength even in the presence of water Examples of the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycidyl methacrylate. Since the adhesive layer of the laminated film requires a particularly high tack as the main polymer, those having a low glass transition temperature (Tg) such as butyl acrylate are particularly useful.
 この粘着層15には、添加剤として、例えば安定剤、界面活性剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を含有させることもできる。 For example, a stabilizer, a surfactant, an ultraviolet absorber, a flame retardant, an antistatic agent, an antioxidant, a heat stabilizer, a lubricant, a filler, a coloring agent, an adhesion modifier, and the like are added to the adhesive layer 15 as additives. It can also be contained.
 粘着層15の厚みは1μm~100μmが好ましく、より好ましくは3~50μmである。1μm以上であれば粘着性が向上する傾向にあり、十分な粘着力が得られる。100μmよりも厚い場合には粘着層の局所的な収縮や膨張に影響され銀反射層の平面性が失われる傾向にあるため、100μm以下が望ましい。 The thickness of the adhesive layer 15 is preferably 1 μm to 100 μm, more preferably 3 to 50 μm. If it is 1 micrometer or more, there exists a tendency for adhesiveness to improve and sufficient adhesive force is acquired. When the thickness is larger than 100 μm, the flatness of the silver reflecting layer tends to be lost due to the local shrinkage and expansion of the adhesive layer, so that it is preferably 100 μm or less.
 [剥離材16]
 本形態の太陽光反射フィルム10、10’は、粘着層15の光入射側と逆側に剥離材16を有していてもよい。例えば、太陽光反射フィルム10の出荷時には剥離材16が粘着層15に張り付いた状態で出荷し、剥離材16から粘着層15を有する太陽光反射フィルム10を剥離し、太陽光反射体の構成部材である自己支持性の基材(支持基材)に貼り合わせて太陽光反射体、更には太陽光反射装置を形成することができる。
[Release material 16]
The solar reflective film 10, 10 ′ of this embodiment may have a release material 16 on the side opposite to the light incident side of the adhesive layer 15. For example, when the solar reflective film 10 is shipped, the release material 16 is shipped in a state of sticking to the adhesive layer 15, and the solar reflective film 10 having the adhesive layer 15 is peeled from the release material 16 to form a solar reflector. A solar reflector and further a solar reflector can be formed by bonding to a self-supporting base material (support base material) which is a member.
 剥離材167としては、銀反射層13の保護性を付与できるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂をコーティングしたりアルミニウム等の金属を金属蒸着などの表面加工を施した樹脂フィルム又はシートが用いられる。 The release material 167 may be any material that can impart protection to the silver reflective layer 13. For example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film Or plastic film or sheet such as sheet, fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc. A resin film or sheet subjected to surface processing such as is used.
 剥離材16の厚さは、特に制限はないが、通常12~250μmの範囲であることが好ましい。 The thickness of the release material 16 is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 また、これらの剥離材16を太陽光反射フィルム10(剥離材16を除く)と貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよいものである。 Moreover, you may bond after providing a recessed part and a convex part before bonding these peeling materials 16 with the sunlight reflective film 10 (except for the peeling material 16), and have a recessed part and a convex part after bonding. It may be formed in such a manner that the bonding and forming so as to have a concave portion or a convex portion may be performed simultaneously.
 [耐傷層17]
 本形態の太陽光反射フィルム10、10’は、紫外線反射積層部11を擦傷から保護する目的で、紫外線反射積層部11の光が入射する面側に、耐傷層(ハードコート層;HC層)17をさらに有することが好ましい。
[Scratch resistant layer 17]
The solar reflective film 10, 10 'of this embodiment is a scratch-resistant layer (hard coat layer; HC layer) on the side of the ultraviolet reflective laminated portion 11 where light is incident for the purpose of protecting the ultraviolet reflective laminated portion 11 from scratches. 17 is further preferable.
 耐傷層17で使用される硬化樹脂としては、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。かような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。また、硬化型樹脂は市販品を用いてもよいし、合成品を用いてもよい。 Examples of the curable resin used in the scratch-resistant layer 17 include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because of easy molding. Such curable resins can be used singly or in combination of two or more. As the curable resin, a commercially available product may be used, or a synthetic product may be used.
 活性エネルギー線樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。 The active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. Is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin, an electron beam curable resin, and the like, and an ultraviolet curable resin that is cured by ultraviolet irradiation is preferable.
 紫外線硬化性樹脂としては、例えば、紫外線硬化性ウレタンアクリレート系樹脂、紫外線硬化性ポリエステルアクリレート系樹脂、紫外線硬化性エポキシアクリレート系樹脂、紫外線硬化性ポリオールアクリレート系樹脂、または紫外線硬化性エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化性アクリレート系樹脂が好ましい。 As the ultraviolet curable resin, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
 紫外線硬化性アクリル・ウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載の、ユニディック17-806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。 UV-curable acrylic / urethane resins generally contain 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. Only acrylate is indicated), and it can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, a mixture of 100 parts Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It is done.
 紫外線硬化性ポリエステルアクリレート系樹脂は、一般にポリエステル末端の水酸基やカルボキシル基に2-ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号公報)。 The UV curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxyl group at the end of the polyester (see, for example, JP-A No. 1987-101). 59-151112).
 紫外線硬化性エポキシアクリレート系樹脂は、エポキシ樹脂の末端の水酸基にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。 The ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
 紫外線硬化性ポリオールアクリレート系樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。 Examples of ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipenta. Examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
 さらにまた、これらの樹脂の光増感剤(ラジカル重合開始剤)として、ペンゾイン、べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンジルメチルケタール等のべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン(商品名イルガキュア184;BASF社)、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(商品名イルガキュア907、;BASF社)等のアセトフェノン類;メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノン等のアントラキノン類;チオキサントン、2,4―ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4,4-ビスメチルアミノべンゾフェノン等のベンゾフェノン類およびアゾ化合物等を用いることができる。これらは単独でもまたは2種以上組み合わせても使用することができる。加えて、トリエタノールアミン、メチルジエタノールアミン等の第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル等の安息香酸誘導体等の光開始助剤等と組み合わせて使用することができる。これらラジカル重合開始剤の使用量は、樹脂の重合性成分100重量部に対して好ましくは0.5~20重量部、より好ましくは1~15重量部である。 Furthermore, as photosensitizers (radical polymerization initiators) for these resins, benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl methyl ketal and the like Alkyl ethers: acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone (trade name Irgacure 184; BASF), 2-methyl-1 [4- (methylthio) phenyl] -2-mori Acetophenones such as folinopropan-1-one (trade name Irgacure 907; BASF); anthraquinones such as methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone; thioxanthone, 2,4-diethylthioxanthone, 2, 4- Thioxanthones such as isopropyl thioxanthone; acetophenone dimethyl ketal, benzil ketals such as dimethyl ketal; can be used benzophenone, 4,4-bis benzophenones such as methylamino benzophenone and azo compounds. These may be used alone or in combination of two or more. In addition, tertiary amines such as triethanolamine and methyldiethanolamine; photoinitiators such as benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and ethyl 4-dimethylaminobenzoate can be used in combination. it can. The amount of these radical polymerization initiators used is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the polymerizable component of the resin.
 熱硬化性樹脂としては、ポリシロキサンに代表される無機系材料が挙げられる。 Examples of thermosetting resins include inorganic materials typified by polysiloxane.
 ポリシロキサン系ハードコート(HC層17)は、一般式RSi(OR’)で示されるものが出発原料である。RおよびR’は、炭素数1~10のアルキル基を表し、mおよびnは、m+n=4の関係を満たす整数である。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-ポロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テロラペンタエトキシシラン、テトラペンタ-iso-プロポキシシラン、テトラペンタ-n-プロポキシシラン、テトラペンタ-n-ブトキシシラン、テトラペンタ-sec-ブトキシシラン、テトラペンタ-tert-ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。また、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-β-(N-アミノベンジルアミノエチル)-γ-アミノプロピルメトキシシラン・塩酸塩、γ-グリシドキシプロピルトリメトキシシラン、アミノシラン、メチルメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリリメトキシシラン、ヘキサメチルジシラザン、ビニルトリス(β-メトキシエトキシ)シラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライドを用いることもできる。これらのメトキシ基、エトキシ基等の加水分解性基が水酸基に置換した状態のものが、一般的にポリオルガノシロキサン系ハードコートといわれている。これを基板上に塗布し、加熱硬化させることで、脱水縮合反応が促進し、硬化・架橋することで、ハードコート(HC層17)が製膜される。これらのポリオルガノシロキサン系ハードコート中でも、加水分解によって脱離しない有機基がメチル基のものが最も耐候性が高い。また、メチル基であれば、ハードコート製膜後の表面にメチル基が均一且密に分布するため、転落角も低い。そのため、本用途では、メチルポリシロキサンを用いることが好ましい。 Polysiloxane hard coat (HC layer 17) are those represented by the general formula R m Si (OR ') n is the starting material. R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and m and n are integers satisfying the relationship of m + n = 4. Specifically, tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-polopoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, terapentaethoxy Silane, tetrapenta-iso-propoxysilane, tetrapenta-n-propoxysilane, tetrapenta-n-butoxysilane, tetrapenta-sec-butoxysilane, tetrapenta-tert-butoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxy Silane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethylpropoxysilane, dimethylbutoxysilane, dimethyl Dimethoxysilane, dimethyl diethoxy silane, hexyl trimethoxy silane and the like. Γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N-β- ( N-aminobenzylaminoethyl) -γ-aminopropylmethoxysilane / hydrochloride, γ-glycidoxypropyltrimethoxysilane, aminosilane, methylmethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloro Propyltrilimethoxysilane, hexamethyldisilazane, vinyltris (β-methoxyethoxy) silane, and octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride can also be used. A state in which a hydrolyzable group such as methoxy group or ethoxy group is substituted with a hydroxyl group is generally called a polyorganosiloxane hard coat. When this is applied onto a substrate and cured by heating, the dehydration condensation reaction is promoted, and the hard coat (HC layer 17) is formed by curing and crosslinking. Among these polyorganosiloxane hard coats, those having an organic group that is not eliminated by hydrolysis are methyl groups have the highest weather resistance. Moreover, if it is a methyl group, since the methyl group is uniformly and densely distributed on the surface after the hard coat film formation, the falling angle is also low. Therefore, in this application, it is preferable to use methylpolysiloxane.
 ポリシロキサン系ハードコート(HC層17)の膜厚として、厚すぎれば、応力によって耐傷層17が割れる危険性があり、薄すぎれば硬度が維持できない。そのため、厚さとして、1~5μmが好ましく、1.5~3μmであることが好ましい。 If the polysiloxane hard coat (HC layer 17) is too thick, there is a risk that the scratch-resistant layer 17 will break due to stress, and if it is too thin, the hardness cannot be maintained. Therefore, the thickness is preferably 1 to 5 μm, and more preferably 1.5 to 3 μm.
 ポリオルガノシロキサン系ハードコート(HC層17)として具体的には、サーコートシリーズ(動研製)、SR2441(東レ・ダウコーニング社)、KF-86(信越シリコン社)、Perma‐New(登録商標)6000(California Hardcoating Company)等を利用することができる。 Specific examples of the polyorganosiloxane hard coat (HC layer 17) include Surcoat series (manufactured by Doken), SR2441 (Toray Dow Corning), KF-86 (Shin-Etsu Silicon), Perma-New (registered trademark) 6000. (California Hardcoating Company) can be used.
 硬化樹脂の耐傷層17中の配合量は、耐傷層の合計100重量%(固形分換算)に対して、20~70重量%であることが好ましく、30~50重量%であることがより好ましい。 The blending amount of the cured resin in the scratch-resistant layer 17 is preferably 20 to 70% by weight and more preferably 30 to 50% by weight with respect to 100% by weight (in terms of solid content) of the scratch-resistant layer. .
 耐傷層17の厚みは0.1~20μmが好ましく、1~15μmがより好ましく、3~10μmであることがより好ましい。0.1μm以上であればハードコート性が向上する傾向にあり、20μm以上であれば耐傷層のカールが大きく、耐屈曲性が低下する傾向にある。 The thickness of the scratch-resistant layer 17 is preferably 0.1 to 20 μm, more preferably 1 to 15 μm, and more preferably 3 to 10 μm. If it is 0.1 μm or more, the hard coat property tends to be improved, and if it is 20 μm or more, the scratch-resistant layer has a large curl and the flex resistance tends to be lowered.
 耐傷層17は、硬化樹脂層形成用組成物(塗布液)をワイヤーバーによるコーティング、スピンコーティング、ディップコーティングにより塗布することで作製することができ、蒸着等の乾式製膜法でも作製することができる。また、上記の組成物(塗布液)をダイコーター、グラビアコーター、コンマコーター等の連続塗布装置でも塗布・製膜することは可能である。ポリシロキサン系ハードコートの場合、塗布後、溶剤を乾燥させた後、該ハードコートの硬化・架橋を促進するため、50℃以上、150℃以下の温度で30分~数日間の熱処理を必要とする。塗布基材の耐熱性やロールにした時の基材の安定性を考慮して、40℃以上80℃以下で2日間以上処理することが好ましい。活性エネルギー線硬化樹脂の場合、活性エネルギー線の照射波長、照度、光量によってその反応性が変わるため、使用する樹脂によって最適な条件を選択する必要がある。 The scratch-resistant layer 17 can be produced by applying a cured resin layer forming composition (coating solution) by wire bar coating, spin coating, or dip coating, and can also be produced by a dry film forming method such as vapor deposition. it can. The composition (coating liquid) can be applied and formed into a film by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater. In the case of a polysiloxane hard coat, after application, after drying the solvent, a heat treatment is required for 30 minutes to several days at a temperature of 50 ° C. or more and 150 ° C. or less in order to promote curing and crosslinking of the hard coat. To do. In consideration of the heat resistance of the coated substrate and the stability of the substrate when it is made into a roll, it is preferable to perform the treatment at 40 ° C. or more and 80 ° C. or less for 2 days or more. In the case of an active energy ray curable resin, the reactivity varies depending on the irradiation wavelength, the illuminance, and the light amount of the active energy ray, and therefore it is necessary to select an optimum condition depending on the resin to be used.
 硬化樹脂層形成用組成物(塗布液)には溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。 The composition for forming the cured resin layer (coating liquid) may contain a solvent, or may be appropriately contained and diluted as necessary. Examples of the organic solvent contained in the coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), It can be appropriately selected from esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used.
 耐傷層17の下層への密着性が得られない場合、硬化樹脂層を積層する前に第2アンカー層(プライマー層;図1、2中に図示せず)を形成することができる。第2アンカー層の膜厚は特に限定されるものではないが、0.1~10μm程度である。好適な例として、アンカー層を構成する樹脂としては、ポリビニルアセタール樹脂、アクリル樹脂が挙げられる。 When the adhesion to the lower layer of the scratch-resistant layer 17 is not obtained, a second anchor layer (primer layer; not shown in FIGS. 1 and 2) can be formed before the cured resin layer is laminated. The thickness of the second anchor layer is not particularly limited, but is about 0.1 to 10 μm. Preferable examples of the resin constituting the anchor layer include polyvinyl acetal resin and acrylic resin.
 [ガスバリア層]
 銀反射層13よりも光入射側にガスバリア層(図1、2中に図示せず)を設けてもよい。耐傷層17と銀反射層13の間にガスバリア層を設けることが好ましい。更には、粘着層15と腐食防止層14の間にガスバリア層を設けることが好ましい。ガスバリア層の詳細については、例えば、公知である国際公開番号WO2011/096151 A1公報の段落「0044」~「0096」を適用することができる。
[Gas barrier layer]
A gas barrier layer (not shown in FIGS. 1 and 2) may be provided on the light incident side of the silver reflecting layer 13. It is preferable to provide a gas barrier layer between the scratch-resistant layer 17 and the silver reflective layer 13. Furthermore, it is preferable to provide a gas barrier layer between the adhesive layer 15 and the corrosion prevention layer 14. For details of the gas barrier layer, for example, paragraphs “0044” to “0096” of the publicly known international publication number WO2011 / 096151 A1 can be applied.
 また、本形態の太陽光反射フィルム10、10’は、使用される環境や用途に応じて、易接着層(接着層)、紫外線吸収剤含有層、導電性層、帯電防止層、ガスバリア層、防汚層、消臭層、流滴層、易滑層、耐摩耗性層、反射防止層、電磁波シールド層、印刷層、蛍光発光層、ホログラム層、剥離層、接着層等の機能層の1つ以上を有していてもよい。 Further, the solar reflective film 10, 10 ′ of the present embodiment includes an easy-adhesion layer (adhesive layer), an ultraviolet absorber-containing layer, a conductive layer, an antistatic layer, a gas barrier layer, depending on the environment and application used. 1 of functional layers such as antifouling layer, deodorant layer, droplet layer, slippery layer, abrasion resistant layer, antireflection layer, electromagnetic wave shielding layer, printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, etc. You may have more than one.
 <太陽光反射体>
 本発明の一形態によると、上述の太陽光反射フィルム10、10’を有することを特徴とする太陽光反射体が提供される。太陽光反射体は、粘着層15を介して太陽光反射フィルム10、10’が自己支持性の基材(支持基材)に接合されてなる構造を有する。ここで、「自己支持性の基材」という場合の、「自己支持性」とは、太陽光反射体の基材として用いられる大きさに断裁された場合において、その対向する端縁部分を支持することで、基材を担持することが可能な程度の剛性を有することを表す。太陽光反射体の基材が自己支持性を有することで、後述の太陽光反射装置に設置する際に取り扱い性に優れるとともに、太陽光反射体を保持するための保持部材を簡素な構成とすることが可能となるため、太陽光反射装置を軽量化することが可能となり、例えば、太陽熱発電の太陽光反射装置として用いた際、太陽追尾の際の消費電力を抑制することが可能となる。
<Sunlight reflector>
According to one aspect of the present invention, there is provided a solar reflector characterized by having the above-described solar reflective film 10, 10 ′. The solar reflector has a structure in which the solar reflective films 10 and 10 ′ are bonded to a self-supporting base material (support base material) through the adhesive layer 15. Here, in the case of “self-supporting substrate”, “self-supporting” means supporting the opposite edge portions when cut to a size used as a substrate for a solar reflector. By doing this, it indicates that the substrate has rigidity enough to carry the substrate. Since the base material of the solar reflector has self-supporting properties, it is easy to handle when it is installed in a solar reflective device described later, and the holding member for holding the solar reflector has a simple configuration. Therefore, it is possible to reduce the weight of the solar reflective device. For example, when the solar reflective device is used as a solar reflective device for solar thermal power generation, power consumption during solar tracking can be suppressed.
 [自己支持性の基材(支持基材)]
 自己支持性の基材(支持基材)は、単層であってもよく、複数の層を積層させた形状であってもよい。また、単一構造であってもよく、複数に分割されていてもよい。当該支持基材の形状としては、凹面状の形状を有する又は凹面状の形状になり得ることが好ましい。そのために、平板状から凹面状の形状に可変である支持基材を用いてもよいし、凹面状の形状に固定されている支持基材を用いてもよい。凹面状の形状に可変である支持基材は、該支持基材の曲率を調整することで、接合されている太陽光反射フィルム10、10’の曲率も任意に調整することが可能となるため、反射効率を調整し高い正反射率を得ることができるため好ましい。凹面状の形状が固定されている支持基材は、曲率を調整する必要がなくなるため、調整費用の観点から好ましい。
[Self-supporting substrate (supporting substrate)]
The self-supporting base material (supporting base material) may be a single layer or a shape in which a plurality of layers are laminated. Moreover, a single structure may be sufficient and it may be divided | segmented into plurality. As the shape of the supporting base material, it is preferable that the supporting substrate has a concave shape or can be a concave shape. Therefore, a support base material that is variable from a flat shape to a concave shape may be used, or a support base material that is fixed to a concave shape may be used. Since the support base material which can be changed into the concave shape can adjust the curvature of the solar reflective films 10 and 10 'which are joined by adjusting the curvature of the support base material. It is preferable because the reflection efficiency can be adjusted and a high regular reflectance can be obtained. Since the support base material to which the concave shape is fixed is not necessary to adjust the curvature, it is preferable from the viewpoint of adjustment cost.
 自己支持性の基材(支持基材)の素材としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板等の金属板、ベニヤ板(好ましくは防水処理がされたもの)等の木板、繊維強化プラスチック(FRP)板、樹脂板、等が挙げられる。前記材料の中でも金属板を用いることが、熱伝導率が高いという観点から好ましい。さらに好ましくは、高い熱伝導率だけでなく耐腐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることである。最も好ましくは、樹脂と金属板を組み合わせた鋼板を用いることである。 Materials for self-supporting substrates (supporting substrates) include steel plates, copper plates, aluminum plates, aluminum-plated steel plates, aluminum alloy-plated steel plates, copper-plated steel plates, tin-plated steel plates, chrome-plated steel plates, stainless steel plates, etc. Examples thereof include wooden boards such as boards and plywood boards (preferably those that have been waterproofed), fiber reinforced plastic (FRP) boards, resin boards, and the like. Among these materials, it is preferable to use a metal plate from the viewpoint of high thermal conductivity. More preferably, it is a plated steel plate, stainless steel plate, aluminum plate or the like having not only high thermal conductivity but also good corrosion resistance. Most preferably, a steel plate combining a resin and a metal plate is used.
 前記表面層としての樹脂フィルムの材料としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、前述した樹脂フィルム状支持体12に挙げた樹脂フィルムが挙げられる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、およびセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましい。この樹脂フィルムの厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~250μmであり、好ましくは20~200μmである。 As the material for the resin film as the surface layer, various conventionally known resin films can be used. For example, the resin film mentioned to the resin film-like support body 12 mentioned above is mentioned. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. It is particularly preferable to use a polyester film such as polyethylene terephthalate or an acrylic film. The thickness of the resin film is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally 10 to 250 μm, preferably 20 to 200 μm.
 <太陽光反射装置>
 本発明の他の一形態によれば、太陽光反射体を有することを特徴とする太陽光反射装置が提供される。本形態の太陽光反射装置は、太陽熱発電において太陽光を集光に好適に用いられる。本形態の太陽光反射装置は、太陽光反射体および該太陽光反射体を保持する保持部材を有する。
<Sunlight reflector>
According to another aspect of the present invention, there is provided a sunlight reflecting device having a sunlight reflector. The solar light reflection device of this embodiment is suitably used for condensing sunlight in solar thermal power generation. The sunlight reflecting device of this embodiment has a sunlight reflector and a holding member that holds the sunlight reflector.
 好ましい形態としては、当該太陽光反射装置を太陽熱発電用として場合、内部に流体を有する筒状部材を集熱部として太陽光反射フィルム(フィルムミラー)10の近傍に設け、筒状部材に太陽光を反射させることで内部の流体を加熱し、その熱エネルギーを変換して発電する、一般的にトラフ型と呼ばれる形態が挙げられる。また、その他の形態として、タワー型と呼ばれる形態も挙げられる。タワー型の形態は、少なくとも一つの集熱部と、太陽光を反射して集熱部に照射するための少なくとも一つの太陽熱発電用太陽光反射装置を有しており、集熱部に集められた熱を用いて液体を加熱しタービンを回して発電するものがある。なお、集熱部の周囲に、太陽熱発電用太陽光反射装置が複数配置されていることが好ましい。また、それぞれの太陽熱発電用太陽光反射装置が同心円状や、同心の扇状に複数配置されていることが好ましい。また、支持タワーの周囲に設置された太陽光反射体(太陽光反射用ミラー)により、太陽光が集光鏡へと反射され、その後、集光鏡によりさらに反射し、集熱部へと送られ熱交換施設へ送られる。本形態の太陽光反射装置はトラフ型、タワー型のどちらにも用いることができる。もちろん、それ以外の種々の太陽熱発電に用いることができる。 As a preferred embodiment, when the solar reflective device is used for solar thermal power generation, a cylindrical member having a fluid inside is provided as a heat collecting part in the vicinity of the solar reflective film (film mirror) 10, and sunlight is applied to the cylindrical member. The internal fluid is heated by reflecting the water, and the heat energy is converted to generate electricity to generate power. Moreover, the form called a tower type | mold is also mentioned as another form. The tower-type configuration has at least one heat collecting part and at least one solar power solar reflection device for reflecting sunlight and irradiating the heat collecting part, and is collected in the heat collecting part. There is one that uses liquid heat to heat a liquid and turn a turbine to generate electricity. In addition, it is preferable that a plurality of solar power generation solar reflective devices are arranged around the heat collection unit. Moreover, it is preferable that a plurality of solar reflective devices for solar thermal power generation are arranged concentrically or in a concentric fan shape. In addition, the sunlight is reflected by the sunlight reflector (sunlight reflecting mirror) installed around the support tower, then reflected by the collector mirror, and then further reflected by the collector mirror and sent to the heat collector. And sent to a heat exchange facility. The solar light reflection device of this embodiment can be used for both trough type and tower type. Of course, it can be used for various other types of solar thermal power generation.
 太陽光反射装置は、太陽光反射体を保持する保持部材を有する。保持部材は、太陽光反射体が太陽を追尾可能な状態で保持する事が好ましい。保持部材の形態としては、特に制限はないが、例えば、太陽光反射体が所望の形状を保持できるように、複数個所を棒状の保持部材により、保持する形態が好ましい。保持部材は太陽を追尾可能な状態で太陽光反射体を保持する構成を有することが好ましいが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。 The sunlight reflecting device has a holding member that holds the sunlight reflector. The holding member is preferably held in a state where the sunlight reflector can track the sun. Although there is no restriction | limiting in particular as a form of a holding member, For example, the form which hold | maintains several places with a rod-shaped holding member so that a sunlight reflector can hold | maintain a desired shape is preferable. The holding member preferably has a configuration for holding the solar reflector in a state where the sun can be tracked. However, when tracking the sun, the holding member may be driven manually, or a separate driving device may be provided to automatically provide the sun. It is good also as a structure to track.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 [塗布液の調製]
 (低屈折率層用塗布液L1の調製)
 メチルエチルケトン75質量部を45℃で加熱・撹拌している中に、ヒンダードアミン系光安定剤LA-52(株式会社ADEKA製) 0.5質量部を添加し、さらにアクリルポリマー(BR-85:三菱レイヨン株式会社製)を20質量部とデルペットSRB215(旭化成ケミカルズ株式会社製)4.5質量部とを添加して低屈折率層用塗布液L1を調製した。
[Preparation of coating solution]
(Preparation of coating liquid L1 for low refractive index layer)
While 75 parts by mass of methyl ethyl ketone is heated and stirred at 45 ° C., 0.5 part by mass of hindered amine light stabilizer LA-52 (manufactured by ADEKA Co., Ltd.) is added, and acrylic polymer (BR-85: Mitsubishi Rayon) is added. 20 parts by mass of Delpet SRB215 (manufactured by Asahi Kasei Chemicals Co., Ltd.) and 4.5 parts by mass of Delpet SRB215 (manufactured by Asahi Kasei Chemicals Corporation) were added to prepare a coating solution L1 for a low refractive index layer.
 低屈折率層用塗布液L1により得られる低屈折率層の屈折率は1.49であった。なお、屈折率の測定は下記に記載した。 The refractive index of the low refractive index layer obtained from the coating liquid L1 for low refractive index layer was 1.49. In addition, the measurement of refractive index was described below.
 (低屈折率層用塗布液L2の調製)
 3質量%ホウ酸水溶液10質量部を45℃で加熱・撹拌している中に、ポリビニルアルコール(PVA-235、重合度3500、鹸化度88mol%、株式会社クラレ製)の5質量%水溶液80質量部を添加した後、界面活性剤(ラピゾールA30、日油株式会社製)の1質量%水溶液1質量部を添加し、純水9質量部を加えて低屈折率層用塗布液L2を調製した。
(Preparation of coating liquid L2 for low refractive index layer)
While heating and stirring 10 parts by weight of 3% by weight boric acid aqueous solution at 45 ° C., 80% by weight of 5% by weight aqueous solution of polyvinyl alcohol (PVA-235, polymerization degree 3500, saponification degree 88 mol%, manufactured by Kuraray Co., Ltd.) 1 part by weight of a 1% by weight aqueous solution of a surfactant (Lapisol A30, manufactured by NOF Corporation) was added, and 9 parts by weight of pure water was added to prepare a coating solution L2 for a low refractive index layer. .
 低屈折率層用塗布液L2により得られる低屈折率層の屈折率は1.50であった。なお、屈折率の測定は下記に記載した。 The refractive index of the low refractive index layer obtained from the coating liquid L2 for low refractive index layer was 1.50. In addition, the measurement of refractive index was described below.
 (低屈折率層用塗布液L3の調製)
 無機酸化物微粒子111aとしてコロイダルシリカ(スノーテックスOS、日産化学工業株式会社製、固形分20質量%、平均粒子径8~11nm)22.5質量部に、純水22.5質量部、ポリオキシアルキレン系分散剤(マリアリムAKM-0531、日油株式会社製)の5質量%水溶液10質量部、3質量%ホウ酸水溶液10質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(JC-25(重合度2500、鹸化度99.5mol%、日本酢ビ・ポバール株式会社製)と、JM-17(重合度1700、鹸化度96.4mol%、日本酢ビ・ポバール株式会社製)と、JP-15(重合度1500、鹸化度89.8mol%、日本酢ビ・ポバール株式会社製)と、JL-25E(重合度2500、鹸化度79.5mol%、日本酢ビ・ポバール株式会社製)との、43:5:9:43(固形分質量比)の混合物)の5質量%水溶液40質量部、界面活性剤(ラピゾールA30、日油株式会社製)の1質量%水溶液1質量部を添加し、純水2質量部を加えて低屈折率層用塗布液L3を調製した。
(Preparation of coating liquid L3 for low refractive index layer)
As inorganic oxide fine particles 111a, colloidal silica (Snowtex OS, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass, average particle size 8-11 nm) 22.5 parts by mass, pure water 22.5 parts by mass, polyoxy After adding 10 parts by mass of a 5% by mass aqueous solution of an alkylene dispersant (Marialim AKM-0531, manufactured by NOF Corporation) and 10 parts by mass of a 3% by mass boric acid aqueous solution, respectively, while heating to 45 ° C. and stirring, Polyvinyl alcohol (JC-25 (polymerization degree 2500, saponification degree 99.5 mol%, manufactured by Nihon Acetate Bipoval Co., Ltd.)) and JM-17 (polymerization degree 1700, saponification degree 96.4 mol%, Nihon Acetate bipoval share) Made by company), JP-15 (degree of polymerization 1500, degree of saponification 89.8 mol%, manufactured by Nihon Acetate / Poval), JL-25E (degree of polymerization 2500, 40 mass parts of 5 mass% aqueous solution of 43: 5: 9: 43 (solid content mass ratio) with a degree of conversion of 79.5 mol%, manufactured by Nippon Vinegar Pover Co., Ltd.), surfactant (Lapisol A30) 1 part by weight of 1% by weight aqueous solution (manufactured by NOF Corporation) and 2 parts by weight of pure water were added to prepare a coating solution L3 for a low refractive index layer.
 低屈折率層用塗布液L3により得られる低屈折率層の屈折率は1.45であった。なお、屈折率の測定は下記に記載した。 The refractive index of the low refractive index layer obtained from the coating liquid L3 for low refractive index layer was 1.45. In addition, the measurement of refractive index was described below.
 (低屈折率層用塗布液L4の調製)
 下記調製で得られた10質量%含フッ素ポリマー1水溶液45質量部に、3質量%ホウ酸水溶液10質量部を添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(JC-25(重合度2500、鹸化度99.5mol%、日本酢ビ・ポバール株式会社製)と、JM-17(重合度1700、鹸化度96.4mol%、日本酢ビ・ポバール株式会社製)と、JP-15(重合度1500、鹸化度89.8mol%、日本酢ビ・ポバール株式会社製)と、JL-25E(重合度2500、鹸化度79.5mol%、日本酢ビ・ポバール株式会社製)との、43:5:9:43(固形分質量比)の混合物)の5質量%水溶液40質量部、界面活性剤(ラピゾールA30、日油株式会社製)の1質量%水溶液1質量部を添加し、純水2質量部を加えて低屈折率層用塗布液L4を調製した。
(Preparation of coating liquid L4 for low refractive index layer)
After adding 10 parts by weight of a 3% by weight boric acid aqueous solution to 45 parts by weight of the 10% by weight fluoropolymer 1 aqueous solution obtained in the following preparation, while heating to 45 ° C. and stirring, polyvinyl alcohol (JC-25 ( JM-17 (polymerization degree 1700, saponification degree 96.4 mol%, manufactured by Nihon Acetate Bi-Poval Co., Ltd.), JP- 15 (polymerization degree 1500, saponification degree 89.8 mol%, manufactured by Nippon Vinegar Pover Co., Ltd.) and JL-25E (polymerization degree 2500, saponification degree 79.5 mol%, manufactured by Nihon Acetate Beverage Poval Co., Ltd.) , 43: 5: 9: 43 (mixture of solid content)) and 40 parts by mass of a 1% by mass aqueous solution of a surfactant (Lapisol A30, manufactured by NOF Corporation). ,Pure water The coating solution for low refractive index layer L4 was prepared by adding the parts by weight.
 低屈折率層用塗布液L4により得られる低屈折率層の屈折率は1.40であった。なお、屈折率の測定は下記に記載した。 The refractive index of the low refractive index layer obtained from the coating liquid L4 for low refractive index layer was 1.40. In addition, the measurement of refractive index was described below.
 (含フッ素ポリマー1水溶液の調製)
 窒素雰囲気下、還流冷却管を備えた1Lのフラスコに6.4gの1H,1H,2H,2H-ヘプタデカフルオロデシルアクリレートと、26.4gのメトキシポリエチレングリコール#1000メタクリレートと、34.9gのメチルメタクリレートを、150mlのイソプロパノールと100mlの純水の混合溶媒に加えた。1時間室温で撹拌した後、10mlの純水に溶かした1.2gの過硫酸アンモニウムを加え、65℃で16時間加熱撹拌した。得られた反応混合物を冷ました後、ロータリーエバポレーターでイソプロパノールを留去し、さらに純水を加えて、10質量%含フッ素ポリマー1水溶液を調製した。GPCを用いて分子量を測定したところ、重量平均分子量は16,000であった。
(Preparation of fluoropolymer 1 aqueous solution)
In a 1 L flask equipped with a reflux condenser under a nitrogen atmosphere, 6.4 g of 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate, 26.4 g of methoxypolyethylene glycol # 1000 methacrylate, and 34.9 g of methyl The methacrylate was added to a mixed solvent of 150 ml of isopropanol and 100 ml of pure water. After stirring at room temperature for 1 hour, 1.2 g of ammonium persulfate dissolved in 10 ml of pure water was added, and the mixture was heated and stirred at 65 ° C. for 16 hours. After cooling the obtained reaction mixture, isopropanol was distilled off with a rotary evaporator, and pure water was further added to prepare a 10% by mass aqueous solution containing a fluoropolymer 1. When the molecular weight was measured using GPC, the weight average molecular weight was 16,000.
 (シリカ付着二酸化チタンゾルの調製)
 15.0質量%酸化チタンゾル(SRD-W、体積平均粒径5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号(日本化学工業株式会社製)をSiO濃度が2.0質量%となるように純水で希釈したもの)1.3質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、SiOを表面に付着させた(含ケイ素の水和物被覆量は4質量%)二酸化チタンゾル(以下シリカ付着二酸化チタンゾル)を固形分濃度で20質量%得た。
(Preparation of silica-attached titanium dioxide sol)
After adding 2 parts by mass of pure water to 0.5 parts by mass of 15.0% by mass titanium oxide sol (SRD-W, volume average particle size 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.), Heated. Next, 1.3 parts by mass of an aqueous silicic acid solution (sodium silicate 4 (manufactured by Nippon Chemical Industry Co., Ltd.) diluted with pure water so that the SiO 2 concentration becomes 2.0% by mass) was gradually added. Then, heat treatment was carried out at 175 ° C. for 18 hours in an autoclave, and after cooling, it was concentrated with an ultrafiltration membrane to adhere SiO 2 to the surface (the coating amount of silicon-containing hydrate was 4% by mass) ) Titanium dioxide sol (hereinafter, silica-attached titanium dioxide sol) was obtained in a solid content concentration of 20% by mass.
 (高屈折率層用塗布液H1の調製)
 無機酸化物微粒子112aとして前記調製で得られたシリカ付着二酸化チタンゾル(固形分20.0質量%)45質量部に、ポリビニルアルコール(PVA-103、重合度300、鹸化度98.5mol%、株式会社クラレ製)の5質量%水溶液2質量部、3質量%ホウ酸水溶液10質量部、2質量%クエン酸水溶液10質量部をそれぞれ添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(PVA-117、重合度1700、鹸化度98.5mol%、株式会社クラレ製)の5質量%水溶液20質量部、界面活性剤(ラピゾールA30、日油株式会社製)の1質量%水溶液1質量部を添加し、純水12質量部を加えて高屈折率層用塗布液H1を調製した。
(Preparation of coating liquid H1 for high refractive index layer)
45 parts by mass of silica-attached titanium dioxide sol (solid content 20.0% by mass) obtained as the inorganic oxide fine particles 112a in the above preparation was added to polyvinyl alcohol (PVA-103, polymerization degree 300, saponification degree 98.5 mol%, 2 parts by weight of 5% by weight aqueous solution of Kuraray), 10 parts by weight of 3% by weight boric acid aqueous solution, and 10 parts by weight of 2% by weight citric acid aqueous solution, respectively, and then heated to 45 ° C. with stirring, polyvinyl alcohol ( 20 parts by weight of a 5% by weight aqueous solution of PVA-117, polymerization degree 1700, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd., 1 part by weight of a 1% by weight aqueous solution of a surfactant (Lapisol A30, manufactured by NOF Corporation) And 12 parts by mass of pure water was added to prepare a coating solution H1 for a high refractive index layer.
 高屈折率層用塗布液H1により得られる高屈折率層の屈折率は1.95であった。なお、屈折率の測定は下記に記載した。 The refractive index of the high refractive index layer obtained from the coating liquid H1 for the high refractive index layer was 1.95. In addition, the measurement of refractive index was described below.
 (高屈折率層用塗布液H2の調製)
 無機酸化物微粒子252aとしてジルコニアゾル(SZR-W、固形分30質量%、堺化学工業株式会社製、一次平均粒径3nm)30質量部に、ポリオキシアルキレン系分散剤(マリアリムAKM-0531、日油株式会社製)の5質量%水溶液10質量部、3質量%ホウ酸水溶液10質量部、2質量%クエン酸水溶液10質量部を順に添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(PVA-217、重合度1700、鹸化度88.0mol%、株式会社クラレ製)の5質量%水溶液20質量部、界面活性剤(ラピゾールA30、日油株式会社製)の1質量%水溶液1質量部を添加し、純水19質量部を加えて高屈折率層用塗布液H2を調製した。
(Preparation of coating liquid H2 for high refractive index layer)
As the inorganic oxide fine particles 252a, 30 parts by mass of zirconia sol (SZR-W, solid content 30% by mass, manufactured by Sakai Chemical Industry Co., Ltd., primary average particle size 3 nm), polyoxyalkylene dispersant (Marialim AKM-0531, JP 10 mass parts of 5 mass% aqueous solution (made by Yu Oil Co., Ltd.), 3 mass% boric acid aqueous solution 10 mass parts, and 2 mass% citric acid aqueous solution 10 mass parts in this order, and then heated to 45 ° C. while stirring, polyvinyl 20 parts by weight of a 5% by weight aqueous solution of alcohol (PVA-217, degree of polymerization 1700, degree of saponification 88.0 mol%, manufactured by Kuraray Co., Ltd.), 1% by weight aqueous solution 1 of a surfactant (Rapisol A30, manufactured by NOF Corporation) A mass part was added, and 19 parts by mass of pure water was added to prepare a coating solution H2 for a high refractive index layer.
 高屈折率層用塗布液H2により得られる高屈折率層の屈折率は1.85であった。なお、屈折率の測定は下記に記載した。 The refractive index of the high refractive index layer obtained from the coating liquid H2 for high refractive index layer was 1.85. In addition, the measurement of refractive index was described below.
 (高屈折率層用塗布液H3の調製)
 無機酸化物微粒子262aとして前記調製で得られたシリカ付着二酸化チタンゾル(固形分20.0質量%)43質量部に前記低屈折率層用塗布液L1を55質量部と紫外線吸収剤Tinuvin479(BASF社製)を2質量部添加した後、液温度を10℃に保ちつつ2時間攪拌し、高屈折率層用塗布液H3を調製した。
(Preparation of coating liquid H3 for high refractive index layer)
43 parts by mass of the silica-attached titanium dioxide sol (solid content 20.0% by mass) obtained as the inorganic oxide fine particles 262a, 55 parts by mass of the coating liquid L1 for the low refractive index layer, and UV absorber Tinuvin 479 (BASF) 2 parts by mass) was added, and the mixture was stirred for 2 hours while maintaining the solution temperature at 10 ° C. to prepare a coating solution H3 for a high refractive index layer.
 高屈折率層用塗布液H3により得られる高屈折率層の屈折率は1.90であった。なお、屈折率の測定は下記に記載した。 The refractive index of the high refractive index layer obtained from the coating liquid H3 for the high refractive index layer was 1.90. In addition, the measurement of refractive index was described below.
 [太陽光反射フィルムの作製]
 (銀蒸着フィルム10aの作製)
 樹脂フィルム状支持体12として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ50μm)を用いた。このフィルムの片面に、銀反射層13として、真空蒸着法により厚さ80nmの銀反射層13を蒸着スピード100m/secで真空蒸着した。銀反射層13上に、ポリエステル系樹脂(ポリエスター SP-181、日本合成化学工業株式会社製)と、硬化剤としてTDI系イソシアネート(2,4-トリレンジイソシアネート)を樹脂固形分比率で10:2に混合した樹脂中に、さらに腐食防止剤としてグリコールジメルカプトアセテートを塗布後に0.3g/mとなるよう調整した量を添加し、グラビアコート法により膜厚が0.1μmになるようコーティングしての第1の腐食防止層14aとした。さらにその上に水分散エマルジョンタイプのベンゾトリアゾール系高分子型紫外線吸収コーティング液UVA-1383MG(BASF社製)をグラビアコート法によりコーティングして、55℃で4分間乾燥し厚さ3μmの第2の腐食防止層14bを形成して、銀蒸着フィルム10aを作製した。ここで、第1及び第2の腐食防止層14a及び14bを合わせて腐食防止層14とした。
[Production of solar reflective film]
(Preparation of silver vapor deposition film 10a)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 50 μm) was used as the resin film support 12. On one side of this film, a silver reflective layer 13 having a thickness of 80 nm was vacuum deposited as a silver reflective layer 13 at a deposition speed of 100 m / sec by vacuum deposition. On the silver reflective layer 13, a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) as a curing agent in a resin solid content ratio of 10: In the resin mixed in 2, an amount adjusted to 0.3 g / m 2 after applying glycol dimercaptoacetate as a corrosion inhibitor is added, and coating is performed so that the film thickness becomes 0.1 μm by the gravure coating method. Thus, the first corrosion prevention layer 14a was obtained. Further, a water-dispersed emulsion type benzotriazole-based polymer type UV-absorbing coating solution UVA-1383MG (manufactured by BASF) is coated by a gravure coating method, dried at 55 ° C. for 4 minutes, and then a second 3 μm thick second The corrosion prevention layer 14b was formed and the silver vapor deposition film 10a was produced. Here, the first and second corrosion prevention layers 14 a and 14 b are combined to form the corrosion prevention layer 14.
 (腐食防止層14の水接触角測定)
 JIS-R3257に基づいて、純水3μLを腐食防止層の表面に滴下した。純水の接触角を接触角計DM300(協和界面化学)を用いて測定した。得られた結果を表1に示す。
(Measurement of water contact angle of corrosion prevention layer 14)
Based on JIS-R3257, 3 μL of pure water was dropped on the surface of the corrosion prevention layer. The contact angle of pure water was measured using a contact angle meter DM300 (Kyowa Interface Chemistry). The obtained results are shown in Table 1.
 比較例1(太陽光反射フィルム30Aの作製)(試料1;図3参照)
 アクリル系の粘着剤(ニッセツSZ-7103、日本カーバイド工業株式会社製)を乾燥後25μmの膜厚になるように塗布した剥離フィルム16を上記銀蒸着フィルム10aの腐食防止層14の表面にラミネートして粘着層15を形成し、比較例1の太陽光反射フィルム30A(試料1)を得た。
Comparative Example 1 (Preparation of solar reflective film 30A) (Sample 1; see FIG. 3)
A release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 μm was laminated on the surface of the corrosion prevention layer 14 of the silver deposited film 10a. Thus, the pressure-sensitive adhesive layer 15 was formed, and a solar reflective film 30A (Sample 1) of Comparative Example 1 was obtained.
 実施例1(太陽光反射フィルム10Aの作製)(試料2;図4参照)
 アクリル系の粘着剤(ニッセツSZ-7103、日本カーバイド工業株式会社製)を乾燥後25μmの膜厚になるように塗布した剥離フィルム16を上記銀蒸着フィルム10aの腐食防止層14の表面にラミネートして粘着層15を形成した。樹脂フィルム状支持体12であるポリエステルフィルムフィルムの銀反射層13を蒸着した面とは反対の面に高屈折率層112として高屈折率層用塗布液H1を45℃に保温しながら、低屈折率層111として低屈折率層用塗布液L1は25℃に保温しながらH1とL1を、H1はポリエステルフィルムフィルムに接するように、次いで、H1上にL1となるように、かつ、H1とL1はそれぞれ交互になるように塗布し、高屈折率層112は乾燥膜厚46nm、低屈折率層111は乾燥膜厚62nmになるように80℃の温風を吹き付けて乾燥させて、21層(低屈折率層10層、高屈折率層11層)からなる紫外線反射積層部11を形成し、実施例1の太陽光反射フィルム10A(試料2)を得た。
Example 1 (Preparation of solar reflective film 10A) (Sample 2; see FIG. 4)
A release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 μm was laminated on the surface of the corrosion prevention layer 14 of the silver deposited film 10a. Thus, an adhesive layer 15 was formed. While maintaining the coating liquid H1 for the high refractive index layer at 45 ° C. as the high refractive index layer 112 on the surface opposite to the surface on which the silver reflective layer 13 of the polyester film film as the resin film support 12 is deposited, the low refractive index As the refractive index layer 111, the coating liquid L1 for the low refractive index layer is kept at 25 ° C. while keeping H1 and L1, H1 is in contact with the polyester film, and then L1 on H1 and H1 and L1. Are applied alternately, and the high refractive index layer 112 is dried by blowing hot air of 80 ° C. so that the dry film thickness is 46 nm, and the low refractive index layer 111 is 62 nm. The ultraviolet reflective laminated part 11 which consists of a low-refractive-index layer 10 layer and a high-refractive-index layer 11 layer) was formed, and 10 A (sample 2) of solar reflective films of Example 1 was obtained.
 実施例2(太陽光反射フィルム10Bの作製)(試料3;図5参照)
 樹脂フィルム状支持体12であるポリエステルフィルムフィルム上に銀反射層13、腐食防止層14、粘着層15(更に剥離フィルム16)を形成する工程は、銀蒸着フィルム10a及び実施例1の太陽光反射フィルム10Aの工程と同様にして作製した。樹脂フィルム状支持体12であるポリエステルフィルムフィルムの銀反射層13を蒸着した面とは反対の面に高屈折率層112として高屈折率層用塗布液H1、低屈折率層111として低屈折率層用塗布液L3を21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L3及び高屈折率層用塗布液H1を45℃に保温しながら、45℃に加温した樹脂フィルム状支持体12である厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製A4300:両面易接着層を有するフィルム)上に、H1はポリエチレンテレフタレートフィルムに接するように、次いで、H1上にL3となるように、かつ、H1とL3はそれぞれ交互になるように、同時重層塗布を行った。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層(低屈折率層10層、高屈折率層11層)からなる紫外線反射積層部11を形成し、実施例2の太陽光反射フィルム10B(試料3)を得た。乾燥後の膜厚は、低屈折率層用塗布液L3を塗布した低屈折率層111は各層64nm、高屈折率用塗布液H1を塗布した高屈折率層112は各層47nmであった。
Example 2 (Preparation of solar reflective film 10B) (Sample 3; see FIG. 5)
The step of forming the silver reflection layer 13, the corrosion prevention layer 14, and the adhesive layer 15 (further, the release film 16) on the polyester film film that is the resin film-like support 12 is the sunlight reflection of the silver deposited film 10a and Example 1. It produced similarly to the process of the film 10A. The coating film H1 for the high refractive index layer as the high refractive index layer 112 and the low refractive index as the low refractive index layer 111 on the surface opposite to the surface on which the silver reflective layer 13 of the polyester film that is the resin film support 12 is deposited. Using a slide hopper coating apparatus capable of coating the layer coating liquid L3 with 21 layers, the low refractive index layer coating liquid L3 and the high refractive index layer coating liquid H1 were heated to 45 ° C. while being kept at 45 ° C. On the polyethylene terephthalate film (Toyobo Co., Ltd. A4300: film having a double-sided easy-adhesion layer) having a thickness of 50 μm which is the resin film-like support 12, H1 is in contact with the polyethylene terephthalate film, and then L3 and H3 Thus, simultaneous multi-layer coating was performed so that H1 and L3 were alternated. Immediately after the coating, 5 ° C. cold air is blown for 5 minutes, and then 80 ° C. hot air is blown to dry, so that the ultraviolet reflecting laminated portion 11 composed of 21 layers (low refractive index layer 10 layers, high refractive index layer 11 layers). And a solar reflective film 10B (sample 3) of Example 2 was obtained. Regarding the film thickness after drying, the low refractive index layer 111 coated with the low refractive index layer coating liquid L3 was 64 nm in each layer, and the high refractive index layer 112 coated with the high refractive index coating liquid H1 was 47 nm in each layer.
 比較例2(太陽光反射フィルム30Bの作製)(試料4;図6参照)
 アクリル系の粘着剤(ニッセツSZ-7103、日本カーバイド工業株式会社製)を乾燥後25μmの膜厚になるように塗布した剥離フィルム16を、上記銀蒸着フィルム10aのポリエステルフィルムフィルム12の銀反射層13を蒸着した面とは反対の面にラミネートして粘着層15を形成し、比較例2の太陽光反射フィルム30B(試料4)を得た。
Comparative Example 2 (Preparation of solar reflective film 30B) (Sample 4; see FIG. 6)
A release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 μm is applied to the silver reflective layer of the polyester film film 12 of the silver deposited film 10a. The pressure-sensitive adhesive layer 15 was formed by laminating on the surface opposite to the surface on which 13 was deposited, and a solar reflective film 30B (sample 4) of Comparative Example 2 was obtained.
 比較例3(太陽光反射フィルム30Cの作製)(試料5;図7参照)
 樹脂フィルム状支持体12であるポリエステルフィルムフィルム上に銀反射層13、腐食防止層14、粘着層15(更に剥離フィルム16)を形成する工程は、銀蒸着フィルム10a及び実施例1の太陽光反射フィルム10Aの工程と同じで作製した。樹脂フィルム状支持体12であるポリエステルフィルムフィルムの銀反射層13を蒸着した面とは反対の面に接着層18(膜厚7μm)を塗布した。接着層18はLIS603とCR-001(いずれも東洋インキ株式会社製)を10:1の割合で混合した後、液温を25℃に保ちながら1時間撹拌して得た接着剤を塗布し100℃30秒の温風を当て接着層18を得た。その接着層18に紫外線保護層19として紫外線吸収剤含有アクリルフィルム(S001G、住友化学株式会社製;厚さ50μm)を貼り合せて、比較例3の太陽光反射フィルム30C(試料5)を得た。
Comparative Example 3 (Production of Sunlight Reflecting Film 30C) (Sample 5; see FIG. 7)
The step of forming the silver reflection layer 13, the corrosion prevention layer 14, and the adhesive layer 15 (further, the release film 16) on the polyester film film that is the resin film-like support 12 is the sunlight reflection of the silver deposited film 10a and Example 1. It was produced in the same manner as the film 10A. An adhesive layer 18 (film thickness: 7 μm) was applied to the surface opposite to the surface on which the silver reflective layer 13 of the polyester film film as the resin film-like support 12 was deposited. The adhesive layer 18 was prepared by mixing LIS603 and CR-001 (both manufactured by Toyo Ink Co., Ltd.) at a ratio of 10: 1 and then applying an adhesive obtained by stirring for 1 hour while maintaining the liquid temperature at 25 ° C. The adhesive layer 18 was obtained by applying hot air at 30 ° C. for 30 seconds. An ultraviolet absorber-containing acrylic film (S001G, manufactured by Sumitomo Chemical Co., Ltd .; thickness 50 μm) was bonded to the adhesive layer 18 as an ultraviolet protective layer 19 to obtain a solar reflective film 30C (sample 5) of Comparative Example 3. .
 実施例3(太陽光反射フィルム10Cの作製)(試料6;図8参照)
 アクリル系の粘着剤(ニッセツSZ-7103、日本カーバイド工業株式会社製)を乾燥後25μmの膜厚になるように塗布した剥離フィルム16を、上記銀蒸着フィルム10aのポリエステルフィルム12の銀反射層13を蒸着した面とは反対の面にラミネートして粘着層15を形成した。銀蒸着フィルム10aの腐食防止層14を形成した側に高屈折率層として高屈折率層用塗布液H1、低屈折率層として低屈折率層用塗布液L3を21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L3及び高屈折率層用塗布液H1を45℃に保温しながら、45℃に加温した樹脂フィルム状支持体12である厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製A4300:両面易接着層を有するフィルム)上に、H1はポリエチレンテレフタレートフィルムに接するように、次いで、H1上にL3となるように、かつ、H1とL2はそれぞれ交互になるように、同時重層塗布を行った。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層(低屈折率層10層、高屈折率層11層)からなる紫外線反射積層部11を形成し、実施例3の太陽光反射フィルム10C(試料6)を得た。乾燥後の膜厚は、低屈折率層用塗布液L3を塗布した層は各層64nm、高屈折率用塗布液H1を塗布した層は各層47nmであった。
Example 3 (Preparation of solar reflective film 10C) (Sample 6; see FIG. 8)
A release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide Industries Co., Ltd.) so as to have a film thickness of 25 μm is dried on the silver reflective layer 13 of the polyester film 12 of the silver deposited film 10a. The pressure-sensitive adhesive layer 15 was formed by laminating on the surface opposite to the surface on which the material was deposited. A slide hopper capable of applying 21 layers of high refractive index layer coating liquid H1 as a high refractive index layer and 21 layers of low refractive index layer coating liquid L3 as a low refractive index layer on the side where the corrosion prevention layer 14 is formed on the silver deposited film 10a. Polyethylene terephthalate having a thickness of 50 μm, which is a resin film-like support 12 heated to 45 ° C. while keeping the coating solution L 3 for low refractive index layer and the coating solution H 1 for high refractive index layer at 45 ° C. using a coating apparatus. On the film (A4300 manufactured by Toyobo Co., Ltd .: film having a double-sided easy-adhesion layer), H1 is in contact with the polyethylene terephthalate film, and then L3 is formed on H1, and H1 and L2 are alternated. Thus, simultaneous multilayer coating was performed. Immediately after the coating, 5 ° C. cold air is blown for 5 minutes, and then 80 ° C. hot air is blown to dry, so that the ultraviolet reflecting laminated portion 11 composed of 21 layers (low refractive index layer 10 layers, high refractive index layer 11 layers). And a solar reflective film 10C (sample 6) of Example 3 was obtained. The film thickness after drying was 64 nm for each layer coated with the coating liquid L3 for low refractive index layer, and 47 nm for each layer coated with the coating liquid H1 for high refractive index.
 実施例4(太陽光反射フィルム10Dの作製)(試料7;図9参照)
 実施例3の紫外線反射積層部11の表面に下記耐傷層用硬化性ハードコート液を乾燥膜厚3μmになるように塗布し、90℃1分間乾燥させた。その後、45℃の恒温環境下に7日間置き耐傷層17を表面に持つ実施例4の太陽光反射フィルム10D(試料7)を得た。
Example 4 (Preparation of solar reflective film 10D) (Sample 7; see FIG. 9)
The following scratch-resistant layer curable hard coat solution was applied to the surface of the ultraviolet reflective laminate 11 of Example 3 to a dry film thickness of 3 μm and dried at 90 ° C. for 1 minute. Thereafter, the solar reflective film 10D (Sample 7) of Example 4 having a scratch-resistant layer 17 on the surface was placed for 7 days in a constant temperature environment of 45 ° C.
 (耐傷層用硬化性ハードコート液の作製)
 合成容器に水20重量部と酢酸2重量部とを入れ、液温度を0~10℃に保ちつつ充分に攪拌した。この中にトリメトキシシラン(関東化学株式会社:化学式はCHSi(OCH)50重量部とフッ素結合基及びメトキシ基含有FAS(信越化学工業株式会社:KBM-7803)0.5重量部とを迅速に添加し、液温度を10℃に保ちつつ16時間攪拌した。その後、液温度を20℃とし、シリコーン系表面調整剤(ビックケミージャパン株式会社:BYK-300(有機変性ポリシロキサン))を0.1重量部と、酢酸ナトリウム0.05重量部と、n-プロパノール15重量部とを含有させ、耐傷層用硬化性ハードコート液を得た。
(Preparation of curable hard coat solution for scratch-resistant layer)
20 parts by weight of water and 2 parts by weight of acetic acid were placed in a synthesis container and stirred sufficiently while maintaining the liquid temperature at 0 to 10 ° C. In this, 50 parts by weight of trimethoxysilane (Kanto Chemical Co., Ltd .: the chemical formula is CH 3 Si (OCH 3 ) 3 ), FAS (Shin-Etsu Chemical Co., Ltd .: KBM-7803) containing 0.5 wt. And the mixture was stirred for 16 hours while maintaining the liquid temperature at 10 ° C. Thereafter, the liquid temperature was set to 20 ° C., 0.1 part by weight of a silicone-based surface conditioner (BIC Chemie Japan Co., Ltd .: BYK-300 (organically modified polysiloxane)), 0.05 part by weight of sodium acetate, n- 15 parts by weight of propanol was contained to obtain a curable hard coat solution for a scratch-resistant layer.
 比較例4(太陽光反射フィルム30Dの作製)(試料8;図10参照)
 特表2011-521289号公報に記載の実施例6と同じ作製方法で紫外線反射フィルム30D(試料8)を作製した。
Comparative Example 4 (production of solar reflective film 30D) (Sample 8; see FIG. 10)
An ultraviolet reflective film 30D (sample 8) was produced by the same production method as in Example 6 described in JP-T-2011-521289.
 PMMAと商品名3M(登録商標)Dyneon(登録商標)Fluoroplastic THVP 2030GZとして入手可能なフルオロポリマーの2種ポリマー層で紫外線反射フィルム21を形成した。PMMA層212およびTHV層211を、交互に重ね合わせ多層ポリマー溶解マニホールドを通して共押出し、2種のポリマー層の150の交互層を有する多層溶解ストリームを形成した。加えてPENからなる一対の非光学層231、232を、保護表面層23として光学スタックのいずれかの側面上に共押し出しすることができる。この多層共押出溶解ストリームを、1分当たり22メートルで冷却ロール上に流し込み、多層成形ウェブを約300マイクロメートル厚に形成した。次に、多層成形ウェブをテンターオーブンにおいて、135℃で10秒間加熱し3.8×3.8の延伸比に対して2軸配向し加熱延伸紫外線反射フィルム11を得た。これらのPMMA薄膜は商品Tinuvin405として入手できる紫外線吸収剤を2質量%含んでいる。 The ultraviolet reflective film 21 was formed of two types of polymer layers of PMMA and fluoropolymer available as trade name 3M (registered trademark) Dyneon (registered trademark) Fluoroplastic THVP 2030GZ. PMMA layer 212 and THV layer 211 were alternately stacked and coextruded through a multilayer polymer melt manifold to form a multilayer melt stream having 150 alternating layers of two polymer layers. In addition, a pair of non-optical layers 231, 232 made of PEN can be coextruded on either side of the optical stack as a protective surface layer 23. This multilayer coextrusion melt stream was cast onto a chill roll at 22 meters per minute to form a multilayer molded web about 300 micrometers thick. Next, the multilayer molded web was heated at 135 ° C. for 10 seconds in a tenter oven and biaxially oriented with respect to a stretch ratio of 3.8 × 3.8 to obtain a heat stretched ultraviolet reflective film 11. These PMMA thin films contain 2% by weight of an ultraviolet absorber available as the product Tinuvin 405.
 この加熱延伸紫外線反射フィルム11の片面に、銀反射層13として、真空蒸着法により厚さ80nmの銀反射層13を蒸着スピード100m/secで真空蒸着した。銀反射層13上に、ポリエステル系樹脂(ポリエスター SP-181、日本合成化学工業株式会社製)と、硬化剤としてTDI系イソシアネート(2,4-トリレンジイソシアネート)を樹脂固形分比率で10:2に混合した樹脂中に、さらに腐食防止剤としてグリコールジメルカプトアセテートを塗布後に0.3g/mとなるよう調整した量を添加し、グラビアコート法により0.1μmになるようコーティングしての腐食防止層14aとした。さらにその上に水分散エマルジョンタイプのベンゾトリアゾール系高分子型紫外線吸収コーティング液UVA-1383MG(BASF社製)をグラビアコート法によりコーティングして、55℃で4分間乾燥し厚さ3μmの腐食防止層14bを形成した。腐食防止層14aと14bを合わせて腐食防止層14とした。アクリル系の粘着剤(ニッセツSZ-7103、日本カーバイド製)を乾燥後25μmの膜厚になるように塗布した剥離フィルム16を上記銀蒸着フィルムの腐食防止層14の表面にラミネートして粘着層15を形成し、比較例4の太陽光反射フィルム30D(試料8)を得た。 On one surface of this heat-stretched ultraviolet reflective film 11, a silver reflective layer 13 having a thickness of 80 nm was vacuum deposited as a silver reflective layer 13 by a vacuum deposition method at a deposition speed of 100 m / sec. On the silver reflective layer 13, a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and a TDI isocyanate (2,4-tolylene diisocyanate) as a curing agent in a resin solid content ratio of 10: In the resin mixed in No. 2 , an amount adjusted to 0.3 g / m 2 after applying glycol dimercaptoacetate as a corrosion inhibitor is added and coated to a thickness of 0.1 μm by the gravure coating method. It was set as the corrosion prevention layer 14a. Further, a water-dispersed emulsion type benzotriazole polymer type UV absorbing coating solution UVA-1383MG (manufactured by BASF) is coated by a gravure coating method, dried at 55 ° C. for 4 minutes, and a corrosion prevention layer having a thickness of 3 μm. 14b was formed. The corrosion prevention layers 14a and 14b are combined to form the corrosion prevention layer 14. A release film 16 coated with an acrylic pressure-sensitive adhesive (Nissetsu SZ-7103, manufactured by Nippon Carbide) so as to have a film thickness of 25 μm after drying is laminated on the surface of the corrosion prevention layer 14 of the silver vapor-deposited film, and the pressure-sensitive adhesive layer 15 And a solar reflective film 30D of Comparative Example 4 (Sample 8) was obtained.
 (腐食防止層14の水接触角測定)
 JIS-R3257に基づいて、純水3μLを腐食防止層の表面に滴下した。純水の接触角を接触角計DM300(協和界面化学)を用いて測定した。得られた結果を表1に示す。
(Measurement of water contact angle of corrosion prevention layer 14)
Based on JIS-R3257, 3 μL of pure water was dropped on the surface of the corrosion prevention layer. The contact angle of pure water was measured using a contact angle meter DM300 (Kyowa Interface Chemistry). The obtained results are shown in Table 1.
 比較例5(太陽光反射フィルム30Eの作製)(試料9;図11参照)
 ポリエステルフィルムフィルム12上に粘着層15(更に剥離フィルム16)を形成する工程は、実施例1の太陽光反射フィルム10Aの工程と同じで作製した。
Comparative Example 5 (Preparation of solar reflective film 30E) (Sample 9; see FIG. 11)
The process of forming the adhesion layer 15 (further peeling film 16) on the polyester film 12 was produced in the same manner as the solar reflective film 10A of Example 1.
 樹脂フィルム状支持体12であるポリエステルフィルムフィルム12の銀反射層13を蒸着した面とは反対の面に高屈折率層として高屈折率層用塗布液H2、低屈折率層として低屈折率層用塗布液L2を21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L2及び高屈折率層用塗布液H2を45℃に保温しながら、45℃に加温した厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層を有するフィルム)上に、H2はポリエチレンテレフタレートフィルムに接するように、次いで、H2上にL3となるように、かつ、H2とL2はそれぞれ交互になるように、同時重層塗布を行った。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層からなる赤外線反射層25を形成した。赤外線反射層25の乾燥後の膜厚は、低屈折率層用塗布液L2を塗布した層251は各層180nm、高屈折率用塗布液H2を塗布した層252は各層150nmであった。 The coating liquid H2 for the high refractive index layer as the high refractive index layer and the low refractive index layer as the low refractive index layer on the opposite side of the surface of the polyester film 12 that is the resin film support 12 on which the silver reflective layer 13 is deposited. Using a slide hopper coating apparatus capable of applying 21 layers of coating liquid L2 for coating, the thickness of the coating liquid L2 for low refractive index layer and the coating liquid H2 for high refractive index layer heated to 45 ° C. while being kept at 45 ° C. On a polyethylene terephthalate film (Toyobo A4300: film having a double-sided easy-adhesion layer) having a thickness of 50 μm so that H2 is in contact with the polyethylene terephthalate film, and then L3 on H2, and H2 and L2 are respectively Simultaneous multilayer coating was performed so as to alternate. Immediately after the coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to form an infrared reflecting layer 25 composed of 21 layers. The thickness of the infrared reflective layer 25 after drying was 180 nm for each layer 251 coated with the coating liquid L2 for low refractive index layer and 150 nm for each layer 252 coated with the coating liquid H2 for high refractive index.
 さらに赤外線反射層25の上に高屈折率層として高屈折率層用塗布液H3、低屈折率層として低屈折率層用塗布液L4を21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L4及び高屈折率層用塗布液H3を45℃に保温しながら、45℃に加温した樹脂フィルム状支持体12である厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製A4300:両面易接着層)上の赤外線反射層25の表面上に、L4は赤外線反射層25表面に接するように、次いで、L4上にH3となるように、かつ、H3とL4はそれぞれ交互になるように、同時重層塗布を行った。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層からなる可視光線反射層26を形成した。可視光線反射層26の乾燥後の膜厚は、低屈折率層用塗布液L4を塗布した層261は各層120nm、高屈折率用塗布液H3を塗布した層262は各層90nmであった。 Further, on the infrared reflective layer 25, a slide hopper coating apparatus capable of coating 21 layers of the high refractive index layer coating liquid H3 as the high refractive index layer and the low refractive index layer coating liquid L4 as the low refractive index layer is used. A 50 μm thick polyethylene terephthalate film (Toyobo Co., Ltd.), which is a resin film-like support 12 heated to 45 ° C. while keeping the refractive index layer coating solution L 4 and the high refractive index layer coating solution H 3 at 45 ° C. A4300: Double-sided easy-adhesive layer) On the surface of the infrared reflective layer 25, L4 is in contact with the surface of the infrared reflective layer 25, then H3 is on L4, and H3 and L4 are alternately Simultaneous multi-layer coating was performed. Immediately after the coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to form a 21-ray visible light reflecting layer 26. The thickness of the visible light reflecting layer 26 after drying was 120 nm for each layer 261 coated with the coating liquid L4 for low refractive index layer, and 90 nm for each layer 262 coated with the coating liquid H3 for high refractive index.
 さらに高屈折率層112として高屈折率層用塗布液H1、低屈折率層111として低屈折率層用塗布液L3を21層重層塗布可能なスライドホッパー塗布装置を用い、低屈折率層用塗布液L3及び高屈折率層用塗布液H1を45℃に保温しながら、45℃に加温した樹脂フィルム状支持体12である厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製A4300:両面易接着層)上に順に形成した赤外線反射層25、可視光線反射層26の表面上に、L3は可視光線反射層26表面に接するように、次いで、L3上にH1となるように、かつ、H1とL3はそれぞれ交互になるように、同時重層塗布を行った。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、21層からなる紫外線反射積層部11を形成した。乾燥後の膜厚は、低屈折率層用塗布液L3を塗布した低屈折率層111は各層64nm、高屈折率用塗布液H1を塗布した高折率層112は各層47nmであった。このようにして比較例5の太陽光反射フィルム30E(試料9)を得た。 Further, using a slide hopper coating apparatus capable of coating 21 layers of the high refractive index layer coating liquid H1 as the high refractive index layer 112 and 21 layers of the low refractive index layer coating liquid L3 as the low refractive index layer 111, the coating for the low refractive index layer is performed. A 50 μm thick polyethylene terephthalate film (A4300 manufactured by Toyobo Co., Ltd .: double-sided easy adhesion) which is a resin film-like support 12 heated to 45 ° C. while keeping the liquid L3 and the coating solution H1 for the high refractive index layer at 45 ° C. L3 is formed on the surface of the infrared ray reflection layer 25 and the visible ray reflection layer 26 formed in order on the layer), so that L3 is in contact with the surface of the visible ray reflection layer 26, and then H1 on L3, and H1 Simultaneous multi-layer coating was performed so that L3 alternated. Immediately after coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown to dry to form an ultraviolet reflecting laminated portion 11 composed of 21 layers. Regarding the film thickness after drying, the low refractive index layer 111 coated with the low refractive index layer coating liquid L3 was 64 nm in each layer, and the high refractive index layer 112 coated with the high refractive index coating liquid H1 was 47 nm in each layer. In this way, a solar reflective film 30E (Sample 9) of Comparative Example 5 was obtained.
 比較例6(太陽光反射フィルム30Fの作製)(試料10;図12参照)
 可視光線反射層26を形成する工程までを比較例5の太陽光反射フィルム30Eの製造方法と同じ方法に従った。可視光線反射層26の表面に接着層27(厚さ5μm)を塗布し、先に作製した比較例4の紫外線反射積層部11をラミネートし比較例6の太陽光反射フィルム30F(試料10)を得た。
Comparative Example 6 (production of solar reflective film 30F) (Sample 10; see FIG. 12)
The process up to the step of forming the visible light reflection layer 26 was the same as the method for manufacturing the solar reflective film 30E of Comparative Example 5. An adhesive layer 27 (thickness 5 μm) is applied to the surface of the visible light reflection layer 26, and the ultraviolet reflection laminated portion 11 of Comparative Example 4 prepared in advance is laminated, so that the solar reflective film 30 F (Sample 10) of Comparative Example 6 is laminated. Obtained.
 〔太陽光反射フィルムの評価〕
 上記で作製した各太陽光反射フィルム(試料1~10)について、下記の性能評価を行った。
[Evaluation of solar reflective film]
The following performance evaluation was performed on each of the solar reflective films (samples 1 to 10) produced above.
 (各層の単膜屈折率の測定)
 基材上に屈折率を測定するため各層を単層で塗布したサンプルを作製し、このサンプルを10cm×10cmに裁断した後、下記の方法に従って屈折率を求めた。日立製の分光光度計 U-4100(固体試料測定システム)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて550nmの反射率を測定して平均値を求め、その結果より平均反射率を求め、さらに屈折率を求めた。
(Measurement of single film refractive index of each layer)
In order to measure the refractive index on the substrate, a sample in which each layer was applied as a single layer was prepared. After cutting this sample into 10 cm × 10 cm, the refractive index was determined according to the following method. Using Hitachi spectrophotometer U-4100 (solid sample measurement system), the surface opposite to the measurement surface (back surface) of each sample is roughened and then light absorption is performed with a black spray. Then, the reflection of light on the back surface was prevented, the reflectance at 550 nm was measured under the condition of regular reflection at 5 degrees, the average value was obtained, the average reflectance was obtained from the result, and the refractive index was further obtained.
 (初期の5度正反射率の測定)
 上記作製した各太陽光反射フィルムの透過率と光入射面側における5度正反射率を測定した。測定は日立製の分光光度計 U-4100(固体試料測定システム)を用いた。反射率の波長範囲は280~2500nmで測定した。反射率の波長範囲280~2500nmの測定値から算出された平均反射率R(波長280~2500nm)を以下のようにランク付した。
(Initial 5 degree specular reflectance measurement)
The transmittance of each of the solar reflective films prepared above and the 5 degree regular reflectance on the light incident surface side were measured. The spectrophotometer U-4100 (solid sample measurement system) manufactured by Hitachi was used for the measurement. The reflectance wavelength range was 280-2500 nm. The average reflectance R (wavelength 280 to 2500 nm) calculated from the measured values in the reflectance wavelength range 280 to 2500 nm was ranked as follows.
 5:95%以上
 4:90%以上95%未満
 3:85%以上90%未満
 2:80%以上85%未満
 1:80%未満。
5: 95% or more 4: 90% or more and less than 95% 3: 85% or more and less than 90% 2: 80% or more and less than 85% 1: less than 80%.
 (カール評価)
 フィルムのカールの測定を、JIS K7619-1988の「写真フィルムのカールの測定法」中の方法Aのカール測定用型板を用いて行った。ここで、カールがプラス(+)とはフィルムの光入射側が湾曲の内側になるカールをいい、マイナス(-)とは光入射側が湾曲の外側になるカールをいう。また、カールは下記数式で表される。
(Curl evaluation)
The curl of the film was measured by using the curl measurement template of Method A in “Measuring Method of Curling of Photographic Film” of JIS K7619-1988. Here, the curl plus (+) means a curl where the light incident side of the film is inside the curve, and the minus (−) means a curl where the light incident side is outside the curve. The curl is expressed by the following mathematical formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 測定結果のカール量により、以下のようにランク付した;
 5:-5以上~+5以下
 4:-10以上~-5未満、+5超~+10以下
 3:-15以上~-10未満、+10超~+15以下
 2:-20以上~-15未満、+15超~+20以下
 1:-20未満、+20超。
According to the curl amount of the measurement result, it was ranked as follows:
5: -5 or more to +5 or less 4: -10 or more to less than -5, more than +5 to less than +10 3: -15 or more to less than -10, more than +10 to less than +15 2: -20 or more to less than -15, more than +15 ~ + 20 or less 1: less than −20, more than +20.
 (耐候性の評価)
 上記作製した各太陽光反射フィルムを、温度85℃、相対湿度85%の環境下で30日間放置したのち、フィルムの光入射面側に対しキセノンランプ照射(スガ試験機 SX75を用いて、ブラックパネル温度63℃、相対湿度50%の環境下で放射強度180W/m、5000時間)を行った。次いで、キセノンランプ照射後に上記と同様の方法で5度正反射率を測定し、初期の反射率と耐候性試験後の反射率とを比較し、下記評価にしたがって、フィルムを評価した。耐候性試験後の反射率は紫外線積算光量3450MJ/mに達した時点での反射率を「UV3450MJ/m暴露後」とし、紫外線積算光量6900MJ/mに達した時点での反射率を「UV6900MJ/m暴露後」とした。
(Evaluation of weather resistance)
After each of the produced solar reflective films was left for 30 days in an environment of a temperature of 85 ° C. and a relative humidity of 85%, the light incident surface side of the film was irradiated with a xenon lamp (using a suga tester SX75, a black panel (Radiation intensity 180 W / m 2 , 5000 hours) in an environment of a temperature of 63 ° C. and a relative humidity of 50%. Subsequently, after the xenon lamp irradiation, the regular reflectance of 5 degrees was measured by the same method as described above, the initial reflectance was compared with the reflectance after the weather resistance test, and the film was evaluated according to the following evaluation. Reflectance after weathering test was the reflectance upon reaching ultraviolet integrated light amount 3450 mJ / m 2 as "UV3450MJ / m 2 after exposure", the reflectance at the time it reaches the ultraviolet integrated light amount 6900MJ / m 2 “After UV6900 MJ / m 2 exposure”.
 ・初期最大反射率に対する耐候性試験後の最大反射率の低下(=初期最大反射率-耐候性試験後の最大反射率(%))
 5:最大反射率低下が10%未満
 4:最大反射率低下が10%以上30%未満
 3:最大反射率低下が30%以上50%未満
 2:最大反射率低下が50%以上70%未満
 1:最大反射率低下が70%以上。
-Decrease in maximum reflectivity after the weather resistance test with respect to the initial maximum reflectivity (= initial maximum reflectivity-maximum reflectivity after the weather resistance test (%))
5: Maximum reflectivity decrease is less than 10% 4: Maximum reflectivity decrease is 10% or more and less than 30% 3: Maximum reflectivity decrease is 30% or more and less than 50% 2: Maximum reflectivity decrease is 50% or more and less than 70% 1 : Maximum reduction in reflectance is 70% or more.
 (密着性の評価)
 上記耐候性の評価の後、JIS K 5600-5-6:1999に準拠した碁盤目試験を行った。具体的には、各太陽光反射フィルムの光入射面側に、1mm間隔で縦、横に11本の切れ目を入れ、1mm角の碁盤目を100個作製した。この上にセロハンテープを貼り付け、90度の角度で素早く剥がし、剥がれずに残った碁盤目の数を測定し、下記の基準に従って、比較例1では銀反射層と樹脂フィルム状支持体、実施例1、2では紫外線反射部と樹脂フィルム状支持体、比較例2では銀反射層(ないし腐食防止層)と樹脂フィルム状支持体、比較例3では紫外線保護層と接着層を介した樹脂フィルム状支持体、実施例3では、紫外線反射積層部と腐食防止層を介した銀反射層、実施例4では、紫外線反射積層部と耐傷層、比較例4では、加熱延伸紫外線反射フィルムと銀反射層、比較例5では紫外線反射積層部と可視光線反射層、比較例6では紫外線反射積層部と接着層を介した可視光線反射層との密着性評価を評価した。
(Evaluation of adhesion)
After the above weather resistance evaluation, a cross-cut test based on JIS K 5600-5-6: 1999 was performed. Specifically, 11 cuts were made vertically and horizontally at intervals of 1 mm on the light incident surface side of each sunlight reflecting film to produce 100 1 mm square grids. A cellophane tape was affixed thereon, quickly peeled off at an angle of 90 degrees, and the number of grids remaining without being peeled was measured. According to the following criteria, in Comparative Example 1, the silver reflective layer and the resin film-like support, In Examples 1 and 2, an ultraviolet reflecting part and a resin film-like support, in Comparative Example 2 a silver reflecting layer (or corrosion prevention layer) and a resin film-like support, and in Comparative Example 3 a resin film via an ultraviolet protective layer and an adhesive layer In Example 3, the silver reflective layer via the UV reflective laminate and the corrosion prevention layer was used in Example 3, the UV reflective laminate and the scratch-resistant layer were used in Example 4, and the heat-stretched UV reflective film and the silver reflective were used in Comparative Example 4. In Comparative Example 5, the evaluation of adhesion between the ultraviolet light reflection laminate and the visible light reflection layer was evaluated. In Comparative Example 6, the adhesion evaluation between the ultraviolet light reflection laminate and the visible light reflection layer via the adhesive layer was evaluated.
 5:剥離がまったく認められない
 4:剥離した碁盤目数が、1個以上、5個以下である
 3:剥離した碁盤目数が、6個以上、10個以下である
 2:剥離した碁盤目数が、11個以上、20個以下である
 1:剥離した碁盤目数が、21個以上である。
5: No separation is observed 4: The number of peeled grids is 1 or more and 5 or less 3: The number of peeled grids is 6 or more and 10 or less 2: Stripped grids The number is 11 or more and 20 or less. 1: The number of peeled grids is 21 or more.
 (耐擦過性の評価)
 新東科学株式会社摩擦摩耗試験機(トライボステーションTYPE:32、移動速度4000mm/min.)を使用し、2センチ角にカットした日本スチールウール株式会社製の品番#0000のスチールウールに1000g/cmの荷重をかけ試料(各太陽光反射フィルムの光入射面側)上を10センチの長さにわたって20往復させた。下記の基準に従って、各太陽光反射フィルムの耐擦過性評価を評価した。
(Evaluation of scratch resistance)
Using a friction and wear tester (Tribo Station TYPE: 32, moving speed 4000 mm / min.) Using Shinto Kagaku Co., Ltd. A load of 2 was applied and the sample (the light incident surface side of each solar reflective film) was reciprocated 20 times over a length of 10 cm. The scratch resistance evaluation of each solar reflective film was evaluated according to the following criteria.
 5:傷がまったく認められない
 4:1センチ以上の傷が、1本以上、5本以下である
 3:1センチ以上の傷が、6本以上、10本以下である
 2:1センチ以上の傷が、11本以上、20本以下である
 1:1センチ以上の傷が、21本以上である。
5: Scratches are not recognized at all 4: 1 cm or more scratches are 1 or more and 5 or less 3: 1 cm or more scratches are 6 or more and 10 or less 2: 1 cm or more The number of scratches is 11 or more and 20 or less. The number of scratches of 1: 1 cm or more is 21 or more.
 評価結果を下記表1に示す。なお、各評価において評価ランク3以上であれば良好であると言える。 Evaluation results are shown in Table 1 below. In addition, it can be said that it is favorable if the evaluation rank is 3 or more in each evaluation.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から明らかなように、実施例1~4のすべての耐候性評価は4~5の範囲に収まっている。このことは以下の理由であると考えられる。 As is clear from the results in Table 1, all the weather resistance evaluations of Examples 1 to 4 are within the range of 4 to 5. This is considered to be the following reason.
 実施例1~4のすべての太陽光反射フィルムにおいて、良好な反射効率および耐光性、カールの低減が認められた。特に、実施例2、3、4では、紫外線反射積層部を構成する高屈折率層、低屈折率層ともに無機酸化物を含有することにより、高屈折率層と低屈折率層の屈折率差が大きく紫外線反射効率が高まった結果、実施例1よりも耐光性が向上した。実施例3ではポリエステルフィルムに変えて腐食防止層上に紫外線反射層を設けたことによりポリエステルフィルムの光吸収の影響を受けることなく反射率が向上した。実施例4では耐傷層を設けることにより、耐傷性と密着性が向上した。 In all the solar reflective films of Examples 1 to 4, good reflection efficiency, light resistance, and curl reduction were observed. In particular, in Examples 2, 3, and 4, the refractive index difference between the high refractive index layer and the low refractive index layer is obtained by including an inorganic oxide in both the high refractive index layer and the low refractive index layer constituting the ultraviolet reflective laminate. As a result of the large UV reflection efficiency, the light resistance was improved as compared with Example 1. In Example 3, the reflectance was improved without being affected by light absorption of the polyester film by providing an ultraviolet reflective layer on the corrosion prevention layer instead of the polyester film. In Example 4, the scratch resistance and adhesion were improved by providing the scratch resistant layer.
 一方、比較例1~3では、紫外線反射層が無いので、使える太陽光が減り(平均反射率が低く、耐光性も低く)、耐久性(密着性、耐擦過性)も低く(PETが黄変)、耐候性評価が1~2の項目が多くなっていることがわかる。比較例4では、紫外線反射層を加熱延伸によって製膜したため、残存しているラジカルの影響を受けて酸化劣化が促進されることで紫外線耐久性が悪く、耐候性評価が1~2の項目があることがわかる。比較例5では、ポリエステルフィルムの片面に赤外線、可視光線、紫外線反射のコーティング層を積層したため、一方向にカールが発生し、カール評価が1であることがわかる。比較例6では、ポリエステルフィルムの片面に赤外線、可視光線、コーティング層を積層し、紫外線反射層を加熱延伸によって製膜したため、一方向にカールが発生し、カール評価、耐候性評価が1~2の項目があることがわかる。 On the other hand, in Comparative Examples 1 to 3, since there is no ultraviolet reflecting layer, usable sunlight is reduced (average reflectance is low and light resistance is low), and durability (adhesion and scratch resistance) is low (PET is yellow). (Variation), it can be seen that the number of items with a weather resistance evaluation of 1-2 was increased. In Comparative Example 4, since the ultraviolet reflecting layer was formed by heat stretching, the oxidation deterioration was accelerated under the influence of the remaining radicals, so that the ultraviolet durability was poor and the weather resistance evaluation was 1-2. I know that there is. In Comparative Example 5, since a coating layer of infrared rays, visible rays, and ultraviolet rays was laminated on one side of the polyester film, curling occurred in one direction, and the curl evaluation was 1. In Comparative Example 6, since the infrared ray, visible ray, and coating layer were laminated on one side of the polyester film, and the ultraviolet reflecting layer was formed by heat stretching, curling occurred in one direction, and the curl evaluation and weather resistance evaluation were 1-2. It can be seen that there are items.
 本出願は、2013年7月1日に出願された日本特許出願番号2013-138156号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-138156 filed on July 1, 2013, the disclosure of which is incorporated by reference as a whole.
10、10’、10A~10D、30A~30F 太陽光反射フィルム、
11 紫外線反射積層部、
11a 紫外線反射積層部内の無機酸化物粒子、
12 樹脂フィルム状支持体、
13 銀反射層、
14 腐食防止層、
14a 第1腐食防止層、
14b 第2腐食防止層、
15 粘着層、
16 剥離材(剥離フィルム)、
17 耐傷層、
18 接着層、
19 紫外線保護層、
21 多層光学フィルム、
23 保護表面層、
25 赤外線反射層、
26 可視光線反射層、
27 接着層、
100 太陽光、
111 低屈折率層、
111a 低屈折率層内の無機酸化物粒子、
112 高屈折率層、
112a 高屈折率層内の無機酸化物粒子、
211 THV層、
212 PMMA層、
231、232 PENからなる1対の非光学層、
251 赤外線反射層の低屈折率層、
252 赤外線反射層の高屈折率層、
261 可視光線反射層の低屈折率層、
262 可視光線反射層の高屈折率層。
10, 10 ', 10A-10D, 30A-30F Solar reflective film,
11 UV reflective laminate,
11a Inorganic oxide particles in the ultraviolet reflective laminate,
12 resin film-like support,
13 Silver reflection layer,
14 corrosion protection layer,
14a first corrosion prevention layer,
14b second corrosion prevention layer,
15 adhesive layer,
16 Release material (release film),
17 scratch-resistant layer,
18 adhesive layer,
19 UV protective layer,
21 multilayer optical film,
23 Protective surface layer,
25 Infrared reflective layer,
26 Visible light reflection layer,
27 adhesive layer,
100 sunlight,
111 low refractive index layer,
111a inorganic oxide particles in the low refractive index layer,
112 high refractive index layer,
112a inorganic oxide particles in the high refractive index layer,
211 THV layer,
212 PMMA layer,
A pair of non-optical layers comprising 231 and 232 PEN;
251 Infrared reflective layer low refractive index layer,
252 high refractive index layer of infrared reflection layer,
261 a low refractive index layer of a visible light reflection layer,
262 A high refractive index layer of a visible light reflection layer.

Claims (7)

  1.  光入射する面から順に、コーティングによって形成された紫外線反射積層部と、銀反射層とを有し、
     前記紫外線反射積層部の少なくとも1層が、少なくとも1種の無機酸化物を含むことを特徴とする太陽光反射フィルム。
    In order from the light incident surface, it has an ultraviolet reflective laminate formed by coating, and a silver reflective layer,
    At least 1 layer of the said ultraviolet reflective lamination part contains at least 1 sort (s) of inorganic oxide, The sunlight reflective film characterized by the above-mentioned.
  2.  前記紫外線反射積層部が、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含み、
     前記高屈折率層および前記低屈折率層はともに少なくとも1種のポリビニルアルコールを含有し、
     前記低屈折率層中で最も含有量の多いポリビニルアルコールをポリビニルアルコール(A)とし、前記高屈折率層中で最も含有量の多いポリビニルアルコールをポリビニルアルコール(B)とした場合に、
     前記ポリビニルアルコール(A)の鹸化度と、ポリビニルアルコール(B)の鹸化度とが異なることを特徴とする請求項1に記載の太陽光反射フィルム。
    The ultraviolet reflective laminate includes at least one unit in which a high refractive index layer and a low refractive index layer are laminated,
    The high refractive index layer and the low refractive index layer both contain at least one polyvinyl alcohol,
    When the polyvinyl alcohol (A) having the highest content in the low refractive index layer is polyvinyl alcohol (A) and the polyvinyl alcohol having the highest content in the high refractive index layer is polyvinyl alcohol (B),
    The solar reflective film according to claim 1, wherein the saponification degree of the polyvinyl alcohol (A) is different from the saponification degree of the polyvinyl alcohol (B).
  3.  前記銀反射層の表面に、腐食防止層が設けられてなることを特徴とする請求項1または2に記載の太陽光反射フィルム。 The solar reflective film according to claim 1, wherein a corrosion prevention layer is provided on a surface of the silver reflective layer.
  4.  前記銀反射層を被覆する腐食防止層の水接触角が、90°未満であることを特徴とする請求項3に記載の太陽光反射フィルム。 The solar reflective film according to claim 3, wherein a water contact angle of the corrosion prevention layer covering the silver reflective layer is less than 90 °.
  5.  前記紫外線反射積層部よりも太陽光入側に、耐傷層が設けられてなることを特徴とする請求項1~4のいずれか1項に記載の太陽光反射フィルム。 The solar reflective film according to any one of claims 1 to 4, wherein a scratch-resistant layer is provided on the sunlight entrance side of the ultraviolet reflective laminate.
  6.  請求項1~5のいずれか1項に記載の太陽光反射フィルムを有することを特徴とする太陽光反射体。 A solar reflector comprising the solar reflective film according to any one of claims 1 to 5.
  7.  請求項6に記載の太陽光反射体を有することを特徴とする太陽光反射装置。 A solar light reflection device comprising the solar light reflector according to claim 6.
PCT/JP2014/066902 2013-07-01 2014-06-25 Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film WO2015002053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015525171A JPWO2015002053A1 (en) 2013-07-01 2014-06-25 LIGHT REFLECTING FILM, LIGHT REFLECTOR AND LIGHT REFLECTION DEVICE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-138156 2013-07-01
JP2013138156 2013-07-01

Publications (1)

Publication Number Publication Date
WO2015002053A1 true WO2015002053A1 (en) 2015-01-08

Family

ID=52143631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066902 WO2015002053A1 (en) 2013-07-01 2014-06-25 Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film

Country Status (2)

Country Link
JP (1) JPWO2015002053A1 (en)
WO (1) WO2015002053A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203127A (en) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 Method for production of optical film, optical film, and optical film laminate
JP2017062425A (en) * 2015-09-25 2017-03-30 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2017194608A (en) * 2016-04-21 2017-10-26 コニカミノルタ株式会社 Method for manufacturing optical film
JP2018025718A (en) * 2016-08-12 2018-02-15 コニカミノルタ株式会社 Light reflection film, method for manufacturing light reflection film, backlight unit for liquid crystal display
WO2018180177A1 (en) * 2017-03-28 2018-10-04 大阪瓦斯株式会社 Radiative cooling device and radiative cooling method
WO2019004199A1 (en) * 2017-06-28 2019-01-03 マクセルホールディングス株式会社 Transparent heat-shielding/heat-insulating member, and method for manufacturing same
CN110462464A (en) * 2017-03-28 2019-11-15 大阪瓦斯株式会社 Radiate cooling device and radiation cooling means
WO2020138320A1 (en) * 2018-12-27 2020-07-02 マクセルホールディングス株式会社 Transparent heat-shielding/heat-insulating member and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022855A (en) * 2002-06-18 2004-01-22 Shibaura Mechatronics Corp Process for producing semiconductor device
JP2004031783A (en) * 2002-06-27 2004-01-29 Sony Corp Cooling device, base for evaporator, base for capacitor, method for manufacturing electronic equipment and cooling device
JP2010237415A (en) * 2009-03-31 2010-10-21 Konica Minolta Opto Inc Film mirror having ultraviolet ray reflection film
WO2013065679A1 (en) * 2011-10-31 2013-05-10 コニカミノルタホールディングス株式会社 Reflective optical film and optical reflector using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022855A (en) * 2002-06-18 2004-01-22 Shibaura Mechatronics Corp Process for producing semiconductor device
JP2004031783A (en) * 2002-06-27 2004-01-29 Sony Corp Cooling device, base for evaporator, base for capacitor, method for manufacturing electronic equipment and cooling device
JP2010237415A (en) * 2009-03-31 2010-10-21 Konica Minolta Opto Inc Film mirror having ultraviolet ray reflection film
WO2013065679A1 (en) * 2011-10-31 2013-05-10 コニカミノルタホールディングス株式会社 Reflective optical film and optical reflector using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203127A (en) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 Method for production of optical film, optical film, and optical film laminate
JP2017062425A (en) * 2015-09-25 2017-03-30 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2017194608A (en) * 2016-04-21 2017-10-26 コニカミノルタ株式会社 Method for manufacturing optical film
JP2018025718A (en) * 2016-08-12 2018-02-15 コニカミノルタ株式会社 Light reflection film, method for manufacturing light reflection film, backlight unit for liquid crystal display
CN110462464A (en) * 2017-03-28 2019-11-15 大阪瓦斯株式会社 Radiate cooling device and radiation cooling means
WO2018180177A1 (en) * 2017-03-28 2018-10-04 大阪瓦斯株式会社 Radiative cooling device and radiative cooling method
CN110462464B (en) * 2017-03-28 2022-08-23 大阪瓦斯株式会社 Radiation cooling device and radiation cooling method
US11598592B2 (en) 2017-03-28 2023-03-07 Osaka Gas Co., Ltd. Radiative cooling device and radiative cooling method
WO2019004199A1 (en) * 2017-06-28 2019-01-03 マクセルホールディングス株式会社 Transparent heat-shielding/heat-insulating member, and method for manufacturing same
JPWO2019004199A1 (en) * 2017-06-28 2020-04-30 マクセルホールディングス株式会社 Transparent heat insulating and heat insulating member and method for manufacturing the same
WO2020138320A1 (en) * 2018-12-27 2020-07-02 マクセルホールディングス株式会社 Transparent heat-shielding/heat-insulating member and method for producing same
JPWO2020138320A1 (en) * 2018-12-27 2021-11-11 マクセルホールディングス株式会社 Transparent heat shield and heat insulating member and its manufacturing method
JP7344906B2 (en) 2018-12-27 2023-09-14 マクセル株式会社 Transparent thermal insulation member and its manufacturing method

Also Published As

Publication number Publication date
JPWO2015002053A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2015002053A1 (en) Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
JPWO2012090987A1 (en) Functional film, film mirror, and reflector for solar power generation
JP2015011271A (en) Light-reflecting film, and light-reflecting body and light-reflecting device using the same
US20160146993A1 (en) Dielectric multilayer coating film
WO2018207563A1 (en) Light-reflecting film and method for producing light-reflecting film
WO2012105351A1 (en) Solar light collecting mirror, and solar thermal power generation system comprising the solar light collecting mirror
US10962695B2 (en) Optical reflection film
WO2014188831A1 (en) Ultraviolet shielding film
US20170038508A1 (en) Light reflective film roll and light reflective film roll package
WO2011096151A1 (en) Film mirror and process for production thereof, and sunlight collection mirror
JP2011158751A (en) Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same
JP2016137666A (en) Light reflection film, and light reflector and light reflection device using the same
WO2013141304A1 (en) Film mirror, and reflection device for solar power generation
JP2015087625A (en) Reflector and manufacturing method therefor
WO2012026311A1 (en) Film mirror, method for manufacturing film mirror, and reflection device for use in solar thermal power generation
CN103703400A (en) Solar light collecting mirror and solar thermal power generation system using said solar light collecting mirror
JP6176256B2 (en) Optical reflection film and optical reflector using the same
JP6344069B2 (en) Optical reflective film
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
JP2016170279A (en) Light reflection film, and light reflection body and sunlight reflection device having the same
JP2012053382A (en) Light-reflecting film for solar power generation and reflecting device for solar power generation
WO2015064312A1 (en) Film mirror and light reflection device for solar heat reflection using same
JP2012108221A (en) Reflector for solar thermal power generation, method for manufacturing the same and reflector device for solar thermal power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819834

Country of ref document: EP

Kind code of ref document: A1