WO2015064312A1 - Film mirror and light reflection device for solar heat reflection using same - Google Patents

Film mirror and light reflection device for solar heat reflection using same Download PDF

Info

Publication number
WO2015064312A1
WO2015064312A1 PCT/JP2014/076720 JP2014076720W WO2015064312A1 WO 2015064312 A1 WO2015064312 A1 WO 2015064312A1 JP 2014076720 W JP2014076720 W JP 2014076720W WO 2015064312 A1 WO2015064312 A1 WO 2015064312A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
film
film mirror
protective layer
Prior art date
Application number
PCT/JP2014/076720
Other languages
French (fr)
Japanese (ja)
Inventor
光範 後藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015064312A1 publication Critical patent/WO2015064312A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror and a light reflecting device for solar heat reflection using the film mirror. More specifically, the present invention relates to a film mirror capable of realizing a more uniform reflectance of a light reflecting surface and a solar heat reflecting light reflecting device using the film mirror.
  • Power generation technology that uses natural energy such as sunlight, wind power, and geothermal heat is being developed as an alternative energy to fossil fuels.
  • power generation using sunlight is particularly focused because of its abundance of stability and energy. Has been.
  • a condensing device that reflects sunlight by a reflector (mirror) and condenses it in one place is used. Since the reflector is exposed to ultraviolet rays, heat, wind and rain, and sandstorms caused by sunlight, a glass light reflector has been conventionally used from the viewpoint of durability. However, the light reflector made of glass has a problem that it is damaged during transportation, and because it is heavy, a high-strength gantry is required to install it, which increases the construction cost of the plant.
  • Patent Document 1 In order to deal with the above problem, an attempt has been made to replace a glass mirror with a resin reflecting mirror as described in, for example, US Pat. No. 4,307,150.
  • the resin reflection mirror described in Patent Document 1 has a pressure-sensitive adhesive layer on the first surface of the polyester film, a mirror surface made of an aluminum vapor deposition film on the second surface, and is weather resistant. In order to improve the property, a coating made of three kinds of specific monomers is provided on the aluminum layer.
  • Patent Document 1 describes that a resin reflection mirror having such a configuration can be attached to a substrate and used in a reflection device.
  • an object of the present invention is to provide a film mirror that solves the problem of a decrease in reflectance when a film mirror is used, and that can maintain a high reflectance, and a light reflecting device using the film mirror.
  • the present inventor has found that the above object of the present invention is achieved by the following configuration. That is, according to the present invention, From the light incident side A translucent resin layer; A resin substrate; A light reflecting layer; A protective layer containing particles and having a thickness of 20 to 75 ⁇ m; An adhesive layer in contact with the protective layer; Are provided in order.
  • FIG. 1 is a diagram schematically showing a cross section of a film mirror according to an embodiment of the present invention.
  • the film mirror 10 is laminated
  • the protective layer 15 particles 17 are mixed in the resin matrix, and the surface in contact with the adhesive layer is uneven.
  • the present invention is characterized in that a protective layer having a thickness of 20 to 75 ⁇ m including the particles 17 is provided between the adhesive layer and the light reflecting layer.
  • the adhesiveness of an adhesion layer and a protective layer can be improved by mixing particle
  • FIG. 2 is a diagram schematically showing a cross section of a film mirror according to a more preferred embodiment of the present invention.
  • the film mirror 20 has particles in the hard coat layer 28, the translucent resin layer 21, the resin base material 22, the anchor layer 30, the light reflection layer 23, the corrosion prevention layer 24, and the resin matrix from the light incident side. 27, a protective layer 25 having a thickness of 20 to 75 ⁇ m and an adhesive layer 26 are laminated in this order.
  • the hard coat layer 28 is less susceptible to external damage and air, and these contribute to the durability of the film mirror.
  • the anchor layer contributes to the adhesion between the resin base material 22 and the light reflecting layer 23.
  • the total thickness of the film mirror according to the present invention is preferably 80 to 300 ⁇ m, more preferably 80 to 200 ⁇ m, and still more preferably 80 to 170 ⁇ m from the viewpoints of prevention of bending, regular reflectance, handling properties, and the like.
  • the center line average roughness (Ra) of the outermost surface layer on the light incident side of the film mirror is 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency.
  • the translucent resin layer is a layer made of a resin material having optical transparency. This is because sunlight is reflected by the silver reflection layer, and the translucent resin layer positioned thereon needs to be a component through which sunlight passes. Furthermore, since a hard coat layer may be provided on the translucent resin layer, it also has a role of improving adhesion. Moreover, in order to prevent deterioration of the resin base material used as a foundation
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose Cellulose esters such as acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone imide, polyamide, fluorine Fat, nylon, polymethyl methacrylate, acrylic
  • the thickness of the translucent resin layer is preferably 10 to 150 ⁇ m. More preferably, it is 15 to 100 ⁇ m, and still more preferably 20 to 80 ⁇ m.
  • the film thickness is 10 ⁇ m or more, it is possible to sufficiently add materials to be added when providing functions such as protection of the reflection layer, prevention of corrosion, and UV protection, and sufficient adhesion with the adjacent layer is provided. From the viewpoint of bringing about. Setting the thickness to 150 ⁇ m or less is preferable from the viewpoint of maintaining the thickness of the entire film mirror moderately and reducing troubles during the winding of manufacturing.
  • an acrylic resin can be suitably used as a material for forming the translucent resin layer.
  • the translucent resin layer made from an acrylic resin has a methacrylic resin as a main component.
  • the methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester.
  • the methacrylic acid ester is 50% by mass or more and the other monomer is 50% by mass or less.
  • a copolymer may also be used.
  • the methacrylic acid ester an alkyl ester of methacrylic acid is usually used.
  • a particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
  • the preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0 to 50% by mass, and other monomers are 0 to 49% by mass.
  • a particularly preferred combination for the present invention is 75 to 98% by weight of methacrylic acid ester, 0 to 10% by weight of acrylic acid ester, and 1 to 20% by weight of other monomers.
  • alkyl methacrylate examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and the like.
  • the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. Of these, methyl methacrylate is preferably used.
  • acrylic rubber SRB215, manufactured by Asahi Kasei Chemicals
  • Delpet registered trademark
  • acrylic resin manufactured by Asahi Kasei Chemicals and the like may be used.
  • alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like.
  • the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
  • the monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable functional group in the molecule, or a polyfunctional monomer, It may be a compound having at least two polymerizable functional groups in the molecule.
  • the monofunctional monomer include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon.
  • Alkenyl esters of unsaturated carboxylic acids such as allyl acid
  • polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate and triallyl cyanurate
  • diisocyanates such as 1,6-hexamethylene diisocyanate
  • divinylbenzene examples include aromatic polyalkenyl compounds.
  • alkyl methacrylate alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed.
  • diisocyanates preferred are diisocyanates, and more preferred is 1,6-hexamethylene diisocyanate.
  • the glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
  • the methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization.
  • the amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
  • UV absorber Although there is no restriction
  • Organic ultraviolet absorbers, fine powder type ultraviolet blocking agents such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide and the like, and organic ultraviolet absorbers are particularly preferable.
  • organic ultraviolet absorbers examples include JP-A-46-3335, JP-A-55-15276, JP-A-5-197004, JP-A-5-232630, JP-A-5-307232, JP-A-6-218131, and 8- No. 53427, No. 8-234364, No. 8-239368, No. 9-310667, No. 10-115898, No. 10-147777, No. 10-182621, German Patent No. 19739797A, European Patent Nos. 711804A and JP-A-8-501291, U.S. Pat. Nos. 1,023,859, 2,685,512, 2,739,888, 2,784,087. No. 2,748,021, No. 3,004,896, No.
  • UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. it can.
  • the ultraviolet absorber having a molecular weight of 400 or more has little transferability from the thin translucent resin layer 6 to other constituent layers and hardly deposits on the surface of the laminate, the amount of contained ultraviolet absorber is small. It is preferable from the viewpoints of being maintained for a long time and being excellent in the durability of the weather resistance improving effect.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-buty
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • the content of the ultraviolet absorber in the translucent resin layer is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and further preferably 3 to 10% by mass. Further, the content of the ultraviolet absorber in the translucent resin layer 6 is 0.17 to 2.28 g / m 2 per unit area of the film, more preferably, the content per unit area is 0.1. 4 to 2.28 g / m 2 or more.
  • the translucent resin layer may contain an antioxidant.
  • an antioxidant it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant.
  • the above-mentioned antioxidant and a known light stabilizer can be used in combination.
  • the light stabilizer include hindered amine light stabilizers.
  • Examples of a method for forming the light-transmitting resin layer include a method by coating.
  • a resin constituting the translucent resin layer is dissolved or suspended in a suitable organic solvent to prepare a coating solution.
  • the coating solution is applied by a predetermined coating method to form a coating film.
  • various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used.
  • a material that becomes a light-transmitting resin layer is directly applied on the resin base material or on the surface of a layer (for example, a gas barrier layer) provided on the light incident side of the resin base material.
  • a translucent resin layer can be formed.
  • a coating film is dried and a translucent resin layer is completed.
  • the smoothness of the translucent resin layer can be improved.
  • the center line average roughness (Ra) of the translucent resin layer formed by the coating method is preferably 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, the translucent resin film produced by melt film formation is not a translucent resin layer provided by bonding with an adhesive layer, but the translucent resin film. It can be considered that the conductive resin layer is provided by coating.
  • the center line average roughness (Ra) which is an index of smoothness of the translucent resin layer, can be determined by a measuring method based on JIS B0601-1982.
  • the resin base material supports the light reflecting layer that performs the essential function of the film mirror, and has a role of maintaining the mechanical strength of the entire film mirror. Moreover, when manufacturing a film mirror, it is a layer used as the board
  • the thickness of the resin base material can be set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 ⁇ m. The thickness is preferably 15 to 150 ⁇ m.
  • resin films can be used as the resin base material.
  • resin films cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
  • polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable.
  • a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the light reflecting layer is a layer made of metal or the like having a function of reflecting sunlight.
  • the surface reflectance of the light reflection layer is preferably 80% or more, more preferably 90% or more.
  • the light reflecting layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
  • Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed.
  • a light reflecting layer mainly containing silver is used.
  • the reflectance may be further improved by providing a layer made of a metal oxide such as SiO 2 or TiO 2 in the light reflecting layer.
  • the thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention.
  • the light reflecting layer is formed by silver deposition.
  • the light reflection layer When forming the light reflection layer mainly composed of silver, the light reflection layer may be formed by heating and baking a coating film containing a silver complex compound from which a ligand can be vaporized and desorbed.
  • a coating film containing a silver complex compound from which a ligand can be vaporized and desorbed As the formation method by this wet method, for example, those described in paragraphs 0035 to 0056 of WO2013 / 103139 can be used.
  • the corrosion prevention layer is a resin layer containing a corrosion inhibitor.
  • the corrosion prevention layer is preferably adjacent to the light reflection layer from the viewpoint of preventing corrosion of the light reflection layer preferably made of silver, and is provided between the light reflection layer and the protective layer. Is more preferable. That is, from the light incident side, a translucent resin layer, a resin base material, a light reflecting layer, a corrosion prevention layer, a protective layer, and an adhesive layer are more preferably arranged in this order.
  • the corrosion prevention layer may consist of only one layer or may consist of a plurality of layers.
  • the corrosion prevention layer when the corrosion prevention layer is provided on the light incident side of the light reflection layer, the light-transmitting resin layer, the resin base material, the corrosion prevention layer, the light reflection layer, the protective layer, and the adhesive layer are arranged in this order. Arrangement. However, these arrangements are not limited, and the above light-transmitting resin layer may contain a corrosion inhibitor, and the light-transmitting resin layer may also serve as the corrosion preventing layer.
  • the total thickness of the corrosion prevention layer is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • Examples of the resin used for forming the corrosion prevention layer include cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, and cellulose. Diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyetherketone, polyetherketone Imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic tree And the like can be given. Among these, an acrylic resin is preferable.
  • the resin material (binder) and the following corrosion inhibitors can be dissolved or dispersed in an organic solvent to prepare a coating solution, and the coating solution can be applied onto the light reflection layer to form a corrosion prevention layer. it can.
  • the corrosion inhibitor preferably has an adsorptive group for silver.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • the optimum content of the corrosion inhibitor varies depending on the compound to be used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof.
  • the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin.
  • the corrosion inhibitor for example, compounds described in paragraphs 0057 to 0062 of WO2013 / 103139 can be used.
  • the present invention is characterized in that a protective layer containing particles and having a thickness of 20 to 75 ⁇ m is provided between the light reflecting layer and the adhesive layer.
  • a resin-made film mirror has a problem that the reflectance decreases when it is used by being attached to a light reflecting device.
  • the present inventor has found that when the light reflecting layer and the adhesive layer are arranged at a close distance, the adhesive layer has a small elasticity, and therefore the adhesive layer is deformed when attaching a film mirror or due to deterioration over time. As a result, it was found that the light reflecting layer is distorted.
  • the reflectance decreases due to the distortion of the light reflecting layer, and furthermore, in the light reflecting device for solar thermal power generation, the light cannot be condensed at a target position, thereby causing a decrease in power generation efficiency.
  • the protective layer having the specific thickness by providing the protective layer having the specific thickness, the distance between the light reflecting layer and the adhesive layer can be increased, the distortion of the light reflecting layer due to the influence of the deformation of the adhesive layer is reduced, and the reflectance Can remain high and constant.
  • the thickness of the protective layer is less than 20 ⁇ m, the adhesive layer and the light reflecting layer are close to each other, and the adhesive is affected by deformation. Therefore, the effect of preventing distortion of the light reflecting layer and preventing peeling of the layer is not sufficient.
  • it exceeds 75 ⁇ m the particles added to the protective layer are difficult to come out on the surface, so the adhesion between the adhesive layer and the light reflecting layer is inferior.
  • the protective layer and the layer on the back surface side for example, a translucent resin layer
  • the outermost layer on the back surface side for example, the translucent resin layer).
  • the thickness of the translucent protective layer is more preferably 20 to 50 ⁇ m, and further preferably 25 to 35 ⁇ m.
  • the thickness of the formed protective layer can be known by observing the cross section of the film mirror with an optical microscope of 500 to 1000 times.
  • the surface of the protective layer on the side opposite to the light reflecting layer can be made uneven.
  • the adhesive layer and the protective layer, which will be described later, mesh with each other, and the adhesion between the adhesive layer and the protective layer can be improved. Therefore, when the film mirror of the present invention is used in a light reflecting device, peeling between the adhesive layer and the protective layer can be prevented even when exposed to the atmosphere for a long time. This is because the surface state of the light reflecting surface is roughened due to peeling between the protective layer and the adhesive layer, and distortion may occur, resulting in a decrease in reflectance. In this way, a decrease in reflectance can be prevented, and the reflectance can be maintained high. It can be known that the surface of the protective layer has irregularities by observing the cross section of the film mirror with an optical microscope of 500 to 1000 times.
  • the resin material examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • TAC cellulose acetate butyrate
  • Cellulose esters such as acetate propionate (CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, Polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone Bromide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (trade name JSR Corp.) or APEL (trade name Mitsui Chemicals, Inc.).
  • CAP acetate propionate
  • CAP cellulose acetate phthalate
  • cellulose nitrate or derivatives thereof polyvinylidene chloride
  • polyvinyl alcohol polyethylene vinyl alcohol
  • syndiotactic polystyrene
  • the protective layer made of acrylic resin is preferably mainly composed of methacrylic resin.
  • the methacrylic resin may be a homopolymer of methacrylic acid ester or a copolymer of 50% by mass or more of methacrylic acid ester and 50% by mass or less of other monomers.
  • an alkyl ester of methacrylic acid is usually used.
  • a particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
  • PMMA polymethyl methacrylate resin
  • the polymethyl methacrylate resin suitable for the protective layer of the present invention has a weight average molecular weight of 100,000 to 1,000,000, more preferably 200,000 to 400,000.
  • the weight average molecular weight can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), or the like.
  • GPC gel permeation chromatography
  • TOF-MASS time-of-flight mass spectrometry
  • the preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0 to 50% by mass, and other monomers are 0 to 49% by mass.
  • a particularly preferred combination for the present invention is 75 to 98% by weight of methacrylic acid ester, 0 to 10% by weight of acrylic acid ester, and 1 to 20% by weight of other monomers.
  • alkyl methacrylate examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and the like.
  • the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. Of these, methyl methacrylate is preferably used.
  • acrylic rubber SRB215, manufactured by Asahi Kasei Chemicals
  • Delpet registered trademark
  • acrylic resin manufactured by Asahi Kasei Chemicals and the like may be used.
  • alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like.
  • the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
  • the monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable functional group in the molecule, or a polyfunctional monomer, It may be a compound having at least two polymerizable functional groups in the molecule.
  • the monofunctional monomer include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon.
  • Alkenyl esters of unsaturated carboxylic acids such as allyl acid
  • polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate and triallyl cyanurate
  • diisocyanates such as 1,6-hexamethylene diisocyanate
  • divinylbenzene examples include aromatic polyalkenyl compounds.
  • alkyl methacrylate alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed.
  • diisocyanates preferred are diisocyanates, and more preferred is 1,6-hexamethylene diisocyanate.
  • the glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
  • the methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization.
  • the amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
  • the protective layer of the present invention contains particles in order to make the surface uneven.
  • the particle size is preferably 5 to 30 ⁇ m, more preferably 10 to 20 ⁇ m, and the particles have a particle size of 0.
  • the content is preferably 1 to 5.0% by mass, more preferably 0.5 to 2.0% by mass. That is, in one embodiment of the present invention, the film mirror has a particle size of 5 to 30 ⁇ m, and the particle is contained in the protective layer in an amount of 0.1 to 5.0% by mass.
  • the particle diameter of the particles is 30 ⁇ m or less, the adhesiveness and the smoothness of the light reflecting layer are improved, and thus a decrease in reflectance can be prevented.
  • the fall of the adhesiveness by the increase in the distortion of an interlayer can be prevented, and the fall of a reflectance can be prevented.
  • grains in a protective layer is 0.1 mass% or more, the adhesive improvement effect will be enough and the improvement effect of a distortion will be acquired reliably.
  • it is 5 mass% or less, it can prevent that the smoothness of a light reflection layer falls.
  • the size of the irregularities on the surface of the protective layer can be controlled to some extent by changing the particle size and content of the particles.
  • the particle size of 5 to 30 ⁇ m means that 80% by mass or more of the particles contained in the protective layer have a particle size of 5 to 30 ⁇ m.
  • the particle diameter is the maximum distance of the particle figure sandwiched between two parallel lines as shown by d in FIG.
  • the particles do not have to be spherical as long as irregularities can be formed on the surface of the protective layer.
  • the protective layer has a shape in which particles are added, and the surface has irregularities.
  • the thickness is measured using a Nikon Digimicro MF-501 + counter MFC-101, with both concave and convex portions included, and measured at five points using a 5mm ⁇ measuring terminal. The value was defined as thickness.
  • the material of the particle is not particularly limited as long as it can maintain the shape in the protective layer and can provide unevenness on the surface.
  • Particles made of a material that easily disperses in the resin constituting the protective layer and is easily compatible with the material of the adhesive layer can be appropriately selected.
  • metal particles such as aluminum and nickel, inorganic oxide particles such as silica, alumina, titania and zirconia, resins such as acrylic resins, polyester resins, urethane resins, polyvinyl acetate resins and nitrile rubbers Particles, diatomaceous earth, talc, zeolite, etc. can be used. These may be used alone or in combination of two or more.
  • Inorganic oxide particles and resin particles are preferable, and acrylic resin particles and silica particles are particularly preferable because of excellent adhesion to the adhesive layer, cost, and weather resistance. That is, one embodiment of the present invention is the film mirror described above, wherein the particles are particles containing acrylic resin or silica.
  • acrylic resin particles polymethyl methacrylate resin particles are particularly preferable.
  • the polymethyl methacrylate resin suitable for the particles in the protective layer of the present invention preferably has a weight average molecular weight of 1000 to 10,000.
  • the resin constituting the protective layer is dissolved or suspended in an organic solvent, and the particles are dispersed in this solution to form a coating solution.
  • the coating solution is applied by a predetermined coating method to form a coating film.
  • various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used.
  • the protective layer can be completed by drying.
  • the adhesive layer has adhesiveness that enables the film mirror to be attached to the support substrate, and the adhesive layer is used to join the film mirror to the support substrate to form a solar power generation reflection device. It is a constituent layer.
  • the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent and the like can be used.
  • a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used as the adhesive.
  • acrylic resin is more preferable because it is easily available, is cost effective, and is excellent in weather resistance when a film mirror is used in a light reflecting device. That is, one Embodiment of this invention is said film mirror in which the adhesion layer contains an acrylic resin.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 ⁇ m from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the film mirror may include a release sheet that covers the surface of the adhesive layer on the side opposite to the protective layer.
  • a film mirror has a peeling sheet, after peeling a peeling sheet from an adhesion layer, a film mirror can be affixed on a support base material through an adhesion layer.
  • peeling sheet is a member which covers the surface on the opposite side to the light-incidence side of the adhesion layer in a film mirror. For example, when the film mirror is shipped, the release sheet is attached to the adhesive layer, and then the release sheet is released from the adhesive layer of the film mirror, and the film mirror is attached to the support substrate to reflect the solar power generation reflection device. Can be formed.
  • the release sheet may be any sheet that can protect the adhesiveness of the adhesive layer.
  • a resin film or sheet subjected to surface processing such as vapor deposition is used.
  • the thickness of the release sheet is not particularly limited but is preferably in the range of 12 to 250 ⁇ m.
  • the film mirror of the present invention may be provided with a hard coat layer for the purpose of preventing damage to the surface of the film mirror and adhesion of dirt.
  • the transparent hard coat layer is preferably the outermost layer on the light incident side, or the second or third layer from the light incident side.
  • Another thin layer (preferably 1 ⁇ m or less) may be provided on the hard coat layer.
  • Examples of methods for producing the hard coat layer include conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method. In addition to applying and coating a predetermined material, various surface treatments and the like may be combined.
  • the thickness of the hard coat layer is preferably 0.05 ⁇ m or more and 10 ⁇ m or less from the viewpoint of preventing the film mirror from warping while obtaining sufficient scratch resistance. More preferably, they are 1 micrometer or more and 10 micrometers or less.
  • the material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained.
  • the hard coat layer can be composed of acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, and the like.
  • silicone resins and acrylic resins are preferable in terms of hardness and durability.
  • what consists of an active energy ray hardening-type acrylic resin or a thermosetting type acrylic resin is preferable at the point of sclerosis
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. Those having an acrylic group bonded to the skeleton may also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc.
  • thermosetting resin composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable.
  • materials that can be used for the hard coat layer an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No.
  • Resin film used Japanese Patent Laid-Open No. 2004-142161
  • photocatalytic oxide-containing silica film such as titanium oxide or alumina
  • photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio
  • photocatalyst Examples thereof include a fluorine-containing resin coating (Pierex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) in organic / inorganic polysilazane.
  • AZ Electronics hydrophilization accelerator
  • thermosetting silicone hard coat layer a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used.
  • An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with.
  • an acid catalyst such as hydrochloric acid or nitric acid
  • the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction.
  • a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply
  • the hard coat layer may contain an ultraviolet absorber or an antioxidant.
  • an ultraviolet absorber and antioxidant the ultraviolet absorber and antioxidant used with the above-mentioned translucent resin layer can be used.
  • a preferred UV absorber in a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin is a benzotriazole UV absorber.
  • a benzotriazole-based ultraviolet absorber in the hard coat layer, it is possible to obtain an excellent effect that not only the weather resistance is further improved, but also the falling angle can be further reduced.
  • the compound represented by the following general formula (9) is contained in the hard coat layer, the effect of reducing the falling angle is remarkable.
  • the falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which the water drop of a predetermined mass that has been stationary falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
  • the amount of the UV absorber used in the hard coat layer is preferably 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is 0.25 to 15% by mass, and more preferably 0.5 to 10% by mass.
  • an organic antioxidant such as a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
  • the falling angle can also be reduced by including an organic antioxidant in the hard coat layer.
  • An antioxidant and a light stabilizer may be used in combination.
  • the light stabilizer the same light stabilizer as that used in the above-described translucent resin layer can be used.
  • various additives can be further blended as necessary.
  • a surfactant for example, a leveling agent and an antistatic agent can be used.
  • the leveling agent is effective in reducing surface irregularities.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • SH190 manufactured by Toray Dow Corning Co., Ltd. is suitable as the silicone leveling agent.
  • the gas barrier layer is preferably provided on the light incident side of the light reflecting layer, and is effective for preventing corrosion of the light reflecting layer.
  • the gas barrier layer is intended to prevent the deterioration of the humidity, particularly the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but it has special functions and applications. As long as it has a deterioration preventing function, various types of gas barrier layers can be provided.
  • the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 ⁇ day or less, more preferably 0.5 g / m 2 ⁇ day or less, and still more preferably 0. .2 g / m 2 ⁇ day or less.
  • the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
  • Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as vacuum vapor deposition, sputtering, ion beam assist, chemical vapor deposition, and the like.
  • An inorganic oxide precursor by a sol-gel method is used.
  • a method of forming an inorganic oxide film by applying heat treatment and / or ultraviolet irradiation treatment to the coating film after coating is also preferably used.
  • the film mirror of this invention may provide an anchor layer between the resin base material and the light reflection layer.
  • the anchor layer is made of resin, and has an effect of closely adhering the resin base material and the light reflecting layer. Therefore, the anchor layer has an adhesion property that allows the resin base material and the light reflection layer to adhere to each other, heat resistance that can withstand heat when the light reflection layer is formed by a vacuum deposition method, and the high reflection that the light reflection layer originally has. Smoothness is required to bring out performance.
  • the resin material used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesiveness, heat resistance, and smoothness.
  • Polyester resin, acrylic resin, melamine resin, epoxy resin, polyamide Resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like, or a mixed resin thereof can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent.
  • a method for forming the anchor layer conventionally known coating methods such as a gravure coating method in which a predetermined resin material is applied and applied, a reverse coating method, a die coating method and the like can be used.
  • the thickness of the anchor layer is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 1 ⁇ m. If thickness is 0.01 micrometer or more, the effect of an adhesive improvement will be acquired reliably, and since the unevenness
  • the film mirror of the present invention is suitable for use in a light reflecting device by sticking to a support substrate. Therefore, this invention also provides the light reflection apparatus for solar power generation which affixed said film mirror on the support base material.
  • One embodiment of the present invention is a light reflecting device for solar power generation in which the film mirror is attached to a support base material.
  • the solar power generation reflecting device is a reflecting mirror that includes a film mirror and a self-supporting support base material, and the film mirror is bonded to the support base material via an adhesive layer.
  • the "self-supporting property" as used herein means that the supporting substrate supports the edge portion of the film mirror in a state where the supporting substrate is cut to a size used as a supporting substrate of the solar power generation reflecting device.
  • the film mirror has rigidity enough to support the film mirror.
  • the support base material of the solar power generation reflecting device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device itself, and it is possible to suppress power consumption during solar tracking.
  • a self-supporting support base material there are one having a pair of metal flat plates and an intermediate layer interposed between the metal flat plates (type A), or one made of a resin material having a hollow structure (type B). It is preferable.
  • the support base material has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates, and the intermediate layer is made of a material having a hollow structure or a resin material, whereby the support base material As well as having a high flatness due to the metal flat plate, it is possible to significantly reduce the weight of the support base material itself as compared to the case where the support base material is constituted only by the metal flat plate. In addition, since the rigidity can be increased by the metal flat plate while using a relatively lightweight intermediate layer, it is possible to function as a support substrate that is lightweight and has a self-supporting property.
  • the intermediate layer is made of a resin material
  • further weight reduction can be achieved by using a resin material layer having a hollow structure.
  • the intermediate layer when the intermediate layer has a hollow structure, the intermediate layer functions as a heat insulating material, so that the temperature change of the metal flat plate on the side opposite to the adhesive layer 8 is suppressed from being transmitted to the film mirror, and dew condensation occurs. It is possible to prevent or suppress deterioration due to heat.
  • the thermal conductivity such as steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc.
  • a high metal material can be preferably used.
  • materials such as metals, inorganic materials (glass, etc.), resin materials, etc. can be used.
  • this intermediate layer has a hollow structure, a cellular structure made of foamed resin, a three-dimensional structure having a wall surface made of metal, an inorganic material or a resin material (honeycomb structure, etc.), a resin material to which hollow fine particles are added, etc. are applied. be able to.
  • the cellular structure of the foamed resin refers to a foamed or porous shape formed by finely dispersing gas in the resin material.
  • a known foamed resin material can be used as the material, but polyolefin resin, polyurethane, polyethylene, polystyrene and the like are preferably used.
  • the honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls.
  • the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene.
  • Polyolefin eg, polypropylene, high density polyethylene
  • polyamide polystyrene
  • polyvinyl chloride polyacrylonitrile
  • acrylic derivatives such as ethylene-ethyl acrylate copolymer
  • polycarbonate vinyl acetate such as ethylene-vinyl acetate copolymer Copolymers
  • vinyl acetate such as ethylene-vinyl acetate copolymer Copolymers
  • ionomers terpolymers
  • terpolymers such as ethylene-propylene-dienes
  • thermoplastic resins such as ABS resin, polyolefin oxide, and polyacetal are preferably used.
  • these may be used individually by 1 type, or may mix and use 2 or more types.
  • thermoplastic resins olefin-based resins or resins mainly composed of olefin-based resins
  • polypropylene-based resins or resins based mainly on polypropylene-based resins are preferable because of excellent balance between mechanical strength and moldability.
  • the resin material may contain an additive.
  • the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents.
  • An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
  • the intermediate layer can be a layer made of a resin plate.
  • the resin material constituting the intermediate layer the same material as that constituting the resin substrate of the film mirror described above is preferably used. be able to.
  • the intermediate layer need not be provided in all regions of the support base material, and provided in a part of the region as long as the flatness of the metal flat plate and the self-supporting property as the support base material can be ensured. May be.
  • the intermediate layer has the above-described three-dimensional structure, it is preferable to provide the three-dimensional structure in a region of about 90 to 95% with respect to the area of the metal flat plate. It is preferable to provide it.
  • the support substrate is a layer made of a resin material having a hollow structure.
  • the support base material is made of a resin material only, the thickness required to obtain a rigidity sufficient to provide self-supporting properties increases, resulting in an increase in the weight of the support base material.
  • the supporting substrate can be reduced in weight while providing self-supporting properties.
  • the support substrate is made of a resin material having a hollow structure
  • a resin material having a hollow structure as an intermediate layer, and to provide a resin sheet having smooth surfaces as the surface layers on both sides thereof. It is preferable from the viewpoint of increasing the rate.
  • the material of the resin sheet the same material as that constituting the resin substrate of the film mirror described above can be preferably used.
  • the resin material having a hollow structure the above-described foamed material and the resin material having a three-dimensional structure (honeycomb structure) can be preferably used.
  • the solar power generation reflection device has a holding member that holds the reflection device itself.
  • the holding member preferably holds the reflecting surface (film mirror) of the solar power generation reflecting device in a state where the sun can be tracked.
  • the form of the holding member is not particularly limited, but for example, a plurality of places on the support base on the back side of the solar power generation reflecting device are formed in a bar shape so that the solar power generating reflection device can hold a desired shape and posture.
  • the form held by a columnar member or a beam-like member is preferable.
  • the holding member has a configuration for holding the solar power generation reflecting device in a state in which the sun can be tracked.
  • the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
  • Example 1 A resin film which is a biaxially stretched polyester film (polyethylene terephthalate film thickness 25 ⁇ m) was used as the resin substrate.
  • polyethylene terephthalate film thickness 25 ⁇ m On one surface of the polyethylene terephthalate film, polymethylmethacrylic (PMMA) resin (EMB457 manufactured by Mitsubishi Rayon), acrylic rubber (SRB215 Asahi Kasei Chemicals), HDMI isocyanate (1,6-hexamethylene diisocyanate) in a resin solid content ratio, The mixture was mixed into methyl ethyl ketone at 17: 3: 2 so that the solid content concentration was 22%. This solution was coated by an applicator bar coater method to form a translucent resin layer having a thickness of 25 ⁇ m.
  • PMMA polymethylmethacrylic
  • a light reflecting layer made of silver having a thickness of 100 nm was formed on the opposite surface of the supporting substrate by vacuum deposition.
  • a silver corrosion inhibitor is applied to a resin in which a polyester resin and a TDI (2.4-tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 on the silver light reflection layer.
  • 2-mercaptobenzothiazole was added so as to be 10% by mass with respect to the resin, and a coating solution was prepared so as to be 5% in methyl ethyl ketone. This coating solution was coated on the light reflection layer by a gravure coating method to form a corrosion prevention layer having a thickness of 3 ⁇ m.
  • PMMA resin EMB457, manufactured by Mitsubishi Rayon
  • acrylic rubber SRB215, Asahi Kasei Chemicals
  • HDMI-based isocyanate (1,6-hexamethylene diisocyanate
  • PMMA filler manufactured by Soken Chemical Co., Ltd., MX1500, particle size 15 ⁇ m
  • This coating solution was coated by an applicator bar coater method to form a protective layer having a thickness of 20 ⁇ m.
  • acrylic pressure-sensitive adhesive Netsu KP-2254, manufactured by Nippon Carbide Industries
  • HDMI-based isocyanate (1,6-hexamethylene diisocyanate) are in a resin solid content ratio of 27: 1 so that the solid content concentration is 15%.
  • the mixture was mixed with ethyl acetate to prepare a coating solution.
  • This coating solution was coated on the protective layer by an applicator bar coater method to form an adhesive layer having a thickness of 25 ⁇ m.
  • the film mirror of Example 1 was obtained as described above.
  • the obtained film mirror evaluated the following light reflection layer distortion
  • the evaluation results are shown in Tables 1-1 and 1-2 below.
  • ⁇ Blocking> In the manufacturing process, it may be wound in a state where the translucent resin layer and the protective layer are in contact with each other, and if both layers are adhered at that time, there is a concern that the surfaces of both layers become rough and cause a decrease in reflectance. is there. Therefore, it is preferable that blocking does not occur.
  • a film mirror sample was cut out to 10 cm ⁇ 10 cm, the translucent resin layer and the protective layer were overlapped, and a load of 7 g / cm 2 was applied at 23 ° C. for 72 hours. Then, the blocking state at the time of peeling off a protective layer was confirmed.
  • the evaluation criteria were as follows. 5: No peeling at all and no peeling of the layer.
  • a spectrophotometer “UH4150” manufactured by Hitachi High-Tech was used to adjust the incident angle of incident light to 5 ° with respect to the normal of the reflecting surface, and the regular reflectance at a reflection angle of 5 ° was measured. Evaluation was carried out as an average reflectance of 250 nm to 2500 nm.
  • Examples 2 to 9 A film mirror was produced in the same manner as in Example 1 except that the thickness of the protective layer to be formed and the kind of particles were changed as shown in Table 1-1 below. The obtained film mirror was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1-1 and 1-3 below.

Abstract

[Problem] To provide: a film mirror which is capable of preventing a reduction in reflectance when used affixed to a support substrate; and a light reflection device using the mirror. [Solution] Provided is a film mirror comprising, in order from the light incident side: a translucent resin layer; a resin substrate; a light reflection layer; a protective layer which contains particles and is 20-75 µm thick; and an adhesive layer which is in contact with the protective layer.

Description

フィルムミラーおよびこれを用いた太陽熱反射用光反射装置Film mirror and light reflecting device for solar heat reflection using the same
 本発明は、フィルムミラーおよびこれを用いた太陽熱反射用光反射装置に関する。より詳細には、光反射面のより均一な反射率を実現し得るフィルムミラーおよびこれを用いた太陽熱反射用光反射装置に関する。 The present invention relates to a film mirror and a light reflecting device for solar heat reflection using the film mirror. More specifically, the present invention relates to a film mirror capable of realizing a more uniform reflectance of a light reflecting surface and a solar heat reflecting light reflecting device using the film mirror.
 近年、地球温暖化は一層深刻化しており、その主因は、化石燃料の二酸化炭素といわれている。 In recent years, global warming has become more serious, and the main cause is said to be carbon dioxide, a fossil fuel.
 化石燃料の代替エネルギーとして、太陽光、風力、地熱等の自然エネルギーを利用した発電技術の開発が行われているが、太陽光を利用した発電は、安定性およびエネルギー量の豊富さから特に注目されている。 Power generation technology that uses natural energy such as sunlight, wind power, and geothermal heat is being developed as an alternative energy to fossil fuels. However, power generation using sunlight is particularly focused because of its abundance of stability and energy. Has been.
 太陽熱発電では、太陽光を反射体(鏡)により反射させて一か所に集光する集光装置が用いられる。当該反射体は太陽光による紫外線や熱、風雨、砂嵐等に晒されるため、耐久性の観点から従来はガラス製光反射体が用いられてきた。しかしながら、ガラス製光反射体は、輸送時に破損する、重いため設置するのに高強度の架台が必要となりプラントの建設費がかさむ、といった問題を有していた。 In solar thermal power generation, a condensing device that reflects sunlight by a reflector (mirror) and condenses it in one place is used. Since the reflector is exposed to ultraviolet rays, heat, wind and rain, and sandstorms caused by sunlight, a glass light reflector has been conventionally used from the viewpoint of durability. However, the light reflector made of glass has a problem that it is damaged during transportation, and because it is heavy, a high-strength gantry is required to install it, which increases the construction cost of the plant.
 上記問題に対処するため、例えば米国特許第4,307,150号明細書に記載されているように、ガラス製ミラーを樹脂製反射ミラーに置き換えることが試みられてきた。特許文献1に記載の樹脂製反射ミラーは、ポリエステル膜の第一の表面上に粘着性の感圧接着剤層を有し、第二の表面上にアルミニウム蒸着膜からなる鏡面を有し、耐候性を向上させるために、アルミニウム層上に三種類の特定のモノマーからなるコーティングを有している。特許文献1では、かかる構成の樹脂製反射ミラーを基材に貼付して反射装置に用いうることが記載されている。 In order to deal with the above problem, an attempt has been made to replace a glass mirror with a resin reflecting mirror as described in, for example, US Pat. No. 4,307,150. The resin reflection mirror described in Patent Document 1 has a pressure-sensitive adhesive layer on the first surface of the polyester film, a mirror surface made of an aluminum vapor deposition film on the second surface, and is weather resistant. In order to improve the property, a coating made of three kinds of specific monomers is provided on the aluminum layer. Patent Document 1 describes that a resin reflection mirror having such a configuration can be attached to a substrate and used in a reflection device.
 上記の従来技術によるフィルムミラーは、実際に光反射装置に使用して、例えば曲率の大きい曲面などに貼付して用いると、初期の状態よりも反射率が低下する場合があった。光反射装置は、全体で大面積となるよう反射ミラーを多数設置し、これにより太陽光を一定の領域に集光して発電するものである。また、一度貼付したフィルムミラーは、10年以上にわたる長期間、集光および発電のために継続して使用される。そのため、反射面の表面状態が変化することによって反射率低下の恐れがある。したがって、反射率低下を防止し初期の反射率を維持する点で、従来技術には未だ改善の余地があった。そこで、本発明は、フィルムミラー使用時の反射率低下の問題を解決し、高い反射率が維持できるフィルムミラー、およびこれを用いた光反射装置の提供を目的とする。 When the film mirror according to the above prior art is actually used in a light reflecting device, for example, pasted on a curved surface having a large curvature, the reflectance may be lower than the initial state. The light reflecting device is provided with a large number of reflecting mirrors so as to have a large area as a whole, thereby condensing sunlight into a certain region to generate electric power. The film mirror once applied is continuously used for light collection and power generation for a long period of 10 years or more. For this reason, there is a fear that the reflectivity may be lowered by changing the surface state of the reflecting surface. Therefore, there is still room for improvement in the prior art in terms of preventing the reflectance from decreasing and maintaining the initial reflectance. Therefore, an object of the present invention is to provide a film mirror that solves the problem of a decrease in reflectance when a film mirror is used, and that can maintain a high reflectance, and a light reflecting device using the film mirror.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、本発明の上記目的は、以下の構成により達成されることを見出した。すなわち、本発明によれば、
光入射側から、
 透光性樹脂層と、
 樹脂基材と、
 光反射層と、
 粒子を含み、厚みが20~75μmである保護層と、
 前記保護層に接する粘着層と、
を順に備えるフィルムミラーが提供される。
As a result of intensive studies in view of the above problems, the present inventor has found that the above object of the present invention is achieved by the following configuration. That is, according to the present invention,
From the light incident side
A translucent resin layer;
A resin substrate;
A light reflecting layer;
A protective layer containing particles and having a thickness of 20 to 75 μm;
An adhesive layer in contact with the protective layer;
Are provided in order.
本発明の一実施形態に係るフィルムミラーの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the film mirror which concerns on one Embodiment of this invention. 本発明の別の実施形態に係るフィルムミラーの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the film mirror which concerns on another embodiment of this invention. 粒子の粒径の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the particle size of particle | grains.
 以下、本発明のフィルムミラーおよびこれを用いた光反射装置を実施するための形態を詳細に説明する。 Hereinafter, the form for implementing the film mirror of this invention and the light reflection apparatus using the same is demonstrated in detail.
 [フィルムミラー]
 本発明のフィルムミラーの全体の構成について、図面を参照しながら説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
[Film mirror]
The overall configuration of the film mirror of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1は、本発明の一実施形態に係るフィルムミラーの断面を模式的に表した図である。図1中、フィルムミラー10は、光入射側から、透光性樹脂層11、樹脂基材12、光反射層13、腐食防止層14、保護層15、粘着層16の順に積層されている。保護層15は、樹脂マトリックス中に粒子17が混在しており、粘着層と接する表面は凹凸をなしている。本発明では、粘着層と光反射層との間に、粒子17を含む厚さ20~75μmの保護層を設けたことが特徴である。 FIG. 1 is a diagram schematically showing a cross section of a film mirror according to an embodiment of the present invention. In FIG. 1, the film mirror 10 is laminated | stacked in order of the translucent resin layer 11, the resin base material 12, the light reflection layer 13, the corrosion prevention layer 14, the protective layer 15, and the adhesion layer 16 from the light-incidence side. In the protective layer 15, particles 17 are mixed in the resin matrix, and the surface in contact with the adhesive layer is uneven. The present invention is characterized in that a protective layer having a thickness of 20 to 75 μm including the particles 17 is provided between the adhesive layer and the light reflecting layer.
 本発明では、粘着層と光反射層の間に特定の厚さの保護層を設けることにより、フィルムミラーを基材に設置した際の光反射層のひずみを防止でき、反射率の低下を防止することができる。また、保護層中に粒子を混合して表面に粗さをつけることにより、粘着層と保護層との密着性を向上させることができる。これにより、長期間の使用によっても粘着層と保護層との層間はがれを抑制できる。保護層と粘着層との間の層間はがれによって光反射面の面状態が荒れ、その結果反射率の低下が生じることを防止できる。 In the present invention, by providing a protective layer having a specific thickness between the adhesive layer and the light reflecting layer, it is possible to prevent distortion of the light reflecting layer when the film mirror is installed on the base material, and to prevent a decrease in reflectance. can do. Moreover, the adhesiveness of an adhesion layer and a protective layer can be improved by mixing particle | grains in a protective layer and making a surface rough. Thereby, peeling between the adhesion layer and the protective layer can be suppressed even after long-term use. It is possible to prevent the surface state of the light reflecting surface from being roughened due to peeling between the protective layer and the adhesive layer, and as a result, the reflectance is not lowered.
 図2は、本発明のより好ましい実施形態に係るフィルムミラーの断面を模式的に表した図である。図2中、フィルムミラー20は、光入射側から、ハードコート層28、透光性樹脂層21、樹脂基材22、アンカー層30、光反射層23、腐食防止層24、樹脂マトリックス中に粒子27が含まれ、厚さ20~75μmである保護層25、粘着層26の順に積層されている。ハードコート層28により外傷や外気の影響を受けにくくなり、これらはフィルムミラーの耐久性に寄与する。アンカー層は、樹脂基材22と光反射層23との密着性に寄与する。 FIG. 2 is a diagram schematically showing a cross section of a film mirror according to a more preferred embodiment of the present invention. In FIG. 2, the film mirror 20 has particles in the hard coat layer 28, the translucent resin layer 21, the resin base material 22, the anchor layer 30, the light reflection layer 23, the corrosion prevention layer 24, and the resin matrix from the light incident side. 27, a protective layer 25 having a thickness of 20 to 75 μm and an adhesive layer 26 are laminated in this order. The hard coat layer 28 is less susceptible to external damage and air, and these contribute to the durability of the film mirror. The anchor layer contributes to the adhesion between the resin base material 22 and the light reflecting layer 23.
 本発明に係るフィルムミラー全体の厚さは、撓み防止、正反射率、取り扱い性等の観点から80~300μmが好ましく、より好ましくは80~200μm、更に好ましくは80~170μmである。また、フィルムミラーの光入射側の最表面層の中心線平均粗さ(Ra)が、3nm以上20nm以下であることが、反射光の散乱を防止でき集光効率を高めるという観点から好ましい。 The total thickness of the film mirror according to the present invention is preferably 80 to 300 μm, more preferably 80 to 200 μm, and still more preferably 80 to 170 μm from the viewpoints of prevention of bending, regular reflectance, handling properties, and the like. In addition, it is preferable that the center line average roughness (Ra) of the outermost surface layer on the light incident side of the film mirror is 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency.
 以下、本発明のフィルムミラーについて、その構成要素に分けて詳細に説明する。 Hereinafter, the film mirror of the present invention will be described in detail by dividing into its constituent elements.
 [透光性樹脂層]
 透光性樹脂層は、光透過性を有する樹脂材料からなる層である。太陽光の反射は銀反射層で行うため、その上に位置する透光性樹脂層は、太陽光が透過する成分であることが必要であるためである。さらに、透光性樹脂層上にはハードコート層が設けられる場合があるため、その際に密着性を向上させる役割も有している。また、透光性樹脂層は、下地になる樹脂基材の劣化を防止するため、紫外線吸収剤を含有していることが好ましい。
[Translucent resin layer]
The translucent resin layer is a layer made of a resin material having optical transparency. This is because sunlight is reflected by the silver reflection layer, and the translucent resin layer positioned thereon needs to be a component through which sunlight passes. Furthermore, since a hard coat layer may be provided on the translucent resin layer, it also has a role of improving adhesion. Moreover, in order to prevent deterioration of the resin base material used as a foundation | substrate, it is preferable that the translucent resin layer contains the ultraviolet absorber.
 透光性樹脂層に用いる樹脂材料には特に制限はないが、薄膜を形成した際に透明性を維持しうる、従来公知の種々の合成樹脂を用いることができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、及びセルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Although there is no restriction | limiting in particular in the resin material used for a translucent resin layer, The conventionally well-known various synthetic resin which can maintain transparency when forming a thin film can be used. For example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose Cellulose esters such as acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone imide, polyamide, fluorine Fat, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (trade name JSR Corp.) or APEL (trade name Mitsui Chemicals, Inc.).
 この透光性樹脂層の厚さは、10~150μmであることが好ましい。より好ましくは、15~100μmであり、更に好ましくは、20~80μmである。膜厚が10μm以上とすることは、反射層の保護、腐食防止や紫外線カット等の機能性をもたらす際に添加する材料を十分に添加することができるとともに、隣接層との密着性を十分にもたらす観点で好ましい。150μm以下とすることは、フィルムミラー全体の厚みを適度に保つことができ、製造の巻き取り時に支障を低減する観点で好ましい。 The thickness of the translucent resin layer is preferably 10 to 150 μm. More preferably, it is 15 to 100 μm, and still more preferably 20 to 80 μm. When the film thickness is 10 μm or more, it is possible to sufficiently add materials to be added when providing functions such as protection of the reflection layer, prevention of corrosion, and UV protection, and sufficient adhesion with the adjacent layer is provided. From the viewpoint of bringing about. Setting the thickness to 150 μm or less is preferable from the viewpoint of maintaining the thickness of the entire film mirror moderately and reducing troubles during the winding of manufacturing.
 透光性樹脂層を形成する材料として、上記例示した樹脂材料の中では、アクリル樹脂を好適に用いることができる。また、アクリル樹脂製の透光性樹脂層は、メタクリル樹脂を主成分としていることが好ましい。メタクリル樹脂は、メタクリル酸エステルを主体とする重合体であり、メタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステル50質量%以上とこれ以外の単量体50質量%以下との共重合体であってもよい。ここで、メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル樹脂(PMMA)である。 Among the resin materials exemplified above, an acrylic resin can be suitably used as a material for forming the translucent resin layer. Moreover, it is preferable that the translucent resin layer made from an acrylic resin has a methacrylic resin as a main component. The methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester. The methacrylic acid ester is 50% by mass or more and the other monomer is 50% by mass or less. A copolymer may also be used. Here, as the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
 メタクリル樹脂の好ましい単量体組成は、全単量体を基準として、メタクリル酸エステルが50~100質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%であり、より好ましくは、メタクリル酸エステルが50~99.9質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%である。本発明に特に好ましい組み合わせとしては、メタクリル酸エステルが75~98質量%、アクリル酸エステルが0~10質量%、これら以外の単量体が1~20質量%である。 The preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0 to 50% by mass, and other monomers are 0 to 49% by mass. A particularly preferred combination for the present invention is 75 to 98% by weight of methacrylic acid ester, 0 to 10% by weight of acrylic acid ester, and 1 to 20% by weight of other monomers.
 メタクリル酸アルキルの例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。中でもメタクリル酸メチルが好ましく用いられる。市販品として、アクリルゴム(SRB215、旭化成ケミカルズ製)、デルペット(登録商標)(旭化成ケミカルズ製 アクリル樹脂)等を使用してもよい。 Examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. Of these, methyl methacrylate is preferably used. As commercially available products, acrylic rubber (SRB215, manufactured by Asahi Kasei Chemicals), Delpet (registered trademark) (acrylic resin manufactured by Asahi Kasei Chemicals) and the like may be used.
 また、アクリル酸アルキルの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。 Examples of alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
 また、メタクリル酸アルキル及びアクリル酸アルキル以外の単量体は、単官能単量体、すなわち分子内に重合性の官能基を1個有する化合物であってもよいし、多官能単量体、すなわち分子内に重合性の官能基を少なくとも2個有する化合物であってもよい。単官能単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエンの如き芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルの如きアルケニルシアン化合物などが挙げられる。また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートの如き多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルの如き不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレートの如き多塩基酸のポリアルケニルエステル、1,6-ヘキサメチレンジイソシアネート等のジイソシアネート類、ジビニルベンゼンの如き芳香族ポリアルケニル化合物などが挙げられる。上記のメタクリル酸アルキル、アクリル酸アルキル、及びこれら以外の単量体は、それぞれ、必要に応じてそれらの2種以上を用いてもよい。上記のうち、好ましくは、ジイソシアネート類であり、より好ましくは1,6-ヘキサメチレンジイソシアネートである。 The monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable functional group in the molecule, or a polyfunctional monomer, It may be a compound having at least two polymerizable functional groups in the molecule. Examples of the monofunctional monomer include aromatic alkenyl compounds such as styrene, α-methylstyrene and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile. Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Alkenyl esters of unsaturated carboxylic acids such as allyl acid, polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate and triallyl cyanurate, diisocyanates such as 1,6-hexamethylene diisocyanate, and divinylbenzene Examples include aromatic polyalkenyl compounds. As for said alkyl methacrylate, alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed. Of the above, preferred are diisocyanates, and more preferred is 1,6-hexamethylene diisocyanate.
 メタクリル樹脂は、フィルムの耐熱性の点から、そのガラス転移温度が40℃以上であることが好ましく、60℃以上であることがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。 The glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
 メタクリル樹脂は、その単量体成分を、懸濁重合、乳化重合、塊状重合などの方法により重合させることにより調製することができる。その際、好適なガラス転移温度を得るため、又は好適なフィルムへの成形性を示す粘度を得るため、重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤の量は、単量体の種類やその割合などに応じて、適宜決定すればよい。 The methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization. The amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
 (紫外線吸収剤)
 透光性樹脂層に含まれてよい紫外線吸収剤には、特に制限はないが、例えばチアゾリドン系、ベンゾトリアゾール系、アクリロニトリル系、ベンゾフェノン系、アミノブタジエン系、トリアジン系、サリチル酸フェニル系、ベンゾエート系などの有機系の紫外線吸収剤、あるいは酸化セリウム、酸化マグネシウムなどの微粉末系の紫外線遮断剤や酸化チタン、酸化亜鉛、酸化鉄等などがあり、特に有機系の紫外線吸収剤が好ましい。
(UV absorber)
Although there is no restriction | limiting in particular in the ultraviolet absorber which may be contained in a translucent resin layer, For example, a thiazolidone type, a benzotriazole type, an acrylonitrile type, a benzophenone type, an aminobutadiene type, a triazine type, a phenyl salicylate, a benzoate type etc. Organic ultraviolet absorbers, fine powder type ultraviolet blocking agents such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide and the like, and organic ultraviolet absorbers are particularly preferable.
 有機系紫外線吸収剤として、例えば特開昭46-3335号、同55-152776号、特開平5-197074号、同5-232630号、同5-307232号、同6-211813号、同8-53427号、同8-234364号、同8-239368号、同9-31067号、同10-115898号、同10-147577号、同10-182621号各公報、独国特許第19739797A号、欧州特許第711804A号各公報及び特表平8-501291号公報、米国特許第1,023,859号、同第2,685,512号、同第2,739,888号、同第2,784,087号、同第2,748,021号、同第3,004,896号、同第3,052,636号、同第3,215,530号、同第3,253,921号、同第3,533,794号、同第3,692,525号、同第3,705,805号、同第3,707,375号、同第3,738,837号、同第3,754,919号、英国特許第1,321,355号明細書等に記載されている化合物を用いることができる。 Examples of organic ultraviolet absorbers include JP-A-46-3335, JP-A-55-15276, JP-A-5-197004, JP-A-5-232630, JP-A-5-307232, JP-A-6-218131, and 8- No. 53427, No. 8-234364, No. 8-239368, No. 9-310667, No. 10-115898, No. 10-147777, No. 10-182621, German Patent No. 19739797A, European Patent Nos. 711804A and JP-A-8-501291, U.S. Pat. Nos. 1,023,859, 2,685,512, 2,739,888, 2,784,087. No. 2,748,021, No. 3,004,896, No. 3,052,636, No. 3,215,530, No. 3,253,9 No. 1, No. 3,533,794, No. 3,692,525, No. 3,705,805, No. 3,707,375, No. 3,738,837, No. The compounds described in 3,754,919, British Patent 1,321,355 and the like can be used.
 これら紫外線吸収剤のなかでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 Among these UV absorbers, UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. it can.
 また、分子量が400以上の紫外線吸収剤は、薄い透光性樹脂層6から他の構成層への移行性も小さく、積層体の表面にも析出しにくいため、含有された紫外線吸収剤量が長時間維持され、耐候性改良効果の持続性に優れるなどの点から好ましい。 In addition, since the ultraviolet absorber having a molecular weight of 400 or more has little transferability from the thin translucent resin layer 6 to other constituent layers and hardly deposits on the surface of the laminate, the amount of contained ultraviolet absorber is small. It is preferable from the viewpoints of being maintained for a long time and being excellent in the durability of the weather resistance improving effect.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine A hybrid system having both structures can be mentioned, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 透光性樹脂層への紫外線吸収剤の含有量は、0.1~20質量%であることが好ましく、より好ましくは1~15質量%、さらに好ましくは3~10質量%である。また、紫外線吸収剤の透光性樹脂層6への含有量は、フィルム単位面積当たりの含有量が0.17~2.28g/mで、より好ましくは単位面積当たりの含有量が0.4~2.28g/m以上である。含有量を上記の範囲にすることによって、耐候性能を十分発揮しつつ、紫外線吸収剤のブリードアウトによるロールやフィルムの汚れを起こすことを防止できる。 The content of the ultraviolet absorber in the translucent resin layer is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and further preferably 3 to 10% by mass. Further, the content of the ultraviolet absorber in the translucent resin layer 6 is 0.17 to 2.28 g / m 2 per unit area of the film, more preferably, the content per unit area is 0.1. 4 to 2.28 g / m 2 or more. By setting the content within the above range, it is possible to prevent the roll and the film from being soiled by bleeding out of the ultraviolet absorber while sufficiently exhibiting the weather resistance.
 (酸化防止剤)
 紫外線吸収剤入り透光性樹脂層の劣化を防止するために、透光性樹脂層に酸化防止剤を含有させてもよい。酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤、ホスファイト系酸化防止剤を使用することが好ましい。
(Antioxidant)
In order to prevent deterioration of the translucent resin layer containing the ultraviolet absorber, the translucent resin layer may contain an antioxidant. As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant.
 なお、本発明においては、上記した酸化防止剤と公知の光安定剤を併用することもできる。光安定剤としては例えばヒンダードアミン系光安定剤が挙げられる。 In the present invention, the above-mentioned antioxidant and a known light stabilizer can be used in combination. Examples of the light stabilizer include hindered amine light stabilizers.
 透光性樹脂層の形成方法としては、例えば塗布による方法を挙げることができる。透光性樹脂層を構成する樹脂を適当な有機溶媒に溶解または懸濁させ、塗布液を調製する。次いで、塗布液を所定の塗布方式で塗布し、塗膜を形成する。塗膜を塗設する場合には、従来用いられる種々の塗布方法、例えば、スプレーコート法、スピンコート法、バーコート法等の方法を用いることができる。 Examples of a method for forming the light-transmitting resin layer include a method by coating. A resin constituting the translucent resin layer is dissolved or suspended in a suitable organic solvent to prepare a coating solution. Next, the coating solution is applied by a predetermined coating method to form a coating film. When a coating film is applied, various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used.
 これらの方法により、樹脂基材の上、または、樹脂基材よりも光入射側に設けられた層(例えば、ガスバリア層)の面上に、透光性樹脂層となる材料を直接塗布することによって、透光性樹脂層を形成することができる。その後、塗膜を乾燥させて、透光性樹脂層を完成する。 By these methods, a material that becomes a light-transmitting resin layer is directly applied on the resin base material or on the surface of a layer (for example, a gas barrier layer) provided on the light incident side of the resin base material. Thus, a translucent resin layer can be formed. Then, a coating film is dried and a translucent resin layer is completed.
 塗布方式で透光性樹脂層を形成することによって、透光性樹脂層の平滑性を高めることができる。具体的には、塗布方式で形成した透光性樹脂層の中心線平均粗さ(Ra)は、3nm以上20nm以下であることが好ましい。換言すれば、中心線平均粗さがこの値を満たせば、溶融製膜によって製造された透光性樹脂フィルムを接着剤層で貼り合わせて設けられた透光性樹脂層ではなく、その透光性樹脂層が塗布によって設けられたものとみなすことができる。なお、透光性樹脂層の平滑性の指標となる中心線平均粗さ(Ra)は、JIS B0601-1982に基づく測定方法により求めることができる。 By forming the translucent resin layer by a coating method, the smoothness of the translucent resin layer can be improved. Specifically, the center line average roughness (Ra) of the translucent resin layer formed by the coating method is preferably 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, the translucent resin film produced by melt film formation is not a translucent resin layer provided by bonding with an adhesive layer, but the translucent resin film. It can be considered that the conductive resin layer is provided by coating. The center line average roughness (Ra), which is an index of smoothness of the translucent resin layer, can be determined by a measuring method based on JIS B0601-1982.
 [樹脂基材]
 樹脂基材は、フィルムミラーの本質的な機能を果たす光反射層を支持し、フィルムミラー全体の機械的強度を保持する役割がある。また、フィルムミラーを製造する際には、他の層を形成するための基板となる層である。樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることができる。例えば、一般的には、10~250μmの範囲内である。好ましくは15~150μmである。
[Resin substrate]
The resin base material supports the light reflecting layer that performs the essential function of the film mirror, and has a role of maintaining the mechanical strength of the entire film mirror. Moreover, when manufacturing a film mirror, it is a layer used as the board | substrate for forming another layer. The thickness of the resin base material can be set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 μm. The thickness is preferably 15 to 150 μm.
 樹脂基材としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。 As the resin base material, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. In particular, it is preferable to use a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
 [光反射層]
 光反射層は、太陽光を反射する機能を有する金属等からなる層である。光反射層の表面反射率は好ましくは80%以上、さらに好ましくは90%以上である。光反射層は、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。中でも、反射率、耐食性の観点からAlまたはAgを主成分としていることが好ましく、このような金属の薄膜を二層以上形成するようにしてもよい。より好ましくは、本発明においては、特に銀を主成分とする光反射層を用いる。また、光反射層にSiO2、TiO2等の金属酸化物からなる層を設けてさらに反射率を向上させてもよい。
[Light reflection layer]
The light reflecting layer is a layer made of metal or the like having a function of reflecting sunlight. The surface reflectance of the light reflection layer is preferably 80% or more, more preferably 90% or more. The light reflecting layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au. Among these, it is preferable that Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed. More preferably, in the present invention, a light reflecting layer mainly containing silver is used. Further, the reflectance may be further improved by providing a layer made of a metal oxide such as SiO 2 or TiO 2 in the light reflecting layer.
 光反射層の厚さは、反射率等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
 この光反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例をあげるとすれば、銀鏡反応などがある。一方、乾式法とは、真空製膜法の総称であり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に製膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。例えば、太陽熱発電用フィルムミラーの製造方法において、光反射層を銀蒸着によって形成する製造方法であることが好ましい。 As a method for forming this light reflecting layer, either a wet method or a dry method can be used. The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction. On the other hand, the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. For example, in the method for manufacturing a film mirror for solar power generation, it is preferable that the light reflecting layer is formed by silver deposition.
 銀を主成分とする光反射層を形成する際に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより光反射層を形成するようにしてもよい。この湿式法による形成方法は、例えばWO2013/103139の段落0035~0056に記載のものを使用可能である。 When forming the light reflection layer mainly composed of silver, the light reflection layer may be formed by heating and baking a coating film containing a silver complex compound from which a ligand can be vaporized and desorbed. As the formation method by this wet method, for example, those described in paragraphs 0035 to 0056 of WO2013 / 103139 can be used.
 [腐食防止層]
 腐食防止層は、腐食防止剤を含有している樹脂層である。特に腐食防止層は、好ましくは銀で構成される光反射層の腐食を防止するという観点から、光反射層に隣接していることが好ましく、光反射層と保護層との間に設けられることがより好ましい。すなわち、光入射側から、透光性樹脂層、樹脂基材、光反射層、腐食防止層、保護層、粘着層の順の配置がより好ましい。腐食防止層は、1層のみからなっていてもよいし、複数層からなっていてもよい。また、腐食防止層を光反射層の光入射側に設ける場合には、光入射側から、透光性樹脂層、樹脂基材、腐食防止層、光反射層、保護層、粘着層の順の配置となる。しかしこれらの配置に限定はされず、上述の透光性樹脂層中に腐食防止剤が含有され、透光性樹脂層が腐食防止層を兼ねていてもよい。腐食防止層の厚さは、全体で1~10μmが好ましく、より好ましくは2~8μmである。
[Corrosion prevention layer]
The corrosion prevention layer is a resin layer containing a corrosion inhibitor. In particular, the corrosion prevention layer is preferably adjacent to the light reflection layer from the viewpoint of preventing corrosion of the light reflection layer preferably made of silver, and is provided between the light reflection layer and the protective layer. Is more preferable. That is, from the light incident side, a translucent resin layer, a resin base material, a light reflecting layer, a corrosion prevention layer, a protective layer, and an adhesive layer are more preferably arranged in this order. The corrosion prevention layer may consist of only one layer or may consist of a plurality of layers. In addition, when the corrosion prevention layer is provided on the light incident side of the light reflection layer, the light-transmitting resin layer, the resin base material, the corrosion prevention layer, the light reflection layer, the protective layer, and the adhesive layer are arranged in this order. Arrangement. However, these arrangements are not limited, and the above light-transmitting resin layer may contain a corrosion inhibitor, and the light-transmitting resin layer may also serve as the corrosion preventing layer. The total thickness of the corrosion prevention layer is preferably 1 to 10 μm, more preferably 2 to 8 μm.
 腐食防止層の形成に用いる樹脂としては、例えば、セルロースエステル、ポリエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系、ポリカーボネート、ノルボルネン系、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル樹脂等を挙げることができる。中でも、アクリル樹脂が好ましい。 Examples of the resin used for forming the corrosion prevention layer include cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, and cellulose. Diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyetherketone, polyetherketone Imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic tree And the like can be given. Among these, an acrylic resin is preferable.
 これら樹脂材料(バインダー)および以下の腐食防止剤を有機溶媒中に溶解または分散させて塗布液を調製し、塗布液を光反射層上に塗布するなどして、腐食防止層を形成することができる。 The resin material (binder) and the following corrosion inhibitors can be dissolved or dispersed in an organic solvent to prepare a coating solution, and the coating solution can be applied onto the light reflection layer to form a corrosion prevention layer. it can.
 (腐食防止剤)
 腐食防止剤としては、銀に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。
(Corrosion inhibitor)
The corrosion inhibitor preferably has an adsorptive group for silver. Here, “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0g/m2の範囲内であることが好ましい。 The optimum content of the corrosion inhibitor varies depending on the compound to be used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
 銀に対する吸着性基を有する腐食防止剤としては、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。シリコーン変性樹脂として特に限定されない。腐食防止剤としては、例えばWO2013/103139の段落0057~0062に記載された化合物が使用可能である。 Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin. As the corrosion inhibitor, for example, compounds described in paragraphs 0057 to 0062 of WO2013 / 103139 can be used.
 [保護層]
 本発明では、光反射層と粘着層との間に、粒子を含有し、厚みが20~75μmである保護層を設けることが特徴である。従来、樹脂製のフィルムミラーは、光反射装置に貼付して用いた際に反射率が低下するという問題があった。本発明者は、種々検討の結果、光反射層と粘着層が近い距離で配置されていると、粘着層の弾性が小さいために、フィルムミラーを添付する際や経時劣化によって粘着層が変形し、これによって光反射層にひずみが生じることを突き止めた。この光反射層のゆがみによって反射率が低下し、さらに、太陽熱発電用の光反射装置においては、狙った位置に集光できなくなるため、発電効率の低下を引き起こすことが分かった。本発明では、上記特定の厚みの保護層を設けることで、光反射層と粘着層との距離を大きくとることができ、粘着層の変形の影響による光反射層のひずみを軽減し、反射率を高いままで一定に維持することができる。
[Protective layer]
The present invention is characterized in that a protective layer containing particles and having a thickness of 20 to 75 μm is provided between the light reflecting layer and the adhesive layer. Conventionally, a resin-made film mirror has a problem that the reflectance decreases when it is used by being attached to a light reflecting device. As a result of various studies, the present inventor has found that when the light reflecting layer and the adhesive layer are arranged at a close distance, the adhesive layer has a small elasticity, and therefore the adhesive layer is deformed when attaching a film mirror or due to deterioration over time. As a result, it was found that the light reflecting layer is distorted. It has been found that the reflectance decreases due to the distortion of the light reflecting layer, and furthermore, in the light reflecting device for solar thermal power generation, the light cannot be condensed at a target position, thereby causing a decrease in power generation efficiency. In the present invention, by providing the protective layer having the specific thickness, the distance between the light reflecting layer and the adhesive layer can be increased, the distortion of the light reflecting layer due to the influence of the deformation of the adhesive layer is reduced, and the reflectance Can remain high and constant.
 保護層の厚みは、20μmを下回ると、粘着層と光反射層とが近くなり、粘着剤の変形の影響がでるため、光反射層のひずみ防止および層間はがれ防止の効果が充分ではない。一方、75μmを上回ると、保護層に添加している粒子が表面に出づらくなるため、粘着層と光反射層の密着性が劣る。また、製造工程中に保護層と、フィルムミラーの保護層に対して裏面側にある層(例えば透光性樹脂層)とがブロッキングしてしまい、裏面側の最表層(例えば透光性樹脂層)が削られて損傷をうけることで、初期の反射率低下を招く場合がある。さらに、ブロッキングによる保護層と最表面層との剥離行為により、フィルムミラーの各層間における密着性に影響を与え、層間剥離や変形を促進することにより、反射率の経時安定性の低下を招きやすい場合がある。透光性保護層の厚みは、より好ましくは20~50μmであり、さらに好ましくは25~35μmである。形成した保護層の厚みは、フィルムミラーの断面を500~1000倍の光学顕微鏡で観察することによって、知ることができる。 When the thickness of the protective layer is less than 20 μm, the adhesive layer and the light reflecting layer are close to each other, and the adhesive is affected by deformation. Therefore, the effect of preventing distortion of the light reflecting layer and preventing peeling of the layer is not sufficient. On the other hand, if it exceeds 75 μm, the particles added to the protective layer are difficult to come out on the surface, so the adhesion between the adhesive layer and the light reflecting layer is inferior. Further, the protective layer and the layer on the back surface side (for example, a translucent resin layer) with respect to the protective layer of the film mirror are blocked during the manufacturing process, and the outermost layer on the back surface side (for example, the translucent resin layer). ) May be damaged by cutting, which may lead to a decrease in the initial reflectivity. Furthermore, the peeling action between the protective layer and the outermost surface layer due to blocking affects the adhesion between each layer of the film mirror, and by promoting the peeling and deformation of the film mirror, the stability of reflectance over time tends to be lowered. There is a case. The thickness of the translucent protective layer is more preferably 20 to 50 μm, and further preferably 25 to 35 μm. The thickness of the formed protective layer can be known by observing the cross section of the film mirror with an optical microscope of 500 to 1000 times.
 また、保護層に粒子を含有させることによって、光反射層とは反対側の保護層の表面に凹凸をつけることができる。この凹凸により後述する粘着層と保護層とがかみ合って、粘着層と保護層との密着性を向上することができる。したがって、本発明のフィルムミラーを光反射装置に用いると、長期間大気中に暴露しても、粘着層と保護層との層間はがれを防止することができる。保護層と粘着層との間の層間はがれによって光反射面の面状態が荒れ、歪みが生じて、その結果反射率の低下が生じる場合があるためである。このように反射率の低下を防止でき、反射率を高いまま維持することができる。保護層表面に凹凸があることは、フィルムミラーの断面を500~1000倍の光学顕微鏡で観察することによって、知ることができる。 Also, by incorporating particles in the protective layer, the surface of the protective layer on the side opposite to the light reflecting layer can be made uneven. By this unevenness, the adhesive layer and the protective layer, which will be described later, mesh with each other, and the adhesion between the adhesive layer and the protective layer can be improved. Therefore, when the film mirror of the present invention is used in a light reflecting device, peeling between the adhesive layer and the protective layer can be prevented even when exposed to the atmosphere for a long time. This is because the surface state of the light reflecting surface is roughened due to peeling between the protective layer and the adhesive layer, and distortion may occur, resulting in a decrease in reflectance. In this way, a decrease in reflectance can be prevented, and the reflectance can be maintained high. It can be known that the surface of the protective layer has irregularities by observing the cross section of the film mirror with an optical microscope of 500 to 1000 times.
 (保護層形成用樹脂)
 保護層に用いるマトリックスとしての樹脂材料には特に制限はないが、後述する粘着層となじみやすく薄膜を形成できる、従来公知の種々の合成樹脂を用いることができる。上記の透光性樹脂層を形成する樹脂と同様の材料を用いれば、製造工程の簡便さやコスト面から有利である。
(Protective layer forming resin)
Although there is no restriction | limiting in particular in the resin material as a matrix used for a protective layer, The conventionally well-known various synthetic resin which can form a thin film easily with the adhesion layer mentioned later can be used. Use of the same material as the resin for forming the translucent resin layer is advantageous in terms of simplicity of the manufacturing process and cost.
 樹脂材料は、具体的には、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、及びセルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Specific examples of the resin material include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose. Cellulose esters such as acetate propionate (CAP), cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, Polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone Bromide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (trade name JSR Corp.) or APEL (trade name Mitsui Chemicals, Inc.).
 保護層を形成する材料としては、特に、アクリル樹脂を好適に用いることができる。アクリル樹脂製の保護層は、メタクリル樹脂を主成分としていることが好ましい。メタクリル樹脂はメタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステル50質量%以上とこれ以外の単量体50質量%以下との共重合体であってもよい。メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル樹脂(PMMA)である。本発明の保護層に好適なポリメタクリル酸メチル樹脂は、重量平均分子量が10万~100万、より好ましくは20万~40万である。 As the material for forming the protective layer, in particular, an acrylic resin can be suitably used. The protective layer made of acrylic resin is preferably mainly composed of methacrylic resin. The methacrylic resin may be a homopolymer of methacrylic acid ester or a copolymer of 50% by mass or more of methacrylic acid ester and 50% by mass or less of other monomers. As the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA). The polymethyl methacrylate resin suitable for the protective layer of the present invention has a weight average molecular weight of 100,000 to 1,000,000, more preferably 200,000 to 400,000.
 重量平均分子量は、公知の方法によって測定することができ、例えば、静的光散乱、ゲルパーミエーションクロマトグラフィ法(GPC)、飛行時間型質量分析法(TOF-MASS)などによって測定することができる。本発明では、一般的な公知の方法であるゲルパーミエーションクロマトグラフィ法によって測定した値を採用した。 The weight average molecular weight can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), or the like. In this invention, the value measured by the gel permeation chromatography method which is a general well-known method was employ | adopted.
 メタクリル樹脂の好ましい単量体組成は、全単量体を基準として、メタクリル酸エステルが50~100質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%であり、より好ましくは、メタクリル酸エステルが50~99.9質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%である。本発明に特に好ましい組み合わせとしては、メタクリル酸エステルが75~98質量%、アクリル酸エステルが0~10質量%、これら以外の単量体が1~20質量%である。 The preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0 to 50% by mass, and other monomers are 0 to 49% by mass. A particularly preferred combination for the present invention is 75 to 98% by weight of methacrylic acid ester, 0 to 10% by weight of acrylic acid ester, and 1 to 20% by weight of other monomers.
 メタクリル酸アルキルの例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。中でもメタクリル酸メチルが好ましく用いられる。市販品として、アクリルゴム(SRB215、旭化成ケミカルズ製)、デルペット(登録商標)(旭化成ケミカルズ製 アクリル樹脂)等を使用してもよい。 Examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. Of these, methyl methacrylate is preferably used. As commercially available products, acrylic rubber (SRB215, manufactured by Asahi Kasei Chemicals), Delpet (registered trademark) (acrylic resin manufactured by Asahi Kasei Chemicals) and the like may be used.
 また、アクリル酸アルキルの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。 Examples of alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
 また、メタクリル酸アルキル及びアクリル酸アルキル以外の単量体は、単官能単量体、すなわち分子内に重合性の官能基を1個有する化合物であってもよいし、多官能単量体、すなわち分子内に重合性の官能基を少なくとも2個有する化合物であってもよい。単官能単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエンの如き芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルの如きアルケニルシアン化合物などが挙げられる。また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートの如き多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルの如き不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレートの如き多塩基酸のポリアルケニルエステル、1,6-ヘキサメチレンジイソシアネート等のジイソシアネート類、ジビニルベンゼンの如き芳香族ポリアルケニル化合物などが挙げられる。上記のメタクリル酸アルキル、アクリル酸アルキル、及びこれら以外の単量体は、それぞれ、必要に応じてそれらの2種以上を用いてもよい。上記のうち、好ましくは、ジイソシアネート類であり、より好ましくは1,6-ヘキサメチレンジイソシアネートである。 The monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable functional group in the molecule, or a polyfunctional monomer, It may be a compound having at least two polymerizable functional groups in the molecule. Examples of the monofunctional monomer include aromatic alkenyl compounds such as styrene, α-methylstyrene and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile. Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Alkenyl esters of unsaturated carboxylic acids such as allyl acid, polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate and triallyl cyanurate, diisocyanates such as 1,6-hexamethylene diisocyanate, and divinylbenzene Examples include aromatic polyalkenyl compounds. As for said alkyl methacrylate, alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed. Of the above, preferred are diisocyanates, and more preferred is 1,6-hexamethylene diisocyanate.
 メタクリル樹脂は、フィルムの耐熱性の点から、そのガラス転移温度が40℃以上であることが好ましく、60℃以上であることがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。 The glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
 メタクリル樹脂は、その単量体成分を、懸濁重合、乳化重合、塊状重合などの方法により重合させることにより調製することができる。その際、好適なガラス転移温度を得るため、又は好適なフィルムへの成形性を示す粘度を得るため、重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤の量は、単量体の種類やその割合などに応じて、適宜決定すればよい。 The methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization. The amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
 (粒子)
 本発明の保護層には、表面に凹凸をつけるために粒子を含有させる。粘着層と保護層との層間はがれを防止するという初期の効果のためには、粒径が5~30μmであることが好ましく、より好ましくは10~20μmであり、粒子は保護層中に0.1~5.0質量%含まれることが好ましく、より好ましくは0.5~2.0質量%である。すなわち、本発明の一実施形態は、粒子の粒径が5~30μmであり、粒子は保護層中に0.1~5.0質量%含まれる前記のフィルムミラーである。
(particle)
The protective layer of the present invention contains particles in order to make the surface uneven. For the initial effect of preventing delamination between the adhesive layer and the protective layer, the particle size is preferably 5 to 30 μm, more preferably 10 to 20 μm, and the particles have a particle size of 0. The content is preferably 1 to 5.0% by mass, more preferably 0.5 to 2.0% by mass. That is, in one embodiment of the present invention, the film mirror has a particle size of 5 to 30 μm, and the particle is contained in the protective layer in an amount of 0.1 to 5.0% by mass.
 粒子の粒径が30μm以下であれば、密着性及び光反射層の平滑性が良好となるため、反射率の低下を防止できる。一方、5μm以上とすることにより、層間のひずみの増加による密着性の低下を防ぐことができ、反射率の低下を防止できる。また、保護層中の粒子の添加量については、0.1質量%以上であれば、密着性の向上効果が充分であり、ひずみの改善効果が確実に得られる。一方、5質量%以下であれば、光反射層の平滑性が低下することを防止できる。保護層のマトリックスおよび粒子の材料にもよるが、粒子の粒径および含有量を変化させることによって、保護層の表面の凹凸の大きさをある程度制御することができる。 If the particle diameter of the particles is 30 μm or less, the adhesiveness and the smoothness of the light reflecting layer are improved, and thus a decrease in reflectance can be prevented. On the other hand, by setting it as 5 micrometers or more, the fall of the adhesiveness by the increase in the distortion of an interlayer can be prevented, and the fall of a reflectance can be prevented. Moreover, if the addition amount of the particle | grains in a protective layer is 0.1 mass% or more, the adhesive improvement effect will be enough and the improvement effect of a distortion will be acquired reliably. On the other hand, if it is 5 mass% or less, it can prevent that the smoothness of a light reflection layer falls. Depending on the matrix of the protective layer and the material of the particles, the size of the irregularities on the surface of the protective layer can be controlled to some extent by changing the particle size and content of the particles.
 本発明において、粒子の粒径が5~30μmであるとは、保護層中に含まれている粒子の80質量%以上が、5~30μmの粒径を有していることをいう。粒子の粒径は、粒子を500倍の光学顕微鏡で観察し、図3中dで示すように、2本の平行線で挟まれた粒子図形の最大の距離とする。粒子は、保護層表面に凹凸を形成できれば、必ずしも球形でなくてもよい。 In the present invention, the particle size of 5 to 30 μm means that 80% by mass or more of the particles contained in the protective layer have a particle size of 5 to 30 μm. The particle diameter is the maximum distance of the particle figure sandwiched between two parallel lines as shown by d in FIG. The particles do not have to be spherical as long as irregularities can be formed on the surface of the protective layer.
 本発明において、保護層は図2の中25、27に示すように、粒子が添加されている形となっており、表面に凹凸がある。その厚みの測定法としては、Nikon製 デジマイクロ MF-501+カウンタMFC-101を使用し、凹部分と凸部分双方が含まれた形で、5mmΦの測定端子で5点の厚みを測定し、平均値を厚みと規定した。 In the present invention, as shown in 25 and 27 in FIG. 2, the protective layer has a shape in which particles are added, and the surface has irregularities. The thickness is measured using a Nikon Digimicro MF-501 + counter MFC-101, with both concave and convex portions included, and measured at five points using a 5mmΦ measuring terminal. The value was defined as thickness.
 粒子の材料としては、保護層中で形状を維持し表面に凹凸をつけることのできるものであれば、特に制限はない。保護層を構成する樹脂中に分散しやすく、粘着層の材料となじみやすい材料からなる粒子を適宜選択できる。具体的には、例えば、アルミニウム、ニッケルなどの金属粒子、シリカ、アルミナ、チタニア、ジルコニア等の無機酸化物粒子、アクリル樹脂、ポリエステル樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、ニトリルゴム等の樹脂粒子、珪藻土、タルク、ゼオライト等を使用することができる。これらは単独でも、二種以上を用いてもよい。粘着層との密着性、コストおよび耐候性に優れることから、無機酸化物粒子および樹脂粒子が好ましく、特にアクリル樹脂粒子およびシリカ粒子が好ましい。すなわち、本発明の一実施形態は、粒子がアクリル樹脂またはシリカを含む粒子である前記のフィルムミラーである。アクリル樹脂粒子としては、ポリメタクリル酸メチル樹脂粒子が特に好ましい。本発明の保護層中の粒子に好適なポリメタクリル酸メチル樹脂は、重量平均分子量が1000~10000が好ましい。 The material of the particle is not particularly limited as long as it can maintain the shape in the protective layer and can provide unevenness on the surface. Particles made of a material that easily disperses in the resin constituting the protective layer and is easily compatible with the material of the adhesive layer can be appropriately selected. Specifically, for example, metal particles such as aluminum and nickel, inorganic oxide particles such as silica, alumina, titania and zirconia, resins such as acrylic resins, polyester resins, urethane resins, polyvinyl acetate resins and nitrile rubbers Particles, diatomaceous earth, talc, zeolite, etc. can be used. These may be used alone or in combination of two or more. Inorganic oxide particles and resin particles are preferable, and acrylic resin particles and silica particles are particularly preferable because of excellent adhesion to the adhesive layer, cost, and weather resistance. That is, one embodiment of the present invention is the film mirror described above, wherein the particles are particles containing acrylic resin or silica. As the acrylic resin particles, polymethyl methacrylate resin particles are particularly preferable. The polymethyl methacrylate resin suitable for the particles in the protective layer of the present invention preferably has a weight average molecular weight of 1000 to 10,000.
 保護層を形成するには、保護層を構成する樹脂を有機溶媒に溶解または懸濁させ、この溶液中に粒子を分散させ、塗布液を形成する。次いで、塗布液を所定の塗布方式で塗布し、塗膜を形成する。塗膜を塗設する場合には、従来用いられる種々の塗布方法、例えば、スプレーコート法、スピンコート法、バーコート法等の方法を用いることができる。その後、乾燥して保護層を完成させることができる。 In order to form the protective layer, the resin constituting the protective layer is dissolved or suspended in an organic solvent, and the particles are dispersed in this solution to form a coating solution. Next, the coating solution is applied by a predetermined coating method to form a coating film. When a coating film is applied, various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used. Thereafter, the protective layer can be completed by drying.
 [粘着層]
 粘着層は、フィルムミラーを支持基材に貼り付けることを可能にする粘着性を有しており、この粘着層によってフィルムミラーを支持基材に接合して、太陽熱発電用反射装置を形成するための構成層である。
[Adhesive layer]
The adhesive layer has adhesiveness that enables the film mirror to be attached to the support substrate, and the adhesive layer is used to join the film mirror to the support substrate to form a solar power generation reflection device. It is a constituent layer.
 粘着層としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル樹脂、ニトリルゴム等が用いられる。このうち、入手のしやすさやコスト面、および、フィルムミラーを光反射装置に用いた場合の耐候性に優れることから、アクリル樹脂がより好ましい。すなわち、本発明の一実施形態は、粘着層がアクリル樹脂を含む前記のフィルムミラーである。また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。 The adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent and the like can be used. As the adhesive, for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used. Among these, acrylic resin is more preferable because it is easily available, is cost effective, and is excellent in weather resistance when a film mirror is used in a light reflecting device. That is, one Embodiment of this invention is said film mirror in which the adhesion layer contains an acrylic resin. The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 μm from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like. The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
 また、フィルムミラーは、粘着層の、保護層とは反対側の面を覆う剥離シートを備えていてもよい。フィルムミラーが剥離シートを有する場合、剥離シートを粘着層から剥離した後に、粘着層を介してフィルムミラーを支持基材に貼り付けることができる。 Further, the film mirror may include a release sheet that covers the surface of the adhesive layer on the side opposite to the protective layer. When a film mirror has a peeling sheet, after peeling a peeling sheet from an adhesion layer, a film mirror can be affixed on a support base material through an adhesion layer.
 (剥離シート)
 剥離シートは、フィルムミラーにおける粘着層の光入射側とは反対側の面を覆う部材である。例えば、フィルムミラーの出荷時には剥離シートが粘着層に張り付いた状態であり、その後、剥離シートをフィルムミラーの粘着層から剥離し、そのフィルムミラーを支持基材に貼り合わせて太陽熱発電用反射装置を形成することができる。
(Peeling sheet)
A peeling sheet is a member which covers the surface on the opposite side to the light-incidence side of the adhesion layer in a film mirror. For example, when the film mirror is shipped, the release sheet is attached to the adhesive layer, and then the release sheet is released from the adhesive layer of the film mirror, and the film mirror is attached to the support substrate to reflect the solar power generation reflection device. Can be formed.
 剥離シートとしては、粘着層の粘着性を保護することができるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂にコーティングを施したりアルミニウム等の金属を金属蒸着したりなどの表面加工を施した樹脂フィルム又はシートが用いられる。 The release sheet may be any sheet that can protect the adhesiveness of the adhesive layer. For example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film Or a plastic film or sheet such as a sheet, a fluorine film, a resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., or a metal such as aluminum is applied to the resin kneaded with these. A resin film or sheet subjected to surface processing such as vapor deposition is used.
 剥離シートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the release sheet is not particularly limited but is preferably in the range of 12 to 250 μm.
 [ハードコート層]
 本発明のフィルムミラーには、フィルムミラー表面の傷つきや汚れの付着を防止する目的でハードコート層を設けてもよい。透明なハードコート層は、光入射側の最外層、または光入射側から2層目又は3層目のいずれかであることが好ましい。ハードコート層の上に更に薄い(1μm以下が好ましい)別の層を設けてもよい。
[Hard coat layer]
The film mirror of the present invention may be provided with a hard coat layer for the purpose of preventing damage to the surface of the film mirror and adhesion of dirt. The transparent hard coat layer is preferably the outermost layer on the light incident side, or the second or third layer from the light incident side. Another thin layer (preferably 1 μm or less) may be provided on the hard coat layer.
 ハードコート層の作製方法としては、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法を挙げることができる。また、所定の材料を塗布、塗工することに加え、各種表面処理等を組み合わせてもよい。 Examples of methods for producing the hard coat layer include conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method. In addition to applying and coating a predetermined material, various surface treatments and the like may be combined.
 なお、ハードコート層の厚みは、十分な耐傷性を得つつ、フィルムミラーにそりが発生することを防止するという観点から、0.05μm以上、10μm以下であることが好ましい。より好ましくは、1μm以上、10μm以下である。 The thickness of the hard coat layer is preferably 0.05 μm or more and 10 μm or less from the viewpoint of preventing the film mirror from warping while obtaining sufficient scratch resistance. More preferably, they are 1 micrometer or more and 10 micrometers or less.
 ハードコート層を形成する材料としては、透明性、耐候性、硬度、機械的強度等が得られるものであれば、特に限定されるものではない。ハードコート層は、アクリル樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、硬度と耐久性などの点で、シリコーン系樹脂やアクリル樹脂が好ましい。さらに、硬化性、可撓性および生産性の点で、活性エネルギー線硬化型のアクリル樹脂、または熱硬化型のアクリル樹脂からなるものが好ましい。 The material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained. The hard coat layer can be composed of acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, and the like. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Furthermore, what consists of an active energy ray hardening-type acrylic resin or a thermosetting type acrylic resin is preferable at the point of sclerosis | hardenability, flexibility, and productivity.
 活性エネルギー線硬化型のアクリル樹脂または熱硬化型のアクリル樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 アクリルオリゴマーとは、アクリル樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. Those having an acrylic group bonded to the skeleton may also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社;(商品名“ダイヤビーム(登録商標)”シリーズなど)、長瀬産業株式会社;(商品名“デナコール(登録商標)”シリーズなど)、新中村株式会社;(商品名“NKエステル”シリーズなど)、大日本インキ化学工業株式会社;(商品名“UNIDIC(登録商標)”シリーズなど)、東亞合成化学工業株式会社;(商品名“アロニックス(登録商標)”シリーズなど)、日本油脂株式会社;(商品名“ブレンマー(登録商標)”シリーズなど)、日本化薬株式会社;(商品名“KAYARAD(登録商標)”シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズなど)などの製品を利用することができる。 Commercially available polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd .; (trade name “NK Ester” series, etc.), Dainippon Ink and Chemicals Co., Ltd .; (trade name “UNIDIC (registered trademark)” series, etc.), Toagosei Chemical Industry Co., Ltd .; "Aronix (registered trademark)" series, etc.), Nippon Oil and Fats Corporation; (trade name "Blemmer (registered trademark)" series, etc.), Nippon Kayaku Co., Ltd. (trade name "KAYARAD (registered trademark)" series, etc.), Kyoeisha Chemical Co., Ltd .; (Product name “Light Ester” series, “Light acrylate” series, etc.) Kill.
 更に具体的には、例えば、電子線や紫外線の照射により硬化する樹脂や熱硬化性の樹脂等を使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート、熱硬化型のポリシロキサン樹脂からなるハードコート、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート、熱硬化型無機材料であることが好ましい。また、ハードコート層に用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(特開2005-66824号公報)、ポリウレタン系樹脂組成物(特開2005-110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004-142161号公報)、酸化チタン等の光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009-62216)、光触媒含有フッ素樹脂コーティング(ピアレックス・テクノロジーズ社)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(AZエレクトロニクス社)を用いた膜、等も挙げることができる。 More specifically, for example, a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used. In particular, a thermosetting silicone hard coat composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable. As materials that can be used for the hard coat layer, an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No. 2005-110918), and an aqueous silicone compound as a binder. Resin film used (Japanese Patent Laid-Open No. 2004-142161), photocatalytic oxide-containing silica film such as titanium oxide or alumina, photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio (Japanese Patent Laid-Open No. 2009-62216), photocatalyst Examples thereof include a fluorine-containing resin coating (Pierex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) in organic / inorganic polysilazane.
 熱硬化型シリコーン系のハードコート層には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下の通りである。まず、アルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法によりフィルムミラー等の外面に塗布し、80~140℃の温度で加熱硬化することによって透明ハードコート層を形成させる。但しこの場合、フィルムミラーの熱変形温度以下での硬化温度の設定が前提となる。なお、テトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシラン、並びに/或いはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系の透明ハードコート層を製造することが可能である。 For the thermosetting silicone hard coat layer, a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated to the outer surface of a film mirror etc. by the coating method in a normal coating material, and a transparent hard-coat layer is formed by heat-hardening at the temperature of 80-140 degreeC. However, in this case, the setting of the curing temperature below the thermal deformation temperature of the film mirror is a prerequisite. In addition, by using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane, a polysiloxane-based transparent hard coat layer is similarly produced. Is possible.
 (添加剤)
 ハードコート層に紫外線吸収剤や酸化防止剤を含有させてもよい。紫外線吸収剤や酸化防止剤としては、上述の透光性樹脂層で用いた紫外線吸収剤および酸化防止剤を用いることができる。
(Additive)
The hard coat layer may contain an ultraviolet absorber or an antioxidant. As an ultraviolet absorber and antioxidant, the ultraviolet absorber and antioxidant used with the above-mentioned translucent resin layer can be used.
 特に、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層において好ましい紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤である。ベンゾトリアゾール系の紫外線吸収剤をハードコート層に含有させることにより、耐候性を更に良好にするだけでなく、転落角も更に低下できるという優れた効果を得ることができる。特に、下記の一般式(9)で表される化合物をハードコート層に含有させた場合、転落角の低下という効果が著しい。尚、転落角とは、水平なミラー上に水滴を滴下し、その後、当該ミラーの傾斜角を徐々に上げていき、静止していた所定質量の水滴が転落する最小の角度を計測したものをいう。転落角が小さければ小さい程、水滴が表面から転がり落ちやすく、水滴が付着しにくい表面であると言える。 In particular, a preferred UV absorber in a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin is a benzotriazole UV absorber. By including a benzotriazole-based ultraviolet absorber in the hard coat layer, it is possible to obtain an excellent effect that not only the weather resistance is further improved, but also the falling angle can be further reduced. In particular, when the compound represented by the following general formula (9) is contained in the hard coat layer, the effect of reducing the falling angle is remarkable. The falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which the water drop of a predetermined mass that has been stationary falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、ハードコート層における紫外線吸収剤の使用量は、密着性を良好に保ちつつ、耐候性を良好にするために、0.1~20質量%であることが好ましい。さらに好ましくは0.25~15質量%、より好ましくは0.5~10質量%である。 The amount of the UV absorber used in the hard coat layer is preferably 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is 0.25 to 15% by mass, and more preferably 0.5 to 10% by mass.
 ハードコート層に用いられる酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。有機系酸化防止剤をハードコート層に含有させることでも、転落角を低下し得る。酸化防止剤と光安定剤を併用してもよい。光安定剤としては、上記した透光性樹脂層に用いられるものと同様の光安定剤を使用することができる。 As the antioxidant used in the hard coat layer, it is preferable to use an organic antioxidant such as a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant. The falling angle can also be reduced by including an organic antioxidant in the hard coat layer. An antioxidant and a light stabilizer may be used in combination. As the light stabilizer, the same light stabilizer as that used in the above-described translucent resin layer can be used.
 ハードコート層中には、さらに各種の添加剤を必要に応じて配合することができる。例えば、界面活性剤、レベリング剤および帯電防止剤などを用いることができる。レベリング剤は、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば東レダウコーニング(株)製SH190)が好適である。 In the hard coat layer, various additives can be further blended as necessary. For example, a surfactant, a leveling agent and an antistatic agent can be used. The leveling agent is effective in reducing surface irregularities. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicone leveling agent.
 [ガスバリア層]
 ガスバリア層は、光反射層よりも光入射側に設けることが好ましく、光反射層の腐食防止に効果的である。ガスバリア層は、湿度の変動、特に高湿度による樹脂基材及び樹脂基材に支持される各構成層等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、劣化防止機能を有する限りにおいて、種々の態様のガスバリア層を設けることができる。
[Gas barrier layer]
The gas barrier layer is preferably provided on the light incident side of the light reflecting layer, and is effective for preventing corrosion of the light reflecting layer. The gas barrier layer is intended to prevent the deterioration of the humidity, particularly the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but it has special functions and applications. As long as it has a deterioration preventing function, various types of gas barrier layers can be provided.
 ガスバリア層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下であることが好ましく、より好ましくは0.5g/m・day以下、更に好ましくは0.2g/m・day以下である。また、ガスバリア層の酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 As the moisture resistance of the gas barrier layer, the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 · day or less, more preferably 0.5 g / m 2 · day or less, and still more preferably 0. .2 g / m 2 · day or less. In addition, the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
 ガスバリア層の形成方法は、真空蒸着法、スパッタリング、イオンビームアシスト、化学気相成長法等の方法により無機酸化物を形成する方法が挙げられるが、ゾル-ゲル法による無機酸化物の前駆体を塗布した後に、その塗布膜に加熱処理及び/又は紫外線照射処理を施して、無機酸化物膜を形成する方法も好ましく用いられる。 Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as vacuum vapor deposition, sputtering, ion beam assist, chemical vapor deposition, and the like. An inorganic oxide precursor by a sol-gel method is used. A method of forming an inorganic oxide film by applying heat treatment and / or ultraviolet irradiation treatment to the coating film after coating is also preferably used.
 [アンカー層]
 本発明のフィルムミラーは、樹脂基材と光反射層との間にアンカー層を設けてもよい。アンカー層は樹脂からなり、樹脂基材と光反射層とを密着させる効果がある。従って、アンカー層は、樹脂基材と光反射層とを密着する密着性、光反射層を真空蒸着法等で形成する際の熱にも耐え得る耐熱性、及び光反射層が本来有する高い反射性能を引き出すための平滑性が必要である。
[Anchor layer]
The film mirror of this invention may provide an anchor layer between the resin base material and the light reflection layer. The anchor layer is made of resin, and has an effect of closely adhering the resin base material and the light reflecting layer. Therefore, the anchor layer has an adhesion property that allows the resin base material and the light reflection layer to adhere to each other, heat resistance that can withstand heat when the light reflection layer is formed by a vacuum deposition method, and the high reflection that the light reflection layer originally has. Smoothness is required to bring out performance.
 アンカー層に使用する樹脂材料は、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin material used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesiveness, heat resistance, and smoothness. Polyester resin, acrylic resin, melamine resin, epoxy resin, polyamide Resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like, or a mixed resin thereof can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent.
 アンカー層の形成方法としては、所定の樹脂材料を塗布、塗工するグラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the anchor layer, conventionally known coating methods such as a gravure coating method in which a predetermined resin material is applied and applied, a reverse coating method, a die coating method and the like can be used.
 アンカー層の厚さは、0.01~3μmが好ましく、より好ましくは0.1~1μmである。厚さが0.01μm以上であれば、密着性向上の効果が確実に得られ、樹脂基材表面の凹凸を覆い隠すこともできるため平滑性も向上される。その結果、光反射層の反射率が高くなり好ましい。また、厚さが3μm以下であれば、密着性の向上には十分であり、塗りムラの発生により平滑性が悪くなることを避けられ、さらにアンカー層の硬化が充分なものとなる。 The thickness of the anchor layer is preferably 0.01 to 3 μm, more preferably 0.1 to 1 μm. If thickness is 0.01 micrometer or more, the effect of an adhesive improvement will be acquired reliably, and since the unevenness | corrugation on the surface of a resin base material can also be covered, smoothness will also be improved. As a result, the reflectance of the light reflecting layer is preferably increased. Moreover, if thickness is 3 micrometers or less, it is enough for the improvement of adhesiveness, it can avoid that smoothness worsens by generation | occurrence | production of a coating nonuniformity, and also hardening of an anchor layer becomes sufficient.
 [光反射装置]
 本発明のフィルムミラーは、支持基材に貼付して、光反射装置に使用するのに好適である。したがって、本発明は、上記のフィルムミラーを支持基材に貼付した、太陽熱発電用光反射装置も提供する。本発明の一実施形態は、前記のフィルムミラーが支持基材に貼付された、太陽熱発電用光反射装置である。太陽熱発電用反射装置は、フィルムミラーと自己支持性の支持基材とを有しており、粘着層を介してフィルムミラーが支持基材に接合されている反射鏡である。
[Light Reflector]
The film mirror of the present invention is suitable for use in a light reflecting device by sticking to a support substrate. Therefore, this invention also provides the light reflection apparatus for solar power generation which affixed said film mirror on the support base material. One embodiment of the present invention is a light reflecting device for solar power generation in which the film mirror is attached to a support base material. The solar power generation reflecting device is a reflecting mirror that includes a film mirror and a self-supporting support base material, and the film mirror is bonded to the support base material via an adhesive layer.
 なお、ここで言う「自己支持性」とは、太陽熱発電用反射装置の支持基材として用いられる大きさに断裁された状態で、支持基材がフィルムミラーの端縁部分を支持することで、フィルムミラーを担持することが可能な程度の剛性を有することを表す。太陽熱発電用反射装置の支持基材が自己支持性を有することで、太陽熱発電用反射装置を設置する際に取り扱い性に優れるとともに、太陽熱発電用反射装置を保持するための保持部材を簡素な構成とすることが可能となるため、反射装置自体を軽量化することが可能となり、太陽追尾の際の消費電力を抑制することが可能となる。 In addition, the "self-supporting property" as used herein means that the supporting substrate supports the edge portion of the film mirror in a state where the supporting substrate is cut to a size used as a supporting substrate of the solar power generation reflecting device. This means that the film mirror has rigidity enough to support the film mirror. The support base material of the solar power generation reflecting device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device itself, and it is possible to suppress power consumption during solar tracking.
 (支持基材)
 自己支持性の支持基材としては、一対の金属平板とその金属平板間に介装された中間層を有するもの(タイプA)か、中空構造を有する樹脂材料からなるもの(タイプB)であることが好ましい。
(Supporting substrate)
As a self-supporting support base material, there are one having a pair of metal flat plates and an intermediate layer interposed between the metal flat plates (type A), or one made of a resin material having a hollow structure (type B). It is preferable.
 (支持基材タイプA)
 支持基材が、一対の金属平板とその金属平板間に介装された中間層を有するものであって、その中間層が中空構造を有する材料または樹脂材料から構成されることにより、支持基材は、金属平板による高い平面性を有するとともに、金属平板のみで支持基材を構成する場合に比べて、支持基材自体を大幅に軽量化することが可能となる。また、比較的軽量な中間層を用いつつ金属平板によって剛性を上げることができるため、軽量且つ自己支持性を有する支持基材として機能させることが可能になる。
(Support base type A)
The support base material has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates, and the intermediate layer is made of a material having a hollow structure or a resin material, whereby the support base material As well as having a high flatness due to the metal flat plate, it is possible to significantly reduce the weight of the support base material itself as compared to the case where the support base material is constituted only by the metal flat plate. In addition, since the rigidity can be increased by the metal flat plate while using a relatively lightweight intermediate layer, it is possible to function as a support substrate that is lightweight and has a self-supporting property.
 更に、中間層が樹脂材料からなる場合においても、中空構造を有する樹脂材料の層とすることでより一層の軽量化を図ることができる。 Furthermore, even when the intermediate layer is made of a resin material, further weight reduction can be achieved by using a resin material layer having a hollow structure.
 また、中間層を中空構造とした場合には、中間層が断熱材としての機能を果たすため、粘着層8とは反対側の金属平板の温度変化がフィルムミラーへ伝わることを抑制し、結露の防止や、熱による劣化を抑制することが可能となる。 Further, when the intermediate layer has a hollow structure, the intermediate layer functions as a heat insulating material, so that the temperature change of the metal flat plate on the side opposite to the adhesive layer 8 is suppressed from being transmitted to the film mirror, and dew condensation occurs. It is possible to prevent or suppress deterioration due to heat.
 支持基材の両面の表面層となる金属平板としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料が好ましく用いることができる。本発明においては、特に、耐腐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などを用いることが好ましい。 As the metal flat plate that becomes the surface layer on both sides of the support substrate, the thermal conductivity such as steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc. A high metal material can be preferably used. In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
 支持基材の中間層としては、金属、無機材料(ガラス等)、樹脂材料等の素材を用いることができる。 As the intermediate layer of the supporting substrate, materials such as metals, inorganic materials (glass, etc.), resin materials, etc. can be used.
 この中間層を中空構造とする場合、発泡樹脂からなる気泡構造や、金属、無機材料又は樹脂材料からなる壁面を有する立体構造(ハニカム構造等)や、中空微粒子を添加した樹脂材料等を適用することができる。 When this intermediate layer has a hollow structure, a cellular structure made of foamed resin, a three-dimensional structure having a wall surface made of metal, an inorganic material or a resin material (honeycomb structure, etc.), a resin material to which hollow fine particles are added, etc. are applied. be able to.
 発泡樹脂の気泡構造は、樹脂材料中にガスを細かく分散させ、発泡状又は多孔質形状に形成されたものを指す。その材料としては公知の発泡樹脂材料を使用可能であるが、ポリオレフィン系樹脂、ポリウレタン、ポリエチレン、ポリスチレン等が好ましく用いられる。 The cellular structure of the foamed resin refers to a foamed or porous shape formed by finely dispersing gas in the resin material. A known foamed resin material can be used as the material, but polyolefin resin, polyurethane, polyethylene, polystyrene and the like are preferably used.
 ハニカム構造とは、空間が側壁で囲まれた複数の小空間で構成される立体構造全般を表すものとする。 The honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls.
 中間層の中空構造を樹脂材料からなる壁面を有する立体構造とする場合、壁面を構成する樹脂材料としては、エチレン、プロピレン、ブテン、イソプレンペンテン、メチルペンテン等のオレフィン類の単独重合体あるいは共重合体であるポリオレフィン(例えば、ポリプロピレン、高密度ポリエチレン)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリアクリロニトリル、エチレン-エチルアクリレート共重合体等のアクリル誘導体、ポリカーボネート、エチレン-酢酸ビニル共重合体等の酢酸ビニル共重合体、アイオノマー、エチレン-プロピレン-ジエン類等のターポリマー、ABS樹脂、ポリオレフィンオキサイド、ポリアセタール等の熱可塑性樹脂が好ましく用いられる。なお、これらは一種類を単独で用いても、二種類以上を混合して用いてもよい。特に、熱可塑性樹脂のなかでもオレフィン系樹脂又はオレフィン系樹脂を主体にした樹脂、ポリプロピレン系樹脂又はポリプロピレン系樹脂を主体にした樹脂が、機械的強度及び成形性のバランスに優れている点で好ましい。樹脂材料には、添加剤が含まれていてもよく、その添加剤としては、シリカ、マイカ、タルク、炭酸カルシウム、ガラス繊維、カーボン繊維等の無機フィラー、可塑剤、安定剤、着色剤、帯電防止剤、難燃剤、発泡剤等が挙げられる。 When the intermediate layer has a three-dimensional structure having a wall surface made of a resin material, the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene. Polyolefin (eg, polypropylene, high density polyethylene), polyamide, polystyrene, polyvinyl chloride, polyacrylonitrile, acrylic derivatives such as ethylene-ethyl acrylate copolymer, polycarbonate, vinyl acetate such as ethylene-vinyl acetate copolymer Copolymers, ionomers, terpolymers such as ethylene-propylene-dienes, and thermoplastic resins such as ABS resin, polyolefin oxide, and polyacetal are preferably used. In addition, these may be used individually by 1 type, or may mix and use 2 or more types. In particular, among thermoplastic resins, olefin-based resins or resins mainly composed of olefin-based resins, polypropylene-based resins or resins based mainly on polypropylene-based resins are preferable because of excellent balance between mechanical strength and moldability. . The resin material may contain an additive. Examples of the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents. An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
 また、中間層を樹脂プレートからなる層とすることも可能であり、この場合に中間層を構成する樹脂材料としては、前述のフィルムミラーの樹脂基材を構成する材料と同様のものを好ましく用いることができる。 Further, the intermediate layer can be a layer made of a resin plate. In this case, as the resin material constituting the intermediate layer, the same material as that constituting the resin substrate of the film mirror described above is preferably used. be able to.
 なお、中間層は、支持基材の全ての領域に設けられる必要はなく、金属平板の平面性及び支持基材としての自己支持性を担保できる範囲であれば、一部の領域に設けられていてもよい。中間層を上述の立体構造とする場合、金属平板の面積に対して、90~95%程度の領域に立体構造を設けることが好ましく、発泡樹脂を用いる場合は、30~40%程度の領域に設けることが好ましい。 The intermediate layer need not be provided in all regions of the support base material, and provided in a part of the region as long as the flatness of the metal flat plate and the self-supporting property as the support base material can be ensured. May be. When the intermediate layer has the above-described three-dimensional structure, it is preferable to provide the three-dimensional structure in a region of about 90 to 95% with respect to the area of the metal flat plate. It is preferable to provide it.
 (支持基材タイプB)
 支持基材が、中空構造を有する樹脂材料からなる層とすることも可能である。支持基材を樹脂材料のみからなる層とした場合、自己支持性を持たせる程度の剛性を得るために必要な厚さが大きくなり、結果として支持基材の質量が重くなるが、樹脂材料に中空構造を持たせることにより、自己支持性を持たせながら支持基材を軽量化することができる。
(Supporting substrate type B)
It is also possible for the support substrate to be a layer made of a resin material having a hollow structure. When the support base material is made of a resin material only, the thickness required to obtain a rigidity sufficient to provide self-supporting properties increases, resulting in an increase in the weight of the support base material. By providing a hollow structure, the supporting substrate can be reduced in weight while providing self-supporting properties.
 支持基材が、中空構造を有する樹脂材料からなる場合、中空構造を有する樹脂材料を中間層として用い、その両面の表面層として平滑な面を有する樹脂シートを設けることが、フィルムミラーの正反射率を高める観点で好ましい。この樹脂シートの材料としては、前述のフィルムミラーの樹脂基材を構成する材料と同様のものを好ましく用いることができる。中空構造を有する樹脂材料としては、上述の発泡材料や立体構造(ハニカム構造)を有する樹脂材料を好ましく用いることができる。 When the support substrate is made of a resin material having a hollow structure, it is possible to use a resin material having a hollow structure as an intermediate layer, and to provide a resin sheet having smooth surfaces as the surface layers on both sides thereof. It is preferable from the viewpoint of increasing the rate. As the material of the resin sheet, the same material as that constituting the resin substrate of the film mirror described above can be preferably used. As the resin material having a hollow structure, the above-described foamed material and the resin material having a three-dimensional structure (honeycomb structure) can be preferably used.
 (保持部材)
 太陽熱発電用反射装置は、反射装置自体を保持する保持部材を有する。保持部材は、太陽熱発電用反射装置における反射面(フィルムミラー)が、太陽を追尾可能な状態で保持することが好ましい。保持部材の形態としては、特に制限はないが、太陽熱発電用反射装置が所望の形状や姿勢を保持できるように、例えば、太陽熱発電用反射装置の裏面側の支持基材における複数個所を棒状の柱状部材や梁状部材によって保持する形態が好ましい。
(Holding member)
The solar power generation reflection device has a holding member that holds the reflection device itself. The holding member preferably holds the reflecting surface (film mirror) of the solar power generation reflecting device in a state where the sun can be tracked. The form of the holding member is not particularly limited, but for example, a plurality of places on the support base on the back side of the solar power generation reflecting device are formed in a bar shape so that the solar power generating reflection device can hold a desired shape and posture. The form held by a columnar member or a beam-like member is preferable.
 保持部材は、太陽を追尾可能な状態で太陽熱発電用反射装置を保持する構成を有するが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。 The holding member has a configuration for holding the solar power generation reflecting device in a state in which the sun can be tracked. However, in the case of solar tracking, the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
 以下、実施例および比較例を通して本発明を説明する。しかし、本発明は以下の実施例に限定はされない。 Hereinafter, the present invention will be described through examples and comparative examples. However, the present invention is not limited to the following examples.
 <実施例1>
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム 厚さ25μm)である樹脂フィルムを用いた。上記ポリエチレンテレフタレートフィルムの片面に、ポリメチルメタクリル(PMMA)樹脂(EMB457 三菱レイヨン製)、アクリルゴム(SRB215 旭化成ケミカルズ)、HDMI系イソシアネート(1、6-ヘキサメチレンジイソシアネート)を、樹脂固形分比率で、17:3:2に、固形分濃度22%となるようにメチルエチルケトン中に混合した。この溶液を、アプリケーター バーコーター法にてコーティングして、厚さ25μmの透光性樹脂層を形成した。
<Example 1>
A resin film which is a biaxially stretched polyester film (polyethylene terephthalate film thickness 25 μm) was used as the resin substrate. On one surface of the polyethylene terephthalate film, polymethylmethacrylic (PMMA) resin (EMB457 manufactured by Mitsubishi Rayon), acrylic rubber (SRB215 Asahi Kasei Chemicals), HDMI isocyanate (1,6-hexamethylene diisocyanate) in a resin solid content ratio, The mixture was mixed into methyl ethyl ketone at 17: 3: 2 so that the solid content concentration was 22%. This solution was coated by an applicator bar coater method to form a translucent resin layer having a thickness of 25 μm.
 次いで、支持基材の反対側の面に、真空蒸着法にて厚さ100nmの銀からなる光反射層を形成した。 Next, a light reflecting layer made of silver having a thickness of 100 nm was formed on the opposite surface of the supporting substrate by vacuum deposition.
 次に、銀の光反射層の上に、ポリエステル系樹脂とTDI(2.4-トリレンジイソシアネート)系イソシアネートを樹脂固形分比率で10:2に混合した樹脂に対して、銀の腐食防止剤として、2-メルカプトベンゾチアゾールを、樹脂に対して10質量%となるように添加し、メチルエチルケトン中に5%になるよう塗布液を調製した。この塗布液を、グラビアコート法により光反射層上にコーティングして、厚さ3μmの腐食防止層を形成した。 Next, a silver corrosion inhibitor is applied to a resin in which a polyester resin and a TDI (2.4-tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 on the silver light reflection layer. As described above, 2-mercaptobenzothiazole was added so as to be 10% by mass with respect to the resin, and a coating solution was prepared so as to be 5% in methyl ethyl ketone. This coating solution was coated on the light reflection layer by a gravure coating method to form a corrosion prevention layer having a thickness of 3 μm.
 次に、腐食防止層の上に、PMMA樹脂(EMB457 三菱レイヨン製)、アクリルゴム(SRB215 旭化成ケミカルズ)、HDMI系イソシアネート(1、6-ヘキサメチレンジイソシアネート)、PMMAフィラー(綜研化学製 MX1500 粒径 15μm)を樹脂固形分比率で、17:3:2:0.11に、固形分濃度22%となるようにメチルエチルケトン中に混合し塗布液を調製した。この塗布液を、アプリケーター バーコーター法にてコーティングして、厚さ20μmの保護層を形成した。 Next, on the corrosion prevention layer, PMMA resin (EMB457, manufactured by Mitsubishi Rayon), acrylic rubber (SRB215, Asahi Kasei Chemicals), HDMI-based isocyanate (1,6-hexamethylene diisocyanate), PMMA filler (manufactured by Soken Chemical Co., Ltd., MX1500, particle size 15 μm) ) At a resin solid content ratio of 17: 3: 2: 0.11 and mixed in methyl ethyl ketone so as to have a solid content concentration of 22% to prepare a coating solution. This coating solution was coated by an applicator bar coater method to form a protective layer having a thickness of 20 μm.
 次に、アクリル系粘着剤(ニッセツKP-2254 日本カーバイド工業製)、HDMI系イソシアネート(1、6-ヘキサメチレンジイソシアネート)を樹脂固形分比率で、27:1に、固形分濃度15%となるように酢酸エチルに混合し、塗布液を調製した。この塗布液を、アプリケーター バーコーター法にて上記の保護層上にコーティングして、厚さ25μmの粘着剤層を形成した。 Next, acrylic pressure-sensitive adhesive (Nissetsu KP-2254, manufactured by Nippon Carbide Industries) and HDMI-based isocyanate (1,6-hexamethylene diisocyanate) are in a resin solid content ratio of 27: 1 so that the solid content concentration is 15%. The mixture was mixed with ethyl acetate to prepare a coating solution. This coating solution was coated on the protective layer by an applicator bar coater method to form an adhesive layer having a thickness of 25 μm.
 上記のようにして、実施例1のフィルムミラーを得た。得られたフィルムミラーは、以下の光反射層ひずみ、保護層および粘着層の層間粘着性、透光性樹脂と保護層とのブロッキングを評価した。評価結果は、後掲の表1-1および1-2に示す。 The film mirror of Example 1 was obtained as described above. The obtained film mirror evaluated the following light reflection layer distortion | strain, the interlayer adhesiveness of a protective layer and an adhesion layer, and blocking with a translucent resin and a protective layer. The evaluation results are shown in Tables 1-1 and 1-2 below.
 <層間密着性>
 フィルムミラー試料を10mm幅に切断し、粘着層をガラス板に貼りつけ、メタルハイルドランプ500hr照射後、粘着力を測定した。メタルハイルドランプ照射前と照射後の粘着力(JIS Z0237(2009年)準拠)の比較を行った。評価基準は以下の通りとした。
5:保護層と粘着層の界面に剥がれは全く見られず、粘着力は初期の120%以上。
4:保護層と粘着層の界面に剥がれの兆候は、ほぼ見られず、粘着力は初期の100以上~120%未満。
3:保護層と粘着層の間にわずかに剥がれの兆候が見られるが、粘着力は初期の80~100%未満。
2:保護層と粘着層の間に、わずかに剥がれが見られ、粘着力は初期の50~80%未満。
1:保護層と粘着層の界面に明確な剥がれが見られ、粘着力は初期の50%未満。
<Interlayer adhesion>
The film mirror sample was cut to a width of 10 mm, the adhesive layer was attached to a glass plate, and the adhesive strength was measured after irradiation with a metal hold lamp 500 hr. The adhesive strength before and after the metal halide lamp irradiation (based on JIS Z0237 (2009)) was compared. The evaluation criteria were as follows.
5: No peeling was observed at the interface between the protective layer and the adhesive layer, and the adhesive strength was 120% or more of the initial value.
4: There is almost no sign of peeling at the interface between the protective layer and the adhesive layer, and the adhesive strength is 100% to less than 120% of the initial value.
3: Although slight signs of peeling are observed between the protective layer and the adhesive layer, the adhesive strength is less than 80 to 100% of the initial value.
2: Slight peeling was observed between the protective layer and the adhesive layer, and the adhesive strength was less than 50 to 80% of the initial value.
1: Clear peeling is observed at the interface between the protective layer and the adhesive layer, and the adhesive strength is less than 50% of the initial value.
 <ブロッキング>
 製造工程においては、透光性樹脂層と保護層が接した状態で巻きとられる場合があり、その際に両層がくっついていると、両層の面が荒れ、反射率低下を引き起こす懸念がある。そのため、ブロッキングが起こらないことが好ましい。ブロッキングの評価のために、10cm×10cmにフィルムミラー試料を切り出し、透光性樹脂層と保護層を重ね合わせ、23℃で7g/cm2の荷重を72時間かけた。その後、保護層を剥がした際のブロッキング状態を確認した。評価基準は以下の通りとした。
5:全く音がしなく剥がれ、層の剥がれはない。
4:面として濡れている感じはあるが、音もなく剥がれ層の剥がれはない。
3:面として濡れている感じがあるが、剥がれ部分はない。
2:部分的にくっついており、透光性樹脂層が剥がれる。
1:全面的にくっついており、透光性樹脂層が剥がれる。
<Blocking>
In the manufacturing process, it may be wound in a state where the translucent resin layer and the protective layer are in contact with each other, and if both layers are adhered at that time, there is a concern that the surfaces of both layers become rough and cause a decrease in reflectance. is there. Therefore, it is preferable that blocking does not occur. For the evaluation of blocking, a film mirror sample was cut out to 10 cm × 10 cm, the translucent resin layer and the protective layer were overlapped, and a load of 7 g / cm 2 was applied at 23 ° C. for 72 hours. Then, the blocking state at the time of peeling off a protective layer was confirmed. The evaluation criteria were as follows.
5: No peeling at all and no peeling of the layer.
4: Although it feels wet as a surface, there is no sound and the peeling layer does not peel off.
3: There is a feeling that the surface is wet, but there is no peeling part.
2: It has adhered partially and a translucent resin layer peels off.
1: It has adhered to the whole surface and a translucent resin layer peels off.
 <正反射率の測定>
 日立ハイテク製の分光光度計「UH4150」を使用し、反射面の法線に対して、入射光の入射角5°となるように調整し、反射角5°の正反射率を測定した。評価は、250nm~2500nmの平均反射率として測定した。
<Measurement of regular reflectance>
A spectrophotometer “UH4150” manufactured by Hitachi High-Tech was used to adjust the incident angle of incident light to 5 ° with respect to the normal of the reflecting surface, and the regular reflectance at a reflection angle of 5 ° was measured. Evaluation was carried out as an average reflectance of 250 nm to 2500 nm.
 <正反射率の耐候性試験後反射率>
 温度85℃、湿度85%RHの条件で30日放置後の正反射率を、上記正反射率測定と同様の方法により測定した。
<Reflectance after weather resistance test of regular reflectance>
The regular reflectance after standing for 30 days under the conditions of a temperature of 85 ° C. and a humidity of 85% RH was measured by the same method as the regular reflectance measurement.
 <実施例2~9>
 形成する保護層の厚さおよび粒子の種類を下記表1-1のように変更した以外は、実施例1と同様にして、フィルムミラーを製造した。得られたフィルムミラーは、実施例1と同様に評価した。評価結果は、後掲の表1-1および1-3に示す。
<Examples 2 to 9>
A film mirror was produced in the same manner as in Example 1 except that the thickness of the protective layer to be formed and the kind of particles were changed as shown in Table 1-1 below. The obtained film mirror was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1-1 and 1-3 below.
 <比較例1~4>
 形成する保護層の厚さおよび粒子の種類を下記表1-2のように変更した以外は、実施例1と同様にして、フィルムミラーを製造した。得られたフィルムミラーは、実施例1と同様に評価した。評価結果は、後掲の表1-2および1-3に示す。
<Comparative Examples 1 to 4>
A film mirror was produced in the same manner as in Example 1, except that the thickness of the protective layer to be formed and the kind of particles were changed as shown in Table 1-2 below. The obtained film mirror was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1-2 and 1-3 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から、本発明のフィルムミラーは、保護層を設けたことにより、光反射層の歪みが低減され、耐候性試験後の反射率が高く維持されていることが分かった。さらに、本発明のミラーは、保護層中の粒子の存在により、保護層と粘着層との層間密着性およびブロッキング性においても良好な結果を示した。これらの結果は、保護層のない比較例3と対比すると明らかである。また、実施例1と保護層の薄い比較例1とを対比すると、実施例1では、初期および耐候性試験後の反射率、ならびに、保護層と粘着層との層間密着性においてより優れた結果を示した。また、実施例1と保護層の厚い比較例2とを対比すると、比較例2は耐候性試験後の反射率が低下し、かつブロッキング性に劣る結果となった。 From the results shown in Table 1, it was found that the film mirror of the present invention was provided with a protective layer, whereby the distortion of the light reflection layer was reduced and the reflectance after the weather resistance test was maintained high. Furthermore, the mirror of the present invention also showed good results in interlayer adhesion and blocking properties between the protective layer and the adhesive layer due to the presence of particles in the protective layer. These results are apparent when compared with Comparative Example 3 having no protective layer. Further, when Example 1 is compared with Comparative Example 1 having a thin protective layer, Example 1 shows a more excellent result in the reflectance after the initial and weather resistance tests, and in the interlayer adhesion between the protective layer and the adhesive layer. showed that. Further, when Example 1 was compared with Comparative Example 2 having a thick protective layer, Comparative Example 2 resulted in a decrease in reflectance after the weather resistance test and inferior blocking properties.
 なお、本出願は、2013年10月29日に出願された日本国特許出願第2013-224556号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2013-224556 filed on October 29, 2013, the disclosure of which is incorporated by reference in its entirety.
10、20   フィルムミラー、
11、21   透光性樹脂層、
12、22   樹脂基材、
13、23   光反射層、
14、24   腐食防止層、
15、25   保護層、
16、26   粘着層、
17、27   粒子、
28   ハードコート層、
30   アンカー層。
10, 20 Film mirror,
11, 21 Translucent resin layer,
12, 22 resin base material,
13, 23 Light reflection layer,
14, 24 Anticorrosion layer,
15, 25 protective layer,
16, 26 Adhesive layer,
17, 27 particles,
28 Hard coat layer,
30 Anchor layer.

Claims (5)

  1.  光入射側から、
     透光性樹脂層と、
     樹脂基材と、
     光反射層と、
     粒子を含み、厚みが20~75μmである保護層と、
     前記保護層に接する粘着層と、
    を順に備えるフィルムミラー。
    From the light incident side
    A translucent resin layer;
    A resin substrate;
    A light reflecting layer;
    A protective layer containing particles and having a thickness of 20 to 75 μm;
    An adhesive layer in contact with the protective layer;
    A film mirror equipped with in order.
  2.  前記粒子の粒径が5~30μmであり、前記粒子は前記保護層中に0.1~5.0質量%含まれる請求項1に記載のフィルムミラー。 2. The film mirror according to claim 1, wherein the particle diameter is 5 to 30 μm, and the particle is contained in the protective layer in an amount of 0.1 to 5.0 mass%.
  3.  前記粒子がアクリル樹脂またはシリカを含む粒子である請求項1または2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein the particles are particles containing acrylic resin or silica.
  4.  前記粘着層がアクリル樹脂を含む請求項1~3のいずれか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 3, wherein the adhesive layer contains an acrylic resin.
  5.  請求項1~4のいずれか一項に記載のフィルムミラーが支持基材に貼付された、太陽熱発電用光反射装置。 A light reflecting device for solar power generation, wherein the film mirror according to any one of claims 1 to 4 is attached to a supporting substrate.
PCT/JP2014/076720 2013-10-29 2014-10-06 Film mirror and light reflection device for solar heat reflection using same WO2015064312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013224556A JP2016224076A (en) 2013-10-29 2013-10-29 Film mirror and solar heat reflecting light reflection device using the film mirror
JP2013-224556 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015064312A1 true WO2015064312A1 (en) 2015-05-07

Family

ID=53003923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076720 WO2015064312A1 (en) 2013-10-29 2014-10-06 Film mirror and light reflection device for solar heat reflection using same

Country Status (2)

Country Link
JP (1) JP2016224076A (en)
WO (1) WO2015064312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510972A (en) * 2016-03-11 2019-04-18 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Reflective laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832092B1 (en) * 2017-02-21 2018-02-23 나기혁 High brightness mirror sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297122A (en) * 2002-04-05 2003-10-17 Mitsui Chemicals Inc Reflector, side light type backlight device and liquid crystal display using it
JP2012004546A (en) * 2010-05-17 2012-01-05 Fujifilm Corp Polymer sheet for back sheet for solar cell, and solar cell module
JP2012008166A (en) * 2010-06-22 2012-01-12 Konica Minolta Opto Inc Film mirror for solar thermal power generation, method for manufacturing film mirror for solar thermal power generation, and reflector for solar thermal power generation
WO2012026311A1 (en) * 2010-08-24 2012-03-01 コニカミノルタオプト株式会社 Film mirror, method for manufacturing film mirror, and reflection device for use in solar thermal power generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297122A (en) * 2002-04-05 2003-10-17 Mitsui Chemicals Inc Reflector, side light type backlight device and liquid crystal display using it
JP2012004546A (en) * 2010-05-17 2012-01-05 Fujifilm Corp Polymer sheet for back sheet for solar cell, and solar cell module
JP2012008166A (en) * 2010-06-22 2012-01-12 Konica Minolta Opto Inc Film mirror for solar thermal power generation, method for manufacturing film mirror for solar thermal power generation, and reflector for solar thermal power generation
WO2012026311A1 (en) * 2010-08-24 2012-03-01 コニカミノルタオプト株式会社 Film mirror, method for manufacturing film mirror, and reflection device for use in solar thermal power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510972A (en) * 2016-03-11 2019-04-18 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Reflective laminate

Also Published As

Publication number Publication date
JP2016224076A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5741586B2 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
JP2006319250A (en) Back sheet for solar cell module and solar cell module using the same
KR20140027440A (en) Transparent conductive film and touch panel
WO2007037276A1 (en) Antireflection film
WO2015002053A1 (en) Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film
WO2011162154A1 (en) Reflective panel for solar power generation
WO2015198762A1 (en) Optical reflective film, method for producing optical reflective film, and optical reflector using same
WO2015064312A1 (en) Film mirror and light reflection device for solar heat reflection using same
JP7139741B2 (en) Protective film for optics
JP2015087625A (en) Reflector and manufacturing method therefor
WO2013141304A1 (en) Film mirror, and reflection device for solar power generation
JPWO2012057003A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP4056342B2 (en) Laminated film with reduced curl
WO2014061497A1 (en) Film mirror, and reflecting apparatus for solar thermal power generation
JP5736698B2 (en) Gas barrier hard coat film and method for producing the same
WO2015050217A1 (en) Manufacturing method for film mirror
JP2016170279A (en) Light reflection film, and light reflection body and sunlight reflection device having the same
WO2015122337A1 (en) Film mirror and reflection device for solar power generation
WO2013180202A1 (en) Functional film and method for producing functional film
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
JP2016200781A (en) Light reflecting film, and light reflecting body and sunlight reflecting device having the same
WO2015115278A1 (en) Film mirror and reflective device for solar thermal power generation
JP2016017995A (en) Light reflection film and reflector for solar thermal power generation using the same
JP2016009034A (en) Light reflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP