WO2020138320A1 - Transparent heat-shielding/heat-insulating member and method for producing same - Google Patents

Transparent heat-shielding/heat-insulating member and method for producing same Download PDF

Info

Publication number
WO2020138320A1
WO2020138320A1 PCT/JP2019/051200 JP2019051200W WO2020138320A1 WO 2020138320 A1 WO2020138320 A1 WO 2020138320A1 JP 2019051200 W JP2019051200 W JP 2019051200W WO 2020138320 A1 WO2020138320 A1 WO 2020138320A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
refractive index
heat insulating
meth
Prior art date
Application number
PCT/JP2019/051200
Other languages
French (fr)
Japanese (ja)
Inventor
宮田照久
水谷拓雄
光橋文枝
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2020562426A priority Critical patent/JP7344906B2/en
Publication of WO2020138320A1 publication Critical patent/WO2020138320A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention mainly relates to a transparent heat insulating and heat insulating member such as a film for adjusting solar radiation for energy saving, which is used by being attached to the indoor side such as window glass.
  • the present invention relates to a transparent heat insulating and heat insulating member such as a solar radiation adjusting film for year-round energy saving, which is excellent in heat insulating property and suppresses corrosion deterioration due to dew condensation water or adhesion of human skin oil, and a manufacturing method thereof.
  • a heat shield film can be attached to the windows of buildings, show windows, automobile windows, etc. to cut the heat rays (infrared rays) of sunlight and reduce the internal temperature. It is widely practiced.
  • the heat shield property that cuts the heat rays that cause the temperature rise in summer, but also the heat insulation function that suppresses the heating heat outflow from the room in winter and reduces the heating load.
  • JIS Japanese Industrial Standard
  • low-emission films are classified into the following four types A to D depending on the combination of visible light transmittance and heat transmission coefficient which is an index of heat insulation performance.
  • Category A Visible light transmittance of less than 60%, thermal transmittance of 4.2 W/(m 2 ⁇ K) or less
  • Category B Visible light transmittance of less than 60%, thermal transmittance of more than 4.2, 4.8 W/(m 2 ⁇ K) or less
  • Category C visible light transmittance of 60% or more, heat transmission coefficient of 4.2 W/(m 2 ⁇ K) or less
  • Category D visible light transmittance of 60% or more, heat transmission coefficient of more than 4.2 4 0.8 W/(m 2 ⁇ K) or less
  • the low-emission films classified into the above 4 types are particularly excellent in heat insulation. It is expected that low-emission films falling into these categories will gradually penetrate the market in the future.
  • the heat transmission coefficient is 4.0 W/(m 2 ⁇ K) or less, more specifically, in the category A and the category C.
  • Products in the 3.6 to 3.8 W/(m 2 ⁇ K) class are also targets for the development of next-generation low-emission films.
  • the structure of the low-emission film generally, a structure of an infrared reflection film in which a metal oxide layer, a metal layer, a metal oxide layer, and a transparent protective layer (hard coat layer) are provided in this order on a transparent substrate.
  • a transparent protective layer hard coat layer
  • the laminated portion of the metal oxide layer, the metal layer, and the metal oxide layer is a relatively highly transparent infrared reflection layer, and the metal oxide layer is visible due to the interference effect at the interface with the metal layer that reflects infrared rays.
  • the light reflectance is adjusted to control the balance between the visible light transmittance and the infrared reflectance of the entire infrared reflective layer, and at the same time, it has the role of suppressing the corrosion deterioration of the metal layer.
  • the infrared reflective layer does not have sufficient scratch resistance as it is, and protection by only the metal oxide layer does not work under an environment where external environmental factors such as oxygen, water, and chloride ions act synergistically. Since the metal layer is apt to be corroded and deteriorated, a transparent protective layer is further provided thereon for the purpose of improving the scratch resistance of the infrared reflecting layer and suppressing the influence of the above external factors.
  • the thermal transmittance of the low emissivity film as described above 4.2W / (m 2 ⁇ K) or less, and still more, in order to further improve the thermal insulation properties and 4.0W / (m 2 ⁇ K) or less
  • a material that easily absorbs far infrared rays such as a radiation-curable acrylic hard coat material (the molecular skeleton has a C ⁇ O group, a C—O group, an aromatic group).
  • the thickness of the protective layer becomes thicker, the absorption of far infrared rays increases, and the solar radiation adjustment film itself absorbs far infrared rays. This is because the adjustment film cannot efficiently reflect far infrared rays to the indoor side.
  • the thickness of the transparent protective layer cannot be generally stated because it depends on the constituent material of the transparent protective layer, but a specific example will be explained.
  • the heat transmission coefficient is 3.7 W/( m 2 ⁇ K), for example, in order to set the heat transmission coefficient of the low radiation film to 4.2/(m 2 ⁇ K) or less, the thickness of the transparent protective layer is about It should be 1.0 ⁇ m or less.
  • the thickness of the transparent protective layer needs to be about 0.7 ⁇ m or less.
  • the thickness of the transparent protective layer needs to be about 0.5 ⁇ m or less.
  • Patent Document 1 discloses that a first metal oxide layer and silver are mainly formed on a transparent film substrate.
  • a second metal oxide layer comprising a metal layer as a component and a composite metal oxide layer containing zinc oxide and tin oxide, wherein the second metal oxide layer has a thickness of 30 nm to 150 nm and is polymerizable with an acidic group.
  • an infrared reflective film characterized in that a transparent protective layer having a crosslinked structure derived from an ester compound having a functional group in the same molecule is in direct contact therewith.
  • Patent Document 2 discloses an infrared reflective film capable of effectively preventing the face of a resident or the like from being reflected in a window provided with an infrared reflective film.
  • An infrared reflecting film comprising a transparent film substrate, a first metal oxide layer, an infrared reflecting layer, a second metal oxide layer, and a transparent protective layer, which are laminated in this order on the transparent film substrate.
  • the thickness of the first metal oxide layer is 30 nm or less, the thickness of the first metal oxide layer is smaller than the thickness of the second metal oxide layer, and the thickness of the first metal oxide layer and the second metal oxide are Disclosed is an infrared reflective film characterized in that the difference from the thickness of the object layer is 2 nm or more.
  • Patent Document 3 discloses a transparent substrate.
  • An infrared reflective layer including at least a metal layer and a metal suboxide layer in which the metal is partially oxidized, and a protective layer in this order, and the protective layer has a total thickness of 200 to 980 nm.
  • a transparent heat insulating and heat insulating member including at least a high refractive index layer and a low refractive index layer in this order from the side.
  • making the thickness of the transparent protective layer thinner is generally a direction in which the function of protecting the infrared reflective layer from external environmental factors such as oxygen, moisture, and chloride ions is decreased, that is, oxygen, Since the diffusion and penetration time of moisture and chloride ions in the depth direction of the protective layer is shortened, there is a problem that corrosion deterioration of the metal layer is more likely to occur. Corrosion deterioration of the metal layer causes deterioration of the heat-insulating and heat-insulating function of the low-emission film and appearance defects such as discoloration.
  • the thickness of the transparent protective layer thinner also tends to reduce physical properties such as scratch resistance, so that the film surface (transparent protective layer during film application or when the film is used for a long period of time). ) Is apt to be damaged, and there is a concern that the appearance may be deteriorated due to the damage and the metal layer may be corroded and deteriorated.
  • the metal oxide layer provided on the transparent protective layer side of the infrared reflective layer has chemical stability (durability against acids, alkalis, chloride ions, etc.).
  • the problem is solved by using a composite metal oxide (ZTO) containing excellent zinc oxide and tin oxide.
  • the infrared reflective film disclosed in Patent Document 1 uses a ZTO layer having excellent chemical stability as the metal oxide layer provided on the transparent protective layer side of the infrared reflective layer, Since the thickness is extremely thin, from 30 nm to 150 nm, there is room for improvement in terms of scratch resistance, and the chloride contained in human sebum adheres to the infrared reflective film surface when the human hand or finger touches it.
  • the above-mentioned external environmental factors such as oxygen, moisture, and chloride ions act synergistically and strongly, resulting in corrosion deterioration of the metal layer.
  • the heat insulation and heat insulation function may be deteriorated and the appearance may be deteriorated.
  • the thicknesses of the ZTO layers used as the first metal oxide layer and the second metal oxide layer are both about 30 nm, the visible light transmittance is relatively high and the visible light reflectance is relatively low. It is estimated that the solar radiation absorption rate is relatively high (about 25% to 30%), and when the infrared reflective film is attached to the window glass, the type of window glass, the orientation of the window glass, and the condition of the shadow of the window glass. In some cases, the temperature near the center of the window glass becomes high, which may cause thermal cracking of the window glass.
  • Patent Document 2 As a metal oxide layer provided on the transparent protective layer side of the infrared reflective layer, zinc oxide and oxide excellent in chemical stability (durability against acids, alkalis, chloride ions, etc.) By using a mixed metal oxide (ZTO) containing tin, the problem of corrosion deterioration of the metal layer is solved.
  • ZTO mixed metal oxide
  • the infrared reflective film disclosed in Patent Document 2 also uses the ZTO layer having excellent chemical stability as the metal oxide layer provided on the transparent protective layer side of the infrared reflective layer, but the transparent protective layer Since the thickness is extremely thin as 50 nm to 70 nm (in the range of Examples), there is room for improvement in terms of scratch resistance, and the chloride contained in human sebum by touching the infrared reflective film surface with human hands or fingers. If the product is used for a long period of time in a harsh environment where dew condensation is extremely likely to occur with substances attached, corrosion and deterioration of the metal layer may be accelerated, which may lead to deterioration of the heat insulation and heat insulation function and poor appearance. There is still concern about that.
  • the thickness of the first metal oxide layer (ZTO layer) is 4 to 15 nm
  • the thickness of the second metal oxide layer (ZTO layer) is 10 to 25 nm, which is still large
  • the solar radiation absorption rate is 22 to 35%.
  • Patent Document 3 a metal suboxide layer in which the metal is partially oxidized is provided on the metal layer, so that the metal is subjected to a corrosion resistance test in which the metal suboxide layer is left in an environment of a temperature of 50° C. and a relative humidity of 90% for 168 hours.
  • a corrosion resistance test in which the metal suboxide layer is left in an environment of a temperature of 50° C. and a relative humidity of 90% for 168 hours.
  • the transparent heat insulating and heat insulating member disclosed in Patent Document 3 since the thickness of the TiO X layer used as the metal suboxide layer is set as thin as 2 to 6 nm, the visible light reflectance is relatively high.
  • the solar radiation absorption rate is high and the solar radiation absorption rate is relatively low, and it is considered that the risk of thermal cracking of the window glass when the transparent heat insulating/insulating member is attached to the window glass is reduced. Further, since the thickness of the TiO x layer is thin, the cost and manufacturing efficiency at the time of sputtering film formation are improved.
  • the TiO X layer used as the metal suboxide layer has a thin thickness of 2 to 6 nm, and the protective layer formed thereon. Since its thickness is relatively thin at 210 to 930 nm, there is no problem in the corrosion resistance test of leaving it in an environment of temperature 50°C and relative humidity 90% for 168 hours. If the product is used for a long period of time in a harsh environment where chloride contained in human sebum adheres to it when touched or touched with a finger, and it is extremely liable to cause dew condensation, corrosion deterioration of the metal layer is promoted and shielding occurs. There is concern that the thermal insulation function may be deteriorated and the appearance may be deteriorated.
  • the low radiation film with improved heat insulation has oxygen, Excellent corrosion resistance deterioration when used for a long period of time in an extremely harsh environment where external environmental factors such as moisture and chloride ions synergistically affect, and also has practical scratch resistance. What has been obtained is not currently available. Further, there is still room for improvement in reducing the risk of thermal cracking of the glass when the film is attached to the window glass, that is, reducing the solar radiation absorption rate.
  • the present invention is incompatible with the above-mentioned problem, that is, in the transparent heat insulating and heat insulating member, it is not possible to meet the mutually opposing requirements of improving the heat insulating performance and suppressing the corrosion deterioration when used for a long period of time in a harsh environment. It is a solution to the problem, and in particular, it has excellent heat insulation properties and suppresses corrosion and deterioration caused by condensation water and the adhesion of human skin oil.
  • a thermal insulation member is provided.
  • the present invention provides a transparent heat insulating/insulating member which has a reduced solar absorptance and an improved appearance.
  • the inventors of the present application firstly assumed a harsh environment for use of the heat insulating and heat insulating member disclosed in Patent Document 3 at a temperature of 50° C. and a concentration of 5 mass% sodium chloride.
  • a salt water resistance test was carried out by immersing in an aqueous solution for 10 days, and the transmission spectrum in the wavelength range of 300 to 1500 nm was measured before and after the immersion. The transmission spectrum changed after the immersion, and the near-infrared reflection function tended to deteriorate. I knew it was. In this case, the function of reflecting far infrared rays having a wavelength of 5.5 to 25.2 ⁇ m is also deteriorated.
  • This heat insulating and heat insulating member has a structure in which a thin metal suboxide layer and a protective layer are formed on a metal layer, but nevertheless, the metal layer when used in a harsh environment In view of the above situation, it was presumed that the cause was as follows as to the corrosion deterioration resistance of No. 1 was more than expected.
  • the metal suboxide is used.
  • the thickness of the metal suboxide layer is made extremely thin to several nm.
  • the metal layer is not completely covered by the second metal suboxide layer and the metal derived from the metal layer is exposed on the surface of the infrared reflective layer as described in (1) to (5) above. It is found that there are extremely minute parts (including minute metal aggregates, minute bump-like objects and metal flakes) that are present in the It was considered to be the main cause of corrosion and deterioration of the metal layer of the heat insulating and heat insulating member when used in the environment. That is, although a protective layer containing an organic substance and an inorganic oxide is formed on the infrared reflective layer, the thickness of the protective layer is as thin as 210 to 930 nm in order to reduce the heat transmission coefficient, and the protective layer contains oxygen and oxygen.
  • the present inventors have made a transparent base material and at least a metal layer and a metal suboxide layer or a metal oxide layer formed on the transparent base material in this order.
  • a coating type protective layer composed of a plurality of layers is provided on the infrared reflection layer, and at least one layer other than the layer positioned on the outermost surface side of the coating type protective layer is provided.
  • a (meth)acrylic copolymer containing an ester monomer as a copolymer unit and a layer containing a polyisocyanate crosslinking agent that reacts with the hydroxyl group If the layer located on the outermost surface side is formed of a layer containing an active energy ray-curable resin as a pre-curing resin component, the total thickness of the protective layer is less than 1 ⁇ m in order to reduce the heat reflux rate. Even when set to the above, the layer containing the specific acrylic copolymer after being cured by the cross-linking agent is, for example, the layer of the above (1) to (5) present on the surface of the infrared reflecting layer.
  • the present invention has been completed by finding that the progress of corrosion deterioration of the layer is remarkably suppressed and that the protective layer of the coating type comprising the above-mentioned plurality of layers after curing has practical scratch resistance.
  • the infrared reflecting layer is provided from the transparent base material side to a first metal suboxide layer or a metal oxide layer, a metal.
  • Layer, the second metal suboxide layer or the metal oxide layer in this order, and the total thickness of the infrared reflection layer is 7 to 25 nm or less, the second metal suboxide layer or the metal oxide. It has been found that when the layer thickness is 25% or less of the total thickness of the infrared reflective layer, the corrosion resistance of the metal layer is excellent and the solar radiation absorptivity of the transparent heat insulating/insulating member can be reduced, and the present invention is made. Came to.
  • the transparent heat insulating heat insulating member of the present invention is a transparent heat insulating heat insulating member including a transparent substrate and a functional layer formed on the transparent substrate, wherein the functional layer is from the transparent substrate side.
  • the infrared reflection layer from the transparent substrate side, at least a metal layer, and includes a metal suboxide layer or a metal oxide layer in this order, the coating
  • the protective layer of the mold is composed of a plurality of layers, and at least one of the layers other than the layer located on the outermost surface side of the protective layer of the coating type has a hydroxyl group as a pre-curing resin component (meth).
  • the (meth)acrylic copolymer is composed of a layer containing an acrylic copolymer and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, and the (meth)acrylic copolymer contains a monomer having a hydroxyl group and a glass transition temperature of 20° C. or higher.
  • a (meth)acrylic acid alkyl ester monomer having an alkyl group having a carbon number of 4 or more and 10 or less capable of forming a homopolymer at 155° C. or less is included as a copolymer unit,
  • the layer located on the outer surface side is characterized by being a layer containing an active energy ray-curable resin as a pre-curing resin component.
  • the hydroxyl value of the (meth)acrylic copolymer is preferably 30 mgKOH/g or more and 200 mgKOH/g or less.
  • the coating type protective layer from the infrared reflection layer side, includes a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order, the middle refractive index layer, as a pre-curing resin component, It is preferable to include a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group.
  • the coating type protective layer further includes an optical adjustment layer, a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order from the infrared reflecting layer side, and the medium refractive index layer is a cured layer.
  • the (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group are included as the pre-resin component.
  • the (meth)acrylic acid alkyl ester monomer is at least one selected from the group consisting of t-butyl methacrylate and t-butyl acrylate.
  • the total thickness of the coating type protective layer is preferably 200 nm or more and 980 nm or less.
  • At least a layer of the coating type protective layer that is in direct contact with the metal suboxide layer or the metal oxide layer contains a corrosion inhibitor for metal.
  • the corrosion inhibitor for the metal contains at least one compound selected from a compound having a nitrogen-containing group and a compound having a sulfur-containing group.
  • the infrared reflective layer from the transparent substrate side, includes a first metal suboxide layer or metal oxide layer, a metal layer, a second metal suboxide layer or metal oxide layer in this order,
  • the total thickness of the infrared reflective layer is 7 nm or more and 25 nm or less, and the thickness of the second metal suboxide layer or the metal oxide layer is 25% or less of the total thickness of the infrared reflective layer. It is preferable.
  • the metal layer of the infrared reflective layer contains silver, and the thickness of the metal layer is 5 nm or more and 20 nm or less.
  • the metal suboxide or the metal oxide contained in the second metal suboxide layer or the metal oxide layer of the infrared reflective layer contains a titanium component.
  • the transparent heat insulating and heat insulating member has a visible light transmittance of 60% or more, a shielding coefficient of 0.69 or less, a heat transmission coefficient of 4.0 W/(m 2 ⁇ K) or less, and a solar absorptivity. Is preferably 20% or less.
  • the transparent heat insulation heat insulation member measured before the salt water resistance test.
  • the transmittance of light having a wavelength of 1100 nm in the transmission spectrum in the wavelength range of 300 to 1500 nm of the member is T B %, and the wavelength of the transmission spectrum is 1100 nm in the wavelength range of 300 to 1500 nm of the transparent heat insulating and heat insulating member measured after the salt water resistance test. It is more preferable that the value of T A -T B is less than 10 points, where T A % is the light transmittance of.
  • the reflection spectrum measured according to JIS R3106-1998 corresponds to the wavelength 535 nm on the virtual line a indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 500 to 570 nm of the reflection spectrum.
  • the point is point A
  • the point corresponding to the wavelength 700 nm on the virtual line b indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 620 to 780 nm of the reflection spectrum is point B
  • the points A and A straight line passing through the point B is extended in the wavelength range of 500 to 780 nm to form a reference straight line AB
  • the reflectance value of the reflection spectrum and the reflectance value of the reference straight line AB in the wavelength range of 500 to 570 nm are compared.
  • the value of the maximum variation difference ⁇ A is the% unit of the reflectance. Is 7% or less, and when the reflectance value of the reflectance spectrum in the wavelength range of 620 to 780 nm and the reflectance value of the reference line AB are compared, the difference between the reflectance values becomes maximum.
  • the absolute value of the difference in the reflectance values at the wavelength is defined as the maximum variation difference ⁇ B
  • the value of the maximum variation difference ⁇ B is more preferably 9% or less in% of the reflectance.
  • the method for producing a transparent heat insulating and heat insulating member of the present invention comprises a step of forming an infrared reflective layer on a transparent substrate by a dry coating method, and a wet protective layer composed of a plurality of layers on the infrared reflective layer. And a step of forming by a coating method.
  • a transparent heat shield having a high visible light transmittance, excellent heat insulation properties, and substantially suppressed corrosion deterioration due to dew condensation water or human skin oil adhesion, and practical scratch resistance.
  • a heat insulating member can be provided. Further, it is possible to provide a transparent heat-insulating and heat-insulating member having a reduced solar radiation absorption rate. That is, the transparent heat insulating and heat insulating member of the present invention is attached to a window glass and used for a long period of time in an extremely harsh environment in which external environmental factors such as oxygen, water and chloride ions synergistically affect. Even so, the heat shield and heat insulating function and the good appearance can be maintained. Moreover, the risk of thermal cracking of the glass when it is attached to the window glass can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transparent heat insulating/insulating member according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a transmission spectrum of the transparent heat insulating/insulating member before and after the salt water resistance test of the present invention.
  • FIG. 3 is a diagram for explaining how to obtain the “reference straight line AB”, the “maximum variation difference ⁇ A”, and the “maximum variation difference ⁇ B” of the reflectance of the transparent heat insulating and heat insulating member of the present invention with respect to the visible light reflection spectrum.
  • FIG. 4 is a reflection spectrum in the visible light region when light is measured from the glass surface side in Example 1 of the present invention.
  • One embodiment of the transparent heat insulating and heat insulating member of the present invention includes a transparent base material and a functional layer formed on the transparent base material, wherein the functional layer is an infrared reflective layer and an infrared reflective layer from the transparent base material side.
  • the coating type protective layer in this order, the infrared reflective layer, from the transparent substrate side, at least a metal layer, and, containing a metal suboxide layer or a metal oxide layer in this order, the coating type protective layer Is composed of a plurality of layers, and at least one of the layers other than the layer located on the outermost surface side of the above-mentioned coating type protective layer has a (meth)acrylic copolymer copolymer having a hydroxyl group as a pre-curing resin component.
  • the (meth)acrylic copolymer is composed of a layer containing a polymer and a polyisocyanate cross-linking agent that reacts with the hydroxyl group, and the (meth)acrylic copolymer has a monomer having a hydroxyl group and a glass transition temperature of 20° C. or higher and 155° C. or lower.
  • a (meth)acrylic acid alkyl ester monomer having a carbon number of an alkyl group capable of forming a homopolymer of 4 or more and 10 or less is included as a copolymer unit, and the outermost surface side of the coating type protective layer is provided.
  • the layer located is a layer containing an active energy ray-curable resin as a resin component before curing.
  • the polyisocyanate-based material is also used.
  • the layer containing the specific (meth)acrylic copolymer cured by the cross-linking agent becomes the above-mentioned "extremely minute portion where the metal derived from the metal layer is in a bare state" present on the infrared reflective layer surface.
  • the layer containing the specific (meth)acrylic copolymer cured by the polyisocyanate crosslinking agent naturally functions as a barrier layer for the infrared reflective layer including the metal layer.
  • the transparent heat-insulating heat insulating member of the present embodiment has a large visible light transmittance and can reduce the heat transmission coefficient, and significantly suppresses the corrosion deterioration due to dew condensation water or the adhesion of human skin oil. You can Furthermore, since the layer located on the outermost surface side of the coating type protective layer is cured by irradiation with active energy rays, practical scratch resistance can be imparted.
  • one embodiment of the transparent heat insulating and heat insulating member of the present invention includes a transparent base material and a functional layer formed on the transparent base material, and the functional layer is provided from the transparent base material side.
  • An infrared reflection layer and a coating type protective layer are included in this order, and the infrared reflection layer is formed from the transparent substrate side from the first metal suboxide layer or the metal oxide layer, the metal layer, the second metal suboxide.
  • the total thickness of the infrared reflective layer is 7 nm or more and 25 nm or less
  • the thickness of the second metal suboxide layer or the metal oxide layer is the infrared It is 25% or less of the total thickness of the reflective layer
  • the coating type protective layer is composed of a plurality of layers, and at least one layer of the coating type protective layers other than the layer located on the outermost surface side.
  • the layer is an alkyl (meth)acrylate having 4 to 10 carbon atoms in the alkyl group capable of forming a homopolymer having a glass transition temperature of 20° C. to 155° C. with a monomer having a hydroxyl group as a resin component before curing.
  • the layer located on the outermost surface side is a layer containing an active energy ray-curable resin as a resin component before curing.
  • the said 2nd metal suboxide layer or a metal oxide layer is formed thinly, and a heat transmission coefficient is reduced and heat insulation is improved more. Therefore, even if a thin protective layer consisting of the coating-type plurality of layers of the infrared reflecting layer is formed, a layer containing a specific (meth)acrylic copolymer cured by the polyisocyanate crosslinking agent is formed. As described above, “the metal layer present on the surface of the infrared reflective layer (1) to (5) is not completely covered by the second metal suboxide layer and the metal derived from the metal layer is exposed.
  • the transparent heat insulating and heat insulating member of the present embodiment has a large visible light transmittance, can reduce the heat transmission coefficient and the solar radiation absorptivity, and significantly corrodes and deteriorates due to dew condensation water or human skin oil adhesion. Can be suppressed.
  • the transparent base material forming the transparent heat insulating and heat insulating member of the present embodiment is not particularly limited as long as it is made of a material having a light transmitting property.
  • the transparent substrate include polyester-based resins (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate-based resins, polyacrylic acid ester-based resins (eg, polymethylmethacrylate, etc.), alicyclic polyolefin-based resins, Polystyrene resin (for example, polystyrene, acrylonitrile-styrene copolymer, etc.), polyvinyl chloride resin, polyvinyl acetate resin, polyether sulfone resin, cellulose resin (for example, diacetyl cellulose, triacetyl cellulose, etc.), A resin such as a norbornene-based resin processed into a film shape or a sheet shape can be used.
  • polyester-based resins eg, polyethylene
  • Examples of the method for processing the above resin into a film or sheet include an extrusion molding method, a calendar molding method, a compression molding method, an injection molding method, a method of dissolving the above resin in a solvent and casting. You may add additives, such as an antioxidant, a flame retardant, a heat stabilizer, an ultraviolet absorber, a slip agent, and an antistatic agent, to the said resin.
  • the transparent substrate has a thickness of, for example, 10 ⁇ m or more and 500 ⁇ m or less, and preferably 25 ⁇ m or more and 125 ⁇ m or less in view of workability and cost.
  • the infrared reflective layer that constitutes the transparent heat insulating and heat insulating member of the present embodiment is particularly limited as long as it has a configuration including at least a metal layer and a metal suboxide layer or a metal oxide layer in this order from the transparent substrate side. Although not a thing, it is provided with a first metal suboxide layer or metal oxide layer, a metal layer, a second metal suboxide layer or metal oxide layer in this order from the transparent substrate side, and the infrared reflection
  • the total thickness of the layers is 7 nm or more and 25 nm or less, and the thickness of the second metal suboxide layer or the metal oxide layer is set to 25% or less of the total thickness of the infrared reflective layer. Is preferred.
  • the lower limit of the total thickness of the infrared reflective layer is preferably 7 nm or more in order to exhibit the functions (heat shielding performance and heat insulating performance) of the infrared reflective layer.
  • the total thickness of the infrared reflective layer is less than 7 nm, the reflectance of infrared rays decreases, the shielding coefficient and the heat transmission coefficient increase, and the heat shielding performance and the heat insulating performance may deteriorate.
  • the transparent heat insulating/insulating member can have a heat insulating function and a heat insulating function by including the infrared reflective layer. Further, in the transparent heat insulating/insulating member, when the total thickness of the infrared reflective layer is set to 25 nm or less, it becomes easy to design the visible light transmittance to be 60% or more. When the total thickness of the infrared reflective layer is more than 25 nm, the visible light transmittance becomes low and the transparency may be deteriorated.
  • the thickness of the second metal suboxide layer or the metal oxide layer is set to 25% or less of the total thickness of the infrared reflection layer, the thickness of the metal layer that greatly contributes to the infrared reflection function.
  • the thickness can be relatively increased within the range of the total thickness of the infrared reflective layer. As a result, the reflectance of infrared rays can be increased, and the shielding coefficient and the heat transmission coefficient can be reduced.
  • the thickness of the metal layer is the same, and the thickness of the first metal suboxide layer or metal oxide layer and the thickness of the second metal suboxide layer or metal oxide layer are the same as those of the present embodiment.
  • the infrared reflection layer thicker than the range, it has the following features.
  • the metal layers have the same thickness, and the first metal suboxide layer or the metal oxide layer and the second metal suboxide layer or the metal oxide layer have the same thickness.
  • the solar radiation transmittance (A) tends to be lower in the wavelength range of 380 to 780 nm and higher in the wavelength range of 790 to 2500 nm as compared with the infrared reflective layer having a thickness larger than that of the present embodiment.
  • (B) solar reflectance tends to be high in the wavelength range of 380 to 780 nm and low in the wavelength range of 790 to 2500 nm.
  • (C) solar reflectance and solar reflectance The added value tends to be higher.
  • the solar radiation absorption rate which is a value obtained by subtracting the solar radiation transmittance and the solar radiation reflectance from 100%, tends to be low.
  • a protective layer which will be described later, on the infrared reflective layer having such a solar radiation property, the balance between the solar radiation transmittance and the solar radiation reflectance is controlled at a high level, and the thermal insulation has a relatively low solar radiation absorption rate. It can be a heat insulating member.
  • the infrared reflection film is attached to the window glass, the temperature rise near the central portion of the window glass can be suppressed and the window glass causes thermal cracking, as compared with the conventional infrared reflection film having heat insulation properties. The risk can be reduced.
  • the thickness of the second metal suboxide layer or the metal oxide layer is set to be 25% or less of the total thickness of the infrared reflective layer, the heat insulation performance is improved and the solar radiation absorption rate is reduced.
  • it becomes difficult for the second metal suboxide layer or the metal oxide layer to completely cover the metal layer it is difficult to completely cover the metal layer.
  • the transparent heat-insulating and heat-insulating member of the present embodiment as described above, at least one of the layers other than the layer located on the outermost surface side of the protective layer composed of the plurality of coating-type layers is a Since the layer containing the specific (meth)acrylic copolymer hardened by the isocyanate crosslinking agent is included, the layer containing the specific (meth)acrylic copolymer is present on the surface of the infrared reflective layer.
  • the infrared reflective layer for example, (A) transparent substrate/first metal suboxide layer/metal layer/second metal suboxide layer, (B) transparent substrate/first 1 metal oxide layer/metal layer/second metal suboxide layer, (C) transparent substrate/first metal suboxide layer/metal layer/second metal oxide layer, (D) transparent substrate/second Examples of the constitution include 1 metal oxide layer/metal layer/second metal oxide layer, (E) transparent substrate/metal layer/metal suboxide layer, and the like.
  • the configurations for example, from the viewpoint of further improving the corrosion resistance deterioration resistance of the metal layer of the infrared reflective layer and the effect of reducing the solar radiation absorptivity, among these, It is preferable to have a configuration of (A) to (C) including at least the metal suboxide layer, and (A) and (B) in which the second metal suboxide layer is laminated on the metal layer.
  • the configuration is more preferable.
  • a hard coat layer or an adhesion improving layer may be provided between the infrared reflecting layer and the transparent substrate.
  • an ordinary hard coat material can be used, and among them, an ultraviolet curable hard coat material composed of an acrylic oligomer or polymer having low shrinkage and bending resistance is used. Preference is given to using.
  • the thickness of the hard coat layer is preferably 0.3 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.5 ⁇ m or more and 1.0 ⁇ m or less.
  • the metal layer can be formed by forming a film of any of these materials by a dry coating method such as a sputtering method, a vapor deposition method or a plasma CVD method.
  • the thickness of each metal layer is preferably 5 nm or more and 20 nm or less, more preferably 8 nm or more and 16 nm or less, from the viewpoint of the balance between visible light transmittance and infrared reflectance. If the thickness of the metal layer is less than 5 nm, the reflectance of infrared rays is reduced, the shielding coefficient and the heat transmission coefficient are increased, and thus the heat shielding performance and the heat insulating performance may be deteriorated. On the other hand, when the thickness of the metal layer exceeds 20 nm, the visible light transmittance is reduced, and thus the transparency may be deteriorated.
  • the first metal suboxide layer or metal oxide layer and the second metal suboxide layer or metal oxide layer are provided above and below the metal layer as an optical compensation layer and a protective layer of the metal layer.
  • metal suboxide means oxidation according to the stoichiometric composition of the metal. It means a partial oxide (incomplete oxide) having a smaller oxygen element content than that of a substance, and the "metal oxide” means an oxide having a stoichiometric composition of a metal.
  • the metal suboxide layer does not necessarily have to be a layer of only partial oxides having a smaller oxygen element content than oxides according to the stoichiometric composition of the metal, and is formed by, for example, oxidation. It may be composed of an oxide layer according to the stoichiometric composition and an unoxidized layer left unoxidized. Specifically, the surface side directly in contact with the metal layer may be an unoxidized layer (as it is in the metal layer), and the surface opposite to the surface in direct contact with the metal layer may be oxidized.
  • the metal suboxide layer is provided above or below or above or below the metal layer with a predetermined thickness to be described later to improve the corrosion resistance deterioration of the metal layer of the infrared reflection layer and the solar absorptivity.
  • the reduction can be compatible at a higher level.
  • the metal suboxide partial oxides of metals such as titanium, nickel, chromium, cobalt, indium, tin, niobium, zirconium, zinc, tantalum, aluminum, cerium, magnesium, silicon, and mixtures thereof are appropriately used. It is possible.
  • the metal suboxide is a partial oxide of titanium metal or a metal portion containing titanium as a main component. It is preferably an oxide. That is, the metal suboxide preferably contains a titanium component.
  • the method for forming the metal suboxide layer is not particularly limited, but it can be formed by, for example, a reactive sputtering method. That is, when a film is formed by the sputtering method using the above metal target, an oxidizing gas such as oxygen is added to an inert gas such as an argon gas at an appropriate concentration (oxidation when forming a metal oxide film). It is possible to form a partial (incomplete) oxide layer of a metal containing an oxygen element according to the oxidizing gas concentration, that is, a metal suboxide layer, in addition to a concentration lower than that of the oxidizing gas.
  • a reactive sputtering method That is, when a film is formed by the sputtering method using the above metal target, an oxidizing gas such as oxygen is added to an inert gas such as an argon gas at an appropriate concentration (oxidation when forming a metal oxide film). It is possible to form a partial (incomplete) oxide layer of a metal containing an oxygen element according
  • the metal suboxide layer may be formed by once forming a metal thin film or a partially oxidized metal thin film by a sputtering method or the like, and then post-oxidizing it by heat treatment or exposure to the atmosphere.
  • the atmosphere gas is an inert gas only
  • the target As once by a sputtering method using only the metal contained in the metal suboxide, after forming a metal thin film form, the metal thin film surface is post-oxidized by exposure to the atmosphere to form the metal suboxide layer. preferable.
  • a first metal suboxide layer as a target is first prepared.
  • the first metal thin film corresponding to the precursor of the first metal suboxide layer is formed by the sputtering method using only the metal contained in the first metal, and then the first metal thin film is continuously formed without breaking the vacuum.
  • the metal layer is formed on the thin film by a sputtering method using a metal such as silver as a target, and finally, continuously without breaking the vacuum, on the metal layer such as silver or the like as a target.
  • the second metal thin film corresponding to the precursor of the second metal suboxide layer is formed by the sputtering method using only the metal contained in the second metal suboxide layer, and is wound as a roll.
  • the surface side in contact with the transparent substrate is gradually oxidized by a small amount of outgas generated from the transparent substrate. It is considered that it is transformed into the first metal suboxide layer.
  • the surface side of the first metal suboxide layer and the second metal suboxide layer which is in direct contact with the metal layer such as silver is an unoxidized layer (metal layer, for example, titanium metal layer). It is considered that the unoxidized layer (metal layer, for example, titanium metal layer) can improve the function of protecting the metal layer such as silver from external environmental factors such as oxygen, water, chloride ions, etc. It is also suitable from the viewpoint of being able to.
  • the metal oxide layer is provided above or below or above or below the metal layer with a predetermined thickness to be described later, thereby improving the visible light transmittance and reducing the solar absorptivity of the infrared reflective layer.
  • the metal of the metal oxide may be used as a target and may be formed by a reactive sputtering method in an atmosphere gas in which the concentration of an oxidizing gas is sufficiently increased.
  • the metal suboxide layer is formed of titanium (Ti) metal partial oxide of (TiO X) layer, x in TiO X in the layer, corrosion degradation of the metal layer of the infrared reflective layer
  • TiO X titanium metal partial oxide of (TiO X) layer
  • x in TiO X in the layer corrosion degradation of the metal layer of the infrared reflective layer
  • the range of 0.5 or more and less than 2.0 is preferable.
  • x in the above TiO X is below 0.5, the visible light transmittance of the infrared reflective layer of the metal layer effects of corrosion degradation resistance and solar absorptance reduction of the infrared reflective layer is intended to improve is lowered, The transparency may be poor.
  • x in the above TiO X is 2.0 or more, a possibility that the effect of the corrosion deterioration and solar absorptance reduction of the metal layer of the infrared reflection layer of which becomes high visible light transmittance of the infrared reflecting layer is lowered There is.
  • the x in TiO x can be analyzed and calculated using energy dispersive X-ray fluorescence analysis (EDX) or the like.
  • the thickness of the metal suboxide layer is preferably 1 nm or more and 6 nm or less, and when the thickness is in this range, the corrosion resistance deterioration effect of the metal layer of the infrared reflection layer and the solar radiation absorptivity reducing effect are further improved. At the same time, it can be balanced with the visible light transmittance. Further, the thickness of the metal oxide layer is preferably 1 nm or more and 6 nm or less, and when the thickness is in this range, the effect of reducing the solar absorptance of the infrared reflective layer and the visible light transmittance are balanced.
  • the thickness of the metal suboxide layer or the metal oxide layer is less than 1 nm, not only the protective function of the metal layer is inferior, but also the above-mentioned “the metal layer is the second metal suboxide layer or the metal oxide”.
  • the risk of increasing ⁇ microscopic parts where the metal derived from the metal layer is not completely covered by the layer and is in a bare state'' increases, and it may not be possible to secure sufficient corrosion deterioration resistance, and the visible light transmittance is It may become low and the transparency may be poor.
  • the thickness of the metal suboxide layer or the metal oxide layer exceeds 6 nm, the solar absorptivity may be high especially in the case of the metal oxide layer.
  • the coating-type protective layer that constitutes the transparent heat-insulating and heat-insulating member of the present embodiment includes a plurality of layers, and at least one layer of the coating-type protective layers other than the layer located on the outermost surface side is As a pre-curing resin component, a (meth)acrylic acid alkyl ester unit having 4 to 10 carbon atoms in the alkyl group capable of forming a monomer having a hydroxyl group and a homopolymer having a glass transition temperature of 20 to 155° C.
  • the layer located on the surface side is a layer containing an active energy ray-curable resin as a resin component before curing.
  • the specific (meth) cured by the polyisocyanate-based crosslinking agent is used.
  • the layer containing the acrylic copolymer protects the "extreme minute part where the metal derived from the metal layer is exposed" and the infrared reflective layer from external environmental factors such as oxygen, water, and chloride ions.
  • Functioning as a barrier layer that is, as a barrier layer, the diffusion and penetration of oxygen, moisture, chloride ions, etc. in the depth direction of the protective layer are significantly suppressed, and as a result, the progress of corrosion deterioration of the metal layer is prevented. It can be significantly suppressed.
  • the “coating type protective layer” means a protective layer formed by a wet coating method described later.
  • At least one layer other than the layer located on the outermost surface side has a monomer having a hydroxyl group as a pre-curing resin component and a glass transition temperature of 20° C. or higher and 155° C. or lower.
  • a (meth)acrylic copolymer containing, as a copolymer unit, a (meth)acrylic acid alkyl ester monomer having an alkyl group capable of forming a homopolymer and having 4 to 10 carbon atoms is reacted with the hydroxyl group.
  • a layer containing a polyisocyanate cross-linking agent is applied, and, in the coating type protective layer, the layer located on the outermost surface side is a layer containing an active energy ray-curable resin as a pre-curing resin component. It is applied for the following reasons.
  • a layer containing a (meth)acrylic copolymer contained as a united unit and a polyisocyanate crosslinking agent which reacts with the hydroxyl group is, after curing, "the metal derived from the metal layer is in a bare state in the infrared reflective layer.
  • the coating type protective layer is composed of a plurality of layers, and a barrier function is imparted to at least one layer of the coating type protective layers other than the layer located on the outermost surface side.
  • a barrier function is imparted to at least one layer of the coating type protective layers other than the layer located on the outermost surface side.
  • an alkyl (meth)acrylate having a carbon number of 4 or more and 10 or less in an alkyl group capable of forming a monomer having a hydroxyl group and a homopolymer having a glass transition temperature of 20° C. or more and 155° C.
  • a layer containing a (meth)acrylic copolymer containing an ester monomer as a copolymer unit and a polyisocyanate cross-linking agent that reacts with the hydroxyl group is arranged, and in the coating type protective layer, , The layer located on the outermost surface side, for the purpose of imparting scratch resistance, by disposing a layer containing an active energy ray curable resin as a pre-curing resin component, the above problems are solved, and the plurality of layers As a whole, the coating-type protective layer made of (1) has both a function of protecting from external environmental factors such as oxygen, moisture, and chloride ions and physical properties such as scratch resistance.
  • a monomer having a hydroxyl group and a (meth)acrylic acid alkyl ester monomer having an alkyl group capable of forming a homopolymer having a glass transition temperature of 20° C. or higher and 155° C. or lower and having 4 to 10 carbon atoms are used.
  • the (meth)acrylic copolymer contained as a polymer unit is not particularly limited in kind as long as it is soluble in a solvent and can be applied as a resin solution, and at least the above-mentioned monomer is used. It is possible to use a copolymer containing as a copolymerization unit.
  • solvent known solvents can be used, and specifically, aromatic hydrocarbons (benzene, toluene, xylene, etc.), aliphatic hydrocarbons (hexane, cyclohexane, etc.), ketones (acetone, methyl ethyl ketone, methyl). Isobutyl ketone, cyclohexanone, dimethyl sulfoxide and the like) and amide (dimethylformamide, N-methylpyrrolidone) and the like.
  • aromatic hydrocarbons benzene, toluene, xylene, etc.
  • aliphatic hydrocarbons hexane, cyclohexane, etc.
  • ketones acetone, methyl ethyl ketone, methyl
  • Isobutyl ketone, cyclohexanone, dimethyl sulfoxide and the like and amide (dimethylformamide, N-methylpyrrolidone) and the like.
  • the hydroxyl group is usually introduced into the (meth)acrylic copolymer by copolymerizing a monomer having a hydroxyl group with a (meth)acrylic acid alkyl ester monomer described later.
  • the monomer having a hydroxyl group include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxy- Hydroxyl group-containing vinyl ethers such as 2-methylbutyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether; hydroxyl group-containing allyl ethers such as 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether, glycerol monoallyl ether; 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxy-3-
  • the polymer unit based on the monomer having a hydroxyl group is preferably 5% by mass or more and 30% by mass or less, and 10% by mass or more 20% by mass, based on all the polymerized units constituting the (meth)acrylic copolymer. It is more preferable that the content is not more than mass %.
  • the polymerized units based on the monomer having a hydroxyl group is less than 5% by mass based on all polymerized units constituting the (meth)acrylic copolymer, the hardness and salt resistance of the resulting coating film after curing are cured. Water (barrier property) may be insufficient, or interlayer adhesion may be poor.
  • the viscosity of the coating composition becomes high and the coatability is high. Since the coating film obtained is inferior, the appearance of the obtained coating film may deteriorate, and the flexibility after curing of the obtained coating film may deteriorate, so that minute cracks may occur in the coating film when the thermal insulation member is excessively bent. However, the salt water resistance (barrier property) may decrease.
  • the hydroxyl group-containing (meth)acrylic copolymer preferably has a hydroxyl value of 30 mgKOH/g or more and 200 mgKOH/g or less.
  • the hydroxyl value is less than 30 mgKOH/g, the hardness, salt water resistance (barrier property) and interlayer adhesion of the obtained coating film after curing may be deteriorated.
  • the hydroxyl value is more than 200 mgKOH/g, the solvent solubility and coatability are poor, so that the appearance of the obtained coating film may be deteriorated, or the flexibility after curing of the obtained coating film may be deteriorated.
  • the above hydroxyl value is a value obtained by measurement according to JIS K0070, and is the amount (mg) of potassium hydroxide (KOH) required to acetylate the OH groups contained in 1 g of the object. Is.
  • the (meth)acrylic copolymer having a hydroxyl group is an alkyl (meth)acrylate in which the number of carbon atoms of the alkyl group capable of forming a homopolymer having the following glass transition temperature of 20° C. or higher and 155° C. or lower is 4 or more and 10 or less. It includes an ester monomer as a copolymer unit.
  • Examples of the (meth)acrylic acid alkyl ester monomer having an alkyl group having 4 to 10 carbon atoms capable of forming a homopolymer having a glass transition temperature (Tg) of 20° C. to 155° C. include acrylic acid.
  • t-Butyl (Tg of homopolymer: 43° C., carbon number of alkyl group C: 4, alkyl group: branched, same below), n-butyl methacrylate (Tg: 20° C., C: 4, linear) , Isobutyl methacrylate (Tg: 48° C., C: 4, branched), t-butyl methacrylate (Tg: 107° C., C: 4, branched), cyclohexyl methacrylate (Tg: 83° C., C: 6, Alicyclic), isobornyl acrylate (Tg: 94° C., C:10, alicyclic), isobornyl methacrylate (Tg: 155° C., C:10, alicyclic), and the like, and these may be used alone or in combination.
  • salt water resistance is preferable.
  • t-butyl methacrylate, t-butyl acrylate, cyclohexyl methacrylate, isobornyl acrylate, and isobornyl methacrylate are preferable.
  • (meth)acrylic acid alkyl ester monomer having a carbon number of the alkyl group capable of forming a homopolymer having a glass transition temperature (Tg) of 20° C. or more and 155° C. or less and 4 or more and 10 or less acrylic acid is used.
  • the glass transition temperature (Tg) of phenyl (Tg: 57° C., C: 6), phenyl methacrylate (Tg: 110° C., C: 6), benzyl methacrylate (Tg: 54° C., C: 7), etc. is 50° C.
  • a glass transition temperature (Tg) of the above homopolymer is less than 20° C.
  • a (meth)acrylic acid alkyl ester monomer is used, and the obtained coating film is blocked after curing in the raw material wound after coating. May occur.
  • the glass transition temperature (Tg) of the above homopolymer is higher than 155° C. (meth)acrylic acid alkyl ester monomer is used, the flexibility of the obtained coating film after curing is lowered, and the heat insulating and heat insulating member is obtained.
  • minute cracks may occur in the coating film, resulting in a decrease in salt water resistance (barrier property).
  • the polymer unit based on the (meth)acrylic acid alkyl ester monomer having 4 to 10 carbon atoms of the alkyl group capable of forming a homopolymer having a glass transition temperature (Tg) of 20 to 155° C. is as described above.
  • the content is preferably 50% by mass or more and 95% by mass or less, more preferably 70% by mass or more and 90% by mass or less, based on all the polymerized units constituting the (meth)acrylic copolymer.
  • the (meth)acrylic copolymer having a hydroxyl group is at least one polymer unit selected from the group consisting of a carboxyl group-containing monomer, an amino group-containing monomer, and a silyl group-containing monomer. May be included.
  • the amount of the polymer units based on these functional group-containing monomers is preferably 1% by mass or more and 20% by mass or less based on all the polymer units forming the (meth)acrylic copolymer having a hydroxyl group. It is more preferable that the content is not less than 10% by mass.
  • the functional group-containing monomer is contained within the above range, the dispersibility of the pigment such as the inorganic fine particles and the interlayer adhesion are excellent.
  • carboxyl group-containing monomer for example, acrylic acid, methacrylic acid, vinyl acetic acid, crotonic acid, pentenoic acid, hexenoic acid, heptenoic acid, octenoic acid, nonenic acid, decenoic acid, undecylenic acid, dodecenoic acid, tridecenoic acid.
  • Tetradecenoic acid pentadecenoic acid, hexadecenoic acid, heptadecenoic acid, octadecenoic acid, nonadecenoic acid, eicosenoic acid, 22-tricosenoic acid, cinnamic acid, itaconic acid, itaconic acid monoester, maleic acid, maleic acid monoester, maleic anhydride , Fumaric acid, fumaric acid monoester, vinyl phthalate, vinyl pyromellitic acid, 3-allyloxypropionic acid, 3-(2-allyloxyethoxycarbonyl)propionic acid, 3-(2-allyloxybutoxycarbonyl)propionic acid , 3-(2-vinyloxyethoxycarbonyl)propionic acid, 3-(2-vinyloxybutoxycarbonyl)propionic acid and the like.
  • amino group-containing monomer examples include amino vinyl ethers, allyl amines, amino methyl styrene, vinyl amine, acrylamide, vinyl acetamide, vinyl formamide and the like.
  • silyl group-containing monomer examples include silicone vinyl monomers.
  • silicone vinyl monomer examples include (meth)acrylic acid esters such as (meth)acrylic acid 3-trimethoxysilylpropyl and (meth)acrylic acid 3-triethoxysilylpropyl; vinyltrimethoxysilane, vinyl Vinylsilanes such as triethoxysilane, vinyltrichlorosilane or partial hydrolysates thereof; trimethoxysilylethyl vinyl ether, triethoxysilylethyl vinyl ether, trimethoxysilylbutyl vinyl ether, methyldimethoxysilylethyl vinyl ether, trimethoxysilylpropyl vinyl ether, trimethoxysilylethyl vinyl ether Examples thereof include vinyl ethers such as ethoxysilylpropyl vinyl ether.
  • the (meth)acrylic copolymer having a hydroxyl group may include a polymer unit based on at least one non-fluorine-containing vinyl monomer selected from the group consisting of carboxylic acid vinyl ester, alkyl vinyl ether and non-fluorinated olefin. good.
  • the vinyl ester of carboxylic acid has a function of improving compatibility.
  • the vinyl carboxylate include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, vinyl benzoate. , Vinyl para-t-butyl benzoate and the like.
  • alkyl vinyl ether examples include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether and the like.
  • non-fluorinated olefin examples include ethylene, propylene, n-butene, isobutene and the like.
  • the (meth)acrylic copolymer having a hydroxyl group include a copolymer of t-butyl (meth)acrylate/isobutene/4-hydroxybutyl vinyl ether/other monomer, (meth ) Copolymer of t-butyl acrylate/vinyl versatic/4-hydroxybutyl vinyl ether/other monomer, t-butyl (meth)acrylate/4-hydroxybutyl acrylate/other monomer Polymer, t-butyl (meth)acrylate/2-hydroxyethyl acrylate/other monomer copolymer, cyclohexyl methacrylate/isobutene/hydroxybutyl vinyl ether/other monomer copolymer, methacryl Acid cyclohexyl/vinyl versatate/hydroxybutyl vinyl ether/other monomer copolymer, cyclohexyl methacrylate/4-hydroxybutyl acrylate/other monomer copolymer,
  • the (meth)acrylic copolymer having a hydroxyl group is an acrylic resin having a hydroxyl group, if necessary, such as blocking, coating property, interlayer adhesion, and improvement of hardness, as long as the effect of the present invention is not impaired. It may be used as a mixture with another resin compatible with the copolymer. That is, the layer containing the (meth)acrylic copolymer having a hydroxyl group may contain another resin compatible with the (meth)acrylic copolymer having a hydroxyl group.
  • being compatible with the (meth)acrylic copolymer having a hydroxyl group means that when the respective resins are mixed, the transparency of the obtained coating film is not significantly impaired without separating the layers. To do.
  • the other resin is not particularly limited as long as it is a resin compatible with the (meth)acrylic copolymer having a hydroxyl group, but is not limited to thermoplastic (meth)acrylic resin, acrylic silicone resin, polyester resin. , A polyurethane resin, etc., but a thermoplastic acrylic resin is preferable from the viewpoint of versatility.
  • thermoplastic (meth)acrylic resin examples include homopolymers of (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and butyl (meth)acrylate. Examples thereof include copolymers thereof or copolymers with monomers copolymerizable therewith. Examples of the copolymerizable monomer include aromatic vinyl compounds such as styrene, acrylonitrile, various vinyl ethers, allyl ethers, vinyl compounds such as various vinyl esters, unsaturated compounds having a functional group such as a carboxyl group, an amino group and an epoxy group. Examples thereof include monomers.
  • a cross-linking agent that reacts with the hydroxyl group of the (meth)acrylic copolymer a polyisocyanate cross-linking agent composed of a polyisocyanate compound can be used.
  • the (meth)acrylic copolymer can be three-dimensionally crosslinked and cured.
  • a barrier function is imparted to the layer containing the (meth)acrylic copolymer and the polyisocyanate crosslinking agent.
  • polyisocyanate compound examples include 2,4-tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine methyl ester diisocyanate, methylcyclohexyl diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, n. -Pentane-1,4-diisocyanate, trimers of these, adducts thereof, burettes and isocyanurates, polymers of these polymers having two or more isocyanate groups, blocked isocyanates, etc.
  • the present invention is not limited to these.
  • an isocyanurate prepolymer which is a trimer of hexamethylene diisocyanate and an isocyanurate prepolymer which is a trimer of isophorone diisocyanate are preferable.
  • examples of such a polyisocyanate compound include Coronate (registered trademark) HX manufactured by Tosoh Corporation, Destannate T1890 (trade name) manufactured by Evonik Degussa, and Desmodur (registered trademark) Z4470 manufactured by Sumika Covestrourethane. Can be illustrated.
  • the content of the cross-linking agent is such that the isocyanate group (-NCO) of the cross-linking agent is 0.3 molar equivalent or more and 2.0 or more with respect to 1 equivalent of the hydroxyl group (-OH) of the (meth)acrylic copolymer. It is preferable to add it so as to be a molar equivalent or less, more preferably 0.5 molar equivalent or more and 1.5 molar equivalent or less, and further preferably 0.8 molar equivalent or more and 1.2 molar equivalent or less. When the content of the cross-linking agent is less than 0.3 molar equivalent, the obtained coating film may be insufficiently cross-linked and the hardness and the barrier property may be deteriorated.
  • the content of the cross-linking agent exceeds 2.0 molar equivalents, when the coated raw material is wound up, the coating film and the opposite surface of the coated film adhere to each other due to the influence of the low-molecular weight crosslinking agent, and the coated raw material Blocking may occur when unwinding.
  • the other resin has a curable functional group
  • a crosslinking agent that reacts with the hydroxyl group is also a crosslinking agent used for the (meth)acrylic copolymer having the hydroxyl group. The same as the agent can be used.
  • a crosslinking agent is appropriately selected and used according to the curable functional group.
  • the coating type protective layer constituting the transparent heat insulating and heat insulating member of the present embodiment comprises a plurality of layers, among the coating type protective layer, the layer located on the outermost surface side is a pre-curing resin component, It is composed of a layer containing an active energy ray-curable resin. This protects the layer containing the (meth)acrylic copolymer having a hydroxyl group and the polyisocyanate crosslinking agent that reacts with the hydroxyl group after irradiation with active energy rays, and improves salt water resistance (barrier property). While assisting, the scratch resistance of the entire coating type protective layer can be secured.
  • the active energy ray far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, infrared rays, etc., X-rays, ⁇ -rays, etc. may be used as long as they can generate radicals, cations, anions, etc. that can trigger polymerization reactions.
  • any of electron beams, proton beams, neutron beams and the like can be used, but from the viewpoints of curing speed, availability of irradiation equipment, cost, etc., curing by ultraviolet irradiation is preferable.
  • the active energy ray is preferably light in the wavelength band of 200 to 450 nm, and more preferably light in the wavelength band of 250 to 430 nm.
  • the light source is not particularly limited, and examples thereof include a high pressure mercury lamp, a metal halide lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, an ultraviolet laser, sunlight, and an LED lamp.
  • a layer containing an active energy ray-curable resin can be instantly cured by using these light sources and irradiating with active energy rays so that the integrated light amount is preferably 300 mJ/cm 2 or more.
  • a polyfunctional (meth)acrylate monomer or a polyfunctional (meth)acrylate oligomer (prepolymer) can be preferably used, and these can be used alone or in combination. it can.
  • the coating type protective layer is formed of a plurality of layers on the infrared reflective layer in order to achieve both salt water resistance (barrier property) and scratch resistance of the transparent heat insulating and heat insulating member as described above. From the viewpoint of productivity, the coating type protective layer is formed of, for example, 2 to 4 layers.
  • the coating-type protective layer has a two-layer structure, a medium refractive index layer or a high refractive index layer, and a medium refractive index layer or a low refractive index layer are formed on the infrared reflecting layer from the infrared reflecting layer side. Just prepare for it in order.
  • the medium refractive index layer or high refractive index layer in contact with the infrared reflective layer contains the (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, and further
  • the active energy ray-curable resin may be contained in the medium refractive index layer or the low refractive index layer (outermost surface layer) formed in 1.
  • a medium refractive index layer, a high refractive index layer, and a low refractive index layer may be provided in this order on the infrared reflecting layer from the infrared reflecting layer side. Good.
  • the low refractive index layer contains the active energy ray-curable resin.
  • the coating type protective layer has a four-layer structure, an optical adjustment layer, a medium refractive index layer, a high refractive index layer, and a low refractive index layer are provided in this order on the infrared reflecting layer from the infrared reflecting layer side. All you have to do is prepare.
  • At least one of the optical adjustment layer, the medium refractive index layer, and the high refractive index layer has a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group.
  • at least the low energy layer contains the active energy ray-curable resin.
  • the coating-type protective layer is, in the multilayer structure exemplified above, from the viewpoint of the optical characteristics of the transparent heat-insulating and heat-insulating member, the appearance (iris phenomenon, reflection color change depending on the viewing angle), from the viewpoint of the infrared rays. It is preferable to have a two-layer structure in which a high refractive index layer and a low refractive index layer are provided in this order from the reflective layer side. In addition to the above-mentioned balance, from the viewpoint of improving the visible light transmittance, from the infrared reflection layer side, a three-layer structure including a medium refractive index layer, a high refractive index layer, and a low refractive index layer in this order.
  • the infrared reflective layer is most preferably composed of a four-layer structure including an optical adjustment layer, a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order from the infrared reflecting layer side. That is, when a protective layer (usually having a refractive index of about 1.50) made of a normal acrylic ultraviolet (UV) curable hard coat resin is provided on the infrared reflective layer as a layer composed of one layer, In the visible light reflectance spectrum, the visible light reflectance tends to fluctuate up and down as the wavelength increases, especially in the wavelength range of 500 nm to 780 nm, and the fluctuation in the thickness of the protective layer is also taken into consideration to generate an iris pattern.
  • a protective layer usually having a refractive index of about 1.50
  • UV normal acrylic ultraviolet
  • the reflected color changes greatly depending on the viewing angle.
  • the thickness of the protective layer is set to be thin within the range of 380 to 780 nm which is the wavelength range of visible light, interference of multiple reflections may occur. , This phenomenon becomes remarkable.
  • the coating type protective layer is composed of a plurality of layers having different refractive indexes as described above, the total thickness of the protective layer is thin in the range overlapping with 380 to 780 nm which is the wavelength range of visible light. Even if it is set, it is possible to reduce the vertical fluctuation of the visible light reflectance linked with the wavelength in the visible light reflection spectrum, and it is possible to suppress the occurrence of the iris pattern and the change of the reflected color depending on the viewing angle.
  • the total thickness of the coating type protective layer is preferably 980 nm or less from the viewpoint of reducing the heat transmission coefficient, which is an index of the heat insulating performance of the transparent heat insulating heat insulating member. Further, in consideration of scratch resistance and corrosion deterioration resistance, the total thickness of the coating type protective layer is more preferably 200 nm or more and 980 nm or less. If the total thickness is less than 200 nm, physical properties such as scratch resistance and corrosion resistance may deteriorate, and if the total thickness exceeds 980 nm, the optical adjustment layer, the medium refractive index layer, and the high refractive index.
  • the total thickness is set to 300 nm or more from the viewpoint of further improving scratch resistance and corrosion deterioration resistance, and is set to 700 nm or less from the viewpoint of further reducing the heat transmission coefficient to a range of 300 nm to 700 nm. It is most preferable to set. If the total thickness is in the range of 300 nm or more and 700 nm or less, the heat transmission coefficient can be set to 4.0 W/(m 2 ⁇ K) or less, and the physical properties such as heat insulation performance, scratch resistance, and corrosion deterioration resistance can be obtained. The characteristics can be compatible at an even higher level.
  • the optical adjustment layer is a layer for adjusting the optical characteristics of the infrared reflective layer of the transparent heat insulating and heat insulating member of the present embodiment, and the refractive index of light having a wavelength of 550 nm is in the range of 1.60 to 2.00. Is preferable, and more preferably 1.65 or more and 1.90 or less. Further, when the coating type protective layer is formed of a plurality of layers, for example, when it is formed of four layers in a preferred embodiment, the thickness of the optical adjustment layer is in order on the optical adjustment layer.
  • the appropriate range varies depending on the refractive index and thickness of each layer of the medium refractive index layer, the high refractive index layer, and the low refractive index layer to be laminated, it cannot be said unconditionally, but with the configuration of the other layers described above.
  • the thickness of the optical adjustment layer in the range of 30 nm or more and 80 nm or less, the visible light transmittance and the near infrared reflectance of the transparent heat insulating/insulating member of the present embodiment can be compatible with each other in a high balance.
  • the thickness of the optical adjustment layer is less than 30 nm, the coating itself becomes difficult, and for example, "the metal layer is not completely covered by the second metal suboxide layer or the metal oxide layer, the metal layer The coating liquid may be easily repelled at the "very small area where the metal from which it is exposed," and coverage may not be achieved.
  • the visible light transmittance may be lowered, the transparency may be deteriorated, and the reddish color of the reflected color may be increased.
  • the thickness of the optical adjustment layer exceeds 80 nm, the near-infrared reflectance is lowered and the heat shield performance may be deteriorated.
  • the optical adjustment layer contains a large amount of inorganic fine particles, the absorption of light in the far infrared region increases, and the heat insulating performance may deteriorate.
  • the material forming the optical adjusting layer may include the same kind of material as the material forming the second metal suboxide layer or the metal oxide layer of the infrared reflecting layer, It is preferable from the viewpoint of ensuring adhesion with the second metal suboxide layer or the metal oxide layer that is in direct contact, and for example, as the second metal suboxide layer or the metal oxide layer, partial oxidation of titanium metal is performed.
  • the constituent material of the optical adjustment layer is preferably a material containing titanium oxide fine particles.
  • the refractive index of the optical adjusting layer can be appropriately controlled to a high refractive index within the range of 1.60 to 2.00. Without, it is possible to improve the adhesion with the metal suboxide layer or metal oxide layer consisting of the titanium metal partial oxide layer or oxide layer or the titanium partial metal oxide layer or oxide layer. ..
  • the constituent material of the optical adjustment layer containing inorganic fine particles typified by the titanium oxide fine particles is not particularly limited as long as the refractive index of the optical adjustment layer can be designed within the above range, and examples thereof include a thermoplastic resin and a thermosetting resin.
  • a material containing a resin, a resin such as an active energy ray-curable resin, and inorganic fine particles dispersed in the resin is preferably used.
  • the constituent materials of the optical adjustment layer in terms of optical properties such as transparency, physical properties such as scratch resistance, active energy ray-curable resin from the viewpoint of productivity, and in the active energy ray-curable resin A material containing dispersed inorganic fine particles is preferable.
  • the material containing inorganic fine particles in the active energy ray-curable resin is generally an active material such as an ultraviolet ray after being applied on the second metal suboxide layer or the metal oxide layer of the infrared reflective layer.
  • the film is cured by irradiation with energy rays to form the optical adjustment layer.
  • the film contains inorganic fine particles, shrinkage of the film during curing is suppressed. Therefore, the optical adjustment layer and the second metal suboxide are suppressed.
  • the adhesiveness with the material layer or the metal oxide layer can be improved.
  • thermoplastic resin for example, modified polyolefin resin, vinyl chloride resin, acrylonitrile resin, polyamide resin, polyimide resin, polyacetal resin, polycarbonate resin, polyvinyl butyral resin, acrylic resin, polyacetic acid
  • thermosetting resin include a vinyl resin, a polyvinyl alcohol resin, and a cellulose resin
  • thermosetting resin include a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, an epoxy resin, and a polyurethane.
  • the resin include a resin, a silicone resin, and an alkyd resin, which can be used alone or in combination, and the optical adjustment layer can be formed by adding a crosslinking agent as necessary and thermosetting.
  • the active energy ray-curable resin examples include polyfunctional (meth)acrylate monomers having two or more unsaturated groups, polyfunctional (meth)acrylate oligomers (prepolymers), and the like, which may be used alone or in combination. Can be used. Specifically, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1,4-cyclohexane diacrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate.
  • the active energy ray is added.
  • a (meth)acrylic acid derivative having a polar group such as a phosphoric acid group, a sulfonic acid group or an amide group or a silane coupling agent having an unsaturated group such as a (meth)acrylic group or a vinyl group to the curable resin. You may use it.
  • the inorganic fine particles are dispersed and added in the resin in order to adjust the refractive index of the optical adjustment layer.
  • the inorganic fine particles include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), niobium oxide (Nb 2 O 5 ), yttrium oxide (Y 2 O 3 ).
  • Indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), antimony oxide (Sb 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), and the like can be used.
  • the inorganic particles may be surface-treated with a dispersant, if necessary.
  • titanium oxide and zirconium oxide capable of increasing the refractive index by adding a small amount as compared with other materials are preferable, and the metal suboxide layer and the metal suboxide layer having relatively low absorption of light in the far infrared region.
  • Titanium oxide is more preferable from the viewpoint of securing the adhesion with the TiO X layer which is suitable as
  • the average particle size of the inorganic fine particles is preferably in the range of 5 nm to 100 nm, more preferably in the range of 10 nm to 80 nm. If the average particle diameter exceeds 100 nm, the haze value may increase when the optical adjustment layer is formed, resulting in a decrease in transparency. If the average particle diameter is less than 5 nm, the optical adjustment layer may have a smaller thickness. It may be difficult to maintain the dispersion stability of the inorganic fine particles when used as a coating material for a vehicle.
  • the optical adjustment layer is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, the thermoplastic resin, thermosetting resin, active energy
  • the above-mentioned (meth)acrylic copolymer having a hydroxyl group or a mixture of the (meth)acrylic copolymer having a hydroxyl group and another resin is used to adjust the refractive index.
  • a coating material for an optical adjustment layer containing a polyisocyanate crosslinking agent that reacts with the hydroxyl group is prepared, and a coating film may be formed and cured.
  • the medium refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.45 to 1.55, and more preferably in the range of 1.47 to 1.53. preferable.
  • the coating type protective layer is formed of a plurality of layers, for example, when it is formed of 4 layers or 3 layers in a preferred embodiment, the thickness of the medium refractive index layer is smaller than that of the medium refractive index layer.
  • the optical adjustment layer to be the lower layer, and the appropriate range varies depending on the refractive index and thickness of each of the high refractive index layer and the low refractive index layer, which are the upper layer in order with respect to the medium refractive index layer.
  • the thickness is set within the range of 35 nm or more and 200 nm or less, and the thickness is set within the range of 50 nm or more and 150 nm or less, in consideration of the configuration of the other layers. Is more preferable.
  • the thickness of the medium refractive index layer is less than 35 nm, it may lead to a decrease in the adhesion of the infrared reflective layer to the second metal suboxide layer or the metal oxide layer or the optical adjustment layer, for example, There is a possibility that the reddish color becomes stronger in the reflected color of the transparent heat insulating and heat insulating member, the greenish color becomes stronger in the transmitted color, and the total light transmittance is lowered.
  • the thickness of the medium refractive index layer exceeds 200 nm, the absorption of light in the infrared region increases, which may deteriorate the heat insulating property, which is not preferable.
  • the size of the ripple in the visible light reflection spectrum of the transparent heat insulating and heat insulating member that is, the fluctuation of the reflectance with respect to the wavelength of the visible light region cannot be sufficiently reduced, and not only the iris pattern becomes conspicuous, The change in reflected color increases depending on the viewing angle, which may cause a problem in appearance, which is not preferable. For example, the reddish color of the reflection color of the transparent heat insulating/insulating member may become strong, or the visible light transmittance may decrease. In addition, the absorption of light in the infrared region becomes large, and the heat insulating property may deteriorate.
  • the constituent material of the medium refractive index layer is not particularly limited as long as the refractive index of the medium refractive index layer can be set within the above range, for example, heat
  • a plastic resin, a thermosetting resin, an active energy ray curable resin and the like are preferably used.
  • the resin such as the thermoplastic resin, the thermosetting resin or the active energy ray-curable resin, the same resin as that which can be used for the optical adjustment layer described above can be used, and the medium refraction with the same prescription is performed.
  • a rate layer can be formed.
  • inorganic fine particles may be dispersed and added to the resin as needed.
  • a material containing an active energy ray-curable resin is preferable in terms of optical characteristics such as transparency, physical characteristics such as scratch resistance, and productivity.
  • the active energy ray is used.
  • a (meth)acrylic acid derivative having a polar group such as a phosphoric acid group, a sulfonic acid group or an amide group or a silane coupling agent having an unsaturated group such as a (meth)acrylic group or a vinyl group to the curable resin. You may use it.
  • the medium refractive index layer is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, the thermoplastic resin, thermosetting resin, active
  • the above-mentioned hydroxyl group-containing (meth)acrylic copolymer or a mixture of the hydroxyl group-containing (meth)acrylic copolymer and another resin is used to react with the hydroxyl group.
  • the coating for the medium refractive index layer to which the crosslinking agent is added is prepared, and the coating film is formed and cured. Inorganic fine particles for adjusting the refractive index may be dispersed if necessary.
  • the coating type protective layer of the present embodiment in particular, the middle refractive index layer, as a pre-curing resin component, a (meth)acrylic copolymer having a hydroxyl group, and a polyisocyanate crosslinking agent that reacts with the hydroxyl group.
  • it is a layer containing and. This is for the following reason. That is, the coating type protective layer is formed of a plurality of layers for the purpose of achieving a good balance of optical characteristics and appearance (iris phenomenon, reflection color change depending on viewing angle) of the transparent heat insulating and heat insulating member.
  • the medium refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.45 or more and 1.55 or less.
  • the refractive index in this range is resin alone.
  • a layer containing a large amount of inorganic fine particles for use in the present invention it has a very small number of fine voids and becomes a denser layer.
  • the inorganic fine particles for adjusting the refractive index are used.
  • the inorganic fine particles for adjusting the refractive index are used.
  • the high refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.65 to 1.95, and more preferably in the range of 1.70 to 1.90. preferable. Further, when the coating type protective layer is formed of a plurality of layers, for example, when it is formed of four layers, three layers or two layers in a preferred embodiment, the high refractive index layer has a high refractive index. The appropriate range varies depending on the refractive index and thickness of each of the medium refractive index layer, the optical adjustment layer, which is the lower layer with respect to the refractive index layer, and the low refractive index layer, which is the upper layer with respect to the high refractive index layer.
  • the thickness in the range of 60 nm or more and 550 nm or less and the thickness in the range of 65 nm or more and 400 nm or less in consideration of the configuration of the other layers. More preferably. If the thickness of the high refractive index layer is less than 60 nm, physical properties such as scratch resistance as a protective layer may deteriorate, and if the thickness of the high refractive index layer exceeds 550 nm, the high refractive index layer is When a large amount of inorganic fine particles are contained, absorption of light in the infrared region becomes large, which may lead to deterioration of heat insulating property, which is not preferable.
  • the constituent material of the high refractive index layer is not particularly limited as long as the refractive index of the high refractive index layer can be set within the above range, and examples thereof include a thermoplastic resin, a thermosetting resin, and an active energy ray curable resin.
  • a material containing a resin and inorganic fine particles dispersed in the resin is preferably used.
  • the thermoplastic resin, the thermosetting resin and the resin such as the active energy ray-curable resin and the inorganic fine particles, it is possible to use the same resin and inorganic fine particles that can be used for the optical adjustment layer described above,
  • the high refractive index layer can be formed with the same formulation.
  • the active energy ray-curable resin and the active energy ray-curable resin in terms of optical characteristics such as transparency, physical characteristics such as scratch resistance, and productivity.
  • a material containing inorganic fine particles dispersed therein is preferable.
  • the material containing inorganic fine particles in the active energy ray-curable resin is generally formed as the high refractive index layer by coating on the medium refractive index layer and then curing by irradiation with active energy ray such as ultraviolet rays.
  • active energy ray such as ultraviolet rays.
  • the shrinkage of the film at the time of curing is suppressed, so that the adhesion between the high refractive index layer and the medium refractive index layer can be made good.
  • the inorganic fine particles are added to adjust the refractive index of the high refractive index layer, but among the inorganic fine particles, titanium oxide capable of increasing the refractive index by adding a small amount compared to other materials. Further, zirconium oxide is preferable, and titanium oxide is more preferable because it absorbs relatively little light in the infrared region.
  • the active energy Addition of (meth)acrylic acid derivatives having polar groups such as phosphoric acid groups, sulfonic acid groups, amide groups, and silane coupling agents having unsaturated groups such as (meth)acrylic groups and vinyl groups to linear curing resins You may use it.
  • the high refractive index layer is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, the thermoplastic resin, thermosetting resin, active
  • the above-mentioned (meth)acrylic copolymer having a hydroxyl group or a mixture of the (meth)acrylic copolymer having a hydroxyl group and another resin is used for adjusting the refractive index.
  • the polyisocyanate crosslinking agent that reacts with the hydroxyl group is added to prepare a coating material for a high refractive index layer, and a coating film is formed and cured.
  • the low refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.30 or more and less than 1.45, and more preferably in the range of 1.35 or more and 1.43 or less. preferable.
  • the protective layer is formed of a plurality of layers, for example, when it is formed of four layers, three layers or two layers in a preferred embodiment, the thickness of the low refractive index layer is the same as that of the low refractive index layer.
  • the thickness is preferably set in the range of 70 nm to 150 nm, and more preferably the thickness is set in the range of 80 nm to 130 nm.
  • the thickness of the low refractive index layer is out of the range of 70 nm or more and 150 nm or less, the size of the ripple of the reflection spectrum in the visible light region of the transparent heat insulating and heat insulating member of the present embodiment, that is, the reflectance with respect to the wavelength of the visible light region.
  • the iris pattern tends to be conspicuous, and the change in reflected color increases depending on the viewing angle, which may cause a problem in appearance.
  • the visible light transmittance may decrease.
  • the constituent material of the low refractive index layer is not particularly limited as long as the refractive index of the low refractive index layer can be set within the above range, but it is preferable to include an active energy ray curable resin as a resin component before curing.
  • an active energy ray curable resin the same resin as the active energy ray-curable resin that can be used in the above-mentioned optical adjustment layer and a fluorine-containing compound or a silicone-containing compound thereof can be used, and if necessary.
  • the outermost surface layer of the coating type protective layer can be formed by adding a photopolymerization initiator and irradiating with active energy rays.
  • inorganic fine particles may be dispersed and added into the active energy ray-curable resin, if necessary.
  • a material containing the active energy ray-curable resin and low refractive index inorganic fine particles dispersed in the active energy ray-curable resin, and the active energy ray curable resin and the low refractive index inorganic fine particles are chemically Materials containing organic-inorganic hybrid materials bound to are preferred.
  • the above-mentioned inorganic fine particles are dispersed and added to the above resin in order to adjust the refractive index of the above low refractive index layer.
  • the low-refractive-index inorganic fine particles for example, silicon oxide, magnesium fluoride, aluminum fluoride or the like can be used, but from the viewpoint of physical properties such as scratch resistance of the low-refractive-index layer which is the outermost surface of the protective layer.
  • a silicon oxide-based material is preferable, and a hollow type silicon oxide (hollow silica)-based material having voids inside for exhibiting a low refractive index is particularly preferable.
  • the material containing inorganic fine particles in the active energy ray-curable resin is generally formed as the low refractive index layer by coating on the high refractive index layer and then curing by irradiation with active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • the active energy ray is added.
  • a (meth)acrylic acid derivative having a polar group such as a phosphoric acid group, a sulfonic acid group or an amide group or a silane coupling agent having an unsaturated group such as a (meth)acrylic group or a vinyl group to the curable resin. You may use it.
  • a leveling agent, a lubricant, an antistatic agent, an additive such as a haze imparting agent may be contained, and the content of these additives are appropriately adjusted within a range that does not impair the purpose of the present embodiment.
  • the coating type protective layer formed of multiple layers, (1) a laminated structure including a high refractive index layer and a low refractive index layer in this order from the infrared reflecting layer side, (2) A laminated structure including a medium refractive index layer, a high refractive index layer, and a low refractive index layer in this order from the infrared reflecting layer side, or (3) an optical adjustment layer, a medium refractive index layer, and a high refractive index from the infrared reflecting layer side.
  • a laminated structure including a refractive index layer and a low refractive index layer in this order is a preferred embodiment of the present embodiment, but in any case, the total thickness of the coating type protective layer formed of each laminated layer is
  • the refractive index of light having a wavelength of 550 nm is 1.60 or more and 2.00 or less so as to be in the range of 200 nm or more and 980 nm or less.
  • the refractive index of light having a wavelength of 550 nm is 1.45 or more and 1.55 or less.
  • the thickness of the medium refractive index layer is in the range of 40 nm or more and 200 nm or less, and the refractive index of light having a wavelength of 550 nm is 1.65 or more.
  • the high refractive index layer having a thickness of 1.95 or less is selected from the range of 60 nm or more and 550 nm or less, and the refractive index of light having a wavelength of 550 nm is 1.30 or more and less than 1.45.
  • the thickness of 70 nm or more and 150 nm or less, the heat resistance (4.2 W/(m 2 ⁇ K) or less as a heat transmission coefficient) is maintained and the scratch resistance is set by appropriately setting the thickness. It is possible to provide a transparent heat insulating and heat insulating member which has excellent physical properties such as corrosion resistance and deterioration, has a low solar absorptance, and suppresses the iris phenomenon and reflected color change depending on the viewing angle and has a good appearance.
  • the above-mentioned plurality of wavelengths are generally set so as to increase the reflectance in the wavelength band 800-1500 nm where the weight coefficient of energy is large. It is preferable to set layers to form the above-mentioned coating type protective layer.
  • the total thickness of the coating type protective layer is set in the range of 300 nm or more and 700 nm or less, the value of the heat transmission coefficient becomes 4.0 W/(m 2 ⁇ K) or less, the mechanical properties of the protective layer can be sufficiently ensured, the heat insulation performance and the physical characteristics such as scratch resistance and corrosion deterioration resistance can be compatible at a higher level.
  • the coating type protective layer is composed of two layers including a medium refractive index layer (lower) and a medium refractive index layer (upper) in this order from the infrared reflecting layer side
  • the medium refractive index layer is Each thickness does not need to be limited to the above-mentioned thickness, and is appropriately adjusted within a range of 200 nm or more and 980 nm or less, which is a preferable total thickness of the protective layer, as long as the effect of the present invention is not impaired. You can set it.
  • the appearance of the transparent heat insulating/insulating member obtained may be poor depending on the refractive index of the medium refractive index layer.
  • At least the layer which is in direct contact with the (second) metal suboxide layer or the metal oxide layer of the infrared reflecting layer is made of metal. It is preferable to include a corrosion inhibitor for.
  • the corrosion inhibitor against the metal is "the metal layer is (second) Corrosion-preventive layer is formed by adsorbing to the microscopic part where the metal derived from the metal layer is not completely covered and is exposed, and the microscopic metal part is oxygen, water or chloride ions.
  • the layer containing the specific (meth)acrylic copolymer cured by the polyisocyanate-based crosslinking agent it is possible to protect from corrosion deterioration of the metal layer. The progress can be further suppressed.
  • the type of the corrosion inhibitor for the above metals is not particularly limited, and any compound that can suppress the corrosion of the metals may be used. Of these, compounds capable of suppressing silver corrosion are preferable, and compounds having a functional group that easily adsorbs silver are preferable.
  • amines and their derivatives compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having an imidazole ring, compounds having an indazole ring, guanidines and their derivatives, compounds having a thiazole ring,
  • examples thereof include thioureas, compounds having a mercapto group, thioethers, naphthalene compounds, copper chelate compounds, and silicone-modified resins.
  • a compound having a nitrogen-containing group and a compound having a sulfur-containing group are particularly preferable, and it is preferable that they are selected from at least one kind or a mixture thereof.
  • Examples of the compound having a nitrogen-containing group include alkyl alcohol amine derivatives such as amino alcohol, methyl ethanol amine, dimethyl amino ethanol and N,N-dimethyl ethanol amine; phenyl amine derivatives such as diphenylamine, alkylated diphenylamine and phenylenediamine.
  • Guanidine derivatives such as guanidine, 1-o-tolylbiguanide, 1-phenylguanidine and aminoguanidine; triazoles such as 1,2,3-triazole, 1,2,4-triazole, benzotriazole and 1-hydroxybenzotriazole And derivatives thereof; pyrrole derivatives such as N-butyl-2,5-dimethylpyrrole and N-phenyl-2,5-dimethylpyrrole; pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl -Pyrazoles such as 5-hydroxypyrazole and 4-aminopyrazole and derivatives thereof; imidazoles such as imidazole, histidine, 2-heptadecylimidazole and 2-methylimidazole and derivatives thereof; 4-chloroindazole, 4-nitroindazole, Examples thereof include indazoles such as 5-nitroindazole and 4-ch
  • Examples of the compound having a sulfur-containing group include thiol derivatives such as alkanethiol and alkyl disulfide; thioglycerols such as 1-thioglycerol and derivatives thereof; thioglycols such as 2-hydroxyethanethiol and derivatives thereof.
  • Thiobenzoic acids and their derivatives pentaerythritol-tetrakis(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, trimethylolpropane-tris(3-mercaptobutyrate), trimethylol
  • Polyfunctional thiol monomers such as ethane-tris(3-mercaptobutyrate); thiophenol, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane and the like can be mentioned.
  • examples of the compound having both the nitrogen-containing group and the sulfur-containing group include mercaptotriazoles such as 3-mercapto-1,2,4-triazole and 1-methyl-3-mercapto-1,2,4-triazole. And derivatives thereof; mercaptothiazoles such as 2-mercaptobenzothiazole and derivatives thereof; mercaptoimidazoles such as 2-mercaptobenzimidazole and derivatives thereof; mercaptotriazines such as 2,4-dimercaptotriazine and derivatives thereof; thio Thioureas such as urea and guanylthiourea and their derivatives; aminothiophenols such as 2-aminothiophenol and 4-aminothiophenol and their derivatives; 2-mercapto-N-(2-naphthyl)acetamide and the like. ..
  • the content of the corrosion inhibitor for the metal is preferably 1% by mass or more and 20% by mass or less based on the total mass of the layer containing the corrosion inhibitor for the metal. If the content is less than 1% by mass, the effect as an additive is difficult to be exhibited, and if it exceeds 20% by mass, the protective layer in contact with the second metal suboxide layer or the metal oxide layer and There is a possibility that the strength of the layer containing the corrosion inhibitor with respect to the other metals may be lowered, or that the adhesion at the interface where they are in contact is lowered.
  • a corrosion inhibitor for the metal is contained in at least a layer of the infrared reflective layer that is in direct contact with the (second) metal suboxide layer or the metal oxide layer, of the coating type protective layer composed of a plurality of layers. What is caused is that, on the surface of the infrared reflective layer, "the metal layer is not completely covered by the (second) metal suboxide layer or the metal oxide layer and the metal derived from the metal layer is exposed. This is because it is possible to adsorb the corrosion inhibitor for the above metal and form the corrosion prevention layer most efficiently in the "extremely minute portion".
  • the corrosion inhibitor for the metal, Corrosion preventive layer formed by adsorbing to minute metal parts acts as a barrier layer against external environmental factors such as oxygen, water and chloride ions that have diffused and permeated the protective layer.
  • the metal layer was not completely covered by the (second) metal suboxide layer or the metal oxide layer, and the metal derived from the metal layer was exposed. It is possible to remarkably suppress the progress of corrosion deterioration of the metal layer starting from "the extremely minute portion".
  • the coating type protective layer is formed of a plurality of layers on the (second) metal suboxide layer or the metal oxide layer in the infrared reflective layer, among the plurality of layers, It is preferable that at least the layer in direct contact with the (second) metal suboxide layer or the metal oxide layer in the infrared reflective layer contains a corrosion inhibitor for the above metal, but in addition, another layer Also, a corrosion inhibitor for the above metals may be contained.
  • the wet coating liquid should have the above-mentioned "metal layer (second) metal sub-layer".
  • the oxide layer or the metal oxide layer and the metal derived from the metal layer is exposed. Even if the agent could not be adsorbed well on the very small metal part, if the next second protective layer contains a corrosion inhibitor for the above metal, the above-mentioned 2nd protective layer is formed on the first protective layer.
  • the protective layer of the second layer by wet coating, there is an opportunity to adsorb the corrosion inhibitor for the above-mentioned metal again to the minute metal portion where the above-mentioned coverage could not be adsorbed and the corrosion inhibitor for the above-mentioned metal could not be adsorbed. Because it can be given.
  • the "metal layer is not completely covered by the (second) metal suboxide layer or the metal oxide layer, and the metal derived from the metal layer is exposed, in which the corrosion inhibitor for the metal is not adsorbed. It is possible to significantly reduce the remaining rate of "extremely minute parts".
  • the pressure-sensitive adhesive layer is arranged on the surface of the transparent substrate opposite to the surface on which the coating type protective layer is formed.
  • the transparent heat insulating/insulating member of this embodiment can be easily attached to a transparent substrate such as a window glass.
  • a material for the pressure-sensitive adhesive layer a material having a high visible light transmittance and a small difference in refractive index from a transparent substrate is preferably used.
  • acryl-based, polyester-based, urethane-based, rubber-based, silicone-based resin or the like can be used.
  • acrylic resins are more preferably used because of their high optical transparency, good balance between wettability and adhesive strength, high reliability and many achievements, and relatively low price.
  • acrylic resin acrylic acid and its esters, methacrylic acid and its esters, homopolymers or copolymers of acrylic monomers such as acrylamide and acrylonitrile, and at least one of the above acrylic monomers.
  • a vinyl monomer such as vinyl acetate, maleic anhydride, or styrene.
  • Particularly preferred acrylic adhesives are alkyl acrylate-based main monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate, which serve as components for expressing adhesiveness, and are used for improving cohesive strength.
  • Monomers such as vinyl acetate, acrylamide, acrylonitrile, styrene, and methacrylate, which are the components, and acrylic acid, methacrylic acid, itaconic acid, crotonic acid, and anhydride, which are the components for further improving the adhesive force and imparting crosslinking points.
  • acrylic acid, methacrylic acid, itaconic acid, crotonic acid, and anhydride which are the components for further improving the adhesive force and imparting crosslinking points.
  • examples thereof include those obtained by appropriately copolymerizing monomers having a functional group such as maleic acid, hydroxylethyl methacrylate, hydroxylpropyl methacrylate, dimethylaminoethyl methacrylate, methylol acrylamide, and glycidyl methacrylate.
  • the acrylic pressure-sensitive adhesive preferably has a Tg (glass transition temperature) in the range of ⁇ 60° C.
  • acrylic pressure-sensitive adhesive one type or a mixture of two or more types of crosslinking agents such as isocyanate type, epoxy type and metal chelate type can be used, if necessary.
  • the thickness of the pressure-sensitive adhesive layer may be 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 15 ⁇ m or more and 50 ⁇ m or less.
  • the adhesive layer preferably contains a benzophenone-based, benzotriazole-based, or triazine-based UV absorber in order to suppress the deterioration of the transparent heat-insulating and heat-insulating member due to UV rays such as sunlight. Further, it is preferable that the pressure-sensitive adhesive layer is provided with a release film on the pressure-sensitive adhesive layer until the transparent heat insulating/insulating member is attached to the transparent substrate for use.
  • the transparent heat-insulating heat insulating member of the present embodiment has the above-mentioned configuration, the visible light transmittance is 60% or more and the shielding coefficient is 0.69 by the combination of the proper design of the infrared reflective layer and the coating type protective layer.
  • the heat transmission coefficient can be set to 4.0 W/(m 2 ⁇ K) or less, and the solar radiation absorption rate can be set to 20% or less. That is, it is possible to provide a low-emission film having high transparency and excellent heat-shielding and heat-insulating properties, in which the risk of thermal cracking of the glass when the film is attached to a window glass is reduced.
  • the transparent heat insulating and heat insulating member since the transparent heat insulating and heat insulating member has the above-mentioned constitution, it is immersed in a sodium chloride aqueous solution having a temperature of 50° C. and a concentration of 5% by mass for 30 days depending on the combination of an appropriate design of the infrared reflecting layer and the coating type protective layer.
  • the transmittance of light having a wavelength of 1100 nm in the transmission spectrum (initial) in the wavelength range of 300 to 1500 nm of the transparent heat insulating and heat insulating member measured before the salt water resistance test is T B %
  • the transmittance of light having a wavelength of 1100 nm in the transmission spectrum (after immersion for 30 days) in the wavelength range of 300 to 1500 nm of the transparent heat insulating and heat insulating member measured after the salt water resistance test is T A %
  • the value of T A -T B Can be less than 10 points. That is, the above aspect means that the deterioration of the function of the infrared reflective layer under a severe test environment is significantly suppressed, and a low radiation film excellent in corrosion resistance deterioration can be provided.
  • the reflection spectrum in the reflection spectrum measured according to JIS R3106-1998 by the combination of the proper design of the infrared reflection layer and the coating type protective layer.
  • Point A is a point corresponding to a wavelength of 535 nm on the virtual line a indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 500 to 570 nm, and the maximum reflectance in the wavelength range of 620 to 780 nm of the reflection spectrum.
  • a point corresponding to a wavelength of 700 nm on an imaginary line b indicating the average value of the minimum reflectance is defined as a point B, and a straight line passing through the points A and B is extended in a wavelength range of 500 to 780 nm to form a reference straight line AB. Then, when the reflectance value of the reflectance spectrum in the wavelength range of 500 to 570 nm and the reflectance value of the reference line AB are compared, the reflectance at the wavelength at which the difference between the reflectance values becomes maximum.
  • the value of the maximum fluctuation difference ⁇ A is 7% or less in% of the reflectance, and the reflectance of the reflection spectrum in the wavelength range of 620 to 780 nm.
  • the absolute value of the difference between the reflectance values at the wavelength where the difference between the reflectance values is the maximum when the value of the above is compared with the reflectance value of the reference straight line AB is defined as the maximum variation difference ⁇ B.
  • the value of the maximum variation difference ⁇ B can be 9% or less in% of the reflectance.
  • the above aspect means that the vertical fluctuation of the visible light reflectance linked with the wavelength in the reflection spectrum is reduced, and the appearance that suppresses the occurrence of the iris pattern and the reflected color change due to the viewing angle. It is also possible to provide an excellent low-emission film.
  • FIG. 1 is a schematic cross-sectional view showing an example of the transparent heat insulating/insulating member of the present embodiment.
  • the transparent heat insulating/insulating member 10 includes a transparent substrate 11, a functional layer 23 including an infrared reflective layer 21 and a coating type protective layer 22, and an adhesive layer 19.
  • the infrared reflection layer 21 is composed of a first metal suboxide layer or metal oxide layer 12, a metal layer 13, and a second metal suboxide layer or metal oxide layer 14 from the transparent substrate side. ..
  • the coating type protective layer 22 includes an optical adjustment layer 15, a medium refractive index layer 16, a high refractive index layer 17, and a low refractive index layer 18.
  • a layer containing a specific (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate cross-linking agent that reacts with the hydroxyl group, and the low refractive index layer 18 using the medium refractive index layer 16 as a pre-curing resin component For example, a layer containing an active energy ray-curable resin can be used as the pre-curing resin component.
  • FIG. 2 is a diagram showing an example of transmission spectra of the transparent heat insulating and heat insulating member of the present embodiment before and after the salt water resistance test.
  • the wavelength of the transparent heat insulation heat insulating member measured before the salt water resistance test is 300.
  • the transmittance of light having a wavelength of 1100 nm in the transmission spectrum (initial) in the range of up to 1500 nm is T B %, and the transmission spectrum of the transparent heat insulating and heat insulating member measured after the salt water resistance test is in the range of 300 to 1500 nm (soaking for 30 days the transmittance of light of wavelength 1100nm after)
  • T a% the value of T a -T B may be less than 10 points.
  • FIG. 3 is a diagram illustrating how to obtain the “reference straight line AB”, the “maximum variation difference ⁇ A”, and the “maximum variation difference ⁇ B” with respect to the visible light reflection spectrum of the transparent heat insulating and heat insulating member of the present invention.
  • a point corresponding to a wavelength of 535 nm on the virtual line a indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 500 to 570 nm of the reflection spectrum is point A.
  • the point corresponding to the wavelength 700 nm on the virtual line b indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 620 to 780 nm of the reflection spectrum is point B, and the points A and B are
  • the passing straight line is extended in the wavelength range of 500 to 780 nm as the reference straight line AB, and the reflectance value of the reflection spectrum in the wavelength range of 500 to 570 nm is compared with the reflectance value of the reference straight line AB
  • the absolute value of the difference in the reflectance values at the wavelength where the difference in the reflectance values is maximum is defined as the maximum variation difference ⁇ A.
  • the reflectance at the wavelength at which the difference between the reflectance values becomes maximum is defined as the maximum variation difference ⁇ B.
  • FIG. 4 is a diagram showing an example of a reflection spectrum in the visible light region when light is measured from the glass surface side in the transparent heat insulating/insulating member of Example 1 described later.
  • the value of the maximum variation difference ⁇ A may be 7% or less in% of reflectance and the value of the maximum variation difference ⁇ B may be 9% or less in% of reflectance in the transparent heat insulating/insulating member. ..
  • the transparent heat insulating heat insulating member of the above embodiment while lowering the solar radiation absorption rate by the infrared reflection layer, can exhibit a heat insulating function and a heat shielding function, also scratch resistance by the coating type protective layer, Corrosion resistance is improved and the heat insulation function can be maintained.
  • the embodiment of the method for producing a transparent heat insulating and heat insulating member of the present invention comprises a step of forming an infrared reflective layer on a transparent substrate by a dry coating method, and a protective layer composed of a plurality of layers on the infrared reflective layer. Is formed by a wet coating method.
  • the infrared reflection layer 21 is formed on one surface of the transparent substrate 11.
  • the infrared reflective layer 21 can be formed by a dry coating method such as a method of sputtering a conductive material or a transparent dielectric material, but may be formed by another method.
  • the infrared reflective layer 21 has a three-layer structure including a first metal suboxide layer or metal oxide layer 12, a metal layer 13, and a second metal suboxide layer or metal oxide layer 14. It is preferable in terms of heat shielding/heat insulating function, corrosion resistance and productivity.
  • the optical adjustment layer 15 containing a corrosion inhibitor for metals is formed on the infrared reflection layer 21.
  • a medium refractive index layer 16 containing a specific (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group is formed on the optical adjustment layer 15, and the medium refractive index layer 16 is formed.
  • a high refractive index layer 17 is formed on the refractive index layer 16, and a low refractive index layer 18 containing an active energy ray curable resin is formed on the high refractive index layer 17.
  • Each of these layers can be formed by a wet coating method using a coater such as a die coater, a comma coater, a reverse coater, a dam coater, a doctor bar coater, a gravure coater, a micro gravure coater, and a roll coater.
  • the coating-type protective layer 22 formed of a plurality of layers formed in this manner can prevent the infrared reflective layer 21 from being damaged by window wiping and the like even when the infrared reflective layer 21 is placed on the indoor side, and can be resistant to damage.
  • the adhesive layer 19 is formed on the other surface of the transparent substrate 11.
  • the method of forming the pressure-sensitive adhesive layer 19 is not particularly limited, and the pressure-sensitive adhesive may be directly applied to the outer surface of the transparent substrate 11, or a separately prepared pressure-sensitive adhesive sheet may be attached.
  • the refractive index of the optical adjustment layer, the medium refractive index layer, the high refractive index layer, and the low refractive index layer described in the following examples and comparative examples were measured by the methods described below.
  • the polyethylene terephthalate (PET) film "A4100" (trade name, thickness: 50 ⁇ m) manufactured by Toyobo Co., Ltd., which has been subjected to easy-adhesion treatment on one side, was coated with each layer-forming coating in a thickness of 500 nm on the surface not subjected to the easy-adhesion treatment. It is applied so as to be dried and dried to prepare a sample for measuring a refractive index.
  • a UV-curable coating material is used for each layer-forming coating material, the coating material is dried and then irradiated with ultraviolet light having a light amount of 300 mJ/cm 2 by a high-pressure mercury lamp to be cured to prepare a refractive index measurement sample. ..
  • Example 1 ⁇ Preparation of transparent substrate with infrared reflective layer> First, as a transparent substrate, a polyethylene terephthalate (PET) film "A4100" (trade name, thickness: 50 ⁇ m) manufactured by Toyobo Co., Ltd. on one side of which is easily adhered is used, and the surface side of the PET film which is not easily adhered is used. Then, a first metal suboxide layer, a metal layer, and a second metal suboxide layer were formed from the PET film side as follows. First, using a titanium target, a 2 nm-thick first metal suboxide layer (TiO x layer) was formed by a reactive sputtering method.
  • TiO x layer 2 nm-thick first metal suboxide layer
  • a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%.
  • a 12 nm-thick metal layer (Ag layer) was formed on the first metal suboxide layer by a sputtering method using a silver target.
  • Ar gas 100% was used as the sputtering gas in the sputtering method.
  • a second target metal suboxide layer (TiO x layer) having a thickness of 2 nm was formed on the metal layer by a reactive sputtering method using a titanium target.
  • the sputtering gas in the reactive sputtering method a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%.
  • the infrared reflective layer having a three-layer structure of the first metal suboxide layer (TiO x layer)/metal layer (Ag layer)/second metal suboxide layer (TiO x layer) from the PET film side.
  • An attached PET film was produced.
  • the x of the TiO x layer was 1.5.
  • the total thickness of the infrared reflective layer [first metal suboxide layer (TiO x layer)+metal layer (Ag layer)+second metal suboxide layer (TiO x layer)] obtained by the above method is It was 16 nm, and the ratio of the thickness of the second metal suboxide layer (TiO x layer) to the total thickness was 12.5%.
  • the optical adjustment coating A is applied on the infrared reflective layer using a micro gravure coater (manufactured by Inui Seiki Co., Ltd.) so that the thickness after drying becomes 50 nm, and after drying, high pressure is applied.
  • An optical adjustment layer having a thickness of 50 nm was formed by irradiating with a mercury lamp an ultraviolet ray having a light amount of 300 mJ/cm 2 to cure the ultraviolet ray.
  • the refractive index of the manufactured optical adjustment layer was 1.79 when measured by the above-mentioned method.
  • the medium refractive index coating material A is applied on the optical adjustment layer using the microgravure coater so that the thickness after drying is 60 nm, and dried at 120° C. for 2 minutes to be heat-cured. As a result, a medium refractive index layer having a thickness of 60 nm was formed.
  • the refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
  • a high-refractive-index layer having a thickness of 90 nm was formed by irradiating and curing with an ultraviolet ray having a light amount of /cm 2 .
  • the refractive index of the produced high refractive index layer was 1.80 when measured by the above-mentioned method.
  • a low-refractive-index layer having a thickness of 100 nm was formed by irradiating with a light amount of ultraviolet rays and curing.
  • the refractive index of the manufactured low refractive index layer was 1.37 when measured by the above-mentioned method.
  • an infrared reflection film (transparent heat insulating/insulating member) having a protective layer including an optical adjustment layer, a medium refractive index layer, a high refractive index layer and a low refractive index layer was produced.
  • the protective layer thus obtained had a thickness of 300 nm.
  • a release PET film “NS-38+A” (trade name, thickness: 38 ⁇ m) manufactured by Nakamoto Pax Co., Ltd., one surface of which was treated with silicone, was prepared. Further, with respect to 1000.00 parts by mass of acrylic adhesive "SKDyne 2094" (trade name, solid content: 25% by mass) manufactured by Soken Chemical Co., Ltd., ultraviolet absorber (benzophenone) 12. manufactured by Wako Pure Chemical Industries, Ltd. 50 parts by mass and 2.70 parts by mass of a cross-linking agent "E-AX” (trade name, solid content: 5% by mass) manufactured by Soken Chemical Industry Co., Ltd. were added and mixed with a disper to prepare an adhesive coating composition.
  • the pressure-sensitive adhesive coating was applied on the silicone-treated surface of the release PET film so that the thickness after drying was 25 ⁇ m, and the pressure-sensitive adhesive layer was formed after drying. Furthermore, the side of the infrared reflective film on which the infrared reflective layer is not formed is bonded to the upper surface of this adhesive layer, and the infrared reflective film with the adhesive layer is provided with a protective layer consisting of four layers (transparent heat insulating and heat insulating film). Member) was produced.
  • a float glass made by Nippon Sheet Glass Co., Ltd.
  • the infrared reflective film with an adhesive layer provided with the protective layer is cut into a size of 3 cm ⁇ 3 cm, the release PET film is peeled off, and the adhesive layer side of the infrared reflective film with an adhesive layer is attached. It was attached to the center of the float glass.
  • a medium-refractive-index coating B was prepared in the same manner as the medium-refractive-index coating A, and the pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that this medium-refractive-index coating B was used.
  • An infrared reflection film with a coating was prepared and attached to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
  • a medium-refractive-index coating C was prepared in the same manner as the medium-refractive-index coating A, and the pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that this medium-refractive-index coating C was used.
  • An infrared reflection film with a coating was prepared and attached to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
  • An infrared reflective film with a pressure-sensitive adhesive layer having a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material D was used, and the infrared reflective film was attached to a glass substrate.
  • the refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material E was used, and was bonded to a glass substrate.
  • the refractive index of the manufactured medium refractive index layer was 1.50 when measured by the above-mentioned method.
  • An infrared reflecting film with a pressure-sensitive adhesive layer having a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material F was used, and was bonded to a glass substrate.
  • the refractive index of the manufactured medium refractive index layer was 1.51 as measured by the above method.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that the medium refractive index coating material G was used, and the infrared reflective film was attached to a glass substrate.
  • the refractive index of the manufactured medium refractive index layer was 1.49 as measured by the above-mentioned method.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that the above medium refractive index coating material H was used, and was bonded to a glass substrate.
  • the refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
  • Example 9 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that the formation of the optical adjustment layer and the medium refractive index layer was changed to the following, and the laminated film was attached to a glass substrate. It was
  • Zirconia beads having a diameter of 0.3 mm were added to this mixed solution and dispersed using a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) to prepare a titanium oxide ultrafine particle dispersion.
  • a paint conditioner manufactured by Toyo Seiki Co., Ltd.
  • the above optical adjustment coating B was applied onto the infrared reflective layer used in Example 1 using a micro gravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying would be 50 nm, An optical adjustment layer having a thickness of 50 nm was formed by drying at 120° C. for 2 minutes and thermosetting.
  • the refractive index of the manufactured optical adjustment layer was 1.80 when measured by the above-mentioned method.
  • UV-curable acrylic polymer "SMP-360A” (trade name, solid content concentration 50% by mass) manufactured by Kyoeisha Chemical Co., Ltd. 28.00 parts by mass, methyl ethyl ketone 389.80 parts by mass as a diluting solvent, and cyclohexanone 582.20 parts by mass.
  • a photopolymerization initiator "Irgacure 907” (trade name) manufactured by BASF Corp. were mixed with a disper to prepare a medium refractive index coating material I.
  • the medium refractive index coating material I was applied on the optical adjustment layer using the microgravure coater so that the thickness after drying was 60 nm, and after drying, it was 300 mJ/ with a high pressure mercury lamp.
  • a medium-refractive-index layer having a thickness of 60 nm was formed by irradiating and curing the ultraviolet ray having a light amount of cm 2 .
  • the refractive index of the manufactured medium refractive index layer was 1.50 when measured by the above-mentioned method.
  • Example 10 The medium refractive index layer was formed in the same manner as in Example 1 except that the formation of the medium refractive index layer was changed to the following without providing the optical adjustment layer and the thickness of the high refractive index layer after drying was changed to 290 nm.
  • the protective layer thus obtained had a thickness of 540 nm.
  • the medium refractive index coating material J was coated on the optical adjustment layer using the microgravure coater so that the thickness after drying was 150 nm, and after drying, 300 mJ/ A medium-refractive index layer having a thickness of 150 nm was formed by irradiating and curing with ultraviolet rays of a light amount of cm 2 .
  • the refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
  • Example 11 In the same manner as in Example 1 except that the formation of the high refractive index layer was changed to the following without providing the optical adjustment layer and the medium refractive index layer, and the thickness of the low refractive index layer after drying was changed to 95 nm.
  • Zirconia beads having a diameter of 0.3 mm were added to this mixed solution and dispersed using a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) to prepare a titanium oxide ultrafine particle dispersion.
  • a paint conditioner manufactured by Toyo Seiki Co., Ltd.
  • the high refractive index coating material B was applied onto the infrared reflective layer used in Example 1 using a micro gravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying was 145 nm.
  • a high refractive index layer having a thickness of 145 nm was formed by drying at 120° C. for 2 minutes and thermosetting.
  • the refractive index of the produced high refractive index layer was 1.80 when measured by the above-mentioned method.
  • Example 12 An optical adjustment paint similar to the optical adjustment paint A of Example 1 except that 2-mercaptobenzothiazole having a sulfur-containing group as a corrosion inhibitor for metals was changed to 1-o-tolylbiguanide having a nitrogen-containing group.
  • Infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that C was produced and this optical adjustment coating C was used, and was laminated on a glass substrate.
  • the refractive index of the manufactured optical adjustment layer was 1.79 when measured by the above-mentioned method.
  • Example 13 An optical adjustment coating D was prepared in the same manner as the optical adjustment coating A of Example 1 except that 2-mercaptobenzothiazole having a sulfur-containing group was not added as a corrosion inhibitor for metals.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that it was used, and was bonded to a glass substrate.
  • the refractive index of the manufactured optical adjustment layer was 1.80 when measured by the above-mentioned method.
  • Example 14 A pressure-sensitive adhesive layer provided with a protective layer consisting of four layers in the same manner as in Example 1 except that the thickness of the medium refractive index layer after drying was changed to 130 nm and the thickness of the high refractive index layer was changed to 500 nm. An infrared reflection film with a coating was prepared and attached to a glass substrate. The protective layer thus obtained had a thickness of 780 nm.
  • Example 15 The thickness of the metal layer (Ag layer) of the infrared reflective layer is 8 nm, the thickness of the optical adjustment layer after drying is 60 nm, the thickness of the medium refractive index layer after drying is 200 nm, and the thickness of the high refractive index layer after drying. And the thickness of the low refractive index layer after drying was changed to 120 nm, an infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 to prepare a glass. It was attached to the substrate.
  • the total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO x layer)+metal layer (Ag layer)+second metal suboxide layer (TiO x layer)] was 12 nm.
  • the ratio of the thickness of the second metal suboxide layer (TiO x layer) to the total thickness was 16.7%.
  • the thickness of the obtained protective layer was 930 nm.
  • Example 16 Same as Example 1 except that the dried thickness of the medium refractive index layer was changed to 150 nm, the dried thickness of the high refractive index layer was changed to 700 nm, and the dried thickness of the low refractive index layer was changed to 110 nm.
  • an infrared reflecting film with a pressure-sensitive adhesive layer having a protective layer consisting of four layers was prepared and attached to a glass substrate.
  • the protective layer thus obtained had a thickness of 1010 nm.
  • Example 17 Infrared reflection with a pressure-sensitive adhesive layer provided with a protective layer consisting of 4 layers in the same manner as in Example 1 except that the thickness of the second metal suboxide layer (TiO X layer) of the infrared reflection layer was changed to 4 nm.
  • a film was prepared and attached to a glass substrate.
  • the total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO X layer)+metal layer (Ag layer)+second metal suboxide layer (TiO X layer)] was 18 nm.
  • the ratio of the thickness of the second metal suboxide layer (TiO X layer) to the total thickness was 22.2%.
  • Example 18 ⁇ Preparation of transparent substrate with infrared reflective layer>
  • the first metal from the PET film side was applied to the non-easy adhesion treatment surface side of the PET film.
  • the suboxide layer, the metal layer, and the second metal oxide layer were formed as follows. First, using a titanium target, a 2 nm-thick first metal suboxide layer (TiO x layer) was formed by a reactive sputtering method.
  • a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%. Then, a 13 nm-thick metal layer (Ag layer) was formed on the metal suboxide layer by a sputtering method using a silver target. Ar gas 100% was used as the sputtering gas in the sputtering method. Further, a titanium oxide target was used on the metal layer to form a second metal oxide layer (TiO 2 layer) having a thickness of 5 nm by a sputtering method. Ar gas 100% was used as the sputtering gas in the sputtering method.
  • an infrared reflection layer having a three-layer structure of a first metal suboxide layer (TiO X layer)/metal layer (Ag layer)/second metal oxide layer (TiO 2 layer) from the transparent substrate side.
  • An attached PET film was produced.
  • the x of the TiO x layer was 1.5.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of 4 layers was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer was used, and was bonded to a glass substrate.
  • the total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO X layer)+metal layer (Ag layer)+second metal oxide layer (TiO 2 layer)] was 20 nm, The ratio of the thickness of the second metal oxide layer (TiO 2 layer) to the total thickness was 25.0%.
  • Example 19 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer composed of 4 layers in the same manner as in Example 18 except that the thickness of the second metal oxide layer (TiO 2 layer) of the infrared reflective layer was changed to 7 nm. was prepared and attached to a glass substrate.
  • the total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO X layer)+metal layer (Ag layer)+second metal oxide layer (TiO 2 layer)] was 22 nm,
  • the ratio of the thickness of the second metal oxide layer (TiO 2 layer) to the total thickness was 31.8%.
  • Example 20 ⁇ Preparation of transparent substrate with infrared reflective layer>
  • the first metal from the PET film side was applied to the non-easy adhesion treatment surface side of the PET film.
  • the oxide layer, the metal layer, and the second metal suboxide layer were formed as follows.
  • a 2 nm-thick first metal oxide layer (TiO 2 layer) was formed by a sputtering method using a titanium oxide target. Ar gas 100% was used as the sputtering gas in the sputtering method.
  • a 12 nm-thick metal layer (Ag layer) was formed on the metal oxide layer by a sputtering method using a silver target.
  • Ar gas 100% was used as the sputtering gas in the sputtering method.
  • a second target metal suboxide layer (TiO x layer) having a thickness of 2 nm was formed on the metal layer by a reactive sputtering method using a titanium target.
  • a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%.
  • an infrared reflection layer having a three-layer structure of a first metal oxide layer (TiO 2 layer)/metal layer (Ag layer)/second metal suboxide layer (TiO x layer) from the transparent substrate side.
  • An attached PET film was produced.
  • the x of the TiO x layer was 1.5.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of 4 layers was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer was used, and was bonded to a glass substrate.
  • the total thickness of the obtained infrared reflective layer [first metal oxide layer (TiO 2 layer)+metal layer (Ag layer)+second metal suboxide layer (TiO X layer)] was 16 nm, The ratio of the thickness of the second metal suboxide layer (TiO X layer) to the total thickness was 12.5%.
  • the medium-refractive-index coating material K was applied onto the infrared reflective layer used in Example 1 by using the microgravure coater so that the thickness after drying was 60 nm, and dried at 120° C. for 2 minutes. By heat-curing it, a medium-refractive index layer (lower layer) having a thickness of 60 nm was formed.
  • the refractive index of the manufactured intermediate refractive index layer (lower layer) was 1.51 as measured by the above method.
  • P-2M brand name 4.80 parts by mass and Fluorine-containing urethane (meth)acrylate monomer "Fomblin MT70” (brand name, solid content concentration 80 mass%) manufactured by Solvay Specialty Polymers Japan 8.30 parts by mass Part, 1.30 parts by mass of a silicone-modified acrylate "TEGO Rad 2650” manufactured by Evonik Degussa Japan, 4.80 parts by mass of a photopolymerization initiator "IRGACURE 819" (trade name) manufactured by BASF, and a diluent solvent.
  • a medium refractive index coating material L was mixed with 815.40 parts by mass of methyl isobutyl ketone by a disper to prepare a medium refractive index coating material L.
  • the medium-refractive-index coating material L is applied onto the medium-refractive-index layer (lower layer) using the microgravure coater so that the thickness after drying is 920 nm, and after drying, the high-pressure mercury lamp is used.
  • the high-pressure mercury lamp is used.
  • ultraviolet rays having a light amount of 300 mJ/cm 2 were irradiated to cure the layer, and thereby a middle refractive index layer (upper layer) having a thickness of 920 nm was formed.
  • the refractive index of the manufactured medium refractive index layer (upper layer) was 1.49 when measured by the above-mentioned method.
  • an infrared reflective film having a protective layer composed of a medium refractive index layer (lower layer) and a medium refractive index layer (upper layer) was produced.
  • a protective layer comprising two layers of a medium refractive index layer (lower layer) and a medium refractive index layer (upper layer) was provided in the same manner as in Example 1 except that the PET film with the infrared reflecting layer provided with the above protective layer was used.
  • An infrared reflective film with a pressure-sensitive adhesive layer was prepared and attached to a glass substrate.
  • the protective layer thus obtained had a thickness of 980 nm.
  • Example 22 A protective layer comprising two layers of a middle refractive index layer (lower layer) and a middle refractive index layer (upper layer) was provided in the same manner as in Example 21 except that the thickness of the middle refractive index layer (upper layer) was changed to 620 nm.
  • An infrared reflective film with a pressure-sensitive adhesive layer was prepared and attached to a glass substrate. The thickness of the resulting protective layer was 680 nm.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material M was used, and was bonded to a glass substrate.
  • the refractive index of the manufactured medium refractive index layer was 1.50 when measured by the above-mentioned method.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material N was used, and the infrared reflective film was attached to a glass substrate.
  • the refractive index of the manufactured medium refractive index layer was 1.51 as measured by the above method.
  • Example 1 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 13 except that the formation of the medium refractive index layer was changed to the following, and this was laminated on a glass substrate.
  • Z-773 hard coating agent
  • a medium-refractive-index layer having a thickness of 60 nm was formed by irradiating and curing with a light amount of ultraviolet rays.
  • the refractive index of the manufactured medium refractive index layer was 1.52 as measured by the above method.
  • a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%.
  • a 12 nm-thick metal layer (Ag layer) was formed on the metal oxide layer by a sputtering method using a silver target.
  • Ar gas 100% was used as the sputtering gas in the sputtering method.
  • a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%.
  • a PET film with an infrared reflective layer having a three-layer structure of a first metal oxide layer (ZTO layer)/metal layer (Ag layer)/second metal oxide layer (ZTO layer) from the transparent substrate side. was produced.
  • the total thickness of the infrared reflective layer [first metal oxide layer (ZTO layer)+metal layer (Ag layer)+second metal oxide layer (ZTO layer)] obtained by the above method is 32 nm, The ratio of the thickness of the second metal oxide layer (ZTO layer) to the total thickness was 31.3%.
  • the low-refractive-index coating material A used in Example 1 was applied onto the infrared reflective layer using the microgravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying was 60 nm, and dried. After that, a low-refractive index layer having a thickness of 60 nm was formed by irradiating with a high-pressure mercury lamp an ultraviolet ray of a light amount of 300 mJ/cm 2 to cure the layer.
  • the refractive index of the manufactured low refractive index layer was 1.37 when measured by the above-mentioned method.
  • an infrared reflective film having a protective layer composed of one low refractive index layer was prepared.
  • An infrared reflective film with a pressure-sensitive adhesive layer having a protective layer consisting of one low refractive index layer was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer having the above protective layer was used to prepare a glass. It was attached to the substrate.
  • Example 3 ⁇ Formation of medium refractive index layer>
  • the medium-refractive-index coating material L used in Example 21 was applied onto the infrared reflective layer used in Comparative Example 2 by using the microgravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying was 680 nm.
  • a medium-refractive index layer having a thickness of 680 nm was formed by irradiating a high-pressure mercury lamp with ultraviolet rays having a light amount of 300 mJ/cm 2 to cure the layer.
  • the refractive index of the manufactured medium refractive index layer was 1.49 as measured by the above-mentioned method.
  • an infrared reflective film having a protective layer composed of one medium refractive index layer was prepared.
  • An infrared reflective film with a pressure-sensitive adhesive layer having a protective layer consisting of one medium refractive index layer was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer having the protective layer was used to prepare a glass. It was attached to the substrate.
  • Comparative Example 4 instead of the low refractive index layer, which is the outermost surface layer of the protective layer of Comparative Example 1, the medium refractive index layer of Example 1 was the outermost surface layer of the protective layer (thickness after drying). Except for coating and forming (drying at 120° C. for 2 minutes and thermosetting), an infrared reflection film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Comparative Example 1. And attached to a glass substrate.
  • An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared and bonded to a glass substrate in the same manner as in Example 13 except that the above medium refractive index coating material P was used.
  • the refractive index of the manufactured medium refractive index layer was 1.49 as measured by the above-mentioned method.
  • the visible light transmittance was measured using a UV-visible near-infrared spectrophotometer "Ubest V-570 Model” (trade name) manufactured by JASCO Corporation in the wavelength range of 380 to 780 nm with the glass substrate side as the incident light side.
  • the spectral transmittance was measured and calculated according to JIS A5759-2008.
  • the spectral reflectance was measured using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the wavelength range of 380 to 780 nm with the glass substrate side as the incident light side. Calculated according to R3106-1998.
  • Spectral reflectance was measured according to JIS R3106-1998 using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the range of 300 to 800 nm with the glass substrate side as the incident light side.
  • the “maximum variation difference ⁇ A” and “maximum variation difference ⁇ B” of the reflectance were obtained from the measured visible light reflection spectrum by the method described above.
  • the solar absorptance is measured by using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the wavelength range of 300 to 2500 nm with the glass substrate side as the incident light side. Then, it was calculated from the values of the solar radiation transmittance and the solar reflectance calculated according to JIS A5759-2008.
  • the shielding coefficient was measured by measuring the spectral transmittance and the spectral reflectance using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the wavelength range of 300 to 2500 nm with the glass substrate side as the incident light side.
  • the solar radiation transmittance and the solar reflectance were obtained according to JIS A5759, the vertical emissivity was obtained according to JIS R3106-2008, and the values were obtained from the values of the solar radiation transmittance, solar reflectance and vertical emissivity.
  • Heat transmission coefficient For the heat transmission coefficient, an attachment for specular reflection measurement was attached to an infrared spectrophotometer "IR Prestige21" (trade name) manufactured by Shimadzu Corporation, and the specular specular reflectance on the protective layer side and the glass substrate side of the infrared reflection film was measured at a wavelength of 5 Measured in the range of 0.5 to 25.2 ⁇ m, the vertical emissivity of the protective layer side and the glass substrate side of the infrared reflective film is determined according to JIS R3106-2008, and based on this, the thermal emissivity is determined according to JIS A5759-2008. The penetration rate was calculated.
  • the UV-visible near-infrared spectrophotometer "Ubest V-570 type” was used to measure the spectral transmittance of the infrared reflective film attached to the glass substrate in the wavelength range of 300 to 1500 nm, and the light of wavelength 1100 nm was measured.
  • the transmittance T B (unit: %) of each was measured.
  • the infrared reflection film attached to the glass substrate was immersed in a 5% by mass sodium chloride aqueous solution, and in this state, it was placed in a constant temperature and humidity bath at 50° C. and stored for 30 days to perform a salt water resistance test.
  • the infrared reflection film attached to the glass substrate was washed with pure water and naturally dried. Subsequently, the transmittance T A (% unit) of light having a wavelength of 1100 nm of the infrared reflective film attached to the glass substrate after the salt water resistance test was measured in the same manner as above. From the above measurement results, a point value of T A -T B was calculated as a difference in transmittance of light having a wavelength of 1100 nm before and after the salt water resistance test.
  • the scratch resistance of the protective layer of the transparent heat-insulating and heat-insulating member is determined by arranging a white flannel cloth on the protective layer and applying a load of 1000 g/cm 2 and reciprocating the white flannel cloth 1000 times.
  • the state of the surface of the protective layer was visually observed and evaluated according to the following three grades. Excellent: No scratches were found. Good: Several scratches (5 or less) were confirmed. Poor: Many scratches (6 or more) were confirmed.
  • the infrared reflective films (transparent heat insulating/insulating members) of all the other examples except Examples 9 and 11 were good even in the salt water resistance test assuming a harsh external environment.
  • the results show that even if dew condensation water, human sebum, sweat, etc. adhere to the film surface, the metal layer of the infrared reflective layer is not corroded and deteriorated in a short period of time.
  • the visible light transmittance is large and the variation in the visible light reflectance is small, the transparency and the appearance are not impaired even when it is attached to a window glass.
  • the shielding coefficient and the heat transmission coefficient are small, and both the heat shielding performance in summer and the heat insulating performance in winter are excellent.
  • the scratch resistance is at a practically acceptable level. Further, since the solar radiation absorption rate is small, it is difficult for the glass to undergo thermal cracking after installation on the window glass. That is, it can be seen that a practically well-balanced transparent heat shield and heat insulating member was obtained.
  • the optical adjustment layer containing a large amount of inorganic fine particles and the high refractive index layer were layers containing a (meth)acrylic copolymer having a hydroxyl group and a crosslinking agent that reacts with the hydroxyl group. Therefore, a salt water resistance test is performed in comparison with other examples in which the medium refractive index layer containing no inorganic fine particles is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a crosslinking agent that reacts with the hydroxyl group. It was a little inferior.
  • Example 13 since the layer directly contacting the metal suboxide layer did not contain the corrosion inhibitor for the metal, the layer directly contacting the metal suboxide layer contained the corrosion inhibitor for the metal. Compared to Example 1 and Example 12, the salt water resistance test was slightly inferior.
  • Example 16 showed good results in the salt water resistance test, the total thickness of the protective layer was 1010 nm, which was rather large, and thus the heat transmission coefficient was 4.3 W/(m 2 ⁇ K), which was rather large, and the protection was achieved.
  • the thermal insulation performance was slightly inferior compared to the other examples in which the total layer thickness was 980 nm or less.
  • Example 19 showed good results in the salt water resistance test, the thickness of the second metal oxide layer (TiO 2 layer) of the infrared reflective layer was 7 nm, and the total thickness of the infrared reflective layer was Since it corresponds to 31.8% which exceeds 25%, the solar radiation absorption rate is as large as 21.3%, and when compared with other examples in which the solar radiation absorption rate is 20% or less, when applied to window glass. The risk of heat cracking of glass has become high.
  • Examples 21 and 22 showed good results in the salt water resistance test, but since the protective layer had a two-layer structure of a medium refractive index layer, another example in which the protective layer had a laminated structure with different refractive index ranges was used. Compared with the examples, the visible light transmittance and the appearance were inferior.
  • any of the layers other than the layer located on the outermost surface side has a hydroxyl group.
  • the protective layers each consist of one layer of a low refractive index layer and a medium refractive index layer, and a monomer having a hydroxyl group and a glass transition temperature of 20° C. or higher are provided in the layer.
  • a (meth)acrylic copolymer containing, as a copolymer unit, a (meth)acrylic acid alkyl ester monomer having an alkyl group having a carbon number of 4 or more and 10 or less capable of forming a homopolymer at 155° C.
  • the infrared reflective layer causes corrosion deterioration and the protective layer peels off, and the values of T A -T B are It increased to 35.0 points and 29.5 points. That is, it has almost no heat insulation function.
  • the total thickness of the infrared reflective layer is 32 nm, and the thickness of the second metal oxide layer (ZTO layer) of the infrared reflective layer is 10 nm, which exceeds 25% of the total thickness of the infrared reflective layer.
  • Comparative Example 2 was inferior in scratch resistance because the thickness of the protective layer was as thin as 60 nm. Furthermore, in Comparative Example 3, the protective layer was one layer of the medium refractive index layer, and the thickness was 680 nm, which overlaps with the wavelength region of visible light, and therefore the appearance was poor.
  • Comparative Example 4 it is possible to form a monomer having a hydroxyl group and a homopolymer having a glass transition temperature of 20° C. or higher and 155° C. or lower in a layer located on the outermost surface side of the protective layer including a plurality of layers.
  • the present invention can provide a transparent heat insulating and heat insulating member excellent in corrosion resistance deterioration in salt water resistance test assuming a severe external environment while maintaining high heat insulating performance and heat insulating performance.
  • a transparent heat insulating and heat insulating member having a low solar radiation absorption rate and a reduced risk of thermal cracking of glass when applied to a window glass or the like and having excellent appearance.
  • Transparent Thermal Insulation Member 11 Transparent Substrate 12 First Metal Suboxide Layer or Metal Oxide Layer 13 Metal Layer 14 Second Metal Suboxide Layer or Metal Oxide Layer 15 Optical Adjustment Layer 16 Medium Refractive Index Layer 17 High Refractive Index Layer 18 Low Refractive Index Layer 19 Adhesive Layer 21 Infrared Reflective Layer 22 Coating Protective Layer 23 Functional Layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

A transparent heat-shielding/heat-insulating member disclosed by the present application comprises a transparent substrate and a functional layer formed thereon. The functional layer comprises an infrared reflecting layer and a coating-type protective layer disposed in this sequence from the transparent substrate side. The infrared reflecting layer comprises, disposed in the indicated sequence from the transparent substrate side, at least a metal layer and a metal suboxide layer or metal oxide layer. The protective layer is constituted by a plurality of layers wherein at least one layer of the layers other than the layer disposed on the outermost surface side thereof is constituted by a hydroxy group-bearing (meth)acrylic copolymer and a polyisocyanate-type crosslinking agent that reacts with the hydroxy group. The (meth)acrylic copolymer contains, as copolymer units, a hydroxy group-bearing monomer and an alkyl (meth)acrylate ester monomer having a C4-10 alkyl group, the alkyl (meth)acrylate ester monomer being capable of forming a homopolymer having a glass transition temperature of 20°C-155°C. The layer disposed on the outermost surface side of the protective layer is constituted by an active energy radiation-curable resin.

Description

透明遮熱断熱部材及びその製造方法Transparent heat shield and heat insulating member and method for manufacturing the same
 本発明は、主に、窓ガラス等の室内側に貼り付けて使用される通年省エネルギー対応日射調整用フィルム等の透明遮熱断熱部材に関する。特に、断熱性に優れ、且つ、結露水や人の皮脂付着に起因する腐食劣化を抑制した通年省エネルギー対応日射調整フィルム等の透明遮熱断熱部材及びその製造方法に関する。 The present invention mainly relates to a transparent heat insulating and heat insulating member such as a film for adjusting solar radiation for energy saving, which is used by being attached to the indoor side such as window glass. In particular, the present invention relates to a transparent heat insulating and heat insulating member such as a solar radiation adjusting film for year-round energy saving, which is excellent in heat insulating property and suppresses corrosion deterioration due to dew condensation water or adhesion of human skin oil, and a manufacturing method thereof.
 地球温暖化防止及び省エネルギーの観点から、ビルディングの窓、ショーウインドウ、自動車の窓面等に遮熱フィルムを貼りつけて、太陽光の熱線(赤外線)をカットし、内部の温度を低減させることが広く行われている。また、近年では、更なる省エネルギーの観点から、夏場の温度上昇の原因となる熱線をカットする遮熱性のみならず、冬場の室内からの暖房熱の流出を抑えて暖房負荷を低減させる断熱機能をも付与した通年省エネルギー対応の遮熱断熱部材が開発され、市場投入されることで徐々に認知度が高まってきている。 From the perspective of preventing global warming and saving energy, a heat shield film can be attached to the windows of buildings, show windows, automobile windows, etc. to cut the heat rays (infrared rays) of sunlight and reduce the internal temperature. It is widely practiced. In addition, in recent years, from the viewpoint of further energy saving, not only the heat shield property that cuts the heat rays that cause the temperature rise in summer, but also the heat insulation function that suppresses the heating heat outflow from the room in winter and reduces the heating load. With the development of a heat-insulating and heat-insulating material that is suitable for energy saving throughout the year and has been put on the market, its recognition is gradually increasing.
 この様に市場に投入される日射調整フィルムの多様化に伴い、断熱性に優れたフィルムの製品化が活発になってきたことに鑑み、建築窓ガラス用フィルムの日本工業規格(JIS)A5759においても2016年に規格が改定され、断熱性の定義をより明確にするために、新たに「低放射フィルム」として用途・性能区分が加えられた。 With the diversification of solar control films introduced into the market in this way, in view of the active commercialization of films with excellent heat insulation properties, the Japanese Industrial Standard (JIS) A5759 of architectural window glass films has been adopted. In 2016, the standard was revised, and in order to make the definition of heat insulation more clear, a new application and performance category was added as "low radiation film".
 JIS A5759-2016において、低放射フィルムは可視光線透過率と断熱性能の指標である熱貫流率との組み合わせによって下記のA~Dの4種類に区分される。
 区分A:可視光線透過率60%未満、熱貫流率4.2W/(m2・K)以下
 区分B:可視光線透過率60%未満、熱貫流率4.2を超え4.8W/(m2・K)以下
 区分C:可視光線透過率60%以上、熱貫流率4.2W/(m2・K)以下
 区分D:可視光線透過率60%以上、熱貫流率4.2を超え4.8W/(m2・K)以下
In JIS A5759-2016, low-emission films are classified into the following four types A to D depending on the combination of visible light transmittance and heat transmission coefficient which is an index of heat insulation performance.
Category A: Visible light transmittance of less than 60%, thermal transmittance of 4.2 W/(m 2 ·K) or less Category B: Visible light transmittance of less than 60%, thermal transmittance of more than 4.2, 4.8 W/(m 2・K) or less Category C: visible light transmittance of 60% or more, heat transmission coefficient of 4.2 W/(m 2 ·K) or less Category D: visible light transmittance of 60% or more, heat transmission coefficient of more than 4.2 4 0.8 W/(m 2 ·K) or less
 上記4種類に区分される低放射フィルムの中でも、熱貫流率が4.2W/(m2・K)以下である区分A及び区分Cに該当する低放射フィルムが特に断熱性に優れたものとなり、今後これら区分に該当する低放射フィルムが徐々に市場に浸透してくるものと思われる。 Among the low-emission films classified into the above 4 types, the low-emission films corresponding to the categories A and C having a heat transmission coefficient of 4.2 W/(m 2 ·K) or less are particularly excellent in heat insulation. It is expected that low-emission films falling into these categories will gradually penetrate the market in the future.
 更に、最近では、断熱性をより向上させ、冬場の省エネルギー効果をより向上させるために、区分A及び区分Cの中でも、熱貫流率が4.0W/(m2・K)以下、より具体的には3.6~3.8W/(m2・K)クラスとなる製品も次世代低放射フィルムの開発ターゲットの一つとなっている。 Further, recently, in order to further improve the heat insulating property and the energy saving effect in winter, the heat transmission coefficient is 4.0 W/(m 2 ·K) or less, more specifically, in the category A and the category C. Products in the 3.6 to 3.8 W/(m 2 ·K) class are also targets for the development of next-generation low-emission films.
 低放射フィルムの構成としては、一般的に、透明基材の上に金属酸化物層、金属層、金属酸化物層、及び透明保護層(ハードコート層)をこの順に設けた赤外線反射フィルムの構成が挙げられる。金属酸化物層、金属層、金属酸化物層の積層部分は、比較的透明性の高い赤外線反射層であって、金属酸化物層は、赤外線を反射させる金属層との界面における干渉効果により可視光線反射率を調整して、赤外線反射層全体の可視光線透過率と赤外線反射率とのバランスを制御すると同時に、金属層の腐食劣化を抑制する役割も有する。しかしながら、赤外線反射層は、そのままでは耐擦傷性が不十分で、また、金属酸化物層のみによる保護では、酸素、水分、塩化物イオン等の外部環境要因が相乗的に強く作用する環境下では金属層が腐食劣化を生じ易いため、赤外線反射層の耐擦傷性向上や上記外部的要因の影響を抑制する目的で、その上に更に透明保護層が設けられる。 As the structure of the low-emission film, generally, a structure of an infrared reflection film in which a metal oxide layer, a metal layer, a metal oxide layer, and a transparent protective layer (hard coat layer) are provided in this order on a transparent substrate. Are listed. The laminated portion of the metal oxide layer, the metal layer, and the metal oxide layer is a relatively highly transparent infrared reflection layer, and the metal oxide layer is visible due to the interference effect at the interface with the metal layer that reflects infrared rays. The light reflectance is adjusted to control the balance between the visible light transmittance and the infrared reflectance of the entire infrared reflective layer, and at the same time, it has the role of suppressing the corrosion deterioration of the metal layer. However, the infrared reflective layer does not have sufficient scratch resistance as it is, and protection by only the metal oxide layer does not work under an environment where external environmental factors such as oxygen, water, and chloride ions act synergistically. Since the metal layer is apt to be corroded and deteriorated, a transparent protective layer is further provided thereon for the purpose of improving the scratch resistance of the infrared reflecting layer and suppressing the influence of the above external factors.
 しかしながら、低放射フィルムの熱貫流率を上記の様に4.2W/(m2・K)以下、更には、4.0W/(m2・K)以下とし断熱性をより向上させるためには、室内側に遠赤外線をより効率良く反射させる(垂直放射率をより小さくする)必要があり、上記透明保護層の厚さは出来るだけ薄くする必要がある。これは、保護層の耐擦傷性を向上させるためには、例えば放射線硬化型アクリル系ハードコート材料等の遠赤外線を吸収しやすい材料(分子骨格に、C=O基、C-O基、芳香族基を多く含む材料)を使用せざるを得ず、保護層の厚さが厚くなればなる程、遠赤外線の吸収も大きくなり、日射調整フィルム自身が遠赤外線を吸収してしまう結果、日射調整フィルムが室内側に遠赤外線を効率よく反射できなくなるからである。 However, the thermal transmittance of the low emissivity film as described above 4.2W / (m 2 · K) or less, and still more, in order to further improve the thermal insulation properties and 4.0W / (m 2 · K) or less It is necessary to reflect far infrared rays to the indoor side more efficiently (to reduce the vertical emissivity), and it is necessary to make the thickness of the transparent protective layer as thin as possible. This is because in order to improve the scratch resistance of the protective layer, for example, a material that easily absorbs far infrared rays such as a radiation-curable acrylic hard coat material (the molecular skeleton has a C═O group, a C—O group, an aromatic group). As the thickness of the protective layer becomes thicker, the absorption of far infrared rays increases, and the solar radiation adjustment film itself absorbs far infrared rays. This is because the adjustment film cannot efficiently reflect far infrared rays to the indoor side.
 上記透明保護層の厚さは、透明保護層の構成材料にもよるので一概には言えないが、具体例を挙げて説明すると、ベースとなる赤外線反射層として熱貫流率が3.7W/(m2・K)であるものを使用した場合に、例えば、低放射フィルムとしての熱貫流率を4.2/(m2・K)以下とするには、透明保護層の厚さは、凡そ1.0μm以下とする必要がある。同様に、低放射フィルムとしての熱貫流率を4.0W/(m2・K)以下とするには、透明保護層の厚さは、凡そ0.7μm以下とする必要があり、更に、低放射フィルムとしての熱貫流率を3.8W/(m2・K)以下とするには、透明保護層の厚さは、凡そ0.5μm以下とする必要がある。 The thickness of the transparent protective layer cannot be generally stated because it depends on the constituent material of the transparent protective layer, but a specific example will be explained. As a base infrared reflecting layer, the heat transmission coefficient is 3.7 W/( m 2 ·K), for example, in order to set the heat transmission coefficient of the low radiation film to 4.2/(m 2 ·K) or less, the thickness of the transparent protective layer is about It should be 1.0 μm or less. Similarly, in order to reduce the heat transmission coefficient of the low radiation film to 4.0 W/(m 2 ·K) or less, the thickness of the transparent protective layer needs to be about 0.7 μm or less. In order to set the heat transmission coefficient of the radiation film to 3.8 W/(m 2 ·K) or less, the thickness of the transparent protective layer needs to be about 0.5 μm or less.
 従来技術として、優れた断熱性及び実用耐久性を兼ね添えた赤外線反射フィルムを提供することを目的に、特許文献1には、透明フィルム基材の上に第一金属酸化物層、銀を主成分とする金属層、酸化亜鉛と酸化錫を含む複合金属酸化物層からなる第二金属酸化物層を備え、第二金属酸化物層に、厚みが30nm~150nmであり、酸性基と重合性官能基とを同一分子中に有するエステル化合物に由来する架橋構造を有する透明保護層が直接接していることを特徴とする赤外線反射フィルムが開示されている。 As a conventional technique, in order to provide an infrared reflective film having both excellent heat insulation and practical durability, Patent Document 1 discloses that a first metal oxide layer and silver are mainly formed on a transparent film substrate. A second metal oxide layer comprising a metal layer as a component and a composite metal oxide layer containing zinc oxide and tin oxide, wherein the second metal oxide layer has a thickness of 30 nm to 150 nm and is polymerizable with an acidic group. Disclosed is an infrared reflective film characterized in that a transparent protective layer having a crosslinked structure derived from an ester compound having a functional group in the same molecule is in direct contact therewith.
 また、遮熱性に優れるとともに、赤外線反射フィルムを付設した窓に居住者等の顔などが映るのを有効に防止することのできる赤外線反射フィルムを提供することを目的に、特許文献2には、透明フィルム基材の上に、第1金属酸化物層、赤外線反射層、第2金属酸化物層、及び透明保護層が、この順に積層された、赤外線反射フィルムであって、上記第2金属酸化物層の厚さが30nm以下であり、上記第1金属酸化物層の厚さが上記第2金属酸化物層の厚さよりも薄く、上記第1金属酸化物層の厚さと上記第2金属酸化物層の厚さとの差が2nm以上であることを特徴とする赤外線反射フィルムが開示されている。 Further, in addition to being excellent in heat shield property, Patent Document 2 discloses an infrared reflective film capable of effectively preventing the face of a resident or the like from being reflected in a window provided with an infrared reflective film. An infrared reflecting film comprising a transparent film substrate, a first metal oxide layer, an infrared reflecting layer, a second metal oxide layer, and a transparent protective layer, which are laminated in this order on the transparent film substrate. The thickness of the first metal oxide layer is 30 nm or less, the thickness of the first metal oxide layer is smaller than the thickness of the second metal oxide layer, and the thickness of the first metal oxide layer and the second metal oxide are Disclosed is an infrared reflective film characterized in that the difference from the thickness of the object layer is 2 nm or more.
 また、同様に、優れた断熱性及び外観性(虹彩現象および視認角度による反射色変化の抑制)を兼ね備えた透明遮熱断熱部材を提供することを目的に、特許文献3には、透明基材の上に少なくとも金属層及び金属が部分酸化された金属亜酸化物層を含む赤外線反射層、保護層をこの順に備え、上記保護層は、総厚さが200~980nmであり、上記赤外線反射層側から少なくとも高屈折率層及び低屈折率層をこの順に含むことを特徴とする透明遮熱断熱部材が開示されている。 Further, similarly, for the purpose of providing a transparent heat insulating and heat insulating member having excellent heat insulating properties and appearance (suppression of iris phenomenon and reflection color change depending on viewing angle), Patent Document 3 discloses a transparent substrate. An infrared reflective layer including at least a metal layer and a metal suboxide layer in which the metal is partially oxidized, and a protective layer in this order, and the protective layer has a total thickness of 200 to 980 nm. Disclosed is a transparent heat insulating and heat insulating member including at least a high refractive index layer and a low refractive index layer in this order from the side.
特開2014-167617号公報JP, 2014-167617, A 特開2017-68118号公報JP, 2017-68118, A 特開2017-053967号公報Japanese Patent Laid-Open No. 2017-053967
 例示した先行技術文献に記載されているように、上記透明保護層の厚さをより薄くすることにより低放射フィルムとしての熱貫流率をより低減することは可能になるが、一方で、上述したように、上記透明保護層の厚さをより薄くすることは、一般的に、赤外線反射層を酸素、水分、塩化物イオン等の外部環境要因から保護する機能が低下する方向、即ち、酸素、水分、塩化物イオン等の保護層深さ方向への拡散、浸透時間が短くなる方向となるため、金属層の腐食劣化がより生じ易くなるという問題がある。金属層の腐食劣化は、低放射フィルムの遮熱断熱機能の低下や、変色等の外観不良を引き起こす。また、上記透明保護層の厚さをより薄くすることは、耐擦傷性のような物理特性が低下する方向でもあるため、フィルム施工時や、長期間に渡るフィルム使用時にフィルム表面(透明保護層)に傷が入りやすく、傷の影響による外観不良や金属層の腐食劣化の問題も懸念される。 As described in the exemplified prior art documents, by making the thickness of the transparent protective layer thinner, it becomes possible to further reduce the heat transmission coefficient as a low radiation film, but on the other hand, As described above, making the thickness of the transparent protective layer thinner is generally a direction in which the function of protecting the infrared reflective layer from external environmental factors such as oxygen, moisture, and chloride ions is decreased, that is, oxygen, Since the diffusion and penetration time of moisture and chloride ions in the depth direction of the protective layer is shortened, there is a problem that corrosion deterioration of the metal layer is more likely to occur. Corrosion deterioration of the metal layer causes deterioration of the heat-insulating and heat-insulating function of the low-emission film and appearance defects such as discoloration. Further, making the thickness of the transparent protective layer thinner also tends to reduce physical properties such as scratch resistance, so that the film surface (transparent protective layer during film application or when the film is used for a long period of time). ) Is apt to be damaged, and there is a concern that the appearance may be deteriorated due to the damage and the metal layer may be corroded and deteriorated.
 上記金属層の腐食劣化問題に対し、特許文献1では、赤外線反射層の透明保護層側に設けられる金属酸化物層として、化学的安定性(酸、アルカリ、塩化物イオン等に対する耐久性)に優れる酸化亜鉛と酸化錫とを含む複合金属酸化物(ZTO)を用いることにより解決を図っている。 Regarding the problem of corrosion deterioration of the metal layer, in Patent Document 1, the metal oxide layer provided on the transparent protective layer side of the infrared reflective layer has chemical stability (durability against acids, alkalis, chloride ions, etc.). The problem is solved by using a composite metal oxide (ZTO) containing excellent zinc oxide and tin oxide.
 しかしながら、特許文献1で開示されている赤外線反射フィルムは、赤外線反射層の透明保護層側に設けられる金属酸化物層として、化学的安定性に優れるZTO層を用いているものの、透明保護層の厚みが30nm~150nmと極めて薄いため、耐擦傷耐性の点で改善の余地があると共に、赤外線反射フィルム表面に人の手や指が触れることにより人の皮脂に含まれる塩化物等が付着した状態で極めて結露しやすい過酷な環境下で長期間に渡り使用された場合には、上述した酸素、水分、塩化物イオン等の外部環境要因が相乗的に強く作用するため、金属層の腐食劣化が促進されて遮熱断熱機能の低下や外観不良が生じる可能性があるという点で、依然として懸念される。また、第一金属酸化物層及び第二金属酸化物層として用いているZTO層の厚さがいずれも約30nmと厚いため、可視光線透過率が比較的高く、可視光線反射率が比較的低く、日射吸収率が比較的高いもの(約25%~30%)と推定され、窓ガラスに赤外線反射フィルムを貼り付けた際に、窓ガラスの種類、窓ガラスの方位、窓ガラスの影の状況等によっては、窓ガラスの中央部付近の温度が高くなり、窓ガラスが熱割れを起こす可能性があるという点でも懸念される。 However, the infrared reflective film disclosed in Patent Document 1 uses a ZTO layer having excellent chemical stability as the metal oxide layer provided on the transparent protective layer side of the infrared reflective layer, Since the thickness is extremely thin, from 30 nm to 150 nm, there is room for improvement in terms of scratch resistance, and the chloride contained in human sebum adheres to the infrared reflective film surface when the human hand or finger touches it. When used for a long period of time in a harsh environment where condensation is extremely likely to occur, the above-mentioned external environmental factors such as oxygen, moisture, and chloride ions act synergistically and strongly, resulting in corrosion deterioration of the metal layer. There is still concern about the fact that the heat insulation and heat insulation function may be deteriorated and the appearance may be deteriorated. In addition, since the thicknesses of the ZTO layers used as the first metal oxide layer and the second metal oxide layer are both about 30 nm, the visible light transmittance is relatively high and the visible light reflectance is relatively low. It is estimated that the solar radiation absorption rate is relatively high (about 25% to 30%), and when the infrared reflective film is attached to the window glass, the type of window glass, the orientation of the window glass, and the condition of the shadow of the window glass. In some cases, the temperature near the center of the window glass becomes high, which may cause thermal cracking of the window glass.
 また、特許文献2においても同様に、赤外線反射層の透明保護層側に設けられる金属酸化物層として、化学的安定性(酸、アルカリ、塩化物イオン等に対する耐久性)に優れる酸化亜鉛と酸化錫とを含む複合金属酸化物(ZTO)を用いることにより金属層の腐食劣化問題の解決を図っている。 Further, also in Patent Document 2, as a metal oxide layer provided on the transparent protective layer side of the infrared reflective layer, zinc oxide and oxide excellent in chemical stability (durability against acids, alkalis, chloride ions, etc.) By using a mixed metal oxide (ZTO) containing tin, the problem of corrosion deterioration of the metal layer is solved.
 しかしながら、特許文献2で開示されている赤外線反射フィルムも、赤外線反射層の透明保護層側に設けられる金属酸化物層として、化学的安定性に優れるZTO層を用いているものの、透明保護層の厚みが50nm~70nm(実施例の範囲)と極めて薄いため、耐擦傷耐性の点で改善の余地があると共に、赤外線反射フィルム表面に人の手や指が触れることにより人の皮脂に含まれる塩化物等が付着した状態で極めて結露しやすい過酷な環境下で長期間に渡り使用された場合には、金属層の腐食劣化が促進されて遮熱断熱機能の低下や外観不良が生じる可能性があるという点で、依然として懸念される。また、第1金属酸化物層(ZTO層)の厚さは4~15nm、第2金属酸化物層(ZTO層)の厚さは10~25nmと依然として厚く、日射吸収率が22~35%と高く、窓ガラスに赤外線反射フィルムを貼り付けた際に、窓ガラスの種類、窓ガラスの方位、窓ガラスの影の状況等によっては、窓ガラスの中央部付近の温度が高くなり、窓ガラスが熱割れを起こす可能性があるという点でも懸念される。 However, the infrared reflective film disclosed in Patent Document 2 also uses the ZTO layer having excellent chemical stability as the metal oxide layer provided on the transparent protective layer side of the infrared reflective layer, but the transparent protective layer Since the thickness is extremely thin as 50 nm to 70 nm (in the range of Examples), there is room for improvement in terms of scratch resistance, and the chloride contained in human sebum by touching the infrared reflective film surface with human hands or fingers. If the product is used for a long period of time in a harsh environment where dew condensation is extremely likely to occur with substances attached, corrosion and deterioration of the metal layer may be accelerated, which may lead to deterioration of the heat insulation and heat insulation function and poor appearance. There is still concern about that. The thickness of the first metal oxide layer (ZTO layer) is 4 to 15 nm, the thickness of the second metal oxide layer (ZTO layer) is 10 to 25 nm, which is still large, and the solar radiation absorption rate is 22 to 35%. When the infrared reflection film is attached to the window glass, the temperature near the center of the window glass may become high depending on the type of the window glass, the orientation of the window glass, the shadow condition of the window glass, etc. There is also concern that it may cause thermal cracking.
 また、特許文献3は、金属が部分酸化された金属亜酸化物層を金属層の上に備えることにより、温度50℃、相対湿度90%の環境下に168時間放置する耐腐食性試験において金属層の腐食劣化問題ついて解決を図っている。特許文献3で開示されている透明遮熱断熱部材は、金属亜酸化物層として用いているTiOX層の厚さが2~6nmと薄く設定されていることから、可視光線反射率が比較的高く、日射吸収率は比較的低いものと推定され、窓ガラスに透明遮熱断熱部材を貼り付けた際の窓ガラスの熱割れリスクは軽減されているものと考えられる。また、TiOX層の厚さが薄いことから、スパッタリング成膜時のコスト及び製造効率等の点でも改善が図られている。 Further, in Patent Document 3, a metal suboxide layer in which the metal is partially oxidized is provided on the metal layer, so that the metal is subjected to a corrosion resistance test in which the metal suboxide layer is left in an environment of a temperature of 50° C. and a relative humidity of 90% for 168 hours. We are trying to solve the problem of layer corrosion deterioration. In the transparent heat insulating and heat insulating member disclosed in Patent Document 3, since the thickness of the TiO X layer used as the metal suboxide layer is set as thin as 2 to 6 nm, the visible light reflectance is relatively high. It is presumed that the solar radiation absorption rate is high and the solar radiation absorption rate is relatively low, and it is considered that the risk of thermal cracking of the window glass when the transparent heat insulating/insulating member is attached to the window glass is reduced. Further, since the thickness of the TiO x layer is thin, the cost and manufacturing efficiency at the time of sputtering film formation are improved.
 しかしながら、特許文献3で開示されている透明遮熱断熱部材は、金属亜酸化物層として用いているTiOX層の厚さが2~6nmと薄いこと、また、その上に形成される保護層の厚さも210~930nmと比較的薄いことから、温度50℃、相対湿度90%の環境下に168時間放置する耐腐食性試験においては問題ないものの、とりわけ、遮熱断熱部材表面に人の手や指が触れることにより人の皮脂に含まれる塩化物等が付着した状態で極めて結露しやすい過酷な環境下で長期間に渡り使用された場合には、金属層の腐食劣化が促進されて遮熱断熱機能の低下や外観不良が生じ易くなるという点で懸念される。 However, in the transparent thermal insulation member disclosed in Patent Document 3, the TiO X layer used as the metal suboxide layer has a thin thickness of 2 to 6 nm, and the protective layer formed thereon. Since its thickness is relatively thin at 210 to 930 nm, there is no problem in the corrosion resistance test of leaving it in an environment of temperature 50°C and relative humidity 90% for 168 hours. If the product is used for a long period of time in a harsh environment where chloride contained in human sebum adheres to it when touched or touched with a finger, and it is extremely liable to cause dew condensation, corrosion deterioration of the metal layer is promoted and shielding occurs. There is concern that the thermal insulation function may be deteriorated and the appearance may be deteriorated.
 このように、熱貫流率を4.2W/(m2・K)以下、更には4.0W/(m2・K)以下とし、断熱性をより向上させた低放射フィルムにおいては、酸素、水分、塩化物イオン等の外部環境要因が相乗的に影響するような極めて過酷な環境下で長期間に渡り使用された際の耐腐食劣化に優れ、且つ、実用的な耐擦傷耐性をも兼ね備えたものは現状では得られていない。また、フィルムを窓ガラスに貼り付けた際のガラスの熱割れリスクの低減、即ち、日射吸収率の低減においても、まだ改善の余地がある。 As described above, in the low radiation film having the thermal conductivity of 4.2 W/(m 2 ·K) or less, and further 4.0 W/(m 2 ·K) or less, the low radiation film with improved heat insulation has oxygen, Excellent corrosion resistance deterioration when used for a long period of time in an extremely harsh environment where external environmental factors such as moisture and chloride ions synergistically affect, and also has practical scratch resistance. What has been obtained is not currently available. Further, there is still room for improvement in reducing the risk of thermal cracking of the glass when the film is attached to the window glass, that is, reducing the solar radiation absorption rate.
 本発明は上記問題、即ち、透明遮熱断熱部材において、断熱性能を向上しつつ、過酷な環境下で長期間に渡り使用された際の腐食劣化を抑制するという相対立する要求を両立できないという問題を解決したもので、特に、断熱性に優れ、且つ、結露水や人の皮脂付着に起因する腐食劣化を抑制した、実用的な耐擦傷耐性を有する通年省エネルギー対応日射調整フィルム等の透明遮熱断熱部材を提供するものである。更に加えて、日射吸収率の低減及び外観性の改善も図った透明遮熱断熱部材を提供するものである。 The present invention is incompatible with the above-mentioned problem, that is, in the transparent heat insulating and heat insulating member, it is not possible to meet the mutually opposing requirements of improving the heat insulating performance and suppressing the corrosion deterioration when used for a long period of time in a harsh environment. It is a solution to the problem, and in particular, it has excellent heat insulation properties and suppresses corrosion and deterioration caused by condensation water and the adhesion of human skin oil. A thermal insulation member is provided. In addition, the present invention provides a transparent heat insulating/insulating member which has a reduced solar absorptance and an improved appearance.
 本願発明者らは、先ず、上記課題を解決するために、特に特許文献3に開示されている遮熱断熱部材について、過酷な使用環境を想定した、温度50℃、濃度5質量%の塩化ナトリウム水溶液に10日間浸漬させる耐塩水性試験を行い、浸漬前後で波長300~1500nmの範囲における透過スペクトルを測定したところ、浸漬後において、透過スペクトルが変化しており、近赤外線反射機能が劣化する傾向にあることが分かった。この場合、波長5.5~25.2μmの遠赤外線反射機能も劣化している。また、試験途中において遮熱断熱部材を取り出し、その表面を観察したところ、腐食劣化の初期状態においては、腐食劣化部分が主に点状になって存在していることが分かった。この遮熱断熱部材は、金属層の上に、薄いながらも金属亜酸化物層及び保護層が形成されている構成であるが、それにもかかわらず、過酷な環境で使用された際の金属層の耐腐食劣化性が予想以上に不十分であることに対して、上記状況を踏まえ、鋭意検討した結果、その原因は以下であると推定した。 In order to solve the above-mentioned problems, the inventors of the present application firstly assumed a harsh environment for use of the heat insulating and heat insulating member disclosed in Patent Document 3 at a temperature of 50° C. and a concentration of 5 mass% sodium chloride. A salt water resistance test was carried out by immersing in an aqueous solution for 10 days, and the transmission spectrum in the wavelength range of 300 to 1500 nm was measured before and after the immersion. The transmission spectrum changed after the immersion, and the near-infrared reflection function tended to deteriorate. I knew it was. In this case, the function of reflecting far infrared rays having a wavelength of 5.5 to 25.2 μm is also deteriorated. Further, when the heat insulating and heat insulating member was taken out during the test and the surface thereof was observed, it was found that in the initial state of corrosion deterioration, the corrosion deteriorated portion mainly existed in the form of dots. This heat insulating and heat insulating member has a structure in which a thin metal suboxide layer and a protective layer are formed on a metal layer, but nevertheless, the metal layer when used in a harsh environment In view of the above situation, it was presumed that the cause was as follows as to the corrosion deterioration resistance of No. 1 was more than expected.
 上記遮熱断熱部材では、透明基材上に赤外線反射層として第1の金属亜酸化物層、金属層、第2の金属亜酸化物層をこの順にスパッタリングにより形成する際に、金属亜酸化物層の厚さとして、温度50℃、相対湿度90%の環境下における耐腐食性の付与からの観点と、金属亜酸化物の光の吸収の影響による赤外線反射層の可視光線透過率の低下抑制の観点と、スパッタリングの加工速度、即ち、生産性向上の観点から、金属亜酸化物層の厚さを数nmと極めて薄くしている。その影響と推察されるが、赤外線反射層の表面のSEM/EDX分析をしてみると、透明基材の微小突起(基材中のスパイクフィラー、基材の易接着層中の易滑剤フィラーや異物等)上において、(1)金属層が第2の金属亜酸化物層により完全に被覆されていない極微小な部位や、(2)赤外線反射層自体が部分的に裂けて剥離しかけている極微小な部位(裂けた層の端面は金属層が剥き出しになっている)、が存在していることが分かった。また、明確な理由は定かではないが、意外にも、(3)第2の金属亜酸化物層を突き破ったように見える金属層由来の金属の極微小な凝集体や極微小な隆起物らしきものや、(4)スパッタリング時のアーク発生によると推定される金属の微小な凝集体や、(5)スパッタチャンバー内の汚染物の落下によると推定される金属の薄片状のものも存在していることに気が付いた。 In the heat insulating and heat insulating member, when the first metal suboxide layer, the metal layer, and the second metal suboxide layer are formed as the infrared reflective layer on the transparent substrate by sputtering in this order, the metal suboxide is used. From the viewpoint of imparting corrosion resistance in the environment of a temperature of 50° C. and a relative humidity of 90% as the thickness of the layer, and suppressing the reduction of the visible light transmittance of the infrared reflective layer due to the effect of light absorption of metal suboxide. From the viewpoint of the above, and from the viewpoint of the processing speed of sputtering, that is, the viewpoint of improving productivity, the thickness of the metal suboxide layer is made extremely thin to several nm. It is presumed that this is due to SEM/EDX analysis of the surface of the infrared reflective layer, and it was found that minute protrusions on the transparent substrate (spike filler in the substrate, slippery filler in the easily adhesive layer of the substrate, Foreign matter, etc.), (1) a very small part where the metal layer is not completely covered by the second metal suboxide layer, or (2) the infrared reflection layer itself is partially torn and peeled off. It was found that a very small portion (a metal layer was exposed at the end surface of the torn layer) was present. Moreover, although the clear reason is not clear, it is surprising that (3) it seems to be an extremely minute aggregate or an extremely minute bump of the metal derived from the metal layer that seems to have penetrated the second metal suboxide layer. There are also (4) fine metal agglomerates presumed to be generated by arc during sputtering, and (5) flaky metal flakes estimated to be caused by falling contaminants in the sputtering chamber. I noticed that
 いずれにしろ、赤外線反射層の表面において、上記(1)~(5)のような「金属層が第2の金属亜酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位(金属の極微小な凝集体、微小な隆起物らしきものや金属の薄片状のものも含む)」が存在していることが分かり、これらが、上述した過酷な環境で使用された際に、遮熱断熱部材の金属層の腐食劣化を引き起こす主原因であると考えた。即ち、上記赤外線反射層上には有機物と無機酸化物を含む保護層が形成されてはいるが、その保護層の厚さは、熱貫流率を小さくするために、210~930nmと薄く、酸素、水、塩化物イオンの拡散、浸透を完全に抑えることは困難であり、過酷な環境下において使用された場合に、酸素、水、塩化物イオンは保護層の微細な隙間を徐々に拡散、浸透し、上記の「金属層が第2の金属亜酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」に到達した際に、その極微小な部位を起点として金属の腐食劣化が始まり、場合によってはこの金属の腐食劣化の始まりが保護層の剥離の引き金にもなり、腐食劣化が金属層全体へ徐々に広がりながら進行してしまう現象が引き起こされるものと推定した。 In any case, “the metal layer is not completely covered by the second metal suboxide layer and the metal derived from the metal layer is exposed on the surface of the infrared reflective layer as described in (1) to (5) above. It is found that there are extremely minute parts (including minute metal aggregates, minute bump-like objects and metal flakes) that are present in the It was considered to be the main cause of corrosion and deterioration of the metal layer of the heat insulating and heat insulating member when used in the environment. That is, although a protective layer containing an organic substance and an inorganic oxide is formed on the infrared reflective layer, the thickness of the protective layer is as thin as 210 to 930 nm in order to reduce the heat transmission coefficient, and the protective layer contains oxygen and oxygen. It is difficult to completely suppress the diffusion and permeation of water and chloride ions, and when used in a harsh environment, oxygen, water and chloride ions gradually diffuse through the minute gaps in the protective layer, When it penetrates and reaches the above-mentioned “very minute area where the metal layer is not completely covered by the second metal suboxide layer and the metal derived from the metal layer is exposed,” Phenomenon in which corrosion deterioration of metal starts from a small part, and in some cases the start of corrosion deterioration of metal also triggers peeling of the protective layer, and corrosion deterioration gradually spreads over the entire metal layer. Presumed to be caused.
 本発明者らは、上記課題を解決するために鋭意検討した結果、透明基材と、上記透明基材の上に形成された少なくとも金属層及び金属亜酸化物層又は金属酸化物層をこの順に含む赤外線反射層に対して、上記赤外線反射層の上に複数層からなる塗布型の保護層を設け、上記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層を、硬化前樹脂成分として、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層により形成し、且つ、上記塗布型の保護層の内、最外表面側に位置する層を、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層により形成すれば、熱還流率を小さくするために保護層の総厚さを1μmを下回る厚さに設定した場合であっても、上記架橋剤により硬化された後の上記特定のアクリル系共重合体を含む層が、例えば、赤外線反射層表面に存在する上記(1)~(5)のような「金属層が第2の金属亜酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」に対して、酸素、水、塩化物イオン等の外部環境要因から保護する層、即ち、バリア層として機能することができ、酸素、水分、塩化物イオン等の保護層深さ方向への拡散、浸透が大幅に抑制され、その結果、金属層の腐食劣化の進行が著しく抑制されること及び上記複数層からなる塗布型の硬化後の保護層が実用的な耐擦傷性を有することを見出し、本発明をなすに至った。 As a result of intensive studies to solve the above problems, the present inventors have made a transparent base material and at least a metal layer and a metal suboxide layer or a metal oxide layer formed on the transparent base material in this order. For the infrared reflection layer including the above, a coating type protective layer composed of a plurality of layers is provided on the infrared reflection layer, and at least one layer other than the layer positioned on the outermost surface side of the coating type protective layer is provided. An alkyl (meth)acrylate having 4 to 10 carbon atoms in the alkyl group capable of forming a homopolymer having a glass transition temperature of 20° C. to 155° C. with a monomer having a hydroxyl group as a pre-curing resin component. A (meth)acrylic copolymer containing an ester monomer as a copolymer unit and a layer containing a polyisocyanate crosslinking agent that reacts with the hydroxyl group, If the layer located on the outermost surface side is formed of a layer containing an active energy ray-curable resin as a pre-curing resin component, the total thickness of the protective layer is less than 1 μm in order to reduce the heat reflux rate. Even when set to the above, the layer containing the specific acrylic copolymer after being cured by the cross-linking agent is, for example, the layer of the above (1) to (5) present on the surface of the infrared reflecting layer. Oxygen, water, and chloride ions for "a minute portion where the metal layer is not completely covered by the second metal suboxide layer and the metal derived from the metal layer is exposed" It is possible to function as a layer that protects against external environmental factors such as barrier layer, that is, diffusion and penetration of oxygen, moisture, chloride ions, etc. in the depth direction of the protective layer are significantly suppressed, and as a result, metal The present invention has been completed by finding that the progress of corrosion deterioration of the layer is remarkably suppressed and that the protective layer of the coating type comprising the above-mentioned plurality of layers after curing has practical scratch resistance.
 また、更に、上記塗布型の保護層の構成に加え、上記遮熱断熱部材において、上記赤外線反射層を、上記透明基材側から、第1の金属亜酸化物層又は金属酸化物層、金属層、第2の金属亜酸化物層又は金属酸化物層をこの順に含む構成とし、上記赤外線反射層の総厚さを7~25nm以下とし、上記第2の金属亜酸化物層又は金属酸化物層の厚さを上記赤外線反射層の総厚さの25%以下とすれば、金属層の耐腐食劣化に優れるとともに、透明遮熱断熱部材の日射吸収率も低減できることを見出し、本発明をなすに至った。 Further, in addition to the constitution of the coating type protective layer, in the heat insulating and heat insulating member, the infrared reflecting layer is provided from the transparent base material side to a first metal suboxide layer or a metal oxide layer, a metal. Layer, the second metal suboxide layer or the metal oxide layer in this order, and the total thickness of the infrared reflection layer is 7 to 25 nm or less, the second metal suboxide layer or the metal oxide. It has been found that when the layer thickness is 25% or less of the total thickness of the infrared reflective layer, the corrosion resistance of the metal layer is excellent and the solar radiation absorptivity of the transparent heat insulating/insulating member can be reduced, and the present invention is made. Came to.
 本発明の透明遮熱断熱部材は、透明基材と、前記透明基材の上に形成された機能層とを含む透明遮熱断熱部材であって、前記機能層は、前記透明基材側から赤外線反射層及び塗布型の保護層をこの順に含み、前記赤外線反射層は、前記透明基材側から、少なくとも金属層、及び、金属亜酸化物層又は金属酸化物層をこの順に含み、前記塗布型の保護層は、複数の層から成り、前記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層は、硬化前樹脂成分として、水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層から成り、前記(メタ)アクリル系共重合体は、水酸基を有する単量体と、ガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含み、前記塗布型の保護層の内、最外表面側に位置する層は、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層から成ることを特徴とする。 The transparent heat insulating heat insulating member of the present invention is a transparent heat insulating heat insulating member including a transparent substrate and a functional layer formed on the transparent substrate, wherein the functional layer is from the transparent substrate side. Including an infrared reflection layer and a coating type protective layer in this order, the infrared reflection layer, from the transparent substrate side, at least a metal layer, and includes a metal suboxide layer or a metal oxide layer in this order, the coating The protective layer of the mold is composed of a plurality of layers, and at least one of the layers other than the layer located on the outermost surface side of the protective layer of the coating type has a hydroxyl group as a pre-curing resin component (meth). The (meth)acrylic copolymer is composed of a layer containing an acrylic copolymer and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, and the (meth)acrylic copolymer contains a monomer having a hydroxyl group and a glass transition temperature of 20° C. or higher. A (meth)acrylic acid alkyl ester monomer having an alkyl group having a carbon number of 4 or more and 10 or less capable of forming a homopolymer at 155° C. or less is included as a copolymer unit, The layer located on the outer surface side is characterized by being a layer containing an active energy ray-curable resin as a pre-curing resin component.
 上記態様において、前記(メタ)アクリル系共重合体の水酸基価は、30mgKOH/g以上200mgKOH/g以下であることが好ましい。 In the above aspect, the hydroxyl value of the (meth)acrylic copolymer is preferably 30 mgKOH/g or more and 200 mgKOH/g or less.
 また、前記塗布型の保護層は、前記赤外線反射層側から、中屈折率層、高屈折率層及び低屈折率層をこの順に含み、前記中屈折率層は、硬化前樹脂成分として、前記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート架橋剤とを含むことが好ましい。 Further, the coating type protective layer, from the infrared reflection layer side, includes a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order, the middle refractive index layer, as a pre-curing resin component, It is preferable to include a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group.
 また、更に、前記塗布型の保護層は、前記赤外線反射層側から、光学調整層、中屈折率層、高屈折率層及び低屈折率層をこの順に含み、前記中屈折率層は、硬化前樹脂成分として、前記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含むことがより好ましい。 Further, the coating type protective layer further includes an optical adjustment layer, a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order from the infrared reflecting layer side, and the medium refractive index layer is a cured layer. More preferably, the (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group are included as the pre-resin component.
 また、更に、前記(メタ)アクリル酸アルキルエステル単量体は、メタクリル酸t-ブチル及びアクリル酸t-ブチルから成る群から選ばれる少なくとも1種であることがより好ましい。 Furthermore, it is more preferable that the (meth)acrylic acid alkyl ester monomer is at least one selected from the group consisting of t-butyl methacrylate and t-butyl acrylate.
 また、前記塗布型の保護層の総厚さは、200nm以上980nm以下であることが好ましい。 The total thickness of the coating type protective layer is preferably 200 nm or more and 980 nm or less.
 また、前記塗布型の保護層の内、少なくとも前記金属亜酸化物層又は金属酸化物層に直接に接する層は、金属に対する腐食防止剤を含むことが好ましい。 In addition, it is preferable that at least a layer of the coating type protective layer that is in direct contact with the metal suboxide layer or the metal oxide layer contains a corrosion inhibitor for metal.
 また、更に、前記金属に対する腐食防止剤は、窒素含有基を有する化合物及び硫黄含有基を有する化合物から選択される少なくとも1つの化合物を含むことがより好ましい。 Furthermore, it is more preferable that the corrosion inhibitor for the metal contains at least one compound selected from a compound having a nitrogen-containing group and a compound having a sulfur-containing group.
 また、前記赤外線反射層は、前記透明基材側から、第1の金属亜酸化物層又は金属酸化物層、金属層、第2の金属亜酸化物層又は金属酸化物層をこの順に含み、前記赤外線反射層の総厚さは、7nm以上25nm以下であり、前記第2の金属亜酸化物層又は金属酸化物層の厚さは、前記赤外線反射層の総厚さの25%以下であることが好ましい。 Further, the infrared reflective layer, from the transparent substrate side, includes a first metal suboxide layer or metal oxide layer, a metal layer, a second metal suboxide layer or metal oxide layer in this order, The total thickness of the infrared reflective layer is 7 nm or more and 25 nm or less, and the thickness of the second metal suboxide layer or the metal oxide layer is 25% or less of the total thickness of the infrared reflective layer. It is preferable.
 また、更に、前記赤外線反射層の前記金属層は、銀を含み、前記金属層の厚さは、5nm以上20nm以下であることがより好ましい。 Furthermore, it is more preferable that the metal layer of the infrared reflective layer contains silver, and the thickness of the metal layer is 5 nm or more and 20 nm or less.
 また、更に、前記赤外線反射層の前記第2の金属亜酸化物層又は金属酸化物層に含まれる金属亜酸化物又は金属酸化物は、チタン成分を含むことがより好ましい。 Furthermore, it is more preferable that the metal suboxide or the metal oxide contained in the second metal suboxide layer or the metal oxide layer of the infrared reflective layer contains a titanium component.
 また、前記透明遮熱断熱部材は、可視光線透過率が60%以上、遮蔽係数が0.69以下、熱貫流率が4.0W/(m2・K)以下であり、且つ、日射吸収率が20%以下であることが好ましい。 The transparent heat insulating and heat insulating member has a visible light transmittance of 60% or more, a shielding coefficient of 0.69 or less, a heat transmission coefficient of 4.0 W/(m 2 ·K) or less, and a solar absorptivity. Is preferably 20% or less.
 また、更に、前記透明遮熱断熱部材は、温度50℃、濃度5質量%の塩化ナトリウム水溶液に30日間浸漬させる耐塩水性試験を行った場合、前記耐塩水性試験前に測定した前記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトルの波長1100nmの光の透過率をTB%、前記耐塩水性試験後に測定した前記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトルの波長1100nmの光の透過率をTA%とすると、TA-TBの値が10ポイント未満であることがより好ましい。 Further, in the case where a salt water resistance test in which the transparent heat insulation heat insulating member is immersed in an aqueous sodium chloride solution having a temperature of 50° C. and a concentration of 5 mass% for 30 days is performed, the transparent heat insulation heat insulation member measured before the salt water resistance test. The transmittance of light having a wavelength of 1100 nm in the transmission spectrum in the wavelength range of 300 to 1500 nm of the member is T B %, and the wavelength of the transmission spectrum is 1100 nm in the wavelength range of 300 to 1500 nm of the transparent heat insulating and heat insulating member measured after the salt water resistance test. It is more preferable that the value of T A -T B is less than 10 points, where T A % is the light transmittance of.
 また、更に、JIS R3106-1998に準じて測定した反射スペクトルにおいて、前記反射スペクトルの波長500~570nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインa上の波長535nmに対応する点を点Aとし、前記反射スペクトルの波長620~780nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインb上の波長700nmに対応する点を点Bとし、前記点Aと前記点Bとを通る直線を波長500~780nmの範囲で延長して基準直線ABとし、波長500~570nmの範囲における前記反射スペクトルの反射率の値と前記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔAと定義した時に、前記最大変動差ΔAの値が反射率の%単位で7%以下であり、波長620~780nmの範囲における前記反射スペクトルの反射率の値と前記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔBと定義した時に、前記最大変動差ΔBの値が反射率の%単位で9%以下であることがより好ましい。 Further, in the reflection spectrum measured according to JIS R3106-1998, it corresponds to the wavelength 535 nm on the virtual line a indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 500 to 570 nm of the reflection spectrum. The point is point A, the point corresponding to the wavelength 700 nm on the virtual line b indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 620 to 780 nm of the reflection spectrum is point B, and the points A and A straight line passing through the point B is extended in the wavelength range of 500 to 780 nm to form a reference straight line AB, and the reflectance value of the reflection spectrum and the reflectance value of the reference straight line AB in the wavelength range of 500 to 570 nm are compared. In this case, when the absolute value of the difference between the reflectance values at the wavelength where the difference between the respective reflectance values is the maximum is defined as the maximum variation difference ΔA, the value of the maximum variation difference ΔA is the% unit of the reflectance. Is 7% or less, and when the reflectance value of the reflectance spectrum in the wavelength range of 620 to 780 nm and the reflectance value of the reference line AB are compared, the difference between the reflectance values becomes maximum. When the absolute value of the difference in the reflectance values at the wavelength is defined as the maximum variation difference ΔB, the value of the maximum variation difference ΔB is more preferably 9% or less in% of the reflectance.
 また、本発明の透明遮熱断熱部材の製造方法は、透明基材の上に赤外線反射層をドライコーティング法で形成する工程と、前記赤外線反射層の上に、複数層からなる保護層をウェットコーティング法で形成する工程とを含むことを特徴とする。 Further, the method for producing a transparent heat insulating and heat insulating member of the present invention comprises a step of forming an infrared reflective layer on a transparent substrate by a dry coating method, and a wet protective layer composed of a plurality of layers on the infrared reflective layer. And a step of forming by a coating method.
 本発明によれば、可視光線透過率が高く、特に断熱性に優れ、且つ、結露水や人の皮脂付着に起因する腐食劣化を大幅に抑制した、実用的な耐擦傷性を有する透明遮熱断熱部材を提供できる。また、更に、日射吸収率の低減も図った透明遮熱断熱部材を提供できる。即ち、本発明の透明遮熱断熱部材は、窓ガラスに貼り付けて、酸素、水分、塩化物イオン等の外部環境要因が相乗的に影響するような極めて過酷な環境下で長期間に渡り使用しても、遮熱断熱機能と良好な外観性を維持することができる。また、更に、窓ガラスに貼り付けた際のガラスの熱割れリスクも低減することができる。 According to the present invention, a transparent heat shield having a high visible light transmittance, excellent heat insulation properties, and substantially suppressed corrosion deterioration due to dew condensation water or human skin oil adhesion, and practical scratch resistance. A heat insulating member can be provided. Further, it is possible to provide a transparent heat-insulating and heat-insulating member having a reduced solar radiation absorption rate. That is, the transparent heat insulating and heat insulating member of the present invention is attached to a window glass and used for a long period of time in an extremely harsh environment in which external environmental factors such as oxygen, water and chloride ions synergistically affect. Even so, the heat shield and heat insulating function and the good appearance can be maintained. Moreover, the risk of thermal cracking of the glass when it is attached to the window glass can be reduced.
図1は、本発明の実施形態の透明遮熱断熱部材の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a transparent heat insulating/insulating member according to an embodiment of the present invention. 図2は、本発明の耐塩水性試験前後の透明遮熱断熱部材の透過スペクトルの一例を示す図である。FIG. 2 is a diagram showing an example of a transmission spectrum of the transparent heat insulating/insulating member before and after the salt water resistance test of the present invention. 図3は、本発明の透明遮熱断熱部材の可視光線反射スペクトルに対する反射率の「基準直線AB」、「最大変動差ΔA」及び「最大変動差ΔB」の求め方を説明した図である。FIG. 3 is a diagram for explaining how to obtain the “reference straight line AB”, the “maximum variation difference ΔA”, and the “maximum variation difference ΔB” of the reflectance of the transparent heat insulating and heat insulating member of the present invention with respect to the visible light reflection spectrum. 図4は、本発明の実施例1におけるガラス面側から入光測定した時の可視光領域の反射スペクトルである。FIG. 4 is a reflection spectrum in the visible light region when light is measured from the glass surface side in Example 1 of the present invention.
 (透明遮熱断熱部材)
 先ず、本発明の透明遮熱断熱部材の実施形態について説明する。本発明の透明遮熱断熱部材の一実施形態は、透明基材と、上記透明基材の上に形成された機能層とを含み、上記機能層は、上記透明基材側から赤外線反射層及び塗布型の保護層をこの順に含み、上記赤外線反射層は、上記透明基材側から、少なくとも金属層、及び、金属亜酸化物層又は金属酸化物層をこの順に含み、上記塗布型の保護層は、複数の層から成り、上記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層は、硬化前樹脂成分として、水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層から成り、上記(メタ)アクリル系共重合体は、水酸基を有する単量体と、ガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含み、上記塗布型の保護層の内、最外表面側に位置する層は、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層から成る。
(Transparent heat insulating and heat insulating member)
First, an embodiment of the transparent heat insulating/insulating member of the present invention will be described. One embodiment of the transparent heat insulating and heat insulating member of the present invention includes a transparent base material and a functional layer formed on the transparent base material, wherein the functional layer is an infrared reflective layer and an infrared reflective layer from the transparent base material side. Includes a coating type protective layer in this order, the infrared reflective layer, from the transparent substrate side, at least a metal layer, and, containing a metal suboxide layer or a metal oxide layer in this order, the coating type protective layer Is composed of a plurality of layers, and at least one of the layers other than the layer located on the outermost surface side of the above-mentioned coating type protective layer has a (meth)acrylic copolymer copolymer having a hydroxyl group as a pre-curing resin component. The (meth)acrylic copolymer is composed of a layer containing a polymer and a polyisocyanate cross-linking agent that reacts with the hydroxyl group, and the (meth)acrylic copolymer has a monomer having a hydroxyl group and a glass transition temperature of 20° C. or higher and 155° C. or lower. A (meth)acrylic acid alkyl ester monomer having a carbon number of an alkyl group capable of forming a homopolymer of 4 or more and 10 or less is included as a copolymer unit, and the outermost surface side of the coating type protective layer is provided. The layer located is a layer containing an active energy ray-curable resin as a resin component before curing.
 上記構成とすることにより、熱貫流率を低減させ、断熱性をより向上させるために、上記赤外線反射層の上記塗布型の複数の層からなる保護層を薄く形成しても、上記ポリイソシアネート系架橋剤により硬化された特定の(メタ)アクリル系共重合体を含む層が、前述した、赤外線反射層表面に存在する「金属層由来の金属が剥き出し状態になっている極微小な部位」に対して、酸素、水、塩化物イオン等の外部環境要因から保護する層、即ち、バリア層として機能することができ、酸素、水分、塩化物イオン等の保護層深さ方向への拡散、浸透が大幅に抑制され、その結果、金属層の腐食劣化の進行が著しく抑制されるものと考えられる。また、上記ポリイソシアネート系架橋剤により硬化された特定の(メタ)アクリル系共重合体を含む層は、当然のことながら、上記金属層を含む赤外線反射層に対してもバリア層として機能する。これにより、本実施形態の透明遮熱断熱部材は、可視光線透過率が大きく、熱貫流率を低くすることができると共に、結露水や人の皮脂付着に起因する腐食劣化を大幅に抑制することができる。更に、上記塗布型の保護層の最外表面側に位置する層は、活性エネルギー線照射により硬化されるため、実用的な耐擦傷性を付与することができる。 With the above-mentioned configuration, in order to reduce the heat transmission coefficient and further improve the heat insulating property, even if the protective layer composed of the plurality of coating type layers of the infrared reflective layer is thinly formed, the polyisocyanate-based material is also used. The layer containing the specific (meth)acrylic copolymer cured by the cross-linking agent becomes the above-mentioned "extremely minute portion where the metal derived from the metal layer is in a bare state" present on the infrared reflective layer surface. On the other hand, it can function as a layer that protects against external environmental factors such as oxygen, water, and chloride ions, that is, as a barrier layer, and diffuses and permeates oxygen, water, chloride ions, and other protective layers in the depth direction. Is significantly suppressed, and as a result, the progress of corrosion deterioration of the metal layer is significantly suppressed. In addition, the layer containing the specific (meth)acrylic copolymer cured by the polyisocyanate crosslinking agent naturally functions as a barrier layer for the infrared reflective layer including the metal layer. As a result, the transparent heat-insulating heat insulating member of the present embodiment has a large visible light transmittance and can reduce the heat transmission coefficient, and significantly suppresses the corrosion deterioration due to dew condensation water or the adhesion of human skin oil. You can Furthermore, since the layer located on the outermost surface side of the coating type protective layer is cured by irradiation with active energy rays, practical scratch resistance can be imparted.
 また、更に、本発明の透明遮熱断熱部材の一実施形態は、透明基材と、上記透明基材の上に形成された機能層とを含み、上記機能層は、上記透明基材側から赤外線反射層及び塗布型の保護層をこの順に含み、上記赤外線反射層は、上記透明基材側から、第1の金属亜酸化物層又は金属酸化物層、金属層、第2の金属亜酸化物層又は金属酸化物層をこの順に含み、上記赤外線反射層の総厚さは、7nm以上25nm以下であり、上記第2の金属亜酸化物層又は金属酸化物層の厚さは、上記赤外線反射層の総厚さの25%以下であり、上記塗布型の保護層は、複数の層から成り、上記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層は、硬化前樹脂成分として、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層から成り、且つ、上記塗布型の保護層の内、最外表面側に位置する層は、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層から成る。 Furthermore, one embodiment of the transparent heat insulating and heat insulating member of the present invention includes a transparent base material and a functional layer formed on the transparent base material, and the functional layer is provided from the transparent base material side. An infrared reflection layer and a coating type protective layer are included in this order, and the infrared reflection layer is formed from the transparent substrate side from the first metal suboxide layer or the metal oxide layer, the metal layer, the second metal suboxide. Object layer or a metal oxide layer in this order, the total thickness of the infrared reflective layer is 7 nm or more and 25 nm or less, the thickness of the second metal suboxide layer or the metal oxide layer is the infrared It is 25% or less of the total thickness of the reflective layer, and the coating type protective layer is composed of a plurality of layers, and at least one layer of the coating type protective layers other than the layer located on the outermost surface side. The layer is an alkyl (meth)acrylate having 4 to 10 carbon atoms in the alkyl group capable of forming a homopolymer having a glass transition temperature of 20° C. to 155° C. with a monomer having a hydroxyl group as a resin component before curing. A (meth)acrylic copolymer containing an ester monomer as a copolymer unit, and a layer containing a polyisocyanate crosslinking agent that reacts with the hydroxyl group, and among the coating-type protective layers, The layer located on the outermost surface side is a layer containing an active energy ray-curable resin as a resin component before curing.
 上記構成とすることにより、日射吸収率を低減するために、上記第2の金属亜酸化物層又は金属酸化物層を薄く形成し、且つ、熱貫流率を低下させ、断熱性をより向上させるために、上記赤外線反射層の上記塗布型の複数の層からなる保護層を薄く形成しても、上記ポリイソシアネート系架橋剤により硬化された特定の(メタ)アクリル系共重合体を含む層が、前述した、赤外線反射層表面に存在する(1)~(5)のような「金属層が第2の金属亜酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」や赤外線反射層に対して、酸素、水、塩化物イオン等の外部環境要因から保護する層、即ち、バリア層として機能することができ、酸素、水分、塩化物イオン等の保護層深さ方向への拡散、浸透が大幅に抑制され、その結果、金属層の腐食劣化の進行が著しく抑制されるものと考えられる。これにより、本実施形態の透明遮熱断熱部材は、可視光線透過率が大きく、熱貫流率および日射吸収率を低減することができると共に、結露水や人の皮脂付着に起因する腐食劣化を大幅に抑制することができる。 By setting it as the said structure, in order to reduce a solar radiation absorptivity, the said 2nd metal suboxide layer or a metal oxide layer is formed thinly, and a heat transmission coefficient is reduced and heat insulation is improved more. Therefore, even if a thin protective layer consisting of the coating-type plurality of layers of the infrared reflecting layer is formed, a layer containing a specific (meth)acrylic copolymer cured by the polyisocyanate crosslinking agent is formed. As described above, “the metal layer present on the surface of the infrared reflective layer (1) to (5) is not completely covered by the second metal suboxide layer and the metal derived from the metal layer is exposed. It can function as a barrier layer, that is, a layer that protects the "microscopic part" and the infrared reflection layer from external environmental factors such as oxygen, water, and chloride ions. It is considered that diffusion and penetration of ions and the like in the depth direction of the protective layer are significantly suppressed, and as a result, the progress of corrosion deterioration of the metal layer is significantly suppressed. As a result, the transparent heat insulating and heat insulating member of the present embodiment has a large visible light transmittance, can reduce the heat transmission coefficient and the solar radiation absorptivity, and significantly corrodes and deteriorates due to dew condensation water or human skin oil adhesion. Can be suppressed.
 以下、本実施形態の透明遮熱断熱部材の各構成部材について説明する。 Each component of the transparent heat insulating/insulating member of the present embodiment will be described below.
 <透明基材>
 本実施形態の透明遮熱断熱部材を構成する透明基材としては、透光性を有する材料で形成されていれば特に限定されない。上記透明基材としては、例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、ポリアクリル酸エステル系樹脂(例えば、ポリメチルメタクリレート等)、脂環式ポリオレフィン系樹脂、ポリスチレン系樹脂(例えば、ポリスチレン、アクリロニトリル・スチレン共重合体等)、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリエーテルスルホン系樹脂、セルロース系樹脂(例えば、ジアセチルセルロース、トリアセチルセルロース等)、ノルボルネン系樹脂等の樹脂を、フィルム状又はシート状に加工したものを用いることができる。上記樹脂をフィルム状又はシート状に加工する方法としては、押し出し成形法、カレンダー成形法、圧縮成形法、射出成形法、上記樹脂を溶剤に溶解させてキャスティングする方法等が挙げられる。上記樹脂には、酸化防止剤、難燃剤、熱安定剤、紫外線吸収剤、易滑剤、帯電防止剤等の添加剤を添加してもよい。上記透明基材の厚さは、例えば、10μm以上500μm以下であり、加工性、コスト面を考慮すると25μm以上125μm以下が好ましい。
<Transparent substrate>
The transparent base material forming the transparent heat insulating and heat insulating member of the present embodiment is not particularly limited as long as it is made of a material having a light transmitting property. Examples of the transparent substrate include polyester-based resins (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate-based resins, polyacrylic acid ester-based resins (eg, polymethylmethacrylate, etc.), alicyclic polyolefin-based resins, Polystyrene resin (for example, polystyrene, acrylonitrile-styrene copolymer, etc.), polyvinyl chloride resin, polyvinyl acetate resin, polyether sulfone resin, cellulose resin (for example, diacetyl cellulose, triacetyl cellulose, etc.), A resin such as a norbornene-based resin processed into a film shape or a sheet shape can be used. Examples of the method for processing the above resin into a film or sheet include an extrusion molding method, a calendar molding method, a compression molding method, an injection molding method, a method of dissolving the above resin in a solvent and casting. You may add additives, such as an antioxidant, a flame retardant, a heat stabilizer, an ultraviolet absorber, a slip agent, and an antistatic agent, to the said resin. The transparent substrate has a thickness of, for example, 10 μm or more and 500 μm or less, and preferably 25 μm or more and 125 μm or less in view of workability and cost.
 <赤外線反射層>
 本実施形態の透明遮熱断熱部材を構成する赤外線反射層は、上記透明基材側から、少なくとも金属層及び金属亜酸化物層又は金属酸化物層をこの順に含む構成であれば特に限定されるものではないが、上記透明基材側から、第1の金属亜酸化物層又は金属酸化物層、金属層、第2の金属亜酸化物層又は金属酸化物層をこの順に備え、上記赤外線反射層の総厚さが7nm以上25nm以下であり、上記第2の金属亜酸化物層又は金属酸化物層の厚さは、上記赤外線反射層の総厚さの25%以下に設定されていることが好ましい。上記赤外線反射層の総厚さの下限値は、上記赤外線反射層の機能(遮熱性能及び断熱性能)を発揮させるために、7nm以上が好ましい。上記赤外線反射層の総厚さが7nmを下回ると、赤外線の反射率が低下し、遮蔽係数及び熱貫流率が高くなり、遮熱性能及び断熱性能が劣るおそれがある。
<Infrared reflective layer>
The infrared reflective layer that constitutes the transparent heat insulating and heat insulating member of the present embodiment is particularly limited as long as it has a configuration including at least a metal layer and a metal suboxide layer or a metal oxide layer in this order from the transparent substrate side. Although not a thing, it is provided with a first metal suboxide layer or metal oxide layer, a metal layer, a second metal suboxide layer or metal oxide layer in this order from the transparent substrate side, and the infrared reflection The total thickness of the layers is 7 nm or more and 25 nm or less, and the thickness of the second metal suboxide layer or the metal oxide layer is set to 25% or less of the total thickness of the infrared reflective layer. Is preferred. The lower limit of the total thickness of the infrared reflective layer is preferably 7 nm or more in order to exhibit the functions (heat shielding performance and heat insulating performance) of the infrared reflective layer. When the total thickness of the infrared reflective layer is less than 7 nm, the reflectance of infrared rays decreases, the shielding coefficient and the heat transmission coefficient increase, and the heat shielding performance and the heat insulating performance may deteriorate.
 上記透明遮熱断熱部材は、上記赤外線反射層を備えることにより、遮熱機能及び断熱機能を有することができる。また、上記透明遮熱断熱部材では、上記赤外線反射層の総厚さを25nm以下に設定した場合、可視光線透過率を60%以上に設計することが容易となる。上記赤外線反射層の総厚さが25nmを超えると、可視光線透過率が低くなり、透明性が劣るおそれがある。 The transparent heat insulating/insulating member can have a heat insulating function and a heat insulating function by including the infrared reflective layer. Further, in the transparent heat insulating/insulating member, when the total thickness of the infrared reflective layer is set to 25 nm or less, it becomes easy to design the visible light transmittance to be 60% or more. When the total thickness of the infrared reflective layer is more than 25 nm, the visible light transmittance becomes low and the transparency may be deteriorated.
 また、上記第2の金属亜酸化物層又は金属酸化物層の厚さを、上記赤外線反射層の総厚さの25%以下に設定した場合、赤外線反射機能に大きく寄与する上記金属層の厚さを上記赤外線反射層の総厚さの範囲内で相対的に厚くすることができる。その結果、赤外線の反射率を高くすることができ、遮蔽係数及び熱貫流率を低くすることができる。 Further, when the thickness of the second metal suboxide layer or the metal oxide layer is set to 25% or less of the total thickness of the infrared reflection layer, the thickness of the metal layer that greatly contributes to the infrared reflection function. The thickness can be relatively increased within the range of the total thickness of the infrared reflective layer. As a result, the reflectance of infrared rays can be increased, and the shielding coefficient and the heat transmission coefficient can be reduced.
 更に、上記金属層を厚くすることにより、上記第1の金属亜酸化物層又は金属酸化物層、及び上記第2の金属亜酸化物層又は金属酸化物層の厚さを上記赤外線反射層の総厚さの25%以下の範囲内で相対的に薄くすることができる。この場合、透明基材に形成した赤外線反射層の日射特性(日射透過率、日射反射率、日射吸収率)は、使用する金属、金属亜酸化物、金属酸化物の種類によっても異なるので一概には言えないが、金属層の厚さが同じで、第1の金属亜酸化物層又は金属酸化物層及び上記第2の金属亜酸化物層又は金属酸化物層の厚さが本実施形態の範囲よりも厚い赤外線反射層と比較して、以下の特徴がある。 Further, by increasing the thickness of the metal layer, the thickness of the first metal suboxide layer or metal oxide layer, and the second metal suboxide layer or metal oxide layer of the infrared reflection layer It can be made relatively thin within the range of 25% or less of the total thickness. In this case, the solar radiation characteristics (solar radiation transmittance, solar radiation reflectance, solar radiation absorption rate) of the infrared reflective layer formed on the transparent substrate are different depending on the type of metal, metal suboxide, or metal oxide used. Although it cannot be said, the thickness of the metal layer is the same, and the thickness of the first metal suboxide layer or metal oxide layer and the thickness of the second metal suboxide layer or metal oxide layer are the same as those of the present embodiment. Compared with the infrared reflection layer thicker than the range, it has the following features.
 即ち、本実施形態の赤外線反射層は、金属層の厚さが同じで、第1の金属亜酸化物層又は金属酸化物層及び上記第2の金属亜酸化物層又は金属酸化物層の厚さが本実施形態の範囲よりも厚い赤外線反射層と比較して、(A)日射透過率は、波長が380~780nmの範囲においては低く、波長が790~2500nmの範囲においては高くなる傾向があり、(B)日射反射率は、波長が380~780nmの範囲においては高く、波長が790~2500nmの範囲においては低くなる傾向があり、更に、(C)日射透過率と日射反射率とを足し合わせた値は、高くなる傾向がある。言い換えると、100%から日射透過率と日射反射率を差し引いた値である日射吸収率は、低くなる傾向がある。このような日射特性を有する赤外線反射層の上に、更に後述する保護層を設けることにより、日射透過率と日射反射率のバランスが高いレベルで制御され、相対的に日射吸収率が低い遮熱断熱部材とすることができる。その結果、窓ガラスに赤外線反射フィルムを貼り付けた際に、従来の断熱性を有する赤外線反射フィルムと比較して、窓ガラスの中央部付近の温度上昇を抑制でき、窓ガラスが熱割れを起こすリスクを軽減することができる。 That is, in the infrared reflective layer of the present embodiment, the metal layers have the same thickness, and the first metal suboxide layer or the metal oxide layer and the second metal suboxide layer or the metal oxide layer have the same thickness. However, the solar radiation transmittance (A) tends to be lower in the wavelength range of 380 to 780 nm and higher in the wavelength range of 790 to 2500 nm as compared with the infrared reflective layer having a thickness larger than that of the present embodiment. Yes, (B) solar reflectance tends to be high in the wavelength range of 380 to 780 nm and low in the wavelength range of 790 to 2500 nm. Further, (C) solar reflectance and solar reflectance The added value tends to be higher. In other words, the solar radiation absorption rate, which is a value obtained by subtracting the solar radiation transmittance and the solar radiation reflectance from 100%, tends to be low. By providing a protective layer, which will be described later, on the infrared reflective layer having such a solar radiation property, the balance between the solar radiation transmittance and the solar radiation reflectance is controlled at a high level, and the thermal insulation has a relatively low solar radiation absorption rate. It can be a heat insulating member. As a result, when the infrared reflection film is attached to the window glass, the temperature rise near the central portion of the window glass can be suppressed and the window glass causes thermal cracking, as compared with the conventional infrared reflection film having heat insulation properties. The risk can be reduced.
 一方、上記第2の金属亜酸化物層又は金属酸化物層の厚さを上記赤外線反射層の総厚さの25%以下に薄く設定した場合、断熱性能は向上し、日射吸収率は低減するが、上記第2の金属亜酸化物層又は金属酸化物層が上記金属層を完全に被覆することが困難になってくるため、前述した(1)~(5)のような「金属層が第2の金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」が発生する場合があり、一般的には、上記第2の金属亜酸化物層又は金属酸化物層の上記金属層に対する本来の保護機能が低下し、過酷な使用環境下において、赤外線反射機能に大きく寄与する上記金属層の腐食劣化が生じやすくなる。しかしながら、本実施形態の透明遮熱断熱部材では、前述したように、上記塗布型の複数の層からなる保護層の内、最外表面側に位置する層以外の層の少なくとも1層は、ポリイソシアネート系架橋剤により硬化された特定の(メタ)アクリル系共重合体を含む層からなるため、上記特定の(メタ)アクリル系共重合体を含む層が、赤外線反射層表面に存在する「金属層が第2の金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」に対して、酸素、水、塩化物イオン等の外部環境要因から保護する層、即ち、バリア層として機能することができ、上記金属層の腐食劣化の進行を著しく抑制することができる。 On the other hand, when the thickness of the second metal suboxide layer or the metal oxide layer is set to be 25% or less of the total thickness of the infrared reflective layer, the heat insulation performance is improved and the solar radiation absorption rate is reduced. However, since it becomes difficult for the second metal suboxide layer or the metal oxide layer to completely cover the metal layer, it is difficult to completely cover the metal layer. There is a case where "a minute portion in which the metal derived from the metal layer is not completely covered by the second metal suboxide layer or the metal oxide layer and is in a bare state" is generated, and generally, The original protective function of the second metal suboxide layer or the metal oxide layer against the metal layer is deteriorated, and in a harsh environment of use, corrosion deterioration of the metal layer, which greatly contributes to the infrared reflection function, easily occurs. Become. However, in the transparent heat-insulating and heat-insulating member of the present embodiment, as described above, at least one of the layers other than the layer located on the outermost surface side of the protective layer composed of the plurality of coating-type layers is a Since the layer containing the specific (meth)acrylic copolymer hardened by the isocyanate crosslinking agent is included, the layer containing the specific (meth)acrylic copolymer is present on the surface of the infrared reflective layer. Oxygen, water, chloride for "a minute portion where the layer is not completely covered by the second metal suboxide layer or the metal oxide layer and the metal derived from the metal layer is exposed" It can function as a layer that protects from external environmental factors such as ions, that is, as a barrier layer, and can significantly suppress the progress of corrosion deterioration of the metal layer.
 上記赤外線反射層のより具体的な好ましい態様としては、例えば、(A)透明基材/第1金属亜酸化物層/金属層/第2金属亜酸化物層、(B)透明基材/第1金属酸化物層/金属層/第2金属亜酸化物層、(C)透明基材/第1金属亜酸化物層/金属層/第2金属酸化物層、(D)透明基材/第1金属酸化物層/金属層/第2金属酸化物層、(E)透明基材/金属層/金属亜酸化物層、等の構成が挙げられる。主たる目的に応じて、いずれかの構成を選択すれば良く、例えば、上記赤外線反射層の金属層の耐腐食劣化性向上、日射吸収率低減の効果をより高めるという観点からは、これらの中でも、少なくとも上記金属亜酸化物層を含む(A)~(C)の構成とするのが好ましく、上記金属層の上に上記第2金属亜酸化物層が積層された(A)、(B)の構成がより好ましい。また、可視光線透過率を少しでも高くしたい場合は、これらの中でも、少なくとも上記金属酸化物層を含む(B)~(D)の構成とするのが好ましい。 As a more specific preferred embodiment of the infrared reflective layer, for example, (A) transparent substrate/first metal suboxide layer/metal layer/second metal suboxide layer, (B) transparent substrate/first 1 metal oxide layer/metal layer/second metal suboxide layer, (C) transparent substrate/first metal suboxide layer/metal layer/second metal oxide layer, (D) transparent substrate/second Examples of the constitution include 1 metal oxide layer/metal layer/second metal oxide layer, (E) transparent substrate/metal layer/metal suboxide layer, and the like. Depending on the main purpose, it suffices to select one of the configurations, for example, from the viewpoint of further improving the corrosion resistance deterioration resistance of the metal layer of the infrared reflective layer and the effect of reducing the solar radiation absorptivity, among these, It is preferable to have a configuration of (A) to (C) including at least the metal suboxide layer, and (A) and (B) in which the second metal suboxide layer is laminated on the metal layer. The configuration is more preferable. Further, when it is desired to increase the visible light transmittance as much as possible, among these, it is preferable to have the configuration of (B) to (D) including at least the above metal oxide layer.
 また、上記赤外線反射層と上記透明基材の間には、ハードコート層や密着性向上層(易接着層)等を設けてもよい。上記ハードコート層を設ける場合は、通常のハードコート材料を使用することができるが、その中でも、低収縮性及び耐屈曲性を有するアクリル系のオリゴマーやポリマー等からなる紫外線硬化型ハードコート材料を使用するのが好ましい。このようなハードコート材料を使用することにより、例えば、遮熱断熱フィルムを窓ガラスに貼り付ける施工作業時に、誤って遮熱断熱フィルムに折れや曲げ、へこみを発生させても、ハードコート層に微小クラックが発生しにくくなるため、ハードコート層の上に形成された上記赤外線反射層の微小クラックも発生しにくくなり、上記赤外線反射層の機能や上記金属層の耐腐食劣化性が損なわれるリスクを軽減できる。上記ハードコート層の厚さは、0.3μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下がより好ましい。 A hard coat layer or an adhesion improving layer (easy adhesion layer) may be provided between the infrared reflecting layer and the transparent substrate. When the hard coat layer is provided, an ordinary hard coat material can be used, and among them, an ultraviolet curable hard coat material composed of an acrylic oligomer or polymer having low shrinkage and bending resistance is used. Preference is given to using. By using such a hard coat material, for example, during the construction work of attaching the heat insulating and heat insulating film to the window glass, even if the heat insulating and heat insulating film is accidentally bent or bent, and a dent is generated, the hard coat layer is formed. Since microcracks are less likely to occur, microcracks in the infrared reflective layer formed on the hard coat layer are also less likely to occur, and the risk of impairing the function of the infrared reflective layer or the corrosion resistance deterioration of the metal layer. Can be reduced. The thickness of the hard coat layer is preferably 0.3 μm or more and 2.0 μm or less, more preferably 0.5 μm or more and 1.0 μm or less.
 上記金属層は、金属を主成分とするものであり、一般的な金属のうち、電気伝導度が高く、遠赤外線反射性能に優れる、銀(屈折率n=0.12)、銅(n=0.95)、金(n=0.35)、アルミニウム(n=0.96)等の金属材料が適宜使用可能であり、中でも可視光の吸収が比較的小さく、電気伝導度が最も高い銀を使用するのが好ましい。具体的には銀を90質量%以上含有するものが好ましい。また、耐腐食性向上を目的に、パラジウム、金、銅、アルミニウム、ビスマス、ニッケル、ニオブ、マグネシウム、亜鉛等を少なくとも1種又は2種以上含む合金として使用してもよい。これらの材料をスパッタリング法、蒸着法、プラズマCVD法等のドライコーティング法により膜化することにより上記金属層を形成できる。上記金属層の一層当たりの厚さは、可視光線透過率と赤外線反射率のバランスの観点から、5nm以上20nm以下とするのが好ましく、8nm以上16nm以下とするのがより好ましい。上記金属層の厚さが5nmを下回ると、赤外線の反射率が低下し、遮蔽係数及び熱貫流率が高くなるため、遮熱性能及び断熱性能が劣るおそれがある。一方、上記金属層の厚さが20nmを超えると、可視光線透過率が低下するため、透明性が劣るおそれがある。 The metal layer contains a metal as a main component, and among general metals, silver (refractive index n=0.12), copper (n=n) having high electric conductivity and excellent far-infrared reflection performance. 0.95), gold (n=0.35), aluminum (n=0.96), and other metal materials can be used as appropriate, among which silver that absorbs visible light is relatively small and has the highest electrical conductivity. Is preferably used. Specifically, those containing 90% by mass or more of silver are preferable. Further, for the purpose of improving corrosion resistance, it may be used as an alloy containing at least one kind or two kinds or more of palladium, gold, copper, aluminum, bismuth, nickel, niobium, magnesium, zinc and the like. The metal layer can be formed by forming a film of any of these materials by a dry coating method such as a sputtering method, a vapor deposition method or a plasma CVD method. The thickness of each metal layer is preferably 5 nm or more and 20 nm or less, more preferably 8 nm or more and 16 nm or less, from the viewpoint of the balance between visible light transmittance and infrared reflectance. If the thickness of the metal layer is less than 5 nm, the reflectance of infrared rays is reduced, the shielding coefficient and the heat transmission coefficient are increased, and thus the heat shielding performance and the heat insulating performance may be deteriorated. On the other hand, when the thickness of the metal layer exceeds 20 nm, the visible light transmittance is reduced, and thus the transparency may be deteriorated.
 上記第1の金属亜酸化物層又は金属酸化物層及び上記第2の金属亜酸化物層又は金属酸化物層は、上記金属層の光学補償層及び保護層として、上記金属層の上下に設けられる。上記第1の金属亜酸化物層又は金属酸化物層及び上記第2の金属亜酸化物層又は金属酸化物層において、「金属亜酸化物」とは、金属の化学量論組成に従った酸化物よりも酸素元素の含有量が少ない部分酸化物(不完全酸化物)を意味し、「金属酸化物」とは、金属の化学量論組成に従った酸化物を意味する。また、上記金属亜酸化物層は、必ずしも金属の化学量論組成に従った酸化物よりも酸素元素の含有量が少ない部分酸化物のみの層からなる必要はなく、例えば、酸化により形成された化学量論組成に従った酸化層と、酸化されずに残った未酸化層とからなるものであっても良い。具体的には、上記金属層に直接に接する面側は未酸化層(金属層のまま)で、上記金属層に直接に接する面と反対面側が酸化されたものであっても良い。 The first metal suboxide layer or metal oxide layer and the second metal suboxide layer or metal oxide layer are provided above and below the metal layer as an optical compensation layer and a protective layer of the metal layer. To be In the first metal suboxide layer or metal oxide layer and the second metal suboxide layer or metal oxide layer, “metal suboxide” means oxidation according to the stoichiometric composition of the metal. It means a partial oxide (incomplete oxide) having a smaller oxygen element content than that of a substance, and the "metal oxide" means an oxide having a stoichiometric composition of a metal. Further, the metal suboxide layer does not necessarily have to be a layer of only partial oxides having a smaller oxygen element content than oxides according to the stoichiometric composition of the metal, and is formed by, for example, oxidation. It may be composed of an oxide layer according to the stoichiometric composition and an unoxidized layer left unoxidized. Specifically, the surface side directly in contact with the metal layer may be an unoxidized layer (as it is in the metal layer), and the surface opposite to the surface in direct contact with the metal layer may be oxidized.
 上記金属亜酸化物層は、上記金属層の上下あるいは上、下のいずれかに、後述する所定厚さで備えることにより、上記赤外線反射層の上記金属層の耐腐食劣化性向上と日射吸収率低減をより高いレベルで両立することができる。上記金属亜酸化物としては、チタン、ニッケル、クロム、コバルト、インジウム、スズ、ニオブ、ジルコニウム、亜鉛、タンタル、アルミニウム、セリウム、マグネシウム、珪素、及びこれらの混合物等の金属の部分酸化物が適宜使用可能である。これらの中でも、可視光に対して比較的透明で、且つ高屈折率を有する誘電体という観点から、上記金属亜酸化物としては、チタン金属の部分酸化物あるいはチタンを主成分とする金属の部分酸化物であることが好ましい。即ち、上記金属亜酸化物は、チタン成分を含むことが好ましい。 The metal suboxide layer is provided above or below or above or below the metal layer with a predetermined thickness to be described later to improve the corrosion resistance deterioration of the metal layer of the infrared reflection layer and the solar absorptivity. The reduction can be compatible at a higher level. As the metal suboxide, partial oxides of metals such as titanium, nickel, chromium, cobalt, indium, tin, niobium, zirconium, zinc, tantalum, aluminum, cerium, magnesium, silicon, and mixtures thereof are appropriately used. It is possible. Among these, from the viewpoint of a dielectric that is relatively transparent to visible light and has a high refractive index, the metal suboxide is a partial oxide of titanium metal or a metal portion containing titanium as a main component. It is preferably an oxide. That is, the metal suboxide preferably contains a titanium component.
 上記金属亜酸化物層の形成方法は特に限定されないが、例えば、反応性スパッタリング法により形成できる。即ち、上記金属のターゲットを用いてスパッタリング法により製膜する際に、雰囲気ガスにアルゴンガス等の不活性ガスに酸素等の酸化性ガスを適切な濃度(金属酸化物を製膜する際の酸化性ガス濃度よりも低濃度)で加え、酸化性ガス濃度に応じた酸素元素を含む金属の部分(不完全)酸化物層、即ち金属亜酸化物層を形成できる。また、ターゲットとして金属の化学量論組成に対して酸素が欠乏した酸化物からなる還元性酸化物を用い、不活性ガス雰囲気下で、スパッタリング法により金属亜酸化物層を形成することもできる。また、スパッタリング法等により金属薄膜あるいは部分酸化された金属薄膜を一旦形成した後、加熱処理や大気暴露等により後酸化して金属亜酸化物層を形成することもできる。上記金属層の上に上記金属亜酸化物層を形成する際に、酸化性ガスによる上記金属層の酸化を抑制するという観点及び生産性の観点からは、雰囲気ガスは不活性ガスのみとし、ターゲットとして上記金属亜酸化物に含まれる金属のみを用いたスパッタリング法により一旦、金属薄膜の形として形成した後、該金属薄膜表面を大気暴露により後酸化して上記金属亜酸化物層とするのが好ましい。 The method for forming the metal suboxide layer is not particularly limited, but it can be formed by, for example, a reactive sputtering method. That is, when a film is formed by the sputtering method using the above metal target, an oxidizing gas such as oxygen is added to an inert gas such as an argon gas at an appropriate concentration (oxidation when forming a metal oxide film). It is possible to form a partial (incomplete) oxide layer of a metal containing an oxygen element according to the oxidizing gas concentration, that is, a metal suboxide layer, in addition to a concentration lower than that of the oxidizing gas. It is also possible to form a metal suboxide layer by a sputtering method in an inert gas atmosphere using a reducing oxide composed of an oxide deficient in oxygen with respect to the stoichiometric composition of the metal as a target. Alternatively, the metal suboxide layer may be formed by once forming a metal thin film or a partially oxidized metal thin film by a sputtering method or the like, and then post-oxidizing it by heat treatment or exposure to the atmosphere. When forming the metal suboxide layer on the metal layer, from the viewpoint of suppressing the oxidation of the metal layer by an oxidizing gas and from the viewpoint of productivity, the atmosphere gas is an inert gas only, the target As once by a sputtering method using only the metal contained in the metal suboxide, after forming a metal thin film form, the metal thin film surface is post-oxidized by exposure to the atmosphere to form the metal suboxide layer. preferable.
 本実施形態における上記金属亜酸化物層の形成方法の好ましい態様として、具体的には、不活性ガス雰囲気下で、上記透明基材の上に、先ず、ターゲットとして第1の金属亜酸化物層に含まれる金属のみを用いたスパッタリング法により、第1の金属亜酸化物層の前駆体に該当する第1の金属薄膜を形成し、次いで、真空を破らずに連続して、第1の金属薄膜の上に、ターゲットとして銀等の金属を用いたスパッタリング法により、上記金属層を形成し、最後に、真空を破らずに連続して、上記銀等の金属層の上に、ターゲットとして第2の金属亜酸化物層に含まれる金属のみを用いたスパッタリング法により、第2の金属亜酸化物層の前駆体に該当する第2の金属薄膜を形成してロールとして巻き取った後、該ロールを大気中で再度巻き戻しながら、上記第2の金属薄膜表面を徐酸化することで上記第2の金属亜酸化物層に変成する方法が挙げられる。なお、この場合、上記第1の金属薄膜は、上記透明基材の上に、スパッタリング法で形成する際に、上記透明基材から発生する微量のアウトガスにより透明基材に接する面側が徐酸化されて第1の金属亜酸化物層に変成するものと考える。更に、この場合、第1の金属亜酸化物層及び第2の金属亜酸化物層の上記銀等の金属層に直接に接する面側は未酸化層(金属層、例えばチタン金属層)になっていると考えられ、上記未酸化層(金属層、例えばチタン金属層)が上記銀等の金属層を酸素、水、塩化物イオン等の外部環境要因から保護する機能を少しでも向上させることができるという観点からも好適である。 As a preferable mode of the method for forming the metal suboxide layer in the present embodiment, specifically, on the transparent substrate under an inert gas atmosphere, first, a first metal suboxide layer as a target is first prepared. The first metal thin film corresponding to the precursor of the first metal suboxide layer is formed by the sputtering method using only the metal contained in the first metal, and then the first metal thin film is continuously formed without breaking the vacuum. The metal layer is formed on the thin film by a sputtering method using a metal such as silver as a target, and finally, continuously without breaking the vacuum, on the metal layer such as silver or the like as a target. The second metal thin film corresponding to the precursor of the second metal suboxide layer is formed by the sputtering method using only the metal contained in the second metal suboxide layer, and is wound as a roll. There is a method in which the surface of the second metal thin film is gradually oxidized while the roll is rewound in the atmosphere to transform the second metal suboxide layer into the second metal suboxide layer. In this case, when the first metal thin film is formed on the transparent substrate by the sputtering method, the surface side in contact with the transparent substrate is gradually oxidized by a small amount of outgas generated from the transparent substrate. It is considered that it is transformed into the first metal suboxide layer. Further, in this case, the surface side of the first metal suboxide layer and the second metal suboxide layer which is in direct contact with the metal layer such as silver is an unoxidized layer (metal layer, for example, titanium metal layer). It is considered that the unoxidized layer (metal layer, for example, titanium metal layer) can improve the function of protecting the metal layer such as silver from external environmental factors such as oxygen, water, chloride ions, etc. It is also suitable from the viewpoint of being able to.
 また、上記金属酸化物層は、上記金属層の上下あるいは上、下のいずれかに、後述する所定厚さで備えることにより、赤外線反射層の可視光線透過率向上と日射吸収率低減を両立することができる。上記金属酸化物としては、酸化インジウムスズ(屈折率n=1.92)、酸化インジウム酸化亜鉛(n=2.00)、酸化インジウム(n=2.00)、酸化チタン(n=2.50)、酸化スズ(n=2.00)、酸化亜鉛(n=2.03)、酸化ニオブ(n=2.30)、酸化アルミニウム(n=1.77)、酸化スズ-酸化亜鉛(n=2.00)等による金属酸化物が適宜使用可能であり、これらの材料を、例えば、スパッタリング法、蒸着法、イオンプレーティング法等のドライコーティング法により膜化することにより、上記金属酸化物層を形成できる。また、上記金属酸化物の金属をターゲットとして用い、酸化性ガスの濃度を十分に高めた雰囲気ガス下で、反応性スパッタリング法によって形成しても良い。 Further, the metal oxide layer is provided above or below or above or below the metal layer with a predetermined thickness to be described later, thereby improving the visible light transmittance and reducing the solar absorptivity of the infrared reflective layer. be able to. Examples of the metal oxide include indium tin oxide (refractive index n=1.92), indium oxide zinc oxide (n=2.00), indium oxide (n=2.00), titanium oxide (n=2.50). ), tin oxide (n=2.00), zinc oxide (n=2.03), niobium oxide (n=2.30), aluminum oxide (n=1.77), tin oxide-zinc oxide (n= 2.00) and the like can be appropriately used, and the above metal oxide layer can be formed by forming a film of these materials by a dry coating method such as a sputtering method, a vapor deposition method, an ion plating method. Can be formed. Alternatively, the metal of the metal oxide may be used as a target and may be formed by a reactive sputtering method in an atmosphere gas in which the concentration of an oxidizing gas is sufficiently increased.
 上記金属亜酸化物層がチタン(Ti)金属の部分酸化物(TiOX)層から形成されている場合、当該層におけるTiOXにおけるxは、上記赤外線反射層の上記金属層の耐腐食劣化性向上、日射吸収率低減の効果をより高め、可視光線透過率とのバランスを取るという観点からは、0.5以上、2.0未満の範囲とするのが好ましい。上記TiOXにおけるxが0.5を下回ると、上記赤外線反射層の上記金属層の耐腐食劣化性及び日射吸収率低減の効果は向上するものの上記赤外線反射層の可視光線透過率が低下し、透明性が劣るおそれがある。上記TiOXにおけるxが2.0以上になると、上記赤外線反射層の可視光線透過率は高くなるものの上記赤外線反射層の上記金属層の耐腐食劣化性及び日射吸収率低減の効果が低下するおそれがある。上記TiOXにおけるxは、エネルギー分散型蛍光X線分析(EDX)等を用いて分析、算出することができる。 If the metal suboxide layer is formed of titanium (Ti) metal partial oxide of (TiO X) layer, x in TiO X in the layer, corrosion degradation of the metal layer of the infrared reflective layer From the viewpoint of further improving the effect of reducing the solar absorptance and improving the balance with the visible light transmittance, the range of 0.5 or more and less than 2.0 is preferable. When x in the above TiO X is below 0.5, the visible light transmittance of the infrared reflective layer of the metal layer effects of corrosion degradation resistance and solar absorptance reduction of the infrared reflective layer is intended to improve is lowered, The transparency may be poor. When x in the above TiO X is 2.0 or more, a possibility that the effect of the corrosion deterioration and solar absorptance reduction of the metal layer of the infrared reflection layer of which becomes high visible light transmittance of the infrared reflecting layer is lowered There is. The x in TiO x can be analyzed and calculated using energy dispersive X-ray fluorescence analysis (EDX) or the like.
 上記金属亜酸化物層の厚さは、1nm以上6nm以下が好ましく、上記厚さがこの範囲であると、上記赤外線反射層の上記金属層の耐腐食劣化性向上、日射吸収率低減効果をより高めると同時に可視光線透過率とのバランスを取ることができる。また、上記金属酸化物層の厚さは、1nm以上6nm以下が好ましく、上記厚さがこの範囲であると、上記赤外線反射層の日射吸収率低減効果と可視光線透過率とのバランスを取ることができる。上記金属亜酸化物層又は金属酸化物層の厚さが1nmを下回ると、上記金属層の保護機能が劣るだけでなく、前述した「金属層が第2の金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」が増加するリスクが高まり、十分な耐腐食劣化性を確保できないおそれや、可視光線透過率が低くなり、透明性が劣るおそれがある。また、上記金属亜酸化物層又は金属酸化物層の厚さが6nmを超えると、特に金属酸化物層の場合、日射吸収率が高くなるおそれがある。 The thickness of the metal suboxide layer is preferably 1 nm or more and 6 nm or less, and when the thickness is in this range, the corrosion resistance deterioration effect of the metal layer of the infrared reflection layer and the solar radiation absorptivity reducing effect are further improved. At the same time, it can be balanced with the visible light transmittance. Further, the thickness of the metal oxide layer is preferably 1 nm or more and 6 nm or less, and when the thickness is in this range, the effect of reducing the solar absorptance of the infrared reflective layer and the visible light transmittance are balanced. You can When the thickness of the metal suboxide layer or the metal oxide layer is less than 1 nm, not only the protective function of the metal layer is inferior, but also the above-mentioned “the metal layer is the second metal suboxide layer or the metal oxide”. The risk of increasing ``microscopic parts where the metal derived from the metal layer is not completely covered by the layer and is in a bare state'' increases, and it may not be possible to secure sufficient corrosion deterioration resistance, and the visible light transmittance is It may become low and the transparency may be poor. Further, if the thickness of the metal suboxide layer or the metal oxide layer exceeds 6 nm, the solar absorptivity may be high especially in the case of the metal oxide layer.
 <塗布型の保護層>
 本実施形態の透明遮熱断熱部材を構成する塗布型の保護層は、複数の層を備え、上記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層は、硬化前樹脂成分として、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層から成り、且つ、上記塗布型の保護層の内、最外表面側に位置する層は、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層から成る。上記構成とすることにより、熱還流率を低減し、断熱性をより向上させることを目的に、上記塗布型の複数の層からなる保護層を薄く形成しても、また、更に、日射吸収率を低減することを目的に、前述の第2の金属亜酸化物層又は金属酸化物層を薄く形成しても、前述のように、上記ポリイソシアネート系架橋剤により硬化された特定の(メタ)アクリル系共重合体を含む層が、「金属層由来の金属が剥き出し状態になっている極微小な部位」や赤外線反射層に対して、酸素、水、塩化物イオン等の外部環境要因から保護する層、即ち、バリア層として機能することができ、酸素、水分、塩化物イオン等の保護層深さ方向への拡散、浸透が大幅に抑制され、その結果、金属層の腐食劣化の進行を著しく抑制することができる。更に、上記塗布型の保護層の最外表面側に位置する層は、活性エネルギー線硬化型樹脂により硬化されるため、実用的な耐擦傷性を付与することができる。ここで、「塗布型の保護層」とは、後述するウェットコーティング法で形成された保護層であることを意味する。
<Coating type protective layer>
The coating-type protective layer that constitutes the transparent heat-insulating and heat-insulating member of the present embodiment includes a plurality of layers, and at least one layer of the coating-type protective layers other than the layer located on the outermost surface side is As a pre-curing resin component, a (meth)acrylic acid alkyl ester unit having 4 to 10 carbon atoms in the alkyl group capable of forming a monomer having a hydroxyl group and a homopolymer having a glass transition temperature of 20 to 155° C. A (meth)acrylic copolymer containing a monomer as a copolymer unit, and a layer containing a polyisocyanate crosslinking agent that reacts with the hydroxyl group, and the outermost layer of the coating type protective layer. The layer located on the surface side is a layer containing an active energy ray-curable resin as a resin component before curing. With the above structure, the heat reflux rate is reduced, and even if the protective layer composed of a plurality of the coating type layers is formed thin for the purpose of further improving the heat insulating property, the solar radiation absorption rate is further increased. For the purpose of reducing the above, even if the second metal suboxide layer or the metal oxide layer is thinly formed, as described above, the specific (meth) cured by the polyisocyanate-based crosslinking agent is used. The layer containing the acrylic copolymer protects the "extreme minute part where the metal derived from the metal layer is exposed" and the infrared reflective layer from external environmental factors such as oxygen, water, and chloride ions. Functioning as a barrier layer, that is, as a barrier layer, the diffusion and penetration of oxygen, moisture, chloride ions, etc. in the depth direction of the protective layer are significantly suppressed, and as a result, the progress of corrosion deterioration of the metal layer is prevented. It can be significantly suppressed. Further, since the layer located on the outermost surface side of the coating type protective layer is cured by the active energy ray-curable resin, practical scratch resistance can be imparted. Here, the “coating type protective layer” means a protective layer formed by a wet coating method described later.
 上記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層に、硬化前樹脂成分として、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層を適用し、且つ、上記塗布型の保護層の内、最外表面側に位置する層に、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層を適用するのは以下の理由による。 Among the above-mentioned coating type protective layers, at least one layer other than the layer located on the outermost surface side has a monomer having a hydroxyl group as a pre-curing resin component and a glass transition temperature of 20° C. or higher and 155° C. or lower. A (meth)acrylic copolymer containing, as a copolymer unit, a (meth)acrylic acid alkyl ester monomer having an alkyl group capable of forming a homopolymer and having 4 to 10 carbon atoms is reacted with the hydroxyl group. A layer containing a polyisocyanate cross-linking agent is applied, and, in the coating type protective layer, the layer located on the outermost surface side is a layer containing an active energy ray-curable resin as a pre-curing resin component. It is applied for the following reasons.
 上記水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層は、硬化後において、赤外線反射層の「金属層由来の金属が剥き出し状態になっている極微小な部位」や赤外線反射層に対して、酸素、水分、塩化物イオン等の外部環境要因から保護する機能(バリア機能)が高いことが分かったが、一方で、耐擦傷性のような物理特性が不十分な傾向があり、該層を上記塗布型の保護層の最外表面側に位置する層に配置した場合、フィルム施工時や、長期間に渡るフィルム使用時にフィルム表面(透明保護層)に傷が入りやすく、傷の影響による外観不良や金属層の腐食劣化の問題があった。即ち、酸素、水分、塩化物イオン等の外部環境要因から保護する機能と耐擦傷性のような物理特性を両立することはできなかった。 Copolymerization of the above-mentioned monomer having a hydroxyl group with a (meth)acrylic acid alkyl ester monomer having a carbon number of 4 or more and 10 or less of an alkyl group capable of forming a homopolymer having a glass transition temperature of 20 to 155°C. A layer containing a (meth)acrylic copolymer contained as a united unit and a polyisocyanate crosslinking agent which reacts with the hydroxyl group is, after curing, "the metal derived from the metal layer is in a bare state in the infrared reflective layer. It was found that it has a high function (barrier function) to protect external minute factors such as oxygen, water, and chloride ions from "extremely minute parts" and the infrared reflection layer, but on the other hand, it seems to have scratch resistance. The physical properties tend to be inadequate, and when the layer is arranged on the outermost surface side of the coating type protective layer, the film surface (transparent The protective layer) is apt to be scratched, and there are problems of poor appearance and corrosion deterioration of the metal layer due to the effect of the scratch. That is, it was not possible to achieve both the function of protecting from external environmental factors such as oxygen, water, and chloride ions and the physical characteristics such as scratch resistance.
 そこで、本発明では、塗布型の保護層を複数の層から成る構成とし、上記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層に、バリア機能付与を目的に、硬化前樹脂成分として、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層を配置し、且つ、上記塗布型の保護層の内、最外表面側に位置する層に、耐擦傷性付与を目的に、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層を配置することにより、上記課題を解消し、該複数の層からなる塗布型の保護層全体として、酸素、水分、塩化物イオン等の外部環境要因から保護する機能と耐擦傷性のような物理特性の両立を可能とした。 Therefore, in the present invention, the coating type protective layer is composed of a plurality of layers, and a barrier function is imparted to at least one layer of the coating type protective layers other than the layer located on the outermost surface side. For the purpose, as a pre-curing resin component, an alkyl (meth)acrylate having a carbon number of 4 or more and 10 or less in an alkyl group capable of forming a monomer having a hydroxyl group and a homopolymer having a glass transition temperature of 20° C. or more and 155° C. or less A layer containing a (meth)acrylic copolymer containing an ester monomer as a copolymer unit and a polyisocyanate cross-linking agent that reacts with the hydroxyl group is arranged, and in the coating type protective layer, , The layer located on the outermost surface side, for the purpose of imparting scratch resistance, by disposing a layer containing an active energy ray curable resin as a pre-curing resin component, the above problems are solved, and the plurality of layers As a whole, the coating-type protective layer made of (1) has both a function of protecting from external environmental factors such as oxygen, moisture, and chloride ions and physical properties such as scratch resistance.
 上記水酸基を有する単量体と、ガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体としては、溶剤に可溶で、樹脂溶液として塗布することが可能であれば種類は特に制限されるものではなく、少なくとも上記単量体とを共重合ユニットとして含む共重合体を使用することができる。上記溶剤としては、公知の溶剤を用いることができ、具体的には、芳香族炭化水素(ベンゼン、トルエン及びキシレン等)、脂肪族炭化水素(ヘキサン及びシクロヘキサン等)、ケトン(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びジメチルスルホキシド等)及びアミド(ジメチルホルムアミド、N-メチルピロリドン)等が挙げられる。 A monomer having a hydroxyl group and a (meth)acrylic acid alkyl ester monomer having an alkyl group capable of forming a homopolymer having a glass transition temperature of 20° C. or higher and 155° C. or lower and having 4 to 10 carbon atoms are used. The (meth)acrylic copolymer contained as a polymer unit is not particularly limited in kind as long as it is soluble in a solvent and can be applied as a resin solution, and at least the above-mentioned monomer is used. It is possible to use a copolymer containing as a copolymerization unit. As the solvent, known solvents can be used, and specifically, aromatic hydrocarbons (benzene, toluene, xylene, etc.), aliphatic hydrocarbons (hexane, cyclohexane, etc.), ketones (acetone, methyl ethyl ketone, methyl). Isobutyl ketone, cyclohexanone, dimethyl sulfoxide and the like) and amide (dimethylformamide, N-methylpyrrolidone) and the like.
 上記水酸基は、通常、水酸基を有する単量体を後述する(メタ)アクリル酸アルキルエステル単量体等と共重合することにより(メタ)アクリル系共重合体に導入される。上記水酸基を有する単量体としては、例えば、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシ-2-メチルブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル等の水酸基含有ビニルエーテル類;2-ヒドロキシエチルアリルエーテル、4-ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテル等の水酸基含有アリルエーテル類;アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸2-ヒドロキシブチル、アクリル酸2―ヒドロキシ-3-フェノキシプロピル、アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸アルキルエステル類等が挙げられ、これらは単独または組み合わせで用いることができる。 The hydroxyl group is usually introduced into the (meth)acrylic copolymer by copolymerizing a monomer having a hydroxyl group with a (meth)acrylic acid alkyl ester monomer described later. Examples of the monomer having a hydroxyl group include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxy- Hydroxyl group-containing vinyl ethers such as 2-methylbutyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether; hydroxyl group-containing allyl ethers such as 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether, glycerol monoallyl ether; 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 4-hydroxybutyl acrylate, etc. Examples thereof include (meth)acrylic acid alkyl esters, which can be used alone or in combination.
 上記水酸基を有する単量体に基づく重合単位は、上記(メタ)アクリル系共重合体を構成する全重合単位に対して5質量%以上30質量%以下であることが好ましく、10質量%以上20質量%以下であることが、より好ましい。上記水酸基を有する単量体に基づく重合単位が、上記(メタ)アクリル系共重合体を構成する全重合単位に対して5質量%未満であると、得られる塗布膜の硬化後の硬度や耐塩水性(バリア性)が不十分となるおそれや、層間密着性が劣るおそれがある。上記水酸基を有する単量体に基づく重合単位が、上記(メタ)アクリル系共重合体を構成する全重合単位に対して30質量%を超えると塗料組成物の粘度が高くなり、塗工性が劣るため、得られる塗布膜の外観が悪くなるおそれや、得られる塗布膜の硬化後の可撓性が低下するため、遮熱断熱部材を極度に折り曲げてしまった時に塗布膜に微小クラックが発生し、耐塩水性(バリア性)が低下するおそれがある。 The polymer unit based on the monomer having a hydroxyl group is preferably 5% by mass or more and 30% by mass or less, and 10% by mass or more 20% by mass, based on all the polymerized units constituting the (meth)acrylic copolymer. It is more preferable that the content is not more than mass %. When the polymerized units based on the monomer having a hydroxyl group is less than 5% by mass based on all polymerized units constituting the (meth)acrylic copolymer, the hardness and salt resistance of the resulting coating film after curing are cured. Water (barrier property) may be insufficient, or interlayer adhesion may be poor. When the polymerized units based on the monomer having a hydroxyl group exceeds 30 mass% with respect to the total polymerized units constituting the (meth)acrylic copolymer, the viscosity of the coating composition becomes high and the coatability is high. Since the coating film obtained is inferior, the appearance of the obtained coating film may deteriorate, and the flexibility after curing of the obtained coating film may deteriorate, so that minute cracks may occur in the coating film when the thermal insulation member is excessively bent. However, the salt water resistance (barrier property) may decrease.
 上記水酸基を有する(メタ)アクリル系共重合体は、水酸基価が30mgKOH/g以上200mgKOH/g以下であることが好ましい。上記水酸基価が30mgKOH/g未満であると、得られる塗布膜の硬化後の硬度、耐塩水性(バリア性)や層間密着性が劣るおそれがある。上記水酸基価が200mgKOH/gを超えると、溶剤溶解性や塗工性が劣るため、得られる塗布膜の外観が悪くなるおそれや、得られる塗布膜の硬化後の可撓性が低下するため、遮熱断熱部材を極度に折り曲げてしまった時に塗布膜に微小クラックが発生し、耐塩水性(バリア性)が低下するおそれがある。上記水酸基価は、JIS K 0070に準拠する方法により測定して得られる値で、対象物1g中に含まれるOH基をアセチル化するために必要とする水酸化カリウム(KOH)の量(mg)である。 The hydroxyl group-containing (meth)acrylic copolymer preferably has a hydroxyl value of 30 mgKOH/g or more and 200 mgKOH/g or less. When the hydroxyl value is less than 30 mgKOH/g, the hardness, salt water resistance (barrier property) and interlayer adhesion of the obtained coating film after curing may be deteriorated. When the hydroxyl value is more than 200 mgKOH/g, the solvent solubility and coatability are poor, so that the appearance of the obtained coating film may be deteriorated, or the flexibility after curing of the obtained coating film may be deteriorated. When the heat insulating/insulating member is bent excessively, minute cracks may occur in the coating film, and the salt water resistance (barrier property) may deteriorate. The above hydroxyl value is a value obtained by measurement according to JIS K0070, and is the amount (mg) of potassium hydroxide (KOH) required to acetylate the OH groups contained in 1 g of the object. Is.
 上記水酸基を有する(メタ)アクリル系共重合体は、下記のガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体を共重合体ユニットとして含む。 The (meth)acrylic copolymer having a hydroxyl group is an alkyl (meth)acrylate in which the number of carbon atoms of the alkyl group capable of forming a homopolymer having the following glass transition temperature of 20° C. or higher and 155° C. or lower is 4 or more and 10 or less. It includes an ester monomer as a copolymer unit.
 上記のガラス転移温度(Tg)が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体としては、例えば、アクリル酸t-ブチル(ホモポリマーのTg:43℃、アルキル基の炭素数C:4、アルキル基:分岐状、以下同様)、メタクリル酸n-ブチル(Tg:20℃、C:4、直鎖状)、メタクリル酸イソブチル(Tg:48℃、C:4、分岐状)、メタクリル酸t-ブチル(Tg:107℃、C:4、分岐状)、メタクリル酸シクロヘキシル(Tg:83℃、C:6、脂環状)、アクリル酸イソボルニル(Tg:94℃、C:10、脂環状)、メタクリル酸イソボルニル(Tg:155℃、C:10、脂環状)等が挙げられ、これらは単独または組み合わせで用いることができる。これらの中でも、ガラス転移温度(Tg)が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体としては、耐塩水性(バリア性)、汎用性の観点から、メタクリル酸t-ブチル、アクリル酸t-ブチル、メタクリル酸シクロヘキシル、アクリル酸イソボルニル、及びメタクリル酸イソボルニルが好ましい。また、上記ガラス転移温度(Tg)が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体の代わりに、アクリル酸フェニル(Tg:57℃、C:6)、メタクリル酸フェニル(Tg:110℃、C:6)、メタクリル酸ベンジル(Tg:54℃、C:7)等のガラス転移温度(Tg)が50℃以上120℃以下のホモポリマーを形成可能な炭素数が6以上10以下の芳香族基を有する(メタ)アクリル酸エステルを使用することも可能である。 Examples of the (meth)acrylic acid alkyl ester monomer having an alkyl group having 4 to 10 carbon atoms capable of forming a homopolymer having a glass transition temperature (Tg) of 20° C. to 155° C. include acrylic acid. t-Butyl (Tg of homopolymer: 43° C., carbon number of alkyl group C: 4, alkyl group: branched, same below), n-butyl methacrylate (Tg: 20° C., C: 4, linear) , Isobutyl methacrylate (Tg: 48° C., C: 4, branched), t-butyl methacrylate (Tg: 107° C., C: 4, branched), cyclohexyl methacrylate (Tg: 83° C., C: 6, Alicyclic), isobornyl acrylate (Tg: 94° C., C:10, alicyclic), isobornyl methacrylate (Tg: 155° C., C:10, alicyclic), and the like, and these may be used alone or in combination. You can Among these, as a (meth)acrylic acid alkyl ester monomer having an alkyl group having a carbon number of 4 or more and 10 or less capable of forming a homopolymer having a glass transition temperature (Tg) of 20° C. or more and 155° C. or less, salt water resistance is preferable. From the viewpoints of (barrier property) and versatility, t-butyl methacrylate, t-butyl acrylate, cyclohexyl methacrylate, isobornyl acrylate, and isobornyl methacrylate are preferable. Further, instead of the (meth)acrylic acid alkyl ester monomer having a carbon number of the alkyl group capable of forming a homopolymer having a glass transition temperature (Tg) of 20° C. or more and 155° C. or less and 4 or more and 10 or less, acrylic acid is used. The glass transition temperature (Tg) of phenyl (Tg: 57° C., C: 6), phenyl methacrylate (Tg: 110° C., C: 6), benzyl methacrylate (Tg: 54° C., C: 7), etc. is 50° C. It is also possible to use a (meth)acrylic acid ester having an aromatic group having 6 or more and 10 or less carbon atoms capable of forming a homopolymer at 120° C. or higher.
 上記のホモポリマーのガラス転移温度(Tg)が20℃未満の(メタ)アクリル酸アルキルエステル単量体を用いた場合、塗布後、巻き取られた原反において、得られる塗布膜が硬化後にブロッキングを起こすおそれがある。上記のホモポリマーのガラス転移温度(Tg)が155℃を超える(メタ)アクリル酸アルキルエステル単量体を用いた場合、得られる塗布膜の硬化後の可撓性が低下し、遮熱断熱部材を極度に折り曲げてしまった時に塗布膜に微小クラックが発生し、耐塩水性(バリア性)が低下するおそれがある。 When a glass transition temperature (Tg) of the above homopolymer is less than 20° C., a (meth)acrylic acid alkyl ester monomer is used, and the obtained coating film is blocked after curing in the raw material wound after coating. May occur. When the glass transition temperature (Tg) of the above homopolymer is higher than 155° C. (meth)acrylic acid alkyl ester monomer is used, the flexibility of the obtained coating film after curing is lowered, and the heat insulating and heat insulating member is obtained. When the film is extremely bent, minute cracks may occur in the coating film, resulting in a decrease in salt water resistance (barrier property).
 上記のアルキル基の炭素数が4未満である(メタ)アクリル酸アルキルエステル単量体を用いた場合、アルキル鎖が短いため、得られる塗布膜の硬化後の耐塩水性(バリア性)が劣るおそれがある。上記のアルキル基の炭素数が10を超える(メタ)アクリル酸アルキルエステル単量体を用いた場合、得られるポリマーのガラス転移温度(Tg)が低くなる(20℃未満)傾向にあるため、塗布後、巻き取られた原反において、得られる塗布膜が硬化後にブロッキングを起こすおそれがある。 When a (meth)acrylic acid alkyl ester monomer having an alkyl group having a carbon number of less than 4 is used, the alkyl chain is short, and thus the salt water resistance (barrier property) of the obtained coating film after curing may be poor. There is. When a (meth)acrylic acid alkyl ester monomer in which the number of carbon atoms of the alkyl group exceeds 10 is used, the glass transition temperature (Tg) of the obtained polymer tends to be low (less than 20° C.), and thus coating After that, in the wound web, the obtained coating film may cause blocking after curing.
 上記のガラス転移温度(Tg)が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体に基づく重合単位は、上記(メタ)アクリル系共重合体を構成する全重合単位に対して50質量%以上95質量%以下であることが好ましく、70質量%以上90質量%以下であることが、より好ましい。これらの(メタ)アクリル酸アルキルエステル単量体を上記範囲内で有する場合、得られる塗布膜の硬化後の耐塩水性(バリア性)において優れた効果を発現する。 The polymer unit based on the (meth)acrylic acid alkyl ester monomer having 4 to 10 carbon atoms of the alkyl group capable of forming a homopolymer having a glass transition temperature (Tg) of 20 to 155° C. is as described above. The content is preferably 50% by mass or more and 95% by mass or less, more preferably 70% by mass or more and 90% by mass or less, based on all the polymerized units constituting the (meth)acrylic copolymer. When these (meth)acrylic acid alkyl ester monomers are contained within the above range, an excellent effect is exhibited in the salt water resistance (barrier property) after curing of the obtained coating film.
 上記水酸基を有する(メタ)アクリル系共重合体は、更に、カルボキシル基含有単量体、アミノ基含有単量体、及びシリル基含有単量体からなる群より選択される少なくとも1種の重合単位を含んでいても良い。これらの官能基含有単量体に基づく重合単位は、上記水酸基を有する(メタ)アクリル系共重合体を構成する全重合単位に対して1質量%以上20質量%以下であることが好ましく、3質量%以上10質量%以下であることがより好ましい。これらの官能基含有単量体を上記範囲内で有する場合、無機微粒子等の顔料の分散性や層間密着性に優れる。 The (meth)acrylic copolymer having a hydroxyl group is at least one polymer unit selected from the group consisting of a carboxyl group-containing monomer, an amino group-containing monomer, and a silyl group-containing monomer. May be included. The amount of the polymer units based on these functional group-containing monomers is preferably 1% by mass or more and 20% by mass or less based on all the polymer units forming the (meth)acrylic copolymer having a hydroxyl group. It is more preferable that the content is not less than 10% by mass. When the functional group-containing monomer is contained within the above range, the dispersibility of the pigment such as the inorganic fine particles and the interlayer adhesion are excellent.
 上記カルボキシル基含有単量体としては、例えば、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ノネン酸、デセン酸、ウンデシレン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ペンタデセン酸、ヘキサデセン酸、ヘプタデセン酸、オクタデセン酸、ノナデセン酸、エイコセン酸、22-トリコセン酸、桂皮酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、マレイン酸無水物、フマル酸、フマル酸モノエステル、フタル酸ビニル、ピロメリット酸ビニル、3-アリルオキシプロピオン酸、3-(2-アリロキシエトキシカルボニル)プロピオン酸、3-(2-アリロキシブトキシカルボニル)プロピオン酸、3-(2-ビニロキシエトキシカルボニル)プロピオン酸、3-(2-ビニロキシブトキシカルボニル)プロピオン酸等が挙げられる。これらの中でも、上記カルボキシル基含有単量体としては、単独重合性が低く単独重合体ができにくいという点で、クロトン酸、ウンデシレン酸、イタコン酸、マレイン酸、マレイン酸モノエステル、フマル酸、フマル酸モノエステル、3-アリルオキシプロピオン酸、及び3-(2-アリロキシエトキシカルボニル)プロピオン酸からなる群より選ばれる少なくとも1種の酸が好ましい。 As the carboxyl group-containing monomer, for example, acrylic acid, methacrylic acid, vinyl acetic acid, crotonic acid, pentenoic acid, hexenoic acid, heptenoic acid, octenoic acid, nonenic acid, decenoic acid, undecylenic acid, dodecenoic acid, tridecenoic acid. , Tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, heptadecenoic acid, octadecenoic acid, nonadecenoic acid, eicosenoic acid, 22-tricosenoic acid, cinnamic acid, itaconic acid, itaconic acid monoester, maleic acid, maleic acid monoester, maleic anhydride , Fumaric acid, fumaric acid monoester, vinyl phthalate, vinyl pyromellitic acid, 3-allyloxypropionic acid, 3-(2-allyloxyethoxycarbonyl)propionic acid, 3-(2-allyloxybutoxycarbonyl)propionic acid , 3-(2-vinyloxyethoxycarbonyl)propionic acid, 3-(2-vinyloxybutoxycarbonyl)propionic acid and the like. Among these, as the above-mentioned carboxyl group-containing monomer, homopolymerization is difficult to form a low homopolymer, crotonic acid, undecylenic acid, itaconic acid, maleic acid, maleic acid monoester, fumaric acid, fumaric acid. At least one acid selected from the group consisting of acid monoester, 3-allyloxypropionic acid, and 3-(2-allyloxyethoxycarbonyl)propionic acid is preferable.
 上記アミノ基含有単量体としては、例えば、アミノビニルエーテル類、アリルアミン類、アミノメチルスチレン、ビニルアミン、アクリルアミド、ビニルアセトアミド、ビニルホルムアミド等が挙げられる。 Examples of the amino group-containing monomer include amino vinyl ethers, allyl amines, amino methyl styrene, vinyl amine, acrylamide, vinyl acetamide, vinyl formamide and the like.
 上記シリル基含有単量体としては、例えば、シリコーン系ビニル単量体が挙げられる。シリコーン系ビニル単量体としては、例えば、(メタ)アクリル酸3-トリメトキシシリルプロピル、(メタ)アクリル酸3-トリエトキシシリルプロピル等の(メタ)アクリル酸エステル類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロロシランまたはこれらの部分加水分解物等のビニルシラン類;トリメトキシシリルエチルビニルエーテル、トリエトキシシリルエチルビニルエーテル、トリメトキシシリルブチルビニルエーテル、メチルジメトキシシリルエチルビニルエーテル、トリメトキシシリルプロピルビニルエーテル、トリエトキシシリルプロピルビニルエーテル等のビニルエーテル類等が挙げられる。 Examples of the silyl group-containing monomer include silicone vinyl monomers. Examples of the silicone vinyl monomer include (meth)acrylic acid esters such as (meth)acrylic acid 3-trimethoxysilylpropyl and (meth)acrylic acid 3-triethoxysilylpropyl; vinyltrimethoxysilane, vinyl Vinylsilanes such as triethoxysilane, vinyltrichlorosilane or partial hydrolysates thereof; trimethoxysilylethyl vinyl ether, triethoxysilylethyl vinyl ether, trimethoxysilylbutyl vinyl ether, methyldimethoxysilylethyl vinyl ether, trimethoxysilylpropyl vinyl ether, trimethoxysilylethyl vinyl ether Examples thereof include vinyl ethers such as ethoxysilylpropyl vinyl ether.
 上記水酸基を有する(メタ)アクリル系共重合体は、カルボン酸ビニルエステル、アルキルビニルエーテル及び非フッ素化オレフィンからなる群より選ばれる少なくとも1種のフッ素非含有ビニルモノマーに基づく重合単位を含んでいても良い。 The (meth)acrylic copolymer having a hydroxyl group may include a polymer unit based on at least one non-fluorine-containing vinyl monomer selected from the group consisting of carboxylic acid vinyl ester, alkyl vinyl ether and non-fluorinated olefin. good.
 上記カルボン酸ビニルエステルは、相溶性を改善する作用を有する。上記カルボン酸ビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、安息香酸ビニル、パラ-t-ブチル安息香酸ビニル等が挙げられる。 The vinyl ester of carboxylic acid has a function of improving compatibility. Examples of the vinyl carboxylate include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, vinyl benzoate. , Vinyl para-t-butyl benzoate and the like.
 上記アルキルビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル等が挙げられる。 Examples of the alkyl vinyl ether include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether and the like.
 上記非フッ素化オレフィンとしては、エチレン、プロピレン、n-ブテン、イソブテン等が挙げられる。 Examples of the above non-fluorinated olefin include ethylene, propylene, n-butene, isobutene and the like.
 上記水酸基を有する(メタ)アクリル系共重合体としては、具体的に、例えば、(メタ)アクリル酸t-ブチル/イソブテン/4-ヒドロキシブチルビニルエーテル/他の単量体の共重合体、(メタ)アクリル酸t-ブチル/バーサチック酸ビニル/4-ヒドロキシブチルビニルエーテル/他の単量体の共重合体、(メタ)アクリル酸t-ブチル/アクリル酸4-ヒドロキシブチル/他の単量体の共重合体、(メタ)アクリル酸t-ブチル/アクリル酸2-ヒドロキシエチル/他の単量体の共重合体、メタクリル酸シクロヘキシル/イソブテン/ヒドロキシブチルビニルエーテル/他の単量体の共重合体、メタクリル酸シクロヘキシル/バーサチック酸ビニル/ヒドロキシブチルビニルエーテル/他の単量体の共重合体、メタクリル酸シクロヘキシル/アクリル酸4-ヒドロキシブチル/他の単量体の共重合体、メタクリル酸シクロヘキシル/アクリル酸2-ヒドロキシエチル/他の単量体の共重合体等が挙げられる。上記他の単量体は、含有していても、含有していなくても良い。 Specific examples of the (meth)acrylic copolymer having a hydroxyl group include a copolymer of t-butyl (meth)acrylate/isobutene/4-hydroxybutyl vinyl ether/other monomer, (meth ) Copolymer of t-butyl acrylate/vinyl versatic/4-hydroxybutyl vinyl ether/other monomer, t-butyl (meth)acrylate/4-hydroxybutyl acrylate/other monomer Polymer, t-butyl (meth)acrylate/2-hydroxyethyl acrylate/other monomer copolymer, cyclohexyl methacrylate/isobutene/hydroxybutyl vinyl ether/other monomer copolymer, methacryl Acid cyclohexyl/vinyl versatate/hydroxybutyl vinyl ether/other monomer copolymer, cyclohexyl methacrylate/4-hydroxybutyl acrylate/other monomer copolymer, cyclohexyl methacrylate/acrylic acid 2- Examples thereof include copolymers of hydroxyethyl/other monomers. The above-mentioned other monomer may or may not be contained.
 上記水酸基を有する(メタ)アクリル系共重合体は、本発明の効果を損なわない範囲においては、ブロッキング、塗工性、層間密着性、硬度の改善等、必要に応じ、上記水酸基を有するアクリル系共重合体と相溶する他の樹脂と混合して用いても構わない。即ち、上記水酸基を有する(メタ)アクリル系共重合体を含む層は、上記水酸基を有する(メタ)アクリル系共重合体と相溶する他の樹脂を含んでいても構わない。ここで、上記水酸基を有する(メタ)アクリル系共重合体と相溶するとは、各々の樹脂を混合した場合、層分離せずに、得られる塗布膜の透明性が著しく損なわれないことを意味する。 The (meth)acrylic copolymer having a hydroxyl group is an acrylic resin having a hydroxyl group, if necessary, such as blocking, coating property, interlayer adhesion, and improvement of hardness, as long as the effect of the present invention is not impaired. It may be used as a mixture with another resin compatible with the copolymer. That is, the layer containing the (meth)acrylic copolymer having a hydroxyl group may contain another resin compatible with the (meth)acrylic copolymer having a hydroxyl group. Here, being compatible with the (meth)acrylic copolymer having a hydroxyl group means that when the respective resins are mixed, the transparency of the obtained coating film is not significantly impaired without separating the layers. To do.
 上記他の樹脂としては、上記水酸基を有する(メタ)アクリル系共重合体と相溶する樹脂であれば特に限定されるものではないが、熱可塑性(メタ)アクリル樹脂、アクリルシリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられるが、汎用性の観点から熱可塑性アクリル樹脂が好ましい。 The other resin is not particularly limited as long as it is a resin compatible with the (meth)acrylic copolymer having a hydroxyl group, but is not limited to thermoplastic (meth)acrylic resin, acrylic silicone resin, polyester resin. , A polyurethane resin, etc., but a thermoplastic acrylic resin is preferable from the viewpoint of versatility.
 上記熱可塑性(メタ)アクリル樹脂としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等の(メタ)アクリル酸エステル類の単独重合体、これらの共重合体、またはこれらと共重合可能なモノマーとの共重合体があげられる。共重合可能なモノマーとしては、例えば、スチレン等の芳香族ビニル化合物、アクリロニトリル、各種ビニルエーテル、アリルエーテル、各種ビニルエステルなどのビニル化合物、カルボキシル基、アミノ基、エポキシ基等の官能基を有する不飽和モノマー等が挙げられる。 Examples of the thermoplastic (meth)acrylic resin include homopolymers of (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and butyl (meth)acrylate. Examples thereof include copolymers thereof or copolymers with monomers copolymerizable therewith. Examples of the copolymerizable monomer include aromatic vinyl compounds such as styrene, acrylonitrile, various vinyl ethers, allyl ethers, vinyl compounds such as various vinyl esters, unsaturated compounds having a functional group such as a carboxyl group, an amino group and an epoxy group. Examples thereof include monomers.
 上記(メタ)アクリル系共重合体が有する水酸基と反応する架橋剤としては、ポリイソシアネート化合物からなるポリイソシアネート系架橋剤を使用することができる。この反応により、上記(メタ)アクリル系共重合体は3次元的に架橋し硬化することができる。その結果、上記(メタ)アクリル系共重合体とポリイソシアネート系架橋剤とを含む層には、バリア機能が付与される。 As a cross-linking agent that reacts with the hydroxyl group of the (meth)acrylic copolymer, a polyisocyanate cross-linking agent composed of a polyisocyanate compound can be used. By this reaction, the (meth)acrylic copolymer can be three-dimensionally crosslinked and cured. As a result, a barrier function is imparted to the layer containing the (meth)acrylic copolymer and the polyisocyanate crosslinking agent.
 上記ポリイソシアネート化合物としては、2,4-トリレンジイソシアネート、ジフェニルメタン-4,4'-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンメチルエステルジイソシアネート、メチルシクロヘキシルジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート、n-ペンタン-1,4-ジイソシアネート、これらの3量体、これらのアダクト体、ビュウレット体やイソシアヌレート体、これらの重合体で2個以上のイソシアネート基を有するもの、さらにブロック化されたイソシアネート類等が挙げられるが、これらに限定されるものではない。これらの中でも、上記ポリイソシアネート化合物としては、耐候性の観点からヘキサメチレンジイソシアネートの3量体であるイソシアヌレートプレポリマー及びイソホロンジイソシアネートの3量体であるイソシアヌレートプレポリマーが好ましい。このようなポリイソシアネート化合物としては、例えば、東ソー社製のコロネート(登録商標)HX、エボニックデグサ社製のデスタナートT1890(商品名)、住化コベストロウレタン社製のデスモジュール(登録商標)Z4470等が例示できる。 Examples of the polyisocyanate compound include 2,4-tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine methyl ester diisocyanate, methylcyclohexyl diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, n. -Pentane-1,4-diisocyanate, trimers of these, adducts thereof, burettes and isocyanurates, polymers of these polymers having two or more isocyanate groups, blocked isocyanates, etc. However, the present invention is not limited to these. Among these, as the polyisocyanate compound, from the viewpoint of weather resistance, an isocyanurate prepolymer which is a trimer of hexamethylene diisocyanate and an isocyanurate prepolymer which is a trimer of isophorone diisocyanate are preferable. Examples of such a polyisocyanate compound include Coronate (registered trademark) HX manufactured by Tosoh Corporation, Destannate T1890 (trade name) manufactured by Evonik Degussa, and Desmodur (registered trademark) Z4470 manufactured by Sumika Covestrourethane. Can be illustrated.
 上記架橋剤の含有量としては、上記(メタ)アクリル系共重合体が有する水酸基(-OH)1当量に対して、架橋剤のイソシアネート基(-NCO)が0.3モル当量以上2.0モル当量以下となるように添加することが好ましく、より好ましくは0.5モル当量以上1.5モル当量以下、更に好ましくは、0.8モル当量以上1.2モル当量以下である。上記架橋剤の含有量が0.3モル当量未満であると、得られる塗布膜の架橋が不十分となり、硬度やバリア性が低下するおそれがある。上記架橋剤の含有量が2.0モル当量を超えると、塗布原反を巻き取った際に、低分子量の架橋剤の影響により塗布膜と塗布膜の反対面とが密着し、塗布原反を巻き出す際にブロッキングが発生するおそれがある。 The content of the cross-linking agent is such that the isocyanate group (-NCO) of the cross-linking agent is 0.3 molar equivalent or more and 2.0 or more with respect to 1 equivalent of the hydroxyl group (-OH) of the (meth)acrylic copolymer. It is preferable to add it so as to be a molar equivalent or less, more preferably 0.5 molar equivalent or more and 1.5 molar equivalent or less, and further preferably 0.8 molar equivalent or more and 1.2 molar equivalent or less. When the content of the cross-linking agent is less than 0.3 molar equivalent, the obtained coating film may be insufficiently cross-linked and the hardness and the barrier property may be deteriorated. When the content of the cross-linking agent exceeds 2.0 molar equivalents, when the coated raw material is wound up, the coating film and the opposite surface of the coated film adhere to each other due to the influence of the low-molecular weight crosslinking agent, and the coated raw material Blocking may occur when unwinding.
 なお、上記他の樹脂が硬化性官能基を有する場合、該硬化性官能基が水酸基であれば、該水酸基と反応する架橋剤も、上記水酸基を有する(メタ)アクリル系共重合体に用いる架橋剤と同様のものを用いることができる。また、該硬化性官能基が水酸基以外であれば、該硬化性官能基に応じて架橋剤を適宜選択し用いる。 In addition, when the other resin has a curable functional group, if the curable functional group is a hydroxyl group, a crosslinking agent that reacts with the hydroxyl group is also a crosslinking agent used for the (meth)acrylic copolymer having the hydroxyl group. The same as the agent can be used. If the curable functional group is other than the hydroxyl group, a crosslinking agent is appropriately selected and used according to the curable functional group.
 本実施形態の透明遮熱断熱部材を構成する塗布型の保護層は、複数の層を備え、上記塗布型の保護層の内、最外表面側に位置する層は、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層からなる。これにより、活性エネルギー線照射後において、上記水酸基を有する(メタ)アクリル系共重合体と該水酸基と反応するポリイソシアネート系架橋剤とを含む層を保護し、耐塩水性(バリア性)の向上を補助するとともに上記塗布型の保護層全体の耐擦傷性を確保することができる。なお、活性エネルギー線としては、ラジカル、カチオン、アニオン等の重合反応の契機となり得るものを生成できるエネルギー線であれば、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波のほか、電子線、プロトン線、中性子線等のいずれも使用できるが、硬化速度、照射装置の入手容易さ、価格等の観点において、紫外線照射による硬化が好ましい。活性エネルギー線は、200~450nmの波長帯域の光が好ましく、250~430nmの波長帯域の光がより好ましい。光源は、特に限定されるものではなく、例えば、高圧水銀ランプ、メタルハライドランプ、低圧水銀ランプ、超高圧水銀ランプ、紫外線レーザー、太陽光、LEDランプ等が挙げられる。これらの光源を用い、好ましくは、積算光量が300mJ/cm2以上になるように活性エネルギー線を照射することにより、活性エネルギー線硬化型樹脂を含む層を瞬時に硬化させることができる。 The coating type protective layer constituting the transparent heat insulating and heat insulating member of the present embodiment comprises a plurality of layers, among the coating type protective layer, the layer located on the outermost surface side is a pre-curing resin component, It is composed of a layer containing an active energy ray-curable resin. This protects the layer containing the (meth)acrylic copolymer having a hydroxyl group and the polyisocyanate crosslinking agent that reacts with the hydroxyl group after irradiation with active energy rays, and improves salt water resistance (barrier property). While assisting, the scratch resistance of the entire coating type protective layer can be secured. As the active energy ray, far-ultraviolet rays, ultraviolet rays, near-ultraviolet rays, infrared rays, etc., X-rays, γ-rays, etc. may be used as long as they can generate radicals, cations, anions, etc. that can trigger polymerization reactions. In addition to the electromagnetic waves described above, any of electron beams, proton beams, neutron beams and the like can be used, but from the viewpoints of curing speed, availability of irradiation equipment, cost, etc., curing by ultraviolet irradiation is preferable. The active energy ray is preferably light in the wavelength band of 200 to 450 nm, and more preferably light in the wavelength band of 250 to 430 nm. The light source is not particularly limited, and examples thereof include a high pressure mercury lamp, a metal halide lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, an ultraviolet laser, sunlight, and an LED lamp. A layer containing an active energy ray-curable resin can be instantly cured by using these light sources and irradiating with active energy rays so that the integrated light amount is preferably 300 mJ/cm 2 or more.
 上記活性エネルギー線硬化型樹脂としては、例えば、多官能(メタ)アクリレートモノマーや多官能(メタ)アクリレートオリゴマー(プレポリマー)等を好適に用いることができ、これらを単独あるいは混合して用いことができる。具体的には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサントリメタクリレート等のアクリレート;1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン等のビニルベンゼン及びその誘導体;ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等のウレタン系の多官能アクリレートオリゴマー類;多価アルコールと(メタ)アクリル酸とから生成されるエステル系の多官能アクリレートオリゴマー類;エポキシ系の多官能アクリレートオリゴマー類及びそれらの含フッ素化合物や含シリコーン化合物等が挙げられ、必要に応じて光重合開始剤を添加し、活性エネルギー線を照射することで、上記塗布型の保護層の最外表面層を形成できる。 As the active energy ray-curable resin, for example, a polyfunctional (meth)acrylate monomer or a polyfunctional (meth)acrylate oligomer (prepolymer) can be preferably used, and these can be used alone or in combination. it can. Specifically, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1,4-cyclohexane diacrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate. ) Acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1, Acrylate such as 2,3-cyclohexanetrimethacrylate; vinylbenzene such as 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester and 1,4-divinylcyclohexanone and its derivatives; pentaerythritol triacrylate hexamethylene Urethane-based polyfunctional acrylate oligomers such as diisocyanate urethane prepolymers; Ester-based polyfunctional acrylate oligomers formed from polyhydric alcohol and (meth)acrylic acid; Epoxy-based polyfunctional acrylate oligomers and their inclusion Examples thereof include a fluorine compound and a silicone-containing compound. If necessary, a photopolymerization initiator may be added and an active energy ray may be irradiated to form the outermost surface layer of the coating type protective layer.
 上記塗布型の保護層は、上述したように透明遮熱断熱部材の耐塩水性(バリア性)と耐擦傷性を両立するために、上記赤外線反射層上に複数の層により形成されるが、具体的には、上記塗布型の保護層は、生産性の観点から、例えば、2層~4層で形成される。上記塗布型の保護層が2層構成の場合、上記赤外線反射層の上に、上記赤外線反射層側から、中屈折率層又は高屈折率層、及び中屈折率層又は低屈折率層をこの順に備えていれば良い。この場合、上記赤外線反射層に接する中屈折率層又は高屈折率層に、上記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含み、その上に形成される中屈折率層又は低屈折率層(最外表面層)に上記活性エネルギー線硬化型樹脂を含んでいれば良い。また、上記塗布型の保護層が3層構成の場合、上記赤外線反射層の上に、上記赤外線反射層側から、中屈折率層、高屈折率層及び低屈折率層をこの順に備えていれば良い。この場合、上記中屈折率層、高屈折率層の少なくともいずれかの層に、上記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含み、少なくとも上記低屈折率層に上記活性エネルギー線硬化型樹脂を含んでいれば良い。また、塗布型の保護層が4層構成の場合、上記赤外線反射層の上に、上記赤外線反射層側から、光学調整層、中屈折率層、高屈折率層及び低屈折率層をこの順に備えていれば良い。この場合、上記光学調整層、中屈折率層、高屈折率層の少なくともいずれかの1層に、上記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含み、少なくとも上記低屈折率層に上記活性エネルギー線硬化型樹脂を含んでいれば良い。 The coating type protective layer is formed of a plurality of layers on the infrared reflective layer in order to achieve both salt water resistance (barrier property) and scratch resistance of the transparent heat insulating and heat insulating member as described above. From the viewpoint of productivity, the coating type protective layer is formed of, for example, 2 to 4 layers. When the coating-type protective layer has a two-layer structure, a medium refractive index layer or a high refractive index layer, and a medium refractive index layer or a low refractive index layer are formed on the infrared reflecting layer from the infrared reflecting layer side. Just prepare for it in order. In this case, the medium refractive index layer or high refractive index layer in contact with the infrared reflective layer contains the (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, and further The active energy ray-curable resin may be contained in the medium refractive index layer or the low refractive index layer (outermost surface layer) formed in 1. When the coating type protective layer has a three-layer structure, a medium refractive index layer, a high refractive index layer, and a low refractive index layer may be provided in this order on the infrared reflecting layer from the infrared reflecting layer side. Good. In this case, at least one of the medium refractive index layer and the high refractive index layer, the (meth) acrylic copolymer having a hydroxyl group, and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, at least It is sufficient that the low refractive index layer contains the active energy ray-curable resin. When the coating type protective layer has a four-layer structure, an optical adjustment layer, a medium refractive index layer, a high refractive index layer, and a low refractive index layer are provided in this order on the infrared reflecting layer from the infrared reflecting layer side. All you have to do is prepare. In this case, at least one of the optical adjustment layer, the medium refractive index layer, and the high refractive index layer has a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group. And at least the low energy layer contains the active energy ray-curable resin.
 上記塗布型の保護層は、上記に例示した複層の構成の中でも、上記透明遮熱断熱部材の光学特性、外観性(虹彩現象、視認角度による反射色変化)のバランスの観点から、上記赤外線反射層側から、高屈折率層及び低屈折率層をこの順で備えた2層の構成から成ることが好ましい。また、上記バランスの観点に加えて、可視光線透過率向上の観点から、上記赤外線反射層側から、中屈折率層、高屈折率層及び低屈折率層をこの順で備えた3層構成から成ることがより好ましく、上記赤外線反射層側から、光学調整層、中屈折率層、高屈折率層及び低屈折率層をこの順で備えた4層構成から成ることが最も好ましい。即ち、赤外線反射層の上に通常のアクリル系の紫外線(UV)硬化型ハードコート樹脂からなる保護層(通常、屈折率は1.50前後)を1層の構成から成る層として設けた場合、その可視光線反射スペクトルにおいて、特に波長500nm~780nmにかけて、波長の増大とともに可視光線反射率の上下の変動も大きくなっていく傾向があり、保護層の膜厚変動も加味されて、虹彩模様が発生したり、視認角度による反射色変化が大きくなったりする。特に熱貫流率を低減して断熱性能を向上させるために、保護層の厚さを可視光線の波長領域である380~780nmと重なる範囲で薄く設定した場合には、多重反射の干渉の影響で、この現象は顕著となる。しかし、塗布型の保護層を上述したように屈折率の異なる複数の層から成る構成とした場合には、保護層の総厚さを可視光線の波長領域である380~780nmと重なる範囲で薄く設定したとしても、上記可視光反射スペクトルにおける波長に連動した可視光線反射率の上下の変動を低減することができ、虹彩模様の発生や視認角度による反射色変化を抑制することができる。 The coating-type protective layer is, in the multilayer structure exemplified above, from the viewpoint of the optical characteristics of the transparent heat-insulating and heat-insulating member, the appearance (iris phenomenon, reflection color change depending on the viewing angle), from the viewpoint of the infrared rays. It is preferable to have a two-layer structure in which a high refractive index layer and a low refractive index layer are provided in this order from the reflective layer side. In addition to the above-mentioned balance, from the viewpoint of improving the visible light transmittance, from the infrared reflection layer side, a three-layer structure including a medium refractive index layer, a high refractive index layer, and a low refractive index layer in this order. More preferably, it is most preferably composed of a four-layer structure including an optical adjustment layer, a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order from the infrared reflecting layer side. That is, when a protective layer (usually having a refractive index of about 1.50) made of a normal acrylic ultraviolet (UV) curable hard coat resin is provided on the infrared reflective layer as a layer composed of one layer, In the visible light reflectance spectrum, the visible light reflectance tends to fluctuate up and down as the wavelength increases, especially in the wavelength range of 500 nm to 780 nm, and the fluctuation in the thickness of the protective layer is also taken into consideration to generate an iris pattern. Or the reflected color changes greatly depending on the viewing angle. In particular, in order to reduce the heat transmission coefficient and improve the heat insulation performance, when the thickness of the protective layer is set to be thin within the range of 380 to 780 nm which is the wavelength range of visible light, interference of multiple reflections may occur. , This phenomenon becomes remarkable. However, when the coating type protective layer is composed of a plurality of layers having different refractive indexes as described above, the total thickness of the protective layer is thin in the range overlapping with 380 to 780 nm which is the wavelength range of visible light. Even if it is set, it is possible to reduce the vertical fluctuation of the visible light reflectance linked with the wavelength in the visible light reflection spectrum, and it is possible to suppress the occurrence of the iris pattern and the change of the reflected color depending on the viewing angle.
 上記塗布型の保護層の総厚さは、透明遮熱断熱部材の断熱性能の指標となる熱貫流率低減の観点から、980nm以下であることが好ましい。更に、耐擦傷性、耐腐食劣化性も考慮すると、上記塗布型の保護層の総厚さは、200nm以上980nm以下であることがより好ましい。上記総厚さが200nmを下回ると、耐擦傷性や耐腐食劣化性といった物理特性が低下するおそれがあり、上記総厚さが980nmを超えると、光学調整層、中屈折率層、高屈折率層、低屈折率層に使用される樹脂の分子骨格に含まれるC=O基、C-O基や芳香族基や、各層の屈折率を調整のために使用する無機酸化物微粒子などの影響により、上記塗布型の保護層における波長5.5μm~25.2μmの遠赤外線の吸吸が大きくなり、垂直放射率が大きくなる結果、断熱性能が低下するおそれがある。上記総厚さが200nm以上980nm以下の範囲内であれば、熱貫流率を4.2W/(m2・K)以下にすることができ、断熱性能を十分に発現できる。また、上記総厚さは、耐擦傷性、耐腐食劣化性の更なる向上の観点から、300nm以上とし、熱貫流率の更なる低減の観点から、700nm以下とした300nm以上700nm以下の範囲に設定することが最も好ましい。上記総厚さが300nm以上700nm以下の範囲内であれば、熱貫流率を4.0W/(m2・K)以下にすることができ、断熱性能と耐擦傷性、耐腐食劣化性といった物理特性を更に高いレベルで両立することができる。 The total thickness of the coating type protective layer is preferably 980 nm or less from the viewpoint of reducing the heat transmission coefficient, which is an index of the heat insulating performance of the transparent heat insulating heat insulating member. Further, in consideration of scratch resistance and corrosion deterioration resistance, the total thickness of the coating type protective layer is more preferably 200 nm or more and 980 nm or less. If the total thickness is less than 200 nm, physical properties such as scratch resistance and corrosion resistance may deteriorate, and if the total thickness exceeds 980 nm, the optical adjustment layer, the medium refractive index layer, and the high refractive index. Of C=O groups, CO groups and aromatic groups contained in the molecular skeleton of the resin used for the layer and the low refractive index layer, and inorganic oxide fine particles used for adjusting the refractive index of each layer As a result, absorption of far infrared rays having a wavelength of 5.5 μm to 25.2 μm in the coating type protective layer is increased, and the vertical emissivity is increased. As a result, the heat insulating performance may be deteriorated. When the total thickness is in the range of 200 nm or more and 980 nm or less, the heat transmission coefficient can be 4.2 W/(m 2 ·K) or less, and the heat insulating performance can be sufficiently exhibited. In addition, the total thickness is set to 300 nm or more from the viewpoint of further improving scratch resistance and corrosion deterioration resistance, and is set to 700 nm or less from the viewpoint of further reducing the heat transmission coefficient to a range of 300 nm to 700 nm. It is most preferable to set. If the total thickness is in the range of 300 nm or more and 700 nm or less, the heat transmission coefficient can be set to 4.0 W/(m 2 ·K) or less, and the physical properties such as heat insulation performance, scratch resistance, and corrosion deterioration resistance can be obtained. The characteristics can be compatible at an even higher level.
 以下、上記塗布型の保護層を構成する各層について説明する。 Each layer constituting the above-mentioned coating type protective layer will be described below.
 [光学調整層]
 上記光学調整層は、本実施形態の透明遮熱断熱部材の赤外線反射層の光学特性を調整する層であり、波長550nmの光の屈折率が1.60以上2.00以下の範囲であることが好ましく、より好ましくは1.65以上1.90以下の範囲である。また、上記塗布型の保護層が、複数の層で形成される場合、例えば、好ましい態様として、4層で形成される場合、上記光学調整層の厚さは、上記光学調整層の上に順に積層される中屈折率層、高屈折率層、低屈折率層の各々の層の屈折率や厚さ等によって適切な範囲が異なるので、一概には言えないが、上記他の層の構成との兼ね合いにおいて、30nm以上80nm以下の範囲の中で設定されることが好ましく、より好ましくは35nm以上70nm以下の範囲の中で設定される。上記光学調整層の厚さを30nm以上80nm以下の範囲内とすることにより、本実施形態の透明遮熱断熱部材の可視光線透過率と近赤外線反射率とを高いバランスで両立できる。上記光学調整層の厚さが30nmを下回ると、塗工そのものが困難になり、例えば、「金属層が第2の金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」で塗液がはじかれやすくなりカバレッジできないおそれがある。また、可視光線透過率が低下し、透明性が劣るおそれや、反射色の赤味が増すおそれがある。一方、上記光学調整層の厚さが80nmを超えると、近赤外線反射率が低下し、遮熱性能が劣るおそれがある。また、上記光学調整層が無機微粒子を多量に含有する場合に遠赤外線領域の光の吸収が大きくなり、断熱性能が低下するおそれがある。
[Optical adjustment layer]
The optical adjustment layer is a layer for adjusting the optical characteristics of the infrared reflective layer of the transparent heat insulating and heat insulating member of the present embodiment, and the refractive index of light having a wavelength of 550 nm is in the range of 1.60 to 2.00. Is preferable, and more preferably 1.65 or more and 1.90 or less. Further, when the coating type protective layer is formed of a plurality of layers, for example, when it is formed of four layers in a preferred embodiment, the thickness of the optical adjustment layer is in order on the optical adjustment layer. Since the appropriate range varies depending on the refractive index and thickness of each layer of the medium refractive index layer, the high refractive index layer, and the low refractive index layer to be laminated, it cannot be said unconditionally, but with the configuration of the other layers described above. In view of the above, it is preferable to set in the range of 30 nm or more and 80 nm or less, and more preferably set in the range of 35 nm or more and 70 nm or less. By setting the thickness of the optical adjustment layer in the range of 30 nm or more and 80 nm or less, the visible light transmittance and the near infrared reflectance of the transparent heat insulating/insulating member of the present embodiment can be compatible with each other in a high balance. When the thickness of the optical adjustment layer is less than 30 nm, the coating itself becomes difficult, and for example, "the metal layer is not completely covered by the second metal suboxide layer or the metal oxide layer, the metal layer The coating liquid may be easily repelled at the "very small area where the metal from which it is exposed," and coverage may not be achieved. In addition, the visible light transmittance may be lowered, the transparency may be deteriorated, and the reddish color of the reflected color may be increased. On the other hand, when the thickness of the optical adjustment layer exceeds 80 nm, the near-infrared reflectance is lowered and the heat shield performance may be deteriorated. Further, when the optical adjustment layer contains a large amount of inorganic fine particles, the absorption of light in the far infrared region increases, and the heat insulating performance may deteriorate.
 また、上記光学調整層を構成する材料は、前述の赤外線反射層の上記第2の金属亜酸化物層又は金属酸化物層を構成する材料と同種の材料を含むことが、上記光学調整層が直接に接する上記第2の金属亜酸化物層又は金属酸化物層との密着性確保の観点から好ましく、例えば、上記第2の金属亜酸化物層又は金属酸化物層として、チタン金属の部分酸化物層又は酸化物層あるいはチタンを主成分とする金属の部分酸化物層又は酸化物層を選択した場合、上記光学調整層の構成材料は酸化チタン微粒子を含む材料が好ましい。上記光学調整層の構成材料が酸化チタン微粒子を含むことで、上記光学調整層の屈折率を1.60以上2.00以下の範囲内の高屈折率に適宜コントロールすることが可能となるだけでなく、上記チタン金属の部分酸化物層又は酸化物層あるいはチタンを主成分とする金属の部分酸化物層又は酸化物層からなる金属亜酸化物層又は金属酸化物層との密着性を向上できる。 Further, the material forming the optical adjusting layer may include the same kind of material as the material forming the second metal suboxide layer or the metal oxide layer of the infrared reflecting layer, It is preferable from the viewpoint of ensuring adhesion with the second metal suboxide layer or the metal oxide layer that is in direct contact, and for example, as the second metal suboxide layer or the metal oxide layer, partial oxidation of titanium metal is performed. When a material layer or an oxide layer or a partial oxide layer or an oxide layer of a metal containing titanium as a main component is selected, the constituent material of the optical adjustment layer is preferably a material containing titanium oxide fine particles. Since the constituent material of the optical adjusting layer contains fine particles of titanium oxide, the refractive index of the optical adjusting layer can be appropriately controlled to a high refractive index within the range of 1.60 to 2.00. Without, it is possible to improve the adhesion with the metal suboxide layer or metal oxide layer consisting of the titanium metal partial oxide layer or oxide layer or the titanium partial metal oxide layer or oxide layer. ..
 上記酸化チタン微粒子に代表される無機微粒子を含む光学調整層の構成材料としては、上記光学調整層の屈折率が上記範囲内に設計できれば、特に限定されず、例えば、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化型樹脂等の樹脂と、上記樹脂中に分散された無機微粒子とを含む材料が好適に用いられる。上記光学調整層の構成材料の中でも、透明性といった光学特性の面、耐擦傷性といった物理特性の面、更に生産性の面から活性エネルギー線硬化型樹脂と、上記活性エネルギー線硬化型樹脂中に分散された無機微粒子とを含む材料が好ましい。また、上記活性エネルギー線硬化型樹脂に無機微粒子を含む材料は、一般的に、上記赤外線反射層の上記第2の金属亜酸化物層又は金属酸化物層上に塗設した後に紫外線等の活性エネルギー線照射により硬化して上記光学調整層として形成されるが、無機微粒子を含んでいることにより、硬化時の膜の収縮が抑制されるため、上記光学調整層と上記第2の金属亜酸化物層又は金属酸化物層との密着性を良好なものとすることができる。 The constituent material of the optical adjustment layer containing inorganic fine particles typified by the titanium oxide fine particles is not particularly limited as long as the refractive index of the optical adjustment layer can be designed within the above range, and examples thereof include a thermoplastic resin and a thermosetting resin. A material containing a resin, a resin such as an active energy ray-curable resin, and inorganic fine particles dispersed in the resin is preferably used. Among the constituent materials of the optical adjustment layer, in terms of optical properties such as transparency, physical properties such as scratch resistance, active energy ray-curable resin from the viewpoint of productivity, and in the active energy ray-curable resin A material containing dispersed inorganic fine particles is preferable. Further, the material containing inorganic fine particles in the active energy ray-curable resin is generally an active material such as an ultraviolet ray after being applied on the second metal suboxide layer or the metal oxide layer of the infrared reflective layer. The film is cured by irradiation with energy rays to form the optical adjustment layer. However, since the film contains inorganic fine particles, shrinkage of the film during curing is suppressed. Therefore, the optical adjustment layer and the second metal suboxide are suppressed. The adhesiveness with the material layer or the metal oxide layer can be improved.
 上記熱可塑性樹脂としては、例えば、変性ポリオレフィン系樹脂、塩化ビニル系樹脂、アクリロニトリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリビニルブチラール系樹脂、アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリビニルアルコール系樹脂、セルロース系樹脂等が挙げられ、また、上記熱硬化性樹脂としては、フェノール系樹脂、メラミン系樹脂、尿素系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、アルキド系樹脂等が挙げられ、これらを単独あるいは混合して用いることができ、必要に応じて架橋剤を添加し、熱硬化させることで上記光学調整層を形成できる。 The thermoplastic resin, for example, modified polyolefin resin, vinyl chloride resin, acrylonitrile resin, polyamide resin, polyimide resin, polyacetal resin, polycarbonate resin, polyvinyl butyral resin, acrylic resin, polyacetic acid Examples of the thermosetting resin include a vinyl resin, a polyvinyl alcohol resin, and a cellulose resin, and examples of the thermosetting resin include a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, an epoxy resin, and a polyurethane. Examples of the resin include a resin, a silicone resin, and an alkyd resin, which can be used alone or in combination, and the optical adjustment layer can be formed by adding a crosslinking agent as necessary and thermosetting.
 上記活性エネルギー線硬化型樹脂としては、例えば、不飽和基を2つ以上有する多官能(メタ)アクリレートモノマーや多官能(メタ)アクリレートオリゴマー(プレポリマー)等が挙げられ、これらを単独あるいは混合して用いことができる。具体的には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサントリメタクリレート等のアクリレート;1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン等のビニルベンゼン及びその誘導体;ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等のウレタン系の多官能アクリレートオリゴマー類;多価アルコールと(メタ)アクリル酸とから生成されるエステル系の多官能アクリレートオリゴマー類;エポキシ系の多官能アクリレートオリゴマー類等が挙げられ、必要に応じて光重合開始剤を添加し、活性エネルギー線を照射することで硬化させることで上記光学調整層を形成できる。 Examples of the active energy ray-curable resin include polyfunctional (meth)acrylate monomers having two or more unsaturated groups, polyfunctional (meth)acrylate oligomers (prepolymers), and the like, which may be used alone or in combination. Can be used. Specifically, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1,4-cyclohexane diacrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate. ) Acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1, Acrylate such as 2,3-cyclohexanetrimethacrylate; vinylbenzene such as 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester and 1,4-divinylcyclohexanone and its derivatives; pentaerythritol triacrylate hexamethylene Urethane-based polyfunctional acrylate oligomers such as diisocyanate urethane prepolymers; ester-based polyfunctional acrylate oligomers produced from polyhydric alcohol and (meth)acrylic acid; epoxy-based polyfunctional acrylate oligomers and the like. The optical adjustment layer can be formed by adding a photopolymerization initiator as needed and irradiating it with an active energy ray to cure it.
 また、上記活性エネルギー線硬化型樹脂を含む上記光学調整層と上記赤外線反射層の上記第2の金属亜酸化物層又は金属酸化物層との密着性をより向上させるために、上記活性エネルギー線硬化型樹脂にリン酸基、スルホン酸基、アミド基等の極性基を有する(メタ)アクリル酸誘導体や(メタ)アクリル基、ビニル基等の不飽和基を有するシランカップリング剤等を添加して用いても良い。 In order to further improve the adhesion between the optical adjustment layer containing the active energy ray-curable resin and the second metal suboxide layer or the metal oxide layer of the infrared reflective layer, the active energy ray is added. Add a (meth)acrylic acid derivative having a polar group such as a phosphoric acid group, a sulfonic acid group or an amide group or a silane coupling agent having an unsaturated group such as a (meth)acrylic group or a vinyl group to the curable resin. You may use it.
 また、上記無機微粒子は、上記光学調整層の屈折率を調整するために上記樹脂中に分散、添加される。上記無機微粒子としては、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)、酸化ニオブ(Nb25)、酸化イットリウム(Y23)、酸化インジウム(In23)、酸化スズ(SnO2)、酸化アンチモン(Sb23)、酸化タンタル(Ta25)、酸化タングステン(WO3)等を使用できる。上記無機粒子は必要に応じ、分散剤により表面処理されていても構わない。上記無機微粒子の中でも、他の材料に比べて少量の添加で高屈折率化が可能な酸化チタン及び酸化ジルコニウムが好ましく、遠赤外線領域の光の吸収が比較的少ないことや上記金属亜酸化物層として好適なTiOX層との密着性の確保の観点から酸化チタンがより好ましい。 The inorganic fine particles are dispersed and added in the resin in order to adjust the refractive index of the optical adjustment layer. Examples of the inorganic fine particles include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), niobium oxide (Nb 2 O 5 ), yttrium oxide (Y 2 O 3 ). Indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), antimony oxide (Sb 2 O 3 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), and the like can be used. The inorganic particles may be surface-treated with a dispersant, if necessary. Among the above-mentioned inorganic fine particles, titanium oxide and zirconium oxide capable of increasing the refractive index by adding a small amount as compared with other materials are preferable, and the metal suboxide layer and the metal suboxide layer having relatively low absorption of light in the far infrared region. Titanium oxide is more preferable from the viewpoint of securing the adhesion with the TiO X layer which is suitable as
 上記無機微粒子の粒子径としては、平均粒子径が5nm以上100nm以下の範囲であることが光学調整層の透明性の観点から好ましく、10nm以上80nm以下の範囲であることがより好ましい。上記平均粒子径が100nmを超えると、光学調整層を形成した際にヘーズ値の増大等が生じて透明性が低下するおそれがあり、また、上記平均粒子径が5nmを下回ると、光学調整層用塗料とした場合に無機微粒子の分散安定性を維持することが難しくなるおそれがある。 From the viewpoint of transparency of the optical adjustment layer, the average particle size of the inorganic fine particles is preferably in the range of 5 nm to 100 nm, more preferably in the range of 10 nm to 80 nm. If the average particle diameter exceeds 100 nm, the haze value may increase when the optical adjustment layer is formed, resulting in a decrease in transparency. If the average particle diameter is less than 5 nm, the optical adjustment layer may have a smaller thickness. It may be difficult to maintain the dispersion stability of the inorganic fine particles when used as a coating material for a vehicle.
 上記光学調整層を、水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層とする場合は、上記熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化型樹脂に代えて、上述した水酸基を有する(メタ)アクリル系共重合体、あるいは該水酸基を有する(メタ)アクリル系共重合体と他の樹脂との混合物を用いて屈折率調整用の上記無機微粒子を分散した後、該水酸基と反応するポリイソシアネート系架橋剤を添加した光学調整層用塗料を調製し、塗布膜を形成、硬化すれば良い。 When the optical adjustment layer is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, the thermoplastic resin, thermosetting resin, active energy Instead of the line-curable resin, the above-mentioned (meth)acrylic copolymer having a hydroxyl group or a mixture of the (meth)acrylic copolymer having a hydroxyl group and another resin is used to adjust the refractive index. After dispersing the inorganic fine particles, a coating material for an optical adjustment layer containing a polyisocyanate crosslinking agent that reacts with the hydroxyl group is prepared, and a coating film may be formed and cured.
 [中屈折率層]
 上記中屈折率層は、波長550nmの光の屈折率が1.45以上1.55以下の範囲であることが好ましく、上記屈折率は1.47以上1.53以下の範囲であることがより好ましい。上記塗布型の保護層が、複数の層で形成される場合、例えば、好ましい態様として、4層あるいは3層で形成される場合、上記中屈折率層の厚さは、中屈折率層に対して下層となる光学調整層、また、中屈折率層に対して順に上層となる高屈折率層、低屈折率層の各々の層の屈折率や厚さ等によって適切な範囲が異なるので、一概には言えないが、上記他の層の構成との兼ね合いにおいて、35nm以上200nm以下の範囲の中で設定されることが好ましく、上記厚さは50nm以上150nm以下の範囲の中で設定されることがより好ましい。上記中屈折率層の厚さが35nmを下回ると、上記赤外線反射層の上記第2の金属亜酸化物層又は金属酸化物層あるいは上記光学調整層との密着性の低下につながるおそれや、例えば、上記透明遮熱断熱部材の反射色において赤系色が強くなったり、透過色において緑系色が強くなったり、全光線透過率が低下したりするおそれがある。一方、上記中屈折率層の厚さが200nmを超えると赤外線領域の光の吸収が大きくなり、断熱性が低下するおそれがあるため好ましくない。また、透明遮熱断熱部材の可視光線反射スペクトルにおけるリップルの大きさ、即ち、可視光線領域の波長に対する反射率の変動も十分に低減することができず、虹彩模様が目立ちやすくなるだけでなく、視野角によって反射色の変化が大きくなり、外観として問題となり得るおそれがあり好ましくない。例えば、透明遮熱断熱部材の反射色において赤系色が強くなったり、可視光線透過率が低下したりするおそれがある。また、赤外線領域の光の吸収が大きくなり、断熱性が低下するおそれがある。
[Medium refractive index layer]
The medium refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.45 to 1.55, and more preferably in the range of 1.47 to 1.53. preferable. When the coating type protective layer is formed of a plurality of layers, for example, when it is formed of 4 layers or 3 layers in a preferred embodiment, the thickness of the medium refractive index layer is smaller than that of the medium refractive index layer. The optical adjustment layer to be the lower layer, and the appropriate range varies depending on the refractive index and thickness of each of the high refractive index layer and the low refractive index layer, which are the upper layer in order with respect to the medium refractive index layer. Although it cannot be said, it is preferable that the thickness is set within the range of 35 nm or more and 200 nm or less, and the thickness is set within the range of 50 nm or more and 150 nm or less, in consideration of the configuration of the other layers. Is more preferable. When the thickness of the medium refractive index layer is less than 35 nm, it may lead to a decrease in the adhesion of the infrared reflective layer to the second metal suboxide layer or the metal oxide layer or the optical adjustment layer, for example, There is a possibility that the reddish color becomes stronger in the reflected color of the transparent heat insulating and heat insulating member, the greenish color becomes stronger in the transmitted color, and the total light transmittance is lowered. On the other hand, if the thickness of the medium refractive index layer exceeds 200 nm, the absorption of light in the infrared region increases, which may deteriorate the heat insulating property, which is not preferable. Further, the size of the ripple in the visible light reflection spectrum of the transparent heat insulating and heat insulating member, that is, the fluctuation of the reflectance with respect to the wavelength of the visible light region cannot be sufficiently reduced, and not only the iris pattern becomes conspicuous, The change in reflected color increases depending on the viewing angle, which may cause a problem in appearance, which is not preferable. For example, the reddish color of the reflection color of the transparent heat insulating/insulating member may become strong, or the visible light transmittance may decrease. In addition, the absorption of light in the infrared region becomes large, and the heat insulating property may deteriorate.
 上記塗布型の保護層が複数の層で形成される場合、上記中屈折率層の構成材料は、上記中屈折率層の屈折率が上記範囲内に設定できれば、特に限定されず、例えば、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化型樹脂等が好適に用いられる。上記熱可塑性樹脂、熱硬化性樹脂や上記活性エネルギー線硬化型樹脂等の樹脂としては、前述した光学調整層に使用できるものと同一の樹脂を使用することができ、同一の処方で上記中屈折率層を形成することができる。また、屈折率の調整のため、必要に応じて上記樹脂中に無機微粒子を分散、添加しても構わない。上記中屈折率層の構成材料の中でも、透明性といった光学特性の面、耐擦傷性といった物理特性の面、更に生産性の面から、活性エネルギー線硬化型樹脂を含む材料が好ましい。 When the coating type protective layer is formed of a plurality of layers, the constituent material of the medium refractive index layer is not particularly limited as long as the refractive index of the medium refractive index layer can be set within the above range, for example, heat A plastic resin, a thermosetting resin, an active energy ray curable resin and the like are preferably used. As the resin such as the thermoplastic resin, the thermosetting resin or the active energy ray-curable resin, the same resin as that which can be used for the optical adjustment layer described above can be used, and the medium refraction with the same prescription is performed. A rate layer can be formed. In addition, in order to adjust the refractive index, inorganic fine particles may be dispersed and added to the resin as needed. Among the constituent materials of the medium refractive index layer, a material containing an active energy ray-curable resin is preferable in terms of optical characteristics such as transparency, physical characteristics such as scratch resistance, and productivity.
 上記活性エネルギー線硬化型樹脂の中でも、紫外線等の活性エネルギー線照射時の硬化収縮が比較的少ないウレタン系、エステル系、エポキシ系の多官能(メタ)アクリレートオリゴマー(プレポリマー)類を含む樹脂やアクリロイル基を多数有する超多官能のアクリルポリマー樹脂がより好ましい。これにより、上記中屈折率層と上記光学調整層あるいは上記第2の金属亜酸化物層又は金属酸化物層との密着性を良好なものとすることができる。 Among the above active energy ray-curable resins, resins containing urethane-, ester-, or epoxy-based polyfunctional (meth)acrylate oligomers (prepolymers), which have relatively little curing shrinkage when irradiated with active energy rays such as ultraviolet rays, A super polyfunctional acrylic polymer resin having a large number of acryloyl groups is more preferable. Thereby, the adhesion between the medium refractive index layer and the optical adjustment layer or the second metal suboxide layer or the metal oxide layer can be improved.
 また、上記活性エネルギー線硬化型樹脂を含む中屈折率層と上記光学調整層あるいは上記第2の金属亜酸化物層又は金属酸化物層との密着性をより向上させるために、上記活性エネルギー線硬化型樹脂にリン酸基、スルホン酸基、アミド基等の極性基を有する(メタ)アクリル酸誘導体や(メタ)アクリル基、ビニル基等の不飽和基を有するシランカップリング剤等を添加して用いても良い。 In order to further improve the adhesion between the medium refractive index layer containing the active energy ray-curable resin and the optical adjustment layer or the second metal suboxide layer or metal oxide layer, the active energy ray is used. Add a (meth)acrylic acid derivative having a polar group such as a phosphoric acid group, a sulfonic acid group or an amide group or a silane coupling agent having an unsaturated group such as a (meth)acrylic group or a vinyl group to the curable resin. You may use it.
 上記中屈折率層を、水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層とする場合は、上記熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化型樹脂に代えて、上述した水酸基を有する(メタ)アクリル系共重合体、あるいは該水酸基を有する(メタ)アクリル系共重合体と他の樹脂との混合物を用いて該水酸基と反応する架橋剤を添加した中屈折率層用塗料を調製し、塗布膜を形成、硬化すれば良い。必要に応じて、屈折率調整用の無機微粒子を分散させても良い。 When the medium refractive index layer is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, the thermoplastic resin, thermosetting resin, active Instead of the energy ray curable resin, the above-mentioned hydroxyl group-containing (meth)acrylic copolymer or a mixture of the hydroxyl group-containing (meth)acrylic copolymer and another resin is used to react with the hydroxyl group. The coating for the medium refractive index layer to which the crosslinking agent is added is prepared, and the coating film is formed and cured. Inorganic fine particles for adjusting the refractive index may be dispersed if necessary.
 本実施形態の塗布型の保護層は、とりわけ、上記中屈折率層を、硬化前樹脂成分として、上記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層とすることが最も好ましい。これは、以下の理由による。即ち、上記透明遮熱断熱部材の光学特性、外観性(虹彩現象、視認角度による反射色変化)のバランスも良好なものとすることを目的に、上記塗布型の保護層が複数の層で形成される場合、上記中屈折率層は、波長550nmの光の屈折率が1.45以上1.55以下の範囲であることが好ましいが、この範囲の屈折率は、多くの場合は、樹脂単独あるいは極少量の屈折率調整用の無機微粒子が添加された樹脂で得ることが可能であり、このような中屈折率層は、上記光学調整層や後述する高屈折率層のように屈折率調整用の無機微粒子を多量に含む層に比べて、微細な空隙が極めて少なく、より緻密な層となる。そのため、上記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層を、上記中屈折率層に適用した場合、上記屈折率調整用の無機微粒子を多量に含む光学調整層や高屈折率層に適用した場合と比較して、前述した、赤外線反射層表面に存在する「金属層が第2の金属亜酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」や赤外線反射層を、酸素、水、塩化物イオン等の外部環境要因から保護する機能(バリア機能)をより一層高くすることができる。 The coating type protective layer of the present embodiment, in particular, the middle refractive index layer, as a pre-curing resin component, a (meth)acrylic copolymer having a hydroxyl group, and a polyisocyanate crosslinking agent that reacts with the hydroxyl group. Most preferably, it is a layer containing and. This is for the following reason. That is, the coating type protective layer is formed of a plurality of layers for the purpose of achieving a good balance of optical characteristics and appearance (iris phenomenon, reflection color change depending on viewing angle) of the transparent heat insulating and heat insulating member. In this case, the medium refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.45 or more and 1.55 or less. In many cases, the refractive index in this range is resin alone. Alternatively, it is possible to obtain a resin in which a very small amount of inorganic fine particles for adjusting the refractive index is added, and such a medium refractive index layer has a refractive index adjustment like the optical adjustment layer or a high refractive index layer described later. As compared with a layer containing a large amount of inorganic fine particles for use in the present invention, it has a very small number of fine voids and becomes a denser layer. Therefore, when a layer containing the (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group is applied to the medium refractive index layer, the inorganic fine particles for adjusting the refractive index are used. In comparison with the case where it is applied to an optical adjustment layer or a high refractive index layer containing a large amount of “the metal layer present on the surface of the infrared reflection layer is completely covered by the second metal suboxide layer. To further enhance the function (barrier function) to protect the ultra-small area where the metal from the metal layer is exposed" and the infrared reflection layer from external environmental factors such as oxygen, water, and chloride ions. You can
 [高屈折率層]
 上記高屈折率層は、波長550nmの光の屈折率が1.65以上1.95以下の範囲であることが好ましく、上記屈折率は1.70以上1.90以下の範囲であることがより好ましい。また、上記塗布型の保護層が複数の層で形成される場合、例えば、好ましい態様として、4層、3層あるいは2層で形成される場合、上記高屈折率層の厚さは、高屈折率層に対して順に下層となる中屈折率層、光学調整層、また高屈折率層に対して上層となる低屈折率層の各々の層の屈折率や厚さ等によって適切な範囲が異なるので、一概には言えないが、上記他の層の構成との兼ね合いにおいて、60nm以上550nm以下の範囲の中で設定されることが好ましく、上記厚さは65nm以上400nm以下の範囲の中で設定されることがより好ましい。上記高屈折率層の厚さが60nmを下回ると保護層としての耐擦傷性といった物理特性が低下する懸念があり、上記高屈折率層の厚さが550nmを超えると、上記高屈折率層が無機微粒子を多量に含有する場合に赤外線領域での光の吸収が大きくなり、断熱性の低下につながる可能性があるため好ましくない。
[High refractive index layer]
The high refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.65 to 1.95, and more preferably in the range of 1.70 to 1.90. preferable. Further, when the coating type protective layer is formed of a plurality of layers, for example, when it is formed of four layers, three layers or two layers in a preferred embodiment, the high refractive index layer has a high refractive index. The appropriate range varies depending on the refractive index and thickness of each of the medium refractive index layer, the optical adjustment layer, which is the lower layer with respect to the refractive index layer, and the low refractive index layer, which is the upper layer with respect to the high refractive index layer. Therefore, although it cannot be generally stated, it is preferable to set the thickness in the range of 60 nm or more and 550 nm or less and the thickness in the range of 65 nm or more and 400 nm or less in consideration of the configuration of the other layers. More preferably. If the thickness of the high refractive index layer is less than 60 nm, physical properties such as scratch resistance as a protective layer may deteriorate, and if the thickness of the high refractive index layer exceeds 550 nm, the high refractive index layer is When a large amount of inorganic fine particles are contained, absorption of light in the infrared region becomes large, which may lead to deterioration of heat insulating property, which is not preferable.
 上記高屈折率層の構成材料は、上記高屈折率層の屈折率が上記範囲内に設定できれば、特に限定されず、例えば、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化型樹脂等の樹脂と、上記樹脂中に分散された無機微粒子とを含む材料が好適に用いられる。上記熱可塑性樹脂、熱硬化性樹脂や上記活性エネルギー線硬化型樹脂等の樹脂及び上記無機微粒子としては、前述した光学調整層に使用できるものと同一の樹脂及び無機微粒子を使用することができ、同一の処方で上記高屈折率層を形成することができる。上記高屈折率層の構成材料の中でも、透明性といった光学特性の面、耐擦傷性といった物理特性の面、更に生産性の面から、活性エネルギー線硬化型樹脂と、上記活性エネルギー線硬化型樹脂中に分散された無機微粒子とを含む材料が好ましい。また、上記活性エネルギー線硬化型樹脂に無機微粒子を含む材料は、一般的に、上記中屈折率層上に塗設した後に紫外線等の活性エネルギー線照射により硬化して上記高屈折率層として形成されるが、無機微粒子を含んでいることにより、硬化時の膜の収縮が抑制されるため、上記高屈折率層と上記中屈折率層との密着性を良好なものとすることができる。 The constituent material of the high refractive index layer is not particularly limited as long as the refractive index of the high refractive index layer can be set within the above range, and examples thereof include a thermoplastic resin, a thermosetting resin, and an active energy ray curable resin. A material containing a resin and inorganic fine particles dispersed in the resin is preferably used. As the thermoplastic resin, the thermosetting resin and the resin such as the active energy ray-curable resin and the inorganic fine particles, it is possible to use the same resin and inorganic fine particles that can be used for the optical adjustment layer described above, The high refractive index layer can be formed with the same formulation. Among the constituent materials of the high refractive index layer, the active energy ray-curable resin and the active energy ray-curable resin in terms of optical characteristics such as transparency, physical characteristics such as scratch resistance, and productivity. A material containing inorganic fine particles dispersed therein is preferable. The material containing inorganic fine particles in the active energy ray-curable resin is generally formed as the high refractive index layer by coating on the medium refractive index layer and then curing by irradiation with active energy ray such as ultraviolet rays. However, by containing the inorganic fine particles, the shrinkage of the film at the time of curing is suppressed, so that the adhesion between the high refractive index layer and the medium refractive index layer can be made good.
 また、上記無機微粒子は、上記高屈折率層の屈折率を調整するために添加されるが、上記無機微粒子の中でも、他の材料に比べて少量の添加で高屈折率化が可能な酸化チタン及び酸化ジルコニウムが好ましく、赤外線領域の光の吸収が比較的少ない点で酸化チタンがより好ましい。 Further, the inorganic fine particles are added to adjust the refractive index of the high refractive index layer, but among the inorganic fine particles, titanium oxide capable of increasing the refractive index by adding a small amount compared to other materials. Further, zirconium oxide is preferable, and titanium oxide is more preferable because it absorbs relatively little light in the infrared region.
 また、上記活性エネルギー線硬化型樹脂を含む高屈折率層と上記中屈折率層あるいは上記第2の金属亜酸化物層又は金属酸化物層との密着性をより向上させるために、上記活性エネルギー線硬化型樹脂にリン酸基、スルホン酸基、アミド基等の極性基を有する(メタ)アクリル酸誘導体や(メタ)アクリル基、ビニル基等の不飽和基を有するシランカップリング剤等を添加して用いても良い。 Further, in order to further improve the adhesion between the high refractive index layer containing the active energy ray-curable resin and the medium refractive index layer or the second metal suboxide layer or metal oxide layer, the active energy Addition of (meth)acrylic acid derivatives having polar groups such as phosphoric acid groups, sulfonic acid groups, amide groups, and silane coupling agents having unsaturated groups such as (meth)acrylic groups and vinyl groups to linear curing resins You may use it.
 上記高屈折率層を、水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層とする場合は、上記熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化型樹脂に代えて、上述した水酸基を有する(メタ)アクリル系共重合体、あるいは該水酸基を有する(メタ)アクリル系共重合体と他の樹脂との混合物を用いて屈折率調整用の上記無機微粒子を分散した後、該水酸基と反応するポリイソシアネート系架橋剤を添加した高屈折率層用塗料を調製し、塗布膜を形成、硬化すれば良い。 When the high refractive index layer is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group, the thermoplastic resin, thermosetting resin, active Instead of the energy ray-curable resin, the above-mentioned (meth)acrylic copolymer having a hydroxyl group or a mixture of the (meth)acrylic copolymer having a hydroxyl group and another resin is used for adjusting the refractive index. After dispersing the above-mentioned inorganic fine particles, the polyisocyanate crosslinking agent that reacts with the hydroxyl group is added to prepare a coating material for a high refractive index layer, and a coating film is formed and cured.
 [低屈折率層]
 上記低屈折率層は、波長550nmの光の屈折率が1.30以上1.45未満の範囲であることが好ましく、上記屈折率は1.35以上1.43以下の範囲であることがより好ましい。また、上記保護層が複数の層で形成される場合、例えば、好ましい態様として、4層、3層あるいは2層で形成される場合、上記低屈折率層の厚さは、低屈折率層に対して順に下層となる高屈折率層、中屈折率層、光学調整層の各々の層の屈折率や厚さ等によって適切な範囲が異なるので、一概には言えないが、上記他の層の構成との兼ね合いにおいて、70nm以上150nm以下の範囲の中で設定されることが好ましく、上記厚さは80nm以上130nm以下の範囲の中で設定されることがより好ましい。上記低屈折率層の厚さが70nm以上150nm以下の範囲を外れると本実施形態の透明遮熱断熱部材の可視光線領域の反射スペクトルのリップルの大きさ、即ち、可視光線領域の波長に対する反射率の変動を十分に低減することができず、虹彩模様が目立ちやすくなるだけでなく、視野角によって反射色の変化が大きくなり、外観として問題となり得るおそれがある。また、可視光線透過率が低下するおそれがある。
[Low refractive index layer]
The low refractive index layer preferably has a refractive index of light having a wavelength of 550 nm in the range of 1.30 or more and less than 1.45, and more preferably in the range of 1.35 or more and 1.43 or less. preferable. When the protective layer is formed of a plurality of layers, for example, when it is formed of four layers, three layers or two layers in a preferred embodiment, the thickness of the low refractive index layer is the same as that of the low refractive index layer. On the other hand, since the appropriate range varies depending on the refractive index and thickness of each layer of the high refractive index layer, the medium refractive index layer, and the optical adjustment layer, which are the lower layers in order, it cannot be said unconditionally. In consideration of the constitution, the thickness is preferably set in the range of 70 nm to 150 nm, and more preferably the thickness is set in the range of 80 nm to 130 nm. When the thickness of the low refractive index layer is out of the range of 70 nm or more and 150 nm or less, the size of the ripple of the reflection spectrum in the visible light region of the transparent heat insulating and heat insulating member of the present embodiment, that is, the reflectance with respect to the wavelength of the visible light region. Can not be sufficiently reduced, the iris pattern tends to be conspicuous, and the change in reflected color increases depending on the viewing angle, which may cause a problem in appearance. In addition, the visible light transmittance may decrease.
 上記低屈折率層の構成材料は、上記低屈折率層の屈折率が上記範囲内に設定できれば、特に限定はされないが、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含むことが好ましい。上記活性エネルギー線硬化型樹脂としては、前述した光学調整層に使用できる活性エネルギー線硬化型樹脂と同様の樹脂及びそれらの含フッ素化合物や含シリコーン化合物等を使用することができ、必要に応じて光重合開始剤を添加し、活性エネルギー線を照射することで、上記塗布型の保護層の最外表面層を形成できる。また、屈折率の調整のため、必要に応じて上記活性エネルギー線硬化型樹脂中に無機微粒子を分散、添加しても構わない。例えば、上記活性エネルギー線硬化型樹脂と、上記活性エネルギー線硬化型樹脂中に分散された低屈折率の無機微粒子とを含む材料及び活性エネルギー線硬化型樹脂と低屈折率無機微粒子とが化学的に結合した有機・無機ハイブリッド材料を含む材料が好ましい。 The constituent material of the low refractive index layer is not particularly limited as long as the refractive index of the low refractive index layer can be set within the above range, but it is preferable to include an active energy ray curable resin as a resin component before curing. As the active energy ray-curable resin, the same resin as the active energy ray-curable resin that can be used in the above-mentioned optical adjustment layer and a fluorine-containing compound or a silicone-containing compound thereof can be used, and if necessary. The outermost surface layer of the coating type protective layer can be formed by adding a photopolymerization initiator and irradiating with active energy rays. Further, in order to adjust the refractive index, inorganic fine particles may be dispersed and added into the active energy ray-curable resin, if necessary. For example, a material containing the active energy ray-curable resin and low refractive index inorganic fine particles dispersed in the active energy ray-curable resin, and the active energy ray curable resin and the low refractive index inorganic fine particles are chemically Materials containing organic-inorganic hybrid materials bound to are preferred.
 上記無機微粒子は上記低屈折率層の屈折率を調整するために上記樹脂中に分散、添加される。上記低屈折率の無機微粒子としては、例えば、酸化ケイ素、フッ化マグネシウム、フッ化アルミニウム等を用いることができるが、保護層の最表面となる低屈折率層の耐擦傷性といった物理特性の観点から酸化ケイ素系材料が好ましく、中でも低屈折率化を発現させるために内部に空隙を有する中空タイプの酸化ケイ素(中空シリカ)系材料が特に好ましい。 The above-mentioned inorganic fine particles are dispersed and added to the above resin in order to adjust the refractive index of the above low refractive index layer. As the low-refractive-index inorganic fine particles, for example, silicon oxide, magnesium fluoride, aluminum fluoride or the like can be used, but from the viewpoint of physical properties such as scratch resistance of the low-refractive-index layer which is the outermost surface of the protective layer. From the above, a silicon oxide-based material is preferable, and a hollow type silicon oxide (hollow silica)-based material having voids inside for exhibiting a low refractive index is particularly preferable.
 また、上記活性エネルギー線硬化型樹脂に無機微粒子を含む材料は、一般的に、上記高屈折率層上に塗設した後に紫外線等の活性エネルギー線照射により硬化して上記低屈折率層として形成されるが、無機微粒子を含んでいることにより、硬化時の膜の収縮が抑制されるため、上記高屈折率層との密着性を良好なものとすることができる。 The material containing inorganic fine particles in the active energy ray-curable resin is generally formed as the low refractive index layer by coating on the high refractive index layer and then curing by irradiation with active energy rays such as ultraviolet rays. However, since the inorganic fine particles are contained, the shrinkage of the film at the time of curing is suppressed, so that the adhesion with the high refractive index layer can be made good.
 また、上記活性エネルギー線硬化型樹脂を含む低屈折率層と上記高屈折率層あるいは第2の金属亜酸化物層又は金属酸化物層との密着性をより向上させるために、上記活性エネルギー線硬化型樹脂にリン酸基、スルホン酸基、アミド基等の極性基を有する(メタ)アクリル酸誘導体や(メタ)アクリル基、ビニル基等の不飽和基を有するシランカップリング剤等を添加して用いても良い。 In order to further improve the adhesion between the low refractive index layer containing the active energy ray-curable resin and the high refractive index layer or the second metal suboxide layer or the metal oxide layer, the active energy ray is added. Add a (meth)acrylic acid derivative having a polar group such as a phosphoric acid group, a sulfonic acid group or an amide group or a silane coupling agent having an unsaturated group such as a (meth)acrylic group or a vinyl group to the curable resin. You may use it.
 上記低屈折率層の構成材料としては、上記の構成材料以外に、レベリング剤、滑材、帯電防止剤、ヘーズ付与剤等の添加剤が含まれていても良く、これらの添加剤の含有量は、本実施形態の目的を損なわない範囲で適宜調整される。 As the constituent material of the low refractive index layer, in addition to the constituent materials described above, a leveling agent, a lubricant, an antistatic agent, an additive such as a haze imparting agent may be contained, and the content of these additives Are appropriately adjusted within a range that does not impair the purpose of the present embodiment.
 上述したように、複層の層から形成される上記塗布型の保護層として、(1)上記赤外線反射層側から高屈折率層及び低屈折率層をこの順で含む積層構成、(2)上記赤外線反射層側から中屈折率層、高屈折率層及び低屈折率層をこの順で含む積層構成、あるいは、(3)上記赤外線反射層側から光学調整層、中屈折率層、高屈折率層及び低屈折率層をこの順で含む積層構成が本実施形態の好ましい態様であるが、いずれの構成とする場合においても、それぞれの積層からなる上記塗布型の保護層の総厚さが200nm以上980nm以下の範囲となるように、波長550nmの光の屈折率が1.60以上2.00以下である上記光学調整層の厚さを30nm以上80nm以下の範囲の中から、また、波長550nmの光の屈折率が1.45以上1.55以下である上記中屈折率層の厚さを40nm以上200nm以下の範囲の中から、また、波長550nmの光の屈折率が1.65以上1.95以下である上記高屈折率層の厚さを60nm以上550nm以下の範囲の中から、また、波長550nmの光の屈折率が1.30以上1.45未満である上記低屈折率層の厚さを70nm以上150nm以下の範囲の中から、適宜設定することにより、断熱性(熱貫流率の値としては4.2W/(m2・K)以下)を維持しつつ耐擦傷性、耐腐食劣化性といった物理特性に優れ、且つ日射吸収率が低く、且つ虹彩現象、視認角度による反射色変化を抑制した外観性も良好な透明遮熱断熱部材を提供することができる。特に、可視光線透過率を高く維持しつつ、日射吸収率をより低くするためには、総じて、エネルギーの重価係数の大きい波長帯域である800~1500nmの反射率が高くなるように上記複数の層を設定し上記塗布型の保護層を形成するのが好ましい。 As described above, as the coating type protective layer formed of multiple layers, (1) a laminated structure including a high refractive index layer and a low refractive index layer in this order from the infrared reflecting layer side, (2) A laminated structure including a medium refractive index layer, a high refractive index layer, and a low refractive index layer in this order from the infrared reflecting layer side, or (3) an optical adjustment layer, a medium refractive index layer, and a high refractive index from the infrared reflecting layer side. A laminated structure including a refractive index layer and a low refractive index layer in this order is a preferred embodiment of the present embodiment, but in any case, the total thickness of the coating type protective layer formed of each laminated layer is The refractive index of light having a wavelength of 550 nm is 1.60 or more and 2.00 or less so as to be in the range of 200 nm or more and 980 nm or less. The refractive index of light having a wavelength of 550 nm is 1.45 or more and 1.55 or less. The thickness of the medium refractive index layer is in the range of 40 nm or more and 200 nm or less, and the refractive index of light having a wavelength of 550 nm is 1.65 or more. The high refractive index layer having a thickness of 1.95 or less is selected from the range of 60 nm or more and 550 nm or less, and the refractive index of light having a wavelength of 550 nm is 1.30 or more and less than 1.45. The thickness of 70 nm or more and 150 nm or less, the heat resistance (4.2 W/(m 2 ·K) or less as a heat transmission coefficient) is maintained and the scratch resistance is set by appropriately setting the thickness. It is possible to provide a transparent heat insulating and heat insulating member which has excellent physical properties such as corrosion resistance and deterioration, has a low solar absorptance, and suppresses the iris phenomenon and reflected color change depending on the viewing angle and has a good appearance. In particular, in order to lower the solar absorptance while keeping the visible light transmittance high, the above-mentioned plurality of wavelengths are generally set so as to increase the reflectance in the wavelength band 800-1500 nm where the weight coefficient of energy is large. It is preferable to set layers to form the above-mentioned coating type protective layer.
 また、より好ましい範囲として、上記塗布型の保護層の総厚さを300nm以上700nm以下の範囲内に設定すれば、熱貫流率の値としては4.0W/(m2・K)以下となり、且つ、保護層としての機械的物性も十分に確保できるので、断熱性能と、耐擦傷性、耐腐食劣化性といった物理特性とを更に高いレベルで両立することができる。 Further, as a more preferable range, if the total thickness of the coating type protective layer is set in the range of 300 nm or more and 700 nm or less, the value of the heat transmission coefficient becomes 4.0 W/(m 2 ·K) or less, In addition, since the mechanical properties of the protective layer can be sufficiently ensured, the heat insulation performance and the physical characteristics such as scratch resistance and corrosion deterioration resistance can be compatible at a higher level.
 なお、上記塗布型の保護層が、上記赤外線反射層側から中屈折率層(下)及び中屈折率層(上)をこの順で含む2層から構成される場合、該中屈折率層の各々の厚さは、前述した厚さに限定される必要はなく、本発明の効果を損なわない範囲において、好ましい保護層の総厚さである200nm以上980nm以下の範囲の中で、適宜調整して設定すれば良い。ただし、この組み合わせの2層保護層の場合、中屈折率層の屈折率によっては得られる透明遮熱断熱部材の外観性が劣ることがある。 When the coating type protective layer is composed of two layers including a medium refractive index layer (lower) and a medium refractive index layer (upper) in this order from the infrared reflecting layer side, when the medium refractive index layer is Each thickness does not need to be limited to the above-mentioned thickness, and is appropriately adjusted within a range of 200 nm or more and 980 nm or less, which is a preferable total thickness of the protective layer, as long as the effect of the present invention is not impaired. You can set it. However, in the case of the two-layer protective layer of this combination, the appearance of the transparent heat insulating/insulating member obtained may be poor depending on the refractive index of the medium refractive index layer.
 本実施形態の透明遮熱断熱部材において、上記塗布型の保護層の内、少なくとも上記赤外線反射層の上記(第2の)金属亜酸化物層又は金属酸化物層に直接に接する層は、金属に対する腐食防止剤を含むことが好ましい。上記(第2の)金属亜酸化物層又は金属酸化物層に直接に接する層に上記金属に対する腐食防止剤を含有させることにより、低放射フィルムの日射吸収率を低減することを目的に、上記(第2の)金属亜酸化物層又は金属酸化物層を薄く形成しても、上記金属に対する腐食防止剤が、「金属層が(第2の)金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」に吸着して腐食防止層を形成し、その極微小な金属部位を、酸素、水、塩化物イオン等の外部環境要因から保護することができるので、上記ポリイソシアネート系架橋剤により硬化された特定の(メタ)アクリル系共重合体を含む層のバリア効果に加えて、上記金属層の腐食劣化の進行を更に抑制することができる。 In the transparent heat insulating and heat insulating member of the present embodiment, among the coating type protective layers, at least the layer which is in direct contact with the (second) metal suboxide layer or the metal oxide layer of the infrared reflecting layer is made of metal. It is preferable to include a corrosion inhibitor for. For the purpose of reducing the solar radiation absorptivity of the low-emissivity film by including a corrosion inhibitor for the metal in the layer which is in direct contact with the (second) metal suboxide layer or the metal oxide layer, Even if the (second) metal suboxide layer or the metal oxide layer is thinly formed, the corrosion inhibitor against the metal is "the metal layer is (second) Corrosion-preventive layer is formed by adsorbing to the microscopic part where the metal derived from the metal layer is not completely covered and is exposed, and the microscopic metal part is oxygen, water or chloride ions. In addition to the barrier effect of the layer containing the specific (meth)acrylic copolymer cured by the polyisocyanate-based crosslinking agent, it is possible to protect from corrosion deterioration of the metal layer. The progress can be further suppressed.
 上記金属に対する腐食防止剤としては、種類は特に制限されるものではなく、金属の腐食を抑制できる化合物であれば良い。中でも、銀の腐食を抑制できるものが好ましく、銀に対して吸着しやすい官能基を有する化合物が好ましい。例えば、アミン類及びその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、グアニジン類及びその誘導体、チアゾール環を有する化合物、チオ尿素類、メルカプト基を有する化合物、チオエーテル類、ナフタレン系の化合物、銅キレート化合物類、シリコーン変性樹脂等が挙げられる。中でも、特に、窒素含有基を有する化合物、硫黄含有基を有する化合物が好ましく、これらの少なくとも1種あるいは混合物から選択されるのが好ましい。 The type of the corrosion inhibitor for the above metals is not particularly limited, and any compound that can suppress the corrosion of the metals may be used. Of these, compounds capable of suppressing silver corrosion are preferable, and compounds having a functional group that easily adsorbs silver are preferable. For example, amines and their derivatives, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having an imidazole ring, compounds having an indazole ring, guanidines and their derivatives, compounds having a thiazole ring, Examples thereof include thioureas, compounds having a mercapto group, thioethers, naphthalene compounds, copper chelate compounds, and silicone-modified resins. Of these, a compound having a nitrogen-containing group and a compound having a sulfur-containing group are particularly preferable, and it is preferable that they are selected from at least one kind or a mixture thereof.
 上記窒素含有基を有する化合物としては、例えば、アミノアルコール、メチルエタノールアミン、ジメチルアミノエタノール、N,N-ジメチルエタノールアミン等のアルキルアルコールアミン誘導体;ジフェニルアミン、アルキル化ジフェニルアミン、フェニレンジアミン等のフェニルアミン誘導体;グアニジン、1-o-トリルビグアニド、1-フェニルグアニジン、アミノグアニジン等のグアニジン誘導体;1,2,3-トリアゾール、1,2,4-トリアゾール、ベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール等のトリアゾール類及びその誘導体;N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール等のピロール誘導体;ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等のピラゾール類及びその誘導体;イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール等のイミダゾール類及びその誘導体;4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等のインダゾール類及びその誘導体等が挙げられる。 Examples of the compound having a nitrogen-containing group include alkyl alcohol amine derivatives such as amino alcohol, methyl ethanol amine, dimethyl amino ethanol and N,N-dimethyl ethanol amine; phenyl amine derivatives such as diphenylamine, alkylated diphenylamine and phenylenediamine. Guanidine derivatives such as guanidine, 1-o-tolylbiguanide, 1-phenylguanidine and aminoguanidine; triazoles such as 1,2,3-triazole, 1,2,4-triazole, benzotriazole and 1-hydroxybenzotriazole And derivatives thereof; pyrrole derivatives such as N-butyl-2,5-dimethylpyrrole and N-phenyl-2,5-dimethylpyrrole; pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl -Pyrazoles such as 5-hydroxypyrazole and 4-aminopyrazole and derivatives thereof; imidazoles such as imidazole, histidine, 2-heptadecylimidazole and 2-methylimidazole and derivatives thereof; 4-chloroindazole, 4-nitroindazole, Examples thereof include indazoles such as 5-nitroindazole and 4-chloro-5-nitroindazole and derivatives thereof.
 また、上記硫黄含有基を有する化合物としては、例えば、アルカンチオール、アルキルジスルフィド等のチオール誘導体;1-チオグリセロール等のチオグリセロール類及びその誘導体;2-ヒドロキシエタンチオール等のチオグリコール類及びその誘導体;チオ安息香酸類及びその誘導体;ペンタエリスリトール-テトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、トリメチロールプロパン-トリス(3-メルカプトブチレート)、トリメチロールエタン-トリス(3-メルカプトブチレート)等の多官能チオールモノマー類;チオフェノール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等が挙げられる。 Examples of the compound having a sulfur-containing group include thiol derivatives such as alkanethiol and alkyl disulfide; thioglycerols such as 1-thioglycerol and derivatives thereof; thioglycols such as 2-hydroxyethanethiol and derivatives thereof. Thiobenzoic acids and their derivatives; pentaerythritol-tetrakis(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane, trimethylolpropane-tris(3-mercaptobutyrate), trimethylol Polyfunctional thiol monomers such as ethane-tris(3-mercaptobutyrate); thiophenol, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane and the like can be mentioned.
 更に、上記窒素含有基及び硫黄含有基の両方を有する化合物としては、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール等のメルカプトトリアゾール類及びその誘導体;2-メルカプトベンゾチアゾール等のメルプカプトチアゾール類及びその誘導体;2-メルカプトベンゾイミダゾール等のメルカプトイミダゾール類及びその誘導体;2,4-ジメルカプトトリアジン等のメルカプトトリアジン類及びその誘導体;チオ尿素、グアニルチオ尿素等のチオ尿素類及びその誘導体;2-アミノチオフェノール、4-アミノチオフェノール等のアミノチオフェノール類及びその誘導体;2-メルカプト-N-(2-ナフチル)アセトアミド等が挙げられる。 Furthermore, examples of the compound having both the nitrogen-containing group and the sulfur-containing group include mercaptotriazoles such as 3-mercapto-1,2,4-triazole and 1-methyl-3-mercapto-1,2,4-triazole. And derivatives thereof; mercaptothiazoles such as 2-mercaptobenzothiazole and derivatives thereof; mercaptoimidazoles such as 2-mercaptobenzimidazole and derivatives thereof; mercaptotriazines such as 2,4-dimercaptotriazine and derivatives thereof; thio Thioureas such as urea and guanylthiourea and their derivatives; aminothiophenols such as 2-aminothiophenol and 4-aminothiophenol and their derivatives; 2-mercapto-N-(2-naphthyl)acetamide and the like. ..
 上記金属に対する腐食防止剤の含有量は、上記金属に対する腐食防止剤を含む層の全質量に対して、1質量%以上20質量%以下であることが好ましい。上記含有量が、1質量%を下回ると、その添加剤としての効果が発揮されにくく、20質量%を超えると、上記第2の金属亜酸化物層又は金属酸化物層に接する上記保護層及び他の上記金属に対する腐食防止剤を含む層の強度が低下するおそれや、その接する界面における密着性が低下するおそれがある。 The content of the corrosion inhibitor for the metal is preferably 1% by mass or more and 20% by mass or less based on the total mass of the layer containing the corrosion inhibitor for the metal. If the content is less than 1% by mass, the effect as an additive is difficult to be exhibited, and if it exceeds 20% by mass, the protective layer in contact with the second metal suboxide layer or the metal oxide layer and There is a possibility that the strength of the layer containing the corrosion inhibitor with respect to the other metals may be lowered, or that the adhesion at the interface where they are in contact is lowered.
 上記金属に対する腐食防止剤を、複数の層からなる塗布型の保護層の内、上記赤外線反射層の少なくとも上記(第2の)金属亜酸化物層又は金属酸化物層に直接に接する層に含有させるのは、上記赤外線反射層の表面において、「金属層が(第2の)金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」に、最も効率よく、上記金属に対する腐食防止剤を吸着させ、腐食防止層を形成させることができるからである。その結果、低放射フィルムの日射吸収率を低減することを目的に、上記(第2の)金属亜酸化物層又は金属酸化物層を薄く形成した際に、「金属層が(第2の)金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」が発生しても、上記金属に対する腐食防止剤が、その極微小な金属部位に吸着し、それにより形成された腐食防止層が、上記保護層を拡散、浸透してきた酸素、水、塩化物イオン等の外部環境要因に対するバリア層となって、外部環境要因から保護するため、従来からの問題であった「上記金属層が(第2の)金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」を起点とした上記金属層の腐食劣化の進行を著しく抑制することができる。 A corrosion inhibitor for the metal is contained in at least a layer of the infrared reflective layer that is in direct contact with the (second) metal suboxide layer or the metal oxide layer, of the coating type protective layer composed of a plurality of layers. What is caused is that, on the surface of the infrared reflective layer, "the metal layer is not completely covered by the (second) metal suboxide layer or the metal oxide layer and the metal derived from the metal layer is exposed. This is because it is possible to adsorb the corrosion inhibitor for the above metal and form the corrosion prevention layer most efficiently in the "extremely minute portion". As a result, when the (second) metal suboxide layer or the metal oxide layer is thinly formed for the purpose of reducing the solar radiation absorptivity of the low-emissivity film, the "metal layer (second)" Even if ``a minute portion where the metal derived from the metal layer is not completely covered by the metal suboxide layer or the metal oxide layer and is in a bare state'' occurs, the corrosion inhibitor for the metal, Corrosion preventive layer formed by adsorbing to minute metal parts acts as a barrier layer against external environmental factors such as oxygen, water and chloride ions that have diffused and permeated the protective layer. In order to protect the metal layer from the metal layer, the metal layer was not completely covered by the (second) metal suboxide layer or the metal oxide layer, and the metal derived from the metal layer was exposed. It is possible to remarkably suppress the progress of corrosion deterioration of the metal layer starting from "the extremely minute portion".
 このように、上記塗布型の保護層を、上記赤外線反射層における上記(第2の)金属亜酸化物層又は金属酸化物層の上に、複数の層で形成する場合、複数の層の内、少なくとも上記赤外線反射層における上記(第2の)金属亜酸化物層又は金属酸化物層に直接に接する層に上記金属に対する腐食防止剤が含有されることが好ましいが、加えて、他の層にも上記金属に対する腐食防止剤が含有されていても構わない。その理由としては、例えば、上記塗布型の保護層の1層目として該層をウェトコーティングで形成する際に、万一、そのウェットコーティング液が、上記「金属層が(第2の)金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」ではじかれて、その表面をカバレッジできずに上記金属に対する腐食防止剤が極微小な金属部位にうまく吸着できなかった場合でも、次の2層目の保護層に上記金属に対する腐食防止剤を含有させておけば、上記保護層の1層目の上に上記2層目の保護層をウェットコーティングで形成する際に、上記カバレッジできずに上記金属に対する腐食防止剤が吸着できなかった極微小な金属部位に、再度、上記金属に対する腐食防止剤を吸着させる機会を与えることができるからである。このことにより、上記金属に対する腐食防止剤が吸着されていない上記「金属層が(第2の)金属亜酸化物層又は金属酸化物層により完全に被覆されておらず金属層由来の金属が剥き出し状態になっている極微小な部位」の残存率を大幅に低減することが可能となる。 As described above, when the coating type protective layer is formed of a plurality of layers on the (second) metal suboxide layer or the metal oxide layer in the infrared reflective layer, among the plurality of layers, It is preferable that at least the layer in direct contact with the (second) metal suboxide layer or the metal oxide layer in the infrared reflective layer contains a corrosion inhibitor for the above metal, but in addition, another layer Also, a corrosion inhibitor for the above metals may be contained. The reason is that, for example, when the layer is formed by wet coating as the first layer of the above-mentioned coating type protective layer, the wet coating liquid should have the above-mentioned "metal layer (second) metal sub-layer". It is not completely covered by the oxide layer or the metal oxide layer and the metal derived from the metal layer is exposed. Even if the agent could not be adsorbed well on the very small metal part, if the next second protective layer contains a corrosion inhibitor for the above metal, the above-mentioned 2nd protective layer is formed on the first protective layer. When forming the protective layer of the second layer by wet coating, there is an opportunity to adsorb the corrosion inhibitor for the above-mentioned metal again to the minute metal portion where the above-mentioned coverage could not be adsorbed and the corrosion inhibitor for the above-mentioned metal could not be adsorbed. Because it can be given. As a result, the "metal layer is not completely covered by the (second) metal suboxide layer or the metal oxide layer, and the metal derived from the metal layer is exposed, in which the corrosion inhibitor for the metal is not adsorbed. It is possible to significantly reduce the remaining rate of "extremely minute parts".
 <粘着剤層>
 本実施形態の透明遮熱断熱部材は、上記透明基材の塗布型の保護層を形成した面とは反対側の面に粘着剤層を配置することが好ましい。これにより、本実施形態の透明遮熱断熱部材を窓ガラス等の透明基板等に容易に貼り付けることができる。上記粘着剤層の材料としては、可視光線透過率が高く、透明基材との屈折率差が小さいものが好適に用いられる。例えば、アクリル系、ポリエステル系、ウレタン系、ゴム系、シリコーン系等の樹脂を使用できる。中でも、アクリル系樹脂が、光学的透明性が高いこと、濡れ性と粘着力のバランスが良いこと、信頼性が高く実績が多いこと、比較的安価なこと等からより好適に使用される。
<Adhesive layer>
In the transparent heat insulating and heat insulating member of the present embodiment, it is preferable that the pressure-sensitive adhesive layer is arranged on the surface of the transparent substrate opposite to the surface on which the coating type protective layer is formed. Thereby, the transparent heat insulating/insulating member of this embodiment can be easily attached to a transparent substrate such as a window glass. As a material for the pressure-sensitive adhesive layer, a material having a high visible light transmittance and a small difference in refractive index from a transparent substrate is preferably used. For example, acryl-based, polyester-based, urethane-based, rubber-based, silicone-based resin or the like can be used. Among them, acrylic resins are more preferably used because of their high optical transparency, good balance between wettability and adhesive strength, high reliability and many achievements, and relatively low price.
 上記アクリル系樹脂(粘着剤)としては、アクリル酸及びそのエステル、メタクリル酸及びそのエステル、アクリルアミド、アクリロニトリル等のアクリルモノマーの単独重合体もしくはそれらの共重合体、更に、上記アクリルモノマーの少なくとも1種と、酢酸ビニル、無水マレイン酸、スチレン等のビニルモノマーとの共重合体等があげられる。特に、好適なアクリル系粘着剤としては、粘着性を発現させるための成分となるメチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート等のアルキルアクリレート系の主モノマー、凝集力を向上させるための成分となる酢酸ビニル、アクリルアミド、アクリロニトリル、スチレン、メタクリレート等のモノマー、更に粘着力を向上させたり、架橋点を付与させたりするための成分となるアクリル酸、メタクリル酸、イタコン酸、クロトン酸、無水マレイン酸、ヒドロキシルエチルメタクリレート、ヒドロキシルプロピルメタクリレート、ジメチルアミノエチルメタクリレート、メチロールアクリルアミド、グリシジルメタクリレート等の官能基を有するモノマーを適宜共重合したものがあげられる。上記アクリル系粘着剤のTg(ガラス転移温度)は-60℃以上-10℃以下の範囲にあり、重量平均分子量が100,000以上2,000,000以下の範囲にあるものが好ましく、特に500,000以上1,000,000以下の範囲にあるものがより好ましい。前記アクリル系粘着剤には、必要に応じて、イソシアネート系、エポキシ系、金属キレート系等の架橋剤を1種あるいは2種以上混合して用いることができる。 As the acrylic resin (adhesive), acrylic acid and its esters, methacrylic acid and its esters, homopolymers or copolymers of acrylic monomers such as acrylamide and acrylonitrile, and at least one of the above acrylic monomers. And a vinyl monomer such as vinyl acetate, maleic anhydride, or styrene. Particularly preferred acrylic adhesives are alkyl acrylate-based main monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate, which serve as components for expressing adhesiveness, and are used for improving cohesive strength. Monomers such as vinyl acetate, acrylamide, acrylonitrile, styrene, and methacrylate, which are the components, and acrylic acid, methacrylic acid, itaconic acid, crotonic acid, and anhydride, which are the components for further improving the adhesive force and imparting crosslinking points. Examples thereof include those obtained by appropriately copolymerizing monomers having a functional group such as maleic acid, hydroxylethyl methacrylate, hydroxylpropyl methacrylate, dimethylaminoethyl methacrylate, methylol acrylamide, and glycidyl methacrylate. The acrylic pressure-sensitive adhesive preferably has a Tg (glass transition temperature) in the range of −60° C. to −10° C., and a weight average molecular weight of 100,000 to 2,000,000, particularly preferably 500. Those in the range of 1,000 or more and 1,000,000 or less are more preferable. As the acrylic pressure-sensitive adhesive, one type or a mixture of two or more types of crosslinking agents such as isocyanate type, epoxy type and metal chelate type can be used, if necessary.
 また、上記粘着剤層の厚さは、10μm以上100μm以下とすれば良いが、より好ましくは15μm以上50μm以下である。 The thickness of the pressure-sensitive adhesive layer may be 10 μm or more and 100 μm or less, and more preferably 15 μm or more and 50 μm or less.
 上記粘着剤層は、太陽光等の紫外線による透明遮熱断熱部材の劣化を抑制するために、ベンゾフェノン系、ベンゾトリアゾール系やトリアジン系等の紫外線吸収剤を含有することが好ましい。また、上記粘着剤層は、透明遮熱断熱部材を透明基板に貼り合わせて使用するまでの間、粘着剤層上に離型フィルムを備えていることが好ましい。 The adhesive layer preferably contains a benzophenone-based, benzotriazole-based, or triazine-based UV absorber in order to suppress the deterioration of the transparent heat-insulating and heat-insulating member due to UV rays such as sunlight. Further, it is preferable that the pressure-sensitive adhesive layer is provided with a release film on the pressure-sensitive adhesive layer until the transparent heat insulating/insulating member is attached to the transparent substrate for use.
 <透明遮熱断熱部材>
 本実施形態の透明遮熱断熱部材は、上記構成を有するため、赤外線反射層と塗布型の保護層との適正な設計の組み合わせにより、可視光線透過率を60%以上、遮蔽係数を0.69以下、熱貫流率を4.0W/(m2・K)以下とでき、且つ日射吸収率を20%以下とすることができる。即ち、フィルムを窓ガラスに貼り付けた際のガラスの熱割れリスクが低減された、透明性の高い遮熱断熱性に優れた低放射フィルムを提供することができる。
<Transparent thermal insulation member>
Since the transparent heat-insulating heat insulating member of the present embodiment has the above-mentioned configuration, the visible light transmittance is 60% or more and the shielding coefficient is 0.69 by the combination of the proper design of the infrared reflective layer and the coating type protective layer. Hereinafter, the heat transmission coefficient can be set to 4.0 W/(m 2 ·K) or less, and the solar radiation absorption rate can be set to 20% or less. That is, it is possible to provide a low-emission film having high transparency and excellent heat-shielding and heat-insulating properties, in which the risk of thermal cracking of the glass when the film is attached to a window glass is reduced.
 また、上記透明遮熱断熱部材は、上記構成を有するため、赤外線反射層と塗布型の保護層との適正な設計の組み合わせにより、温度50℃、濃度5質量%の塩化ナトリウム水溶液に30日間浸漬させる耐塩水性試験を行った場合、上記耐塩水性試験前に測定した上記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトル(初期)の波長1100nmの光の透過率をTB%、上記耐塩水性試験後に測定した上記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトル(30日間浸漬後)の波長1100nmの光の透過率をTA%とすると、TA-TBの値を10ポイント未満とすることができる。即ち、上記態様は、過酷な試験環境下における上記赤外線反射層の機能の劣化が著しく抑制されていることを意味しており、耐腐食劣化にも優れた低放射フィルムを提供することができる。 Further, since the transparent heat insulating and heat insulating member has the above-mentioned constitution, it is immersed in a sodium chloride aqueous solution having a temperature of 50° C. and a concentration of 5% by mass for 30 days depending on the combination of an appropriate design of the infrared reflecting layer and the coating type protective layer. When the salt water resistance test is performed, the transmittance of light having a wavelength of 1100 nm in the transmission spectrum (initial) in the wavelength range of 300 to 1500 nm of the transparent heat insulating and heat insulating member measured before the salt water resistance test is T B %, When the transmittance of light having a wavelength of 1100 nm in the transmission spectrum (after immersion for 30 days) in the wavelength range of 300 to 1500 nm of the transparent heat insulating and heat insulating member measured after the salt water resistance test is T A %, the value of T A -T B Can be less than 10 points. That is, the above aspect means that the deterioration of the function of the infrared reflective layer under a severe test environment is significantly suppressed, and a low radiation film excellent in corrosion resistance deterioration can be provided.
 また、上記透明遮熱断熱部材は、上記構成を有するため、赤外線反射層と塗布型の保護層との適正な設計の組み合わせにより、JIS R3106-1998に準じて測定した反射スペクトルにおいて、上記反射スペクトルの波長500~570nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインa上の波長535nmに対応する点を点Aとし、上記反射スペクトルの波長620~780nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインb上の波長700nmに対応する点を点Bとし、上記点Aと前記点Bとを通る直線を波長500~780nmの範囲で延長して基準直線ABとし、波長500~570nmの範囲における上記反射スペクトルの反射率の値と上記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔAと定義した時に、上記最大変動差ΔAの値が反射率の%単位で7%以下であり、波長620~780nmの範囲における上記反射スペクトルの反射率の値と上記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔBと定義した時に、上記最大変動差ΔBの値が反射率の%単位で9%以下とすることができる。即ち、上記態様は、上記反射スペクトルにおける波長に連動した可視光線反射率の上下の変動が低減されていることを意味しており、虹彩模様の発生や視認角度による反射色変化を抑制した外観性にも優れた低放射フィルムを提供することができる。 Further, since the transparent heat insulating and heat insulating member has the above-mentioned structure, the reflection spectrum in the reflection spectrum measured according to JIS R3106-1998 by the combination of the proper design of the infrared reflection layer and the coating type protective layer. Point A is a point corresponding to a wavelength of 535 nm on the virtual line a indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 500 to 570 nm, and the maximum reflectance in the wavelength range of 620 to 780 nm of the reflection spectrum. And a point corresponding to a wavelength of 700 nm on an imaginary line b indicating the average value of the minimum reflectance is defined as a point B, and a straight line passing through the points A and B is extended in a wavelength range of 500 to 780 nm to form a reference straight line AB. Then, when the reflectance value of the reflectance spectrum in the wavelength range of 500 to 570 nm and the reflectance value of the reference line AB are compared, the reflectance at the wavelength at which the difference between the reflectance values becomes maximum. When the absolute value of the difference between the values is defined as the maximum fluctuation difference ΔA, the value of the maximum fluctuation difference ΔA is 7% or less in% of the reflectance, and the reflectance of the reflection spectrum in the wavelength range of 620 to 780 nm. The absolute value of the difference between the reflectance values at the wavelength where the difference between the reflectance values is the maximum when the value of the above is compared with the reflectance value of the reference straight line AB is defined as the maximum variation difference ΔB. At the same time, the value of the maximum variation difference ΔB can be 9% or less in% of the reflectance. That is, the above aspect means that the vertical fluctuation of the visible light reflectance linked with the wavelength in the reflection spectrum is reduced, and the appearance that suppresses the occurrence of the iris pattern and the reflected color change due to the viewing angle. It is also possible to provide an excellent low-emission film.
 次に、本実施形態の透明遮熱断熱部材の一例を図面に基づき説明する。 Next, an example of the transparent heat insulating/insulating member of the present embodiment will be described with reference to the drawings.
 図1は、本実施形態の透明遮熱断熱部材の一例を示す概略断面図である。図1において、透明遮熱断熱部材10は、透明基材11と、赤外線反射層21及び塗布型の保護層22からなる機能層23と、粘着剤層19とを備える。赤外線反射層21は、透明基材側から、第1の金属亜酸化物層又は金属酸化物層12と、金属層13と、第2の金属亜酸化物層又は金属酸化物層14とからなる。塗布型の保護層22は、光学調整層15と、中屈折率層16と、高屈折率層17と、低屈折率層18とから形成されている。例えば、中屈折率層16を硬化前樹脂成分として、水酸基を有する特定の(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層、低屈折率層18を硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層とすることができる。 FIG. 1 is a schematic cross-sectional view showing an example of the transparent heat insulating/insulating member of the present embodiment. In FIG. 1, the transparent heat insulating/insulating member 10 includes a transparent substrate 11, a functional layer 23 including an infrared reflective layer 21 and a coating type protective layer 22, and an adhesive layer 19. The infrared reflection layer 21 is composed of a first metal suboxide layer or metal oxide layer 12, a metal layer 13, and a second metal suboxide layer or metal oxide layer 14 from the transparent substrate side. .. The coating type protective layer 22 includes an optical adjustment layer 15, a medium refractive index layer 16, a high refractive index layer 17, and a low refractive index layer 18. For example, a layer containing a specific (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate cross-linking agent that reacts with the hydroxyl group, and the low refractive index layer 18 using the medium refractive index layer 16 as a pre-curing resin component. A layer containing an active energy ray-curable resin can be used as the pre-curing resin component.
 図2は、耐塩水性試験前後の、本実施形態の透明遮熱断熱部材の透過スペクトルの一例を示す図である。上記透明遮熱断熱部材は、温度50℃、濃度5質量%の塩化ナトリウム水溶液に30日間浸漬させる耐塩水性試験を行った場合、上記耐塩水性試験前に測定した上記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトル(初期)の波長1100nmの光の透過率をTB%、上記耐塩水性試験後に測定した上記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトル(30日間浸漬後)の波長1100nmの光の透過率をTA%とすると、TA-TBの値を10ポイント未満とすることができる。 FIG. 2 is a diagram showing an example of transmission spectra of the transparent heat insulating and heat insulating member of the present embodiment before and after the salt water resistance test. When the salt water resistance test in which the transparent heat insulation heat insulating member is immersed in a sodium chloride aqueous solution having a temperature of 50° C. and a concentration of 5 mass% for 30 days is performed, the wavelength of the transparent heat insulation heat insulating member measured before the salt water resistance test is 300. The transmittance of light having a wavelength of 1100 nm in the transmission spectrum (initial) in the range of up to 1500 nm is T B %, and the transmission spectrum of the transparent heat insulating and heat insulating member measured after the salt water resistance test is in the range of 300 to 1500 nm (soaking for 30 days the transmittance of light of wavelength 1100nm after) When T a%, the value of T a -T B may be less than 10 points.
 図3は、本発明の透明遮熱断熱部材の可視光線反射スペクトルに対する反射率の「基準直線AB」、「最大変動差ΔA」及び「最大変動差ΔB」の求め方を説明した図である。JIS R3106-1998に準じて測定した反射スペクトルにおいて、上記反射スペクトルの波長500~570nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインa上の波長535nmに対応する点を点Aとし、上記反射スペクトルの波長620~780nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインb上の波長700nmに対応する点を点Bとし、上記点Aと上記点Bとを通る直線を波長500~780nmの範囲で延長して基準直線ABとし、波長500~570nmの範囲における上記反射スペクトルの反射率の値と上記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔAと定義する。同様に、波長620~780nmの範囲における上記反射スペクトルの反射率の値と上記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔBと定義する。 FIG. 3 is a diagram illustrating how to obtain the “reference straight line AB”, the “maximum variation difference ΔA”, and the “maximum variation difference ΔB” with respect to the visible light reflection spectrum of the transparent heat insulating and heat insulating member of the present invention. In the reflection spectrum measured according to JIS R3106-1998, a point corresponding to a wavelength of 535 nm on the virtual line a indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 500 to 570 nm of the reflection spectrum is point A. The point corresponding to the wavelength 700 nm on the virtual line b indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 620 to 780 nm of the reflection spectrum is point B, and the points A and B are When the passing straight line is extended in the wavelength range of 500 to 780 nm as the reference straight line AB, and the reflectance value of the reflection spectrum in the wavelength range of 500 to 570 nm is compared with the reflectance value of the reference straight line AB, The absolute value of the difference in the reflectance values at the wavelength where the difference in the reflectance values is maximum is defined as the maximum variation difference ΔA. Similarly, when the reflectance value of the reflection spectrum in the wavelength range of 620 to 780 nm and the reflectance value of the reference straight line AB are compared, the reflectance at the wavelength at which the difference between the reflectance values becomes maximum. The absolute value of the difference between the rate values is defined as the maximum variation difference ΔB.
 図4は、後述する実施例1の透明遮熱断熱部材において、ガラス面側から入光測定した時の可視光領域の反射スペクトルの一例を示す図である。上記透明遮熱断熱部材は、上記最大変動差ΔAの値が反射率の%単位で7%以下であり、上記最大変動差ΔBの値が反射率の%単位で9%以下とすることができる。 FIG. 4 is a diagram showing an example of a reflection spectrum in the visible light region when light is measured from the glass surface side in the transparent heat insulating/insulating member of Example 1 described later. The value of the maximum variation difference ΔA may be 7% or less in% of reflectance and the value of the maximum variation difference ΔB may be 9% or less in% of reflectance in the transparent heat insulating/insulating member. ..
 このように上記実施形態の透明遮熱断熱部材は、上記赤外線反射層により日射吸収率を低くしつつ、断熱機能及び遮熱機能を発揮でき、また、上記塗布型の保護層により耐擦傷性、耐腐食劣化性が向上し、且つ断熱機能が維持できる。 Thus, the transparent heat insulating heat insulating member of the above embodiment, while lowering the solar radiation absorption rate by the infrared reflection layer, can exhibit a heat insulating function and a heat shielding function, also scratch resistance by the coating type protective layer, Corrosion resistance is improved and the heat insulation function can be maintained.
 (透明遮熱断熱部材の製造方法)
 次に、本発明の透明遮熱断熱部材の製造方法の実施形態を説明する。本発明の透明遮熱断熱部材の製造方法の実施形態は、透明基材の上に赤外線反射層をドライコーティング法で形成する工程と、上記赤外線反射層の上に、複数の層からなる保護層をウェットコーティング法で形成する工程とを備えている。
(Manufacturing method of transparent heat insulating and heat insulating member)
Next, an embodiment of the method for manufacturing the transparent heat insulating/insulating member of the present invention will be described. The embodiment of the method for producing a transparent heat insulating and heat insulating member of the present invention comprises a step of forming an infrared reflective layer on a transparent substrate by a dry coating method, and a protective layer composed of a plurality of layers on the infrared reflective layer. Is formed by a wet coating method.
 以下、本実施形態の透明遮熱断熱部材の製造方法の一例を、図1を参照しながら説明する。 Hereinafter, an example of a method of manufacturing the transparent heat insulating/insulating member of the present embodiment will be described with reference to FIG.
 先ず、透明基材11の一方の面に赤外線反射層21を形成する。赤外線反射層21は、例えば、導電性材料や透明誘電体材料等をスパッタリングする方法等のドライコーティング法で形成できるが、他の方法によって形成してもよい。赤外線反射層21は、第1の金属亜酸化物層又は金属酸化物層12と、金属層13と、第2の金属亜酸化物層又は金属酸化物層14との3層構造とするのが、遮熱・断熱機能、耐腐食劣化性、生産性の点で好ましい。特に、第1の金属亜酸化物層12と第2の金属亜酸化物層14を形成する場合は、上述したような各種スパッタリング法で形成することが好ましい。これにより、金属が部分酸化された金属亜酸化物層を確実に形成できる。 First, the infrared reflection layer 21 is formed on one surface of the transparent substrate 11. The infrared reflective layer 21 can be formed by a dry coating method such as a method of sputtering a conductive material or a transparent dielectric material, but may be formed by another method. The infrared reflective layer 21 has a three-layer structure including a first metal suboxide layer or metal oxide layer 12, a metal layer 13, and a second metal suboxide layer or metal oxide layer 14. It is preferable in terms of heat shielding/heat insulating function, corrosion resistance and productivity. In particular, when forming the first metal suboxide layer 12 and the second metal suboxide layer 14, it is preferable to form them by the various sputtering methods as described above. Thereby, the metal suboxide layer in which the metal is partially oxidized can be reliably formed.
 次に、赤外線反射層21の上に金属に対する腐食防止剤を含有させた光学調整層15を形成する。続いて、光学調整層15の上に水酸基を有する特定の(メタ)アクリル系共重合体と該水酸基と反応するポリイソシアネート系架橋剤とを含有させた中屈折率層16を形成し、中屈折率層16の上に高屈折率層17を形成し、高屈折率層17の上に活性エネルギー線硬化型樹脂を含有させた低屈折率層18を形成する。これらの各層は、ダイコーター、コンマコーター、リバースコーター、ダムコーター、ドクターバーコーター、グラビアコーター、マイクログラビアコーター、ロールコーター等のコーターを使用したウェットコーティング法にて形成できる。このようにして形成した複数の層からなる塗布型の保護層22により、赤外線反射層21を室内側に配置しても、窓拭き等により赤外線反射層21が損傷することが防止でき、且つ耐腐食劣化性に優れ、且つ外観的にも虹彩現象や視認角度による反射色の変化といった角度依存性を抑制でき、更に日射吸収率を低くしつつ、赤外線反射層の断熱機能を維持することができる。 Next, the optical adjustment layer 15 containing a corrosion inhibitor for metals is formed on the infrared reflection layer 21. Subsequently, a medium refractive index layer 16 containing a specific (meth)acrylic copolymer having a hydroxyl group and a polyisocyanate crosslinking agent that reacts with the hydroxyl group is formed on the optical adjustment layer 15, and the medium refractive index layer 16 is formed. A high refractive index layer 17 is formed on the refractive index layer 16, and a low refractive index layer 18 containing an active energy ray curable resin is formed on the high refractive index layer 17. Each of these layers can be formed by a wet coating method using a coater such as a die coater, a comma coater, a reverse coater, a dam coater, a doctor bar coater, a gravure coater, a micro gravure coater, and a roll coater. The coating-type protective layer 22 formed of a plurality of layers formed in this manner can prevent the infrared reflective layer 21 from being damaged by window wiping and the like even when the infrared reflective layer 21 is placed on the indoor side, and can be resistant to damage. It is excellent in corrosion deterioration and can suppress the angular dependence such as the iris phenomenon and the change of the reflected color depending on the viewing angle in appearance, and can further maintain the heat insulating function of the infrared reflective layer while lowering the solar radiation absorption rate. ..
 最後に、透明基材11の他方の面に粘着剤層19を形成する。粘着剤層19を形成する方法も特に制限されず、透明基材11の外面に、粘着剤を直接塗布してもよいし、別途用意した粘着剤シートを貼り合わせてもよい。 Finally, the adhesive layer 19 is formed on the other surface of the transparent substrate 11. The method of forming the pressure-sensitive adhesive layer 19 is not particularly limited, and the pressure-sensitive adhesive may be directly applied to the outer surface of the transparent substrate 11, or a separately prepared pressure-sensitive adhesive sheet may be attached.
 以上の工程により、本実施形態の透明遮熱断熱部材の一例が得られ、その後に必要に応じてガラス基板等に貼り合わせて用いられる。 By the above steps, an example of the transparent heat insulating/insulating member of the present embodiment is obtained, and thereafter, it is used by being attached to a glass substrate or the like as needed.
 以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。 The present invention will be described in detail below based on examples. However, the present invention is not limited to the following examples.
 (屈折率の測定)
 以下の実施例・比較例にて記載した光学調整層、中屈折率層、高屈折率層、低屈折率層の屈折率については、下記に示す方法にて測定した。
(Measurement of refractive index)
The refractive index of the optical adjustment layer, the medium refractive index layer, the high refractive index layer, and the low refractive index layer described in the following examples and comparative examples were measured by the methods described below.
 先ず、片面を易接着処理した東洋紡社製のポリエチレンテレフタレート(PET)フィルム"A4100"(商品名、厚さ:50μm)の易接着処理がされていない面に、各層形成用塗料を厚みが500nmとなるように塗布し、乾燥させて屈折率測定用サンプルを作製する。また、各層形成用塗料に紫外線硬化型塗料を用いる場合には、乾燥させた後に、更に高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させ、屈折率測定用サンプルを作製する。 First, the polyethylene terephthalate (PET) film "A4100" (trade name, thickness: 50 μm) manufactured by Toyobo Co., Ltd., which has been subjected to easy-adhesion treatment on one side, was coated with each layer-forming coating in a thickness of 500 nm on the surface not subjected to the easy-adhesion treatment. It is applied so as to be dried and dried to prepare a sample for measuring a refractive index. When a UV-curable coating material is used for each layer-forming coating material, the coating material is dried and then irradiated with ultraviolet light having a light amount of 300 mJ/cm 2 by a high-pressure mercury lamp to be cured to prepare a refractive index measurement sample. ..
 次に、作製した屈折率測定用サンプルの塗布裏面側に黒色テープを貼り、反射分光膜厚計"FE-3000"(商品名、大塚電子社製)にて反射スペクトルを測定し、測定した反射スペクトルに基づき、n-Cauchyの式からフィッティングを行い、各層の波長550nmの光の屈折率を求めた。 Next, a black tape was attached to the back side of the prepared sample for measuring refractive index, the reflection spectrum was measured with a reflection spectral film thickness meter "FE-3000" (trade name, manufactured by Otsuka Electronics Co., Ltd.), and the measured reflection was measured. Based on the spectrum, fitting was performed from the n-Cauchy equation to determine the refractive index of light having a wavelength of 550 nm in each layer.
 (膜厚の測定)
 以下の実施例・比較例にて記載した光学調整層、中屈折率層、高屈折率層、低屈折率層の膜厚については、透明基材の赤外線反射層及び保護層が形成されていない面側に黒色テープを貼り、瞬間マルチ測光システム"MCPD-3000"(商品名、大塚電子社製)により、各層ごとに反射スペクトルを測定し、得られた反射スペクトルから、上記屈折率の測定により求めた屈折率を用いて、最適化法によるフィッティングを行い各層の膜厚を求めた。
(Measurement of film thickness)
Regarding the film thicknesses of the optical adjustment layer, the medium refractive index layer, the high refractive index layer, and the low refractive index layer described in the following Examples and Comparative Examples, the infrared reflective layer and the protective layer of the transparent substrate are not formed. A black tape is attached to the surface side, and a reflection spectrum is measured for each layer by an instant multi-photometry system "MCPD-3000" (trade name, manufactured by Otsuka Electronics Co., Ltd.), and the obtained reflection spectrum is used to measure the above-mentioned refractive index. Using the obtained refractive index, fitting by an optimization method was performed to obtain the film thickness of each layer.
 (実施例1)
 <赤外線反射層付き透明基材の作製>
 先ず、透明基材として東洋紡社製の片面を易接着処理したポリエチレンテレフタレート(PET)フィルム"A4100"(商品名、厚さ:50μm)を用い、上記PETフィルムの易接着処理がされていない面側に、PETフィルム側から第1の金属亜酸化物層、金属層、第2の金属亜酸化物層を次のようにして形成した。先ず、チタンターゲットを用いて、反応性スパッタリング法により厚さ2nmの第1の金属亜酸化物層(TiOX層)を形成した。上記反応性スパッタリング法におけるスパッタリングガスとしては、Ar/O2の混合ガスを用い、ガス流量体積比はAr97%/O23%とした。続いて、上記第1の金属亜酸化物層上に銀ターゲットを用いて、スパッタリング法により厚さ12nmの金属層(Ag層)を形成した。上記スパッタリング法におけるスパッタリングガスとしては、Arガス100%を用いた。更に、上記金属層上にチタンターゲットを用いて、反応性スパッタリング法により厚さ2nmの第2の金属亜酸化物層(TiOX層)を形成した。上記反応性スパッタリング法におけるスパッタリングガスとしては、Ar/O2の混合ガスを用い、ガス流量体積比はAr97%/O23%とした。これにより、PETフィルム側から第1の金属亜酸化物層(TiOX層)/金属層(Ag層)/第2の金属亜酸化物層(TiOX層)の3層構造からなる赤外線反射層付きPETフィルムを作製した。上記TiOX層のxは1.5であった。
(Example 1)
<Preparation of transparent substrate with infrared reflective layer>
First, as a transparent substrate, a polyethylene terephthalate (PET) film "A4100" (trade name, thickness: 50 μm) manufactured by Toyobo Co., Ltd. on one side of which is easily adhered is used, and the surface side of the PET film which is not easily adhered is used. Then, a first metal suboxide layer, a metal layer, and a second metal suboxide layer were formed from the PET film side as follows. First, using a titanium target, a 2 nm-thick first metal suboxide layer (TiO x layer) was formed by a reactive sputtering method. As the sputtering gas in the reactive sputtering method, a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%. Then, a 12 nm-thick metal layer (Ag layer) was formed on the first metal suboxide layer by a sputtering method using a silver target. Ar gas 100% was used as the sputtering gas in the sputtering method. Further, a second target metal suboxide layer (TiO x layer) having a thickness of 2 nm was formed on the metal layer by a reactive sputtering method using a titanium target. As the sputtering gas in the reactive sputtering method, a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%. Thereby, the infrared reflective layer having a three-layer structure of the first metal suboxide layer (TiO x layer)/metal layer (Ag layer)/second metal suboxide layer (TiO x layer) from the PET film side. An attached PET film was produced. The x of the TiO x layer was 1.5.
 上記方法で得られた赤外線反射層[第1の金属亜酸化物層(TiOX層)+金属層(Ag層)+第2の金属亜酸化物層(TiOX層)]の総厚さは16nmであり、上記総厚さに対する上記第2の金属亜酸化物層(TiOX層)の厚さの割合は12.5%であった。 The total thickness of the infrared reflective layer [first metal suboxide layer (TiO x layer)+metal layer (Ag layer)+second metal suboxide layer (TiO x layer)] obtained by the above method is It was 16 nm, and the ratio of the thickness of the second metal suboxide layer (TiO x layer) to the total thickness was 12.5%.
 <光学調整層の形成>
 東洋インキ社製の酸化チタン系ハードコート剤"リオデュラス TYT80-01"(商品名、固形分濃度25質量%、屈折率1.80[公称値])96.00質量部と、金属に対する腐食防止剤として硫黄含有基を有する2-メルカプトベンゾチアゾール1.20質量部(上記TYT80-01の固形分に対して5.00質量部)と、希釈溶剤としてメチルイソブチルケトン902.80質量部とをディスパーにて配合し、光学調整塗料Aを作製した。次に、上記光学調整塗料Aを、マイクログラビアコータ(廉井精機社製)を用いて上記赤外線反射層の上に乾燥後の厚さが50nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ50nmの光学調整層を形成した。作製した光学調整層の屈折率を前述の方法で測定したところ1.79であった。
<Formation of optical adjustment layer>
Toyo Ink Co., Ltd. titanium oxide hard coating agent "Rioduras TYT80-01" (trade name, solid content concentration 25 mass%, refractive index 1.80 [nominal value]) 96.00 parts by mass, and a corrosion inhibitor for metals As a diluting solvent, 1.20 parts by mass of 2-mercaptobenzothiazole having a sulfur-containing group (5.00 parts by mass with respect to the solid content of TYT80-01) and 902.80 parts by mass of methyl isobutyl ketone as a diluting solvent were used as a disperser. To prepare an optical control coating material A. Next, the optical adjustment coating A is applied on the infrared reflective layer using a micro gravure coater (manufactured by Inui Seiki Co., Ltd.) so that the thickness after drying becomes 50 nm, and after drying, high pressure is applied. An optical adjustment layer having a thickness of 50 nm was formed by irradiating with a mercury lamp an ultraviolet ray having a light amount of 300 mJ/cm 2 to cure the ultraviolet ray. The refractive index of the manufactured optical adjustment layer was 1.79 when measured by the above-mentioned method.
 <中屈折率層の形成>
 アクリル系共重合体A(メタクリル酸t-ブチル(Tg:107℃)/イソブテン/アクリル酸4-ヒドロキシブチル/クロトン酸=84質量部/5質量部/10質量部/1質量部、固形分濃度50質量%、水酸基価38mgKOH/g、酸価6mgKOH/g)の溶液35.28質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)2.39質量部((メタ)アクリル系共重合体が有する水酸基(-OH)に対する、架橋剤のイソシアネート基(-NCO)のモル当量比:NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン962.33質量部とをディスパーにて配合し、中屈折率塗料Aを作製した。次に、上記中屈折率塗料Aを、上記マイクログラビアコータを用いて上記光学調整層の上に乾燥後の厚さが60nmになるよう塗工し、120℃で2分間乾燥して熱硬化させることにより、厚さ60nmの中屈折率層を形成した。作製した中屈折率層の屈折率を前述の方法で測定したところ1.48であった。
<Formation of medium refractive index layer>
Acrylic copolymer A (t-butyl methacrylate (Tg: 107° C.)/isobutene/4-hydroxybutyl acrylate/crotonic acid=84 parts by mass/5 parts by mass/10 parts by mass/1 part by mass, solid content concentration 35.28 parts by mass of a solution of 50% by mass, a hydroxyl value of 38 mgKOH/g, an acid value of 6 mgKOH/g) and an isocyanate cross-linking agent "Coronate HX" manufactured by Tosoh Corporation (trade name, solid content concentration 100% by mass) 2. 39 parts by mass (molar equivalent ratio of isocyanate group (—NCO) of cross-linking agent to hydroxyl group (—OH) of (meth)acrylic copolymer: NCO/OH=1.0) and methyl isobutyl as a diluting solvent 962.33 parts by mass of ketone was blended with a disper to prepare a medium refractive index coating material A. Next, the medium refractive index coating material A is applied on the optical adjustment layer using the microgravure coater so that the thickness after drying is 60 nm, and dried at 120° C. for 2 minutes to be heat-cured. As a result, a medium refractive index layer having a thickness of 60 nm was formed. The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
 <高屈折率層の形成>
 東洋インキ社製の酸化チタン系ハードコート剤"リオデュラス TYT80-01"(商品名、固形分濃度25質量%、屈折率1.80[公称値])200.00質量部と、希釈溶剤としてメチルイソブチルケトン800.00質量部とをディスパーにて配合し、高屈折率塗料Aを作製した。次に、上記高屈折率塗料Aを、上記マイクログラビアコータを用いて上記中屈折率層の上に乾燥後の厚さが90nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ90nmの高屈折率層を形成した。作製した高屈折率層の屈折率を前述の方法で測定したところ1.80であった。
<Formation of high refractive index layer>
200.00 parts by mass of titanium oxide type hard coating agent "Riodurus TYT80-01" (trade name, solid content concentration 25% by mass, refractive index 1.80 [nominal value]) manufactured by Toyo Ink and methylisobutyl as a diluting solvent 800.00 parts by mass of ketone was mixed with a disper to prepare a high refractive index coating material A. Next, the high refractive index coating material A was applied on the medium refractive index layer using the microgravure coater so that the thickness after drying was 90 nm, and after drying, it was exposed to 300 mJ with a high pressure mercury lamp. A high-refractive-index layer having a thickness of 90 nm was formed by irradiating and curing with an ultraviolet ray having a light amount of /cm 2 . The refractive index of the produced high refractive index layer was 1.80 when measured by the above-mentioned method.
 <低屈折率層の形成>
 日揮触媒化成社製の中空シリカ含有低屈折率塗料"ELCOM P-5062"(商品名、固形分濃度3質量%、屈折率1.38[公称値])を低屈折率塗料Aとして用い、上記低屈折率塗料Aを、上記マイクログラビアコータを用いて上記高屈折率層の上に乾燥後の厚さが100nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ100nmの低屈折率層を形成した。作製した低屈折率層の屈折率を前述の方法で測定したところ1.37であった。
<Formation of low refractive index layer>
Hollow silica-containing low-refractive-index paint "ELCOM P-5062" (trade name, solid content concentration 3% by mass, refractive index 1.38 [nominal value]) manufactured by JGC Catalysts & Chemicals Co., Ltd. was used as the low-refractive-index paint A. The low-refractive-index coating material A was applied on the high-refractive-index layer using the microgravure coater so that the thickness after drying was 100 nm, and after drying, it was dried with a high-pressure mercury lamp at 300 mJ/cm 2 . A low-refractive-index layer having a thickness of 100 nm was formed by irradiating with a light amount of ultraviolet rays and curing. The refractive index of the manufactured low refractive index layer was 1.37 when measured by the above-mentioned method.
 以上のようにして、光学調整層、中屈折率層、高屈折率層及び低屈折率層から成る保護層を備えた赤外線反射フィルム(透明遮熱断熱部材)を作製した。得られた保護層の厚さは、300nmであった。 As described above, an infrared reflection film (transparent heat insulating/insulating member) having a protective layer including an optical adjustment layer, a medium refractive index layer, a high refractive index layer and a low refractive index layer was produced. The protective layer thus obtained had a thickness of 300 nm.
 <粘着剤層の形成>
 先ず、片面がシリコーン処理された中本パックス社製の離型PETフィルム"NS-38+A"(商品名、厚さ:38μm)を用意した。また、綜研化学社製のアクリル系粘着剤"SKダイン2094"(商品名、固形分:25質量%)1000.00質量部に対して、和光純薬社製の紫外線吸収剤(ベンゾフェノン)12.50質量部及び綜研化学社製の架橋剤"E-AX"(商品名、固形分:5質量%)2.70質量部を添加し、ディスパーにて混合して粘着剤塗料を調製した。
<Formation of adhesive layer>
First, a release PET film “NS-38+A” (trade name, thickness: 38 μm) manufactured by Nakamoto Pax Co., Ltd., one surface of which was treated with silicone, was prepared. Further, with respect to 1000.00 parts by mass of acrylic adhesive "SKDyne 2094" (trade name, solid content: 25% by mass) manufactured by Soken Chemical Co., Ltd., ultraviolet absorber (benzophenone) 12. manufactured by Wako Pure Chemical Industries, Ltd. 50 parts by mass and 2.70 parts by mass of a cross-linking agent "E-AX" (trade name, solid content: 5% by mass) manufactured by Soken Chemical Industry Co., Ltd. were added and mixed with a disper to prepare an adhesive coating composition.
 次に、上記離型PETフィルムのシリコーン処理された側の面上に、乾燥後の厚さが25μmとなるように上記粘着剤塗料を塗布し、乾燥させた後に粘着剤層を形成した。更に、この粘着剤層の上面に、上記赤外線反射フィルムの赤外線反射層が形成されていない側を貼り合わせて、4層から成る保護層を備えた粘着剤層付き赤外線反射フィルム(透明遮熱断熱部材)を作製した。 Next, the pressure-sensitive adhesive coating was applied on the silicone-treated surface of the release PET film so that the thickness after drying was 25 μm, and the pressure-sensitive adhesive layer was formed after drying. Furthermore, the side of the infrared reflective film on which the infrared reflective layer is not formed is bonded to the upper surface of this adhesive layer, and the infrared reflective film with the adhesive layer is provided with a protective layer consisting of four layers (transparent heat insulating and heat insulating film). Member) was produced.
 <ガラス基板との貼り合わせ>
 先ず、ガラス基板として、大きさ5cm×5cm、厚さ3mmのフロートガラス(日本板硝子社製)を用意した。次に、上記保護層を備えた粘着剤層付き赤外線反射フィルムを3cm×3cmの大きさに切断し、離型PETフィルムを剥離して、上記粘着剤層付き赤外線反射フィルムの粘着剤層側を上記フロートガラスの中央部に貼り合せた。
<Lamination with glass substrate>
First, as a glass substrate, a float glass (made by Nippon Sheet Glass Co., Ltd.) having a size of 5 cm×5 cm and a thickness of 3 mm was prepared. Next, the infrared reflective film with an adhesive layer provided with the protective layer is cut into a size of 3 cm×3 cm, the release PET film is peeled off, and the adhesive layer side of the infrared reflective film with an adhesive layer is attached. It was attached to the center of the float glass.
 (実施例2)
 東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)の使用量を3.59質量部(NCO/OH=2.0)に変更した以外は、実施例1の中屈折率塗料Aと同様にして中屈折率塗料Bを作製し、この中屈折率塗料Bを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.48であった。
(Example 2)
Example 1 except that the amount of the isocyanate crosslinking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation was changed to 3.59 parts by mass (NCO/OH=2.0). A medium-refractive-index coating B was prepared in the same manner as the medium-refractive-index coating A, and the pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that this medium-refractive-index coating B was used. An infrared reflection film with a coating was prepared and attached to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
 (実施例3)
 東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)の使用量を1.20質量部(NCO/OH=0.5)に変更した以外は、実施例1の中屈折率塗料Aと同様にして中屈折率塗料Cを作製し、この中屈折率塗料Cを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.48であった。
(Example 3)
Example 1 except that the amount of the isocyanate cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation was changed to 1.20 parts by mass (NCO/OH=0.5). A medium-refractive-index coating C was prepared in the same manner as the medium-refractive-index coating A, and the pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that this medium-refractive-index coating C was used. An infrared reflection film with a coating was prepared and attached to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
 (実施例4)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体B(アクリル酸t-ブチル(Tg:43℃)/メタクリル酸2-ヒドロキシエチル/メタクリル酸=89質量部/10質量部/1質量部、固形分濃度50質量%、水酸基価42mgKOH/g、酸価6mgKOH/g)の溶液34.87質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)2.58質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン962.55質量部とをディスパーにて配合し、中屈折率塗料Dを作製した。
(Example 4)
<Preparation of medium refractive index paint>
First, acrylic copolymer B (t-butyl acrylate (Tg: 43° C.)/2-hydroxyethyl methacrylate/methacrylic acid=89 parts by mass/10 parts by mass/1 part by mass, solid content concentration 50% by mass, 34.87 parts by mass of a solution having a hydroxyl value of 42 mgKOH/g and an acid value of 6 mgKOH/g, and 2.58 parts by mass of an isocyanate-based crosslinking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation ( NCO/OH=1.0) and 962.55 parts by mass of methyl isobutyl ketone as a diluting solvent were mixed with a disper to prepare a medium refractive index coating D.
 上記中屈折率塗料Dを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.48であった。 An infrared reflective film with a pressure-sensitive adhesive layer having a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material D was used, and the infrared reflective film was attached to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
 (実施例5)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体C(メタクリル酸シクロヘキシル(Tg:83℃)/アクリル酸4-ヒドロキシブチル=90質量部/10質量部、固形分濃度50質量%、水酸基価38mgKOH/g)35.95質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)の溶液2.03質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン962.02質量部とをディスパーにて配合し、中屈折率塗料Eを作製した。
(Example 5)
<Preparation of medium refractive index paint>
First, acrylic copolymer C (cyclohexyl methacrylate (Tg: 83° C.)/4-hydroxybutyl acrylate=90 parts by mass/10 parts by mass, solid content concentration 50% by mass, hydroxyl value 38 mgKOH/g) 35.95 2.0 parts by mass (NCO/OH=1.0) of a solution of an isocyanate cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation, and methylisobutyl as a diluting solvent. 962.02 parts by mass of ketone was mixed with a disper to prepare a medium refractive index coating material E.
 上記中屈折率塗料Eを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.50であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material E was used, and was bonded to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.50 when measured by the above-mentioned method.
 (実施例6)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体D(アクリル酸イソボルニル(Tg:94℃)/アクリル酸4-ヒドロキシブチル=90質量部/10質量部、固形分濃度50質量%、水酸基価38mgKOH/g)の溶液35.95質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)2.03質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン962.02質量部とをディスパーにて配合し、中屈折率塗料Fを作製した。
(Example 6)
<Preparation of medium refractive index paint>
First, a solution 35 of acrylic copolymer D (isobornyl acrylate (Tg: 94° C.)/4-hydroxybutyl acrylate=90 parts by mass/10 parts by mass, solid concentration 50% by mass, hydroxyl value 38 mgKOH/g) .95 parts by mass, Tosoh's isocyanate cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) 2.03 parts by mass (NCO/OH=1.0), and methyl isobutyl as a diluting solvent. 962.02 parts by mass of ketone was blended with a disper to prepare a medium refractive index coating material F.
 上記中屈折率塗料Fを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.51であった。 An infrared reflecting film with a pressure-sensitive adhesive layer having a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material F was used, and was bonded to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.51 as measured by the above method.
 (実施例7)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体E(メタクリル酸t-ブチル(Tg:107℃)/イソブテン/4-ヒドロキシブチルビニルエーテル=80質量部/10質量部/10質量部、固形分濃度50質量%、水酸基価46mgKOH/g)の溶液34.42質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)2.79質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン/トルエン=866.51/96.28質量部とをディスパーにて配合し、中屈折率塗料Gを作製した。
(Example 7)
<Preparation of medium refractive index paint>
First, acrylic copolymer E (t-butyl methacrylate (Tg: 107° C.)/isobutene/4-hydroxybutyl vinyl ether=80 parts by mass/10 parts by mass/10 parts by mass, solid content concentration 50% by mass, hydroxyl value 34.42 parts by mass of a solution of 46 mg KOH/g) and 2.79 parts by mass (NCO/OH=1.0) of an isocyanate cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation. And, as a diluting solvent, methyl isobutyl ketone/toluene=866.51/96.28 parts by mass were mixed with a disper to prepare a medium refractive index coating material G.
 上記中屈折率塗料Gを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.49であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that the medium refractive index coating material G was used, and the infrared reflective film was attached to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.49 as measured by the above-mentioned method.
 (実施例8)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体F(メタクリル酸t-ブチル(Tg:107℃)/バーサチック酸(C9)ビニルエステル/4-ヒドロキシブチルビニルエーテル=70質量部/20質量部/10質量部、固形分濃度50質量%、水酸基価46mgKOH/g)の溶液34.42質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)2.79質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン962.79質量部とをディスパーにて配合し、中屈折率塗料Hを作製した。
(Example 8)
<Preparation of medium refractive index paint>
First, acrylic copolymer F (t-butyl methacrylate (Tg: 107° C.)/versatitic acid (C9) vinyl ester/4-hydroxybutyl vinyl ether=70 parts by mass/20 parts by mass/10 parts by mass, solid content concentration 34.42 parts by mass of a solution of 50% by mass and a hydroxyl value of 46 mgKOH/g, and 2.79 parts by mass of NCO/isocyanate-based cross-linking agent "Coronate HX" (trade name, solid content concentration 100%) manufactured by Tosoh Corporation. OH=1.0) and 962.79 parts by mass of methyl isobutyl ketone as a diluting solvent were mixed with a disper to prepare a medium refractive index coating material H.
 上記中屈折率塗料Hを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.48であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that the above medium refractive index coating material H was used, and was bonded to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
 (実施例9)
 光学調整層及び中屈折率層の形成を下記に変更した以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。
(Example 9)
An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that the formation of the optical adjustment layer and the medium refractive index layer was changed to the following, and the laminated film was attached to a glass substrate. It was
 <光学調整層の形成>
 先ず、石原産業社製の酸化チタン超微粒子"TTO-55(A)"(商品名)13.92質量部と、アクリル系共重合体G(メタクリル酸t-ブチル(Tg:107℃)/アクリル酸4-ヒドロキシブチル/クロトン酸=84質量部/15質量部/1質量部、固形分濃度50質量%、水酸基価58mgKOH/g、酸価6mgKOH/g)の溶液16.78質量部と、メチルイソブチルケトン43.67質量部とを混合して混合液を調製した。この混合液に直径0.3mmのジルコニアビーズを加えて、ペイントコンディショナー(東洋精機社製)を用いて分散処理し、酸化チタン超微粒子分散体を調製した。この酸化チタン超微粒子分散体に、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)1.71質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン923.92質量部とをディスパーにて配合し、光学調整塗料Bを作製した。次に、上記光学調整塗料Bを、マイクログラビアコータ(廉井精機社製)を用いて、実施例1で用いた赤外線反射層の上に乾燥後の厚さが50nmになるよう塗工し、120℃で2分間乾燥して熱硬化させることにより、厚さ50nmの光学調整層を形成した。作製した光学調整層の屈折率を前述の方法で測定したところ1.80であった。
<Formation of optical adjustment layer>
First, 13.92 parts by mass of titanium oxide ultrafine particles "TTO-55(A)" (trade name) manufactured by Ishihara Sangyo Co., Ltd. and acrylic copolymer G (t-butyl methacrylate (Tg: 107°C)/acryl) Acid 4-hydroxybutyl/crotonic acid=84 parts by mass/15 parts by mass/1 part by mass, solid content concentration 50% by mass, hydroxyl value 58 mgKOH/g, acid value 6 mgKOH/g) solution 16.78 parts by mass, and methyl A mixed solution was prepared by mixing 43.67 parts by mass of isobutyl ketone. Zirconia beads having a diameter of 0.3 mm were added to this mixed solution and dispersed using a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) to prepare a titanium oxide ultrafine particle dispersion. To this titanium oxide ultrafine particle dispersion, 1.71 parts by mass (NCO/OH=1.0) of isocyanate-based cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation and a diluting solvent Was mixed with 923.92 parts by mass of methyl isobutyl ketone by a disper to prepare an optical adjustment coating material B. Next, the above optical adjustment coating B was applied onto the infrared reflective layer used in Example 1 using a micro gravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying would be 50 nm, An optical adjustment layer having a thickness of 50 nm was formed by drying at 120° C. for 2 minutes and thermosetting. The refractive index of the manufactured optical adjustment layer was 1.80 when measured by the above-mentioned method.
 <中屈折率層の形成>
 共栄社化学社製のUV硬化型アクリルポリマー"SMP-360A"(商品名、固形分濃度50質量%)28.00質量部と、希釈溶剤としてメチルエチルケトン389.80質量部と、シクロヘキサノン582.20質量部と、BASF社製の光重合開始剤"イルガキュア907"(商品名)0.30質量部とをディスパーにて配合し、中屈折率塗料Iを作製した。次に、上記中屈折率塗料Iを、上記マイクログラビアコータを用いて上記光学調整層の上に乾燥後の厚さが60nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ60nmの中屈折率層を形成した。作製した中屈折率層の屈折率を前述の方法で測定したところ1.50であった。
<Formation of medium refractive index layer>
UV-curable acrylic polymer "SMP-360A" (trade name, solid content concentration 50% by mass) manufactured by Kyoeisha Chemical Co., Ltd. 28.00 parts by mass, methyl ethyl ketone 389.80 parts by mass as a diluting solvent, and cyclohexanone 582.20 parts by mass. And 0.30 part by mass of a photopolymerization initiator "Irgacure 907" (trade name) manufactured by BASF Corp. were mixed with a disper to prepare a medium refractive index coating material I. Next, the medium refractive index coating material I was applied on the optical adjustment layer using the microgravure coater so that the thickness after drying was 60 nm, and after drying, it was 300 mJ/ with a high pressure mercury lamp. A medium-refractive-index layer having a thickness of 60 nm was formed by irradiating and curing the ultraviolet ray having a light amount of cm 2 . The refractive index of the manufactured medium refractive index layer was 1.50 when measured by the above-mentioned method.
 (実施例10)
 光学調整層を設けずに、中屈折率層の形成を下記に変更し、高屈折率層の乾燥後の厚さを290nmに変更した以外は、実施例1と同様にして中屈折率層、高屈折率層及び低屈折率層の3層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた保護層の厚さは、540nmであった。
(Example 10)
The medium refractive index layer was formed in the same manner as in Example 1 except that the formation of the medium refractive index layer was changed to the following without providing the optical adjustment layer and the thickness of the high refractive index layer after drying was changed to 290 nm. An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of three layers, a high refractive index layer and a low refractive index layer, was prepared and attached to a glass substrate. The protective layer thus obtained had a thickness of 540 nm.
 <中屈折率層の形成>
 先ず、アクリル系共重合体G(メタクリル酸t-ブチル(Tg:107℃)/アクリル酸4-ヒドロキシブチル/クロトン酸=84質量部/15質量部/1質量部、固形分濃度50質量%、水酸基価58mgKOH/g、酸価6mgKOH/g)の溶液33.21質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)3.39質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン963.40質量部とをディスパーにて配合し、中屈折率塗料Jを作製した。次に、上記中屈折率塗料Jを、上記マイクログラビアコータを用いて上記光学調整層の上に乾燥後の厚さが150nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ150nmの中屈折率層を形成した。作製した中屈折率層の屈折率を前述の方法で測定したところ1.48であった。
<Formation of medium refractive index layer>
First, acrylic copolymer G (t-butyl methacrylate (Tg: 107° C.)/4-hydroxybutyl acrylate/crotonic acid=84 parts by mass/15 parts by mass/1 part by mass, solid content concentration 50% by mass, 33.21 parts by mass of a solution having a hydroxyl value of 58 mgKOH/g and an acid value of 6 mgKOH/g) and 3.39 parts by mass of an isocyanate cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation ( NCO/OH=1.0) and 963.40 parts by mass of methyl isobutyl ketone as a diluting solvent were mixed with a disper to prepare a medium refractive index coating material J. Next, the medium refractive index coating material J was coated on the optical adjustment layer using the microgravure coater so that the thickness after drying was 150 nm, and after drying, 300 mJ/ A medium-refractive index layer having a thickness of 150 nm was formed by irradiating and curing with ultraviolet rays of a light amount of cm 2 . The refractive index of the manufactured medium refractive index layer was 1.48 when measured by the above-mentioned method.
 (実施例11)
 光学調整層及び中屈折率層を設けずに、高屈折率層の形成を下記に変更し、低屈折率層の乾燥後の厚さを95nmに変更した以外は、実施例1と同様にして高屈折率層及び低屈折率層の2層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた保護層の厚さは、240nmであった。
(Example 11)
In the same manner as in Example 1 except that the formation of the high refractive index layer was changed to the following without providing the optical adjustment layer and the medium refractive index layer, and the thickness of the low refractive index layer after drying was changed to 95 nm. An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer composed of two layers, a high refractive index layer and a low refractive index layer, was prepared and attached to a glass substrate. The thickness of the resulting protective layer was 240 nm.
 <高屈折率層の形成>
 先ず、石原産業社製の酸化チタン超微粒子"TTO-55(A)"(商品名)29.00質量部と、アクリル系共重合体G(メタクリル酸t-ブチル(Tg:107℃)/アクリル酸4-ヒドロキシブチル/クロトン酸=84質量部/15質量部/1質量部、固形分濃度50質量%、水酸基価58mgKOH/g、酸価6mgKOH/g)の溶液34.88質量部と、メチルイソブチルケトン90.92質量部とを混合して混合液を調製した。この混合液に直径0.3mmのジルコニアビーズを加えて、ペイントコンディショナー(東洋精機社製)を用いて分散処理し、酸化チタン超微粒子分散体を調製した。この酸化チタン超微粒子分散体に、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)3.56質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン841.64質量部とをディスパーにて配合し、高屈折率塗料Bを作製した。次に、上記高屈折率塗料Bを、マイクログラビアコータ(廉井精機社製)を用いて、実施例1で用いた赤外線反射層の上に乾燥後の厚さが145nmになるよう塗工し、120℃で2分間乾燥して熱硬化させることにより、厚さ145nmの高屈折率層を形成した。作製した高屈折率層の屈折率を前述の方法で測定したところ1.80であった。
<Formation of high refractive index layer>
First, 29.00 parts by mass of titanium oxide ultrafine particles “TTO-55(A)” (trade name) manufactured by Ishihara Sangyo Co., Ltd. and acrylic copolymer G (t-butyl methacrylate (Tg: 107° C.)/acryl) Acid 4-hydroxybutyl/crotonic acid=84 parts by mass/15 parts by mass/1 part by mass, solid content concentration 50% by mass, hydroxyl value 58 mgKOH/g, acid value 6 mgKOH/g) solution 34.88 parts by mass, and methyl A mixed solution was prepared by mixing 90.92 parts by mass of isobutyl ketone. Zirconia beads having a diameter of 0.3 mm were added to this mixed solution and dispersed using a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) to prepare a titanium oxide ultrafine particle dispersion. To this titanium oxide ultrafine particle dispersion, 3.56 parts by mass (NCO/OH=1.0) of isocyanate-based cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation, and a diluting solvent Was mixed with 84.64 parts by mass of methyl isobutyl ketone by a disper to prepare a high refractive index coating material B. Next, the high refractive index coating material B was applied onto the infrared reflective layer used in Example 1 using a micro gravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying was 145 nm. A high refractive index layer having a thickness of 145 nm was formed by drying at 120° C. for 2 minutes and thermosetting. The refractive index of the produced high refractive index layer was 1.80 when measured by the above-mentioned method.
 (実施例12)
 金属に対する腐食防止剤として硫黄含有基を有する2-メルカプトベンゾチアゾールを、窒素含有基を有する1-o-トリルビグアニドに変更した以外は、実施例1の光学調整塗料Aと同様にして光学調整塗料Cを作製し、この光学調整塗料Cを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した光学調整層の屈折率を前述の方法で測定したところ1.79であった。
(Example 12)
An optical adjustment paint similar to the optical adjustment paint A of Example 1 except that 2-mercaptobenzothiazole having a sulfur-containing group as a corrosion inhibitor for metals was changed to 1-o-tolylbiguanide having a nitrogen-containing group. Infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was produced in the same manner as in Example 1 except that C was produced and this optical adjustment coating C was used, and was laminated on a glass substrate. The refractive index of the manufactured optical adjustment layer was 1.79 when measured by the above-mentioned method.
 (実施例13)
 金属に対する腐食防止剤として硫黄含有基を有する2-メルカプトベンゾチアゾールを添加しなかった以外は、実施例1の光学調整塗料Aと同様にして光学調整塗料Dを作製し、この光学調整塗料Dを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した光学調整層の屈折率を前述の方法で測定したところ1.80であった。
(Example 13)
An optical adjustment coating D was prepared in the same manner as the optical adjustment coating A of Example 1 except that 2-mercaptobenzothiazole having a sulfur-containing group was not added as a corrosion inhibitor for metals. An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that it was used, and was bonded to a glass substrate. The refractive index of the manufactured optical adjustment layer was 1.80 when measured by the above-mentioned method.
 (実施例14)
 中屈折率層の乾燥後の厚さを130nm、高屈折率層の乾燥後の厚さを500nmに変更した以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた保護層の厚さは、780nmであった。
(Example 14)
A pressure-sensitive adhesive layer provided with a protective layer consisting of four layers in the same manner as in Example 1 except that the thickness of the medium refractive index layer after drying was changed to 130 nm and the thickness of the high refractive index layer was changed to 500 nm. An infrared reflection film with a coating was prepared and attached to a glass substrate. The protective layer thus obtained had a thickness of 780 nm.
 (実施例15)
 赤外線反射層の金属層(Ag層)の厚さを8nm、光学調整層の乾燥後の厚さを60nm、中屈折率層の乾燥後の厚さを200nm、高屈折率層の乾燥後の厚さを550nm、低屈折率層の乾燥後の厚さを120nmに変更した以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた赤外線反射層[第1の金属亜酸化物層(TiOX層)+金属層(Ag層)+第2の金属亜酸化物層(TiOX層)]の総厚さは12nmであり、上記総厚さに対する上記第2の金属亜酸化物層(TiOX層)の厚さの割合は16.7%であった。また、得られた保護層の厚さは、930nmであった。
(Example 15)
The thickness of the metal layer (Ag layer) of the infrared reflective layer is 8 nm, the thickness of the optical adjustment layer after drying is 60 nm, the thickness of the medium refractive index layer after drying is 200 nm, and the thickness of the high refractive index layer after drying. And the thickness of the low refractive index layer after drying was changed to 120 nm, an infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 to prepare a glass. It was attached to the substrate. The total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO x layer)+metal layer (Ag layer)+second metal suboxide layer (TiO x layer)] was 12 nm. The ratio of the thickness of the second metal suboxide layer (TiO x layer) to the total thickness was 16.7%. Further, the thickness of the obtained protective layer was 930 nm.
(実施例16)
 中屈折率層の乾燥後の厚さを150nm、高屈折率層の乾燥後の厚さを700nm、低屈折率層の乾燥後の厚さを110nmに変更した以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた保護層の厚さは、1010nmであった。
(Example 16)
Same as Example 1 except that the dried thickness of the medium refractive index layer was changed to 150 nm, the dried thickness of the high refractive index layer was changed to 700 nm, and the dried thickness of the low refractive index layer was changed to 110 nm. As a result, an infrared reflecting film with a pressure-sensitive adhesive layer having a protective layer consisting of four layers was prepared and attached to a glass substrate. The protective layer thus obtained had a thickness of 1010 nm.
 (実施例17)
 赤外線反射層の第2の金属亜酸化物層(TiOX層)の厚さを4nmに変更した以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた赤外線反射層[第1の金属亜酸化物層(TiOX層)+金属層(Ag層)+第2の金属亜酸化物層(TiOX層)]の総厚さは18nmであり、上記総厚さに対する上記第2の金属亜酸化物層(TiOX層)の厚さの割合は22.2%であった。
(Example 17)
Infrared reflection with a pressure-sensitive adhesive layer provided with a protective layer consisting of 4 layers in the same manner as in Example 1 except that the thickness of the second metal suboxide layer (TiO X layer) of the infrared reflection layer was changed to 4 nm. A film was prepared and attached to a glass substrate. The total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO X layer)+metal layer (Ag layer)+second metal suboxide layer (TiO X layer)] was 18 nm. The ratio of the thickness of the second metal suboxide layer (TiO X layer) to the total thickness was 22.2%.
 (実施例18)
 <赤外線反射層付き透明基材の作製>
 先ず、透明基材として片面を易接着処理した前述のPETフィルム"A4100"(厚さ:50μm)を用い、上記PETフィルムの易接着処理されていない面側に、PETフィルム側から第1の金属亜酸化物層、金属層、第2の金属酸化物層を次のようにして形成した。先ず、チタンターゲットを用いて、反応性スパッタリング法により厚さ2nmの第1の金属亜酸化物層(TiOX層)を形成した。上記反応性スパッタリング法におけるスパッタリングガスとしては、Ar/O2の混合ガスを用い、ガス流量体積比はAr97%/O23%とした。続いて、上記金属亜酸化物層上に銀ターゲットを用いて、スパッタリング法により厚さ13nmの金属層(Ag層)を形成した。上記スパッタリング法におけるスパッタリングガスとしては、Arガス100%を用いた。更に、上記金属層上に酸化チタンターゲットを用いて、スパッタリング法により厚さ5nmの第2の金属酸化物層(TiO2層)を形成した。上記スパッタリング法におけるスパッタリングガスとしては、Arガス100%を用いた。これにより、透明基材側から第1の金属亜酸化物層(TiOX層)/金属層(Ag層)/第2の金属酸化物層(TiO2層)の3層構造からなる赤外線反射層付きPETフィルムを作製した。上記TiOX層のxは1.5であった。
(Example 18)
<Preparation of transparent substrate with infrared reflective layer>
First, using the above-mentioned PET film "A4100" (thickness: 50 μm) having one surface subjected to easy adhesion treatment as a transparent substrate, the first metal from the PET film side was applied to the non-easy adhesion treatment surface side of the PET film. The suboxide layer, the metal layer, and the second metal oxide layer were formed as follows. First, using a titanium target, a 2 nm-thick first metal suboxide layer (TiO x layer) was formed by a reactive sputtering method. As the sputtering gas in the reactive sputtering method, a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%. Then, a 13 nm-thick metal layer (Ag layer) was formed on the metal suboxide layer by a sputtering method using a silver target. Ar gas 100% was used as the sputtering gas in the sputtering method. Further, a titanium oxide target was used on the metal layer to form a second metal oxide layer (TiO 2 layer) having a thickness of 5 nm by a sputtering method. Ar gas 100% was used as the sputtering gas in the sputtering method. As a result, an infrared reflection layer having a three-layer structure of a first metal suboxide layer (TiO X layer)/metal layer (Ag layer)/second metal oxide layer (TiO 2 layer) from the transparent substrate side. An attached PET film was produced. The x of the TiO x layer was 1.5.
 上記赤外線反射層付きPETフィルムを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた赤外線反射層[第1の金属亜酸化物層(TiOX層)+金属層(Ag層)+第2の金属酸化物層(TiO2層)]の総厚さは20nmであり、上記総厚さに対する上記第2の金属酸化物層(TiO2層)の厚さの割合は25.0%であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of 4 layers was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer was used, and was bonded to a glass substrate. The total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO X layer)+metal layer (Ag layer)+second metal oxide layer (TiO 2 layer)] was 20 nm, The ratio of the thickness of the second metal oxide layer (TiO 2 layer) to the total thickness was 25.0%.
 (実施例19)
 赤外線反射層の第2の金属酸化物層(TiO2層)の厚さを7nmに変更した以外は、実施例18と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた赤外線反射層[第1の金属亜酸化物層(TiOX層)+金属層(Ag層)+第2の金属酸化物層(TiO2層)]の総厚さは22nmであり、上記総厚さに対する上記第2の金属酸化物層(TiO2層)の厚さの割合は31.8%であった。
(Example 19)
An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer composed of 4 layers in the same manner as in Example 18 except that the thickness of the second metal oxide layer (TiO 2 layer) of the infrared reflective layer was changed to 7 nm. Was prepared and attached to a glass substrate. The total thickness of the obtained infrared reflective layer [first metal suboxide layer (TiO X layer)+metal layer (Ag layer)+second metal oxide layer (TiO 2 layer)] was 22 nm, The ratio of the thickness of the second metal oxide layer (TiO 2 layer) to the total thickness was 31.8%.
 (実施例20)
 <赤外線反射層付き透明基材の作製>
 先ず、透明基材として片面を易接着処理した前述のPETフィルム"A4100"(厚さ:50μm)を用い、上記PETフィルムの易接着処理されていない面側に、PETフィルム側から第1の金属酸化物層、金属層、第2の金属亜酸化物層を次のようにして形成した。先ず、酸化チタンターゲットを用いて、スパッタリング法により厚さ2nmの第1の金属酸化物層(TiO2層)を形成した。上記スパッタリング法におけるスパッタリングガスとしては、Arガス100%を用いた。続いて、上記金属酸化物層上に銀ターゲットを用いて、スパッタリング法により厚さ12nmの金属層(Ag層)を形成した。上記スパッタリング法におけるスパッタリングガスとしては、Arガス100%を用いた。更に、上記金属層上にチタンターゲットを用いて、反応性スパッタリング法により厚さ2nmの第2の金属亜酸化物層(TiOX層)を形成した。上記反応性スパッタリング法におけるスパッタリングガスとしては、Ar/O2の混合ガスを用い、ガス流量体積比はAr97%/O23%とした。これにより、透明基材側から第1の金属酸化物層(TiO2層)/金属層(Ag層)/第2の金属亜酸化物層(TiOX層)の3層構造からなる赤外線反射層付きPETフィルムを作製した。上記TiOX層のxは1.5であった。
(Example 20)
<Preparation of transparent substrate with infrared reflective layer>
First, using the above-mentioned PET film "A4100" (thickness: 50 μm) having one surface subjected to easy adhesion treatment as a transparent substrate, the first metal from the PET film side was applied to the non-easy adhesion treatment surface side of the PET film. The oxide layer, the metal layer, and the second metal suboxide layer were formed as follows. First, a 2 nm-thick first metal oxide layer (TiO 2 layer) was formed by a sputtering method using a titanium oxide target. Ar gas 100% was used as the sputtering gas in the sputtering method. Then, a 12 nm-thick metal layer (Ag layer) was formed on the metal oxide layer by a sputtering method using a silver target. Ar gas 100% was used as the sputtering gas in the sputtering method. Further, a second target metal suboxide layer (TiO x layer) having a thickness of 2 nm was formed on the metal layer by a reactive sputtering method using a titanium target. As the sputtering gas in the reactive sputtering method, a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%. As a result, an infrared reflection layer having a three-layer structure of a first metal oxide layer (TiO 2 layer)/metal layer (Ag layer)/second metal suboxide layer (TiO x layer) from the transparent substrate side. An attached PET film was produced. The x of the TiO x layer was 1.5.
 上記赤外線反射層付きPETフィルムを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた赤外線反射層[第1の金属酸化物層(TiO2層)+金属層(Ag層)+第2の金属亜酸化物層(TiOX層)]の総厚さは16nmであり、上記総厚さに対する上記第2の金属亜酸化物層(TiOX層)の厚さの割合は12.5%であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of 4 layers was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer was used, and was bonded to a glass substrate. The total thickness of the obtained infrared reflective layer [first metal oxide layer (TiO 2 layer)+metal layer (Ag layer)+second metal suboxide layer (TiO X layer)] was 16 nm, The ratio of the thickness of the second metal suboxide layer (TiO X layer) to the total thickness was 12.5%.
 (実施例21)
 <中屈折率層(下層)の形成>
 先ず、アクリル系共重合体H(アクリル酸イソボルニル(Tg:94℃)/アクリル酸4-ヒドロキシブチル/クロトン酸=84質量部/15質量部/1質量部、固形分濃度50質量%、水酸基価57mgKOH/g、酸価6mgKOH/g)の溶液33.32質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)3.34質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン963.34質量部とをディスパーにて配合し、中屈折率塗料Kを作製した。次に、中屈折率塗料Kを、上記マイクログラビアコータを用いて実施例1で用いた赤外線反射層の上に乾燥後の厚さが60nmになるよう塗工し、120℃で2分間乾燥して熱硬化させることにより、厚さ60nmの中屈折率層(下層)を形成した。作製した中屈折率層(下層)の屈折率を前述の方法で測定したところ1.51であった。
(Example 21)
<Formation of Middle Refractive Index Layer (Lower Layer)>
First, acrylic copolymer H (isobornyl acrylate (Tg: 94° C.)/4-hydroxybutyl acrylate/crotonic acid=84 parts by mass/15 parts by mass/1 part by mass, solid content concentration 50% by mass, hydroxyl value 57 mgKOH/g, acid value 6 mgKOH/g) 33.32 parts by mass, and Tosoh's isocyanate cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) 3.34 parts by mass (NCO/ OH=1.0) and 963.34 parts by mass of methyl isobutyl ketone as a diluting solvent were mixed with a disper to prepare a medium refractive index coating material K. Next, the medium-refractive-index coating material K was applied onto the infrared reflective layer used in Example 1 by using the microgravure coater so that the thickness after drying was 60 nm, and dried at 120° C. for 2 minutes. By heat-curing it, a medium-refractive index layer (lower layer) having a thickness of 60 nm was formed. The refractive index of the manufactured intermediate refractive index layer (lower layer) was 1.51 as measured by the above method.
 <中屈折率層(上層)の形成>
 共栄社化学社製の電離放射線硬化性アクリルポリマー溶液"SMP-250A"(商品名、固形分濃度50質量%)165.40質量部と、共栄社化学社製のリン酸基含有メタクリル酸誘導体"ライトエステルP-2M"(商品名)4.80質量部と、ソルベイスペシャルティポリマーズジャパン社製のフッ素含有ウレタン(メタ)アクリレートモノマー"Fomblin  MT70"(商品名、固形分濃度80質量%)を8.30質量部と、エボニックデグサジャパン社製のシリコーン変性アクリレート"TEGO Rad 2650"を1.30質量部と、BASF社製の光重合開始剤"イルガキュア819"(商品名)4.80質量部と、希釈溶剤としてメチルイソブチルケトン815.40質量部とをディスパーにて配合し、中屈折率塗料Lを作製した。次に、上記中屈折率塗料Lを、上記マイクログラビアコータを用いて上記中屈折率層(下層)の上に乾燥後の厚さが920nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ920nmの中屈折率層(上層)を形成した。作製した中屈折率層(上層)の屈折率を前述の方法で測定したところ1.49であった。
<Formation of Middle Refractive Index Layer (Upper Layer)>
Ionizing radiation curable acrylic polymer solution "SMP-250A" (trade name, solid content concentration 50% by mass) manufactured by Kyoeisha Chemical Co., Ltd. and 165.40 parts by mass, and phosphoric acid group-containing methacrylic acid derivative "light ester" manufactured by Kyoeisha Chemical Co., Ltd. P-2M" (brand name) 4.80 parts by mass and Fluorine-containing urethane (meth)acrylate monomer "Fomblin MT70" (brand name, solid content concentration 80 mass%) manufactured by Solvay Specialty Polymers Japan 8.30 parts by mass Part, 1.30 parts by mass of a silicone-modified acrylate "TEGO Rad 2650" manufactured by Evonik Degussa Japan, 4.80 parts by mass of a photopolymerization initiator "IRGACURE 819" (trade name) manufactured by BASF, and a diluent solvent. Was mixed with 815.40 parts by mass of methyl isobutyl ketone by a disper to prepare a medium refractive index coating material L. Next, the medium-refractive-index coating material L is applied onto the medium-refractive-index layer (lower layer) using the microgravure coater so that the thickness after drying is 920 nm, and after drying, the high-pressure mercury lamp is used. At 300 mJ/cm 2 , ultraviolet rays having a light amount of 300 mJ/cm 2 were irradiated to cure the layer, and thereby a middle refractive index layer (upper layer) having a thickness of 920 nm was formed. The refractive index of the manufactured medium refractive index layer (upper layer) was 1.49 when measured by the above-mentioned method.
 以上のようにして、中屈折率層(下層)及び中屈折率層(上層)から成る保護層を備えた赤外線反射フィルムを作製した。上記保護層を備えた赤外線反射層付きPETフィルムを用いた以外は、実施例1と同様にして中屈折率層(下層)及び中屈折率層(上層)の2層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた保護層の厚さは、980nmであった。 As described above, an infrared reflective film having a protective layer composed of a medium refractive index layer (lower layer) and a medium refractive index layer (upper layer) was produced. A protective layer comprising two layers of a medium refractive index layer (lower layer) and a medium refractive index layer (upper layer) was provided in the same manner as in Example 1 except that the PET film with the infrared reflecting layer provided with the above protective layer was used. An infrared reflective film with a pressure-sensitive adhesive layer was prepared and attached to a glass substrate. The protective layer thus obtained had a thickness of 980 nm.
 (実施例22)
 中屈折率層(上層)の厚さを620nmに変更した以外は、実施例21と同様にして中屈折率層(下層)及び中屈折率層(上層)の2層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。得られた保護層の厚さは、680nmであった。
(Example 22)
A protective layer comprising two layers of a middle refractive index layer (lower layer) and a middle refractive index layer (upper layer) was provided in the same manner as in Example 21 except that the thickness of the middle refractive index layer (upper layer) was changed to 620 nm. An infrared reflective film with a pressure-sensitive adhesive layer was prepared and attached to a glass substrate. The thickness of the resulting protective layer was 680 nm.
 (実施例23)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体I(メタクリル酸n-ブチル(Tg:20℃)/メタクリル酸イソボルニル(Tg:155℃)/アクリル酸4-ヒドロキシブチル=40質量部/50/10質量部、固形分濃度50質量%、水酸基価38mgKOH/g)の溶液35.28質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)2.39質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン962.33質量部とをディスパーにて配合し、中屈折率塗料Mを作製した。
(Example 23)
<Preparation of medium refractive index paint>
First, acrylic copolymer I (n-butyl methacrylate (Tg: 20° C.)/isobornyl methacrylate (Tg: 155° C.)/4-hydroxybutyl acrylate=40 parts by mass/50/10 parts by mass, solid content 35.28 parts by mass of a solution having a concentration of 50% by mass and a hydroxyl value of 38 mgKOH/g, and 2.39 parts by mass of an isocyanate-based crosslinking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation (NCO). /OH=1.0) and 962.33 parts by mass of methyl isobutyl ketone as a diluting solvent were mixed with a disper to prepare a medium refractive index coating material M.
 上記中屈折率塗料Mを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.50であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material M was used, and was bonded to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.50 when measured by the above-mentioned method.
 (実施例24)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体J(メタクリル酸イソボルニル(Tg:155℃)/イソブテン/アクリル酸4-ヒドロキシブチル=75質量部/15質量部/10質量部、固形分濃度50質量%、水酸基価38mgKOH/g)の溶液35.28質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)2.39質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン/トルエン=866.10/96.23質量部とをディスパーにて配合し、中屈折率塗料Nを作製した。
(Example 24)
<Preparation of medium refractive index paint>
First, acrylic copolymer J (isobornyl methacrylate (Tg: 155° C.)/isobutene/4-hydroxybutyl acrylate=75 parts by mass/15 parts by mass/10 parts by mass, solid content concentration 50% by mass, hydroxyl value 38 mgKOH 35.28 parts by mass of a solution of a solution of 1 g/g) and 2.39 parts by mass (NCO/OH=1.0) of an isocyanate cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation. Then, as a diluting solvent, methyl isobutyl ketone/toluene=866.10/96.23 parts by mass was blended with a disper to prepare a medium refractive index coating material N.
 上記中屈折率塗料Nを用いた以外は、実施例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.51であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 1 except that the medium refractive index coating material N was used, and the infrared reflective film was attached to a glass substrate. The refractive index of the manufactured medium refractive index layer was 1.51 as measured by the above method.
 (比較例1)
 中屈折率層の形成を下記に変更した以外は、実施例13と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。
(Comparative Example 1)
An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Example 13 except that the formation of the medium refractive index layer was changed to the following, and this was laminated on a glass substrate.
 <中屈折率層の形成>
 アイカ工業社製のハードコート剤"Z-773"(商品名、固形分濃度34質量%、屈折率1.53[公称値])96.47質量部と、希釈溶剤として酢酸ブチル903.53部とをディスパーにて配合し、中屈折率塗料Oを作製した。上記中屈折率塗料Oを、上記マイクログラビアコータを用いて上記光学調整層の上に乾燥後の厚さが60nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ60nmの中屈折率層を形成した。作製した中屈折率層の屈折率を前述の方法で測定したところ1.52であった。
<Formation of medium refractive index layer>
96.47 parts by mass of hard coating agent "Z-773" (trade name, solid content concentration 34% by mass, refractive index 1.53 [nominal value]) manufactured by Aika Kogyo Co., Ltd., and butyl acetate 903.53 parts as a diluting solvent. Were mixed with a disper to prepare a medium refractive index coating material O. The medium refractive index coating material O was coated on the optical adjustment layer using the microgravure coater so that the thickness after drying was 60 nm, and after drying, it was dried at 300 mJ/cm 2 with a high pressure mercury lamp. A medium-refractive-index layer having a thickness of 60 nm was formed by irradiating and curing with a light amount of ultraviolet rays. The refractive index of the manufactured medium refractive index layer was 1.52 as measured by the above method.
 (比較例2)
 <赤外線反射層付き透明基材の作製>
 先ず、透明基材として片面を易接着処理した前述のPETフィルム"A4100"(厚さ:50μm)を用い、上記PETフィルムの易接着処理されていない面側に、PETフィルム側から第1の金属酸化物層、金属層、第2の金属酸化物層を次のようにして形成した。先ず、錫/亜鉛=90質量%/10質量%の金属組成から成るターゲットを用いて、反応性スパッタリング法により厚さ10nmの第1の金属酸化物層(ZTO層)を形成した。上記反応性スパッタリング法におけるスパッタリングガスとしては、Ar/O2の混合ガスを用い、ガス流量体積比はAr97%/O23%とした。続いて、上記金属酸化物層上に銀ターゲットを用いて、スパッタリング法により厚さ12nmの金属層(Ag層)を形成した。上記スパッタリング法におけるスパッタリングガスとしては、Arガス100%を用いた。更に、上記金属層上に錫/亜鉛=90質量%/10質量%の金属組成から成るターゲットを用いて、反応性スパッタリング法により厚さ10nmの第2の金属酸化物層(ZTO層)を形成した。上記反応性スパッタリング法におけるスパッタリングガスとしては、Ar/O2の混合ガスを用い、ガス流量体積比はAr97%/O23%とした。これにより、透明基材側から第1の金属酸化物層(ZTO層)/金属層(Ag層)/第2の金属酸化物層(ZTO層)の3層構造からなる赤外線反射層付きPETフィルムを作製した。
(Comparative example 2)
<Preparation of transparent substrate with infrared reflective layer>
First, using the above-mentioned PET film "A4100" (thickness: 50 μm) having one surface subjected to easy adhesion treatment as a transparent substrate, the first metal from the PET film side was applied to the non-easy adhesion treatment surface side of the PET film. The oxide layer, the metal layer, and the second metal oxide layer were formed as follows. First, a target having a metal composition of tin/zinc=90% by mass/10% by mass was used to form a first metal oxide layer (ZTO layer) having a thickness of 10 nm by the reactive sputtering method. As the sputtering gas in the reactive sputtering method, a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%. Then, a 12 nm-thick metal layer (Ag layer) was formed on the metal oxide layer by a sputtering method using a silver target. Ar gas 100% was used as the sputtering gas in the sputtering method. Further, a second metal oxide layer (ZTO layer) having a thickness of 10 nm is formed on the metal layer by a reactive sputtering method using a target having a metal composition of tin/zinc=90% by mass/10% by mass. did. As the sputtering gas in the reactive sputtering method, a mixed gas of Ar/O 2 was used, and the gas flow volume ratio was Ar 97%/O 2 3%. Thereby, a PET film with an infrared reflective layer having a three-layer structure of a first metal oxide layer (ZTO layer)/metal layer (Ag layer)/second metal oxide layer (ZTO layer) from the transparent substrate side. Was produced.
 上記方法で得られた赤外線反射層[第1の金属酸化物層(ZTO層)+金属層(Ag層)+第2の金属酸化物層(ZTO層)]の総厚さは32nmであり、上記総厚さに対する上記第2の金属酸化物層(ZTO層)の厚さの割合は31.3%であった。 The total thickness of the infrared reflective layer [first metal oxide layer (ZTO layer)+metal layer (Ag layer)+second metal oxide layer (ZTO layer)] obtained by the above method is 32 nm, The ratio of the thickness of the second metal oxide layer (ZTO layer) to the total thickness was 31.3%.
 <低屈折率層の形成>
 実施例1で用いた低屈折率塗料Aを、上記マイクログラビアコータ(廉井精機社製)を用いて上記赤外線反射層の上に乾燥後の厚さが60nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ60nmの低屈折率層を形成した。作製した低屈折率層の屈折率を前述の方法で測定したところ1.37であった。
<Formation of low refractive index layer>
The low-refractive-index coating material A used in Example 1 was applied onto the infrared reflective layer using the microgravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying was 60 nm, and dried. After that, a low-refractive index layer having a thickness of 60 nm was formed by irradiating with a high-pressure mercury lamp an ultraviolet ray of a light amount of 300 mJ/cm 2 to cure the layer. The refractive index of the manufactured low refractive index layer was 1.37 when measured by the above-mentioned method.
 以上のようにして、低屈折率層1層から成る保護層を備えた赤外線反射フィルムを作製した。上記保護層を備えた赤外線反射層付きPETフィルムを用いた以外は、実施例1と同様にして低屈折率層1層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。 As described above, an infrared reflective film having a protective layer composed of one low refractive index layer was prepared. An infrared reflective film with a pressure-sensitive adhesive layer having a protective layer consisting of one low refractive index layer was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer having the above protective layer was used to prepare a glass. It was attached to the substrate.
 (比較例3)
 <中屈折率層の形成>
 実施例21で用いた中屈折率塗料Lを、上記マイクログラビアコータ(廉井精機社製)を用いて比較例2で用いた赤外線反射層の上に乾燥後の厚さが680nmになるよう塗工し、乾燥させた後、高圧水銀灯にて300mJ/cm2の光量の紫外線を照射して硬化させることにより、厚さ680nmの中屈折率層を形成した。作製した中屈折率層の屈折率を前述の方法で測定したところ1.49であった。
(Comparative example 3)
<Formation of medium refractive index layer>
The medium-refractive-index coating material L used in Example 21 was applied onto the infrared reflective layer used in Comparative Example 2 by using the microgravure coater (manufactured by Rensai Seiki Co., Ltd.) so that the thickness after drying was 680 nm. After working and drying, a medium-refractive index layer having a thickness of 680 nm was formed by irradiating a high-pressure mercury lamp with ultraviolet rays having a light amount of 300 mJ/cm 2 to cure the layer. The refractive index of the manufactured medium refractive index layer was 1.49 as measured by the above-mentioned method.
 以上のようにして、中屈折率層1層から成る保護層を備えた赤外線反射フィルムを作製した。上記保護層を備えた赤外線反射層付きPETフィルムを用いた以外は、実施例1と同様にして中屈折率層1層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。 As described above, an infrared reflective film having a protective layer composed of one medium refractive index layer was prepared. An infrared reflective film with a pressure-sensitive adhesive layer having a protective layer consisting of one medium refractive index layer was prepared in the same manner as in Example 1 except that the PET film with an infrared reflective layer having the protective layer was used to prepare a glass. It was attached to the substrate.
 (比較例4)
 比較例1の保護層の最外表面側に位置する層である低屈折率層に代えて、実施例1の中屈折率層を保護層の最外表面側に位置する層(乾燥後の厚さ100nm)として塗工、形成(120℃で2分間乾燥して熱硬化)した以外は、比較例1と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。
(Comparative Example 4)
Instead of the low refractive index layer, which is the outermost surface layer of the protective layer of Comparative Example 1, the medium refractive index layer of Example 1 was the outermost surface layer of the protective layer (thickness after drying). Except for coating and forming (drying at 120° C. for 2 minutes and thermosetting), an infrared reflection film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared in the same manner as in Comparative Example 1. And attached to a glass substrate.
 (比較例5)
 <中屈折率塗料の作製>
 先ず、アクリル系共重合体K(メタクリル酸メチル(Tg:105℃)/メタクリル酸エチル(Tg:65℃)/アクリル酸4-ヒドロキシブチル=70質量部/25質量部/5質量部、固形分濃度50質量%、水酸基価19mgKOH/g)の溶液37.49質量部と、東ソー社製のイソシアネート系架橋剤"コロネートHX"(商品名、固形分濃度100質量%)1.26質量部(NCO/OH=1.0)と、希釈溶剤としてメチルイソブチルケトン961.25質量部とをディスパーにて配合し、中屈折率塗料Pを作製した。
(Comparative example 5)
<Preparation of medium refractive index paint>
First, acrylic copolymer K (methyl methacrylate (Tg: 105° C.)/ethyl methacrylate (Tg: 65° C.)/4-hydroxybutyl acrylate=70 parts by mass/25 parts by mass/5 parts by mass, solid content 37.49 parts by weight of a solution having a concentration of 50% by mass and a hydroxyl value of 19 mgKOH/g) and 1.26 parts by mass of an isocyanate-based cross-linking agent "Coronate HX" (trade name, solid content concentration 100% by mass) manufactured by Tosoh Corporation (NCO). /OH=1.0) and 961.25 parts by mass of methyl isobutyl ketone as a diluting solvent were mixed with a disper to prepare a medium refractive index coating material P.
 上記中屈折率塗料Pを用いた以外は、実施例13と同様にして4層から成る保護層を備えた粘着剤層付き赤外線反射フィルムを作製してガラス基板に貼り合わせた。作製した中屈折率層の屈折率を前述の方法で測定したところ1.49であった。 An infrared reflective film with a pressure-sensitive adhesive layer provided with a protective layer consisting of four layers was prepared and bonded to a glass substrate in the same manner as in Example 13 except that the above medium refractive index coating material P was used. The refractive index of the manufactured medium refractive index layer was 1.49 as measured by the above-mentioned method.
 <透明遮熱断熱部材の評価>
 上記実施例1~24及び上記比較例1~5に関して、ガラス基板に貼り付けた状態での赤外線反射フィルム(透明遮熱断熱部材)の可視光線透過率、可視光線反射率、可視光線反射率の最大変動差、日射吸収率、遮蔽係数、熱貫流率を以下のように測定し、また、赤外線反射フィルムの耐塩水性、耐擦傷性、外観性について評価した。
<Evaluation of transparent heat insulating and heat insulating member>
Regarding Examples 1 to 24 and Comparative Examples 1 to 5 described above, the visible light transmittance, visible light reflectance, and visible light reflectance of the infrared reflective film (transparent heat insulating and heat insulating member) attached to the glass substrate The maximum variation difference, the solar radiation absorption rate, the shielding coefficient, and the heat transmission coefficient were measured as follows, and the infrared reflection film was evaluated for salt water resistance, scratch resistance, and appearance.
 [可視光線透過率]
 可視光線透過率は、ガラス基板側を入射光側として、波長380~780nmの範囲において、日本分光社製の紫外可視近赤外分光光度計"Ubest V-570型"(商品名)を用いて分光透過率を測定し、JIS A5759-2008に基づき算出した。
[Visible Light Transmittance]
The visible light transmittance was measured using a UV-visible near-infrared spectrophotometer "Ubest V-570 Model" (trade name) manufactured by JASCO Corporation in the wavelength range of 380 to 780 nm with the glass substrate side as the incident light side. The spectral transmittance was measured and calculated according to JIS A5759-2008.
 [可視光線反射率]
 可視光線反射率は、ガラス基板側を入射光側として、波長380~780nmの範囲において、上記紫外可視近赤外分光光度計"Ubest V-570型"を用いて分光反射率を測定し、JIS R3106-1998に準じて算出した。
[Visible light reflectance]
As for the visible light reflectance, the spectral reflectance was measured using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the wavelength range of 380 to 780 nm with the glass substrate side as the incident light side. Calculated according to R3106-1998.
 [反射率の最大変動差]
 ガラス基板側を入射光側として、300~800nmの範囲において上記紫外可視近赤外分光光度計"Ubest V-570型"を用いて分光反射率をJIS R3106-1998に基づき測定した。測定された可視光線反射スペクトルから上述した方法により、反射率の「最大変動差ΔA」及び「最大変動差ΔB」を求めた。
[Maximum difference in reflectance]
Spectral reflectance was measured according to JIS R3106-1998 using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the range of 300 to 800 nm with the glass substrate side as the incident light side. The “maximum variation difference ΔA” and “maximum variation difference ΔB” of the reflectance were obtained from the measured visible light reflection spectrum by the method described above.
 [日射吸収率]
 日射吸収率は、ガラス基板側を入射光側として、波長300~2500nmの範囲において、上記紫外可視近赤外分光光度計"Ubest V-570型"を用いて分光透過率及び分光反射率を測定し、JIS A5759-2008に準拠して求めた日射透過率及び日射反射率の値から算出した。
[Solar absorption rate]
The solar absorptance is measured by using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the wavelength range of 300 to 2500 nm with the glass substrate side as the incident light side. Then, it was calculated from the values of the solar radiation transmittance and the solar reflectance calculated according to JIS A5759-2008.
 [遮蔽係数]
 遮蔽係数は、ガラス基板側を入射光側として、波長300~2500nmの範囲において、上記紫外可視近赤外分光光度計"Ubest V-570型"を用いて分光透過率及び分光反射率を測定し、JIS A5759に準拠して日射透過率及び日射反射率を求め、JIS R3106-2008に準拠して垂直放射率を求め、その日射透過率、日射反射率及び垂直放射率の値から求めた。
[Shielding factor]
The shielding coefficient was measured by measuring the spectral transmittance and the spectral reflectance using the UV-visible near-infrared spectrophotometer "Ubest V-570 type" in the wavelength range of 300 to 2500 nm with the glass substrate side as the incident light side. The solar radiation transmittance and the solar reflectance were obtained according to JIS A5759, the vertical emissivity was obtained according to JIS R3106-2008, and the values were obtained from the values of the solar radiation transmittance, solar reflectance and vertical emissivity.
 [熱貫流率]
 熱貫流率は、島津製作所製の赤外分光光度計"IR Prestige21"(商品名)に正反射測定用アタッチメントを取り付け、赤外線反射フィルムの保護層側及びガラス基板側の分光正反射率を波長5.5~25.2μmの範囲において測定し、JIS R3106-2008に準拠して赤外線反射フィルムの保護層側及びガラス基板側の垂直放射率を求め、これに基づきJIS A5759-2008に準拠して熱貫流率を求めた。
[Heat transmission coefficient]
For the heat transmission coefficient, an attachment for specular reflection measurement was attached to an infrared spectrophotometer "IR Prestige21" (trade name) manufactured by Shimadzu Corporation, and the specular specular reflectance on the protective layer side and the glass substrate side of the infrared reflection film was measured at a wavelength of 5 Measured in the range of 0.5 to 25.2 μm, the vertical emissivity of the protective layer side and the glass substrate side of the infrared reflective film is determined according to JIS R3106-2008, and based on this, the thermal emissivity is determined according to JIS A5759-2008. The penetration rate was calculated.
 [耐塩水性]
 先ず、上記紫外可視近赤外分光光度計"Ubest V-570型"を用いて、ガラス基板に貼り付けた赤外線反射フィルムの波長300~1500nmの範囲における分光透過率を測定し、波長1100nmの光の透過率TB(%単位)を測定した。その後、上記ガラス基板に貼り付けた赤外線反射フィルムを5質量%の塩化ナトリウム水溶液に浸漬し、この状態で50℃の恒温恒湿槽に入れ、30日保存する耐塩水性試験を行った。上記耐塩水性試験の終了後に、上記ガラス基板に貼り付けた赤外線反射フィルムを純水で洗浄し、自然乾燥した。続いて、上記と同様にして、上記耐塩水性試験後の上記ガラス基板に貼り付けた赤外線反射フィルムの波長1100nmの光の透過率TA(%単位)を測定した。以上の測定結果から、上記耐塩水性試験前後の波長1100nmの光の透過率の変差として、TA-TBのポイント値を算出した。
[Salt water resistance]
First, the UV-visible near-infrared spectrophotometer "Ubest V-570 type" was used to measure the spectral transmittance of the infrared reflective film attached to the glass substrate in the wavelength range of 300 to 1500 nm, and the light of wavelength 1100 nm was measured. The transmittance T B (unit: %) of each was measured. Then, the infrared reflection film attached to the glass substrate was immersed in a 5% by mass sodium chloride aqueous solution, and in this state, it was placed in a constant temperature and humidity bath at 50° C. and stored for 30 days to perform a salt water resistance test. After the salt water resistance test was completed, the infrared reflection film attached to the glass substrate was washed with pure water and naturally dried. Subsequently, the transmittance T A (% unit) of light having a wavelength of 1100 nm of the infrared reflective film attached to the glass substrate after the salt water resistance test was measured in the same manner as above. From the above measurement results, a point value of T A -T B was calculated as a difference in transmittance of light having a wavelength of 1100 nm before and after the salt water resistance test.
 [耐擦傷性]
 透明遮熱断熱部材の保護層の耐擦傷性は、保護層上に白ネル布を配置し、1000g/cm2の荷重をかけた状態で、白ネル布を1000往復させた後、一定視野内において保護層の表面の状態を目視にて観察して、以下の3段階で評価した。
 優良:傷が全くつかなかった場合
 良 :傷が数本(5本以下)確認された場合
 不良:傷が多数(6本以上)確認された場合
[Scratch resistance]
The scratch resistance of the protective layer of the transparent heat-insulating and heat-insulating member is determined by arranging a white flannel cloth on the protective layer and applying a load of 1000 g/cm 2 and reciprocating the white flannel cloth 1000 times. In the above, the state of the surface of the protective layer was visually observed and evaluated according to the following three grades.
Excellent: No scratches were found. Good: Several scratches (5 or less) were confirmed. Poor: Many scratches (6 or more) were confirmed.
 [外観性]
 透明遮熱断熱部材の外観(虹彩模様及び視野角による反射色の変化)は、3波長蛍光灯下で、透明遮熱断熱部材の保護層側の表面を目視にて観察し、以下の3段階で評価した。
 優良:虹彩模様及び視野角による反射色の変化がほとんど観察されなかった場合
 良 :虹彩模様及び/又は視野角による反射色の変化が少し観察された場合
 不良:虹彩模様及び/又は視野角による反射色の変化が明らかに観察された場合
[Appearance]
The appearance of the transparent heat insulating and heat insulating member (change in reflection color depending on the iris pattern and viewing angle) is visually observed under a three-wavelength fluorescent lamp on the surface of the protective layer side of the transparent heat insulating and heat insulating member, and the following three stages are available. It was evaluated by.
Excellent: When almost no change in reflected color due to iris pattern and viewing angle was observed. Good: When slight change in reflected color due to iris pattern and/or viewing angle was observed. Poor: Reflection due to iris pattern and/or viewing angle. When a color change is clearly observed
 以上の結果を、赤外線反射フィルム(透明遮熱断熱部材)の層構成と共に表1~表8に示す。 The above results are shown in Tables 1 to 8 together with the layer structure of the infrared reflecting film (transparent heat insulating/insulating member).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1~表6に示すように、実施例9、11を除く他のすべての実施例の赤外線反射フィルム(透明遮熱断熱部材)は、過酷な外部環境を想定した耐塩水性試験においても良好な結果を示しており、フィルム表面に結露水や人の皮脂や汗等が付着したとしても、短期間で赤外線反射層の金属層が腐食劣化することはない。また、可視光線透過率が大きく、可視光線反射率の変動差も小さいため、窓ガラスに貼りつけた際にも透明性及び外観性を損なうことがない。また、遮蔽係数及び熱貫流率も小さく、夏季の遮熱性能と、冬季の断熱性能とが共に優れている。また、耐擦傷性も実用上、問題ないレベルとなっている。更に、日射吸収率が小さいため、窓ガラスへの施工後にガラスの熱割れを起こし難い。即ち、実用上、バランスの取れた透明遮熱断熱部材が得られていることが分かる。 As shown in Tables 1 to 6, the infrared reflective films (transparent heat insulating/insulating members) of all the other examples except Examples 9 and 11 were good even in the salt water resistance test assuming a harsh external environment. The results show that even if dew condensation water, human sebum, sweat, etc. adhere to the film surface, the metal layer of the infrared reflective layer is not corroded and deteriorated in a short period of time. Further, since the visible light transmittance is large and the variation in the visible light reflectance is small, the transparency and the appearance are not impaired even when it is attached to a window glass. Moreover, the shielding coefficient and the heat transmission coefficient are small, and both the heat shielding performance in summer and the heat insulating performance in winter are excellent. In addition, the scratch resistance is at a practically acceptable level. Further, since the solar radiation absorption rate is small, it is difficult for the glass to undergo thermal cracking after installation on the window glass. That is, it can be seen that a practically well-balanced transparent heat shield and heat insulating member was obtained.
 実施例9及び11は、各々、無機微粒子を多量に含む光学調整層、高屈折率層を、水酸基を有する(メタ)アクリル系共重合体と該水酸基と反応する架橋剤とを含む層としているため、無機微粒子を含まない中屈折率層を、水酸基を有する(メタ)アクリル系共重合体と該水酸基と反応する架橋剤とを含む層としている他の実施例と比較して、耐塩水性試験において、やや劣っていた。 In each of Examples 9 and 11, the optical adjustment layer containing a large amount of inorganic fine particles and the high refractive index layer were layers containing a (meth)acrylic copolymer having a hydroxyl group and a crosslinking agent that reacts with the hydroxyl group. Therefore, a salt water resistance test is performed in comparison with other examples in which the medium refractive index layer containing no inorganic fine particles is a layer containing a (meth)acrylic copolymer having a hydroxyl group and a crosslinking agent that reacts with the hydroxyl group. It was a little inferior.
 実施例13は、金属亜酸化物層に直接に接する層に、金属に対する腐食防止剤を含んでいないため、金属亜酸化物層に直接に接する層に、金属に対する腐食防止剤を含んでいる実施例1及び実施例12と比較して、耐塩水性試験において、やや劣っていた。 In Example 13, since the layer directly contacting the metal suboxide layer did not contain the corrosion inhibitor for the metal, the layer directly contacting the metal suboxide layer contained the corrosion inhibitor for the metal. Compared to Example 1 and Example 12, the salt water resistance test was slightly inferior.
 実施例16は、耐塩水性試験においては良好な結果を示したが、保護層の総厚さが1010nmとやや厚いため、熱貫流率が4.3W/(m2・K)とやや大きく、保護層の総厚さが980nm以下である他の実施例と比較して、断熱性能がやや劣っていた。 Although Example 16 showed good results in the salt water resistance test, the total thickness of the protective layer was 1010 nm, which was rather large, and thus the heat transmission coefficient was 4.3 W/(m 2 ·K), which was rather large, and the protection was achieved. The thermal insulation performance was slightly inferior compared to the other examples in which the total layer thickness was 980 nm or less.
 実施例19は、耐塩水性試験においては良好な結果を示したが、赤外線反射層の第2の金属酸化物層(TiO2層)の厚さが7nmであり、赤外線反射層の総厚さの25%を超える31.8%に相当するため、日射吸収率が21.3%と大きくなり、日射吸収率が20%以下である他の実施例と比較して、窓ガラスに施工した際のガラスの熱割れリスクが高いものとなった。 Although Example 19 showed good results in the salt water resistance test, the thickness of the second metal oxide layer (TiO 2 layer) of the infrared reflective layer was 7 nm, and the total thickness of the infrared reflective layer was Since it corresponds to 31.8% which exceeds 25%, the solar radiation absorption rate is as large as 21.3%, and when compared with other examples in which the solar radiation absorption rate is 20% or less, when applied to window glass. The risk of heat cracking of glass has become high.
 実施例21及び22は、耐塩水性試験においては良好な結果を示したが、保護層が中屈折率層の2層構成から成るため、保護層が屈折率範囲の異なる積層構成から成る他の実施例と比較して、可視光線透過率及び外観性が劣っていた。 Examples 21 and 22 showed good results in the salt water resistance test, but since the protective layer had a two-layer structure of a medium refractive index layer, another example in which the protective layer had a laminated structure with different refractive index ranges was used. Compared with the examples, the visible light transmittance and the appearance were inferior.
 これに対し、表7、8に示すように、比較例1及び比較例5は、複数から成る保護層の内、最外表面側に位置する層以外の層のいずれにも、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含んでいないため、耐塩水性試験において、赤外線反射層が腐食劣化を引き起こして、保護層が剥離してしまい、TA-TBの値も、各々、50.0ポイント、40.2ポイントと大きくなった。即ち、遮熱断熱機能をほとんど有さないものとなった。 On the other hand, as shown in Tables 7 and 8, in Comparative Examples 1 and 5, among the protective layers composed of a plurality of layers, any of the layers other than the layer located on the outermost surface side has a hydroxyl group. A copolymer and a (meth)acrylic acid alkyl ester monomer having a carbon number of the alkyl group capable of forming a homopolymer having a glass transition temperature of 20° C. or more and 155° C. or less and 4 or more and 10 or less as a copolymer unit ( Since the (meth)acrylic copolymer and the polyisocyanate crosslinking agent that reacts with the hydroxyl group are not contained, the infrared reflective layer causes corrosion deterioration in the salt water resistance test, and the protective layer peels off. the value of a -T B also, each 50.0 points, was as large as 40.2 points. That is, it has almost no heat insulation function.
 また、比較例2及び3は、保護層が、各々、低屈折率層、中屈折率層の1層から成り、また、該層に、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含んでいないため、耐塩水性試験において、赤外線反射層が腐食劣化を引き起こして、保護層が剥離してしまい、TA-TBの値も、各々、35.0ポイント、29.5ポイントと大きくなった。即ち、遮熱断熱機能をほとんど有さないものとなった。また、赤外線反射層の総厚さは32nmであり、更に赤外線反射層の第2の金属酸化物層(ZTO層)の厚さが10nmで赤外線反射層の総厚さの25%を超える31.3%に相当するため、日射吸収率が各々20.9%、21.5%と大きくなり、窓ガラスに施工した際のガラスの熱割れのリスクが高いものとなった。更に、比較例2は、保護層の厚さが60nmと薄いため、耐擦傷性において劣っていた。更に、比較例3は、保護層が中屈折率層の1層で、厚さが可視光線の波長領域と重なる680nmであるため、外観性に劣っていた。 In Comparative Examples 2 and 3, the protective layers each consist of one layer of a low refractive index layer and a medium refractive index layer, and a monomer having a hydroxyl group and a glass transition temperature of 20° C. or higher are provided in the layer. A (meth)acrylic copolymer containing, as a copolymer unit, a (meth)acrylic acid alkyl ester monomer having an alkyl group having a carbon number of 4 or more and 10 or less capable of forming a homopolymer at 155° C. or less; Since it does not contain a polyisocyanate cross-linking agent that reacts with hydroxyl groups, in the salt water resistance test, the infrared reflective layer causes corrosion deterioration and the protective layer peels off, and the values of T A -T B are It increased to 35.0 points and 29.5 points. That is, it has almost no heat insulation function. The total thickness of the infrared reflective layer is 32 nm, and the thickness of the second metal oxide layer (ZTO layer) of the infrared reflective layer is 10 nm, which exceeds 25% of the total thickness of the infrared reflective layer. Since it corresponds to 3%, the solar radiation absorptances are large at 20.9% and 21.5%, respectively, and the risk of thermal cracking of the glass when applied to window glass is high. Furthermore, Comparative Example 2 was inferior in scratch resistance because the thickness of the protective layer was as thin as 60 nm. Furthermore, in Comparative Example 3, the protective layer was one layer of the medium refractive index layer, and the thickness was 680 nm, which overlaps with the wavelength region of visible light, and therefore the appearance was poor.
 また、比較例4は、複層から成る保護層の内、最外表面側に位置する層に、水酸基を有する単量体とガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含む(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む中屈折率層を適用したため、耐塩水性試験においては良好な結果を示したが、最外表面側に位置する該中屈折率層は電離放射線硬化型樹脂を含んでいないため、耐擦傷性には劣るものであった。 Further, in Comparative Example 4, it is possible to form a monomer having a hydroxyl group and a homopolymer having a glass transition temperature of 20° C. or higher and 155° C. or lower in a layer located on the outermost surface side of the protective layer including a plurality of layers. A (meth)acrylic copolymer containing, as a copolymer unit, a (meth)acrylic acid alkyl ester monomer having an alkyl group having 4 to 10 carbon atoms, and a polyisocyanate crosslinking agent that reacts with the hydroxyl group. Since a medium refractive index layer containing a is applied, it showed good results in a salt water resistance test, but since the middle refractive index layer located on the outermost surface side does not contain an ionizing radiation curable resin, scratch resistance Was inferior to
 本発明は、高い遮熱性能及び断熱性能を維持したまま、過酷な外部環境を想定した耐塩水性試験における耐腐食劣化性に優れた透明遮熱断熱部材を提供できる。更に加えて、日射吸収率が低く、窓ガラス等に施工した際のガラスの熱割れのリスクも低減した外観性に優れた透明遮熱断熱部材を提供できる。 The present invention can provide a transparent heat insulating and heat insulating member excellent in corrosion resistance deterioration in salt water resistance test assuming a severe external environment while maintaining high heat insulating performance and heat insulating performance. In addition, it is possible to provide a transparent heat insulating and heat insulating member having a low solar radiation absorption rate and a reduced risk of thermal cracking of glass when applied to a window glass or the like and having excellent appearance.
 10 透明遮熱断熱部材
 11 透明基材
 12 第1の金属亜酸化物層又は金属酸化物層
 13 金属層
 14 第2の金属亜酸化物層又は金属酸化物層
 15 光学調整層
 16 中屈折率層
 17 高屈折率層
 18 低屈折率層
 19 粘着剤層
 21 赤外線反射層
 22 塗布型の保護層
 23 機能層
10 Transparent Thermal Insulation Member 11 Transparent Substrate 12 First Metal Suboxide Layer or Metal Oxide Layer 13 Metal Layer 14 Second Metal Suboxide Layer or Metal Oxide Layer 15 Optical Adjustment Layer 16 Medium Refractive Index Layer 17 High Refractive Index Layer 18 Low Refractive Index Layer 19 Adhesive Layer 21 Infrared Reflective Layer 22 Coating Protective Layer 23 Functional Layer

Claims (15)

  1.  透明基材と、前記透明基材の上に形成された機能層とを含む透明遮熱断熱部材であって、
     前記機能層は、前記透明基材側から赤外線反射層及び塗布型の保護層をこの順に含み、
     前記赤外線反射層は、前記透明基材側から、少なくとも金属層、及び、金属亜酸化物層又は金属酸化物層をこの順に含み、
     前記塗布型の保護層は、複数の層から成り、
     前記塗布型の保護層の内、最外表面側に位置する層以外の層の少なくとも1層は、硬化前樹脂成分として、水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む層から成り、
     前記(メタ)アクリル系共重合体は、水酸基を有する単量体と、ガラス転移温度が20℃以上155℃以下のホモポリマーを形成可能なアルキル基の炭素数が4以上10以下の(メタ)アクリル酸アルキルエステル単量体とを共重合体ユニットとして含み、
     前記塗布型の保護層の内、最外表面側に位置する層は、硬化前樹脂成分として、活性エネルギー線硬化型樹脂を含む層から成ることを特徴とする透明遮熱断熱部材。
    A transparent heat insulating and heat insulating member comprising a transparent substrate and a functional layer formed on the transparent substrate,
    The functional layer includes an infrared reflective layer and a coating type protective layer in this order from the transparent substrate side,
    The infrared reflective layer, from the transparent substrate side, at least a metal layer, and, and includes a metal suboxide layer or a metal oxide layer in this order,
    The coating type protective layer comprises a plurality of layers,
    At least one layer of the coating type protective layers other than the layer located on the outermost surface side reacts with a (meth)acrylic copolymer having a hydroxyl group as a pre-curing resin component, and the hydroxyl group. Consisting of a layer containing a polyisocyanate crosslinking agent,
    The (meth)acrylic copolymer is a monomer having a hydroxyl group and an alkyl group capable of forming a homopolymer having a glass transition temperature of 20° C. or higher and 155° C. or lower (C) having 4 to 10 carbon atoms (meth). Containing an acrylic acid alkyl ester monomer as a copolymer unit,
    The transparent heat-shielding and heat-insulating member, wherein the outermost surface side layer of the coating type protective layer comprises a layer containing an active energy ray-curable resin as a pre-curing resin component.
  2.  前記(メタ)アクリル系共重合体は、水酸基価が30mgKOH/g以上200mgKOH/g以下である請求項1に記載の透明遮熱断熱部材。 The transparent heat insulating and heat insulating member according to claim 1, wherein the (meth)acrylic copolymer has a hydroxyl value of 30 mgKOH/g or more and 200 mgKOH/g or less.
  3.  前記塗布型の保護層は、前記赤外線反射層側から、中屈折率層、高屈折率層及び低屈折率層をこの順に含み、前記中屈折率層は、硬化前樹脂成分として、前記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む請求項1又は2に記載の透明遮熱断熱部材。 The coating type protective layer includes, from the infrared reflective layer side, a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order, and the medium refractive index layer has the hydroxyl group as a pre-curing resin component. The transparent heat insulating/insulating member according to claim 1 or 2, which comprises the (meth)acrylic copolymer having the above and a polyisocyanate crosslinking agent which reacts with the hydroxyl group.
  4.  前記塗布型の保護層は、前記赤外線反射層側から、光学調整層、中屈折率層、高屈折率層及び低屈折率層をこの順に含み、前記中屈折率層は、硬化前樹脂成分として、前記水酸基を有する(メタ)アクリル系共重合体と、該水酸基と反応するポリイソシアネート系架橋剤とを含む請求項1又は2に記載の透明遮熱断熱部材。 The coating type protective layer includes an optical adjustment layer, a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order from the infrared reflecting layer side, and the middle refractive index layer serves as a pre-curing resin component. The transparent heat insulating and heat insulating member according to claim 1 or 2, comprising a (meth)acrylic copolymer having a hydroxyl group, and a polyisocyanate crosslinking agent that reacts with the hydroxyl group.
  5.  前記(メタ)アクリル酸アルキルエステル単量体は、メタクリル酸t-ブチル及びアクリル酸t-ブチルから成る群から選ばれる少なくとも1種である請求項1~4のいずれか1項に記載の透明遮熱断熱部材。 The transparent shielding film according to any one of claims 1 to 4, wherein the (meth)acrylic acid alkyl ester monomer is at least one selected from the group consisting of t-butyl methacrylate and t-butyl acrylate. Thermal insulation member.
  6.  前記塗布型の保護層の総厚さは、200nm以上980nm以下である請求項1~5のいずれか1項に記載の透明遮熱断熱部材。 The transparent thermal insulation member according to any one of claims 1 to 5, wherein the total thickness of the coating type protective layer is 200 nm or more and 980 nm or less.
  7.  前記塗布型の保護層の内、少なくとも前記金属亜酸化物層又は金属酸化物層に直接に接する層は、金属に対する腐食防止剤を含む請求項1~6のいずれか1項に記載の透明遮熱断熱部材。 7. The transparent shield according to claim 1, wherein at least a layer of the coating type protective layer which is in direct contact with the metal suboxide layer or the metal oxide layer contains a corrosion inhibitor for metal. Thermal insulation member.
  8.  前記金属に対する腐食防止剤は、窒素含有基を有する化合物及び硫黄含有基を有する化合物から選択される少なくとも1つの化合物を含む請求項7に記載の透明遮熱断熱部材。 The transparent heat insulating and heat insulating member according to claim 7, wherein the corrosion inhibitor for the metal contains at least one compound selected from a compound having a nitrogen-containing group and a compound having a sulfur-containing group.
  9.  前記赤外線反射層は、前記透明基材側から、第1の金属亜酸化物層又は金属酸化物層、金属層、第2の金属亜酸化物層又は金属酸化物層をこの順に含み、前記赤外線反射層の総厚さは、7nm以上25nm以下であり、前記第2の金属亜酸化物層又は金属酸化物層の厚さは、前記赤外線反射層の総厚さの25%以下である請求項1~8のいずれか1項に記載の透明遮熱断熱部材。 The infrared reflection layer includes, from the transparent substrate side, a first metal suboxide layer or metal oxide layer, a metal layer, a second metal suboxide layer or metal oxide layer in this order, and the infrared ray The total thickness of the reflective layer is 7 nm or more and 25 nm or less, and the thickness of the second metal suboxide layer or the metal oxide layer is 25% or less of the total thickness of the infrared reflective layer. 9. The transparent heat insulating/insulating member according to any one of 1 to 8.
  10.  前記赤外線反射層の前記第2の金属亜酸化物層又は金属酸化物層に含まれる金属亜酸化物又は金属酸化物は、チタン成分を含む請求項9に記載の透明遮熱断熱部材。 The transparent heat insulating/insulating member according to claim 9, wherein the metal suboxide or the metal oxide contained in the second metal suboxide layer or the metal oxide layer of the infrared reflecting layer contains a titanium component.
  11.  前記赤外線反射層の前記金属層は、銀を含み、前記金属層の厚さは、5nm以上20nm以下である請求項1~10のいずれか1項に記載の透明遮熱断熱部材。 The transparent heat insulating and heat insulating member according to any one of claims 1 to 10, wherein the metal layer of the infrared reflecting layer contains silver, and the thickness of the metal layer is 5 nm or more and 20 nm or less.
  12.  前記透明遮熱断熱部材は、可視光線透過率が60%以上、遮蔽係数が0.69以下、熱貫流率が4.0W/(m2・K)以下であり、且つ、日射吸収率が20%以下である請求項1~11のいずれか1項に記載の透明遮熱断熱部材。 The transparent heat insulating/insulating member has a visible light transmittance of 60% or more, a shielding coefficient of 0.69 or less, a heat transmission coefficient of 4.0 W/(m 2 ·K) or less, and a solar radiation absorptivity of 20. % Or less, and the transparent heat-insulating and heat-insulating member according to any one of claims 1 to 11.
  13.  前記透明遮熱断熱部材は、温度50℃、濃度5質量%の塩化ナトリウム水溶液に30日間浸漬させる耐塩水性試験を行った場合、前記耐塩水性試験前に測定した前記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトルの波長1100nmの光の透過率をTB%、前記耐塩水性試験後に測定した前記透明遮熱断熱部材の波長300~1500nmの範囲における透過スペクトルの波長1100nmの光の透過率をTA%とすると、TA-TBの値が10ポイント未満である請求項1~12のいずれか1項に記載の透明遮熱断熱部材。 When the salt water resistance test in which the transparent heat insulation heat insulating member is immersed in an aqueous sodium chloride solution having a temperature of 50° C. and a concentration of 5 mass% for 30 days is performed, the wavelength of the transparent heat insulation heat insulating member measured before the salt water resistance test is 300. The transmittance of light having a wavelength of 1100 nm in the transmission spectrum in the range of up to 1500 nm is T B %, and the transmission of light having a wavelength of 1100 nm in the transmission spectrum in the range of wavelength of 300 to 1500 nm of the transparent heat insulating/insulating member measured after the salt water resistance test. The transparent heat insulating and heat insulating member according to any one of claims 1 to 12, wherein the value of T A -T B is less than 10 points, where T A % is the ratio.
  14.  JIS R3106-1998に準じて測定した反射スペクトルにおいて、
     前記反射スペクトルの波長500~570nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインa上の波長535nmに対応する点を点Aとし、前記反射スペクトルの波長620~780nmの範囲における最大反射率と最小反射率の平均値を示す仮想ラインb上の波長700nmに対応する点を点Bとし、前記点Aと前記点Bとを通る直線を波長500~780nmの範囲で延長して基準直線ABとし、
     波長500~570nmの範囲における前記反射スペクトルの反射率の値と前記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔAと定義した時に、前記最大変動差ΔAの値が反射率の%単位で7%以下であり、
     波長620~780nmの範囲における前記反射スペクトルの反射率の値と前記基準直線ABの反射率の値を比較した際に、各々の反射率の値の差が最大となる波長におけるその反射率の値の差の絶対値を最大変動差ΔBと定義した時に、前記最大変動差ΔBの値が反射率の%単位で9%以下である請求項1~13のいずれか1項に記載の透明遮熱断熱部材。
    In the reflection spectrum measured according to JIS R3106-1998,
    The point corresponding to the wavelength 535 nm on the virtual line a indicating the average value of the maximum reflectance and the minimum reflectance in the wavelength range of 500 to 570 nm of the reflection spectrum is set as point A, and the point in the wavelength range of 620 to 780 nm of the reflection spectrum is set. A point corresponding to a wavelength of 700 nm on an imaginary line b indicating the average value of the maximum reflectance and the minimum reflectance is defined as a point B, and a straight line passing through the points A and B is extended in the wavelength range of 500 to 780 nm. As a reference straight line AB,
    When the reflectance value of the reflectance spectrum in the wavelength range of 500 to 570 nm and the reflectance value of the reference line AB are compared, the reflectance value at the wavelength at which the difference between the reflectance values is maximum. When the absolute value of the difference is defined as the maximum variation difference ΔA, the value of the maximum variation difference ΔA is 7% or less in% of reflectance,
    When the reflectance value of the reflectance spectrum in the wavelength range of 620 to 780 nm and the reflectance value of the reference line AB are compared, the reflectance value at the wavelength at which the difference between the reflectance values becomes maximum. The transparent heat shield according to any one of claims 1 to 13, wherein when the absolute value of the difference is defined as the maximum fluctuation difference ΔB, the value of the maximum fluctuation difference ΔB is 9% or less in% of reflectance. Insulation member.
  15.  請求項1~14のいずれか1項に記載の透明遮熱断熱部材の製造方法であって、
     透明基材の上に赤外線反射層をドライコーティング法で形成する工程と、
     前記赤外線反射層の上に、複数の層からなる保護層をウェットコーティング法で形成する工程と、を含むことを特徴とする透明遮熱断熱部材の製造方法。
    A method for manufacturing a transparent heat insulating/insulating member according to any one of claims 1 to 14,
    A step of forming an infrared reflective layer on a transparent substrate by a dry coating method,
    Forming a protective layer composed of a plurality of layers on the infrared reflective layer by a wet coating method.
PCT/JP2019/051200 2018-12-27 2019-12-26 Transparent heat-shielding/heat-insulating member and method for producing same WO2020138320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562426A JP7344906B2 (en) 2018-12-27 2019-12-26 Transparent thermal insulation member and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246326 2018-12-27
JP2018-246326 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138320A1 true WO2020138320A1 (en) 2020-07-02

Family

ID=71127744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051200 WO2020138320A1 (en) 2018-12-27 2019-12-26 Transparent heat-shielding/heat-insulating member and method for producing same

Country Status (2)

Country Link
JP (1) JP7344906B2 (en)
WO (1) WO2020138320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446168B2 (en) 2020-06-24 2024-03-08 マクセル株式会社 Transparent thermal insulation member and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309211A (en) * 2001-04-11 2002-10-23 Nippon Shokubai Co Ltd Weather-resistant film laminate
WO2015002053A1 (en) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film
JP2017053967A (en) * 2015-09-08 2017-03-16 日立マクセル株式会社 Transparent heat blocking and insulating member and manufacturing method therefor
JP2018008229A (en) * 2016-07-14 2018-01-18 日本ペイント株式会社 Method for forming heat-shielding multilayer coating film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309211A (en) * 2001-04-11 2002-10-23 Nippon Shokubai Co Ltd Weather-resistant film laminate
WO2015002053A1 (en) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film
JP2017053967A (en) * 2015-09-08 2017-03-16 日立マクセル株式会社 Transparent heat blocking and insulating member and manufacturing method therefor
JP2018008229A (en) * 2016-07-14 2018-01-18 日本ペイント株式会社 Method for forming heat-shielding multilayer coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446168B2 (en) 2020-06-24 2024-03-08 マクセル株式会社 Transparent thermal insulation member and its manufacturing method

Also Published As

Publication number Publication date
JP7344906B2 (en) 2023-09-14
JPWO2020138320A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
EP3175982B1 (en) Infrared radiation reflecting film
JP5424091B2 (en) Film mirror having an ultraviolet reflecting film
US10317149B2 (en) Transparent heat-shielding/heat-insulating member and production method thereof
JP5859476B2 (en) Infrared reflective film
EP3140355B1 (en) Article with hardcoat and method of making the same
JP6533437B2 (en) Transparent thermal insulation member and method of manufacturing the same
WO2016117436A1 (en) Multilayer laminated circuit board
JPWO2019004199A1 (en) Transparent heat insulating and heat insulating member and method for manufacturing the same
US20080261008A1 (en) Anti-reflection film
WO2020138320A1 (en) Transparent heat-shielding/heat-insulating member and method for producing same
JP6163196B2 (en) Infrared reflective film
JP7446168B2 (en) Transparent thermal insulation member and its manufacturing method
EP3243655B1 (en) Light-transmitting laminate for optical applications
JP7057714B2 (en) Transparent heat shield and heat insulating member and its manufacturing method
KR102176232B1 (en) Window film
CN110809724A (en) Infrared reflection substrate
JP6783348B2 (en) Transparent heat shield and heat insulating member and its manufacturing method
JP6800060B2 (en) Optical laminate
JP2020049757A (en) Light-transmitting laminate for optical use and method for manufacturing light-transmitting laminate for optical use
JP2018149753A (en) Far-infrared reflective substrate
JP2017047552A (en) Light-transmitting laminate
JP2017003662A (en) Dielectric multilayer film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904858

Country of ref document: EP

Kind code of ref document: A1