WO2015115278A1 - Film mirror and reflective device for solar thermal power generation - Google Patents

Film mirror and reflective device for solar thermal power generation Download PDF

Info

Publication number
WO2015115278A1
WO2015115278A1 PCT/JP2015/051583 JP2015051583W WO2015115278A1 WO 2015115278 A1 WO2015115278 A1 WO 2015115278A1 JP 2015051583 W JP2015051583 W JP 2015051583W WO 2015115278 A1 WO2015115278 A1 WO 2015115278A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
hard coat
film mirror
film
Prior art date
Application number
PCT/JP2015/051583
Other languages
French (fr)
Japanese (ja)
Inventor
治加 増田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015559889A priority Critical patent/JPWO2015115278A1/en
Publication of WO2015115278A1 publication Critical patent/WO2015115278A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror and a solar power generation reflector.
  • Solar energy can be considered as one of the stable and abundant natural energy as an alternative energy for fossil fuel.
  • the vast desert spreads near the equator which is called the world's sun belt, and the solar energy that falls down here is truly inexhaustible.
  • energy of as much as 7,000 GW can be obtained using only a few percent of the desert that extends to the southeastern United States.
  • using only a few percent of the Arabian peninsula and the deserts of North Africa can cover all the energy used by all centuries.
  • a glass mirror Since the light collecting device is exposed to ultraviolet rays, heat, wind and rain, sand storms, etc. by sunlight, conventionally, a glass mirror has been used for the light collecting device. Glass mirrors are highly durable to the environment, but they can be damaged during transportation, and the weight of the glass mirrors can increase the strength of the frame on which the mirrors are installed, which increases plant construction costs. was there.
  • International Publication No. 2011/096309 has a resin base material, a silver reflective layer thereon, and an outermost layer made of a material having a metalloxane skeleton on the outermost side on the light source side of the silver reflective layer.
  • a film mirror is disclosed in which the contact angle of water and the coefficient of dynamic friction of the outermost layer made of a material having a skeleton are in a specific range.
  • an object of the present invention is to provide a film mirror having excellent surface scratch resistance.
  • the present inventor conducted extensive research. As a result, it has been found that the above problem can be solved by a film mirror in which a hard coat adjacent layer having a Young's modulus in a specific range is provided adjacent to the outermost hard coat layer on the light incident side.
  • the invention has been completed.
  • the above-described problem of the present invention includes a resin base material and a light reflection layer, a hard coat layer located closest to the light incident side, and a hard coat adjacent layer provided adjacent to the hard coat layer, This is achieved by a film mirror in which the Young's modulus of the coat adjacent layer is 4.5 GPa or more.
  • FIG. 10 It is a schematic sectional drawing which shows an example of a structure of the film mirror of this invention, 10 is a film mirror, 11 is a hard-coat layer, 12 is a hard-coat adjacent layer, 13 is a resin base material, 14 Is a light reflection layer, 15 is a resin coat layer (corrosion prevention layer), and 16 is an adhesive layer.
  • the present invention has a resin base material and a light reflection layer, a hard coat layer located closest to the light incident side, and a hard coat adjacent layer provided adjacent to the hard coat layer, and the hard coat adjacent layer
  • This film mirror has a Young's modulus of 4.5 GPa or more.
  • the film mirror having such a configuration is excellent in surface scratch resistance (scratch resistance).
  • the film mirror Since the film mirror is installed outdoors, it is necessary to clean the surface with a strong force using a cleaning tool such as a brush in order to remove sand and dust. Due to the strong force at the time of cleaning, the light reflecting layer formed from silver, aluminum, etc. is locally deformed and the surface roughness is increased, and after cleaning, the reflected light is scattered and the regular reflectance is reduced, There is a problem that the light collection efficiency decreases.
  • a cleaning tool such as a brush
  • the film mirror of the present invention includes a hard coat adjacent layer having a Young's modulus of 4.5 GPa or more adjacent to the hard coat layer provided on the outermost surface on the light incident side.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • FIG. 1 is a diagram schematically showing a cross section of a film mirror according to an embodiment of the present invention.
  • the film mirror 10 shown in FIG. 1 has a hard coat layer 11, a hard coat adjacent layer 12, a resin base material 13, a light reflecting layer 14, a resin coat layer (corrosion prevention layer) 15, and an adhesive layer 16 in this order from the light incident side. Has been.
  • the total thickness of the film mirror according to the present invention is preferably from 80 to 300 ⁇ m, more preferably from 80 to 200 ⁇ m, and even more preferably from 80 to 170 ⁇ m from the viewpoints of prevention of bending, regular reflectance, handling properties, and the like.
  • the outermost surface layer on the light incident side of the film mirror, that is, the center line average roughness (Ra) of the hard coat layer is 3 nm or more and 20 nm or less, so that scattering of reflected light can be prevented and light collection efficiency is improved. It is preferable from the viewpoint.
  • the film containing conventionally well-known various resin can be used as a resin base material.
  • the resin include, for example, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene naphthalate, polyester such as modified polyester, polyethylene, polypropylene, cellulose, diacetylcellulose, triacetylcellulose, cellulose acetate propionate.
  • the resin base material may have a single layer structure or a multilayer structure of two or more layers.
  • the resin contained in each layer may be the same or different.
  • the resin substrate may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the resin substrate may be an unstretched film or a stretched film.
  • the resin substrate When the resin substrate is located farther from the light incident side than the light reflecting layer, it is difficult for ultraviolet rays to reach the resin substrate.
  • an ultraviolet absorber when an ultraviolet absorber is contained in a layer or the like closer to the light incident side than the resin base material, the ultraviolet light hardly reaches the resin base material. Therefore, the resin base material can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin base material.
  • the resin substrate may contain an ultraviolet absorber.
  • an ultraviolet absorber is not particularly limited, and examples of the organic type include ultraviolet absorbers such as benzophenone type, benzotriazole type, phenyl salicylate type, triazine type, benzoate type, etc. Examples thereof include titanium oxide, zinc oxide, cerium oxide, and iron oxide.
  • a polymeric ultraviolet absorber having a molecular weight of 1000 or more.
  • the molecular weight is 1000 or more and 3000 or less.
  • These ultraviolet absorbers can be used alone or in combination of two or more.
  • the compounds described in paragraphs “0038” to “0042” of JP2012-232538A can be used.
  • the thickness of the resin base material can be appropriately selected according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m.
  • the light reflecting layer according to the present invention is a layer made of metal or the like having a function of reflecting sunlight.
  • the surface reflectance of the light reflection layer is preferably 80% or more, more preferably 90% or more.
  • the light reflecting layer is preferably formed of a material containing at least one element selected from the element group consisting of aluminum, silver, chromium, copper, nickel, titanium, magnesium, rhodium, platinum and gold.
  • aluminum or silver is preferably the main component from the viewpoint of reflectance, corrosion resistance, etc., more preferably aluminum or silver, and particularly preferably silver.
  • Two or more such metal thin films may be formed. Further, a layer made of a metal oxide such as SiO 2 and TiO 2 may be provided in this order on the light reflecting layer to further improve the reflectance.
  • a metal oxide such as SiO 2 and TiO 2
  • a wet method or a dry method can be used as a method for forming the light reflecting layer according to the present invention.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • Etc As a manufacturing method of the film mirror of this invention, it is preferable to form a light reflection layer by a vapor deposition method.
  • the light reflecting layer is preferably formed on a resin film.
  • the resin film include, for example, polyesters such as polycarbonate, polyarylate, polysulfone, polyethersulfone, polyethylene terephthalate, and polyethylene naphthalate, polyethylene, polypropylene, cellulose, diacetylcellulose, triacetylcellulose, and cellulose acetate propio.
  • the resin contained in each layer may be the same or different.
  • the resin film may be an unstretched film or a stretched film.
  • the resin film may be a resin substrate constituting the film mirror of the present invention. That is, a light reflection layer may be formed on the resin base material described above by a dry method to form the resin base material and the light reflection layer according to the present invention.
  • the thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • the light reflecting layer is made of silver
  • the light reflecting layer is formed by heating and baking a coating film containing a silver complex compound from which a ligand can be vaporized / desorbed. May be.
  • “Silver complex compound having a ligand that can be vaporized / desorbed” has a ligand for stably dissolving silver in a solution, but the ligand is removed by removing the solvent and heating and firing. Is a silver complex compound that can be thermally decomposed into CO 2 or a low molecular weight amine compound, vaporized / desorbed, and only metallic silver remains.
  • the silver complex compound is contained in the silver coating liquid composition, and a coating film containing the complex according to the present invention is formed on the resin film by coating the silver complex compound. That is, it is preferable to form a silver reflective layer by forming a coating film on a resin film using a silver complex compound and then baking the coating film at a temperature in the range of 80 to 250 ° C. More preferably, it is within the range of 100 to 220 ° C, and further preferably within the range of 120 to 200 ° C. There is no restriction
  • the light reflecting layer may be on the light incident side with respect to the resin base material, or may be on the side opposite to the light incident side.
  • the hard coat layer is provided on the outermost surface on the light incident side for the purpose of preventing the film mirror surface from being damaged or adhering to the surface.
  • the thickness of the hard coat layer is preferably 0.05 to 10 ⁇ m, preferably 1 to 10 ⁇ m, from the viewpoint of preventing the film mirror from warping while obtaining sufficient scratch resistance. More preferred.
  • the material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained.
  • resin materials such as acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, and silicone resin; inorganic such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, and polysilazane It can be composed of materials and the like.
  • silicone resin and acrylic resin are preferable in terms of hardness and durability.
  • what consists of an active energy ray hardening-type acrylic resin or a thermosetting type acrylic resin is preferable at the point of sclerosis
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • the active energy ray curable acrylic resin and the thermosetting acrylic resin are included in the hard coat layer in the form of a cured product after the curing treatment.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • polyfunctional acrylic cured paints are manufactured by Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” Series, etc.), Shin-Nakamura Chemical Co., Ltd .; (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “UNIDIC®” series, etc.), Toagosei Co., Ltd. (trade name) "Aronix (registered trademark)” series, etc.), manufactured by NOF Corporation; (trade name “Blemmer (registered trademark)” series, etc.), Nippon Kayaku Co., Ltd. (trade name "KAYARAD (registered trademark)” series, etc.) , Kyoeisha Chemical Co., Ltd .; (product name “light ester” series, “light acrylate” series, etc.) can be used.
  • thermosetting resin a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like
  • a thermosetting silicone hard coat material composed of a partially hydrolyzed oligomer of an alkoxysilane compound
  • a hard coat material composed of a thermosetting polysiloxane resin, an ultraviolet curable acrylic hard coat material composed of an acrylic compound having an unsaturated group, or a thermosetting inorganic material is preferred.
  • materials that can be used for the hard coat layer an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No.
  • Resin film used Japanese Patent Laid-Open No. 2004-142161
  • photocatalytic oxide-containing silica film such as titanium oxide
  • photocatalytic film such as alumina, titanium oxide or niobium oxide having a high aspect ratio
  • Photocatalyst-containing fluororesin coating material Pierex Technologies Co., Ltd.
  • organic / inorganic polysilazane film organic / inorganic polysilazane using a hydrophilization promoter
  • AZ Electronics Materials Co., Ltd. etc. it can.
  • Resins that are cured by irradiation with electron beams or ultraviolet rays or thermosetting resins are included in the hard coat layer in the form of a cured product after being subjected to a curing treatment.
  • various additives can be further blended as necessary within the range where the effects of the present invention are not impaired.
  • stabilizers such as antioxidants, light stabilizers, ultraviolet absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
  • the dynamic friction coefficient of the hard coat layer is preferably 0.4 or less, and more preferably 0.25 or less. Within this range, the scratch resistance of the film mirror surface is further improved.
  • the dynamic friction coefficient can be controlled by controlling the type of material for forming the hard coat layer, the addition of a surface modifier or particles to the hard coat adjacent layer described later, and the like. Moreover, this dynamic friction coefficient can be measured by the method as described in an Example.
  • the center line average roughness (Ra) of the hard coat layer is preferably 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency.
  • the centerline average roughness (Ra) can be determined by a measurement method based on JIS B0601: 1982.
  • the film mirror of the present invention has a hard coat adjacent layer adjacent to the hard coat layer on the side opposite to the light incident side of the hard coat layer.
  • the Young's modulus of the hard coat adjacent layer is 4 GPa or more. By providing the hard coat adjacent layer having such a Young's modulus, the film mirror of the present invention has excellent scratch resistance.
  • the material constituting the hard coat adjacent layer is not particularly limited, but preferably includes a resin material having optical transparency and fine particles for adjusting Young's modulus.
  • the resin material used for the hard coat adjacent layer is not particularly limited, and various conventionally known synthetic resins that can maintain transparency when a thin film is formed can be used.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene esters, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose esters such as cellulose acetate phthalate, cellulose nitrate, or the like
  • These resin materials can be used alone or in combination of two or more. These resin materials may be commercially available products or synthetic products. Examples of commercially available products include EMB457 (manufactured by Mitsubishi Rayon Co., Ltd.), Arton (registered trademark, manufactured by JSR Corporation), Apel (registered trademark, manufactured by Mitsui Chemicals, Inc.), and the like.
  • (meth) acrylic resin is suitably used as the material for forming the hard coat adjacent layer.
  • the hard coat adjacent layer contains a (meth) acrylic resin
  • a plasticizer may be included for the purpose of obtaining a hard coat adjacent layer that is not easily damaged.
  • the plasticizer include acrylic rubber, butyl rubber and butyl acrylate.
  • the addition amount of the plasticizer is not particularly limited, but is preferably about 10 to 25% by mass with respect to the resin material in consideration of desired flexibility and the like.
  • the hard coat adjacent layer is formed mainly of a methacrylic resin.
  • the methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester, 50% by mass or more of the methacrylic acid ester and 50% by mass or less of the other monomers.
  • the copolymer may be used.
  • the methacrylic acid ester an alkyl ester of methacrylic acid is usually used.
  • a particularly preferred methacrylic resin is polymethyl methacrylate (PMMA) resin.
  • More preferable monomer composition of the methacrylic resin is 50 to 100% by mass of the alkyl methacrylate and 0 to 50% by mass of the acrylic acid alkyl ester based on all monomers, and 0 to 50% of the other monomers. 49% by mass, more preferably 50 to 100% by mass of alkyl methacrylate, 0 to 50% by mass of acrylic ester, and 0 to 49% by mass of other monomers.
  • examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like.
  • the alkyl group in the ester moiety usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. Of these, methyl methacrylate is preferably used.
  • alkyl acrylate esters examples include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like.
  • the alkyl group in the ester moiety usually has 1 to 8 carbon atoms, preferably 1 carbon atom. ⁇ 4.
  • the monomer other than methacrylic acid alkyl ester and acrylic acid alkyl ester may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule.
  • a monofunctional monomer is preferably used.
  • this monofunctional monomer include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene, and alkenyl cyanide compounds such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon.
  • Alkenyl esters of unsaturated carboxylic acids such as allyl acid
  • polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate
  • aromatic polyalkenyl compounds such as divinylbenzene, etc.
  • methacrylic acid alkyl ester acrylic acid alkyl ester, and monomers other than these, respectively, you may use those 2 or more types as needed.
  • the glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
  • the methacrylic resin a commercially available product or a synthetic product may be used.
  • the monomer component can be obtained by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization, or bulk polymerization.
  • a chain transfer agent used during the polymerization.
  • the amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
  • the content of the resin material in the hard coat adjacent layer is preferably 50 to 90% by mass with respect to the entire hard coat adjacent layer.
  • the hard coat adjacent layer preferably contains fine particles for the purpose of adjusting the Young's modulus within the range of the present invention.
  • Examples of the fine particles contained in the hard coat adjacent layer include metal powders such as gold, silver, nickel, copper, lead, aluminum, iron powder, iron oxide, and iron sand; aluminum oxide, zinc oxide, magnesium oxide, silicon oxide (silica) ), Silicate, aluminum nitride, boron nitride, silicon nitride, aluminum hydroxide, magnesium hydroxide, metal compound particles with aluminum oxynitride; silicon carbide, tungsten carbide, ceria, titania, zirconia, graphene, diamond-like carbon, Carbon-based materials such as diamond fine particles, nanodiamonds, and carbon nanotubes: particles made of polyolefin resins such as polyethylene and polypropylene, (meth) acrylic resins such as polymethyl methacrylate, resins such as epoxy resins and polyimide resins; . These fine particles can be used alone or in combination of two or more. Among these, nanodiamond, silica, aluminum, or acrylic resin particles are preferable.
  • the content of the fine particles in the hard coat adjacent layer is not particularly limited as long as the Young's modulus can be controlled within the range of the present invention.
  • the hard coat adjacent layer may contain an ultraviolet absorber in order to prevent deterioration due to ultraviolet rays.
  • an ultraviolet absorber such as thiazolidone, benzotriazole, acrylonitrile, benzophenone, aminobutadiene, triazine, phenyl salicylate, benzoate, etc.
  • fine powder type ultraviolet blocking agents such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide and the like can be mentioned, and organic ultraviolet absorbers are particularly preferable.
  • the hard coat adjacent layer may contain an antioxidant in order to prevent deterioration.
  • the antioxidant is not particularly limited, and examples thereof include phenolic antioxidants, hindered amine antioxidants, thiol antioxidants, and phosphite antioxidants. More specifically, compounds described in paragraphs “0048” to “0052” of JP2012-232538A can be used.
  • the antioxidant and the light stabilizer may be used in combination.
  • the light stabilizer include nickel-based ultraviolet light stabilizers. More specifically, compounds described in paragraph “0053” of JP2012-232538A can be used.
  • an antistatic agent to the hard coat adjacent layer to impart antistatic performance.
  • the hard coat adjacent layer may contain a surface modifier.
  • the surface modifier By including the surface modifier, the dynamic friction coefficient of the adjacent hard coat layer can be reduced.
  • a commercially available product may be used, or a synthetic product may be used. Examples of commercially available products include, for example, fluorine-based products such as MegaFac (registered trademark) RS-76E, MegaFac (registered trademark) F-552, MegaFac (registered trademark) F-554 (above, manufactured by DIC Corporation), etc. Examples thereof include silicon surface modifiers such as surface modifiers, BYK (registered trademark) -370, BYK (registered trademark) -377 (manufactured by BYK Japan KK). These surface modifiers can be used alone or in combination of two or more.
  • the addition amount of the surface modifier is not particularly limited, but is preferably 0.03 to 1% by mass with respect to the resin material contained in the hard coat adjacent layer.
  • the hard coat adjacent layer may contain a curing agent such as 1,6-hexamethylene isocyanate or tolylene diisocyanate. These curing agents can be used alone or in admixture of two or more.
  • the addition amount of the curing agent is not particularly limited, but is preferably 1 to 12% by mass with respect to the resin material contained in the hard coat adjacent layer.
  • the hard coat adjacent layer is in a form including a cured product of the resin material.
  • additives such as a surfactant, a leveling agent and an antistatic agent can be added to the hard coat adjacent layer as long as the effects of the present invention are not impaired.
  • the method for forming the hard coat adjacent layer is not particularly limited. For example, after preparing the coating liquid for forming the hard coat adjacent layer by mixing the above resin material, fine particles and other components as required in an organic solvent. And a method of applying and drying the coating solution. As a specific method of coating, various conventionally used coating methods such as spray coating, spin coating, bar coating, gravure coating, reverse coating, and die coating can be used.
  • organic solvent used in the coating solution examples include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl lactate, ethyl lactate, butyl lactate, 3- Esters such as methyl methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl acetoacetate and ethyl acetoacetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone Aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; Aliphatic hydrocarbons such as hexane, cyclohexane and octan
  • the smoothness of the hard coat adjacent layer can be improved.
  • the center line average roughness (Ra) of the hard coat adjacent layer formed by the coating method is preferably 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, it can be considered that the hard coat adjacent layer, not the hard coat adjacent layer produced by melt film formation, is provided by coating.
  • the thickness (dry film thickness) of the hard coat adjacent layer is not particularly limited, but is preferably 5 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, and further preferably 20 to 80 ⁇ m. If it is such thickness, sufficient translucency can be ensured, and a solvent can fully evaporate by drying at the time of film formation, and it is preferable from a viewpoint of productivity.
  • the Young's modulus of the hard coat adjacent layer is 4.5 GPa or more. When the Young's modulus is less than 4.5 GPa, the scratch resistance of the film mirror surface is lowered.
  • the Young's modulus is preferably 20 GPa or less, and more preferably 4.5 GPa or more and 7 GPa or less.
  • the Young's modulus of the hard coat adjacent layer can be controlled by controlling the type of resin material, the type and amount of fine particles and surface modifier.
  • the Young's modulus of the hard coat adjacent layer can be measured by the method described in the examples.
  • the film mirror of the present invention may have various layers such as an adhesive layer, a resin coat layer, a gas barrier layer, an anchor layer, an adhesive layer, and a release layer as necessary.
  • these layers will be described.
  • the adhesive layer is not particularly limited as long as it has a function of improving the adhesion between the layers. Adhesion or adhesion may be used. Preferably, it is a layer for adhering the hard coat layer and the resin coat layer. Adhesive layer has adhesion to adhere layers, heat resistance that can withstand heat when forming light reflection layer by vacuum deposition method, etc., and smoothness to bring out high reflection performance inherent to light reflection layer It is preferable to have.
  • the adhesive layer may consist of only one layer or may consist of a plurality of layers.
  • the thickness of the adhesive layer is preferably 1 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
  • the material is not particularly limited, and a single material such as polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc.
  • these mixed resins can be used.
  • a mixed resin of a polyester resin and a melamine resin or a mixed resin of a polyester resin and a urethane resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is mixed such that an isocyanate is mixed with an acrylic resin. This is more preferable.
  • a method for forming the adhesive layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the adhesive layer when it is made of a metal oxide, it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • the film mirror of the present invention may have a resin coat layer (corrosion prevention layer) so as to be adjacent to the light reflection layer.
  • the resin coat layer preferably contains a corrosion inhibitor so as to prevent corrosion of the light reflecting layer.
  • the resin coat layer may consist of only one layer or a plurality of layers.
  • the thickness of the resin coat layer is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • binder for the resin coating layer examples include cellulose esters, polycarbonates, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyethylene naphthalate and other polyesters, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, Cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, syndiotactic polystyrene, polycarbonate, polynorbornene, polymethylpentene, polyether ketone, polyether ketone imide, polyamide Fluorine resin, nylon, polymethyl methacrylate, or acrylic resin It can gel. Among these, an acrylic resin is preferable. Further, the resin coat layer may contain a curing agent such as 2.4-tolylene diisocyanate. When the curing agent is included, the resin coat layer includes a cured product of the cu
  • corrosion inhibitor As a corrosion inhibitor, it is preferable to have an adsorptive group with respect to the metal which comprises a light reflection layer.
  • corrosion refers to a phenomenon in which a metal is chemically or electrochemically eroded or deteriorated in material by an environmental substance surrounding it (see JIS Z0103: 2004).
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
  • Examples of the corrosion inhibitor having an adsorptive group for metals include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and imidazole rings. It is preferable to be selected from at least one of a compound having an indazole ring, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene compound, or a mixture of two or more thereof.
  • the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. More specifically, the corrosion inhibitors described in paragraphs “0063” to “0072” of JP2012-232538A can be used.
  • a gas barrier layer may be provided on the light incident side of the silver reflective layer.
  • the gas barrier layer is intended to prevent deterioration of the humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but it has special functions and applications. As long as it has the function of preventing deterioration, a gas barrier layer of various modes can be provided.
  • the moisture-proof barrier layer, 40 ° C., the water vapor permeability at 90% RH is preferably not more than 1g / m 2 ⁇ day, more preferably at most 0.5g / m 2 ⁇ day, 0 More preferably, it is 2 g / m 2 ⁇ day or less.
  • the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and 90% RH.
  • Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as a vacuum deposition method, a sputtering method, an ion beam assist method, a chemical vapor deposition method, etc., but a precursor of an inorganic oxide by a sol-gel method.
  • a method of forming an inorganic oxide film by applying a heat treatment and / or ultraviolet irradiation treatment to the coating film after coating the body is also preferably used.
  • the inorganic oxide is formed by local heating from a sol using an organometallic compound as a raw material.
  • an organometallic compound for example, oxides of elements such as silicon, aluminum, zirconium, titanium, tantalum, zinc, barium, indium, tin, and niobium contained in the organometallic compound, such as silicon oxide, aluminum oxide, zirconium oxide, etc. is there. Of these, silicon oxide is preferred.
  • the inorganic oxide As a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method.
  • the sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide
  • the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide.
  • the compounds and methods described in paragraphs “0174” to “0191” of JP2012-232538A can be appropriately employed.
  • the anchor layer is made of a resin, and is a layer provided for closely attaching the resin base material and the light reflection layer, or the support base material (resin film) of the light reflection layer and the light reflection layer. Therefore, the anchor layer has an adhesion property for closely adhering the resin base material (support base material) and the light reflection layer, heat resistance that can withstand heat when the light reflection layer is formed by a vacuum deposition method, and the light reflection layer. It is preferable to have smoothness to bring out the high reflection performance inherent in the.
  • the resin used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness.
  • polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, Polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc. can be used alone or in combination.
  • a mixed resin of a polyester resin and a melamine resin or a mixed resin of a polyester resin and a urethane resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
  • curing agent is mixed, an anchor layer becomes a form containing the hardened
  • the thickness of the anchor layer is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 2 ⁇ m.
  • the anchor layer can contain the corrosion inhibitor described in the above section [Resin coat layer].
  • a method for forming the anchor layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the adhesive layer of a film mirror is a layer for attaching a film mirror to a support by the adhesive layer to form a solar power generation reflective device.
  • the film mirror may have a release layer on the side opposite to the light incident side of the adhesive layer.
  • the adhesive layer is not particularly limited, and for example, any of a dry laminate agent, a wet laminate agent, an adhesive agent, a heat seal agent, a hot melt agent, and the like is used.
  • the adhesive include polyester resin, polyurethane resin, polyvinyl acetate resin, acrylic resin, and nitrile rubber.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 ⁇ m from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the film mirror of the present invention may have a release layer on the side opposite to the light incident side of the adhesive layer.
  • a film mirror when a film mirror is shipped, it is shipped with the release layer attached to the adhesive layer, the film mirror having the adhesive layer is peeled off from the release layer, and is bonded to another substrate to form a solar reflective mirror. be able to.
  • the release layer is not particularly limited as long as it can provide protection of the light reflecting layer.
  • a resin film or sheet that has been subjected to surface treatment is used.
  • the thickness of the release layer is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • the film mirror may be bonded after providing a recess or projection before bonding these release layers to the film mirror, or may be molded to have a recess or projection after bonding, You may simultaneously shape
  • the solar power generation reflecting device of the present invention has the film mirror of the present invention and a self-supporting support, and the film mirror is bonded to the support through an adhesive layer. That is, this invention also provides the solar power generation reflective apparatus which has the film mirror of this invention, and a support body.
  • the self-supporting support preferably has one of the following configurations A and B.
  • A It has a pair of metal flat plates and an intermediate layer provided between the metal flat plates, and the intermediate layer is a layer having a hollow structure or a layer made of a resin material.
  • a resin material layer having a hollow structure A resin material layer having a hollow structure.
  • self-supporting means supporting the opposite edge portions when cut to a size used as a support for a solar power generation reflector.
  • the support body of the solar power generation reflection device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflection device, and the holding member for holding the solar power generation reflection device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device, and it is possible to suppress power consumption during solar tracking.
  • the self-supporting support is composed of a pair of metal flat plates and an intermediate layer provided between the metal flat plates, and the intermediate layer is formed of a layer having a hollow structure or a resin material.
  • the intermediate layer is a layer having a hollow structure or a layer made of a resin material, so that the weight of the support can be significantly reduced compared to the case where the support is made of only a metal flat plate.
  • the rigidity can be increased by the relatively lightweight intermediate layer, it is possible to provide a lightweight and self-supporting support. Even when a layer made of a resin material is used as the intermediate layer, it is possible to further reduce the weight by using a resin material layer having a hollow structure.
  • the intermediate layer when the intermediate layer has a hollow structure, the intermediate layer functions as a heat insulating material, so that the temperature change of the metal flat plate on the back side is prevented from being transmitted to the film mirror, preventing condensation and deterioration due to heat. Can be suppressed.
  • metal flat plate forming the surface layer of the configuration A
  • steel plate copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc.
  • a high metal material can be preferably used.
  • the intermediate layer of the configuration A has a hollow structure
  • a material such as a metal, an inorganic material (glass or the like), or a resin
  • a hollow structure a cellular structure made of foamed resin, a three-dimensional structure (honeycomb structure or the like) having a wall surface made of metal, an inorganic material or a resin material, a resin material to which hollow fine particles are added, or the like can be used.
  • the cellular structure of the foamed resin refers to a gas that is finely dispersed in the resin material and formed into a foamed or porous shape.
  • the material a known foamed resin material can be used, but a polyolefin resin, Polyurethane, polyethylene, polystyrene and the like are preferably used.
  • the honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls.
  • the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene.
  • Polyolefin eg, polypropylene, high density polyethylene
  • polyamide polystyrene, polyvinyl chloride, polyacrylonitrile, acrylic derivatives such as ethylene-ethyl acrylate copolymer, polycarbonate, vinyl acetate copolymer such as ethylene-vinyl acetate copolymer
  • Polymers, ionomers, terpolymers such as ethylene-propylene-dienes, and thermoplastic resins such as ABS resins, polyolefin oxides, and polyacetals are preferably used. In addition, these may be used individually by 1 type, or may mix and use 2 or more types.
  • thermoplastic resins polyolefin resins or resins mainly composed of polyolefin resins are preferable, and polypropylene resins or resins mainly composed of polypropylene resins are more preferable because of excellent balance between mechanical strength and moldability.
  • the resin material may contain an additive.
  • the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents. An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
  • the intermediate layer can be a layer made of a resin plate.
  • the resin material constituting the intermediate layer is preferably the same as the material constituting the support for the film mirror described above. Can do.
  • the intermediate layer need not be provided in all regions of the substrate, and may be provided in a part of the region as long as the flatness of the metal flat plate and the self-supporting property as the support can be ensured.
  • the intermediate layer has the above-described three-dimensional structure, it is preferable to provide the three-dimensional structure in a region of about 90 to 95% with respect to the area of the metal flat plate. It is preferable to provide it.
  • the self-supporting support may be a layer made of a resin material having a hollow structure.
  • the support is made of a resin-only layer, the thickness required to obtain rigidity sufficient to provide self-supporting properties increases, and as a result, the mass of the support becomes heavy. By providing the weight, it is possible to reduce the weight while providing a self-supporting property.
  • a layer made of a resin material having a hollow structure a resin sheet having a smooth surface is provided as a surface layer, and the resin material having a hollow structure is used as an intermediate layer from the viewpoint of increasing the regular reflectance of the film mirror. preferable.
  • the same material as that constituting the resin substrate of the above-mentioned film mirror can be preferably used, and as the resin material constituting the hollow structure, the above-mentioned foamed material or three-dimensional structure can be used.
  • the same resin material as that used can be preferably used.
  • the solar power generation reflecting device may have a holding member.
  • the holding member preferably holds the film mirror and the support in a state where the sun can be tracked.
  • the holding member has a configuration for holding the film mirror and the support in a state where the sun can be tracked.
  • it may be driven manually, or a separate drive device may be provided to automatically track the sun. It is good also as a structure.
  • Example 1 A biaxially stretched polyester film (polyethylene terephthalate film (PET), thickness 25 ⁇ m) was used as the resin substrate.
  • PET polyethylene terephthalate film
  • PMMA polymethyl methacrylate
  • EMB457 polymethyl methacrylate
  • Acrylic rubber (Delpet SRB215, manufactured by Asahi Kasei Chemicals Corporation)
  • 1,6-hexamethylene diisocyanate As a particle for adjusting the Young's modulus so that the solid content ratio is 17: 3: 2 (mass ratio), “Nanoamand” which is nanodiamond made by Nanocarbon Laboratory Co., Ltd. is applied to PMMA resin.
  • the obtained coating solution is coated on one surface of the PET film by a bar coating method, and cured by drying at 80 ° C. for 1 minute, and has a thickness of 25 ⁇ m including a cured product of PMMA resin and acrylic rubber. A hard coat adjacent layer was formed.
  • an acrylic silicone-based thermosetting resin Surcoat BP-16N (manufactured by Kinken Co., Ltd., 45 mass% methanol solution) is added with 1-propanol to a solid content of 30 mass%.
  • a coating solution was prepared as described above. This coating solution is coated on the hard coat adjacent layer by the bar coating method, and is cured by drying at 80 ° C. for 1 minute, and a thickness of 3 ⁇ m including the cured product of the acrylic silicone thermosetting resin is applied. A hard coat layer was formed.
  • a light reflecting layer made of aluminum having a thickness of 100 nm was formed on the opposite surface of the resin base material on which the hard coat adjacent layer was formed by a vacuum deposition method.
  • 2-Mercaptobenzothiazole as an aluminum corrosion inhibitor is 10% by mass with respect to the above mixture of polyester resin and 2.4-tolylene diisocyanate mixed at a mass ratio of 10: 2.
  • a coating solution for forming a corrosion prevention layer was prepared such that the solid content concentration in methyl ethyl ketone was 5% by mass. This coating solution is coated on the light reflecting layer opposite to the side where the resin substrate of the light reflecting layer is provided by the gravure coating method, and cured at 80 ° C. for 1 minute to perform a curing treatment. A corrosion prevention layer having a thickness of 3 ⁇ m including the cured product was formed.
  • Example 2 A film mirror was produced in the same manner as in Example 1 except that the amount of nanodiamond added to the hard coat adjacent layer forming coating solution was changed to 10% by mass.
  • Example 3 The particles added to the coating liquid for forming the hard coat adjacent layer were changed to 10% by mass of silica particles (Fuji Silysia Chemical Co., Ltd., Silicia (registered trademark) 470) with respect to the PMMA resin. Except that 0.05% by mass of Megafac (registered trademark) RS-76E, a UV reaction type surface modifier manufactured by DIC Corporation, was added to the PMMA resin in the coating solution for formation, Example 1 A film mirror was produced in the same manner.
  • Example 4 A film mirror was produced in the same manner as in Example 3 except that the amount of addition of Megafac (registered trademark) RS-76E was changed to 0.1% by mass.
  • Example 5 Except that the particles added to the hard coat adjacent layer forming coating solution were changed to 8 mass% aluminum particles (Minaluco's atomized aluminum powder 350F) with respect to the PMMA resin, the same as in Example 4. A film mirror was prepared.
  • Example 6 (Example 6) Implementation was performed except that the amount of aluminum particles added in the hard coat adjacent layer forming coating solution was 10% by mass and the light reflecting layer was changed to a layer made of 100 nm thick silver formed by vacuum deposition. A film mirror was produced in the same manner as in Example 5.
  • Example 1 A film mirror was prepared in the same manner as in Example 1 except that the Young's modulus adjusting particles were not added to the hard coat adjacent layer forming coating solution.
  • Comparative Example 2 A film mirror was produced in the same manner as in Comparative Example 1, except that 0.075% by mass of Megafac (registered trademark) RS-76E was added to the hard coat adjacent layer forming coating solution with respect to the PMMA resin.
  • Megafac registered trademark
  • Comparative Example 3 A film mirror was produced in the same manner as in Comparative Example 2, except that the amount of MegaFac (registered trademark) RS-76E was changed to 0.1% by mass.
  • Comparative Example 4 The same as Comparative Example 2 except that 6% by mass of aluminum particles (manufactured by Minalco Co., Ltd., atomized aluminum powder 350F) as Young's modulus adjusting particles were added to the hard coat adjacent layer forming coating solution. Thus, a film mirror was produced.
  • the obtained film mirror was evaluated by the following dynamic friction coefficient measurement, initial reflectance measurement, and post-scratch reflectance measurement.
  • Table 1 shows the configurations and evaluation results of the film mirrors of Examples and Comparative Examples.
  • the “ ⁇ reflectance” in Table 1 indicates the difference between the reflectance after scratch and the initial reflectance. The closer to 0, the smaller the decrease in regular reflectance after surface scratching, and the better the scratch resistance. Expresses superiority.
  • the film mirror of the present invention has little decrease in regular reflectance after surface scratching and is excellent in surface scratch resistance.

Abstract

The present invention provides a film mirror which has a surface having excellent scratch resistance. The present invention is a film mirror which comprises a resin base, a light-reflecting layer, a hard coat layer that is positioned closest to the light incident side, and a hard-coat-adjacent layer that is arranged adjacent to the hard coat layer. The hard-coat-adjacent layer has a Young's modulus of 4.5 GPa or more.

Description

フィルムミラーおよび太陽熱発電用反射装置Reflector for film mirror and solar power generation
 本発明は、フィルムミラーおよび太陽熱発電用反射装置に関する。 The present invention relates to a film mirror and a solar power generation reflector.
 近年の地球温暖化は一層深刻な事態に発展している。その主原因は、化石燃料から放出された大気中の二酸化炭素(CO)であると考えられている。したがって近い将来、化石燃料をこのまま使い続けることは許されなくなると考えられる。また、他方で、中国、インド、ブラジル等のいわゆる発展途上国の急激な経済成長に伴うエネルギー需用の増大により、かつては無尽蔵と考えられていた石油、天然ガスの枯渇が現実味を帯びてきている。 In recent years, global warming has developed into a more serious situation. The main cause is thought to be atmospheric carbon dioxide (CO 2 ) released from fossil fuels. Therefore, it is considered that it will not be allowed to continue using fossil fuels in the near future. On the other hand, the depletion of oil and natural gas, once thought to be inexhaustible, has become a reality due to the increase in energy demand accompanying the rapid economic growth of so-called developing countries such as China, India and Brazil. Yes.
 化石燃料の代替エネルギーとして、安定しておりかつ量の多い自然エネルギーの一つとして、太陽エネルギーが考えられる。特に世界のサンベルト地帯と呼ばれている赤道近くには、広大な砂漠が広がっており、ここに降りそそぐ太陽エネルギーは正に無尽蔵と言える。これに関して、米国南西部に拡がる砂漠のわずか数%を使えば、実に7,000GWものエネルギーを得ることが可能であると考えられている。また、アラビア半島、北アフリカの砂漠のわずか数%を使えば、全人類の使うエネルギーを全て賄うことができるとも考えられている。 Solar energy can be considered as one of the stable and abundant natural energy as an alternative energy for fossil fuel. In particular, the vast desert spreads near the equator, which is called the world's sun belt, and the solar energy that falls down here is truly inexhaustible. In this regard, it is believed that energy of as much as 7,000 GW can be obtained using only a few percent of the desert that extends to the southwestern United States. It is also believed that using only a few percent of the Arabian peninsula and the deserts of North Africa can cover all the energy used by all mankind.
 このように、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを社会活動の中で活用するためには、(1)太陽エネルギーのエネルギー密度が低いこと、および(2)太陽エネルギーの貯蔵および移送が困難であることが、問題となると考えられる。これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な集光装置で太陽エネルギーを集めることによって解決することが提案されている。 Thus, although solar energy is a very powerful alternative energy, in order to utilize it in social activities, (1) low energy density of solar energy and (2) storage of solar energy And the difficulty of transport is considered a problem. On the other hand, it has been proposed to solve the problem that the energy density of solar energy is low by collecting solar energy with a huge concentrator.
 当該集光装置は太陽光による紫外線や熱、風雨、砂嵐などに晒されるため、従来、当該集光装置にはガラス製ミラーが用いられてきた。ガラス製ミラーは環境に対する耐久性が高い反面、輸送時に破損するという問題や、重量が重いことからミラーを設置する架台の強度を持たせるということを行うために、プラントの建設費がかさむといった問題があった。 Since the light collecting device is exposed to ultraviolet rays, heat, wind and rain, sand storms, etc. by sunlight, conventionally, a glass mirror has been used for the light collecting device. Glass mirrors are highly durable to the environment, but they can be damaged during transportation, and the weight of the glass mirrors can increase the strength of the frame on which the mirrors are installed, which increases plant construction costs. was there.
 一方、樹脂製反射シート(フィルムミラー)は液晶ディスプレイのバックライトユニットの反射シートとして実用化されており、太陽光反射ミラーに適用すれば、ガラス製ミラーの欠点である外圧による破損や質量の重さといった問題が解消できる。 On the other hand, resin-made reflective sheets (film mirrors) have been put to practical use as reflective sheets for backlight units of liquid crystal displays. When applied to solar reflective mirrors, damage due to external pressure and the heavy weight of glass mirrors are disadvantages. This problem can be solved.
 国際公開第2011/096309号には、樹脂基材と、その上に銀反射層、および該銀反射層よりも光源側の最外側にメタロキサン骨格を有する材料よりなる最表層を有し、該メタロキサン骨格を有する材料よりなる最表層の水の接触角および動摩擦係数が特定の範囲にあるフィルムミラーが開示されている。 International Publication No. 2011/096309 has a resin base material, a silver reflective layer thereon, and an outermost layer made of a material having a metalloxane skeleton on the outermost side on the light source side of the silver reflective layer. A film mirror is disclosed in which the contact angle of water and the coefficient of dynamic friction of the outermost layer made of a material having a skeleton are in a specific range.
 フィルムミラーは屋外に設置されることから、砂や埃を取り除くために、表面をブラシ等の清掃用具で洗浄する必要がある。しかしながら、国際公開第2011/096309号に記載のフィルムミラーでは、洗浄時の表面の耐擦傷性が十分ではなく、洗浄後正反射率が低下する現象が見られるため、表面の耐擦傷性のより一層の向上が求められていた。 Since the film mirror is installed outdoors, it is necessary to clean the surface with a cleaning tool such as a brush in order to remove sand and dust. However, in the film mirror described in International Publication No. 2011/096309, the scratch resistance of the surface at the time of cleaning is not sufficient, and the phenomenon that the regular reflectance after the cleaning is decreased is observed. There was a need for further improvement.
 そこで、本発明は、表面の耐擦傷性に優れるフィルムミラーを提供することを目的とする。 Therefore, an object of the present invention is to provide a film mirror having excellent surface scratch resistance.
 本発明者は鋭意研究を行った。その結果、ヤング率を特定の範囲としたハードコート隣接層を、光入射側の最外層にあるハードコート層に隣接するようにして設けたフィルムミラーにより、上記課題が解決することを見出し、本発明を完成するに至った。 The present inventor conducted extensive research. As a result, it has been found that the above problem can be solved by a film mirror in which a hard coat adjacent layer having a Young's modulus in a specific range is provided adjacent to the outermost hard coat layer on the light incident side. The invention has been completed.
 本発明の上記課題は、樹脂基材および光反射層と、最も光入射側に位置するハードコート層と、前記ハードコート層に隣接して設けられるハードコート隣接層と、を有し、前記ハードコート隣接層のヤング率が4.5GPa以上である、フィルムミラーにより達成される。 The above-described problem of the present invention includes a resin base material and a light reflection layer, a hard coat layer located closest to the light incident side, and a hard coat adjacent layer provided adjacent to the hard coat layer, This is achieved by a film mirror in which the Young's modulus of the coat adjacent layer is 4.5 GPa or more.
本発明のフィルムミラーの構成の一例を示す概略断面図であり、10はフィルムミラーであり、11はハードコート層であり、12はハードコート隣接層であり、13は樹脂基材であり、14は光反射層であり、15は樹脂コート層(腐食防止層)であり、16は粘着層である。It is a schematic sectional drawing which shows an example of a structure of the film mirror of this invention, 10 is a film mirror, 11 is a hard-coat layer, 12 is a hard-coat adjacent layer, 13 is a resin base material, 14 Is a light reflection layer, 15 is a resin coat layer (corrosion prevention layer), and 16 is an adhesive layer.
 本発明は、樹脂基材および光反射層と、最も光入射側に位置するハードコート層と、前記ハードコート層に隣接して設けられるハードコート隣接層と、を有し、前記ハードコート隣接層のヤング率が4.5GPa以上である、フィルムミラーである。かような構成を有するフィルムミラーは、表面の耐擦傷性(スクラッチ耐性)に優れる。 The present invention has a resin base material and a light reflection layer, a hard coat layer located closest to the light incident side, and a hard coat adjacent layer provided adjacent to the hard coat layer, and the hard coat adjacent layer This film mirror has a Young's modulus of 4.5 GPa or more. The film mirror having such a configuration is excellent in surface scratch resistance (scratch resistance).
 フィルムミラーは屋外に設置されるため、砂や埃を取り除く目的で、ブラシ等の清掃用具を用い、強い力でその表面を洗浄する必要がある。その洗浄時の強い力により、銀、アルミニウム等から形成される光反射層は、局所的に変形し表面粗さが増加することから、洗浄後、反射光が散乱し正反射率が低下し、集光効率が低下するという問題がある。 Since the film mirror is installed outdoors, it is necessary to clean the surface with a strong force using a cleaning tool such as a brush in order to remove sand and dust. Due to the strong force at the time of cleaning, the light reflecting layer formed from silver, aluminum, etc. is locally deformed and the surface roughness is increased, and after cleaning, the reflected light is scattered and the regular reflectance is reduced, There is a problem that the light collection efficiency decreases.
 このような問題に対し、本発明のフィルムミラーは、光入射側の最表面に設けられるハードコート層に隣接して、ヤング率が4.5GPa以上であるハードコート隣接層を備える。かような構成を有することにより、洗浄時の光反射層の局所的な変形が抑制され、光反射層の表面粗さの増加を抑制でき、表面の耐擦傷性が向上する。また、これにより、表面洗浄後の正反射率の低下を抑制でき、集光効率の低下を防止することができる。 For such a problem, the film mirror of the present invention includes a hard coat adjacent layer having a Young's modulus of 4.5 GPa or more adjacent to the hard coat layer provided on the outermost surface on the light incident side. By having such a configuration, local deformation of the light reflecting layer at the time of cleaning can be suppressed, an increase in the surface roughness of the light reflecting layer can be suppressed, and the scratch resistance of the surface can be improved. Further, this can suppress a decrease in regular reflectance after surface cleaning, and can prevent a decrease in light collection efficiency.
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施形態のみには限定されない。 Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 [フィルムミラーの構成]
 本発明のフィルムミラーの全体の構成について、図面を参照しながら説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
[Structure of film mirror]
The overall configuration of the film mirror of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1は、本発明の一実施形態に係るフィルムミラーの断面を模式的に表した図である。図1に示すフィルムミラー10は、光入射側からハードコート層11、ハードコート隣接層12、樹脂基材13、光反射層14、樹脂コート層(腐食防止層)15、粘着層16の順に積層されている。 FIG. 1 is a diagram schematically showing a cross section of a film mirror according to an embodiment of the present invention. The film mirror 10 shown in FIG. 1 has a hard coat layer 11, a hard coat adjacent layer 12, a resin base material 13, a light reflecting layer 14, a resin coat layer (corrosion prevention layer) 15, and an adhesive layer 16 in this order from the light incident side. Has been.
 本発明に係るフィルムミラー全体の厚さは、撓み防止、正反射率、取り扱い性等の観点から80~300μmが好ましく、80~200μmがより好ましく、80~170μmがさらに好ましい。また、フィルムミラーの光入射側の最表面層、すなわちハードコート層の中心線平均粗さ(Ra)が、3nm以上20nm以下であることが、反射光の散乱を防止でき集光効率を高めるという観点から好ましい。 The total thickness of the film mirror according to the present invention is preferably from 80 to 300 μm, more preferably from 80 to 200 μm, and even more preferably from 80 to 170 μm from the viewpoints of prevention of bending, regular reflectance, handling properties, and the like. In addition, the outermost surface layer on the light incident side of the film mirror, that is, the center line average roughness (Ra) of the hard coat layer is 3 nm or more and 20 nm or less, so that scattering of reflected light can be prevented and light collection efficiency is improved. It is preferable from the viewpoint.
 以下、本発明のフィルムミラーの構成について、詳細に説明する。 Hereinafter, the configuration of the film mirror of the present invention will be described in detail.
 [樹脂基材]
 樹脂基材としては、従来公知の種々の樹脂を含むフィルムを用いることができる。樹脂の例としては、例えば、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、変性ポリエステル等のポリエステル、ポリエチレン、ポリプロピレン、セルロース、ジアセチルセルロース、トリアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリスチレン、シンジオタクティックポリスチレン、シクロオレフィンポリマー、ポリノルボルネン、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンイミド、ポリアミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、フッ素樹脂、ポリメタクリル酸メチル、アクリル樹脂等を挙げることができる。これら樹脂は、1種でもよいしまたは2種以上組み合わせて用いてもよい。また、樹脂基材は単層構造でもよいし2層以上の多層構造であってもよい。多層構造の場合、それぞれの層に含まれる樹脂は、同じでもよいし異なっていてもよい。該樹脂基材は、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。また、該樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
[Resin substrate]
As a resin base material, the film containing conventionally well-known various resin can be used. Examples of the resin include, for example, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene naphthalate, polyester such as modified polyester, polyethylene, polypropylene, cellulose, diacetylcellulose, triacetylcellulose, cellulose acetate propionate. , Cellulose acetate butyrate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, syndiotactic polystyrene, cycloolefin polymer, polynorbornene, polymethylpentene, polyether ketone, polyether ether Ketone, polyether ketone imide, polyamide, polyimide, polysulfone, polyether Rusuruhon, fluororesin, polymethyl methacrylate, and acrylic resins. These resins may be used alone or in combination of two or more. The resin base material may have a single layer structure or a multilayer structure of two or more layers. In the case of a multilayer structure, the resin contained in each layer may be the same or different. The resin substrate may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation. The resin substrate may be an unstretched film or a stretched film.
 樹脂基材が、光反射層よりも光入射側から遠い位置にある場合、紫外線が樹脂基材に到達しにくい。特に、樹脂基材よりも光入射側にある層等に紫外線吸収剤を含有させたりする場合は、紫外線が樹脂基材により到達しにくい。したがって、樹脂基材は、紫外線に対して劣化しやすい樹脂であっても用いることが可能となる。このような観点から、樹脂基材として、ポリエチレンテレフタレート等のポリエステルフィルムを用いることが可能となる。 When the resin substrate is located farther from the light incident side than the light reflecting layer, it is difficult for ultraviolet rays to reach the resin substrate. In particular, when an ultraviolet absorber is contained in a layer or the like closer to the light incident side than the resin base material, the ultraviolet light hardly reaches the resin base material. Therefore, the resin base material can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin base material.
 無論、該樹脂基材は紫外線吸収剤を含んでいてもよい。このような紫外線吸収剤としては、特に制限されず、有機系として、例えば、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ベンゾエート系等の紫外線吸収剤が挙げられ、また無機系としては、例えば、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等が挙げられる。なお、紫外線吸収剤を多量に含有させた際にブリードアウトしてしまうという問題を低減するためには、分子量の1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、分子量1000以上3000以下である。該紫外線吸収剤は、単独でもまたは2種以上組み合わせても用いることができる。紫外線吸収剤の具体的な例としては、特開2012-232538号公報の段落「0038」~「0042」に記載の化合物を用いることができる。 Of course, the resin substrate may contain an ultraviolet absorber. Such an ultraviolet absorber is not particularly limited, and examples of the organic type include ultraviolet absorbers such as benzophenone type, benzotriazole type, phenyl salicylate type, triazine type, benzoate type, etc. Examples thereof include titanium oxide, zinc oxide, cerium oxide, and iron oxide. In order to reduce the problem of bleeding out when a large amount of ultraviolet absorber is contained, it is preferable to use a polymeric ultraviolet absorber having a molecular weight of 1000 or more. Preferably, the molecular weight is 1000 or more and 3000 or less. These ultraviolet absorbers can be used alone or in combination of two or more. As specific examples of the ultraviolet absorber, the compounds described in paragraphs “0038” to “0042” of JP2012-232538A can be used.
 樹脂基材の厚さは、樹脂の種類および目的等に応じて適宜選択することができる。例えば、一般的には10~250μmの範囲であり、好ましくは20~200μmである。 The thickness of the resin base material can be appropriately selected according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 μm, preferably 20 to 200 μm.
 [光反射層]
 本発明に係る光反射層は、太陽光を反射する機能を有する金属等からなる層である。光反射層の表面反射率は好ましくは80%以上、さらに好ましくは90%以上である。光反射層は、アルミニウム、銀、クロム、銅、ニッケル、チタン、マグネシウム、ロジウム、白金および金からなる元素群の中から選ばれる少なくとも1種の元素を含む材料により形成されることが好ましい。中でも、反射率、耐食性等の観点からアルミニウムまたは銀を主成分としていることが好ましく、アルミニウムまたは銀からなることがさらに好ましく、銀からなることが特に好ましい。
[Light reflection layer]
The light reflecting layer according to the present invention is a layer made of metal or the like having a function of reflecting sunlight. The surface reflectance of the light reflection layer is preferably 80% or more, more preferably 90% or more. The light reflecting layer is preferably formed of a material containing at least one element selected from the element group consisting of aluminum, silver, chromium, copper, nickel, titanium, magnesium, rhodium, platinum and gold. Of these, aluminum or silver is preferably the main component from the viewpoint of reflectance, corrosion resistance, etc., more preferably aluminum or silver, and particularly preferably silver.
 このような金属の薄膜を2層以上形成するようにしてもよい。また、光反射層上にSiO、TiO等の金属酸化物からなる層をこの順に設けてさらに反射率を向上させてもよい。 Two or more such metal thin films may be formed. Further, a layer made of a metal oxide such as SiO 2 and TiO 2 may be provided in this order on the light reflecting layer to further improve the reflectance.
 例えば、本発明に係る光反射層の形成方法としては、湿式法および乾式法のどちらも使用することができる。 For example, as a method for forming the light reflecting layer according to the present invention, either a wet method or a dry method can be used.
 湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例を挙げると銀鏡反応等がある。 The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
 一方、乾式法とは、真空成膜法の総称であり、具体的には、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法等がある。本発明のフィルムミラーの製造方法としては、光反射層を蒸着法により形成することが好ましい。 On the other hand, the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method. Etc. As a manufacturing method of the film mirror of this invention, it is preferable to form a light reflection layer by a vapor deposition method.
 乾式法を使用する場合、光反射層は樹脂フィルム上に形成することが好ましい。該樹脂フィルムの例としては、例えば、例えば、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セルロース、ジアセチルセルロース、トリアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリスチレン、シンジオタクティックポリスチレン、シクロオレフィンポリマー、ポリノルボルネン、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ポリメタクリル酸メチル、アクリル樹脂等の樹脂を含むフィルムを挙げることができる。これら樹脂は、1種でもよいしまたは2種以上組み合わせて用いてもよい。また、樹脂フィルムは単層構造でもよいし2層以上の多層構造であってもよい。多層構造の場合、それぞれの層に含まれる樹脂は、同じでもよいし異なっていてもよい。該樹脂フィルムは、未延伸フィルムでもよく、延伸フィルムでもよい。当該樹脂フィルムは、本発明のフィルムミラーを構成する樹脂基材であってもよい。すなわち、上記で説明した樹脂基材上に、乾式法により光反射層を形成し、本発明に係る樹脂基材および光反射層としてもよい。 When using the dry method, the light reflecting layer is preferably formed on a resin film. Examples of the resin film include, for example, polyesters such as polycarbonate, polyarylate, polysulfone, polyethersulfone, polyethylene terephthalate, and polyethylene naphthalate, polyethylene, polypropylene, cellulose, diacetylcellulose, triacetylcellulose, and cellulose acetate propio. Nate, cellulose acetate butyrate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, syndiotactic polystyrene, cycloolefin polymer, polynorbornene, polymethylpentene, polyether ketone, polyether Includes resins such as ketone imide, polyamide, fluororesin, polymethyl methacrylate, acrylic resin Irumu can be mentioned. These resins may be used alone or in combination of two or more. The resin film may have a single layer structure or a multilayer structure of two or more layers. In the case of a multilayer structure, the resin contained in each layer may be the same or different. The resin film may be an unstretched film or a stretched film. The resin film may be a resin substrate constituting the film mirror of the present invention. That is, a light reflection layer may be formed on the resin base material described above by a dry method to form the resin base material and the light reflection layer according to the present invention.
 光反射層の厚さは、反射率等の観点から、10~200nmが好ましく、30~150nmがより好ましい。 The thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
 光反射層が銀からなる場合、光反射層を形成する際に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより、光反射層を形成するようにしてもよい。 When the light reflecting layer is made of silver, when the light reflecting layer is formed, the light reflecting layer is formed by heating and baking a coating film containing a silver complex compound from which a ligand can be vaporized / desorbed. May be.
 「気化・脱離しうる配位子を有する銀錯体化合物」とは、溶液中では銀が安定に溶解するための配位子を有するが、溶媒を除去し、加熱焼成することによって、配位子が熱分解し、COや低分子量のアミン化合物となり、気化・脱離し、金属銀のみが残存することのできる銀錯体化合物のことをいう。 “Silver complex compound having a ligand that can be vaporized / desorbed” has a ligand for stably dissolving silver in a solution, but the ligand is removed by removing the solvent and heating and firing. Is a silver complex compound that can be thermally decomposed into CO 2 or a low molecular weight amine compound, vaporized / desorbed, and only metallic silver remains.
 このような錯体の例は、特表2009-535661号公報、特表2010-500475号公報等の各公報等に記載されている。また、特開2012-232538号公報の段落「0080」~「0100」に記載されている製造方法により得られる錯体を用いることができる。 Examples of such complexes are described in various publications such as JP-T 2009-535661, JP-T 2010-500475, and the like. Further, a complex obtained by the production method described in paragraphs “0080” to “0100” of JP2012-232538A can be used.
 銀錯体化合物を用いる場合、該銀錯体化合物は銀コーティング液組成物に含有され、これを塗布することにより樹脂フィルム上に本発明に係る錯体を含有する塗布膜が形成される。すなわち、銀錯体化合物を用いて樹脂フィルム上に塗布膜を形成した後に、塗布膜を80~250℃の範囲内の温度において加熱焼成することにより銀反射層を形成することが好ましい。より好ましくは100~220℃の範囲内、さらに好ましくは120~200℃の範囲内である。加熱焼成手段としては、特に制限は無く、一般的に用いられるいかなるものでも適用できる。 When a silver complex compound is used, the silver complex compound is contained in the silver coating liquid composition, and a coating film containing the complex according to the present invention is formed on the resin film by coating the silver complex compound. That is, it is preferable to form a silver reflective layer by forming a coating film on a resin film using a silver complex compound and then baking the coating film at a temperature in the range of 80 to 250 ° C. More preferably, it is within the range of 100 to 220 ° C, and further preferably within the range of 120 to 200 ° C. There is no restriction | limiting in particular as a heat baking means, What is generally used can be applied.
 光反射層は、樹脂基材に対して、光入射側にあってもよいし、光入射側とは反対の側にあってもよい。 The light reflecting layer may be on the light incident side with respect to the resin base material, or may be on the side opposite to the light incident side.
 [ハードコート層]
 ハードコート層は、フィルムミラー表面の傷つきや汚れの付着を防止する目的で、本発明のフィルムミラーにおいては、光入射側の最表面に設けられる。なお、ハードコート層の厚みは、十分な耐傷性を得つつ、フィルムミラーにそりが発生するのを防止するという観点から、0.05~10μmであることが好ましく、1~10μmであることがより好ましい。
[Hard coat layer]
In the film mirror of the present invention, the hard coat layer is provided on the outermost surface on the light incident side for the purpose of preventing the film mirror surface from being damaged or adhering to the surface. The thickness of the hard coat layer is preferably 0.05 to 10 μm, preferably 1 to 10 μm, from the viewpoint of preventing the film mirror from warping while obtaining sufficient scratch resistance. More preferred.
 ハードコート層を形成する材料としては、透明性、耐候性、硬度、機械的強度等が得られるものであれば、特に限定されるものではない。具体的には、アクリル樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂、有機シリケート化合物、シリコーン樹脂等の樹脂材料;酸化ケイ素、酸化アルミニウム、窒化ケイ素、窒化アルミニウム、酸化ランタン、窒化ランタン、ポリシラザン等の無機材料などで構成することができる。特に、硬度と耐久性などの点で、シリコーン樹脂やアクリル樹脂が好ましい。さらに、硬化性、可撓性および生産性の点で、活性エネルギー線硬化型のアクリル樹脂、または熱硬化型のアクリル樹脂からなるものが好ましい。 The material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained. Specifically, resin materials such as acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, and silicone resin; inorganic such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, and polysilazane It can be composed of materials and the like. In particular, silicone resin and acrylic resin are preferable in terms of hardness and durability. Furthermore, what consists of an active energy ray hardening-type acrylic resin or a thermosetting type acrylic resin is preferable at the point of sclerosis | hardenability, flexibility, and productivity.
 活性エネルギー線硬化型のアクリル樹脂または熱硬化型のアクリル樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマー、または反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。活性エネルギー線硬化型のアクリル樹脂および熱硬化型のアクリル樹脂は、硬化処理を行った後に硬化物の形態でハードコート層に含まれる。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed. The active energy ray curable acrylic resin and the thermosetting acrylic resin are included in the hard coat layer in the form of a cured product after the curing treatment.
 アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社製;(商品名”ダイヤビーム(登録商標)”シリーズなど)、長瀬産業株式会社製;(商品名”デナコール(登録商標)”シリーズなど)、新中村化学工業株式会社製;(商品名”NKエステル”シリーズなど)、DIC株式会社製;(商品名”UNIDIC(登録商標)”シリーズなど)、東亞合成株式会社;(商品名”アロニックス(登録商標)”シリーズなど)、日油株式会社製;(商品名”ブレンマー(登録商標)”シリーズなど)、日本化薬株式会社;(商品名”KAYARAD(登録商標)”シリーズなど)、共栄社化学株式会社;(商品名”ライトエステル”シリーズ、”ライトアクリレート”シリーズなど)などの製品を利用することができる。 Commercially available polyfunctional acrylic cured paints are manufactured by Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” Series, etc.), Shin-Nakamura Chemical Co., Ltd .; (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “UNIDIC®” series, etc.), Toagosei Co., Ltd. (trade name) "Aronix (registered trademark)" series, etc.), manufactured by NOF Corporation; (trade name "Blemmer (registered trademark)" series, etc.), Nippon Kayaku Co., Ltd. (trade name "KAYARAD (registered trademark)" series, etc.) , Kyoeisha Chemical Co., Ltd .; (product name “light ester” series, “light acrylate” series, etc.) can be used.
 さらに具体的には、例えば、電子線や紫外線の照射により硬化する樹脂や熱硬化型の樹脂等を使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート材料、熱硬化型のポリシロキサン樹脂からなるハードコート材料、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート材料、または熱硬化型無機材料であることが好ましい。また、ハードコート層に用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(特開2005-66824号公報)、ポリウレタン系樹脂組成物(特開2005-110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004-142161号公報)、酸化チタン等の光触媒性酸化物含有シリカ膜またはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009-62216号公報)、光触媒含有フッ素樹脂コーティング材料(株式会社ピアレックス・テクノロジーズ製)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(AZエレクトロニクスマテリアルズ株式会社製)を用いた膜等も挙げることができる。電子線や紫外線の照射により硬化する樹脂や熱硬化型の樹脂は、硬化処理を行った後に硬化物の形態でハードコート層に含まれる。 More specifically, for example, a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used, and in particular, a thermosetting silicone hard coat material composed of a partially hydrolyzed oligomer of an alkoxysilane compound, A hard coat material composed of a thermosetting polysiloxane resin, an ultraviolet curable acrylic hard coat material composed of an acrylic compound having an unsaturated group, or a thermosetting inorganic material is preferred. As materials that can be used for the hard coat layer, an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No. 2005-110918), and an aqueous silicone compound as a binder. Resin film used (Japanese Patent Laid-Open No. 2004-142161), photocatalytic oxide-containing silica film such as titanium oxide, or photocatalytic film such as alumina, titanium oxide or niobium oxide having a high aspect ratio (Japanese Patent Laid-Open No. 2009-62216) , Photocatalyst-containing fluororesin coating material (Pierex Technologies Co., Ltd.), organic / inorganic polysilazane film, organic / inorganic polysilazane using a hydrophilization promoter (AZ Electronics Materials Co., Ltd.), etc. it can. Resins that are cured by irradiation with electron beams or ultraviolet rays or thermosetting resins are included in the hard coat layer in the form of a cured product after being subjected to a curing treatment.
 ハードコート層中には、本発明の効果が損なわれない範囲で、さらに各種の添加剤を必要に応じて配合することができる。例えば、酸化防止剤、光安定剤、紫外線吸収剤等の安定剤、界面活性剤、レベリング剤、および帯電防止剤等を用いることができる。 In the hard coat layer, various additives can be further blended as necessary within the range where the effects of the present invention are not impaired. For example, stabilizers such as antioxidants, light stabilizers, ultraviolet absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
 その他、具体的なハードコート層に用いられる材料やハードコート層の形成方法については、特開2012-232538号公報の段落「0129」~「0168」に記載の材料や形成方法を適宜採用することができる。 In addition, with regard to specific materials used for the hard coat layer and methods for forming the hard coat layer, the materials and formation methods described in paragraphs “0129” to “0168” of JP2012-232538A are appropriately employed. Can do.
 ハードコート層の動摩擦係数は、0.4以下であることが好ましく、0.25以下であることがより好ましい。この範囲であれば、フィルムミラー表面の耐擦傷性がさらに向上する。該動摩擦係数の制御は、ハードコート層の形成材料の種類や、後述のハードコート隣接層への表面改質剤や粒子の添加等を制御することにより行うことができる。また、該動摩擦係数は、実施例に記載の方法により測定することができる。 The dynamic friction coefficient of the hard coat layer is preferably 0.4 or less, and more preferably 0.25 or less. Within this range, the scratch resistance of the film mirror surface is further improved. The dynamic friction coefficient can be controlled by controlling the type of material for forming the hard coat layer, the addition of a surface modifier or particles to the hard coat adjacent layer described later, and the like. Moreover, this dynamic friction coefficient can be measured by the method as described in an Example.
 また、ハードコート層の中心線平均粗さ(Ra)は、3nm以上20nm以下であることが、反射光の散乱を防止でき集光効率を高めるという観点から好ましい。なお、中心線平均粗さ(Ra)は、JIS B0601:1982に基づく測定方法により求めることができる。 Further, the center line average roughness (Ra) of the hard coat layer is preferably 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency. The centerline average roughness (Ra) can be determined by a measurement method based on JIS B0601: 1982.
 [ハードコート隣接層]
 本発明のフィルムミラーは、ハードコート層の光入射側とは反対側に、ハードコート層に隣接するハードコート隣接層を有する。そして、該ハードコート隣接層のヤング率は、4GPa以上である。かようなヤング率を有するハードコート隣接層を設けることにより、本発明のフィルムミラーは耐擦傷性に優れたものとなる。
[Hard court adjacent layer]
The film mirror of the present invention has a hard coat adjacent layer adjacent to the hard coat layer on the side opposite to the light incident side of the hard coat layer. The Young's modulus of the hard coat adjacent layer is 4 GPa or more. By providing the hard coat adjacent layer having such a Young's modulus, the film mirror of the present invention has excellent scratch resistance.
 ハードコート隣接層を構成する材料は、特に制限されないが、光透過性を有する樹脂材料と、ヤング率を調整する微粒子と、を含むことが好ましい。 The material constituting the hard coat adjacent layer is not particularly limited, but preferably includes a resin material having optical transparency and fine particles for adjusting Young's modulus.
 ハードコート隣接層に用いられる樹脂材料は、特に制限されないが、薄膜を形成した際に透明性を維持しうる、従来公知の種々の合成樹脂を用いることができる。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類もしくはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、(メタ)アクリル樹脂、ポリアリレート、またはシクロオレフィン樹脂等が挙げられる。これら樹脂材料は、単独でもまたは2種以上組み合わせても用いることができる。また、これら樹脂材料は、市販品を用いてもよいし合成品を用いてもよい。市販品の例としては、EMB457(三菱レイヨン株式会社製)、アートン(登録商標、JSR株式会社製)、アペル(登録商標、三井化学株式会社製)等が挙げられる。 The resin material used for the hard coat adjacent layer is not particularly limited, and various conventionally known synthetic resins that can maintain transparency when a thin film is formed can be used. For example, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene esters, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose esters such as cellulose acetate phthalate, cellulose nitrate, or the like Derivatives of polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone, polysulfone, polyether ketone imide, polyamide, fluororesin, Nylon, (meth) acrylic resin, polyarylate Or cycloolefin resins. These resin materials can be used alone or in combination of two or more. These resin materials may be commercially available products or synthetic products. Examples of commercially available products include EMB457 (manufactured by Mitsubishi Rayon Co., Ltd.), Arton (registered trademark, manufactured by JSR Corporation), Apel (registered trademark, manufactured by Mitsui Chemicals, Inc.), and the like.
 ハードコート隣接層を形成する材料として、上記例示した樹脂材料の中では、(メタ)アクリル樹脂が好適に用いられる。ハードコート隣接層が(メタ)アクリル樹脂を含む場合、(メタ)アクリル樹脂は固いので、破損しにくいハードコート隣接層を得る目的で、可塑剤を含有させてもよい。可塑剤の好ましい一例としては、例えば、アクリルゴム、ブチルゴムやアクリル酸ブチルなどが挙げられる。ここで、可塑剤の添加量は、特に制限されないが、所望の柔軟性などを考慮すると、樹脂材料に対して、10~25質量%程度であることが好ましい。 Among the resin materials exemplified above, (meth) acrylic resin is suitably used as the material for forming the hard coat adjacent layer. When the hard coat adjacent layer contains a (meth) acrylic resin, since the (meth) acrylic resin is hard, a plasticizer may be included for the purpose of obtaining a hard coat adjacent layer that is not easily damaged. Preferable examples of the plasticizer include acrylic rubber, butyl rubber and butyl acrylate. Here, the addition amount of the plasticizer is not particularly limited, but is preferably about 10 to 25% by mass with respect to the resin material in consideration of desired flexibility and the like.
 より好ましくは、ハードコート隣接層は、メタクリル樹脂を主成分として形成される。メタクリル樹脂とは、メタクリル酸エステルを主体とする重合体であり、メタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステル50質量%以上とこれ以外の単量体50質量%以下との共重合体であってもよい。ここで、メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル(PMMA)樹脂である。 More preferably, the hard coat adjacent layer is formed mainly of a methacrylic resin. The methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester, 50% by mass or more of the methacrylic acid ester and 50% by mass or less of the other monomers. The copolymer may be used. Here, as the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate (PMMA) resin.
 メタクリル樹脂のさらに好ましい単量体組成は、全単量体を基準として、メタクリル酸アルキルエステルが50~100質量%、アクリル酸アルキルエステルが0~50質量%、これら以外の単量体が0~49質量%であり、より好ましくは、メタクリル酸アルキルエステルが50~100質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%である。 More preferable monomer composition of the methacrylic resin is 50 to 100% by mass of the alkyl methacrylate and 0 to 50% by mass of the acrylic acid alkyl ester based on all monomers, and 0 to 50% of the other monomers. 49% by mass, more preferably 50 to 100% by mass of alkyl methacrylate, 0 to 50% by mass of acrylic ester, and 0 to 49% by mass of other monomers.
 ここで、メタクリル酸アルキルエステルの例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル等が挙げられる。エステル部分のアルキル基の炭素数は通常1~8、好ましくは1~4である。中でもメタクリル酸メチルが好ましく用いられる。 Here, examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like. The alkyl group in the ester moiety usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. Of these, methyl methacrylate is preferably used.
 また、アクリル酸アルキルエステルの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等が挙げられ、エステル部分のアルキル基の炭素数は通常1~8、好ましくは1~4である。 Examples of alkyl acrylate esters include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. The alkyl group in the ester moiety usually has 1 to 8 carbon atoms, preferably 1 carbon atom. ~ 4.
 また、メタクリル酸アルキルエステルおよびアクリル酸アルキルエステル以外の単量体は、単官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を1個有する化合物であってもよいし、多官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を少なくとも2個有する化合物であってもよいが、単官能単量体が好ましく用いられる。この単官能単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルなどのアルケニルシアン化合物などが挙げられる。また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートの如き多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルなどの不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートなどの多塩基酸のポリアルケニルエステル、ジビニルベンゼンなどの芳香族ポリアルケニル化合物などが挙げられる。 The monomer other than methacrylic acid alkyl ester and acrylic acid alkyl ester may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule. Although it may be a functional monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used. Examples of this monofunctional monomer include aromatic alkenyl compounds such as styrene, α-methylstyrene and vinyltoluene, and alkenyl cyanide compounds such as acrylonitrile and methacrylonitrile. Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Alkenyl esters of unsaturated carboxylic acids such as allyl acid, polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, aromatic polyalkenyl compounds such as divinylbenzene, etc. Can be mentioned.
 なお、上記のメタクリル酸アルキルエステル、アクリル酸アルキルエステル、およびこれら以外の単量体は、それぞれ、必要に応じてそれらの2種以上を用いてもよい。 In addition, as for said methacrylic acid alkyl ester, acrylic acid alkyl ester, and monomers other than these, respectively, you may use those 2 or more types as needed.
 メタクリル樹脂は、フィルムの耐熱性の点から、そのガラス転移温度が40℃以上であることが好ましく、60℃以上であることがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。 The glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
 メタクリル樹脂は、市販品を用いてもよいし、合成品を用いてもよい。合成品を用いる場合は、単量体成分を、懸濁重合、乳化重合、塊状重合などの方法により重合させることにより得ることができる。その際、好適なガラス転移温度を得るため、または好適なフィルムへの成形性を示す粘度を得るため、重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤の量は、単量体の種類やその割合などに応じて、適宜決定すればよい。 As the methacrylic resin, a commercially available product or a synthetic product may be used. When a synthetic product is used, the monomer component can be obtained by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization, or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature, or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization. The amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
 ハードコート隣接層中の樹脂材料の含有量は、ハードコート隣接層全体に対して50~90質量%であることが好ましい。 The content of the resin material in the hard coat adjacent layer is preferably 50 to 90% by mass with respect to the entire hard coat adjacent layer.
 ハードコート隣接層には、ヤング率を本発明の範囲に調整する目的から、微粒子を含むことが好ましい。 The hard coat adjacent layer preferably contains fine particles for the purpose of adjusting the Young's modulus within the range of the present invention.
 ハードコート隣接層に含まれる微粒子の例としては、金、銀、ニッケル、銅、鉛、アルミニウム、鉄粉、酸化鉄、砂鉄等の金属粉;酸化アルミニウム、酸化亜鉛、酸化マグネシウム、酸化ケイ素(シリカ)、ケイ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、水酸化アルミニウム、水酸化マグネシウム、酸化窒化アルミニウムとの金属化合物粒子;炭化ケイ素、炭化タングステン、セリア、チタニア、ジルコニア、グラフェン、ダイヤモンド状炭素、ダイヤモンド微粒子、ナノダイヤモンド、カーボンナノチューブ等の炭素系材料:ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリメタクリル酸メチル等の(メタ)アクリル樹脂、エポキシ樹脂、ポリイミド樹脂等の樹脂からなる粒子;等が挙げられる。これら微粒子は、単独でもまたは2種以上組み合わせても用いることができる。中でも、ナノダイヤモンド、シリカ、アルミニウム、またはアクリル樹脂粒子が好ましい。 Examples of the fine particles contained in the hard coat adjacent layer include metal powders such as gold, silver, nickel, copper, lead, aluminum, iron powder, iron oxide, and iron sand; aluminum oxide, zinc oxide, magnesium oxide, silicon oxide (silica) ), Silicate, aluminum nitride, boron nitride, silicon nitride, aluminum hydroxide, magnesium hydroxide, metal compound particles with aluminum oxynitride; silicon carbide, tungsten carbide, ceria, titania, zirconia, graphene, diamond-like carbon, Carbon-based materials such as diamond fine particles, nanodiamonds, and carbon nanotubes: particles made of polyolefin resins such as polyethylene and polypropylene, (meth) acrylic resins such as polymethyl methacrylate, resins such as epoxy resins and polyimide resins; . These fine particles can be used alone or in combination of two or more. Among these, nanodiamond, silica, aluminum, or acrylic resin particles are preferable.
 ハードコート隣接層中の微粒子の含有量は、ヤング率が本発明の範囲に制御できれば、特に制限されない。 The content of the fine particles in the hard coat adjacent layer is not particularly limited as long as the Young's modulus can be controlled within the range of the present invention.
 ハードコート隣接層には、紫外線による劣化を防止するために、紫外線吸収剤を含有させてもよい。含有される紫外線吸収剤には特に制限はないが、例えばチアゾリドン系、ベンゾトリアゾール系、アクリロニトリル系、ベンゾフェノン系、アミノブタジエン系、トリアジン系、サリチル酸フェニル系、ベンゾエート系などの有機系の紫外線吸収剤、あるいは酸化セリウム、酸化マグネシウムなどの微粉末系の紫外線遮断剤や酸化チタン、酸化亜鉛、酸化鉄等などが挙げられるが、特に有機系の紫外線吸収剤が好ましい。 The hard coat adjacent layer may contain an ultraviolet absorber in order to prevent deterioration due to ultraviolet rays. Although there is no particular limitation on the contained ultraviolet absorber, for example, an organic ultraviolet absorber such as thiazolidone, benzotriazole, acrylonitrile, benzophenone, aminobutadiene, triazine, phenyl salicylate, benzoate, etc. Alternatively, fine powder type ultraviolet blocking agents such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide and the like can be mentioned, and organic ultraviolet absorbers are particularly preferable.
 また、ハードコート隣接層には、劣化を防止するために、酸化防止剤を含有させてもよい。酸化防止剤としては、特に制限されないが、フェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、チオール系酸化防止剤、ホスファイト系酸化防止剤などが挙げられる。より具体的には、特開2012-232538号公報の段落「0048」~「0052」に記載の化合物が使用できる。 In addition, the hard coat adjacent layer may contain an antioxidant in order to prevent deterioration. The antioxidant is not particularly limited, and examples thereof include phenolic antioxidants, hindered amine antioxidants, thiol antioxidants, and phosphite antioxidants. More specifically, compounds described in paragraphs “0048” to “0052” of JP2012-232538A can be used.
 また、該酸化防止剤と光安定剤とを併用してもよい。光安定剤としてはニッケル系紫外線安定剤が挙げられ、より具体的には、特開2012-232538号公報の段落「0053」に記載の化合物が使用できる。 Further, the antioxidant and the light stabilizer may be used in combination. Examples of the light stabilizer include nickel-based ultraviolet light stabilizers. More specifically, compounds described in paragraph “0053” of JP2012-232538A can be used.
 ハードコート隣接層に帯電防止剤を加えて、帯電防止性能を付与することも可能である。また、ハードコート隣接層にリン系難燃剤を加えてもよい。 It is also possible to add an antistatic agent to the hard coat adjacent layer to impart antistatic performance. Moreover, you may add a phosphorus-type flame retardant to a hard-coat adjacent layer.
 さらに、ハードコート隣接層は、表面改質剤を含んでもよい。表面改質剤を含むことにより、隣接するハードコート層の動摩擦係数を低減させることができる。表面改質剤は市販品を用いてもよいし、合成品を用いてもよい。市販品の例としては、例えば、メガファック(登録商標)RS-76E、メガファック(登録商標)F-552、メガファック(登録商標)F-554(以上、DIC株式会社製)等のフッ素系表面改質剤、BYK(登録商標)-370、BYK(登録商標)-377(以上、ビックケミージャパン株式会社製)等のシリコン系表面改質剤等が挙げられる。これら表面改質剤は、単独でもまたは2種以上混合しても用いることができる。表面改質剤の添加量は、特に制限されないが、ハードコート隣接層に含まれる樹脂材料に対して、0.03~1質量%であることが好ましい。 Furthermore, the hard coat adjacent layer may contain a surface modifier. By including the surface modifier, the dynamic friction coefficient of the adjacent hard coat layer can be reduced. As the surface modifier, a commercially available product may be used, or a synthetic product may be used. Examples of commercially available products include, for example, fluorine-based products such as MegaFac (registered trademark) RS-76E, MegaFac (registered trademark) F-552, MegaFac (registered trademark) F-554 (above, manufactured by DIC Corporation), etc. Examples thereof include silicon surface modifiers such as surface modifiers, BYK (registered trademark) -370, BYK (registered trademark) -377 (manufactured by BYK Japan KK). These surface modifiers can be used alone or in combination of two or more. The addition amount of the surface modifier is not particularly limited, but is preferably 0.03 to 1% by mass with respect to the resin material contained in the hard coat adjacent layer.
 ハードコート隣接層は、1,6-ヘキサメチレンイソシアネート、トリレンジイソシアネート等の硬化剤を含んでもよい。これら硬化剤は、単独でもまたは2種以上混合しても用いることができる。硬化剤の添加量は、特に制限されないが、ハードコート隣接層に含まれる樹脂材料に対して、1~12質量%であることが好ましい。硬化剤を含む場合、ハードコート隣接層は、上記樹脂材料の硬化物を含む形態となる。 The hard coat adjacent layer may contain a curing agent such as 1,6-hexamethylene isocyanate or tolylene diisocyanate. These curing agents can be used alone or in admixture of two or more. The addition amount of the curing agent is not particularly limited, but is preferably 1 to 12% by mass with respect to the resin material contained in the hard coat adjacent layer. When the curing agent is included, the hard coat adjacent layer is in a form including a cured product of the resin material.
 さらに、ハードコート隣接層中には、本発明の効果が損なわれない範囲で、界面活性剤、レベリング剤、および帯電防止剤等の添加剤を添加することができる。 Furthermore, additives such as a surfactant, a leveling agent and an antistatic agent can be added to the hard coat adjacent layer as long as the effects of the present invention are not impaired.
 ハードコート隣接層の形成方法は特に制限されないが、例えば、有機溶媒中で、上記の樹脂材料、微粒子および必要に応じて他の成分を混合してハードコート隣接層形成用塗布液を調製した後、該塗布液を塗布し乾燥する方法が挙げられる。塗布の具体的な方法としては、従来用いられる種々の塗布方法、例えば、スプレーコート法、スピンコート法、バーコート法、グラビアコート法、リバースコート法、ダイコート法等の方法を用いることができる。 The method for forming the hard coat adjacent layer is not particularly limited. For example, after preparing the coating liquid for forming the hard coat adjacent layer by mixing the above resin material, fine particles and other components as required in an organic solvent. And a method of applying and drying the coating solution. As a specific method of coating, various conventionally used coating methods such as spray coating, spin coating, bar coating, gravure coating, reverse coating, and die coating can be used.
 塗布液に用いられる有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、アセト酢酸メチル、アセト酢酸エチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類等が挙げられる。これら有機溶媒は、単独でもまたは2種以上混合しても用いることができる。 Examples of the organic solvent used in the coating solution include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl lactate, ethyl lactate, butyl lactate, 3- Esters such as methyl methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl acetoacetate and ethyl acetoacetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone Aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Ami such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone Kind, and the like. These organic solvents can be used alone or in combination of two or more.
 このような塗布法でハードコート隣接層を形成することによって、ハードコート隣接層の平滑性を高めることができる。具体的には、塗布法で形成したハードコート隣接層の中心線平均粗さ(Ra)は、3nm以上20nm以下が好ましい。換言すれば、中心線平均粗さがこの値を満たせば、溶融製膜によって製造されたハードコート隣接層ではなく、そのハードコート隣接層が塗布によって設けられたものとみなすことができる。 By forming the hard coat adjacent layer by such a coating method, the smoothness of the hard coat adjacent layer can be improved. Specifically, the center line average roughness (Ra) of the hard coat adjacent layer formed by the coating method is preferably 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, it can be considered that the hard coat adjacent layer, not the hard coat adjacent layer produced by melt film formation, is provided by coating.
 ハードコート隣接層の厚さ(乾燥膜厚)は、特に制限されないが、5~150μmが好ましく、10~100μmがより好ましく、20~80μmがさらに好ましい。このような厚みであれば、十分な透光性を確保することができ、また、製膜時に乾燥により溶剤を十分に蒸発することができ、生産性の観点から好ましい。 The thickness (dry film thickness) of the hard coat adjacent layer is not particularly limited, but is preferably 5 to 150 μm, more preferably 10 to 100 μm, and further preferably 20 to 80 μm. If it is such thickness, sufficient translucency can be ensured, and a solvent can fully evaporate by drying at the time of film formation, and it is preferable from a viewpoint of productivity.
 ハードコート隣接層のヤング率は、4.5GPa以上である。ヤング率が4.5GPa未満の場合、フィルムミラー表面の耐擦傷性が低下する。該ヤング率は、20GPa以下であることが好ましく、4.5GPa以上7GPa以下であることがより好ましい。 The Young's modulus of the hard coat adjacent layer is 4.5 GPa or more. When the Young's modulus is less than 4.5 GPa, the scratch resistance of the film mirror surface is lowered. The Young's modulus is preferably 20 GPa or less, and more preferably 4.5 GPa or more and 7 GPa or less.
 ハードコート隣接層のヤング率は、樹脂材料の種類や、微粒子および表面改質剤の種類および添加量などを制御することにより制御することができる。なお、ハードコート隣接層のヤング率は、実施例に記載の方法により測定することができる。 The Young's modulus of the hard coat adjacent layer can be controlled by controlling the type of resin material, the type and amount of fine particles and surface modifier. The Young's modulus of the hard coat adjacent layer can be measured by the method described in the examples.
 本発明のフィルムミラーは、必要に応じて、接着層、樹脂コート層、ガスバリア層、アンカー層、粘着層、剥離層等の各層を有していてもよい。以下、これらの層について説明する。 The film mirror of the present invention may have various layers such as an adhesive layer, a resin coat layer, a gas barrier layer, an anchor layer, an adhesive layer, and a release layer as necessary. Hereinafter, these layers will be described.
 [接着層]
 接着層は、層同士の接着性を高める機能があるものであれば特に限定はない。接着であっても粘着であってもよい。好ましくは、ハードコート層と樹脂コート層とを接着させる層である。接着層は、層同士を密着する密着性、光反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、および光反射層が本来有する高い反射性能を引き出すための平滑性を有することが好ましい。
[Adhesive layer]
The adhesive layer is not particularly limited as long as it has a function of improving the adhesion between the layers. Adhesion or adhesion may be used. Preferably, it is a layer for adhering the hard coat layer and the resin coat layer. Adhesive layer has adhesion to adhere layers, heat resistance that can withstand heat when forming light reflection layer by vacuum deposition method, etc., and smoothness to bring out high reflection performance inherent to light reflection layer It is preferable to have.
 接着層は、1層のみからなっていてもよいし、複数層からなっていてもよい。接着層の厚さは、密着性、平滑性、反射材の反射率等の観点から、1~10μmが好ましく、3~8μmがより好ましい。 The adhesive layer may consist of only one layer or may consist of a plurality of layers. The thickness of the adhesive layer is preferably 1 to 10 μm, more preferably 3 to 8 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
 接着層が樹脂からなる場合、材料としては特に制限はなく、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体樹脂等の単独またはこれらの混合樹脂等が使用できる。耐候性の点からポリエステル樹脂とメラミン樹脂との混合樹脂またはポリエステル樹脂とウレタン樹脂との混合樹脂が好ましく、さらにアクリル樹脂にイソシアネートを混合させるような、イソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 When the adhesive layer is made of a resin, the material is not particularly limited, and a single material such as polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc. Alternatively, these mixed resins can be used. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin or a mixed resin of a polyester resin and a urethane resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is mixed such that an isocyanate is mixed with an acrylic resin. This is more preferable. As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 また、接着層が金属酸化物からなる場合、例えば、酸化ケイ素、酸化アルミニウム、窒化ケイ素、窒化アルミニウム、酸化ランタン、窒化ランタン等、各種真空製膜法により製膜することができる。例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 Further, when the adhesive layer is made of a metal oxide, it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride. For example, there are a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 [樹脂コート層(腐食防止層)]
 本発明のフィルムミラーは、光反射層に隣接するように樹脂コート層(腐食防止層)を有していてもよい。樹脂コート層が光反射層に隣接している場合、樹脂コート層が光反射層の腐食を防止するように、腐食防止剤を含有していることが好ましい。
[Resin coat layer (corrosion prevention layer)]
The film mirror of the present invention may have a resin coat layer (corrosion prevention layer) so as to be adjacent to the light reflection layer. When the resin coat layer is adjacent to the light reflecting layer, the resin coat layer preferably contains a corrosion inhibitor so as to prevent corrosion of the light reflecting layer.
 樹脂コート層は、1層のみからなっていてもよいし、複数層からなっていてもよい。樹脂コート層の厚さは、好ましくは1~10μm、より好ましくは2~8μmである。 The resin coat layer may consist of only one layer or a plurality of layers. The thickness of the resin coat layer is preferably 1 to 10 μm, more preferably 2 to 8 μm.
 樹脂コート層のバインダーとしては、例えば、セルロースエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、シンジオタクティックポリスチレン、ポリカーボネート、ポリノルボルネン、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメタクリル酸メチル、またはアクリル樹脂等を挙げることができる。中でも、アクリル樹脂が好ましい。さらに、樹脂コート層は、2.4-トリレンジイソシアネート等の硬化剤を含んでもよい。硬化剤を含む場合、樹脂コート層は、上記バインダーの硬化物を含む形態となる。 Examples of the binder for the resin coating layer include cellulose esters, polycarbonates, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyethylene naphthalate and other polyesters, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, Cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, syndiotactic polystyrene, polycarbonate, polynorbornene, polymethylpentene, polyether ketone, polyether ketone imide, polyamide Fluorine resin, nylon, polymethyl methacrylate, or acrylic resin It can gel. Among these, an acrylic resin is preferable. Further, the resin coat layer may contain a curing agent such as 2.4-tolylene diisocyanate. When the curing agent is included, the resin coat layer includes a cured product of the binder.
 腐食防止剤としては、光反射層を構成する金属に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属がそれをとり囲む環境物質によって、化学的もしくは電気化学的に浸食されるかまたは材質的に劣化する現象をいう(JIS Z0103:2004参照)。なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0g/mの範囲内であることが好ましい。 As a corrosion inhibitor, it is preferable to have an adsorptive group with respect to the metal which comprises a light reflection layer. Here, “corrosion” refers to a phenomenon in which a metal is chemically or electrochemically eroded or deteriorated in material by an environmental substance surrounding it (see JIS Z0103: 2004). The optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
 金属に対する吸着性基を有する腐食防止剤としては、例えば、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系化合物の少なくとも1種またはこれらの2種以上の混合物から選ばれることが好ましい。ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。さらに具体的には、特開2012-232538号公報の段落「0063」~「0072」に記載の腐食防止剤を使用することができる。 Examples of the corrosion inhibitor having an adsorptive group for metals include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and imidazole rings. It is preferable to be selected from at least one of a compound having an indazole ring, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene compound, or a mixture of two or more thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. More specifically, the corrosion inhibitors described in paragraphs “0063” to “0072” of JP2012-232538A can be used.
 [ガスバリア層]
 銀反射層よりも光入射側にガスバリア層を設けてもよい。ガスバリア層は、湿度の変動、特に高湿度による樹脂基材および樹脂基材に支持される各構成層等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、上記劣化防止機能を有する限りにおいて、種々の態様のガスバリア層を設けることができる。
[Gas barrier layer]
A gas barrier layer may be provided on the light incident side of the silver reflective layer. The gas barrier layer is intended to prevent deterioration of the humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but it has special functions and applications. As long as it has the function of preventing deterioration, a gas barrier layer of various modes can be provided.
 ガスバリア層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下であることが好ましく、0.5g/m・day以下であることがより好ましく、0.2g/m・day以下であることがさらに好ましい。また、ガスバリア層の酸素透過度としては、測定温度23℃、90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 The moisture-proof barrier layer, 40 ° C., the water vapor permeability at 90% RH, is preferably not more than 1g / m 2 · day, more preferably at most 0.5g / m 2 · day, 0 More preferably, it is 2 g / m 2 · day or less. In addition, the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and 90% RH.
 ガスバリア層の形成方法は、真空蒸着法、スパッタリング法、イオンビームアシスト法、化学気相成長法等の方法により無機酸化物を形成する方法が挙げられるが、ゾル-ゲル法による無機酸化物の前駆体を塗布した後に、その塗布膜に加熱処理および/または紫外線照射処理を施して、無機酸化物膜を形成する方法も好ましく用いられる。 Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as a vacuum deposition method, a sputtering method, an ion beam assist method, a chemical vapor deposition method, etc., but a precursor of an inorganic oxide by a sol-gel method. A method of forming an inorganic oxide film by applying a heat treatment and / or ultraviolet irradiation treatment to the coating film after coating the body is also preferably used.
 無機酸化物は、有機金属化合物を原料とするゾルから局所的加熱により形成されたものである。例えば、有機金属化合物に含有されているケイ素、アルミニウム、ジルコニウム、チタン、タンタル、亜鉛、バリウム、インジウム、スズ、ニオブ等の元素の酸化物であり、例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等である。これらのうち、好ましくは酸化ケイ素である。 The inorganic oxide is formed by local heating from a sol using an organometallic compound as a raw material. For example, oxides of elements such as silicon, aluminum, zirconium, titanium, tantalum, zinc, barium, indium, tin, and niobium contained in the organometallic compound, such as silicon oxide, aluminum oxide, zirconium oxide, etc. is there. Of these, silicon oxide is preferred.
 無機酸化物を形成する方法としては、いわゆるゾル-ゲル法またはポリシラザン法を用いることが好ましい。ゾル-ゲル法は無機酸化物の前駆体である有機金属化合物から無機酸化物を形成する方法であり、ポリシラザン法は無機酸化物の前駆体であるポリシラザンから無機酸化物を形成する方法である。ゾル-ゲル法に用いられる化合物や詳細については、特開2012-232538号公報の段落「0174」~「0191」に記載の化合物や方法を適宜採用することができる。 As a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method. The sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide, and the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide. For the compounds and details used in the sol-gel method, the compounds and methods described in paragraphs “0174” to “0191” of JP2012-232538A can be appropriately employed.
 [アンカー層]
 アンカー層は樹脂からなり、樹脂基材および光反射層、または光反射層の支持基材(樹脂フィルム)および光反射層を密着させるために設けられる層である。したがって、アンカー層は、樹脂基材(支持基材)と光反射層とを密着させる密着性、光反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、および光反射層が本来有する高い反射性能を引き出すための平滑性を有することが好ましい。
[Anchor layer]
The anchor layer is made of a resin, and is a layer provided for closely attaching the resin base material and the light reflection layer, or the support base material (resin film) of the light reflection layer and the light reflection layer. Therefore, the anchor layer has an adhesion property for closely adhering the resin base material (support base material) and the light reflection layer, heat resistance that can withstand heat when the light reflection layer is formed by a vacuum deposition method, and the light reflection layer. It is preferable to have smoothness to bring out the high reflection performance inherent in the.
 アンカー層に使用する樹脂は、上記の密着性、耐熱性、および平滑性の条件を満足するものであれば特に制限はなく、例えば、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体樹脂等の単独またはこれらの混合樹脂等が使用できる。耐候性の点からポリエステル樹脂とメラミン樹脂との混合樹脂またはポリエステル樹脂とウレタン樹脂との混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。硬化剤を混合した場合、アンカー層は、上記熱硬化型樹脂の硬化物を含む形態となる。 The resin used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness. For example, polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, Polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc. can be used alone or in combination. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin or a mixed resin of a polyester resin and a urethane resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable. When a hardening | curing agent is mixed, an anchor layer becomes a form containing the hardened | cured material of the said thermosetting resin.
 アンカー層の厚さは、好ましくは0.01~3μm、より好ましくは0.1~2μmである。この範囲を満たすことにより、密着性を保ちつつ、樹脂基材表面の凹凸を覆い隠すことができ、平滑性を良好にでき、アンカー層の硬化も十分に行えるため、結果としてフィルムミラーの反射率を高めることが可能となる。 The thickness of the anchor layer is preferably 0.01 to 3 μm, more preferably 0.1 to 2 μm. By satisfying this range, the unevenness of the resin substrate surface can be covered while maintaining the adhesion, smoothness can be improved, and the anchor layer can be sufficiently cured, resulting in the reflectivity of the film mirror. Can be increased.
 また、アンカー層には、上述の[樹脂コート層]の項に記載の腐食防止剤を含有させることができる。 Further, the anchor layer can contain the corrosion inhibitor described in the above section [Resin coat layer].
 アンカー層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the anchor layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 [粘着層]
 フィルムミラーの粘着層は、当該粘着層によってフィルムミラーを支持体に貼り付けて、太陽光発電用反射装置を形成するための層である。なお、フィルムミラーは粘着層の光入射側とは逆側に剥離層を有していてもよい。フィルムミラーが剥離層を有する場合、剥離層を粘着層から剥離した後、粘着層を介してフィルムミラーを支持体に貼り付けることができる。
[Adhesive layer]
The adhesive layer of a film mirror is a layer for attaching a film mirror to a support by the adhesive layer to form a solar power generation reflective device. The film mirror may have a release layer on the side opposite to the light incident side of the adhesive layer. When a film mirror has a peeling layer, after peeling a peeling layer from an adhesion layer, a film mirror can be affixed on a support body through an adhesion layer.
 粘着層としては、特に制限されず、例えば、ドライラミネート剤、ウェットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、アクリル樹脂、ニトリルゴム等が用いられる。ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性および生産性の点から好ましい。また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。 The adhesive layer is not particularly limited, and for example, any of a dry laminate agent, a wet laminate agent, an adhesive agent, a heat seal agent, a hot melt agent, and the like is used. Examples of the adhesive include polyester resin, polyurethane resin, polyvinyl acetate resin, acrylic resin, and nitrile rubber. The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity. The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 μm from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like.
 [剥離層]
 本発明のフィルムミラーは、粘着層の光入射側と逆側に剥離層を有していてもよい。例えば、フィルムミラーの出荷時には剥離層が粘着層に張り付いた状態で出荷し、剥離層から粘着層を有するフィルムミラーを剥離し、他の基材に貼り合わせて太陽光反射用ミラーを形成することができる。
[Peeling layer]
The film mirror of the present invention may have a release layer on the side opposite to the light incident side of the adhesive layer. For example, when a film mirror is shipped, it is shipped with the release layer attached to the adhesive layer, the film mirror having the adhesive layer is peeled off from the release layer, and is bonded to another substrate to form a solar reflective mirror. be able to.
 剥離層としては、光反射層の保護性を付与できるものであればよく、例えば、アクリルフィルムもしくはシート、ポリカーボネートフィルムもしくはシート、ポリアリレートフィルムもしくはシート、ポリエチレンナフタレートフィルムもしくはシート、ポリエチレンテレフタレートフィルムもしくはシート、フッ素樹脂フィルムなどのプラスチックフィルムもしくはシート、または酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルムもしくはシート、これらを練り込んだ樹脂をコーティングしたりアルミニウム等の金属を金属蒸着などの表面加工を施したりした樹脂フィルムもしくはシートが用いられる。 The release layer is not particularly limited as long as it can provide protection of the light reflecting layer. For example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or sheet , Plastic film or sheet such as fluororesin film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., coating the resin kneaded with these, or depositing metal such as aluminum on metal A resin film or sheet that has been subjected to surface treatment is used.
 剥離層の厚さは、特に制限はないが、通常12~250μmの範囲であることが好ましい。 The thickness of the release layer is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 また、これらの剥離層をフィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよい。 In addition, it may be bonded after providing a recess or projection before bonding these release layers to the film mirror, or may be molded to have a recess or projection after bonding, You may simultaneously shape | mold so that it may have a recessed part and a convex part.
 [太陽熱発電用反射装置]
 本発明の太陽熱発電用反射装置は、本発明のフィルムミラーと、自己支持性の支持体とを有し、粘着層を介してフィルムミラーが支持体に接合されている。すなわち、本発明は、本発明のフィルムミラーと、支持体と、を有する太陽熱発電用反射装置をも提供する。
[Reflector for solar thermal power generation]
The solar power generation reflecting device of the present invention has the film mirror of the present invention and a self-supporting support, and the film mirror is bonded to the support through an adhesive layer. That is, this invention also provides the solar power generation reflective apparatus which has the film mirror of this invention, and a support body.
 自己支持性の支持体は、以下のAおよびBのいずれかの構成を有することが好ましい。 The self-supporting support preferably has one of the following configurations A and B.
 A:一対の金属平板と、当該金属平板の間に設けられた中間層とを有し、当該中間層は中空構造を有する層または樹脂材料から構成される層である。 A: It has a pair of metal flat plates and an intermediate layer provided between the metal flat plates, and the intermediate layer is a layer having a hollow structure or a layer made of a resin material.
 B:中空構造を有する樹脂材料層からなる。 B: A resin material layer having a hollow structure.
 「自己支持性の支持体」という場合の、「自己支持性」とは、太陽熱発電用反射装置の支持体として用いられる大きさに断裁された場合において、その対向する端縁部分を支持することで、支持体を担持することが可能な程度の剛性を有することを表す。太陽熱発電用反射装置の支持体が自己支持性を有することで、太陽熱発電用反射装置を設置する際に取り扱い性に優れるとともに、太陽熱発電用反射装置を保持するための保持部材を簡素な構成とすることが可能となるため、反射装置を軽量化することが可能となり、太陽追尾の際の消費電力を抑制することが可能となる。 In the case of “self-supporting support”, “self-supporting” means supporting the opposite edge portions when cut to a size used as a support for a solar power generation reflector. This means that the support body is rigid enough to carry the support. The support body of the solar power generation reflection device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflection device, and the holding member for holding the solar power generation reflection device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device, and it is possible to suppress power consumption during solar tracking.
 構成Aのように、自己支持性の支持体を、一対の金属平板と、当該金属平板の間に設けられた中間層からなる構成とし、中間層は中空構造を有する層か樹脂材料から構成される層とすることにより、金属平板による高い平面性を有する。それとともに、中間層が中空構造を有する層か、樹脂材料から構成される層とされていることにより、金属平板のみで支持体を構成する場合に比べて、支持体を大幅に軽量化することが可能となるとともに、比較的軽量な中間層により剛性を上げることができるため、軽量かつ自己支持性を有する支持体とすることが可能となる。中間層として樹脂材料から構成される層を用いる場合においても、中空構造を有する樹脂材料の層とすることでさらに軽量化が可能である。 As in the configuration A, the self-supporting support is composed of a pair of metal flat plates and an intermediate layer provided between the metal flat plates, and the intermediate layer is formed of a layer having a hollow structure or a resin material. By having a layer having a high flatness due to a metal flat plate. At the same time, the intermediate layer is a layer having a hollow structure or a layer made of a resin material, so that the weight of the support can be significantly reduced compared to the case where the support is made of only a metal flat plate. In addition, since the rigidity can be increased by the relatively lightweight intermediate layer, it is possible to provide a lightweight and self-supporting support. Even when a layer made of a resin material is used as the intermediate layer, it is possible to further reduce the weight by using a resin material layer having a hollow structure.
 また、中間層を中空構造とした場合には、中間層が断熱材としての機能を果たすため、裏面の金属平板の温度変化がフィルムミラーへ伝わることを抑制し、結露の防止や、熱による劣化を抑制することが可能となる。 In addition, when the intermediate layer has a hollow structure, the intermediate layer functions as a heat insulating material, so that the temperature change of the metal flat plate on the back side is prevented from being transmitted to the film mirror, preventing condensation and deterioration due to heat. Can be suppressed.
 構成Aの表面層を形成する、金属平板としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料が好ましく用いることができる。本発明においては、特に、耐腐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることが好ましい。 As the metal flat plate forming the surface layer of the configuration A, steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc. A high metal material can be preferably used. In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
 構成Aの中間層を中空構造とする場合、金属、無機材料(ガラス等)、樹脂等の素材を用いることができる。中空構造としては、発泡樹脂からなる気泡構造、金属、無機材料または樹脂材料からなる壁面を有する立体構造(ハニカム構造等)や、中空微粒子を添加した樹脂材料等を用いることができる。発泡樹脂の気泡構造は、樹脂材料中にガスを細かく分散させ、発泡状または多孔質形状に形成されたものを指し、材料としては、公知の発泡樹脂材料を使用可能であるが、ポリオレフィン樹脂、ポリウレタン、ポリエチレン、ポリスチレン等が好ましく用いられる。ハニカム構造とは、空間が側壁で囲まれた複数の小空間で構成される立体構造全般を表すものとする。中空構造を樹脂材料からなる壁面を有する立体構造とする場合、壁面を構成する樹脂材料としては、エチレン、プロピレン、ブテン、イソプレンペンテン、メチルペンテン等のオレフィン類の単独重合体または共重合体であるポリオレフィン(例えば、ポリプロピレン、高密度ポリエチレン)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリアクリロニトリル、エチレン-アクリル酸エチル共重合体等のアクリル誘導体、ポリカーボネート、エチレン-酢酸ビニル共重合体等の酢酸ビニル共重合体、アイオノマー、エチレン-プロピレン-ジエン類等のターポリマー、ABS樹脂、ポリオレフィンオキサイド、ポリアセタール等の熱可塑性樹脂が好ましく用いられる。なお、これらは1種を単独で用いても、2種以上を混合して用いてもよい。熱可塑性樹脂のなかでもポリオレフィン樹脂またはポリオレフィン樹脂を主体にした樹脂が好ましく、ポリプロピレン樹脂またはポリプロピレン樹脂を主体にした樹脂が、機械的強度および成形性のバランスに優れている点でより好ましい。樹脂材料には、添加剤が含まれていてもよく、その添加剤としては、シリカ、マイカ、タルク、炭酸カルシウム、ガラス繊維、カーボン繊維等の無機フィラー、可塑剤、安定剤、着色剤、帯電防止剤、難燃剤、発泡剤等が挙げられる。 When the intermediate layer of the configuration A has a hollow structure, a material such as a metal, an inorganic material (glass or the like), or a resin can be used. As the hollow structure, a cellular structure made of foamed resin, a three-dimensional structure (honeycomb structure or the like) having a wall surface made of metal, an inorganic material or a resin material, a resin material to which hollow fine particles are added, or the like can be used. The cellular structure of the foamed resin refers to a gas that is finely dispersed in the resin material and formed into a foamed or porous shape. As the material, a known foamed resin material can be used, but a polyolefin resin, Polyurethane, polyethylene, polystyrene and the like are preferably used. The honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls. When the hollow structure is a three-dimensional structure having a wall surface made of a resin material, the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene. Polyolefin (eg, polypropylene, high density polyethylene), polyamide, polystyrene, polyvinyl chloride, polyacrylonitrile, acrylic derivatives such as ethylene-ethyl acrylate copolymer, polycarbonate, vinyl acetate copolymer such as ethylene-vinyl acetate copolymer Polymers, ionomers, terpolymers such as ethylene-propylene-dienes, and thermoplastic resins such as ABS resins, polyolefin oxides, and polyacetals are preferably used. In addition, these may be used individually by 1 type, or may mix and use 2 or more types. Among the thermoplastic resins, polyolefin resins or resins mainly composed of polyolefin resins are preferable, and polypropylene resins or resins mainly composed of polypropylene resins are more preferable because of excellent balance between mechanical strength and moldability. The resin material may contain an additive. Examples of the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents. An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
 また、中間層を樹脂プレートからなる層とすることも可能であり、この場合に中間層を構成する樹脂材料としては、前述のフィルムミラーの支持体を構成する材料と同様のものを好ましく用いることができる。 In addition, the intermediate layer can be a layer made of a resin plate. In this case, the resin material constituting the intermediate layer is preferably the same as the material constituting the support for the film mirror described above. Can do.
 中間層は、基材の全ての領域に設けられる必要はなく、金属平板の平面性および支持体としての自己支持性を担保できる範囲であれば、一部の領域に設けられていてもよい。中間層を上述の立体構造とする場合、金属平板の面積に対して、90~95%程度の領域に立体構造を設けることが好ましく、発泡樹脂を用いる場合は、30~40%程度の領域に設けることが好ましい。 The intermediate layer need not be provided in all regions of the substrate, and may be provided in a part of the region as long as the flatness of the metal flat plate and the self-supporting property as the support can be ensured. When the intermediate layer has the above-described three-dimensional structure, it is preferable to provide the three-dimensional structure in a region of about 90 to 95% with respect to the area of the metal flat plate. It is preferable to provide it.
 上記の構成Bのように、自己支持性の支持体を、中空構造を有する樹脂材料からなる層とすることも可能である。支持体を樹脂のみからなる層とした場合、自己支持性を持たせる程度の剛性を得るために必要な厚さが大きくなり、結果として支持体の質量が重くなるが、樹脂基材に中空構造を持たせることにより、自己支持性を持たせながら軽量化が可能となる。中空構造を有する樹脂材料からなる層とする場合、表面層として平滑な面を有する樹脂シートを設け、中空構造を有する樹脂材料を中間層として用いることが、フィルムミラーの正反射率を高める観点で好ましい。この樹脂シートの材料としては、前述のフィルムミラーの樹脂基材を構成する材料と同様のものを好ましく用いることができ、中空構造を構成する樹脂材料としては、上述の発泡材料や、立体構造に用いられるものと同様の樹脂材料を好ましく用いることができる。 As in the above configuration B, the self-supporting support may be a layer made of a resin material having a hollow structure. When the support is made of a resin-only layer, the thickness required to obtain rigidity sufficient to provide self-supporting properties increases, and as a result, the mass of the support becomes heavy. By providing the weight, it is possible to reduce the weight while providing a self-supporting property. In the case of a layer made of a resin material having a hollow structure, a resin sheet having a smooth surface is provided as a surface layer, and the resin material having a hollow structure is used as an intermediate layer from the viewpoint of increasing the regular reflectance of the film mirror. preferable. As the material of this resin sheet, the same material as that constituting the resin substrate of the above-mentioned film mirror can be preferably used, and as the resin material constituting the hollow structure, the above-mentioned foamed material or three-dimensional structure can be used. The same resin material as that used can be preferably used.
 〔保持部材〕
 本発明に係る太陽熱発電用反射装置は、保持部材を有してもよい。保持部材は、フィルムミラーおよび支持体を、太陽を追尾可能な状態で保持することが好ましい。保持部材の形態としては、特に制限はないが、例えば、フィルムミラーおよび支持体が所望の形状を保持できるように、複数個所を棒状の保持部材により、保持する形態が好ましい。保持部材は太陽を追尾可能な状態でフィルムミラーおよび支持体を保持する構成を有するが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。
[Holding member]
The solar power generation reflecting device according to the present invention may have a holding member. The holding member preferably holds the film mirror and the support in a state where the sun can be tracked. Although there is no restriction | limiting in particular as a form of a holding member, For example, the form which hold | maintains several places with a rod-shaped holding member is preferable so that a film mirror and a support body can hold | maintain a desired shape. The holding member has a configuration for holding the film mirror and the support in a state where the sun can be tracked. However, when the sun is tracked, it may be driven manually, or a separate drive device may be provided to automatically track the sun. It is good also as a structure.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Further, in the examples, “part” or “%” is used, but “part by mass” or “% by mass” is expressed unless otherwise specified. Further, in the following operations, unless otherwise specified, operations and physical properties are measured under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 (実施例1)
 樹脂基材として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム(PET)、厚さ25μm)を用いた。ハードコート隣接層形成用塗布液として、ポリメタクリル酸メチル(PMMA)樹脂(EMB457、三菱レイヨン株式会社製)、アクリルゴム(デルペットSRB215、旭化成ケミカルズ株式会社製)、および1,6-ヘキサメチレンジイソシアネートを、固形分比率で17:3:2(質量比)となるように、さらに、ヤング率調整用の粒子として、株式会社ナノ炭素研究所製のナノダイヤモンドである「ナノアマンド」をPMMA樹脂に対して20質量%添加し、固形分全体の濃度が22質量%となるようにメチルエチルケトン中で上記の成分を混合したものを調製した。得られた塗布液を、バーコート法にて上記PETフィルムの一方の面にコーティングし、80℃で1分間乾燥することにより硬化処理を行い、PMMA樹脂およびアクリルゴムの硬化物を含む厚さ25μmのハードコート隣接層を形成した。
Example 1
A biaxially stretched polyester film (polyethylene terephthalate film (PET), thickness 25 μm) was used as the resin substrate. As a coating liquid for forming a hard coat adjacent layer, polymethyl methacrylate (PMMA) resin (EMB457, manufactured by Mitsubishi Rayon Co., Ltd.), acrylic rubber (Delpet SRB215, manufactured by Asahi Kasei Chemicals Corporation), and 1,6-hexamethylene diisocyanate As a particle for adjusting the Young's modulus so that the solid content ratio is 17: 3: 2 (mass ratio), “Nanoamand” which is nanodiamond made by Nanocarbon Laboratory Co., Ltd. is applied to PMMA resin. 20% by mass was added, and the above components were mixed in methyl ethyl ketone so that the concentration of the entire solid content was 22% by mass. The obtained coating solution is coated on one surface of the PET film by a bar coating method, and cured by drying at 80 ° C. for 1 minute, and has a thickness of 25 μm including a cured product of PMMA resin and acrylic rubber. A hard coat adjacent layer was formed.
 次に、ハードコート層形成用塗布液として、アクリルシリコーン系熱硬化型樹脂のサーコートBP-16N(株式会社動研製、45質量%のメタノール溶液)を1-プロパノールで固形分が30質量%になるように塗布液を作製した。この塗布液を、バーコート法にてハードコート隣接層上にコーティングし、80℃で1分間乾燥することにより硬化処理を行い、該アクリルシリコーン系熱硬化型樹脂の硬化物を含む厚さ3μmのハードコート層を形成した。 Next, as a coating liquid for forming a hard coat layer, an acrylic silicone-based thermosetting resin Surcoat BP-16N (manufactured by Kinken Co., Ltd., 45 mass% methanol solution) is added with 1-propanol to a solid content of 30 mass%. A coating solution was prepared as described above. This coating solution is coated on the hard coat adjacent layer by the bar coating method, and is cured by drying at 80 ° C. for 1 minute, and a thickness of 3 μm including the cured product of the acrylic silicone thermosetting resin is applied. A hard coat layer was formed.
 次いで、樹脂基材のハードコート隣接層を形成した反対側の面に、真空蒸着法にて厚さ100nmのアルミニウムからなる光反射層を形成した。 Next, a light reflecting layer made of aluminum having a thickness of 100 nm was formed on the opposite surface of the resin base material on which the hard coat adjacent layer was formed by a vacuum deposition method.
 ポリエステル樹脂と2.4-トリレンジイソシアネートとを、質量比で10:2に混合した混合物に対して、アルミニウムの腐食防止剤として2-メルカプトベンゾチアゾールを、上記混合物に対して10質量%となるように添加し、さらにメチルエチルケトン中での固形分濃度が5質量%となるようにして、腐食防止層形成用塗布液を調製した。この塗布液を、グラビアコート法により光反射層の樹脂基材がある側とは反対側の光反射層上にコーティングし、80℃で1分間乾燥することにより硬化処理を行い、該ポリエステル樹脂の硬化物を含む厚さ3μmの腐食防止層を形成した。 2-Mercaptobenzothiazole as an aluminum corrosion inhibitor is 10% by mass with respect to the above mixture of polyester resin and 2.4-tolylene diisocyanate mixed at a mass ratio of 10: 2. In addition, a coating solution for forming a corrosion prevention layer was prepared such that the solid content concentration in methyl ethyl ketone was 5% by mass. This coating solution is coated on the light reflecting layer opposite to the side where the resin substrate of the light reflecting layer is provided by the gravure coating method, and cured at 80 ° C. for 1 minute to perform a curing treatment. A corrosion prevention layer having a thickness of 3 μm including the cured product was formed.
 このようにして、フィルムミラーを得た。 Thus, a film mirror was obtained.
 (実施例2)
 ハードコート隣接層形成用塗布液中へのナノダイヤモンドの添加量を10質量%に変更したこと以外は、実施例1と同様にして、フィルムミラーを作製した。
(Example 2)
A film mirror was produced in the same manner as in Example 1 except that the amount of nanodiamond added to the hard coat adjacent layer forming coating solution was changed to 10% by mass.
 (実施例3)
 ハードコート隣接層形成用塗布液に添加する粒子を、PMMA樹脂に対して10質量%のシリカ粒子(富士シリシア化学株式会社製、サイリシア(登録商標)470)に変更し、さらに、ハードコート隣接層形成用塗布液に、DIC株式会社製のUV反応型表面改質剤であるメガファック(登録商標)RS-76EをPMMA樹脂に対して0.05質量%添加したこと以外は、実施例1と同様にしてフィルムミラーを作製した。
Example 3
The particles added to the coating liquid for forming the hard coat adjacent layer were changed to 10% by mass of silica particles (Fuji Silysia Chemical Co., Ltd., Silicia (registered trademark) 470) with respect to the PMMA resin. Except that 0.05% by mass of Megafac (registered trademark) RS-76E, a UV reaction type surface modifier manufactured by DIC Corporation, was added to the PMMA resin in the coating solution for formation, Example 1 A film mirror was produced in the same manner.
 (実施例4)
 メガファック(登録商標)RS-76Eの添加量を0.1質量%に変更したこと以外は、実施例3と同様にして、フィルムミラーを作製した。
Example 4
A film mirror was produced in the same manner as in Example 3 except that the amount of addition of Megafac (registered trademark) RS-76E was changed to 0.1% by mass.
 (実施例5)
 ハードコート隣接層形成用塗布液に添加する粒子を、PMMA樹脂に対して8質量%のアルミニウム粒子(ミナルコ株式会社製、アトマイズアルミニウム粉末350F)に変更したこと以外は、実施例4と同様にして、フィルムミラーを作製した。
(Example 5)
Except that the particles added to the hard coat adjacent layer forming coating solution were changed to 8 mass% aluminum particles (Minaluco's atomized aluminum powder 350F) with respect to the PMMA resin, the same as in Example 4. A film mirror was prepared.
 (実施例6)
 ハードコート隣接層形成用塗布液中のアルミニウム粒子の添加量を10質量%とし、さらに、光反射層を、真空蒸着法により形成した厚さ100nmの銀からなる層に変更したこと以外は、実施例5と同様にして、フィルムミラーを作製した。
(Example 6)
Implementation was performed except that the amount of aluminum particles added in the hard coat adjacent layer forming coating solution was 10% by mass and the light reflecting layer was changed to a layer made of 100 nm thick silver formed by vacuum deposition. A film mirror was produced in the same manner as in Example 5.
 (比較例1)
 ヤング率調整用の粒子をハードコート隣接層形成用塗布液に添加しなかったこと以外は、実施例1と同様にして、フィルムミラーを作製した。
(Comparative Example 1)
A film mirror was prepared in the same manner as in Example 1 except that the Young's modulus adjusting particles were not added to the hard coat adjacent layer forming coating solution.
 (比較例2)
 ハードコート隣接層形成用塗布液に、メガファック(登録商標)RS-76EをPMMA樹脂に対して0.075質量%添加したこと以外は、比較例1と同様にして、フィルムミラーを作製した。
(Comparative Example 2)
A film mirror was produced in the same manner as in Comparative Example 1, except that 0.075% by mass of Megafac (registered trademark) RS-76E was added to the hard coat adjacent layer forming coating solution with respect to the PMMA resin.
 (比較例3)
 メガファック(登録商標)RS-76Eの添加量を0.1質量%に変更したこと以外は、比較例2と同様にして、フィルムミラーを作製した。
(Comparative Example 3)
A film mirror was produced in the same manner as in Comparative Example 2, except that the amount of MegaFac (registered trademark) RS-76E was changed to 0.1% by mass.
 (比較例4)
 ハードコート隣接層形成用塗布液に、ヤング率調整用の粒子としてアルミニウム粒子(ミナルコ株式会社製、アトマイズアルミニウム粉末350F)をPMMA樹脂に対して6質量%添加したこと以外は、比較例2と同様にして、フィルムミラーを作製した。
(Comparative Example 4)
The same as Comparative Example 2 except that 6% by mass of aluminum particles (manufactured by Minalco Co., Ltd., atomized aluminum powder 350F) as Young's modulus adjusting particles were added to the hard coat adjacent layer forming coating solution. Thus, a film mirror was produced.
 [評価]
 得られたフィルムミラーは、以下の動摩擦係数測定、初期反射率測定、およびスクラッチ後反射率測定により評価した。
[Evaluation]
The obtained film mirror was evaluated by the following dynamic friction coefficient measurement, initial reflectance measurement, and post-scratch reflectance measurement.
 (動摩擦係数測定)
 フィルムミラー試料を10cm×20cmの大きさに切り出し、JIS K7125:1999に準拠して、ハードコート層の動摩擦係数を測定した。
(Dynamic friction coefficient measurement)
A film mirror sample was cut into a size of 10 cm × 20 cm, and the dynamic friction coefficient of the hard coat layer was measured in accordance with JIS K7125: 1999.
 (初期反射率測定)
 フィルムミラー試料を5cm×5cmの大きさに切り出し、分光光度計U-4100(株式会社島津製作所製)を使用し、反射面の法線に対して、入射角5°となるように調整し、反射角5°の正反射率を測定した。評価は、250nm~2500nmの平均反射率として測定した。
(Initial reflectance measurement)
A film mirror sample was cut into a size of 5 cm × 5 cm, and adjusted using a spectrophotometer U-4100 (manufactured by Shimadzu Corporation) so that the incident angle was 5 ° with respect to the normal of the reflecting surface. The regular reflectance at a reflection angle of 5 ° was measured. Evaluation was carried out as an average reflectance of 250 nm to 2500 nm.
 (スクラッチ後反射率測定)
 フィルムミラー試料を5cm×10cmの大きさに切り出し、スクラッチ試験を行った。スクラッチ試験は、新東科学株式会社製の表面性測定機、トライボステーション TYPE:32を用い、500g/cmの荷重がかかるようにして、スチールウールを500mm/分の速度で10往復させた。スクラッチ試験後、初期反射率測定と同様にして、反射角5°の正反射率を測定した。
(Reflectance measurement after scratch)
A film mirror sample was cut into a size of 5 cm × 10 cm and a scratch test was performed. In the scratch test, a surface property measuring machine manufactured by Shinto Kagaku Co., Ltd., Tribo Station TYPE: 32, was used, and steel wool was reciprocated 10 times at a speed of 500 mm / min so that a load of 500 g / cm 2 was applied. After the scratch test, the regular reflectance at a reflection angle of 5 ° was measured in the same manner as the initial reflectance measurement.
 (ハードコート隣接層のヤング率測定)
 ハードコート隣接層のヤング率を測定するために、ハードコート隣接層の単膜試料を1cm×5cmの短冊状に切り出した。この単膜試料を、株式会社エー・アンド・デイ製のテンシロン万能材料試験機、RTF-2430を用いて、50mm/分の速さで引っ張り試験を行い、ヤング率を求めた。
(Measurement of Young's modulus of the hard coat adjacent layer)
In order to measure the Young's modulus of the hard coat adjacent layer, a single film sample of the hard coat adjacent layer was cut into a 1 cm × 5 cm strip. This single membrane sample was subjected to a tensile test at a speed of 50 mm / min using a Tensilon universal material testing machine, RTF-2430, manufactured by A & D Co., Ltd., and the Young's modulus was obtained.
 実施例および比較例のフィルムミラーの構成、および評価結果を表1に示す。なお、表1中の「Δ反射率」は、スクラッチ後反射率と初期反射率との差を示しており、0に近いほど、表面スクラッチ後の正反射率の低下が少なく、耐擦傷性に優れていることを表す。 Table 1 shows the configurations and evaluation results of the film mirrors of Examples and Comparative Examples. The “Δ reflectance” in Table 1 indicates the difference between the reflectance after scratch and the initial reflectance. The closer to 0, the smaller the decrease in regular reflectance after surface scratching, and the better the scratch resistance. Expresses superiority.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、本発明のフィルムミラーは、表面スクラッチ後の正反射率の低下が少なく、表面の耐擦傷性に優れている。 As is apparent from Table 1 above, the film mirror of the present invention has little decrease in regular reflectance after surface scratching and is excellent in surface scratch resistance.
 なお、本出願は、2014年1月31日に出願された日本特許出願第2014-17960号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2014-17960 filed on January 31, 2014, the disclosure of which is incorporated by reference in its entirety.

Claims (6)

  1.  樹脂基材および光反射層と、
     最も光入射側に位置するハードコート層と、
     前記ハードコート層に隣接して設けられるハードコート隣接層と、
    を有し、
     前記ハードコート隣接層のヤング率が4.5GPa以上である、フィルムミラー。
    A resin substrate and a light reflecting layer;
    A hard coat layer located closest to the light incident side;
    A hard coat adjacent layer provided adjacent to the hard coat layer;
    Have
    The film mirror whose Young's modulus of the said hard-coat adjacent layer is 4.5 GPa or more.
  2.  前記ハードコート隣接層のヤング率が20GPa以下である、請求項1に記載のフィルムミラー。 The film mirror according to claim 1, wherein the Young's modulus of the hard coat adjacent layer is 20 GPa or less.
  3.  前記ハードコート層の動摩擦係数が0.4以下である、請求項1または2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein the dynamic friction coefficient of the hard coat layer is 0.4 or less.
  4.  前記ハードコート層の動摩擦係数が0.25以下である、請求項3に記載のフィルムミラー。 The film mirror according to claim 3, wherein a dynamic friction coefficient of the hard coat layer is 0.25 or less.
  5.  前記光反射層が銀からなる、請求項1~4のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 4, wherein the light reflecting layer is made of silver.
  6.  請求項1~5のいずれか1項に記載のフィルムミラーと、
     支持体と、
    を有する、太陽熱発電用反射装置。
    A film mirror according to any one of claims 1 to 5;
    A support;
    A solar power generation reflecting device.
PCT/JP2015/051583 2014-01-31 2015-01-21 Film mirror and reflective device for solar thermal power generation WO2015115278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559889A JPWO2015115278A1 (en) 2014-01-31 2015-01-21 Reflector for film mirror and solar power generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014017960 2014-01-31
JP2014-017960 2014-01-31

Publications (1)

Publication Number Publication Date
WO2015115278A1 true WO2015115278A1 (en) 2015-08-06

Family

ID=53756855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051583 WO2015115278A1 (en) 2014-01-31 2015-01-21 Film mirror and reflective device for solar thermal power generation

Country Status (2)

Country Link
JP (1) JPWO2015115278A1 (en)
WO (1) WO2015115278A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227902A (en) * 2002-02-05 2003-08-15 Fuji Photo Film Co Ltd Antireflection hard coat film and image display using the same
JP2007144926A (en) * 2005-11-30 2007-06-14 Toppan Printing Co Ltd Electroconductive anti-reflection laminate and display
WO2011096309A1 (en) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 Film mirror, process for producing same, and sunlight-reflecting mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227902A (en) * 2002-02-05 2003-08-15 Fuji Photo Film Co Ltd Antireflection hard coat film and image display using the same
JP2007144926A (en) * 2005-11-30 2007-06-14 Toppan Printing Co Ltd Electroconductive anti-reflection laminate and display
WO2011096309A1 (en) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 Film mirror, process for producing same, and sunlight-reflecting mirror

Also Published As

Publication number Publication date
JPWO2015115278A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2011162154A1 (en) Reflective panel for solar power generation
WO2015041015A1 (en) Composite film and film mirror for solar light reflection
JPWO2012026312A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
WO2015146655A1 (en) Light reflecting film
TWI620667B (en) Barrier laminate, gas barrier film, and device
JP2015011271A (en) Light-reflecting film, and light-reflecting body and light-reflecting device using the same
JP2016137666A (en) Light reflection film, and light reflector and light reflection device using the same
JP2015210335A (en) Film mirror and reflection device
JP2015087625A (en) Reflector and manufacturing method therefor
WO2015122337A1 (en) Film mirror and reflection device for solar power generation
WO2013141304A1 (en) Film mirror, and reflection device for solar power generation
WO2015115278A1 (en) Film mirror and reflective device for solar thermal power generation
WO2015064312A1 (en) Film mirror and light reflection device for solar heat reflection using same
JPWO2012026311A1 (en) Film mirror, film mirror manufacturing method, and solar power generation reflector
WO2015050217A1 (en) Manufacturing method for film mirror
JPWO2012057003A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP2012220675A (en) Laminate, and antireflection article and water-repellent article
WO2014061497A1 (en) Film mirror, and reflecting apparatus for solar thermal power generation
WO2014109354A1 (en) Film mirror and reflector for solar thermal power generation
JPWO2014061497A6 (en) Film mirror and reflector for solar power generation
WO2015029746A1 (en) Reflecting mirror for solar thermal power generation and reflective device for solar thermal power generation
JP2016170279A (en) Light reflection film, and light reflection body and sunlight reflection device having the same
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
JP2014214986A (en) Mirror for solar thermal power generation and reflection device for solar thermal power generation equipped with the same
JP2015125167A (en) Film mirror, method for manufacturing the same, and reflecting device for solar thermal power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742802

Country of ref document: EP

Kind code of ref document: A1