WO2015198762A1 - Optical reflective film, method for producing optical reflective film, and optical reflector using same - Google Patents

Optical reflective film, method for producing optical reflective film, and optical reflector using same Download PDF

Info

Publication number
WO2015198762A1
WO2015198762A1 PCT/JP2015/064537 JP2015064537W WO2015198762A1 WO 2015198762 A1 WO2015198762 A1 WO 2015198762A1 JP 2015064537 W JP2015064537 W JP 2015064537W WO 2015198762 A1 WO2015198762 A1 WO 2015198762A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
hard coat
film
optical
Prior art date
Application number
PCT/JP2015/064537
Other languages
French (fr)
Japanese (ja)
Inventor
當間 恭雄
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016529187A priority Critical patent/JPWO2015198762A1/en
Publication of WO2015198762A1 publication Critical patent/WO2015198762A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical reflection film and a method for producing the same.
  • the present invention also relates to an optical reflector using the optical reflective film or the optical reflective film produced by the production method.
  • Infrared shielding film that can selectively reflect infrared light and transmit visible light is usually a low refractive index layer having a relatively low refractive index and a high refractive index having a relatively high refractive index.
  • the rate layer has a laminated structure. At this time, for the high refractive index layer and the low refractive index layer, infrared light can be selectively reflected by controlling the optical film thickness, which is the product of the refractive index and the film thickness, to cause interference.
  • Such an optical reflection film transmits visible light and selectively shields near infrared rays, but the reflection wavelength can be controlled only by adjusting the film thickness and refractive index of each layer. Can be reflected.
  • Patent Document 1 a method of alternately laminating two kinds of resin layers having different refractive indexes (Patent Document 1), or by applying a water-soluble polymer mixed with a metal oxide, the refractive index differs.
  • Patent Document 2 A method of forming a near infrared reflecting layer by laminating layers (Patent Document 2) has been proposed.
  • An optical reflection film such as an infrared shielding film is often attached to a window glass of a building or a vehicle as described above. Therefore, for the purpose of preventing scratches on the surface during cleaning, etc., by applying actinic radiation curable resin, etc., a hard coat layer is formed on the outermost layer to improve the scratch resistance. There are many.
  • Conventional optical reflective films have a problem that the weather resistance may not be good, for example, when haze is increased or discolored by being attached to a window glass of a building or vehicle and exposed to a high temperature and high humidity state. Was. Moreover, the adhesiveness of the hard coat layer may not be sufficient, and there is a problem that the hard coat layer may be peeled off.
  • the present invention has been made in view of the above circumstances, and is an optical reflective film having excellent weather resistance and improved adhesion of the hard coat layer, a method for producing the same, and the optical reflective film or the method for producing the same.
  • An object of the present invention is to provide an optical reflector using the optical reflective film manufactured in the above manner.
  • the present inventor has at least one unit obtained by laminating a high refractive index layer and a low refractive index layer, and is formed by melt extrusion molding, And the optical reflective film comprising a hard coat layer formed by application of a hard coat coating solution, wherein the residual solvent in the film is 1 to 8 mg / g, the above problems are solved. As a result, the present invention has been completed.
  • the first aspect of the present invention is formed by application of a hard coat coating liquid, and a reflective portion formed by melt extrusion including at least one unit in which a high refractive index layer and a low refractive index layer are laminated.
  • An optical reflective film comprising a hard coat layer, wherein the residual solvent in the film is 1 to 8 mg / g.
  • a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding; at least one of the laminates is used as a hard coat coating solution.
  • a method of producing an optical reflective film comprising: coating on the surface side of the film to form a coating film; and drying so that a residual solvent in the laminate in which the coating film is formed is 1 to 8 mg / g. .
  • the third aspect of the present invention is an optical reflector in which the optical reflective film or the optical reflective film produced by the production method is provided on at least one surface of a substrate.
  • an optical reflective film having excellent weather resistance and improved adhesion of the hard coat layer a method for producing the same, and optical using the optical reflective film or the optical reflective film produced by the production method A reflector is provided.
  • the present inventor has found that when the residual solvent in the film increases, the weather resistance decreases and the adhesion of the hard coat layer decreases. Although it does not limit the technical scope of the present invention, this is because the deterioration of the material is promoted by the influence of the excessive residual solvent, and the curling of the film is caused by the gradual volatilization of the solvent. Presumed to be. Furthermore, when the residual solvent in a film was too few, it found out that workability deteriorated and adhesiveness also fell. Although it does not limit the technical scope of the present invention, it is difficult to adjust the position of the film during construction because the optical reflective film is extremely dry and the residual solvent is small, the film becomes hard and brittle. This is considered to be because folds and wrinkles are likely to occur.
  • X to Y indicating a range means “X or more and Y or less”, and unless otherwise specified, measurement of operation and physical properties is room temperature (20 to 25 ° C.) / Relative humidity 40 to 50. Measured under the condition of%.
  • FIG. 1 is a cross-sectional view schematically showing the optical reflective film according to the first aspect of the present invention.
  • the optical reflective film 10 shown in FIG. 1 light enters the hard coat layer 12 and the reflective portion 11 from the opposite side of the adhesive layer 13 as indicated by arrows.
  • the reflection portion 11 has a unit 113 in which a low refractive index layer 111 and a high refractive index layer 112 are laminated. By laminating layers having different refractive indexes in this way, light is reflected at the boundary surface, and an optical reflection function is exhibited.
  • FIG. 1 three units of a low refractive index layer and a high refractive index layer are laminated in order from the light incident direction as the reflective portion 11, but the reflective portion is laminated with a low refractive index layer and a high refractive index layer.
  • the number of low refractive index layers and the high refractive index layers and the stacking order are not particularly limited as long as at least one unit is included.
  • the optical reflection film 10 includes a hard coat layer 12 on the surface side where the light of the reflection portion 11 enters.
  • the optical reflective film 10 includes an adhesive layer 13 in the lowermost layer for attachment to a support base (substrate) (not shown).
  • an adhesion layer is not provided but a hard-coat layer may be provided in the surface of the both sides of an optical reflection film, for example.
  • the total thickness of the optical reflective film of this embodiment is preferably 20 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 300 ⁇ m, and further preferably 30 ⁇ m to 150 ⁇ m.
  • the optical reflective film according to one aspect of the present invention includes a reflective portion formed by melt extrusion including at least one unit in which a high refractive index layer and a low refractive index layer are laminated.
  • the reflecting portion is formed by alternately stacking high refractive index layers and low refractive index layers having different refractive indexes.
  • a refractive index difference between the low refractive index layer and the high refractive index layer exhibits a reflection function such as infrared rays and ultraviolet rays.
  • the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index (high refractive index layer) when comparing the refractive index difference between two adjacent layers.
  • the refractive index layer and / or the low refractive index layer are collectively referred to as a “refractive index layer”) as a high refractive index layer, and the lower refractive index layer as a low refractive index layer. means. Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer.
  • the terms “high refractive index layer” and “low refractive index layer” mean that, in each refractive index layer constituting the optical reflection film, when the two adjacent refractive index layers are focused, each refractive index layer has the same refractive index. All forms other than the forms having the above are included.
  • the number of low refractive index layers and high refractive index layers is not particularly limited, but is preferably 6 to 2000 (that is, 3 to 1000 units), more preferably 10 to 1500 ( That is, 5 to 750 units), more preferably 10 to 1000 (that is, 5 to 500 units). If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved.
  • the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably It is 0.2 or more, more preferably 0.25 or more.
  • the reflection part has a plurality of units of the low refractive index layer and the high refractive index layer, it is preferable that the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferable range.
  • the outermost layer and the lowermost layer of the reflective portion may have a configuration outside the above preferred range.
  • the lower refractive index layer preferably has a lower refractive index, but generally a resin having a refractive index in the range of 1.2 to 1.6 is preferably used.
  • the high refractive index layer preferably has a higher refractive index, but generally a resin having a refractive index in the range of 1.6 to 2.5 is preferably used.
  • the lowermost layer and the outermost layer may be either a high refractive index layer or a low refractive index layer.
  • a layer structure in which the low refractive index layer is located in the lowermost layer and the outermost layer, the adhesion to the lowermost substrate, the blowing resistance of the uppermost layer, and the application of a hard coat layer etc. to the outermost layer From the viewpoint of excellent properties and adhesion, a layer structure in which the lowermost layer and the outermost layer are low refractive index layers is preferable.
  • the refractive index is obtained as a difference between the high refractive index layer and the low refractive index layer according to the following method. That is, each refractive index layer is formed as a single layer (using a base material if necessary), and after cutting this sample into 10 cm ⁇ 10 cm, the refractive index is obtained according to the following method. Using a U-4000 type (manufactured by Hitachi, Ltd.) as a spectrophotometer, the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray.
  • the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result.
  • the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers.
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, it can be seen that if the refractive index difference is smaller than 0.1, 200 or more layers are required. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but it is substantially about 1.4.
  • n ⁇ d wavelength / 4 when viewed as a single layer film
  • the reflected light is controlled to be strengthened by the phase difference.
  • reflectivity can be increased.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the optical reflection film of the present invention can be made into a visible light reflection film or a near infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set to the visible light region, the visible light reflecting film is obtained, and if the specific wavelength region is set to the near infrared region, the near infrared reflecting film is obtained. Moreover, if the specific wavelength area
  • the optical reflective film of the present invention may be a (near) infrared reflective (shield) film.
  • the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, more preferably 70% or more, and 75% or more. Further preferred. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. It is preferable to design the optical film thickness and unit so as to be in such a suitable range. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the infrared region of the incident spectrum of direct sunlight is related to the increase in indoor temperature, and by blocking this, the increase in indoor temperature can be suppressed.
  • the cumulative energy ratio from the shortest infrared wavelength (760 nm) to the longest wavelength 3200 nm based on the weight coefficient described in Japanese Industrial Standard JIS R3106: 1998 the infrared from the wavelength 760 nm to the longest wavelength 3200 nm
  • the cumulative energy from 760 nm to each wavelength when the total energy of the entire region is 100
  • the total energy from 760 to 1300 nm occupies about 75% of the entire infrared region. Therefore, shielding the wavelength region up to 1300 nm is efficient in energy saving effect by heat ray shielding.
  • the reflectance in the near-infrared light region (760 to 1300 nm) is about 80% or more at the maximum peak value
  • a decrease in the sensible temperature is obtained by sensory evaluation. For example, there was a clear difference when the temperature at the window facing the southeast method in the morning of August shielded the reflectance in the near infrared light range to about 80% at the maximum peak value.
  • the film thickness of each refractive index layer is preferably 80 to 400 nm, more preferably 100 to 300 nm, and still more preferably 100 to 200 nm.
  • the thickness per layer of the refractive index layer can be adjusted by changing the width in the film thickness direction at the die extrusion port and / or by stretching conditions.
  • the thickness of the reflecting portion is preferably 10 ⁇ m to 480 ⁇ m, more preferably 10 ⁇ m to 290 ⁇ m, and still more preferably 20 ⁇ m to 140 ⁇ m.
  • stretching a laminated body the said film thickness and the thickness of a reflection part show the thickness after extending
  • the reflection portion is formed by melt extrusion molding. More specifically, for example, as described in JP-T-2002-509279 (corresponding to US Pat. No. 6,049,419), a molten resin obtained by melting a resin is ( Multi-layer) Extrude onto a casting drum from an extrusion die and then cool rapidly. At this time, the resin sheet may be stretched after extrusion cooling of the molten resin.
  • the reflective portion can be formed without using a solvent by melt extrusion molding.
  • the residual solvent amount in the optical reflection film can be set to 1 to 8 mg / g without analyzing and adjusting the residual solvent amount after forming the reflective portion and before forming the hard coat layer. Therefore, forming the reflective portion by melt extrusion molding is advantageous from the viewpoint of manufacturing efficiency.
  • a reflective portion is formed by multilayer extrusion in which a high refractive index layer containing a first resin and a low refractive index layer containing a second resin are simultaneously laminated. It is preferable that
  • the resin contained in the refractive index layer is not particularly limited as long as it is a thermoplastic resin.
  • the “high refractive index layer” and the “low refractive index layer” indicate that the refractive index layer having the higher refractive index is the high refractive index layer when comparing the refractive index difference between two adjacent layers.
  • the lower refractive index layer is the low refractive index layer.
  • thermoplastic resin those described in JP-T-2002-509279 (corresponding to US Pat. No. 6,049,419) can be used.
  • Specific examples include, for example, polyethylene naphthalate (PEN) and its isomers (eg, 2,6-, 1,4-, 1,5-, 2,7- and 2,3-PEN), polyalkylene terephthalate (Eg, polyethylene terephthalate (PET), polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate), polyimide (eg, polyacrylimide), polyetherimide, atactic polystyrene, polycarbonate, polymethacrylate (eg, Polyisobutyl methacrylate, polypropyl methacrylate, polyethyl methacrylate, and polymethyl methacrylate (PMMA)), polyacrylates (eg, polybutyl acrylate, and polymethyl acrylate), cellulose Derivatives (eg, e, e
  • Copolymers such as copolymers of PEN (e.g. (a) terephthalic acid or esters thereof, (b) isophthalic acid or esters thereof, (c) phthalic acid or esters thereof, (d) alkane glycol, (e) cycloalkane glycol ( For example, cyclohexanedimethanoldiol), (f) alkanedicarboxylic acid, and / or (g) cycloalkanedicarboxylic acid (eg, cyclohexanedicarboxylic acid) and 2,6-, 1,4-, 1,5-, 2 , 7- and / or 2,3-naphthalenedicarboxylic acid or copolymers thereof), copolymers of polyalkylene terephthalates (eg (a) naphthalenedicarboxylic acid or esters thereof, (b) isophthalic acid or esters thereof, ( c) Phthalic acid moshi The ester thereof, (d)
  • each layer may each include a blend of two or more of the above polymers or copolymers (eg, a blend of syndiotactic polystyrene (SPS) and atactic polystyrene).
  • SPS syndiotactic polystyrene
  • PEN / PMMA PET / PMMA
  • PE / PMMA PE / polyvinylidene fluoride
  • PEN / polyvinylidene fluoride PEN / PET, PEN / polybutylene terephthalate, and the like.
  • the weight average molecular weight of the thermoplastic resin contained in the refractive index layer is about 10,000 to 1,000,000, preferably 50,000 to 800,000.
  • the value measured by gel permeation chromatography (GPC) is employ
  • the content of the thermoplastic resin in the refractive index layer is, for example, 30 to 100% by mass, preferably 50 to 100% by mass, and more preferably 70%, based on the total solid content of each refractive index layer. To 100% by mass.
  • At least one of the low refractive index layer or the high refractive index layer in the optical reflective film of this embodiment may contain a metal oxide (particle).
  • a metal oxide particle
  • the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved.
  • both the low refractive index layer and the high refractive index layer contain metal oxide particles
  • the refractive index difference can be further increased.
  • the number of stacked layers can be reduced and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
  • the average particle diameter of the metal oxide particles is, for example, 100 nm or less.
  • an average particle diameter refers to a primary average particle diameter.
  • the primary average particle size refers to a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, and a particle image appearing on the cross section or surface of the refractive index layer.
  • the average particle size is a value obtained by measuring the particle size of 1000 arbitrary particles by a method of observing with an electron microscope.
  • the metal oxide particles are coated (for example, silica-attached titanium dioxide described later), the average particle diameter of the metal oxide particles is the base (the silica-attached titanium dioxide). In this case, it means the average particle diameter of titanium dioxide before treatment).
  • Metal oxide in the low refractive index layer examples include silica (silicon dioxide), and specific examples include synthetic amorphous silica and colloidal silica. Among these, acidic colloidal silica sol is preferably used, and colloidal silica dispersed in an organic solvent is more preferably used. In order to further reduce the refractive index, hollow fine particles having pores inside the particles may be used as the metal oxide particles of the low refractive index layer, and hollow fine particles of silica (silicon dioxide) are particularly preferable. Moreover, well-known metal oxide particles other than a silica can also be used. The metal oxide particles used for the low refractive index layer may be used alone or in combination of two or more.
  • the metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm.
  • the average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the colloidal silica used in the present embodiment is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis with an acid of sodium silicate or the like passes through an ion exchange resin layer.
  • JP-A-57-14091, JP-A-60-219083 and the like are examples of JP-A-57-14091, JP-A-60-219083 and the like.
  • colloidal silica may be a synthetic product or a commercially available product.
  • Snowtex (registered trademark) series sold by Nissan Chemical Industries, Ltd. Snowtex (registered trademark) OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) Is mentioned.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow particles can also be used as the metal oxide particles of the low refractive index layer.
  • the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
  • the content of the metal oxide particles in the low refractive index layer is, for example, 20 to 70% by mass and preferably 30 to 50% by mass with respect to the solid content of the low refractive index layer.
  • metal oxide in the high refractive index layer examples include titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, Examples thereof include iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • titanium dioxide, zirconium oxide, and the like that can form a transparent and higher refractive index layer are preferable, and rutile (tetragonal) titanium oxide particles are particularly preferable as titanium dioxide.
  • the metal oxide particles used for the high refractive index layer may be used singly or in combination of two or more.
  • the primary average particle diameter of the metal oxide particles used for the metal oxide particles used in the high refractive index layer is preferably 30 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. Further preferred. A primary average particle diameter of 1 nm or more and 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • titanium oxide particles are often used in a surface-treated state for the purpose of suppressing the photocatalytic activity of the particle surface and improving dispersibility in a solvent, etc.
  • Silica, alumina, aluminum hydroxide, zirconia, and the like are preferably treated with one or more of them. More specifically, the surface of the titanium oxide particle is covered with a coating layer made of silica, and the surface of the particle is negatively charged, or the surface is positively charged at a pH of 8 to 10 where a coating layer made of aluminum oxide is formed. The one that bears is known.
  • Particles having a core-shell structure in which titanium oxide particles are coated with a silicon-containing hydrated oxide may be used.
  • the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because rutile-type titanium oxide particles have lower photocatalytic activity than anatase-type titanium oxide particles, which increases the weather resistance of the high refractive index layer and the adjacent low refractive index layer, and further increases the refractive index. is there.
  • silicon-containing hydrated oxide in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound. More preferably has a silanol group.
  • the coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, and more preferably 3 to 8% by mass with respect to the metal oxide particles. This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% by mass or more, particles can be stably formed.
  • the titanium oxide particles As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method.
  • JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
  • the titanium oxide particles are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less.
  • the particles are more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • the content of the metal oxide particles in the high refractive index layer is, for example, 20 to 70% by mass and preferably 30 to 50% by mass with respect to the solid content of the high refractive index layer.
  • each refractive index layer includes, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No.
  • optical brighteners sulfuric acid, phosphoric acid, acetic acid PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents,
  • additives such as DOO agent may contain. The content of these additives is 0.1 to 10% by mass with respect to the solid content of the refractive index layer.
  • the preparation when a commercially available preparation is used, the preparation may contain a solvent.
  • the amount of these additives added is small compared to the amount of thermoplastic resin in the refractive index layer, and most (or completely) evaporates due to exposure to high temperatures in the melt extrusion process. Accordingly, the amount of the solvent derived from the additive preparation remaining in the optical reflection film is very small (or not detected) compared to the amount of the solvent derived from the hard coat coating solution. Therefore, with the above content, after forming the reflective portion by melt extrusion, the film can be easily contained in the film only by the drying process after the hard coat layer is formed without adjusting the residual solvent amount before the formation of the hard coat layer. The amount of residual solvent can be adjusted.
  • Some optical reflection films generally include a hard coat layer formed by a dry film formation method such as a vacuum deposition method.
  • the optical reflective film of this embodiment has a hard coat layer formed by applying a hard coat coating solution.
  • the “hard coat layer” is a layer having a pencil hardness of H or more according to JIS K 5600-5-4: 1999.
  • the hard coat layer functions as a surface protective layer for enhancing the scratch resistance of the optical reflective film.
  • the hard coat layer according to the optical reflection film of the present embodiment may be formed only on one surface of the optical reflection film, or may be formed on both surfaces. Further, the hard coat layer may be a single layer or two or more layers. When the optical reflective film has two or more hard coat layers, the configuration of each hard coat layer may be the same or different.
  • the hard coat material constituting the hard coat layer examples include an active energy ray-curable resin such as an acrylate resin, and an inorganic material typified by a polysiloxane type.
  • a curable resin is preferred. Such curable resins can be used singly or in combination of two or more.
  • the amount of the hard coat material in the hard coat layer is, for example, 20 to 99.9% by mass, preferably 20 to 80% by mass, and preferably 30 to 60% by mass with respect to the solid content of the hard coat layer. More preferably.
  • the hard coat layer contains about 1 to 8 mg / g of solvent.
  • the hard coat layer is formed by applying a hard coat coating solution containing a hard coat material and an optional surfactant, infrared absorber, ultraviolet absorber and / or antioxidant to the wire bar or the like.
  • a method of forming a film by coating on the reflective portion is employed.
  • the hard coat layer may be provided directly on the reflective part, but the conductive layer, antistatic layer, gas barrier layer, easy adhesion layer (adhesive layer), antifouling layer, Odor layer, droplet layer, slippery layer, hard coat layer, wear-resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorption layer, infrared absorption layer, printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive
  • functional layers such as layers, adhesive layers, infrared cut layers (metal layers, liquid crystal layers), and colored layers (visible light absorbing layers) other than the high refractive index layer and low refractive index layer of the present invention, these layers It may be placed on top.
  • the solvent used for forming the hard coat layer by a coating method is not particularly limited, and examples thereof include hydrocarbons (for example, toluene, xylene, cyclohexane, etc.), alcohols (for example, methanol, ethanol, isopropanol, butanol, cyclohexane).
  • hydrocarbons for example, toluene, xylene, cyclohexane, etc.
  • alcohols for example, methanol, ethanol, isopropanol, butanol, cyclohexane.
  • ketones eg, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, etc.
  • ethers eg, tetrahydrofuran, etc.
  • glycol ethers For example, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol mono-n-butyl ether (butyl cellosolve), ethyl Glycol mono-tert-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, 3-methoxybutanol, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate, 1-methoxy-2- Propyl a
  • the volatilization rate of the solvent in the drying process can be easily controlled.
  • the residual solvent in the film can be adjusted without excessively taking time in the drying step. That is, in one embodiment of the present invention, the hard coat layer is coated with a coating solution containing 5 to 20% by mass of the solvent having a relative evaporation rate of 0.1 to 0.5% with respect to the total amount of solvent, An optical reflection film formed by drying is provided.
  • the relative evaporation rate is an evaporation rate measured in accordance with ASTM-D3539-11, and is a ratio of the evaporation time of n-butyl acetate and the evaporation time of each solvent at 25 ° C. under dry air. Defined as the value of.
  • the solvent having a relative evaporation rate of 0.1 to 0.5 is not particularly limited.
  • the coating solution used when forming the hard coat layer by a coating method contains, for example, 3 to 35% by mass of the solvent having a relative evaporation rate of 0.1 to 0.5 as described above with respect to the total amount of the solvent.
  • the content is preferably 5 to 20% by mass. More preferably, the coating solution contains 8 to 18% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent. It is also a preferred form to contain 5 to 20% by mass of a solvent having a relative evaporation rate of more than 0.1 and 0.5 or less, and a relative evaporation rate of more than 0.1 and 0.5 or less. More preferably, the solvent is contained in an amount of 8 to 18% by mass.
  • a hard coat coating solution having a relative evaporation rate of 1 to 3.5 is also preferably used.
  • an optical reflective film formed by applying a hard coat coating solution having a relative evaporation rate of 1 to 3.5 is provided.
  • a coating liquid By using such a coating liquid, it becomes easy to control the volatilization rate of the solvent in the drying step, and the residual solvent in the film can be adjusted without excessive time in the drying step.
  • a solvent having a relative evaporation rate within the above range may be used for preparing the coating solution.
  • the relative evaporation rate of the solvent used is adopted as a numerical value of the relative evaporation rate of the hard coat coating solution.
  • the solvent having a relative evaporation rate of 1 to 3.5 include methyl isobutyl ketone (MIBK, relative evaporation rate 1.6), isopropanol (relative evaporation rate 1.5), and propyl acetate (relative evaporation rate 2.1). Can be illustrated.
  • the relative evaporation rate of the coating solution is more preferably from 1.5 to 3.4, and even more preferably from 2.7 to 3.4.
  • a solvent having a relative evaporation rate of 1 to 3.5 a mixed solvent obtained by mixing two or more kinds of solvents may be used for the coating solution. When a mixed solvent is used as the solvent of the coating solution, the relative evaporation rate R n of the mixed solvent can be obtained by the following equation.
  • i represents the name of each single solvent constituting the mixed solvent
  • R represents the relative evaporation rate
  • represents the activity coefficient
  • represents the volume fraction
  • a mixed solvent in which two or more solvents are mixed as the solvent having a relative evaporation rate of 1 to 3.5 is used as the coating liquid, for example, toluene (relative evaporation rate 4.5), cyclohexane (relative evaporation rate 4) .5), methanol (relative evaporation rate 1.9), ethanol (relative evaporation rate 1.5), acetone (relative evaporation rate 5.6), methyl ethyl ketone (MEK) (relative evaporation rate 3.7), methyl isobutyl ketone (Relative evaporation rate 1.6), tetrahydrofuran (relative evaporation rate 4.9), methyl acetate (relative evaporation rate 5.1), ethyl acetate (relative evaporation rate 4.2), etc.
  • toluene toluene (relative evaporation rate 4.5),
  • the mixed solvent may be prepared.
  • the thickness of the hard coat layer is, for example, 0.5 to 20 ⁇ m, preferably 1.2 to 10 ⁇ m, and more preferably 2 to 8 ⁇ m. If the thickness of the hard coat layer is 0.5 ⁇ m or more, the scratch resistance tends to be improved, and if it is 20 ⁇ m or less, the risk of the hard coat layer being cracked by stress is reduced. Further, by setting the thickness of the hard coat layer to 1.2 to 10 ⁇ m, the balance between durability and weather resistance is good, and it can be preferably used.
  • the active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and can be cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable.
  • the ultraviolet curable resin examples include an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, an ultraviolet curable acrylic acrylate resin, and an ultraviolet curable epoxy resin. Etc. are preferably used.
  • the hard coat layer is an acrylate resin selected from an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable acrylic acrylate resin. It is more preferable to contain.
  • the UV curable urethane acrylate resin generally includes 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as methacrylate) in addition to a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It is easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • An ultraviolet curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate or acrylic acid with a hydroxyl group or carboxyl group at the end of the polyester (see, for example, Japanese Patent Laid-Open No. 59). -151112).
  • the ultraviolet curable epoxy acrylate resin can be obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • Examples of the ultraviolet curable polyol acrylate resin include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate.
  • the resin obtained by hardening 1 type (s) or 2 or more types of monomers can be mentioned.
  • photosensitizers radio polymerization initiators
  • benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether
  • acetophenone Acetophenones such as 2,2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone (trade name: Irgacure (registered trademark) 184, manufactured by BASF); methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone, etc.
  • thioxanthones such as thioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropylthioxanthone
  • ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal
  • Emissions 4,4-bis benzophenones such as methylamino benzophenone and can be used azo compounds. These may be used alone or in combination of two or more.
  • tertiary amines such as triethanolamine and methyldiethanolamine
  • photoinitiators such as benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and ethyl 4-dimethylaminobenzoate
  • the use amount of these radical polymerization initiators is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable component of the resin.
  • Unidic (registered trademark) series (DIC Corporation) (for example, Unidic (registered trademark) V) -4018, Unidic (registered trademark) V-4025, Unidic (registered trademark) 17-806, Unidic (registered trademark) 17-824-9), Hitaroid (registered trademark) series (manufactured by Hitachi Chemical Co., Ltd.), Purple light (registered trademark) series (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Beam set series (Arakawa Chemical Industry Co., Ltd.) (for example, Beam set (registered trademark) 575, Beam set (registered trademark) 577), ETERMER 2382 (ETERNAL CHEMICAL) For example).
  • Polysiloxane hard coat material When using a polysiloxane hard coat material, the hard coat material is cured in the drying step.
  • a polysiloxane hard coat material applicable to the formation of the hard coat layer a compound represented by the following general formula (1) is preferable.
  • Specific compounds include tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, Tetrapentaethoxysilane, tetrapenta-iso-propoxysilane, tetrapenta-n-propoxysilane, tetrapenta-n-butoxysilane, tetrapenta-sec-butoxysilane, tetrapenta-tert-butoxysilane, methyltriethoxysilane, methyltripropoxysilane, Methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethylpropoxysilane
  • polyorganosiloxane-based hard coat material examples include Surcoat Series, BP-16N (manufactured by Doken Co., Ltd.), SR2441 (manufactured by Toray Dow Corning Co., Ltd.), Perma-New 6000 (California Hard Coating Company, Inc.) Can be used.
  • the hard coat layer preferably contains the following surfactant, infrared absorber, ultraviolet absorber and / or antioxidant.
  • the hard coat layer preferably contains a surfactant.
  • a coating film is formed with a hard coat coating solution containing a surfactant, it becomes a highly leveled coating film. It can be expected that the adhesion of the coat layer is improved.
  • the type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used.
  • a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution.
  • fluorosurfactant examples include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation. ), Megafuck (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS Corporation, T & K TOKA Corporation
  • ZX series OPTOOL (registered trademark) series manufactured by Daikin Industries, Ltd.
  • Examples of the acrylic surfactant include Polyflow series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK (registered trademark) -354 (manufactured by Big Chemie Japan Co., Ltd.).
  • Examples of the silicone-based surfactant include BYK (registered trademark) -345, BYK (registered trademark) -347, BYK (registered trademark) -348, and BYK (registered trademark) -349 (manufactured by Big Chemie Japan).
  • Surfactants may be used alone or in admixture of two or more.
  • the amount of the surfactant in the hard coat layer can be adjusted by changing the blending amount of the surfactant in the hard coat coating solution, and the mass of the surfactant per dry mass of the hard coat layer is 0.01-5. It is preferable that it is mass%.
  • the hard coat layer preferably contains an infrared absorber.
  • an infrared absorber When the hard coat layer contains an infrared absorber, an increase in haze and discoloration when exposed to a high temperature and high humidity state can be suppressed.
  • the infrared absorber applicable to the hard coat layer both inorganic infrared absorbers and organic infrared absorbers can be used, but inorganic infrared absorbers are preferable, visible light transmittance, infrared absorptivity.
  • the hard coat layer more preferably contains a tin oxide infrared absorber.
  • inorganic infrared absorbers include zinc oxide, antimony-doped zinc oxide (AZO), indium-doped zinc oxide (IZO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide, tin oxide, antimony-doped tin oxide ( ATO), indium-doped tin oxide (ITO), zinc antimonate, lanthanum boride, nickel complex compounds can be used, among which antimony-doped zinc oxide, antimony-doped tin oxide (ATO), indium-doped tin oxide Or zinc antimonate is preferable.
  • the organic infrared absorber for example, an imonium compound, a phthalocyanine compound, or an aminium compound can be used. These infrared absorbers can be used alone or in combination of two or more.
  • the infrared absorber a synthetic product or a commercially available product may be used.
  • commercially available products include, for example, Cellux (registered trademark) series (manufactured by Nissan Chemical Industries, Ltd.) and passette series (manufactured by Hakusuitec Co., Ltd.) as zinc oxide, SR35M, TRB Paste (and above) as tin oxide Advanced Nano Products), ATO dispersion, ITO dispersion (Mitsubishi Materials Co., Ltd.), KH series (Sumitomo Metal Mining Co., Ltd.) and the like.
  • organic commercial products examples include NIR-IM1, NIR-AM1 (manufactured by Nagase Chemitex Co., Ltd.), Lumogen (registered trademark) series (manufactured by BASF Corp.), and the like.
  • Infrared absorbers may be used alone or in admixture of two or more.
  • the content of the infrared absorber in the hard coat layer is preferably 5% by mass to 80% by mass, and more preferably 30% by mass to 70% by mass, based on the dry mass of the hard coat layer.
  • the hard coat layer may contain inorganic fine particles other than the infrared absorber.
  • Preferable inorganic fine particles include fine particles of an inorganic compound containing a metal such as titanium, silica, zirconium, aluminum, magnesium, antimony, zinc or tin.
  • the average particle size of the inorganic fine particles is preferably 1000 nm or less, and more preferably in the range of 10 to 500 nm, from the viewpoint of ensuring visible light transmittance.
  • inorganic fine particles have a higher bonding strength with the curable resin forming the hard coat layer, they can be prevented from falling out of the hard coat layer, so that a photopolymerization reactivity such as monofunctional or polyfunctional acrylate is present. Those having a functional group introduced on the surface are preferred.
  • the hard coat layer may contain an ultraviolet absorber.
  • UV absorber examples include benzophenone ultraviolet absorbers such as 2,4-dihydroxy-benzophenone and 2-hydroxy-4-methoxy-benzophenone; 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2 -Benzotriazole-based ultraviolet absorbers such as (2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole; phenyl salicylate, 2-4-di-t-butylphenyl-3,5 -Phenyl salicylate UV absorbers such as di-t-butyl-4-hydroxybenzoate; hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate; 2,4 -Diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4 Triazine-based UV absorbers such as diphenyl-6- (2-hydroxy-4-ethoxyphenyl)
  • the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy.
  • an ultraviolet absorber individually or in mixture of 2 or more types.
  • a synthetic product or a commercially available product may be used.
  • commercially available products include, for example, Tinuvin (registered trademark) 320, Tinuvin (registered trademark) 328, Tinuvin (registered trademark) 234, Tinuvin (registered trademark) 1577, Tinuvin (registered trademark) 622 (above, BASF Japan Ltd.)
  • Adekastab registered trademark) LA-31 (manufactured by Adeka Co., Ltd.), SEESORB (registered trademark) 102, SEESORB (registered trademark) 103, SEESORB (registered trademark) 501 (manufactured by Sipro Kasei Corporation) Is mentioned.
  • the content of the ultraviolet absorber is preferably 0.1% by mass or more and 10% by mass or less, and preferably 0.1% by mass or more and 5% by mass or less with respect to the total mass of the hard coat layer.
  • the hard coat layer may contain an antioxidant.
  • Antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane and 2,2′-methylenebis (4-ethyl-6-tert-butylphenol) , Tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] phenolic antioxidants such as methane; distearyl-3,3′-thiodipropionate Thiol antioxidants such as pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate); tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di ( Phosphite antioxidants such as 2,6-di-t-butylphenyl) pentaeryth
  • antioxidant alone or in mixture of 2 or more types.
  • a synthetic product or a commercially available product may be used.
  • commercially available products include, for example, NOCRACK (registered trademark) series (manufactured by Ouchi Shinsei Chemical Co., Ltd.), ADK STAB (registered trademark) series (manufactured by ADEKA Corporation), IRGANOX (registered trademark) series, IRGAFOS ( (Registered trademark) series (all of which are manufactured by Ciba Specialty Chemicals) and Sumilizer (registered trademark) series (which are manufactured by Sumitomo Chemical Co., Ltd.).
  • NOCRACK registered trademark
  • ADK STAB registered trademark
  • IRGANOX registered trademark
  • IRGAFOS Registered trademark
  • Sumilizer registered trademark
  • the content of the antioxidant is preferably 0.1% by mass or more and 10% by mass or less, and preferably 0.1% by mass or more and 5% by mass or less with respect to the total mass of the hard coat layer.
  • the hue can be adjusted by adding dyes or pigments to the hard coat layer.
  • dyes or pigments for example, cadmium red, molybdenum red, chromium permillion, chromium oxide, viridian, titanium cobalt green, cobalt green, cobalt chrome green, Victoria green, ultramarine blue, ultramarine blue, bitumen, Berlin blue, miloli blue, cobalt blue, cerulean blue,
  • Colored inorganic pigments such as cobalt silica blue, cobalt zinc blue, manganese violet, mineral violet, and cobalt violet, organic pigments such as phthalocyanine pigments, and anthraquinone dyes are preferably used.
  • the optical reflection film of this embodiment is provided with a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesive layer), an antifouling layer, a deodorizing layer, a droplet layer, and an easy slip layer for the purpose of adding further functions.
  • These functional layers are, for example, coating methods other than dry deposition methods such as sputtering (DC sputtering, RF sputtering, ion beam sputtering, magnetron sputtering, etc.), vacuum deposition, and ion plating.
  • it is preferably formed by a dry film forming method that does not use a solvent.
  • the drying step is performed after measuring the residual solvent amount, the residual solvent amount in the film is adjusted by means such as measuring the weight change during the drying step. can do.
  • the solvents described above as being preferably used in the formation of the hard coat layer particularly 0.1 to It is preferable to use a coating solution in which the solvent having a relative evaporation rate of 0.5 is 5 to 20% by mass with respect to the total amount of the solvent in consideration of compatibility with the material used for the functional layer.
  • a solvent having a relative evaporation rate of 1 to 3.5 can also be preferably used.
  • the stacking order of the above-mentioned various functional layers in the reflective film is not particularly limited.
  • the optical reflective film of this embodiment is characterized in that the residual solvent in the optical reflective film is 1 to 8 mg / g.
  • the residual solvent in the optical reflection film may be 1 to 8 mg / g, preferably 1 to 5 mg / g, more preferably 1 to 3.6 mg / g, and still more preferably 1 to 3 mg / g. g.
  • the residual solvent in the optical reflection film is less than 1 mg / g, the influence of the shrinkage of the hard coat layer is increased, and a decrease in adhesion due to curling and cracking and a deterioration in haze are observed.
  • the reflection portion is formed by melt extrusion molding. Therefore, it is not necessary to use a solvent in the formation process of the reflection part. Alternatively, even if a small amount of solvent derived from the additive is used, the solvent evaporates in the melt extrusion process.
  • the hard coat layer included in the optical reflective film of this embodiment is formed by applying a hard coat coating solution, a solvent is used in the coating formation process of the hard coat layer. The amount of residual solvent in the film is determined by controlling the drying conditions (drying temperature, drying time, etc.) in the drying process performed after the coating film forming process, and the solvent used for the film thickness of the hard coat film and the coating film forming process. It can be arbitrarily adjusted by selecting.
  • the amount of residual solvent in the film decreases.
  • the residual solvent amount in the film increases by lowering the drying temperature or shortening the drying time.
  • the amount of residual solvent decreases.
  • the amount of residual solvent increases.
  • the amount of residual solvent in the film can be arbitrarily set by a method such as measuring the amount of residual solvent in the film before drying by the following method and then performing drying while observing a change in the weight of the film.
  • the amount of residual solvent in the film can be measured by gas chromatography. Specifically, a piece of film cut out perpendicular to the film thickness direction is weighed, sealed in a vial, and heated by an oven at 120 ° C. for 30 minutes, and the generated gas is measured by gas chromatography under the following measurement conditions. To do.
  • a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding (reflecting portion forming step); hard coat coating solution Is applied to at least one surface of the laminate to form a coating film (coating film forming step); and dried so that the residual solvent in the laminate having the coating film is 1 to 8 mg / g
  • the manufacturing method of the optical reflection film including doing (drying process) is provided.
  • a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding.
  • the laminated body formed by melt extrusion molding is corresponded in the reflection part in an optical reflection film.
  • optical reflection without using a solvent is achieved by using a laminate of a thermoplastic resin obtained by melt extrusion molding as a reflective part. A reflective portion of the film can be formed.
  • melt extrusion molding even if a solvent is contained in the additive used in the reflective part forming step, most (or all) of the additive is evaporated in the melt extrusion process exposed to high temperature, and the lamination is performed.
  • the amount of solvent remaining in the body is very small (or substantially free). Therefore, it is easy to adjust the amount of residual solvent in the film that is the final product without adjusting the amount of residual solvent before the formation of the hard coat coating film, which is advantageous from the viewpoint of production efficiency.
  • a high refractive index layer containing a first thermoplastic resin and a low refractive index layer containing a second thermoplastic resin are laminated simultaneously, and laminated by multilayer extrusion. It is preferable to form a body (reflection part).
  • each refractive index layer material is melted at 100 to 400 ° C. so as to have an appropriate viscosity for extrusion, and an additive such as a metal oxide is added as necessary to increase the refractive index.
  • the thermoplastic resin of both the first resin contained in the refractive index layer and the second resin contained in the low refractive index layer can be extruded by an extruder so as to form two layers alternately.
  • thermoplastic resin Before the melting, it is preferable to mix the thermoplastic resin and other additives that are added as necessary with a mixer or the like.
  • the mixture may be directly melted to form a film using an extruder, but once the mixture is pelletized, the pellet may be melted with an extruder to form a film.
  • extruder various extruders available on the market can be used, but a melt-kneading extruder is preferable, and a single-screw extruder or a twin-screw extruder may be used.
  • a twin screw extruder when forming a film directly without producing pellets from the mixture, it is preferable to use a twin screw extruder because an appropriate degree of kneading is necessary, but even with a single screw extruder, the screw shape is a Maddock type. By changing to a kneading type screw such as unimelt or dull mage, moderate kneading can be obtained, so that it can be used. Moreover, when using a pellet, a single screw extruder or a twin screw extruder can be used.
  • the extruded laminated film is cooled and solidified by a cooling drum or the like to obtain a laminated body (reflecting portion in the optical reflecting film).
  • the laminate may optionally be heated and then stretched in two directions.
  • a stretching method the unstretched laminate obtained by peeling from the cooling drum described above is subjected to a glass transition temperature (Tg) of ⁇ 50 ° C. to Tg + 100 ° C. through a plurality of roll groups and / or a heating device such as an infrared heater. It is preferable to heat within the range and perform one-stage or multistage longitudinal stretching in the laminate transport direction (also referred to as the longitudinal direction).
  • Tg glass transition temperature
  • a heating device such as an infrared heater.
  • a tenter device In order to stretch the laminate in the width direction, it is preferable to use a tenter device.
  • stretching may be 1 time and may be 2 times or more.
  • the heat setting is preferably carried out in the range of Tg-100 ° C. to Tg + 50 ° C., usually for 0.5 to 300 seconds.
  • the heat fixing means is not particularly limited and can be generally performed with hot air, infrared rays, a heating roll, microwaves, or the like, but is preferably performed with hot air in terms of simplicity. It is preferable to increase the heating of the laminated body stepwise.
  • the heat-fixed laminate is usually cooled to Tg or less, and the clip gripping portions at both ends of the laminate are cut and wound.
  • the cooling is gradually performed from the final heat setting temperature to Tg at a cooling rate of 100 ° C. or less per second.
  • the means for cooling is not particularly limited, and can be performed by a conventionally known means. In particular, it is preferable to perform these treatments while sequentially cooling in a plurality of temperature ranges in terms of improving the dimensional stability of the film.
  • the cooling rate is a value obtained by (T1 ⁇ Tg) / t, where T1 is the final heat setting temperature and t is the time required for the laminate to reach Tg from the final heat setting temperature.
  • a hard coat coating solution is applied.
  • a coating film is formed.
  • the coating method include coating with a wire bar, spin coating, dip coating, and the like. Further, it can be applied by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater.
  • the hard coat coating solution is applied so that the thickness of the hard coat layer after drying is, for example, 0.5 to 20 ⁇ m, preferably 1.2 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • the thickness of the hard coat layer can be increased to a desired thickness.
  • the amount of residual solvent can be reduced by reducing the film thickness of the hard coat film, and the amount of residual solvent can be reduced by increasing the film thickness of the hard coat film. Can be increased.
  • the solvent of the hard coat coating solution is not particularly limited, and can be appropriately selected from the solvents exemplified in the first embodiment of the present invention such as alcohols, or can be used by mixing them.
  • the volatilization rate of the solvent in the drying process can be easily controlled.
  • the residual solvent in the film can be adjusted without excessive time in the drying step.
  • the relative evaporation rate is an evaporation rate measured according to ASTM-D3539-11, and is the same as that of the first embodiment.
  • Examples of the solvent having a relative evaporation rate of 0.1 to 0.5 include 1-butanol (relative evaporation rate of 0.5) exemplified in the first embodiment.
  • the coating liquid used for forming the hard coat coating film contains, for example, 3 to 35% by mass of the solvent having a relative evaporation rate of 0.1 to 0.5 as described above with respect to the total amount of the solvent, Preferably, the coating solution contains 5 to 20% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent. More preferably, the coating solution contains 8 to 18% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent.
  • a coating solution having a relative evaporation rate of 1 to 3.5 is also preferably used.
  • a solvent having a relative evaporation rate within the above range may be used for preparing the coating solution.
  • the relative evaporation rate of the solvent used is adopted as a numerical value of the relative evaporation rate of the hard coat coating solution. That is, in one embodiment of the present invention, the manufacturing process of the optical reflection film includes a process of applying a hard coat coating liquid having a relative evaporation rate of 1 to 3.5.
  • the solvent having a relative evaporation rate of 1 to 3.5 those exemplified in the first aspect can be used.
  • the relative evaporation rate of the coating solution is more preferably from 1.5 to 3.4, and even more preferably from 2.7 to 3.4.
  • a mixed solvent obtained by mixing two or more solvents as described in the first aspect can also be used for the coating solution.
  • the relative evaporation rate of the solvent used in the production of the film is 1 to 3.5, the residual solvent amount can be easily adjusted by controlling the drying conditions.
  • the residual solvent amount decreases as the relative evaporation rate of the solvent used in the preparation of the hard coat coating solution increases, and the residual solvent amount increases as the relative evaporation rate decreases.
  • the blending amount of the above-mentioned hard coat material such as an active energy ray-curable resin or an inorganic material in the hard coat coating solution is preferably 3 to 80% by mass with respect to the entire hard coat coating solution. It is more preferably 70% by mass, and further preferably 10 to 50% by mass.
  • the amount of solvent in the hard coat coating solution is preferably 20 to 97% by mass, more preferably 30 to 90% by mass, and 40 to 70% by mass with respect to the entire hard coat coating solution. More preferably it is.
  • a surfactant can be added to the hard coat coating solution to impart leveling properties, water repellency, slipperiness, and the like.
  • a kind of surfactant Said fluorine-type surfactant, acrylic surfactant, silicone type surfactant, etc. can be used.
  • a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness.
  • the amount of the surfactant in the hard coat coating solution is, for example, 0.004 to 2% by mass with respect to the entire hard coat coating solution.
  • the commercially available surfactant those exemplified in the first aspect are adopted.
  • the above-described infrared absorbers such as antimony-doped tin oxide (ATO) may be added.
  • the amount of the infrared absorber in the hard coat coating solution is, for example, 2 to 40% by mass with respect to the entire hard coat coating solution.
  • As a commercially available infrared absorber what was illustrated by 1st embodiment is employ
  • the hard coat coating solution comprises 3 to 35% by weight hard coat material, 35 to 90% by weight solvent, 0.01 to 0.5% by weight surfactant, and 5 to 34. 0.5% by mass of an infrared absorber (100% by mass in total) is contained.
  • the hard coat coating solution may also contain the above-described ultraviolet absorber and antioxidant. What was illustrated by the 1st side surface as a commercially available ultraviolet absorber and antioxidant is employ
  • the method for producing the hard coat coating solution is not particularly limited, and it can be obtained by adding each component to a solvent and mixing appropriately.
  • the order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
  • the prepared hard coat coating solution may be directly applied to at least one surface side of the above-mentioned laminate (reflective portion in the film), but the conductive layer and antistatic layer are provided between the hard coat layer and the reflective portion.
  • an anchor layer (primer layer) can be formed before laminating the cured resin layer.
  • the thickness of the anchor layer is not particularly limited, but is about 0.1 to 10 ⁇ m.
  • Preferable examples of the resin constituting the anchor layer include polyvinyl acetal resin and acrylic resin.
  • the drying means is not particularly limited, and warm air drying, infrared drying, and microwave drying are used.
  • the drying temperature is appropriately set according to conditions such as the solvent used and the drying temperature, but is usually 50 to 200 ° C., preferably 70 to 150 ° C., and more preferably 80 to 120 ° C.
  • the drying time is, for example, 30 seconds to 300 seconds, preferably more than 90 seconds and 180 seconds or less. If the drying temperature is increased and / or the drying time is increased, the amount of residual solvent in the film to be dried and the final product can be reduced. On the contrary, if the drying temperature is lowered and / or the drying time is shortened, the amount of solvent remaining in the film to be dried and the final product can be increased.
  • the residual solvent in the dried object may be 1 to 8 mg / g, preferably 1 to 5 mg / g, more preferably 1 to 3.6 mg / g, and still more preferably 1 to 3 mg / g. g.
  • the residual solvent in the object to be dried is less than 1 mg / g, the thermal contraction of the hard coat increases, cracks are likely to occur, and the adhesiveness is reduced.
  • the residual solvent in a dry object exceeds 8 mg / g, it will become easy to raise
  • the amount of residual solvent in the laminate after the application of the hard coat coating solution and before the drying step may be measured by the above-described method using gas chromatography. Further, in the drying process, it is easy to adjust the amount of residual solvent in the object to be dried by observing the change in weight accompanying the evaporation of the solvent over time.
  • the object to be dried may be cooled in order to stabilize the amount of residual solvent in the film.
  • the cooling method is not particularly limited, and for example, a method similar to the cooling method after heat setting described above may be employed.
  • the hard coat material may be cured by irradiating the hard coat coating film with an active energy ray (curing treatment) after the drying step.
  • Irradiation wavelength of the active energy ray, intensity can not be said sweepingly because changes reactivity by the light amount, for example, the illuminance is preferably 50 ⁇ 1500mW / cm 2, more preferably 100 ⁇ 1000mW / cm 2.
  • the amount of irradiation energy is preferably 50 ⁇ 1500mJ / cm 2, more preferably 100 ⁇ 1000mJ / cm 2.
  • the irradiation time is preferably 1 to 300 seconds.
  • an active energy ray-curable resin unlike the thermosetting resin, the curing conditions are gentle, and thus there is an advantage that it is not necessary to consider the influence on the residual solvent amount in the curing process.
  • an electron beam or the like can be used in addition to ultraviolet rays depending on the active energy ray curable resin to be used.
  • the optical reflective film of the present invention can be applied to a wide range of fields. That is, a preferred embodiment of the present invention is an optical reflector in which the optical reflective film or the optical reflective film produced by the production method is provided on at least one surface of a substrate.
  • film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance.
  • the optical reflective film according to the present invention is suitable for a member that is bonded to a substrate such as glass or a glass substitute resin directly or via an adhesive.
  • the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol.
  • examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics.
  • the type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
  • the substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like.
  • the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
  • the adhesive layer or the adhesive layer that bonds the optical reflecting film and the substrate is disposed on the sunlight (heat ray) incident surface side. Further, it is preferable to sandwich the optical reflection film between the window glass and the substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. Even if the infrared shielding film according to the present invention is installed outdoors or outside a car (for external application), it is preferable because of environmental durability.
  • the adhesive layer or adhesive layer that bonds the optical reflective film and the substrate is preferably installed so that the optical reflective film is on the sunlight (heat ray) incident surface side when bonded to a window glass or the like. Further, when the optical reflection film is sandwiched between the window glass and the base material, it can be sealed from ambient gas such as moisture, which is preferable for durability. Even if the optical reflective film of the present invention is installed outdoors or on the outside of a vehicle (for external application), it is preferable because of environmental durability.
  • an adhesive mainly composed of a photocurable or thermosetting resin can be used.
  • the adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, since the peel strength can be easily controlled, a solvent system is preferable among the solvent system and the emulsion system in the acrylic adhesive. When a solution-polymerized thermoplastic resin is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
  • a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used.
  • plastic polyvinyl butyral manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto, etc.
  • ethylene-vinyl acetate copolymer manufactured by DuPont, Takeda Pharmaceutical Co., Ltd., duramin
  • modified ethylene-vinyl acetate copolymer Mersen (registered trademark) G manufactured by Tosoh Corporation).
  • blend suitably an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, coloring, an adhesion regulator, etc. in an adhesion layer or an adhesion layer.
  • the heat insulation performance and solar heat shielding performance of an optical reflective film or optical reflector are generally JIS R 3209 (1998) (multi-layer glass), JIS R 3106 (1998) (transmittance of sheet glass) -Test method of reflectance, emissivity, and solar heat acquisition rate), JIS R 3107 (1998) (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 ⁇ m. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and corrected emissivity are calculated according to JIS R 3106 (1998) by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity.
  • the corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107 (1998).
  • the heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 (1998) using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107 (1998).
  • the heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance.
  • the solar heat shielding property is calculated by calculating the solar heat acquisition rate according to JIS R 3106 (1998) and subtracting it from 1.
  • the hard coat layer was formed by applying a coating solution containing 5 to 20% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 with respect to the total amount of the solvent, and drying the coating solution.
  • (1) to (5) The optical reflective film according to any one of (1) to (5).
  • (7) The optical reflective film as described in any one of (1) to (6), wherein the relative evaporation rate of the hard coat coating solution is 1 to 3.5.
  • a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding; a hard coat coating solution is applied to at least one surface side of the laminate. Forming a coating film; and drying so that the residual solvent in the laminate on which the coating film has been formed is 1 to 8 mg / g.
  • the optical reflective film according to any one of (1) to (7) or the optical reflective film manufactured by the manufacturing method according to (8) is provided on at least one surface of the substrate.
  • An optical reflector is provided on at least one surface of the substrate.
  • PEN polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • “(PMMA (152 nm) / PEN (137 nm)) 64” means that there are 64 units in which PMMA having a film thickness of 152 nm and PEN having a film thickness of 137 nm are stacked in this order. Yes, other units are intended as well. From the relative relationship of the refractive index values, the layer made of PMMA is a low refractive index layer (refractive index: 1.49), and the layer made of PEN is a high refractive index layer (refractive index: 1.. 77).
  • Example 1 A hard coat coating solution (1) having a final concentration of the following composition was prepared.
  • the relative evaporation rate of the hard coat coating solution was determined by the above mathematical formula (1).
  • the hard coat coating solution (1) was applied to one surface of the laminate obtained by the above-described method by gravure application so that the thickness of the hard coat layer after drying was 4 ⁇ m.
  • the laminate on which the hard coat coating film was formed was dried in an oven at 110 ° C. for 120 seconds.
  • the obtained dried product was irradiated with active energy rays, and optical reflection film No. 1 was irradiated. (1) was obtained.
  • the active energy ray was irradiated using a high-pressure mercury lamp under the conditions of an illuminance of 400 mW / cm 2 and an irradiation amount of 800 mJ / cm 2 .
  • a film piece was cut out from the obtained film perpendicularly to the film thickness direction and weighed (1 g). Next, the film piece was sealed in a vial, and the gas generated by heating at 120 ° C. for 30 minutes in an oven was measured by gas chromatography to determine the amount of residual solvent in the film.
  • the measurement conditions for gas chromatography are as described above.
  • the amount of residual solvent in the film was 7.8 mg / g (film). The residual solvent amount was measured within 12 hours after the production of the film.
  • Example 2 ⁇ Examples 2 to 12, Comparative Examples 1 to 4>
  • a hard coat layer was formed under the conditions shown in Table 2 below.
  • (2) -No. (12) (Examples 2 to 12) and optical reflection film No. (13) to (16) (Comparative Examples 1 to 4) were obtained.
  • Table 2 shows the amount of residual solvent in each optical reflection film.
  • SWOM color change Each optical reflection film was affixed to white plate glass and stored for 1000 hours in a sunshine weather meter (SWOM) (manufactured by Suga Test Instruments Co., Ltd.) operated under the conditions specified in JIS K5400: 1990.
  • the L * value, a * value, and b * value of the optical reflection film before and after storage were measured with a spectrophotometer (model name: U-4100 type, manufactured by Hitachi, Ltd.).
  • ⁇ E was calculated by the following equation, where ⁇ L * was the difference in L * values before and after storage, ⁇ a * was the difference in a * values, and ⁇ b * was the difference in b * values. It shows that discoloration is so small that (DELTA) E is small.
  • Table 2 The results are shown in Table 2.
  • F (n1 / n) ⁇ 100 (%) is calculated, where n is the number of cross-cut squares and n1 is the number of squares where the hard coat layer remains in the laminate after peeling off the tape. Evaluation based on the criteria. The results are shown in Table 2.
  • A: F is 100%, ⁇ : F is 80% or more and less than 100%, ⁇ : F is 50% or more and less than 80%, X: F is less than 50%.
  • the optical reflective film according to the present invention has excellent weather resistance and high adhesion of the hard coat layer.

Abstract

 An optical reflective film having excellent weather resistance and improved adhesion of the hard coat layer is provided by means of an optical reflective film comprising a reflective part formed by molten extrusion molding and containing at least one unit obtained by laminating a high refractive index layer and a low refractive index layer, and a hard coat layer formed by applying a hard coat coating solution, wherein the residual solvent in the film falls within the range of 1 to 8mg/g.

Description

光学反射フィルム、光学反射フィルムの製造方法、およびそれを用いる光学反射体Optical reflective film, optical reflective film manufacturing method, and optical reflector using the same
 本発明は、光学反射フィルムとその製造方法に関する。また、本発明は該光学反射フィルムまたは該製造方法により製造された光学反射フィルムを用いた光学反射体に関する。 The present invention relates to an optical reflection film and a method for producing the same. The present invention also relates to an optical reflector using the optical reflective film or the optical reflective film produced by the production method.
 近年、省エネルギー対策への関心が高まり、建築用ガラスや車両用ガラスにおいて、室内あるいは車内に入る太陽輻射エネルギーを遮蔽し、温度上昇、冷房負荷を低減する目的で、赤外線の遮蔽性を有する断熱ガラスが採用されている。赤外光を選択的に反射させ、可視光を透過させることができる赤外遮蔽フィルムは、通常、相対的に低い屈折率を有する低屈折率層と、相対的に高い屈折率を有する高屈折率層とが積層された構造を有する。この際、高屈折率層および低屈折率層について、屈折率および膜厚の積である光学膜厚を制御し、干渉を生じさせることで、赤外光を選択的に反射させることができる。 In recent years, interest in energy-saving measures has increased, and heat insulation glass with infrared shielding properties for the purpose of shielding the solar radiation energy entering the interior or interior of a building glass or vehicle glass and reducing the temperature rise and cooling load. Is adopted. Infrared shielding film that can selectively reflect infrared light and transmit visible light is usually a low refractive index layer having a relatively low refractive index and a high refractive index having a relatively high refractive index. The rate layer has a laminated structure. At this time, for the high refractive index layer and the low refractive index layer, infrared light can be selectively reflected by controlling the optical film thickness, which is the product of the refractive index and the film thickness, to cause interference.
 このような光学反射フィルムは、可視光線を透過し、近赤外線を選択的に遮蔽するが、各層の膜厚や屈折率を調整するだけで、反射波長をコントロールすることができ、紫外線や可視光を反射することが可能である。 Such an optical reflection film transmits visible light and selectively shields near infrared rays, but the reflection wavelength can be controlled only by adjusting the film thickness and refractive index of each layer. Can be reflected.
 屈折率層の形成方法としては、屈折率の異なる2種の樹脂層を交互に積層する方法(特許文献1)や、金属酸化物を混合した水溶性高分子を塗布することにより屈折率の異なる層を積層し近赤外線反射層を形成する方法(特許文献2)等が提案されている。 As a method for forming the refractive index layer, a method of alternately laminating two kinds of resin layers having different refractive indexes (Patent Document 1), or by applying a water-soluble polymer mixed with a metal oxide, the refractive index differs. A method of forming a near infrared reflecting layer by laminating layers (Patent Document 2) has been proposed.
 赤外遮蔽フィルム等の光学反射フィルムは、上述のように、建物や車両の窓ガラスに装着する場合が多い。従って、清掃などの際に表面に傷等がつくことを防止することを目的として、活性放射線硬化性樹脂等を塗布することにより、最外層にハードコート層を形成して耐擦過性を高めることが多い。 An optical reflection film such as an infrared shielding film is often attached to a window glass of a building or a vehicle as described above. Therefore, for the purpose of preventing scratches on the surface during cleaning, etc., by applying actinic radiation curable resin, etc., a hard coat layer is formed on the outermost layer to improve the scratch resistance. There are many.
特表2008-528313号公報(国際公開第2006/074168号に相当)Japanese translation of PCT publication No. 2008-528313 (corresponding to International Publication No. 2006/074168) 国際公開第2012/014607号(米国特許出願公開第2013/0107355号明細書に相当)International Publication No. 2012/014607 (corresponding to US Patent Application Publication No. 2013/0107355)
 従来の光学反射フィルムは、例えば、建物や車両の窓ガラスに装着されて高温高湿状態にさらされることにより、ヘイズの上昇や変色を起こす等、耐候性が良好でない場合があるという問題が存在していた。また、ハードコート層の密着性が十分でない場合があり、ハードコート層が剥離することがあるという問題も存在していた。 Conventional optical reflective films, for example, have a problem that the weather resistance may not be good, for example, when haze is increased or discolored by being attached to a window glass of a building or vehicle and exposed to a high temperature and high humidity state. Was. Moreover, the adhesiveness of the hard coat layer may not be sufficient, and there is a problem that the hard coat layer may be peeled off.
 したがって、本発明は、上記事情を鑑みてなされたものであり、耐候性に優れ、ハードコート層の密着性が改善された光学反射フィルム、その製造方法、および該光学反射フィルムまたは該製造法にて製造された光学反射フィルムを用いた光学反射体を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and is an optical reflective film having excellent weather resistance and improved adhesion of the hard coat layer, a method for producing the same, and the optical reflective film or the method for producing the same. An object of the present invention is to provide an optical reflector using the optical reflective film manufactured in the above manner.
 本発明者は、上記課題を解決するために、鋭意研究を行った結果、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む、溶融押出成形によって形成された反射部、および、ハードコート塗布液の塗布によって形成されたハードコート層を含む光学反射フィルムであって、前記フィルム中の残存溶媒が1~8mg/gである、光学反射フィルムにより、上記の課題が解決されることを見出し、本発明の完成に至った。 As a result of earnest research to solve the above problems, the present inventor has at least one unit obtained by laminating a high refractive index layer and a low refractive index layer, and is formed by melt extrusion molding, And the optical reflective film comprising a hard coat layer formed by application of a hard coat coating solution, wherein the residual solvent in the film is 1 to 8 mg / g, the above problems are solved. As a result, the present invention has been completed.
本発明の一実施形態に係る光学反射フィルムを模式的に表した断面図である。It is sectional drawing which represented typically the optical reflection film which concerns on one Embodiment of this invention.
 本発明の第一の側面は、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む、溶融押出成形によって形成された反射部、および、ハードコート塗布液の塗布によって形成されたハードコート層を含む光学反射フィルムであって、前記フィルム中の残存溶媒が1~8mg/gである、光学反射フィルムである。 The first aspect of the present invention is formed by application of a hard coat coating liquid, and a reflective portion formed by melt extrusion including at least one unit in which a high refractive index layer and a low refractive index layer are laminated. An optical reflective film comprising a hard coat layer, wherein the residual solvent in the film is 1 to 8 mg / g.
 本発明の第二の側面は、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む積層体を、溶融押出成形によって形成し;ハードコート塗布液を前記積層体の少なくとも一方の面側に塗布して塗膜を形成し;および塗膜を形成した前記積層体中の残存溶媒が1~8mg/gとなるように乾燥することを含む、光学反射フィルムの製造方法である。 According to a second aspect of the present invention, a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding; at least one of the laminates is used as a hard coat coating solution. A method of producing an optical reflective film, comprising: coating on the surface side of the film to form a coating film; and drying so that a residual solvent in the laminate in which the coating film is formed is 1 to 8 mg / g. .
 本発明の第三の側面は、上記光学反射フィルム、または上記の製造方法によって製造された光学反射フィルムが、基体の少なくとも一方の面に設けられてなる光学反射体である。 The third aspect of the present invention is an optical reflector in which the optical reflective film or the optical reflective film produced by the production method is provided on at least one surface of a substrate.
 本発明によれば、耐候性に優れ、ハードコート層の密着性が改善された光学反射フィルム、その製造方法、および該光学反射フィルムまたは該製造法にて製造された光学反射フィルムを用いた光学反射体が提供される。 According to the present invention, an optical reflective film having excellent weather resistance and improved adhesion of the hard coat layer, a method for producing the same, and optical using the optical reflective film or the optical reflective film produced by the production method A reflector is provided.
 本発明者は、フィルム中の残存溶媒が多くなると耐候性が低下し、ハードコート層の密着性が低下することを見出した。本発明の技術的範囲を制限するものではないが、これは、過度に残存する溶媒の影響により、材料の劣化が促進されるとともに、溶媒が徐々に揮発することでフィルムのカールが生じるためであると推測される。さらに、フィルム中の残存溶媒が過度に少ないと、施工性が劣化し、密着性も低下することを見出した。本発明の技術的範囲を制限するものではないが、これは、光学反射フィルムが極端に乾燥し残存溶媒が少ないと、フィルムが固く脆くなってしまうため施工時にフィルムの位置調整がしづらくなり、折れやしわが発生しやすくなるためであると考えられる。 The present inventor has found that when the residual solvent in the film increases, the weather resistance decreases and the adhesion of the hard coat layer decreases. Although it does not limit the technical scope of the present invention, this is because the deterioration of the material is promoted by the influence of the excessive residual solvent, and the curling of the film is caused by the gradual volatilization of the solvent. Presumed to be. Furthermore, when the residual solvent in a film was too few, it found out that workability deteriorated and adhesiveness also fell. Although it does not limit the technical scope of the present invention, it is difficult to adjust the position of the film during construction because the optical reflective film is extremely dry and the residual solvent is small, the film becomes hard and brittle. This is considered to be because folds and wrinkles are likely to occur.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In the present specification, “X to Y” indicating a range means “X or more and Y or less”, and unless otherwise specified, measurement of operation and physical properties is room temperature (20 to 25 ° C.) / Relative humidity 40 to 50. Measured under the condition of%.
 <光学反射フィルム>
 以下、図1を参照しながら本形態について説明する。図1は、本発明の第一の側面に係る光学反射フィルムを模式的に表した断面図である。図1に示す光学反射フィルム10において、光は矢印で示すように粘着層13の反対側からハードコート層12、反射部11へと入射する。
<Optical reflection film>
Hereinafter, this embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing the optical reflective film according to the first aspect of the present invention. In the optical reflective film 10 shown in FIG. 1, light enters the hard coat layer 12 and the reflective portion 11 from the opposite side of the adhesive layer 13 as indicated by arrows.
 光学反射フィルム10において、反射部11は低屈折率層111および高屈折率層112が積層されたユニット113を有する。このように異なる屈折率を有する層を積層させることにより、その境界面で光の反射が起こり、光学反射機能が発現される。なお、図1では、反射部11として、光入射方向から順に低屈折率層・高屈折率層の3ユニットが積層されているが、反射部は低屈折率層および高屈折率層が積層された少なくとも1つのユニットを有していればよく、低屈折率層および高屈折率層の層数や積層順は特に制限されない。 In the optical reflection film 10, the reflection portion 11 has a unit 113 in which a low refractive index layer 111 and a high refractive index layer 112 are laminated. By laminating layers having different refractive indexes in this way, light is reflected at the boundary surface, and an optical reflection function is exhibited. In FIG. 1, three units of a low refractive index layer and a high refractive index layer are laminated in order from the light incident direction as the reflective portion 11, but the reflective portion is laminated with a low refractive index layer and a high refractive index layer. The number of low refractive index layers and the high refractive index layers and the stacking order are not particularly limited as long as at least one unit is included.
 光学反射フィルム10は、反射部11の光が入射する面側に、ハードコート層12を備える。このようにハードコート層を備えることにより擦傷等から反射部11を保護し、フィルムの耐久性を向上させることができる。さらに、光学反射フィルム10は、図示しない支持基材(基体)への貼付のために、最下層に粘着層13を備える。なお、光学反射フィルム10は粘着層13を備えるが、本発明においては、粘着層を備えず、例えば光学反射フィルムの両側の面にハードコート層が設けられても良い。 The optical reflection film 10 includes a hard coat layer 12 on the surface side where the light of the reflection portion 11 enters. Thus, by providing a hard-coat layer, the reflection part 11 can be protected from an abrasion etc. and the durability of a film can be improved. Furthermore, the optical reflective film 10 includes an adhesive layer 13 in the lowermost layer for attachment to a support base (substrate) (not shown). In addition, although the optical reflection film 10 is provided with the adhesion layer 13, in this invention, an adhesion layer is not provided but a hard-coat layer may be provided in the surface of the both sides of an optical reflection film, for example.
 本態様の光学反射フィルムの全体の厚みは、好ましくは20μm~500μm、より好ましくは20μm~300μm、さらに好ましくは30μm~150μmである。光学反射フィルムの厚みを上記範囲内にすることで、光学反射フィルム(本明細書では、単に「フィルム」とも称する。)中の残存溶媒量を乾燥工程によって調整しやすくなる。 The total thickness of the optical reflective film of this embodiment is preferably 20 μm to 500 μm, more preferably 20 μm to 300 μm, and further preferably 30 μm to 150 μm. By setting the thickness of the optical reflection film within the above range, the residual solvent amount in the optical reflection film (also simply referred to as “film” in the present specification) can be easily adjusted by the drying step.
 〔反射部〕
 本発明の一態様にかかる光学反射フィルムは、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む、溶融押出成形によって形成された反射部を含む。
[Reflection part]
The optical reflective film according to one aspect of the present invention includes a reflective portion formed by melt extrusion including at least one unit in which a high refractive index layer and a low refractive index layer are laminated.
 本態様において、反射部は、異なる屈折率を有する高屈折率層および低屈折率層が交互に積層されてなる。このような低屈折率層および高屈折率層の屈折率差により赤外線や紫外線等の反射機能が発現される。なお、本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層(高屈折率層および/または低屈折率層を、本明細書では、一括して「屈折率層」とも称する。)を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、屈折率層が高屈折率層であるか低屈折率層であるかは、隣接層が有する屈折率との関係で定まる相対的なものである。「高屈折率層」および「低屈折率層」なる用語は、光学反射フィルムを構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。 In this embodiment, the reflecting portion is formed by alternately stacking high refractive index layers and low refractive index layers having different refractive indexes. Such a refractive index difference between the low refractive index layer and the high refractive index layer exhibits a reflection function such as infrared rays and ultraviolet rays. In this specification, the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index (high refractive index layer) when comparing the refractive index difference between two adjacent layers. In this specification, the refractive index layer and / or the low refractive index layer are collectively referred to as a “refractive index layer”) as a high refractive index layer, and the lower refractive index layer as a low refractive index layer. means. Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. The terms “high refractive index layer” and “low refractive index layer” mean that, in each refractive index layer constituting the optical reflection film, when the two adjacent refractive index layers are focused, each refractive index layer has the same refractive index. All forms other than the forms having the above are included.
 低屈折率層および高屈折率層の層数(屈折率層の総数)は、特に制限はないが、好ましくは6~2000(すなわち、3~1000ユニット)であり、より好ましくは10~1500(すなわち、5~750ユニット)であり、さらに好ましくは10~1000(すなわち、5~500ユニット)である。層数が2000を超えるとヘイズが発生しやすく、6未満であると所望の反射率に達しないことがある。 The number of low refractive index layers and high refractive index layers (total number of refractive index layers) is not particularly limited, but is preferably 6 to 2000 (that is, 3 to 1000 units), more preferably 10 to 1500 ( That is, 5 to 750 units), more preferably 10 to 1000 (that is, 5 to 500 units). If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved.
 反射部においては、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で反射率を高くすることができるという観点から好ましい。高屈折率層および低屈折率層から構成されるユニットの少なくとも1つにおいて、隣接する高屈折率層と低屈折率層との屈折率差が0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.25以上である。反射部が低屈折率層および高屈折率層のユニットを複数有する場合には、全てのユニットにおける低屈折率層と高屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、反射部の最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。 In the reflective portion, it is preferable to design a large difference in refractive index between the high refractive index layer and the low refractive index layer from the viewpoint that the reflectance can be increased with a small number of layers. In at least one of the units composed of the high refractive index layer and the low refractive index layer, the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably It is 0.2 or more, more preferably 0.25 or more. When the reflection part has a plurality of units of the low refractive index layer and the high refractive index layer, it is preferable that the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferable range. . However, the outermost layer and the lowermost layer of the reflective portion may have a configuration outside the above preferred range.
 低屈折率層は、より低い屈折率が好ましいが、一般的には屈折率1.2~1.6の範囲の樹脂が好ましく用いられる。また、高屈折率層は、より高い屈折率が好ましいが一般的には屈折率1.6~2.5の範囲の樹脂が好ましく用いられる。 The lower refractive index layer preferably has a lower refractive index, but generally a resin having a refractive index in the range of 1.2 to 1.6 is preferably used. The high refractive index layer preferably has a higher refractive index, but generally a resin having a refractive index in the range of 1.6 to 2.5 is preferably used.
 また、本態様の光学反射フィルムにおいて、最下層および最表層は、高屈折率層および低屈折率層のいずれであってもよい。しかしながら、低屈折率層が最下層および最表層に位置する層構成とすることにより、最下層の基体への密着性、最上層の吹かれ耐性、さらには最表層へのハードコート層等の塗布性や密着性に優れるという観点から、最下層および最表層が低屈折率層である層構成が好ましい。 In the optical reflective film of this embodiment, the lowermost layer and the outermost layer may be either a high refractive index layer or a low refractive index layer. However, by adopting a layer structure in which the low refractive index layer is located in the lowermost layer and the outermost layer, the adhesion to the lowermost substrate, the blowing resistance of the uppermost layer, and the application of a hard coat layer etc. to the outermost layer From the viewpoint of excellent properties and adhesion, a layer structure in which the lowermost layer and the outermost layer are low refractive index layers is preferable.
 上記屈折率は、高屈折率層、低屈折率層の屈折率を下記の方法に従って求め、両者の差分として求める。すなわち、(必要により基材を用いて)各屈折率層を単層で作製し、このサンプルを10cm×10cmに断裁した後、下記の方法に従って屈折率を求める。分光光度計として、U-4000型(日立製作所社製)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm~700nm)の反射率を25点測定して平均値を求め、その測定結果より平均屈折率を求める。 The refractive index is obtained as a difference between the high refractive index layer and the low refractive index layer according to the following method. That is, each refractive index layer is formed as a single layer (using a base material if necessary), and after cutting this sample into 10 cm × 10 cm, the refractive index is obtained according to the following method. Using a U-4000 type (manufactured by Hitachi, Ltd.) as a spectrophotometer, the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray. Then, the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result. Ask.
 特定波長領域の反射率は、隣接する2層の屈折率差と積層数とで決まり、屈折率の差が大きいほど、少ない層数で同じ反射率を得られる。この屈折率差と必要な層数については、市販の光学設計ソフトウェアを用いて計算することができる。例えば、赤外反射率90%以上を得るためには、屈折率差が0.1より小さいと、200層以上の積層が必要になることが分かる。反射率の向上と層数を少なくするという観点からは、屈折率差に上限はないが、実質的には1.4程度である。 The reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers. The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, it can be seen that if the refractive index difference is smaller than 0.1, 200 or more layers are required. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but it is substantially about 1.4.
 隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御出来、反射率を上げることができる。ここで、nは屈折率、またdは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御出来る。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。即ち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率をアップさせることができる。 Since reflection at the interface between adjacent layers depends on the refractive index ratio between layers, the larger this refractive index ratio, the higher the reflectance. In addition, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is a relationship expressed by n · d = wavelength / 4 when viewed as a single layer film, the reflected light is controlled to be strengthened by the phase difference. And reflectivity can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By using this optical path difference, reflection can be controlled. Using this relationship, the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light. That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
 本発明の光学反射フィルムは反射率をアップさせる特定波長領域を変えることにより、可視光反射フィルムや近赤外線反射フィルムとすることができる。即ち、反射率をアップさせる特定波長領域を可視光領域に設定すれば可視光線反射フィルムとなり、近赤外領域に設定すれば近赤外線反射フィルムとなる。また、反射率をアップさせる特定波長領域を紫外光領域に設定すれば、紫外線反射フィルムとなる。本発明の光学反射フィルムを遮熱フィルムに用いる場合は、(近)赤外反射(遮蔽)フィルムとすればよい。赤外反射フィルムの場合、JIS R3106:1998で示される可視光領域の550nmでの透過率が50%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。また、1200nmでの透過率が35%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることがさらに好ましい。かような好適な範囲となるように光学膜厚とユニットを設計することが好ましい。また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。 The optical reflection film of the present invention can be made into a visible light reflection film or a near infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set to the visible light region, the visible light reflecting film is obtained, and if the specific wavelength region is set to the near infrared region, the near infrared reflecting film is obtained. Moreover, if the specific wavelength area | region which raises a reflectance is set to an ultraviolet light area | region, it will become an ultraviolet reflective film. When the optical reflective film of the present invention is used for a heat shield film, it may be a (near) infrared reflective (shield) film. In the case of an infrared reflective film, the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, more preferably 70% or more, and 75% or more. Further preferred. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. It is preferable to design the optical film thickness and unit so as to be in such a suitable range. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
 太陽直達光の入射スペクトルのうち赤外域が室内温度上昇に関係し、これを遮蔽することで室内温度の上昇を抑えることができる。日本工業規格JIS R3106:1998に記載された重価係数をもとに赤外の最短波長(760nm)から最長波長3200nmまでの累積エネルギー比率をみてみると、波長760nmから最長波長3200nmまでの赤外全域の総エネルギーを100としたときの、760nmから各波長までの累積エネルギーをみると、760から1300nmのエネルギー合計が赤外域全体の約75%を占めている。従って、1300nmまでの波長領域を遮蔽することが熱線遮蔽による省エネルギー効果の効率がよい。 The infrared region of the incident spectrum of direct sunlight is related to the increase in indoor temperature, and by blocking this, the increase in indoor temperature can be suppressed. Looking at the cumulative energy ratio from the shortest infrared wavelength (760 nm) to the longest wavelength 3200 nm based on the weight coefficient described in Japanese Industrial Standard JIS R3106: 1998, the infrared from the wavelength 760 nm to the longest wavelength 3200 nm Looking at the cumulative energy from 760 nm to each wavelength when the total energy of the entire region is 100, the total energy from 760 to 1300 nm occupies about 75% of the entire infrared region. Therefore, shielding the wavelength region up to 1300 nm is efficient in energy saving effect by heat ray shielding.
 この近赤外光域(760~1300nm)の反射率を最大ピーク値で約80%以上にすると体感温度の低下が官能評価により得られる。たとえば8月の午前中の南東方法を向く窓際での体感温度が近赤外光域の反射率を最大ピーク値で約80%にまで遮蔽したとき明確な差がでた。 When the reflectance in the near-infrared light region (760 to 1300 nm) is about 80% or more at the maximum peak value, a decrease in the sensible temperature is obtained by sensory evaluation. For example, there was a clear difference when the temperature at the window facing the southeast method in the morning of August shielded the reflectance in the near infrared light range to about 80% at the maximum peak value.
 屈折率層の1層あたりの膜厚は、80~400nmであることが好ましく、100~300nmであることがより好ましく、100~200nmであることが更に好ましい。屈折率層の1層あたりの厚みは、ダイスの押出口におけるフィルム厚さ方向の幅を変更すること、および/または延伸条件により、調節することができる。また、反射部の厚みは、好ましくは10μm~480μm、より好ましくは10μm~290μm、さらに好ましくは20μm~140μmである。なお、積層体を延伸する場合は、上記膜厚および反射部の厚みは、延伸後の厚さを示す。 The film thickness of each refractive index layer is preferably 80 to 400 nm, more preferably 100 to 300 nm, and still more preferably 100 to 200 nm. The thickness per layer of the refractive index layer can be adjusted by changing the width in the film thickness direction at the die extrusion port and / or by stretching conditions. The thickness of the reflecting portion is preferably 10 μm to 480 μm, more preferably 10 μm to 290 μm, and still more preferably 20 μm to 140 μm. In addition, when extending | stretching a laminated body, the said film thickness and the thickness of a reflection part show the thickness after extending | stretching.
 本発明において、反射部は溶融押出成形によって形成される。より具体的には、例えば特表2002-509279号公報(米国特許第6,049,419号明細書に相当する)に記載されるように、樹脂を溶融して得られた溶融樹脂を、(多層)押出しダイスよりキャスティングドラム上に押出した後、急冷する。この際、溶融樹脂の押出し冷却後、樹脂シートを延伸させてもよい。 In the present invention, the reflection portion is formed by melt extrusion molding. More specifically, for example, as described in JP-T-2002-509279 (corresponding to US Pat. No. 6,049,419), a molten resin obtained by melting a resin is ( Multi-layer) Extrude onto a casting drum from an extrusion die and then cool rapidly. At this time, the resin sheet may be stretched after extrusion cooling of the molten resin.
 塗布法や溶液流涎法のような溶媒を用いる方法と異なり、溶融押出成形によれば溶媒を用いずに反射部を形成することができる。これにより、反射部形成後、ハードコート層の形成前に残存溶媒量の分析や調整をすることなく、光学反射フィルム中の残存溶媒量を1~8mg/gとすることができる。従って、溶融押出成形により反射部を形成することは、製造効率の観点から利点がある。本発明の一態様にかかる光学反射フィルムは、第1の樹脂を含有する高屈折率層と第2の樹脂を含有する低屈折率層とが同時に積層される、多層押出しによって反射部が形成されたものであることが好ましい。 Unlike a method using a solvent such as a coating method or a solution pouring method, the reflective portion can be formed without using a solvent by melt extrusion molding. Thereby, the residual solvent amount in the optical reflection film can be set to 1 to 8 mg / g without analyzing and adjusting the residual solvent amount after forming the reflective portion and before forming the hard coat layer. Therefore, forming the reflective portion by melt extrusion molding is advantageous from the viewpoint of manufacturing efficiency. In the optical reflective film according to one aspect of the present invention, a reflective portion is formed by multilayer extrusion in which a high refractive index layer containing a first resin and a low refractive index layer containing a second resin are simultaneously laminated. It is preferable that
 屈折率層に含まれる樹脂としては、熱可塑性樹脂であれば特に制限されない。上述のように、「高屈折率層」および「低屈折率層」は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層が高屈折率層であり、低い方の屈折率層が低屈折率層である。 The resin contained in the refractive index layer is not particularly limited as long as it is a thermoplastic resin. As described above, the “high refractive index layer” and the “low refractive index layer” indicate that the refractive index layer having the higher refractive index is the high refractive index layer when comparing the refractive index difference between two adjacent layers. The lower refractive index layer is the low refractive index layer.
 例えば、熱可塑性樹脂としては、特表2002-509279号公報(米国特許第6,049,419号明細書に相当する)に記載のものを用いることができる。具体例としては、例えば、ポリエチレンナフタレート(PEN)およびその異性体(例えば、2,6-、1,4-、1,5-、2,7-および2,3-PEN)、ポリアルキレンテレフタレート(例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、およびポリ-1,4-シクロヘキサンジメチレンテレフタレート)、ポリイミド(例えば、ポリアクリルイミド)、ポリエーテルイミド、アタクチックポリスチレン、ポリカーボネート、ポリメタクリレート(例えば、ポリイソブチルメタクリレート、ポリプロピルメタクリレート、ポリエチルメタクリレート、およびポリメチルメタクリレート(PMMA))、ポリアクリレート(例えば、ポリブチルアクリレート、およびポリメチルアクリレート)、セルロース誘導体(例えば、エチルセルロース、アセチルセルロース、セルロースプロピオネート、アセチルセルロースブチレート、および硝酸セルロース)、ポリアルキレンポリマー(例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン、ポリイソブチレン、およびポリ(4-メチル)ペンテン)、フッ素化ポリマー(例えば、パーフルオロアルコキシ樹脂、ポリテトラフルオロエチレン、フッ素化エチレンプロピレンコポリマー、ポリフッ化ビニリデン、およびポリクロロトリフルオロエチレン)、塩素化ポリマー(例えば、ポリ塩化ビニリデンおよびポリ塩化ビニル)、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリアミド、シリコーン樹脂、エポキシ樹脂、ポリ酢酸ビニル、ポリエーテルアミド、アイオノマー樹脂、エラストマー(例えば、ポリブタジエン、ポリイソプレンおよびネオプレン)、ならびにポリウレタンが挙げられる。コポリマー、例えば、PENのコポリマー(例えば、(a)テレフタル酸もしくはそのエステル、(b)イソフタル酸もしくはそのエステル、(c)フタル酸もしくはそのエステル、(d)アルカングリコール、(e)シクロアルカングリコール(例えば、シクロヘキサンジメタノールジオール)、(f)アルカンジカルボン酸、および/または(g)シクロアルカンジカルボン酸(例えば、シクロヘキサンジカルボン酸)と、2,6-、1,4-、1,5-、2,7-および/もしくは2,3-ナフタレンジカルボン酸またはそれらのエステルとのコポリマー)、ポリアルキレンテレフタレートのコポリマー(例えば、(a)ナフタレンジカルボン酸もしくはそのエステル、(b)イソフタル酸もしくはそのエステル、(c)フタル酸もしくはそのエステル、(d)アルカングリコール、(e)シクロアルカングリコール(例えば、シクロヘキサンジメタノールジオール)、(f)アルカンジカルボン酸、および/または(g)シクロアルカンジカルボン酸(例えば、シクロヘキサンジカルボン酸)と、テレフタル酸もしくはそのエステルとのコポリマー)、ならびにスチレンコポリマー(例えば、スチレン-ブタジエンコポリマー、およびスチレン-アクリロニトリルコポリマー)、4,4-ビス安息香酸およびエチレングリコールも適している。さらに、各層はそれぞれ、2種またはそれ以上の上記のポリマーまたはコポリマーのブレンド(例えば、シンジオタクチックポリスチレン(SPS)とアタクチックポリスチレンとのブレンド)を包含してよい。本形態において、高屈折率層および低屈折率層を形成する熱可塑性樹脂の好ましい組み合わせとしては、PEN/PMMA、PET/PMMA、PE/PMMA、PE/ポリフッ化ビニリデン、PEN/ポリフッ化ビニリデン、PEN/PET、PEN/ポリブチレンテレフタレート等が挙げられる。 For example, as the thermoplastic resin, those described in JP-T-2002-509279 (corresponding to US Pat. No. 6,049,419) can be used. Specific examples include, for example, polyethylene naphthalate (PEN) and its isomers (eg, 2,6-, 1,4-, 1,5-, 2,7- and 2,3-PEN), polyalkylene terephthalate (Eg, polyethylene terephthalate (PET), polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate), polyimide (eg, polyacrylimide), polyetherimide, atactic polystyrene, polycarbonate, polymethacrylate (eg, Polyisobutyl methacrylate, polypropyl methacrylate, polyethyl methacrylate, and polymethyl methacrylate (PMMA)), polyacrylates (eg, polybutyl acrylate, and polymethyl acrylate), cellulose Derivatives (eg, ethyl cellulose, acetyl cellulose, cellulose propionate, acetyl cellulose butyrate, and cellulose nitrate), polyalkylene polymers (eg, polyethylene (PE), polypropylene (PP), polybutylene, polyisobutylene, and poly (4- Methyl) pentene), fluorinated polymers (eg, perfluoroalkoxy resins, polytetrafluoroethylene, fluorinated ethylene propylene copolymers, polyvinylidene fluoride, and polychlorotrifluoroethylene), chlorinated polymers (eg, polyvinylidene chloride and poly) Vinyl chloride), polysulfone, polyethersulfone, polyacrylonitrile, polyamide, silicone resin, epoxy resin, polyvinyl acetate, polyetheramide, Ionomeric resins, elastomers (e.g., polybutadiene, polyisoprene and neoprene), and polyurethanes. Copolymers such as copolymers of PEN (e.g. (a) terephthalic acid or esters thereof, (b) isophthalic acid or esters thereof, (c) phthalic acid or esters thereof, (d) alkane glycol, (e) cycloalkane glycol ( For example, cyclohexanedimethanoldiol), (f) alkanedicarboxylic acid, and / or (g) cycloalkanedicarboxylic acid (eg, cyclohexanedicarboxylic acid) and 2,6-, 1,4-, 1,5-, 2 , 7- and / or 2,3-naphthalenedicarboxylic acid or copolymers thereof), copolymers of polyalkylene terephthalates (eg (a) naphthalenedicarboxylic acid or esters thereof, (b) isophthalic acid or esters thereof, ( c) Phthalic acid moshi The ester thereof, (d) alkane glycol, (e) cycloalkane glycol (eg, cyclohexanedimethanol diol), (f) alkane dicarboxylic acid, and / or (g) cycloalkane dicarboxylic acid (eg, cyclohexanedicarboxylic acid) , Copolymers with terephthalic acid or esters thereof), and styrene copolymers (eg, styrene-butadiene copolymers and styrene-acrylonitrile copolymers), 4,4-bisbenzoic acid and ethylene glycol are also suitable. In addition, each layer may each include a blend of two or more of the above polymers or copolymers (eg, a blend of syndiotactic polystyrene (SPS) and atactic polystyrene). In this embodiment, as a preferable combination of the thermoplastic resins forming the high refractive index layer and the low refractive index layer, PEN / PMMA, PET / PMMA, PE / PMMA, PE / polyvinylidene fluoride, PEN / polyvinylidene fluoride, PEN / PET, PEN / polybutylene terephthalate, and the like.
 屈折率層に含まれる熱可塑性樹脂の重量平均分子量は、10000~1000000程度であり、50000~800000であることが好ましい。なお、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定した値を採用する。 The weight average molecular weight of the thermoplastic resin contained in the refractive index layer is about 10,000 to 1,000,000, preferably 50,000 to 800,000. In addition, the value measured by gel permeation chromatography (GPC) is employ | adopted for a weight average molecular weight.
 また、屈折率層中、熱可塑性樹脂の含有量は、各屈折率層の全固形分に対して、例えば30~100質量%であり、好ましくは50~100質量%であり、より好ましくは70~100質量%である。 The content of the thermoplastic resin in the refractive index layer is, for example, 30 to 100% by mass, preferably 50 to 100% by mass, and more preferably 70%, based on the total solid content of each refractive index layer. To 100% by mass.
 (金属酸化物)
 本形態の光学反射フィルムにおける低屈折率層または高屈折率層の少なくとも一方は、金属酸化物(粒子)を含有しても良い。金属酸化物粒子を含有することで各屈折率層間の屈折率差を大きくすることができ、反射特性が向上する。低屈折率層および高屈折率層の双方が金属酸化物粒子を含有することにより、屈折率差をより大きくすることができる。金属酸化物粒子を含むことにより、積層数を低減することができ、薄膜とすることができる。層数を減らすことで、生産性が向上し、積層界面での散乱による透明性の減少を抑制することができる。
(Metal oxide)
At least one of the low refractive index layer or the high refractive index layer in the optical reflective film of this embodiment may contain a metal oxide (particle). By containing metal oxide particles, the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved. When both the low refractive index layer and the high refractive index layer contain metal oxide particles, the refractive index difference can be further increased. By including metal oxide particles, the number of stacked layers can be reduced and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
 金属酸化物粒子の平均粒径は、例えば100nm以下である。用いる金属酸化物粒子の平均粒径が100nm以下であることで、光散乱を抑制し、また光学反射フィルムにおける各屈折率層の膜厚制御の際の精度を向上させることができる。ここで、本明細書において平均粒径は、一次平均粒径を指す。本明細書でいう一次平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1000個の任意の粒子の粒径を測定し、その平均を求めた値である。金属酸化物粒子の平均粒径は、金属酸化物粒子が被覆処理されている場合(例えば、後述のシリカ付着二酸化チタン等)、金属酸化物粒子の平均粒径とは母体(上記シリカ付着二酸化チタンの場合は、処理前の二酸化チタン)の平均粒径を指すものとする。 The average particle diameter of the metal oxide particles is, for example, 100 nm or less. When the average particle diameter of the metal oxide particles to be used is 100 nm or less, light scattering can be suppressed and the accuracy in controlling the film thickness of each refractive index layer in the optical reflection film can be improved. Here, in this specification, an average particle diameter refers to a primary average particle diameter. As used herein, the primary average particle size refers to a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, and a particle image appearing on the cross section or surface of the refractive index layer. The average particle size is a value obtained by measuring the particle size of 1000 arbitrary particles by a method of observing with an electron microscope. When the metal oxide particles are coated (for example, silica-attached titanium dioxide described later), the average particle diameter of the metal oxide particles is the base (the silica-attached titanium dioxide). In this case, it means the average particle diameter of titanium dioxide before treatment).
 (低屈折率層中の金属酸化物)
 低屈折率層に用いる金属酸化物としてはシリカ(二酸化ケイ素)を例示することができ、具体的な例として合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることが好ましく、有機溶媒に分散させたコロイダルシリカを用いることがより好ましい。また、屈折率をより低減させるために、低屈折率層の金属酸化物粒子として、粒子の内部に空孔を有する中空微粒子を用いてもよく、特にシリカ(二酸化ケイ素)の中空微粒子が好ましい。また、シリカ以外の公知の金属酸化物粒子も使用することができる。低屈折率層に用いられる金属酸化物粒子は、1種単独であってもよいし、2種以上併用してもよい。
(Metal oxide in the low refractive index layer)
Examples of the metal oxide used for the low refractive index layer include silica (silicon dioxide), and specific examples include synthetic amorphous silica and colloidal silica. Among these, acidic colloidal silica sol is preferably used, and colloidal silica dispersed in an organic solvent is more preferably used. In order to further reduce the refractive index, hollow fine particles having pores inside the particles may be used as the metal oxide particles of the low refractive index layer, and hollow fine particles of silica (silicon dioxide) are particularly preferable. Moreover, well-known metal oxide particles other than a silica can also be used. The metal oxide particles used for the low refractive index layer may be used alone or in combination of two or more.
 低屈折率層に含まれる金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであるのがより好ましく、3~40nmであるのがさらに好ましく、3~20nmであるのが特に好ましく、4~10nmであるのがもっとも好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm. The average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state (particle diameter in a dispersion state before coating) is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 本形態で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、たとえば、特開昭57-14091号公報、特開昭60-219083号公報などに記載されているものである。 The colloidal silica used in the present embodiment is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091, JP-A-60-219083 and the like.
 この様なコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業株式会社から販売されているスノーテックス(登録商標)シリーズ(スノーテックス(登録商標)OS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. As a commercially available product, Snowtex (registered trademark) series sold by Nissan Chemical Industries, Ltd. (Snowtex (registered trademark) OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) Is mentioned.
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 また、低屈折率層の金属酸化物粒子として、中空粒子を用いることもできる。中空微粒子を用いる場合には、平均粒子空孔径が、3~70nmであるのが好ましく、5~50nmがより好ましく、5~45nmがさらに好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 Moreover, hollow particles can also be used as the metal oxide particles of the low refractive index layer. When hollow fine particles are used, the average particle pore size is preferably 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm. The average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained. The average particle hole diameter means the minimum distance among the distances between the two parallel lines that surround the outer edge of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse.
 低屈折率層における金属酸化物粒子の含有量は、低屈折率層の固形分に対して、例えば20~70質量%であり、30~50質量%であることが好ましい。 The content of the metal oxide particles in the low refractive index layer is, for example, 20 to 70% by mass and preferably 30 to 50% by mass with respect to the solid content of the low refractive index layer.
 (高屈折率層中の金属酸化物)
 高屈折率層に用いる金属酸化物粒子としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。中でも、透明でより屈折率の高い高屈折率層を形成することのできる、二酸化チタン、酸化ジルコニウム等が好ましく、特に二酸化チタンとしてルチル型(正方晶形)酸化チタン粒子が好ましい。高屈折率層に用いられる金属酸化物粒子は、1種単独であってもよいし、2種以上併用してもよい。
(Metal oxide in the high refractive index layer)
Examples of the metal oxide particles used in the high refractive index layer include titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, Examples thereof include iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. Among these, titanium dioxide, zirconium oxide, and the like that can form a transparent and higher refractive index layer are preferable, and rutile (tetragonal) titanium oxide particles are particularly preferable as titanium dioxide. The metal oxide particles used for the high refractive index layer may be used singly or in combination of two or more.
 高屈折率層で用いられる金属酸化物粒子に用いられる金属酸化物粒子の一次平均粒径は、30nm以下であることが好ましく、1~30nmであることがより好ましく、5~15nmであることがさらに好ましい。一次平均粒径が1nm以上30nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The primary average particle diameter of the metal oxide particles used for the metal oxide particles used in the high refractive index layer is preferably 30 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. Further preferred. A primary average particle diameter of 1 nm or more and 30 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
 一般的に、酸化チタン粒子は、粒子表面の光触媒活性の抑制や、溶媒等への分散性を向上する目的で、表面処理が施された状態で使用されることが多く、表面処理としては、シリカ、アルミナ、水酸化アルミニウム、ジルコニア等、1種またその2種類以上で処理されているものが好ましい。より具体的には、酸化チタン粒子表面をシリカからなる被覆層で覆われ、粒子表面が負電荷を帯びたものや、アルミニウム酸化物からなる被覆層が形成されたpH8~10で表面が正電荷を帯びたものが知られている。 In general, titanium oxide particles are often used in a surface-treated state for the purpose of suppressing the photocatalytic activity of the particle surface and improving dispersibility in a solvent, etc. Silica, alumina, aluminum hydroxide, zirconia, and the like are preferably treated with one or more of them. More specifically, the surface of the titanium oxide particle is covered with a coating layer made of silica, and the surface of the particle is negatively charged, or the surface is positively charged at a pH of 8 to 10 where a coating layer made of aluminum oxide is formed. The one that bears is known.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆した、コアシェル構造を有する粒子を用いてもよい。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、金属酸化物粒子として用いられる酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。以下ではこのような被覆された酸化チタン粒子を「シリカ付着二酸化チタンゾル」とも称する。 Particles having a core-shell structure in which titanium oxide particles are coated with a silicon-containing hydrated oxide may be used. Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. . Hereinafter, such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよいが、ルチル型がより好ましい。これは、ルチル型の酸化チタン粒子が、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率が高くなるためである。 The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because rutile-type titanium oxide particles have lower photocatalytic activity than anatase-type titanium oxide particles, which increases the weather resistance of the high refractive index layer and the adjacent low refractive index layer, and further increases the refractive index. is there.
 本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、本形態の効果を得るためにはシラノール基を有することがより好ましい。 The term “silicon-containing hydrated oxide” in the present specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound. More preferably has a silanol group.
 含ケイ素の水和酸化物の被覆量は、金属酸化物粒子に対して3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率層の所望の屈折率化が得られ、被覆量が3質量%以上であると粒子を安定に形成することができるからである。 The coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, and more preferably 3 to 8% by mass with respect to the metal oxide particles. This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% by mass or more, particles can be stably formed.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された事項を参照することができる。 As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
 さらに、酸化チタン粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下をいう。更に好ましくは30%以下であり、特に好ましくは0.1~20%となる粒子である。 Furthermore, the titanium oxide particles are preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula is 40% or less. The particles are more preferably 30% or less, and particularly preferably 0.1 to 20%.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 高屈折率層における金属酸化物粒子の含有量としては、高屈折率層の固形分に対して、例えば20~70質量%であり、30~50質量%であることが好ましい。 The content of the metal oxide particles in the high refractive index layer is, for example, 20 to 70% by mass and preferably 30 to 50% by mass with respect to the solid content of the high refractive index layer.
 (その他の添加物)
 各屈折率層は、上記以外にも、例えば、特開昭57-74193号公報、同57-87988号公報および同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。これらの添加物の含有量は、屈折率層の固形分に対して、0.1~10質量%である。
(Other additives)
In addition to the above, each refractive index layer includes, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No. 42993, 59-52689, 62-280069, 61-242871, and JP-A 4-219266, etc., optical brighteners, sulfuric acid, phosphoric acid, acetic acid PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents, Various known additives such as DOO agent may contain. The content of these additives is 0.1 to 10% by mass with respect to the solid content of the refractive index layer.
 これらの添加剤のうち、市販の製剤を用いた場合には、製剤中に溶媒が含まれる場合がある。しかしながら、これらの添加剤の添加量は屈折率層中の熱可塑性樹脂量と比べて少量であり、溶融押出プロセスにおいて高温にさらされるため大部分(または完全に)は蒸発する。従って、光学反射フィルム中に残存する添加剤製剤由来の溶媒量は、ハードコート塗布液に由来する溶媒量と比べてごく少量(または、検出されない)となる。よって、上記の含有量であれば、溶融押出によって反射部を形成した後、ハードコート層の形成前に残存溶媒量を調整しなくとも、ハードコート層形成後の乾燥工程のみによって容易にフィルム中の残存溶媒量を調整することができる。 Of these additives, when a commercially available preparation is used, the preparation may contain a solvent. However, the amount of these additives added is small compared to the amount of thermoplastic resin in the refractive index layer, and most (or completely) evaporates due to exposure to high temperatures in the melt extrusion process. Accordingly, the amount of the solvent derived from the additive preparation remaining in the optical reflection film is very small (or not detected) compared to the amount of the solvent derived from the hard coat coating solution. Therefore, with the above content, after forming the reflective portion by melt extrusion, the film can be easily contained in the film only by the drying process after the hard coat layer is formed without adjusting the residual solvent amount before the formation of the hard coat layer. The amount of residual solvent can be adjusted.
 〔ハードコート層〕
 光学反射フィルムは、一般的には、真空蒸着法等の乾式成膜法によって形成されたハードコート層を含むものもある。しかしながら、本形態の光学反射フィルムは、ハードコート塗布液の塗布によって形成されたハードコート層を有する。なお、本明細書において「ハードコート層」とは、JIS K 5600-5-4:1999に準じた鉛筆硬度がH以上の層である。ハードコート層は、光学反射フィルムの耐擦過性を高めるための表面保護層として機能する。
[Hard coat layer]
Some optical reflection films generally include a hard coat layer formed by a dry film formation method such as a vacuum deposition method. However, the optical reflective film of this embodiment has a hard coat layer formed by applying a hard coat coating solution. In the present specification, the “hard coat layer” is a layer having a pencil hardness of H or more according to JIS K 5600-5-4: 1999. The hard coat layer functions as a surface protective layer for enhancing the scratch resistance of the optical reflective film.
 本形態の光学反射フィルムに係るハードコート層は、光学反射フィルムの片表面にのみ形成してもよく、両表面に形成してもよい。また、ハードコート層は、1層のみでもまたは2層以上でもよい。光学反射フィルムが2層以上のハードコート層を有する場合、各ハードコート層の構成は同じでもよいし異なっていてもよい。 The hard coat layer according to the optical reflection film of the present embodiment may be formed only on one surface of the optical reflection film, or may be formed on both surfaces. Further, the hard coat layer may be a single layer or two or more layers. When the optical reflective film has two or more hard coat layers, the configuration of each hard coat layer may be the same or different.
 ハードコート層を構成するハードコート材料としては、アクリレート樹脂のような活性エネルギー線硬化性樹脂や、ポリシロキサン系に代表される無機系材料が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。 Examples of the hard coat material constituting the hard coat layer include an active energy ray-curable resin such as an acrylate resin, and an inorganic material typified by a polysiloxane type. A curable resin is preferred. Such curable resins can be used singly or in combination of two or more.
 ハードコート層中のハードコート材料の量は、ハードコート層の固形分に対して、例えば20~99.9質量%であり、20~80質量%であることが好ましく、30~60質量%であることがより好ましい。ハードコート層には、1~8mg/g程度の溶媒が含まれる。 The amount of the hard coat material in the hard coat layer is, for example, 20 to 99.9% by mass, preferably 20 to 80% by mass, and preferably 30 to 60% by mass with respect to the solid content of the hard coat layer. More preferably. The hard coat layer contains about 1 to 8 mg / g of solvent.
 本形態においてハードコート層の形成には、ハードコート材料、ならびに任意に含まれる界面活性剤、赤外線吸収剤、紫外線吸収剤および/または酸化防止剤等を含むハードコート塗布液を、ワイヤーバー等により反射部上に塗布して成膜する方法が採用される。ハードコート層は反射部上に直接設けられても良いが、ハードコート層と反射部との間に導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、本発明の高屈折率層および低屈折率層以外の赤外線カット層(金属層、液晶層)、着色層(可視光線吸収層)などの機能層を含む場合は、これらの層上に配置されても良い。 In this embodiment, the hard coat layer is formed by applying a hard coat coating solution containing a hard coat material and an optional surfactant, infrared absorber, ultraviolet absorber and / or antioxidant to the wire bar or the like. A method of forming a film by coating on the reflective portion is employed. The hard coat layer may be provided directly on the reflective part, but the conductive layer, antistatic layer, gas barrier layer, easy adhesion layer (adhesive layer), antifouling layer, Odor layer, droplet layer, slippery layer, hard coat layer, wear-resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorption layer, infrared absorption layer, printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive When including functional layers such as layers, adhesive layers, infrared cut layers (metal layers, liquid crystal layers), and colored layers (visible light absorbing layers) other than the high refractive index layer and low refractive index layer of the present invention, these layers It may be placed on top.
 ハードコート層を塗布法により形成する際に用いる溶媒は、特に制限されず、例えば、炭化水素類(例えば、トルエン、キシレン、シクロヘキサン等)、アルコール類(例えば、メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、ケトン類(例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等)、エーテル(例えば、テトラヒドロフラン等)、グリコールエーテル類(例えば、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノ-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールモノ-tert-ブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、3-メトキシブタノール、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート、1-メトキシ-2-プロピルアセテート、1-エトキシ-2-プロパノール、1-プロポキシ-2-プロパノール、3-メトキシブチルアセテート、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルプロピオネート等)、エステル類(例えば、酢酸メチル、酢酸エチル、乳酸メチル等)、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。このうち、0.1~0.5の相対蒸発速度である溶媒を全溶媒量に対して5~20質量%含有する塗布液を用いることで、乾燥工程における溶媒の揮発速度が制御しやすくなり、また、乾燥工程において過度に時間を要することなくフィルム中の残存溶媒を調整できることから好ましい。すなわち、本発明の一実施形態では、ハードコート層が、0.1~0.5の相対蒸発速度である溶媒を、全溶媒量に対して5~20質量%含有する塗布液を塗布し、乾燥して形成された光学反射フィルムが提供される。本明細書において、相対蒸発速度とはASTM-D3539-11に準拠して測定される蒸発速度であり、25℃、乾燥空気下における酢酸n-ブチルの蒸発時間と各溶媒の蒸発時間との比の値として定義される。 The solvent used for forming the hard coat layer by a coating method is not particularly limited, and examples thereof include hydrocarbons (for example, toluene, xylene, cyclohexane, etc.), alcohols (for example, methanol, ethanol, isopropanol, butanol, cyclohexane). Hexanol, etc.), ketones (eg, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, etc.), ethers (eg, tetrahydrofuran, etc.), glycol ethers (For example, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol mono-n-butyl ether (butyl cellosolve), ethyl Glycol mono-tert-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, 3-methoxybutanol, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate, 1-methoxy-2- Propyl acetate, 1-ethoxy-2-propanol, 1-propoxy-2-propanol, 3-methoxybutyl acetate, ethyl 3-ethoxypropionate, propylene glycol monomethyl ether propionate, etc.), esters (for example, methyl acetate, Ethyl acetate, methyl lactate, etc.) and other organic solvents, or a mixture thereof can be used. Among these, by using a coating solution containing 5 to 20% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent, the volatilization rate of the solvent in the drying process can be easily controlled. Moreover, it is preferable because the residual solvent in the film can be adjusted without excessively taking time in the drying step. That is, in one embodiment of the present invention, the hard coat layer is coated with a coating solution containing 5 to 20% by mass of the solvent having a relative evaporation rate of 0.1 to 0.5% with respect to the total amount of solvent, An optical reflection film formed by drying is provided. In this specification, the relative evaporation rate is an evaporation rate measured in accordance with ASTM-D3539-11, and is a ratio of the evaporation time of n-butyl acetate and the evaporation time of each solvent at 25 ° C. under dry air. Defined as the value of.
 0.1~0.5の相対蒸発速度である溶媒としては、特に制限されるものでは無いが、例えば、1-ブタノール(相対蒸発速度0.5)、ジイソブチルケトン(相対蒸発速度0.2)、シクロヘキサノン(相対蒸発速度0.3)、4-ヒドロキシ-4-メチル-2-ペンタノン(相対蒸発速度0.2)、エチレングリコールモノエチルエーテル(相対蒸発速度0.4)、エチレングリコールモノ-n-ブチルエーテル(相対蒸発速度0.1)、エチレングリコールモノ-tert-ブチルエーテル(相対蒸発速度0.2)、エチレングリコールモノメチルエーテルアセテート(相対蒸発速度0.3)、エチレングリコールモノエチルエーテルアセテート(相対蒸発速度0.2)、3-メトキシブタノール(相対蒸発速度0.1)、3-メトキシ-3-メチルブタノール(相対蒸発速度0.1)、3-メトキシ-3-メチルブチルアセテート(相対蒸発速度0.1)、1-メトキシ-2-プロピルアセテート(相対蒸発速度0.3)、1-エトキシ-2-プロパノール(相対蒸発速度0.3)、1-プロポキシ-2-プロパノール(相対蒸発速度0.2)、3-メトキシブチルアセテート(相対蒸発速度0.1)、3-エトキシプロピオン酸エチル(相対蒸発速度0.3)、プロピレングリコールモノメチルエーテルプロピオネート(相対蒸発速度0.2)等が挙げられる。 The solvent having a relative evaporation rate of 0.1 to 0.5 is not particularly limited. For example, 1-butanol (relative evaporation rate 0.5), diisobutyl ketone (relative evaporation rate 0.2) Cyclohexanone (relative evaporation rate 0.3), 4-hydroxy-4-methyl-2-pentanone (relative evaporation rate 0.2), ethylene glycol monoethyl ether (relative evaporation rate 0.4), ethylene glycol mono-n -Butyl ether (relative evaporation rate 0.1), ethylene glycol mono-tert-butyl ether (relative evaporation rate 0.2), ethylene glycol monomethyl ether acetate (relative evaporation rate 0.3), ethylene glycol monoethyl ether acetate (relative evaporation) 0.2), 3-methoxybutanol (relative evaporation rate 0.1), 3-methoate Cis-3-methylbutanol (relative evaporation rate 0.1), 3-methoxy-3-methylbutyl acetate (relative evaporation rate 0.1), 1-methoxy-2-propyl acetate (relative evaporation rate 0.3), 1-ethoxy-2-propanol (relative evaporation rate 0.3), 1-propoxy-2-propanol (relative evaporation rate 0.2), 3-methoxybutyl acetate (relative evaporation rate 0.1), 3-ethoxypropion Examples include ethyl acid (relative evaporation rate 0.3), propylene glycol monomethyl ether propionate (relative evaporation rate 0.2), and the like.
 ハードコート層を塗布法により形成する際に用いる塗布液としては、上記のような0.1~0.5の相対蒸発速度である溶媒を全溶媒量に対して例えば3~35質量%含有し、5~20質量%含有することが好ましい。より好ましくは、塗布液は、0.1~0.5の相対蒸発速度である溶媒を、全溶媒量に対して8~18質量%含有する。また、0.1を超えて0.5以下の相対蒸発速度である溶媒を5~20質量%含有することも好ましい形態であり、0.1を超えて0.5以下の相対蒸発速度である溶媒を8~18質量%含有することが更に好ましい。 The coating solution used when forming the hard coat layer by a coating method contains, for example, 3 to 35% by mass of the solvent having a relative evaporation rate of 0.1 to 0.5 as described above with respect to the total amount of the solvent. The content is preferably 5 to 20% by mass. More preferably, the coating solution contains 8 to 18% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent. It is also a preferred form to contain 5 to 20% by mass of a solvent having a relative evaporation rate of more than 0.1 and 0.5 or less, and a relative evaporation rate of more than 0.1 and 0.5 or less. More preferably, the solvent is contained in an amount of 8 to 18% by mass.
 本発明においては、1~3.5の相対蒸発速度であるハードコート塗布液もまた、好ましく用いられる。本発明の一実施形態では、相対蒸発速度が1~3.5のハードコート塗布液の塗布によって形成された光学反射フィルムが提供される。かような塗布液を用いることで、乾燥工程における溶媒の揮発速度が制御しやすくなり、また、乾燥工程において過度に時間を要することなくフィルム中の残存溶媒を調整できる。塗布液の相対蒸発速度を上記範囲とするためには、相対蒸発速度が上記範囲内である溶媒を塗布液の調製に用いればよい。用いた溶媒の相対蒸発速度が、上記のハードコート塗布液の相対蒸発速度の数値として採用される。1~3.5の相対蒸発速度である溶媒としては、メチルイソブチルケトン(MIBK、相対蒸発速度1.6)、イソプロパノール(相対蒸発速度1.5)、酢酸プロピル(相対蒸発速度2.1)等が例示できる。塗布液の相対蒸発速度は、1.5~3.4であることがより好ましく、2.7~3.4であることがさらに好ましい。1~3.5の相対蒸発速度である溶媒として、2種以上の溶媒を混合した混合溶媒を塗布液に用いることもできる。塗布液の溶媒として混合溶媒を用いる場合、混合溶媒の相対蒸発速度Rは以下の式により求めることができる。 In the present invention, a hard coat coating solution having a relative evaporation rate of 1 to 3.5 is also preferably used. In one embodiment of the present invention, an optical reflective film formed by applying a hard coat coating solution having a relative evaporation rate of 1 to 3.5 is provided. By using such a coating liquid, it becomes easy to control the volatilization rate of the solvent in the drying step, and the residual solvent in the film can be adjusted without excessive time in the drying step. In order to set the relative evaporation rate of the coating solution within the above range, a solvent having a relative evaporation rate within the above range may be used for preparing the coating solution. The relative evaporation rate of the solvent used is adopted as a numerical value of the relative evaporation rate of the hard coat coating solution. Examples of the solvent having a relative evaporation rate of 1 to 3.5 include methyl isobutyl ketone (MIBK, relative evaporation rate 1.6), isopropanol (relative evaporation rate 1.5), and propyl acetate (relative evaporation rate 2.1). Can be illustrated. The relative evaporation rate of the coating solution is more preferably from 1.5 to 3.4, and even more preferably from 2.7 to 3.4. As a solvent having a relative evaporation rate of 1 to 3.5, a mixed solvent obtained by mixing two or more kinds of solvents may be used for the coating solution. When a mixed solvent is used as the solvent of the coating solution, the relative evaporation rate R n of the mixed solvent can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、上記数式(1)中、iは混合溶媒を構成する各単独溶媒の名称を、Rは相対蒸発速度を、γは活動度係数を、φは体積分率を表す。 In the above formula (1), i represents the name of each single solvent constituting the mixed solvent, R represents the relative evaporation rate, γ represents the activity coefficient, and φ represents the volume fraction.
 1~3.5の相対蒸発速度である溶媒として、2種以上の溶媒を混合した混合溶媒を塗布液に用いる場合は、例えば、トルエン(相対蒸発速度4.5)、シクロヘキサン(相対蒸発速度4.5)、メタノール(相対蒸発速度1.9)、エタノール(相対蒸発速度1.5)、アセトン(相対蒸発速度5.6)、メチルエチルケトン(MEK)(相対蒸発速度3.7)、メチルイソブチルケトン(相対蒸発速度1.6)、テトラヒドロフラン(相対蒸発速度4.9)、酢酸メチル(相対蒸発速度5.1)、酢酸エチル(相対蒸発速度4.2)等や、上記の0.1~0.5の相対蒸発速度である溶媒を混合溶媒を構成する各単独溶媒として用い、混合溶媒の相対蒸発速度が目的の数値範囲となる各単独溶媒の体積分率を上記数式(1)から求め、混合溶媒を調製すればよい。 When a mixed solvent in which two or more solvents are mixed as the solvent having a relative evaporation rate of 1 to 3.5 is used as the coating liquid, for example, toluene (relative evaporation rate 4.5), cyclohexane (relative evaporation rate 4) .5), methanol (relative evaporation rate 1.9), ethanol (relative evaporation rate 1.5), acetone (relative evaporation rate 5.6), methyl ethyl ketone (MEK) (relative evaporation rate 3.7), methyl isobutyl ketone (Relative evaporation rate 1.6), tetrahydrofuran (relative evaporation rate 4.9), methyl acetate (relative evaporation rate 5.1), ethyl acetate (relative evaporation rate 4.2), etc. Using a solvent having a relative evaporation rate of .5 as each single solvent constituting the mixed solvent, the volume fraction of each single solvent in which the relative evaporation rate of the mixed solvent is within the target numerical range is obtained from the above formula (1), The mixed solvent may be prepared.
 ハードコート層の厚さは、例えば、0.5~20μmであり、1.2~10μmが好ましく、2~8μmであることがより好ましい。ハードコート層の厚さが0.5μm以上であれば耐擦過性が向上する傾向にあり、20μm以下であれば応力によってハードコート層が割れる危険性が低くなる。また、ハードコート層の厚さを1.2~10μmとすることで、耐久性と耐候性のバランスが良く、好ましく使用できる。 The thickness of the hard coat layer is, for example, 0.5 to 20 μm, preferably 1.2 to 10 μm, and more preferably 2 to 8 μm. If the thickness of the hard coat layer is 0.5 μm or more, the scratch resistance tends to be improved, and if it is 20 μm or less, the risk of the hard coat layer being cracked by stress is reduced. Further, by setting the thickness of the hard coat layer to 1.2 to 10 μm, the balance between durability and weather resistance is good, and it can be preferably used.
 (活性エネルギー線硬化性樹脂)
 活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させることができる。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。
(Active energy ray curable resin)
The active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and can be cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable.
 紫外線硬化性樹脂としては、例えば、紫外線硬化性ウレタンアクリレート樹脂、紫外線硬化性ポリエステルアクリレート樹脂、紫外線硬化性エポキシアクリレート樹脂、紫外線硬化性ポリオールアクリレート樹脂、紫外線硬化性アクリルアクリレート樹脂、または紫外線硬化性エポキシ樹脂等が好ましく用いられる。このうち、ハードコート層が、紫外線硬化性ウレタンアクリレート樹脂、紫外線硬化性ポリエステルアクリレート樹脂、紫外線硬化性エポキシアクリレート樹脂、紫外線硬化性ポリオールアクリレート樹脂、または紫外線硬化性アクリルアクリレート樹脂から選択されるアクリレート樹脂を含有することがさらに好ましい。 Examples of the ultraviolet curable resin include an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, an ultraviolet curable acrylic acrylate resin, and an ultraviolet curable epoxy resin. Etc. are preferably used. Among these, the hard coat layer is an acrylate resin selected from an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable acrylic acrylate resin. It is more preferable to contain.
 紫外線硬化性ウレタンアクリレート樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下、アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載のユニディック(登録商標)17-806(DIC株式会社製)100質量部とコロネート(登録商標)L(日本ポリウレタン工業株式会社製)1質量部との混合物等が好ましく用いられる。 The UV curable urethane acrylate resin generally includes 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as methacrylate) in addition to a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It is easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, 100 parts by mass of Unidic (registered trademark) 17-806 (manufactured by DIC Corporation) described in JP-A-59-151110 and 1 part by mass of Coronate (registered trademark) L (manufactured by Nippon Polyurethane Industry Co., Ltd.) A mixture of these is preferably used.
 紫外線硬化性ポリエステルアクリレート樹脂は、一般にポリエステル末端の水酸基やカルボキシル基に2-ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号公報)。 An ultraviolet curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate or acrylic acid with a hydroxyl group or carboxyl group at the end of the polyester (see, for example, Japanese Patent Laid-Open No. 59). -151112).
 紫外線硬化性エポキシアクリレート樹脂は、エポキシ樹脂の末端の水酸基にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。 The ultraviolet curable epoxy acrylate resin can be obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
 紫外線硬化性ポリオールアクリレート樹脂としては、例えば、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート等のモノマーの1種または2種以上を硬化させて得られる樹脂を挙げることができる。 Examples of the ultraviolet curable polyol acrylate resin include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate. The resin obtained by hardening 1 type (s) or 2 or more types of monomers can be mentioned.
 さらにまた、これらの樹脂の光増感剤(ラジカル重合開始剤)として、ベンゾイン、べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン(商品名:イルガキュア(登録商標)184、BASF社製)等のアセトフェノン類;メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノン等のアントラキノン類;チオキサントン、2,4―ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4,4-ビスメチルアミノべンゾフェノン等のベンゾフェノン類およびアゾ化合物等を用いることができる。これらは単独でもまたは2種以上組み合わせても使用することができる。加えて、トリエタノールアミン、メチルジエタノールアミン等の第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル等の安息香酸誘導体等の光開始助剤等と組み合わせて使用することができる。これらラジカル重合開始剤の使用量は、樹脂の重合性成分100質量部に対して好ましくは0.5~20質量部、より好ましくは1~15質量部である。 Furthermore, as photosensitizers (radical polymerization initiators) for these resins, benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; acetophenone, Acetophenones such as 2,2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone (trade name: Irgacure (registered trademark) 184, manufactured by BASF); methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone, etc. Anthraquinones; thioxanthones such as thioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropylthioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; Emissions, 4,4-bis benzophenones such as methylamino benzophenone and can be used azo compounds. These may be used alone or in combination of two or more. In addition, tertiary amines such as triethanolamine and methyldiethanolamine; photoinitiators such as benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and ethyl 4-dimethylaminobenzoate can be used in combination. it can. The use amount of these radical polymerization initiators is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable component of the resin.
 ハードコート層形成に用いられる活性エネルギー線硬化性樹脂の市販品の例としては、上記の他に、例えば、ユニディック(登録商標)シリーズ(DIC株式会社)(例えば、ユニディック(登録商標)V-4018、ユニディック(登録商標)V-4025、ユニディック(登録商標)17-806、ユニディック(登録商標)17-824-9)、ヒタロイド(登録商標)シリーズ(日立化成株式会社製)、紫光(登録商標)シリーズ(日本合成化学工業株式会社製)、ビームセットシリーズ(荒川化学工業株式会社)(例えば、ビームセット(登録商標)575、ビームセット(登録商標)577)、ETERMER2382(ETERNAL CHEMICAL社製)等を挙げることができる。 As an example of a commercial product of the active energy ray curable resin used for forming the hard coat layer, in addition to the above, for example, Unidic (registered trademark) series (DIC Corporation) (for example, Unidic (registered trademark) V) -4018, Unidic (registered trademark) V-4025, Unidic (registered trademark) 17-806, Unidic (registered trademark) 17-824-9), Hitaroid (registered trademark) series (manufactured by Hitachi Chemical Co., Ltd.), Purple light (registered trademark) series (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Beam set series (Arakawa Chemical Industry Co., Ltd.) (for example, Beam set (registered trademark) 575, Beam set (registered trademark) 577), ETERMER 2382 (ETERNAL CHEMICAL) For example).
 (ポリシロキサン系ハードコート材料)
 ポリシロキサン系ハードコート材料を用いる場合、乾燥工程においてハードコート材料が硬化する。ハードコート層の形成に適用可能なポリシロキサン系ハードコート材料としては、下記一般式(1)で表される化合物が好ましい。
(Polysiloxane hard coat material)
When using a polysiloxane hard coat material, the hard coat material is cured in the drying step. As a polysiloxane hard coat material applicable to the formation of the hard coat layer, a compound represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、RおよびRは、それぞれ独立して、炭素数1~10の直鎖状、分枝状、または環状のアルキル基を表し、mおよびnは、m+n=4の関係を満たす整数である。 In the general formula (1), R and R 1 each independently represent a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and m and n are m + n = 4 An integer that satisfies the relationship.
 具体的な化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラペンタエトキシシラン、テトラペンタ-iso-プロポキシシラン、テトラペンタ-n-プロポキシシラン、テトラペンタ-n-ブトキシシラン、テトラペンタ-sec-ブトキシシラン、テトラペンタ-tert-ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。また、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-β-(N-アミノベンジルアミノエチル)-γ-アミノプロピルメトキシシラン・塩酸塩、γ-グリシドキシプロピルトリメトキシシラン、アミノシラン、メチルメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリリメトキシシラン、ヘキサメチルジシラザン、ビニルトリス(β-メトキシエトキシ)シラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライドを挙げることができる。これらのメトキシ基、エトキシ基などの加水分解性基がヒドロキシ基に置換した状態のものが、一般的にポリオルガノシロキサン系ハードコート材料といわれている。 Specific compounds include tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, Tetrapentaethoxysilane, tetrapenta-iso-propoxysilane, tetrapenta-n-propoxysilane, tetrapenta-n-butoxysilane, tetrapenta-sec-butoxysilane, tetrapenta-tert-butoxysilane, methyltriethoxysilane, methyltripropoxysilane, Methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethylpropoxysilane, dimethylbutoxy Orchids, dimethyldimethoxysilane, dimethyldiethoxysilane, hexyl trimethoxysilane. Γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N-β- ( N-aminobenzylaminoethyl) -γ-aminopropylmethoxysilane / hydrochloride, γ-glycidoxypropyltrimethoxysilane, aminosilane, methylmethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloro Mention may be made of propyltrilimethoxysilane, hexamethyldisilazane, vinyltris (β-methoxyethoxy) silane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride. Those having a hydrolyzable group such as methoxy group or ethoxy group substituted with a hydroxy group are generally referred to as polyorganosiloxane hard coat materials.
 前記ポリオルガノシロキサン系ハードコート材料の具体的には、サーコートシリーズ、BP-16N(以上、株式会社動研製)、SR2441(東レ・ダウコーニング株式会社製)、Perma-New 6000(カリフォルニアハードコーティングカンパニー社製)などを利用することができる。 Specific examples of the polyorganosiloxane-based hard coat material include Surcoat Series, BP-16N (manufactured by Doken Co., Ltd.), SR2441 (manufactured by Toray Dow Corning Co., Ltd.), Perma-New 6000 (California Hard Coating Company, Inc.) Can be used.
 また、ハードコート層は、以下の界面活性剤、赤外線吸収剤、紫外線吸収剤および/または酸化防止剤を含有することが好ましい。 The hard coat layer preferably contains the following surfactant, infrared absorber, ultraviolet absorber and / or antioxidant.
 (界面活性剤)
 本形態の光学反射フィルムは、ハードコート層が界面活性剤を含有することが好ましい。界面活性剤を含むハードコート塗布液により塗膜が形成されると、レベリング性の高い塗膜となるため、残存溶媒量が部分的に多い箇所や少ない箇所が形成されることを防止し、ハードコート層の密着性が向上することが期待できる。
(Surfactant)
In the optical reflective film of this embodiment, the hard coat layer preferably contains a surfactant. When a coating film is formed with a hard coat coating solution containing a surfactant, it becomes a highly leveled coating film. It can be expected that the adhesion of the coat layer is improved.
 界面活性剤の種類としては、特に制限はなく、フッ素系界面活性剤、アクリル系界面活性剤、シリコーン系界面活性剤等を用いることができる。特に塗布液のレベリング性、撥水性、滑り性という観点で、フッ素系界面活性剤を用いることが好ましい。 The type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used. In particular, a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution.
 フッ素系界面活性剤の例としては、例えば、DIC株式会社製のメガファック(登録商標)Fシリーズ(F-430、F-477、F-552~F-559、F-561、F-562等)、DIC株式会社製のメガファック(登録商標)RSシリーズ(RS-76-E等)、AGCセイミケミカル株式会社製のサーフロン(登録商標)シリーズ、OMNOVA SOLUTIONS社製のPOLYFOXシリーズ、株式会社T&K TOKAのZXシリーズ、ダイキン工業株式会社製のオプツール(登録商標)シリーズ、ネオス社製のフタージェント(登録商標)シリーズ(602A、650A等)等の市販品を使用することができる。アクリル系界面活性剤としては、ポリフローシリーズ(共栄社化学株式会社製)、ニューコールシリーズ(日本乳化剤株式会社製)、BYK(登録商標)-354(ビックケミー・ジャパン社製)が挙げられる。シリコーン系界面活性剤としては、BYK(登録商標)-345、BYK(登録商標)-347、BYK(登録商標)-348、BYK(登録商標)-349(ビックケミー・ジャパン社製)が挙げられる。界面活性剤は、単独でもまたは2種以上混合して用いてもよい。 Examples of the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation. ), Megafuck (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS Corporation, T & K TOKA Corporation Commercially available products such as ZX series, OPTOOL (registered trademark) series manufactured by Daikin Industries, Ltd., and Footent (registered trademark) series (602A, 650A, etc.) manufactured by Neos Co., Ltd. can be used. Examples of the acrylic surfactant include Polyflow series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK (registered trademark) -354 (manufactured by Big Chemie Japan Co., Ltd.). Examples of the silicone-based surfactant include BYK (registered trademark) -345, BYK (registered trademark) -347, BYK (registered trademark) -348, and BYK (registered trademark) -349 (manufactured by Big Chemie Japan). Surfactants may be used alone or in admixture of two or more.
 ハードコート層中の界面活性剤の量は、ハードコート塗布液中の界面活性剤の配合量を変更することで調節でき、ハードコート層の乾燥質量当たり界面活性剤の質量が0.01~5質量%であることが好ましい。 The amount of the surfactant in the hard coat layer can be adjusted by changing the blending amount of the surfactant in the hard coat coating solution, and the mass of the surfactant per dry mass of the hard coat layer is 0.01-5. It is preferable that it is mass%.
 (赤外線吸収剤)
 本形態の光学反射フィルムは、ハードコート層が赤外線吸収剤を含有することが好ましい。ハードコート層が赤外線吸収剤を含有することで、高温高湿状態にさらされた場合のヘイズの上昇や変色が抑制され得る。
(Infrared absorber)
In the optical reflective film of this embodiment, the hard coat layer preferably contains an infrared absorber. When the hard coat layer contains an infrared absorber, an increase in haze and discoloration when exposed to a high temperature and high humidity state can be suppressed.
 ハードコート層に適用可能な赤外線吸収剤としては、無機系赤外線吸収剤および有機系赤外線吸収剤のいずれも使用することができるが、無機系赤外線吸収剤が好ましく、可視光線透過率、赤外線吸収性、樹脂中への分散適性等の観点から、ハードコート層が酸化スズ系赤外線吸収剤を含有することがより好ましい。 As the infrared absorber applicable to the hard coat layer, both inorganic infrared absorbers and organic infrared absorbers can be used, but inorganic infrared absorbers are preferable, visible light transmittance, infrared absorptivity. From the viewpoint of suitability for dispersion in the resin, the hard coat layer more preferably contains a tin oxide infrared absorber.
 例えば、無機系赤外線吸収剤としては、酸化亜鉛、アンチモンドープ酸化亜鉛(AZO)、インジウムドープ酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)、アルミニウムドープ酸化亜鉛、酸化スズ、アンチモンドープ酸化スズ(ATO)、インジウムドープ酸化スズ(ITO)、アンチモン酸亜鉛、ホウ素化ランタン、ニッケル錯体系化合物を用いることができるが、その中でも、アンチモンドープ酸化亜鉛、アンチモンドープ酸化スズ(ATO)、インジウムドープ酸化スズまたはアンチモン酸亜鉛が好ましい。有機系赤外線吸収剤としては、例えば、イモニウム系、フタロシアニン系、アミニウム系化合物を利用することができる。これら赤外線吸収剤は、単独でもまたは2種以上混合しても用いることができる。 For example, inorganic infrared absorbers include zinc oxide, antimony-doped zinc oxide (AZO), indium-doped zinc oxide (IZO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide, tin oxide, antimony-doped tin oxide ( ATO), indium-doped tin oxide (ITO), zinc antimonate, lanthanum boride, nickel complex compounds can be used, among which antimony-doped zinc oxide, antimony-doped tin oxide (ATO), indium-doped tin oxide Or zinc antimonate is preferable. As the organic infrared absorber, for example, an imonium compound, a phthalocyanine compound, or an aminium compound can be used. These infrared absorbers can be used alone or in combination of two or more.
 赤外線吸収剤は合成品を用いてもよいし市販品を用いてもよい。市販品の例としては、例えば、酸化亜鉛系としてセルナックス(登録商標)シリーズ(日産化学工業株式会社製)、パゼットシリーズ(ハクスイテック株式会社製)、酸化スズ系としてSR35M、TRB Paste(以上、アドバンストナノプロダクツ社製)、ATO分散液、ITO分散液(以上、三菱マテリアル株式会社製)、KHシリーズ(住友金属鉱山株式会社製)等が挙げられる。有機系の市販品としては、例えば、NIR-IM1、NIR-AM1(以上、ナガセケミテックス株式会社製)、Lumogen(登録商標)シリーズ(BASF社製)等が挙げられる。赤外線吸収剤は、単独でもまたは2種以上混合して用いてもよい。 As the infrared absorber, a synthetic product or a commercially available product may be used. Examples of commercially available products include, for example, Cellux (registered trademark) series (manufactured by Nissan Chemical Industries, Ltd.) and passette series (manufactured by Hakusuitec Co., Ltd.) as zinc oxide, SR35M, TRB Paste (and above) as tin oxide Advanced Nano Products), ATO dispersion, ITO dispersion (Mitsubishi Materials Co., Ltd.), KH series (Sumitomo Metal Mining Co., Ltd.) and the like. Examples of the organic commercial products include NIR-IM1, NIR-AM1 (manufactured by Nagase Chemitex Co., Ltd.), Lumogen (registered trademark) series (manufactured by BASF Corp.), and the like. Infrared absorbers may be used alone or in admixture of two or more.
 ハードコート層中の赤外線吸収剤の含有量は、ハードコート層の乾燥質量当たり、5質量%~80質量%であることが好ましく、30質量%~70質量%であることがより好ましい。 The content of the infrared absorber in the hard coat layer is preferably 5% by mass to 80% by mass, and more preferably 30% by mass to 70% by mass, based on the dry mass of the hard coat layer.
 また、ハードコート層は、上記赤外線吸収剤以外の無機微粒子を含有してもよい。好ましい無機微粒子としては、チタン、シリカ、ジルコニウム、アルミニウム、マグネシウム、アンチモン、亜鉛またはスズなどの金属を含む無機化合物の微粒子が挙げられる。この無機微粒子の平均粒径は、可視光線の透過性を確保することから、1000nm以下が好ましく、10~500nmの範囲にあるものがより好ましい。また、無機微粒子は、ハードコート層を形成する硬化性樹脂との結合力が高い方がハードコート層からの脱落を抑制できることから、単官能または多官能のアクリレートなどの光重合反応性を有する感光性基を表面に導入しているものが好ましい。 Further, the hard coat layer may contain inorganic fine particles other than the infrared absorber. Preferable inorganic fine particles include fine particles of an inorganic compound containing a metal such as titanium, silica, zirconium, aluminum, magnesium, antimony, zinc or tin. The average particle size of the inorganic fine particles is preferably 1000 nm or less, and more preferably in the range of 10 to 500 nm, from the viewpoint of ensuring visible light transmittance. In addition, since inorganic fine particles have a higher bonding strength with the curable resin forming the hard coat layer, they can be prevented from falling out of the hard coat layer, so that a photopolymerization reactivity such as monofunctional or polyfunctional acrylate is present. Those having a functional group introduced on the surface are preferred.
 (紫外線吸収剤)
 本形態の光学反射フィルムは、ハードコート層が紫外線吸収剤を含有しても良い。
(UV absorber)
In the optical reflective film of this embodiment, the hard coat layer may contain an ultraviolet absorber.
 紫外線吸収剤の種類としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン等のベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;フェニルサリチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等のサリチル酸フェニル系紫外線吸収剤;ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等のヒンダードアミン系紫外線吸収剤;2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤;等が挙げられる。 Examples of the ultraviolet absorber include benzophenone ultraviolet absorbers such as 2,4-dihydroxy-benzophenone and 2-hydroxy-4-methoxy-benzophenone; 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2 -Benzotriazole-based ultraviolet absorbers such as (2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole; phenyl salicylate, 2-4-di-t-butylphenyl-3,5 -Phenyl salicylate UV absorbers such as di-t-butyl-4-hydroxybenzoate; hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate; 2,4 -Diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4 Triazine-based UV absorbers such as diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -1,3,5-triazine; and the like.
 紫外線吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。 In addition to the above, the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy.
 なお、紫外線吸収剤は、単独でもまたは2種以上混合して用いてもよい。また、紫外線吸収剤は、合成品を用いてもよいし市販品を用いてもよい。市販品の例としては、例えば、Tinuvin(登録商標)320、Tinuvin(登録商標)328、Tinuvin(登録商標)234、Tinuvin(登録商標)1577、Tinuvin(登録商標)622(以上、BASFジャパン株式会社製)、アデカスタブ(登録商標)LA-31(以上、株式会社アデカ製)、SEESORB(登録商標)102、SEESORB(登録商標)103、SEESORB(登録商標)501(以上、シプロ化成株式会社製)などが挙げられる。 In addition, you may use an ultraviolet absorber individually or in mixture of 2 or more types. Moreover, as the ultraviolet absorber, a synthetic product or a commercially available product may be used. Examples of commercially available products include, for example, Tinuvin (registered trademark) 320, Tinuvin (registered trademark) 328, Tinuvin (registered trademark) 234, Tinuvin (registered trademark) 1577, Tinuvin (registered trademark) 622 (above, BASF Japan Ltd.) Adekastab (registered trademark) LA-31 (manufactured by Adeka Co., Ltd.), SEESORB (registered trademark) 102, SEESORB (registered trademark) 103, SEESORB (registered trademark) 501 (manufactured by Sipro Kasei Corporation) Is mentioned.
 紫外線吸収剤の含有量は、ハードコート層の全質量に対して、0.1質量%以上10質量%以下であることが好ましく、0.1質量%以上5質量%以下であることが好ましい。 The content of the ultraviolet absorber is preferably 0.1% by mass or more and 10% by mass or less, and preferably 0.1% by mass or more and 5% by mass or less with respect to the total mass of the hard coat layer.
 (酸化防止剤)
 本形態の光学反射フィルムはまた、ハードコート層が酸化防止剤を含有してもよい。酸化防止剤の種類としては、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3’、5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン等のフェノール系酸化防止剤;ジステアリル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等のチオール系酸化防止剤;トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト等のホスファイト系酸化防止剤;ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系酸化防止剤;などが挙げられる。
(Antioxidant)
In the optical reflective film of this embodiment, the hard coat layer may contain an antioxidant. Antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane and 2,2′-methylenebis (4-ethyl-6-tert-butylphenol) , Tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] phenolic antioxidants such as methane; distearyl-3,3′-thiodipropionate Thiol antioxidants such as pentaerythritol-tetrakis- (β-lauryl-thiopropionate); tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di ( Phosphite antioxidants such as 2,6-di-t-butylphenyl) pentaerythritol diphosphite; bis (2,2,6,6-teto Hindered amine antioxidants such as lamethyl-4-piperidyl) sebacate and bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate;
 なお、酸化防止剤は、単独でもまたは2種以上混合して用いてもよい。また、酸化防止剤は、合成品を用いてもよいし市販品を用いてもよい。市販品の例としては、例えば、ノクラック(登録商標)シリーズ(大内新興化学工業株式会社製)、アデカスタブ(登録商標)シリーズ(以上、株式会社ADEKA製)、IRGANOX(登録商標)シリーズ、IRGAFOS(登録商標)シリーズ(以上いずれもチバ・スペシャルティ・ケミカルズ製)、Sumilizer(登録商標)シリーズ(以上、住友化学株式会社製)等が挙げられる。 In addition, you may use antioxidant alone or in mixture of 2 or more types. As the antioxidant, a synthetic product or a commercially available product may be used. Examples of commercially available products include, for example, NOCRACK (registered trademark) series (manufactured by Ouchi Shinsei Chemical Co., Ltd.), ADK STAB (registered trademark) series (manufactured by ADEKA Corporation), IRGANOX (registered trademark) series, IRGAFOS ( (Registered trademark) series (all of which are manufactured by Ciba Specialty Chemicals) and Sumilizer (registered trademark) series (which are manufactured by Sumitomo Chemical Co., Ltd.).
 酸化防止剤の含有量は、ハードコート層の全質量に対して、0.1質量%以上10質量%以下であることが好ましく、0.1質量%以上5質量%以下であることが好ましい。 The content of the antioxidant is preferably 0.1% by mass or more and 10% by mass or less, and preferably 0.1% by mass or more and 5% by mass or less with respect to the total mass of the hard coat layer.
 また、ハードコート層に染料や顔料を添加して色相を調整することもできる。例えば、カドミウムレッド、モリブデンレッド、クロムパーミリオン、酸化クロム、ビリジアン、チタンコバルトグリーン、コバルトグリーン、コバルトクロムグリーン、ビクトリアグリーン、群青、ウルトラマリンブルー、紺青、ベルリンブルー、ミロリブルー、コバルトブルー、セルリアンブルー、コバルトシリカブルー、コバルト亜鉛ブルー、マンガンバイオレット、ミネラルバイオレッド、コバルトバイオレット等の有色無機顔料や、フタロシアニン顔料等の有機顔料、アントラキノン系染料が好ましく使用される。 Also, the hue can be adjusted by adding dyes or pigments to the hard coat layer. For example, cadmium red, molybdenum red, chromium permillion, chromium oxide, viridian, titanium cobalt green, cobalt green, cobalt chrome green, Victoria green, ultramarine blue, ultramarine blue, bitumen, Berlin blue, miloli blue, cobalt blue, cerulean blue, Colored inorganic pigments such as cobalt silica blue, cobalt zinc blue, manganese violet, mineral violet, and cobalt violet, organic pigments such as phthalocyanine pigments, and anthraquinone dyes are preferably used.
 〔その他の層〕
 本形態の光学反射フィルムは、さらなる機能の付加を目的として、導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、本発明の高屈折率層および低屈折率層以外の反射層(金属層、液晶層)、着色層(可視光線吸収層)などの機能層の1つ以上を有していてもよい。
[Other layers]
The optical reflection film of this embodiment is provided with a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesive layer), an antifouling layer, a deodorizing layer, a droplet layer, and an easy slip layer for the purpose of adding further functions. Abrasion resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorbing layer, infrared absorbing layer, printing layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, adhesive layer, high refractive index layer of the present invention and low You may have 1 or more of functional layers, such as reflection layers (metal layer, liquid crystal layer) other than a refractive index layer, and a colored layer (visible light absorption layer).
 これらの機能層は、例えば、スパッタ法(DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、およびマグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法等の乾式成膜法の他、塗布法によっても形成され得るが、溶媒を使用しない乾式成膜法で形成することが好ましい。これらの機能層を塗布法により形成した場合であっても、残存溶媒量を測定した後に乾燥工程を行えば、乾燥工程中の重量変化を測定する等の手段によりフィルム中の残存溶媒量を調整することができる。また、これらの機能層を塗布法によって形成する場合には、残存溶媒量の調整がしやすいという観点から、ハードコート層の形成において好ましく使用されるものとして上述した溶媒、特に、0.1~0.5の相対蒸発速度である溶媒を全溶媒量に対して5~20質量%する塗布液を、機能層に用いる材料との相溶性等を考慮したうえで用いることが好ましい。また、1~3.5の相対蒸発速度である溶媒も好ましく用いることができる。 These functional layers are, for example, coating methods other than dry deposition methods such as sputtering (DC sputtering, RF sputtering, ion beam sputtering, magnetron sputtering, etc.), vacuum deposition, and ion plating. However, it is preferably formed by a dry film forming method that does not use a solvent. Even when these functional layers are formed by a coating method, if the drying step is performed after measuring the residual solvent amount, the residual solvent amount in the film is adjusted by means such as measuring the weight change during the drying step. can do. In addition, when these functional layers are formed by a coating method, from the viewpoint of easy adjustment of the residual solvent amount, the solvents described above as being preferably used in the formation of the hard coat layer, particularly 0.1 to It is preferable to use a coating solution in which the solvent having a relative evaporation rate of 0.5 is 5 to 20% by mass with respect to the total amount of the solvent in consideration of compatibility with the material used for the functional layer. A solvent having a relative evaporation rate of 1 to 3.5 can also be preferably used.
 反射フィルムにおける上述の各種の機能層の積層順は、特に制限されない。 The stacking order of the above-mentioned various functional layers in the reflective film is not particularly limited.
 〔残存溶媒〕
 本形態の光学反射フィルムは、光学反射フィルム中の残存溶媒が1~8mg/gであることを特徴とする。光学反射フィルム中の残存溶媒は、1~8mg/gであればよいが、好ましくは1~5mg/gであり、より好ましくは1~3.6mg/gであり、さらに好ましくは1~3mg/gである。光学反射フィルム中の残存溶媒が1mg/g未満であると、ハードコート層の収縮の影響が大きくなり、カールやひび割れによる密着性の低下やヘイズの劣化が見られる。また、光学反射フィルム中の残存溶媒が8mg/gを超えると、高温高湿状態にさらされた場合にヘイズの上昇や変色を起こしやすくなり、ハードコート層の密着性が低下する。
[Residual solvent]
The optical reflective film of this embodiment is characterized in that the residual solvent in the optical reflective film is 1 to 8 mg / g. The residual solvent in the optical reflection film may be 1 to 8 mg / g, preferably 1 to 5 mg / g, more preferably 1 to 3.6 mg / g, and still more preferably 1 to 3 mg / g. g. When the residual solvent in the optical reflection film is less than 1 mg / g, the influence of the shrinkage of the hard coat layer is increased, and a decrease in adhesion due to curling and cracking and a deterioration in haze are observed. Moreover, when the residual solvent in an optical reflection film exceeds 8 mg / g, it will become easy to raise | generate a haze and discoloration when exposed to a high-temperature, high-humidity state, and the adhesiveness of a hard-coat layer will fall.
 本形態の光学反射フィルムにおいて反射部は、溶融押出成形によって形成される。従って、反射部の形成工程において溶媒を使用する必要がない。または、添加物に由来する少量の溶媒が使用される場合であっても、溶融押出プロセスにおいて溶媒は蒸発する。一方、本形態の光学反射フィルムが含むハードコート層はハードコート塗布液の塗布によって形成されることから、ハードコート層の塗膜形成工程において溶媒が使用される。フィルム中の残存溶媒量は、塗膜形成工程後に行われる乾燥工程において、乾燥条件(乾燥温度、乾燥時間等)を制御したり、ハードコート塗膜の膜厚や塗膜形成工程に用いる溶媒を選択したりすることによって、任意に調整することができる。例えば、乾燥温度を高くする、または乾燥時間を長くすることにより、フィルム中の残存溶媒量は少なくなる。一方、乾燥温度を低くする、または乾燥時間を短くすることにより、フィルム中の残存溶媒量は多くなる。また、一定の乾燥温度、乾燥時間で比較した場合、ハードコート塗膜の膜厚を薄くしたり、ハードコート塗布液の調製に相対蒸発速度が高い溶媒を用いたりすると、残存溶媒量は少なくなる。一方、ハードコート塗膜の膜厚を厚くしたり、相対蒸発速度が低い溶媒を用いたりすると、残存溶媒量は多くなる。乾燥前のフィルム中の残存溶媒量を下記方法にて測定し、その後、フィルムの重量変化を観察しつつ乾燥を行うなどの方法により、フィルム中の残存溶媒量を任意に設定できる。 In the optical reflection film of this embodiment, the reflection portion is formed by melt extrusion molding. Therefore, it is not necessary to use a solvent in the formation process of the reflection part. Alternatively, even if a small amount of solvent derived from the additive is used, the solvent evaporates in the melt extrusion process. On the other hand, since the hard coat layer included in the optical reflective film of this embodiment is formed by applying a hard coat coating solution, a solvent is used in the coating formation process of the hard coat layer. The amount of residual solvent in the film is determined by controlling the drying conditions (drying temperature, drying time, etc.) in the drying process performed after the coating film forming process, and the solvent used for the film thickness of the hard coat film and the coating film forming process. It can be arbitrarily adjusted by selecting. For example, by increasing the drying temperature or extending the drying time, the amount of residual solvent in the film decreases. On the other hand, the residual solvent amount in the film increases by lowering the drying temperature or shortening the drying time. In addition, when compared at a constant drying temperature and drying time, if the thickness of the hard coat coating film is reduced or a solvent with a high relative evaporation rate is used in the preparation of the hard coat coating solution, the amount of residual solvent decreases. . On the other hand, when the thickness of the hard coat coating film is increased or a solvent having a low relative evaporation rate is used, the amount of residual solvent increases. The amount of residual solvent in the film can be arbitrarily set by a method such as measuring the amount of residual solvent in the film before drying by the following method and then performing drying while observing a change in the weight of the film.
 フィルム中の残存溶媒の量は、ガスクロマトグラフィー法で測定できる。具体的には、膜厚方向に垂直に切り出したフィルム片を秤量し、バイアル瓶に封入し、オーブンで120℃、30分間加熱して発生した気体を下記測定条件にてガスクロマトグラフィーにて測定する。 The amount of residual solvent in the film can be measured by gas chromatography. Specifically, a piece of film cut out perpendicular to the film thickness direction is weighed, sealed in a vial, and heated by an oven at 120 ° C. for 30 minutes, and the generated gas is measured by gas chromatography under the following measurement conditions. To do.
 (ガスクロマトグラフィー測定条件)
GC: カラム  G&W Scientific DB-624(0.25mmI.D.×30M)
OVEN 40℃(2min)-10℃/min-230℃(14min)
INJ 230℃
AUX 230℃
MASS scan MassRange 20-300。
(Gas chromatography measurement conditions)
GC: Column G & W Scientific DB-624 (0.25 mm ID × 30M)
OVEN 40 ℃ (2min) -10 ℃ / min-230 ℃ (14min)
INJ 230 ℃
AUX 230 ℃
MASS scan MassRange 20-300.
 <光学反射フィルムの製造方法>
 本発明の第二の側面においては、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む積層体を、溶融押出成形によって形成し(反射部形成工程);ハードコート塗布液を前記積層体の少なくとも一方の面側に塗布して塗膜を形成し(塗膜形成工程);および塗膜を形成した前記積層体中の残存溶媒が1~8mg/gとなるように乾燥すること(乾燥工程)、を含む、光学反射フィルムの製造方法が提供される。
<Method for producing optical reflection film>
In the second aspect of the present invention, a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding (reflecting portion forming step); hard coat coating solution Is applied to at least one surface of the laminate to form a coating film (coating film forming step); and dried so that the residual solvent in the laminate having the coating film is 1 to 8 mg / g The manufacturing method of the optical reflection film including doing (drying process) is provided.
 本発明の第二の側面において、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む積層体は、溶融押出成形によって形成される。なお、溶融押出成形によって形成された積層体は、光学反射フィルムにおける反射部に相当する。塗布法や溶液流涎法のような溶媒を用いて反射部を形成する方法と異なり、溶融押出成形により得られる熱可塑性樹脂の積層体を反射部として利用することにより、溶媒を用いずに光学反射フィルムの反射部を形成することができる。また、溶融押出成形を採用することにより、仮に反射部形成工程において使用した添加剤に溶媒が含まれていたとしても、高温にさらされる溶融押出プロセスにおいて大部分(または全部)が蒸発し、積層体に残存する溶媒量はごく微小となる(または、実質的に含まれない)。従って、ハードコート塗膜の形成前に残存溶媒量を調整しなくとも、最終産物であるフィルム中の残存溶媒量を調整することが容易となるため、製造効率の観点から利点がある。 In the second aspect of the present invention, a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding. In addition, the laminated body formed by melt extrusion molding is corresponded in the reflection part in an optical reflection film. Unlike the method of forming a reflective part using a solvent such as the coating method or the solution pouring method, optical reflection without using a solvent is achieved by using a laminate of a thermoplastic resin obtained by melt extrusion molding as a reflective part. A reflective portion of the film can be formed. Also, by adopting melt extrusion molding, even if a solvent is contained in the additive used in the reflective part forming step, most (or all) of the additive is evaporated in the melt extrusion process exposed to high temperature, and the lamination is performed. The amount of solvent remaining in the body is very small (or substantially free). Therefore, it is easy to adjust the amount of residual solvent in the film that is the final product without adjusting the amount of residual solvent before the formation of the hard coat coating film, which is advantageous from the viewpoint of production efficiency.
 本態様にかかる光学反射フィルムの製造方法においては、第1の熱可塑性樹脂を含有する高屈折率層と第2の熱可塑性樹脂を含有する低屈折率層とを同時に積層する、多層押出しによって積層体(反射部)を形成することが好ましい。 In the method for producing an optical reflective film according to this aspect, a high refractive index layer containing a first thermoplastic resin and a low refractive index layer containing a second thermoplastic resin are laminated simultaneously, and laminated by multilayer extrusion. It is preferable to form a body (reflection part).
 本発明の第二の側面においては、各屈折率層材料を100~400℃で押出しに適当な粘度になるように溶融させ、必要に応じて金属酸化物等の添加剤を添加し、高屈折率層が含有する第1の樹脂と、低屈折率層が含有する第2の樹脂との両方の熱可塑性樹脂を交互に二層になるように押出し機によって押し出すことができる。 In the second aspect of the present invention, each refractive index layer material is melted at 100 to 400 ° C. so as to have an appropriate viscosity for extrusion, and an additive such as a metal oxide is added as necessary to increase the refractive index. The thermoplastic resin of both the first resin contained in the refractive index layer and the second resin contained in the low refractive index layer can be extruded by an extruder so as to form two layers alternately.
 上記溶融前に、熱可塑性樹脂、およびその他必要により添加される添加剤を、混合機等により混合しておくことが好ましい。また、押出し機を用いて混合物を直接溶融して成膜するようにしてもよいが、一旦、混合物をペレット化した後、該ペレットを押出し機で溶融して成膜するようにしてもよい。 Before the melting, it is preferable to mix the thermoplastic resin and other additives that are added as necessary with a mixer or the like. Alternatively, the mixture may be directly melted to form a film using an extruder, but once the mixture is pelletized, the pellet may be melted with an extruder to form a film.
 押出し機は、市場で入手可能な種々の押出し機を使用可能であるが、溶融混練押出し機が好ましく、単軸押出し機でも2軸押出し機でもよい。 As the extruder, various extruders available on the market can be used, but a melt-kneading extruder is preferable, and a single-screw extruder or a twin-screw extruder may be used.
 なお、混合物からペレットを作製せずに、直接成膜を行なう場合、適当な混練度が必要であるため2軸押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック型、ユニメルト、ダルメージ等の混練型のスクリューに変更することにより、適度の混練が得られるので、使用可能である。また、ペレットを使用する場合は、単軸押出し機でも2軸押出し機でも使用可能である。 In addition, when forming a film directly without producing pellets from the mixture, it is preferable to use a twin screw extruder because an appropriate degree of kneading is necessary, but even with a single screw extruder, the screw shape is a Maddock type. By changing to a kneading type screw such as unimelt or dull mage, moderate kneading can be obtained, so that it can be used. Moreover, when using a pellet, a single screw extruder or a twin screw extruder can be used.
 また、混練時には、窒素ガス等の不活性ガスで置換するか、あるいは減圧することにより、酸素の濃度を下げることが好ましい。 Further, at the time of kneading, it is preferable to lower the oxygen concentration by replacing with an inert gas such as nitrogen gas or reducing the pressure.
 次に、押し出された積層膜を、冷却ドラム等により冷却固化し、積層体(光学反射フィルムにおける反射部)を得る。 Next, the extruded laminated film is cooled and solidified by a cooling drum or the like to obtain a laminated body (reflecting portion in the optical reflecting film).
 その後、任意に、この積層体を加熱してから二方向に延伸してもよい。延伸方法としては、前述の冷却ドラムから剥離され、得られた未延伸積層体を複数のロール群および/または赤外線ヒーター等の加熱装置を介してガラス転移温度(Tg)-50℃からTg+100℃の範囲内に加熱し、積層体搬送方向(長手方向ともいう)に、一段または多段縦延伸することが好ましい。次に、上記のようにして得られた延伸された積層体を、積層体搬送方向に直交する方向(幅手方向ともいう)に延伸することも好ましい。積層体を幅手方向に延伸するには、テンター装置を用いることが好ましい。 Thereafter, the laminate may optionally be heated and then stretched in two directions. As a stretching method, the unstretched laminate obtained by peeling from the cooling drum described above is subjected to a glass transition temperature (Tg) of −50 ° C. to Tg + 100 ° C. through a plurality of roll groups and / or a heating device such as an infrared heater. It is preferable to heat within the range and perform one-stage or multistage longitudinal stretching in the laminate transport direction (also referred to as the longitudinal direction). Next, it is also preferable to stretch the stretched laminate obtained as described above in a direction (also referred to as a width direction) orthogonal to the laminate transport direction. In order to stretch the laminate in the width direction, it is preferable to use a tenter device.
 積層体搬送方向または積層体搬送方向に直交する方向に延伸する場合は、1.5~5.0倍の倍率で延伸することが好ましく、より好ましくは2.0~4.0倍の範囲である。なお、延伸の回数は、1回でもよく、2回以上であってもよい。 When stretching in the laminate transport direction or the direction perpendicular to the laminate transport direction, it is preferably stretched at a magnification of 1.5 to 5.0 times, more preferably in the range of 2.0 to 4.0 times. is there. In addition, the frequency | count of extending | stretching may be 1 time and may be 2 times or more.
 また、延伸に引き続き熱固定することもできる。熱固定は、Tg-100℃~Tg+50℃の範囲内で通常0.5~300秒間搬送しながら行うことが好ましい。熱固定手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。積層体の加熱は段階的に高くしていくことが好ましい。 Also, it can be heat-fixed following stretching. The heat setting is preferably carried out in the range of Tg-100 ° C. to Tg + 50 ° C., usually for 0.5 to 300 seconds. The heat fixing means is not particularly limited and can be generally performed with hot air, infrared rays, a heating roll, microwaves, or the like, but is preferably performed with hot air in terms of simplicity. It is preferable to increase the heating of the laminated body stepwise.
 熱固定された積層体は通常Tg以下まで冷却され、積層体両端のクリップ把持部分をカットし巻き取られる。また冷却は、最終熱固定温度からTgまでを、毎秒100℃以下の冷却速度で徐冷することが好ましい。冷却する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながらこれらの処理を行うことがフィルムの寸法安定性向上の点で好ましい。尚、冷却速度は、最終熱固定温度をT1、積層体が最終熱固定温度からTgに達するまでの時間をtとしたとき、(T1-Tg)/tで求めた値である。 The heat-fixed laminate is usually cooled to Tg or less, and the clip gripping portions at both ends of the laminate are cut and wound. In addition, it is preferable that the cooling is gradually performed from the final heat setting temperature to Tg at a cooling rate of 100 ° C. or less per second. The means for cooling is not particularly limited, and can be performed by a conventionally known means. In particular, it is preferable to perform these treatments while sequentially cooling in a plurality of temperature ranges in terms of improving the dimensional stability of the film. The cooling rate is a value obtained by (T1−Tg) / t, where T1 is the final heat setting temperature and t is the time required for the laminate to reach Tg from the final heat setting temperature.
 本態様における製造方法では、上記方法にて得られた積層体(フィルムにおける反射部)少なくとも一方の面側に、必要に応じて他の機能層を形成した後、ハードコート塗布液を塗布して塗膜を形成する。塗布方法としては、ワイヤーバーによるコーティング、スピンコーティング、ディップコーティング等が挙げられる。また、ダイコーター、グラビアコーター、コンマコーターなどの連続塗布装置でも塗布することが可能である。 In the manufacturing method in this aspect, after forming another functional layer as necessary on at least one surface side of the laminate (reflecting part in the film) obtained by the above method, a hard coat coating solution is applied. Form a coating film. Examples of the coating method include coating with a wire bar, spin coating, dip coating, and the like. Further, it can be applied by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater.
 ハードコート塗布液は、乾燥後のハードコート層の厚みが、例えば、0.5~20μm、好ましくは1.2~10μm、より好ましくは2~8μmとなるように塗布する。塗布と乾燥工程を複数回繰り返すことで、ハードコート層の厚さを所望の厚さまで厚くすることもできる。一定の乾燥温度、乾燥時間で比較した場合、ハードコート塗膜の膜厚を薄くすることで残存溶媒量を減少させることができ、ハードコート塗膜の膜厚を厚くすることで残存溶媒量を増やすことができる。 The hard coat coating solution is applied so that the thickness of the hard coat layer after drying is, for example, 0.5 to 20 μm, preferably 1.2 to 10 μm, more preferably 2 to 8 μm. By repeating the application and drying steps a plurality of times, the thickness of the hard coat layer can be increased to a desired thickness. When compared at a constant drying temperature and drying time, the amount of residual solvent can be reduced by reducing the film thickness of the hard coat film, and the amount of residual solvent can be reduced by increasing the film thickness of the hard coat film. Can be increased.
 ハードコート塗布液の溶媒は、特に制限されず、例えば、アルコール類等の本発明の第一の実施形態において例示した溶媒の中から適宜選択し、またはこれらを混合し利用できる。このうち、0.1~0.5の相対蒸発速度である溶媒を全溶媒量に対して5~20質量%含有する塗布液を用いることで、乾燥工程における溶媒の揮発速度が制御しやすくなり、また、乾燥工程において過度に時間を要することなくフィルム中の残存溶媒を調整できる。本明細書において、相対蒸発速度とはASTM-D3539-11に準拠して測定される蒸発速度であり、第一の実施形態と同様である。0.1~0.5の相対蒸発速度である溶媒としては、第一の実施形態で例示した1-ブタノール(相対蒸発速度0.5)等が挙げられる。 The solvent of the hard coat coating solution is not particularly limited, and can be appropriately selected from the solvents exemplified in the first embodiment of the present invention such as alcohols, or can be used by mixing them. Among these, by using a coating solution containing 5 to 20% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent, the volatilization rate of the solvent in the drying process can be easily controlled. In addition, the residual solvent in the film can be adjusted without excessive time in the drying step. In this specification, the relative evaporation rate is an evaporation rate measured according to ASTM-D3539-11, and is the same as that of the first embodiment. Examples of the solvent having a relative evaporation rate of 0.1 to 0.5 include 1-butanol (relative evaporation rate of 0.5) exemplified in the first embodiment.
 ハードコート塗膜を形成する際に用いる塗布液としては、上記のような0.1~0.5の相対蒸発速度である溶媒を全溶媒量に対して、例えば3~35質量%含有し、好ましくは、塗布液は、0.1~0.5の相対蒸発速度である溶媒を、全溶媒量に対して5~20質量%含有する。より好ましくは、塗布液は、0.1~0.5の相対蒸発速度である溶媒を、全溶媒量に対して8~18質量%含有する。また、0.1を超えて0.5以下の相対蒸発速度である溶媒を5~20質量%含有することも好ましい形態であり、0.1を超えて0.5以下の相対蒸発速度である溶媒を8~18質量%含有することが更に好ましい。 The coating liquid used for forming the hard coat coating film contains, for example, 3 to 35% by mass of the solvent having a relative evaporation rate of 0.1 to 0.5 as described above with respect to the total amount of the solvent, Preferably, the coating solution contains 5 to 20% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent. More preferably, the coating solution contains 8 to 18% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 based on the total amount of the solvent. It is also a preferred form to contain 5 to 20% by mass of a solvent having a relative evaporation rate of more than 0.1 and 0.5 or less, and a relative evaporation rate of more than 0.1 and 0.5 or less. More preferably, the solvent is contained in an amount of 8 to 18% by mass.
 本発明においては、1~3.5の相対蒸発速度である塗布液もまた、好ましく用いられる。塗布液の相対蒸発速度を上記範囲とするためには、相対蒸発速度が上記範囲内である溶媒を塗布液の調製に用いればよい。用いた溶媒の相対蒸発速度が、上記のハードコート塗布液の相対蒸発速度の数値として採用される。すなわち、本発明の一実施形態では、光学反射フィルムの製造工程は、1~3.5の相対蒸発速度であるハードコート塗布液を塗布する工程を含む。1~3.5の相対蒸発速度である溶媒としては、第一の側面で例示したものを用いることができる。塗布液の相対蒸発速度は、1.5~3.4であることがより好ましく、2.7~3.4であることがさらに好ましい。この場合、第一の側面で説明したような、2種以上の溶媒を混合した混合溶媒を塗布液に用いることもできる。フィルムの製造において使用する溶媒の相対蒸発速度が1~3.5であると、乾燥条件の制御による残存溶媒量の調整が容易となる。一定の乾燥温度、乾燥時間で比較した場合、ハードコート塗布液の調製に用いる溶媒の相対蒸発速度が高くなると残存溶媒量が減少し、相対蒸発速度が低くなると残存溶媒量は増加する。 In the present invention, a coating solution having a relative evaporation rate of 1 to 3.5 is also preferably used. In order to set the relative evaporation rate of the coating solution within the above range, a solvent having a relative evaporation rate within the above range may be used for preparing the coating solution. The relative evaporation rate of the solvent used is adopted as a numerical value of the relative evaporation rate of the hard coat coating solution. That is, in one embodiment of the present invention, the manufacturing process of the optical reflection film includes a process of applying a hard coat coating liquid having a relative evaporation rate of 1 to 3.5. As the solvent having a relative evaporation rate of 1 to 3.5, those exemplified in the first aspect can be used. The relative evaporation rate of the coating solution is more preferably from 1.5 to 3.4, and even more preferably from 2.7 to 3.4. In this case, a mixed solvent obtained by mixing two or more solvents as described in the first aspect can also be used for the coating solution. When the relative evaporation rate of the solvent used in the production of the film is 1 to 3.5, the residual solvent amount can be easily adjusted by controlling the drying conditions. When compared at a constant drying temperature and drying time, the residual solvent amount decreases as the relative evaporation rate of the solvent used in the preparation of the hard coat coating solution increases, and the residual solvent amount increases as the relative evaporation rate decreases.
 活性エネルギー線硬化性樹脂や無機系材料等の上述のハードコート材料のハードコート塗布液中の配合量は、ハードコート塗布液全体に対して、3~80質量%であることが好ましく、10~70質量%であることがより好ましく、10~50質量%であることがさらに好ましい。また、ハードコート塗布液中の溶媒量は、ハードコート塗布液全体に対して、20~97質量%であることが好ましく、30~90質量%であることがより好ましく、40~70質量%であることが更に好ましい。 The blending amount of the above-mentioned hard coat material such as an active energy ray-curable resin or an inorganic material in the hard coat coating solution is preferably 3 to 80% by mass with respect to the entire hard coat coating solution. It is more preferably 70% by mass, and further preferably 10 to 50% by mass. The amount of solvent in the hard coat coating solution is preferably 20 to 97% by mass, more preferably 30 to 90% by mass, and 40 to 70% by mass with respect to the entire hard coat coating solution. More preferably it is.
 ハードコート塗布液には、界面活性剤を添加して、レベリング性、撥水性、滑り性等を付与することもできる。界面活性剤の種類として、特に制限はなく、上記のフッ素系界面活性剤、アクリル系界面活性剤、シリコーン系界面活性剤等を用いることができる。特にレベリング性、撥水性、滑り性という観点で、フッ素系界面活性剤を用いることが好ましい。ハードコート塗布液中の界面活性剤の量は、ハードコート塗布液全体に対して、例えば0.004~2質量%である。市販の界面活性剤としては、第一の側面で例示したものが採用される。 A surfactant can be added to the hard coat coating solution to impart leveling properties, water repellency, slipperiness, and the like. There is no restriction | limiting in particular as a kind of surfactant, Said fluorine-type surfactant, acrylic surfactant, silicone type surfactant, etc. can be used. In particular, a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness. The amount of the surfactant in the hard coat coating solution is, for example, 0.004 to 2% by mass with respect to the entire hard coat coating solution. As the commercially available surfactant, those exemplified in the first aspect are adopted.
 赤外線の遮蔽性向上という観点から、アンチモンドープ酸化スズ(ATO)等の上述の赤外線吸収剤を添加しても良い。ハードコート塗布液中の赤外線吸収剤の量は、ハードコート塗布液全体に対して、例えば2~40質量%である。市販の赤外線吸収剤としては、第一の実施形態で例示したものが採用される。 From the viewpoint of improving infrared shielding properties, the above-described infrared absorbers such as antimony-doped tin oxide (ATO) may be added. The amount of the infrared absorber in the hard coat coating solution is, for example, 2 to 40% by mass with respect to the entire hard coat coating solution. As a commercially available infrared absorber, what was illustrated by 1st embodiment is employ | adopted.
 本発明の一実施形態では、ハードコート塗布液は、3~35質量%のハードコート材料、35~90質量%の溶媒、0.01~0.5質量%の界面活性剤、および5~34.5質量%の赤外線吸収剤(全量で100質量%)を含む。 In one embodiment of the present invention, the hard coat coating solution comprises 3 to 35% by weight hard coat material, 35 to 90% by weight solvent, 0.01 to 0.5% by weight surfactant, and 5 to 34. 0.5% by mass of an infrared absorber (100% by mass in total) is contained.
 ハードコート塗布液にはまた、上述の紫外線吸収剤や酸化防止剤を添加しても良い。市販の紫外線吸収剤や酸化防止剤としては、第一の側面で例示したものが採用される。 The hard coat coating solution may also contain the above-described ultraviolet absorber and antioxidant. What was illustrated by the 1st side surface as a commercially available ultraviolet absorber and antioxidant is employ | adopted.
 ハードコート塗布液の製造方法は特に限定されず、溶媒に各成分を添加し、適宜混合することによって得られる。添加順序、添加方法は特に限定されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。 The method for producing the hard coat coating solution is not particularly limited, and it can be obtained by adding each component to a solvent and mixing appropriately. The order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
 準備されたハードコート塗布液を、上述の積層体(フィルムにおける反射部)の少なくとも一方の面側に直接塗布しても良いが、ハードコート層と反射部との間に導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、本発明の高屈折率層および低屈折率層以外の赤外線カット層(金属層、液晶層)、着色層(可視光線吸収層)などの機能層を含む場合は、これらの層に塗付しても良い。 The prepared hard coat coating solution may be directly applied to at least one surface side of the above-mentioned laminate (reflective portion in the film), but the conductive layer and antistatic layer are provided between the hard coat layer and the reflective portion. Layer, gas barrier layer, easy adhesion layer (adhesion layer), antifouling layer, deodorant layer, droplet layer, slippery layer, hard coat layer, wear-resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorption layer, Infrared absorbing layer, printed layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, adhesive layer, infrared cut layer (metal layer, liquid crystal layer) other than high refractive index layer and low refractive index layer of the present invention, colored layer When a functional layer such as (visible light absorbing layer) is included, it may be applied to these layers.
 ハードコート層の下層への密着性をさらに高めるため、硬化樹脂層を積層する前にアンカー層(プライマー層)を形成することができる。アンカー層の膜厚は特に限定されるものではないが、0.1~10μm程度である。好適な例として、アンカー層を構成する樹脂としては、ポリビニルアセタール樹脂、アクリル樹脂が挙げられる。 In order to further improve the adhesion to the lower layer of the hard coat layer, an anchor layer (primer layer) can be formed before laminating the cured resin layer. The thickness of the anchor layer is not particularly limited, but is about 0.1 to 10 μm. Preferable examples of the resin constituting the anchor layer include polyvinyl acetal resin and acrylic resin.
 その後、塗膜形成後の積層体(乾燥対象物)中の残存溶媒が1~8mg/gとなるよう、乾燥対象物を乾燥する。乾燥手段は特に限定されず、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。乾燥温度としては、用いられる溶媒や乾燥温度等の条件に応じて適宜設定されるが、通常50~200℃であり、好ましくは70~150℃であり、より好ましくは80~120℃である。また、乾燥時間としては、例えば30秒~300秒であり、好ましくは90秒を超えて180秒以下である。乾燥温度を高く、および/または乾燥時間を長くすれば、乾燥対象物や最終産物であるフィルム中の残存溶媒量を減少させることができる。反対に、乾燥温度を低く、および/または乾燥時間を短くすれば、乾燥対象物や最終産物であるフィルム中の残存溶媒量を増やすことができる。 Thereafter, the object to be dried is dried so that the residual solvent in the laminate (the object to be dried) after forming the coating film is 1 to 8 mg / g. The drying means is not particularly limited, and warm air drying, infrared drying, and microwave drying are used. The drying temperature is appropriately set according to conditions such as the solvent used and the drying temperature, but is usually 50 to 200 ° C., preferably 70 to 150 ° C., and more preferably 80 to 120 ° C. The drying time is, for example, 30 seconds to 300 seconds, preferably more than 90 seconds and 180 seconds or less. If the drying temperature is increased and / or the drying time is increased, the amount of residual solvent in the film to be dried and the final product can be reduced. On the contrary, if the drying temperature is lowered and / or the drying time is shortened, the amount of solvent remaining in the film to be dried and the final product can be increased.
 乾燥対象物中の残存溶媒は、1~8mg/gであればよいが、好ましくは1~5mg/gであり、より好ましくは1~3.6mg/gであり、さらに好ましくは1~3mg/gである。乾燥対象物中の残存溶媒が1mg/g未満であると、ハードコートの熱収縮が大きくなり、ひび割れが生じやすくなり、密着性が低下する。また、乾燥対象物中の残存溶媒が8mg/gを超えると、高温高湿状態にさらされた場合にヘイズの上昇や変色を起こしやすくなり、ハードコート層の密着性が低下する。 The residual solvent in the dried object may be 1 to 8 mg / g, preferably 1 to 5 mg / g, more preferably 1 to 3.6 mg / g, and still more preferably 1 to 3 mg / g. g. When the residual solvent in the object to be dried is less than 1 mg / g, the thermal contraction of the hard coat increases, cracks are likely to occur, and the adhesiveness is reduced. Moreover, when the residual solvent in a dry object exceeds 8 mg / g, it will become easy to raise | generate a haze and discoloration when exposed to a high temperature, high humidity state, and the adhesiveness of a hard-coat layer will fall.
 乾燥対象物中の残存溶媒を調整するため、ハードコート塗布液の塗布後、乾燥工程前における積層体中の残存溶媒量を、上記のガスクロマトグラフィーを用いた方法にて測定してもよい。また、乾燥工程においては、溶媒の蒸発に伴う重量変化を経時で観察することにより、乾燥対象物中の残存溶媒量を調整することが容易となる。 In order to adjust the residual solvent in the object to be dried, the amount of residual solvent in the laminate after the application of the hard coat coating solution and before the drying step may be measured by the above-described method using gas chromatography. Further, in the drying process, it is easy to adjust the amount of residual solvent in the object to be dried by observing the change in weight accompanying the evaporation of the solvent over time.
 乾燥後、フィルム中の残存溶媒量を安定化させるため、乾燥対象物を冷却しても良い。冷却方法は特に制限されず、例えば、上述の熱固定後の冷却方法と同様の手法が採用され得る。 After drying, the object to be dried may be cooled in order to stabilize the amount of residual solvent in the film. The cooling method is not particularly limited, and for example, a method similar to the cooling method after heat setting described above may be employed.
 活性エネルギー線硬化性樹脂を用いる場合、乾燥工程後に、ハードコート塗膜に活性エネルギー線を照射し(硬化処理)、ハードコート材料を硬化させてもよい。活性エネルギー線の照射波長、照度、光量によって反応性が変わるため一概には言えないが、例えば、その照度は50~1500mW/cmが好ましく、100~1000mW/cmがより好ましい。このとき、照射エネルギー量は50~1500mJ/cmが好ましく、100~1000mJ/cmがより好ましい。また、照射時間は、1~300秒が好ましい。活性エネルギー線硬化性樹脂の場合、熱硬化性樹脂と異なり硬化条件が穏やかであるため、硬化処理における残存溶媒量への影響を考慮する必要が無いという利点がある。活性エネルギー線としては、用いる活性エネルギー線硬化性樹脂に応じて、紫外線の他にも電子線等も用いられうる。 When an active energy ray-curable resin is used, the hard coat material may be cured by irradiating the hard coat coating film with an active energy ray (curing treatment) after the drying step. Irradiation wavelength of the active energy ray, intensity, can not be said sweepingly because changes reactivity by the light amount, for example, the illuminance is preferably 50 ~ 1500mW / cm 2, more preferably 100 ~ 1000mW / cm 2. At this time, the amount of irradiation energy is preferably 50 ~ 1500mJ / cm 2, more preferably 100 ~ 1000mJ / cm 2. The irradiation time is preferably 1 to 300 seconds. In the case of an active energy ray-curable resin, unlike the thermosetting resin, the curing conditions are gentle, and thus there is an advantage that it is not necessary to consider the influence on the residual solvent amount in the curing process. As the active energy ray, an electron beam or the like can be used in addition to ultraviolet rays depending on the active energy ray curable resin to be used.
 <光学反射体>
 本発明の光学反射フィルムは、幅広い分野に応用することができる。すなわち、本発明の好適な一態様は、上記光学反射フィルム、または上記製造法によって製造された光学反射フィルムが基体の少なくとも一方の面に設けられてなる、光学反射体である。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明に係る光学反射フィルムが直接または接着剤を介して、ガラスまたはガラス代替樹脂等の基体に貼合されている部材には好適である。
<Optical reflector>
The optical reflective film of the present invention can be applied to a wide range of fields. That is, a preferred embodiment of the present invention is an optical reflector in which the optical reflective film or the optical reflective film produced by the production method is provided on at least one surface of a substrate. For example, film for window pasting such as heat ray reflecting film that gives heat ray reflection effect, film for agricultural greenhouses, etc. Etc., mainly for the purpose of improving the weather resistance. In particular, the optical reflective film according to the present invention is suitable for a member that is bonded to a substrate such as glass or a glass substitute resin directly or via an adhesive.
 基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでも良く、これらを2種以上組み合わせて用いても良い。基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、通常0.1mm~5cmである。 Specific examples of the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, and phenol. Examples thereof include resins, diallyl phthalate resins, polyimide resins, urethane resins, polyvinyl acetate resins, polyvinyl alcohol resins, styrene resins, vinyl chloride resins, metal plates, and ceramics. The type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination. The substrate can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding or the like. The thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
 光学反射フィルムと基体とを貼り合わせる接着層または粘着層は、光学反射フィルムを日光(熱線)入射面側に設置することが好ましい。また、光学反射フィルムを、窓ガラスと基体との間に挟持すると、水分等の周囲のガスから封止でき耐久性に優れるため好ましい。本発明に係る赤外遮蔽フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。 It is preferable that the adhesive layer or the adhesive layer that bonds the optical reflecting film and the substrate is disposed on the sunlight (heat ray) incident surface side. Further, it is preferable to sandwich the optical reflection film between the window glass and the substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. Even if the infrared shielding film according to the present invention is installed outdoors or outside a car (for external application), it is preferable because of environmental durability.
 光学反射フィルムと基体とを貼り合わせる接着層または粘着層は、窓ガラスなどに貼り合わせたとき、光学反射フィルムが日光(熱線)入射面側にあるように設置することが好ましい。また光学反射フィルムを窓ガラスと基材との間に挟持すると、水分等周囲ガスから封止でき耐久性に好ましい。本発明の光学反射フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。 The adhesive layer or adhesive layer that bonds the optical reflective film and the substrate is preferably installed so that the optical reflective film is on the sunlight (heat ray) incident surface side when bonded to a window glass or the like. Further, when the optical reflection film is sandwiched between the window glass and the base material, it can be sealed from ambient gas such as moisture, which is preferable for durability. Even if the optical reflective film of the present invention is installed outdoors or on the outside of a vehicle (for external application), it is preferable because of environmental durability.
 本発明に適用可能な接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。 As the adhesive applicable to the present invention, an adhesive mainly composed of a photocurable or thermosetting resin can be used.
 接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系およびエマルジョン系の中で溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合熱可塑性樹脂を使用する場合、そのモノマーとしては公知のものを使用できる。 The adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, since the peel strength can be easily controlled, a solvent system is preferable among the solvent system and the emulsion system in the acrylic adhesive. When a solution-polymerized thermoplastic resin is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
 また、合わせガラスの中間層として用いられるポリビニルブチラール系樹脂、あるいはエチレン-酢酸ビニル共重合体系樹脂を用いてもよい。具体的には可塑性ポリビニルブチラール(積水化学工業社製、三菱モンサント社製等)、エチレン-酢酸ビニル共重合体(デュポン社製、武田薬品工業社製、デュラミン)、変性エチレン-酢酸ビニル共重合体(東ソー社製、メルセン(登録商標)G)等である。なお、粘着層や接着層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。 Further, a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used. Specifically, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto, etc.), ethylene-vinyl acetate copolymer (manufactured by DuPont, Takeda Pharmaceutical Co., Ltd., duramin), modified ethylene-vinyl acetate copolymer (Mersen (registered trademark) G manufactured by Tosoh Corporation). In addition, you may mix | blend suitably an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, coloring, an adhesion regulator, etc. in an adhesion layer or an adhesion layer.
 光学反射フィルムまたは光学反射体(赤外遮蔽体)の断熱性能、日射熱遮へい性能は、一般的にJIS R 3209(1998)(複層ガラス)、JIS R 3106(1998)(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107(1998)(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。 The heat insulation performance and solar heat shielding performance of an optical reflective film or optical reflector (infrared shield) are generally JIS R 3209 (1998) (multi-layer glass), JIS R 3106 (1998) (transmittance of sheet glass) -Test method of reflectance, emissivity, and solar heat acquisition rate), JIS R 3107 (1998) (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
 日射透過率、日射反射率、放射率、可視光透過率の測定は、(1)波長(300~2500nm)の分光測光器を用い、各種単板ガラスの分光透過率、分光反射率を測定する。また、波長5.5~50μmの分光測定器を用いて放射率を測定する。なお、フロート板ガラス、磨き板ガラス、型板ガラス、熱線吸収板ガラスの放射率は既定値を用いる。(2)日射透過率、日射反射率、日射吸収率、修正放射率の算出は、JIS R 3106(1998)に従い、日射透過率、日射反射率、日射吸収率、垂直放射率を算出する。修正放射率に関しては、JIS R 3107(1998)に示されている係数を、垂直放射率に乗ずることにより求める。断熱性、日射熱遮へい性の算出は、(1)厚さの測定値、修正放射率を用いJIS R 3209(1998)に従って複層ガラスの熱抵抗を算出する。ただし中空層が2mmを超える場合はJIS R 3107(1998)に従って中空層の気体熱コンダクタンスを求める。(2)断熱性は、複層ガラスの熱抵抗に熱伝達抵抗を加えて熱貫流抵抗で求める。(3)日射熱遮蔽性はJIS R 3106(1998)により日射熱取得率を求め、1から差し引いて算出する。 Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance. (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 μm. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and corrected emissivity are calculated according to JIS R 3106 (1998) by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity. The corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107 (1998). The heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 (1998) using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107 (1998). (2) The heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance. (3) The solar heat shielding property is calculated by calculating the solar heat acquisition rate according to JIS R 3106 (1998) and subtracting it from 1.
 <実施形態>
 以下に、本発明の実施形態を例示的に示す。
(1) 高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む、溶融押出成形によって形成された反射部、および、ハードコート塗布液の塗布によって形成されたハードコート層を含む光学反射フィルムであって、前記フィルム中の残存溶媒が1~8mg/gである、光学反射フィルム。
(2) 前記ハードコート層の厚さが、1.2~10μmである、(1)に記載の光学反射フィルム。
(3) 前記ハードコート層が、界面活性剤を含有する、(1)または(2)に記載の光学反射フィルム。
(4) 前記ハードコート層が、赤外線吸収剤を含有する、(1)~(3)のいずれか1つに記載の光学反射フィルム。
(5) 前記ハードコート層が、アクリレート樹脂を含有する、(1)~(4)のいずれか1つに記載の光学反射フィルム。
(6) 前記ハードコート層が、0.1~0.5の相対蒸発速度である溶媒を、全溶媒量に対して5~20質量%含有する塗布液を塗布し、乾燥して形成された、(1)~(5)のいずれか1つに記載の光学反射フィルム。
(7) 前記ハードコート塗布液の相対蒸発速度が1~3.5である、(1)~(6)のいずれか1つに記載の光学反射フィルム。
(8) 高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む積層体を、溶融押出成形によって形成し;ハードコート塗布液を前記積層体の少なくとも一方の面側に塗布して塗膜を形成し;および塗膜を形成した前記積層体中の残存溶媒が1~8mg/gとなるように乾燥すること、を含む、光学反射フィルムの製造方法。
(9) (1)~(7)のいずれか1つに記載の光学反射フィルム、または(8)に記載の製造方法によって製造された光学反射フィルムが、基体の少なくとも一方の面に設けられてなる光学反射体。
<Embodiment>
Hereinafter, embodiments of the present invention will be exemplarily shown.
(1) Including at least one unit in which a high refractive index layer and a low refractive index layer are laminated, a reflective portion formed by melt extrusion, and a hard coat layer formed by applying a hard coat coating solution An optical reflective film, wherein the residual solvent in the film is 1 to 8 mg / g.
(2) The optical reflective film according to (1), wherein the hard coat layer has a thickness of 1.2 to 10 μm.
(3) The optical reflective film according to (1) or (2), wherein the hard coat layer contains a surfactant.
(4) The optical reflective film according to any one of (1) to (3), wherein the hard coat layer contains an infrared absorber.
(5) The optical reflective film according to any one of (1) to (4), wherein the hard coat layer contains an acrylate resin.
(6) The hard coat layer was formed by applying a coating solution containing 5 to 20% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 with respect to the total amount of the solvent, and drying the coating solution. , (1) to (5) The optical reflective film according to any one of (1) to (5).
(7) The optical reflective film as described in any one of (1) to (6), wherein the relative evaporation rate of the hard coat coating solution is 1 to 3.5.
(8) A laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated is formed by melt extrusion molding; a hard coat coating solution is applied to at least one surface side of the laminate. Forming a coating film; and drying so that the residual solvent in the laminate on which the coating film has been formed is 1 to 8 mg / g.
(9) The optical reflective film according to any one of (1) to (7) or the optical reflective film manufactured by the manufacturing method according to (8) is provided on at least one surface of the substrate. An optical reflector.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 <製造例: 溶融押出成形による反射部の形成>
 特表2002-509279号公報(米国特許第6,049,419号明細書に相当する)に記載の溶融押出成形法に従い、高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む反射部を形成した。具体的には、ポリエチレンナフタレート(PEN)(TN8065S、帝人化成社製)とポリメチルメタクリレート(PMMA)(アクリペット(登録商標)VH、三菱レイヨン社製)とを300℃に溶融し、多層押出しダイスを用いてキャスティングドラム上に押出した後、ロールとテンターとにより縦方向に3倍、横方向にも3倍延伸し、(PMMA(152nm)/PEN(137nm))64/(PMMA(164nm)/PEN(148nm))64/(PMMA(177nm)/PEN(160nm))64/(PMMA(191m)/PEN(173nm))64、となる計256層交互積層した積層体を得た。ここで、上記層構成において、「(PMMA(152nm)/PEN(137nm))64」とは、膜厚152nmのPMMA、膜厚137nmのPENをこの順に積層したユニットが64個であるという意味であり、他のユニットについても同様に意図される。なお、屈折率の値の相対的な関係から、PMMAからなる層が低屈折率層(屈折率:1.49)であり、PENからなる層が高屈折率層である(屈折率:1.77)。
<Manufacturing example: Formation of reflection part by melt extrusion molding>
At least one unit in which a high refractive index layer and a low refractive index layer are laminated according to the melt extrusion molding method described in JP-T-2002-509279 (corresponding to US Pat. No. 6,049,419). The reflective part including was formed. Specifically, polyethylene naphthalate (PEN) (TN8065S, manufactured by Teijin Chemicals Ltd.) and polymethyl methacrylate (PMMA) (Acrypet (registered trademark) VH, manufactured by Mitsubishi Rayon Co., Ltd.) are melted at 300 ° C. and multilayer extrusion is performed. After extrusion onto a casting drum using a die, the film was stretched 3 times in the machine direction and 3 times in the transverse direction by a roll and a tenter, and (PMMA (152 nm) / PEN (137 nm)) 64 / (PMMA (164 nm) / PEN (148 nm)) 64 / (PMMA (177 nm) / PEN (160 nm)) 64 / (PMMA (191 m) / PEN (173 nm)) 64 A total of 256 laminated layers were obtained. Here, in the above layer configuration, “(PMMA (152 nm) / PEN (137 nm)) 64” means that there are 64 units in which PMMA having a film thickness of 152 nm and PEN having a film thickness of 137 nm are stacked in this order. Yes, other units are intended as well. From the relative relationship of the refractive index values, the layer made of PMMA is a low refractive index layer (refractive index: 1.49), and the layer made of PEN is a high refractive index layer (refractive index: 1.. 77).
 <実施例1>
 終濃度が下記の組成となるハードコート塗布液(1)を調製した。表中、ハードコート塗布液の相対蒸発速度は上述の数式(1)により求めた。
<Example 1>
A hard coat coating solution (1) having a final concentration of the following composition was prepared. In the table, the relative evaporation rate of the hard coat coating solution was determined by the above mathematical formula (1).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上述の方法で得られた積層体の片側の面に、ハードコート塗布液(1)をグラビア塗布により、乾燥後のハードコート層の厚さが4μmとなるように塗布した。次に、ハードコート塗膜を形成した積層体をオーブン中で110℃、120秒乾燥した。得られた乾燥物に活性エネルギー線を照射し、光学反射フィルムNo.(1)を得た。活性エネルギー線の照射には高圧水銀ランプを用い、照度400mW/cm、照射量800mJ/cmの条件で行った。 The hard coat coating solution (1) was applied to one surface of the laminate obtained by the above-described method by gravure application so that the thickness of the hard coat layer after drying was 4 μm. Next, the laminate on which the hard coat coating film was formed was dried in an oven at 110 ° C. for 120 seconds. The obtained dried product was irradiated with active energy rays, and optical reflection film No. 1 was irradiated. (1) was obtained. The active energy ray was irradiated using a high-pressure mercury lamp under the conditions of an illuminance of 400 mW / cm 2 and an irradiation amount of 800 mJ / cm 2 .
 得られたフィルムから膜厚方向に垂直にフィルム片を切り出し、秤量した(1g)。次に、フィルム片をバイアル瓶に封入し、オーブンで120℃、30分間加熱して発生した気体をガスクロマトグラフィーにて測定し、フィルム中の残存溶媒量を求めた。ガスクロマトグラフィーの測定条件は、上述のとおりである。フィルム中の残存溶媒量は7.8mg/g(フィルム)であった。なお、残存溶媒量の測定は、フィルムの製造後12時間以内に行った。 A film piece was cut out from the obtained film perpendicularly to the film thickness direction and weighed (1 g). Next, the film piece was sealed in a vial, and the gas generated by heating at 120 ° C. for 30 minutes in an oven was measured by gas chromatography to determine the amount of residual solvent in the film. The measurement conditions for gas chromatography are as described above. The amount of residual solvent in the film was 7.8 mg / g (film). The residual solvent amount was measured within 12 hours after the production of the film.
 <実施例2~12、比較例1~4>
 実施例1の方法に準じて、下記の表2の条件でハードコート層を形成し、光学反射フィルムNo.(2)~No.(12)(実施例2~12)、ならびに、光学反射フィルムNo.(13)~(16)(比較例1~4)を得た。各光学反射フィルム中の残存溶媒量を表2に示す。
<Examples 2 to 12, Comparative Examples 1 to 4>
In accordance with the method of Example 1, a hard coat layer was formed under the conditions shown in Table 2 below. (2) -No. (12) (Examples 2 to 12) and optical reflection film No. (13) to (16) (Comparative Examples 1 to 4) were obtained. Table 2 shows the amount of residual solvent in each optical reflection film.
 <評価>
 (ヘイズ)
 各光学反射フィルムを50℃、相対湿度80%環境下で48時間保持し、その前後でのヘイズ差をヘイズメーター(日本電色工業社製、NDH2000)により測定した。なお、ヘイズメーターの光源は、5V9Wのハロゲン球とし、受光部は、シリコンフォトセル(比視感度フィルター付き)を使用した。結果を表2に示す。
<Evaluation>
(Haze)
Each optical reflection film was held for 48 hours in an environment of 50 ° C. and 80% relative humidity, and the haze difference before and after the measurement was measured with a haze meter (NDH2000, Nippon Denshoku Industries Co., Ltd.). The light source of the haze meter was a 5V9W halogen sphere, and a silicon photocell (with a relative visibility filter) was used as the light receiving part. The results are shown in Table 2.
 (SWOM変色)
 各光学反射フィルムを白板ガラスに貼り付け、JIS K5400:1990規定条件で稼働したサンシャインウェザーメーター(SWOM)(スガ試験機社製)中で1000時間保存した。保存前後の光学反射フィルムのL値、a値、b値を分光光度計(機種名:U-4100型、日立製作所社製)で測定した。保存前後におけるL値の差をΔL、a値の差をΔa、b値の差をΔbとして、以下の式によってΔEを算出した。ΔEが小さいほど変色が小さいことを示す。結果を表2に示す。
(SWOM color change)
Each optical reflection film was affixed to white plate glass and stored for 1000 hours in a sunshine weather meter (SWOM) (manufactured by Suga Test Instruments Co., Ltd.) operated under the conditions specified in JIS K5400: 1990. The L * value, a * value, and b * value of the optical reflection film before and after storage were measured with a spectrophotometer (model name: U-4100 type, manufactured by Hitachi, Ltd.). ΔE was calculated by the following equation, where ΔL * was the difference in L * values before and after storage, Δa * was the difference in a * values, and Δb * was the difference in b * values. It shows that discoloration is so small that (DELTA) E is small. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 (密着性)
 JIS K5600-5-6:1999のクロスカット法に従い、各光学反射フィルムについて、フィルム最表面に片刃のカミソリの刃を面に対して90°の角度で、2mm間隔でクロスカットし、10mm角の碁盤目を作製した。日東電工株式会社製のセロファンテープNo.29をハードコート層に貼り付けて、テープをはがし、ハードコート層の剥離状態を調べた。
(Adhesion)
In accordance with the cross-cut method of JIS K5600-5-6: 1999, for each optical reflecting film, a single-blade razor blade was cross-cut at an angle of 90 ° with respect to the surface on the outermost surface of the film at intervals of 2 mm. A grid was made. Cellophane tape No. manufactured by Nitto Denko Corporation 29 was affixed to the hard coat layer, the tape was peeled off, and the peeled state of the hard coat layer was examined.
 クロスカットしたマス目の数をn、テープ剥離後に積層体にハードコート層が残っているマス目の数をn1とした時に、F=(n1/n)×100(%)を計算し、以下の基準で評価した。結果を表2に示す
 ◎:Fが100%、
 ○:Fが80%以上100%未満、
 △:Fが50%以上80%未満、
 ×:Fが50%未満。
F = (n1 / n) × 100 (%) is calculated, where n is the number of cross-cut squares and n1 is the number of squares where the hard coat layer remains in the laminate after peeling off the tape. Evaluation based on the criteria. The results are shown in Table 2. A: F is 100%,
○: F is 80% or more and less than 100%,
Δ: F is 50% or more and less than 80%,
X: F is less than 50%.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2から明らかなように、本発明に係る光学反射フィルムは耐候性に優れ、ハードコート層の密着性が高いことが分かる。 As is clear from Table 2, it can be seen that the optical reflective film according to the present invention has excellent weather resistance and high adhesion of the hard coat layer.
 本出願は、2014年6月27日に出願された日本特許出願第2014-133112号に基づいており、その開示内容は、参照により全体として本開示に引用される。 This application is based on Japanese Patent Application No. 2014-133112 filed on June 27, 2014, the disclosure of which is incorporated herein by reference in its entirety.
10 光学反射フィルム、
11 反射部、
12 ハードコート層、
13 粘着層、
111 低屈折率層、
112 高屈折率層、
113 ユニット。
10 Optical reflective film,
11 Reflector,
12 Hard coat layer,
13 Adhesive layer,
111 low refractive index layer,
112 high refractive index layer,
113 units.

Claims (9)

  1.  高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む、溶融押出成形によって形成された反射部、および、
     ハードコート塗布液の塗布によって形成されたハードコート層を含む光学反射フィルムであって、
     前記フィルム中の残存溶媒が1~8mg/gである、光学反射フィルム。
    A reflective portion formed by melt extrusion, comprising at least one unit in which a high refractive index layer and a low refractive index layer are laminated; and
    An optical reflective film comprising a hard coat layer formed by application of a hard coat coating solution,
    An optical reflective film, wherein the residual solvent in the film is 1 to 8 mg / g.
  2.  前記ハードコート層の厚さが、1.2~10μmである、請求項1に記載の光学反射フィルム。 2. The optical reflective film according to claim 1, wherein the thickness of the hard coat layer is 1.2 to 10 μm.
  3.  前記ハードコート層が、界面活性剤を含有する、請求項1または2に記載の光学反射フィルム。 The optical reflection film according to claim 1, wherein the hard coat layer contains a surfactant.
  4.  前記ハードコート層が、赤外線吸収剤を含有する、請求項1~3のいずれか1項に記載の光学反射フィルム。 The optical reflective film according to any one of claims 1 to 3, wherein the hard coat layer contains an infrared absorber.
  5.  前記ハードコート層が、アクリレート樹脂を含有する、請求項1~4のいずれか1項に記載の光学反射フィルム。 The optical reflection film according to any one of claims 1 to 4, wherein the hard coat layer contains an acrylate resin.
  6.  前記ハードコート層が、0.1~0.5の相対蒸発速度である溶媒を、全溶媒量に対して5~20質量%含有する塗布液を塗布し、乾燥して形成された、請求項1~5のいずれか1項に記載の光学反射フィルム。 The hard coat layer is formed by applying a coating solution containing 5 to 20% by mass of a solvent having a relative evaporation rate of 0.1 to 0.5 with respect to the total amount of the solvent and drying. 6. The optical reflection film according to any one of 1 to 5.
  7.  前記ハードコート塗布液の相対蒸発速度が1~3.5である、請求項1~6のいずれか1項に記載の光学反射フィルム。 The optical reflective film according to any one of claims 1 to 6, wherein the relative evaporation rate of the hard coat coating solution is 1 to 3.5.
  8.  高屈折率層と低屈折率層とを積層したユニットを少なくとも1つ含む積層体を、溶融押出成形によって形成し;
     ハードコート塗布液を前記積層体の少なくとも一方の面側に塗布して塗膜を形成し;および
     塗膜を形成した前記積層体中の残存溶媒が1~8mg/gとなるように乾燥すること、を含む、光学反射フィルムの製造方法。
    Forming a laminate including at least one unit in which a high refractive index layer and a low refractive index layer are laminated by melt extrusion;
    Applying a hard coat coating solution to at least one side of the laminate to form a coating film; and drying so that the residual solvent in the laminate on which the coating film is formed is 1 to 8 mg / g. The manufacturing method of the optical reflection film containing these.
  9.  請求項1~7のいずれか1項に記載の光学反射フィルム、または請求項8に記載の製造方法によって製造された光学反射フィルムが、基体の少なくとも一方の面に設けられてなる光学反射体。 An optical reflector comprising the optical reflective film according to any one of claims 1 to 7 or the optical reflective film produced by the production method according to claim 8 provided on at least one surface of a substrate.
PCT/JP2015/064537 2014-06-27 2015-05-20 Optical reflective film, method for producing optical reflective film, and optical reflector using same WO2015198762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529187A JPWO2015198762A1 (en) 2014-06-27 2015-05-20 Optical reflective film, optical reflective film manufacturing method, and optical reflector using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-133112 2014-06-27
JP2014133112 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198762A1 true WO2015198762A1 (en) 2015-12-30

Family

ID=54937860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064537 WO2015198762A1 (en) 2014-06-27 2015-05-20 Optical reflective film, method for producing optical reflective film, and optical reflector using same

Country Status (2)

Country Link
JP (1) JPWO2015198762A1 (en)
WO (1) WO2015198762A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553790A (en) * 2017-09-25 2019-04-02 安徽屹珹新材料科技有限公司 A kind of anti-blue light film and preparation method thereof
CN109553791A (en) * 2017-09-25 2019-04-02 安徽屹珹新材料科技有限公司 A kind of anti-blue light film and preparation method thereof with ultrahigh hardness
CN112811937A (en) * 2020-12-30 2021-05-18 哈尔滨工业大学 Preparation method of high-reflection anti-laser film layer on surface of silicon nitride ceramic substrate
CN114509835A (en) * 2022-02-16 2022-05-17 Oppo广东移动通信有限公司 Reflective film, preparation method thereof, shell assembly and electronic equipment
JP2022081339A (en) * 2020-11-19 2022-05-31 住友ベークライト株式会社 Reflective plate and optical component
JP2022081340A (en) * 2020-11-19 2022-05-31 住友ベークライト株式会社 Reflective plate and optical component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159055A (en) * 2012-02-07 2013-08-19 Riken Technos Corp Hardcoat film
WO2013129335A1 (en) * 2012-02-29 2013-09-06 コニカミノルタ株式会社 Near-infrared reflective film and near-infrared reflective glass using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159055A (en) * 2012-02-07 2013-08-19 Riken Technos Corp Hardcoat film
WO2013129335A1 (en) * 2012-02-29 2013-09-06 コニカミノルタ株式会社 Near-infrared reflective film and near-infrared reflective glass using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553790A (en) * 2017-09-25 2019-04-02 安徽屹珹新材料科技有限公司 A kind of anti-blue light film and preparation method thereof
CN109553791A (en) * 2017-09-25 2019-04-02 安徽屹珹新材料科技有限公司 A kind of anti-blue light film and preparation method thereof with ultrahigh hardness
JP2022081339A (en) * 2020-11-19 2022-05-31 住友ベークライト株式会社 Reflective plate and optical component
JP2022081340A (en) * 2020-11-19 2022-05-31 住友ベークライト株式会社 Reflective plate and optical component
JP7115531B2 (en) 2020-11-19 2022-08-09 住友ベークライト株式会社 reflectors and optics
JP7115530B2 (en) 2020-11-19 2022-08-09 住友ベークライト株式会社 reflectors and optics
CN112811937A (en) * 2020-12-30 2021-05-18 哈尔滨工业大学 Preparation method of high-reflection anti-laser film layer on surface of silicon nitride ceramic substrate
CN112811937B (en) * 2020-12-30 2022-07-08 哈尔滨工业大学 Preparation method of high-reflection anti-laser film layer on surface of silicon nitride ceramic substrate
CN114509835A (en) * 2022-02-16 2022-05-17 Oppo广东移动通信有限公司 Reflective film, preparation method thereof, shell assembly and electronic equipment

Also Published As

Publication number Publication date
JPWO2015198762A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015198762A1 (en) Optical reflective film, method for producing optical reflective film, and optical reflector using same
JP6443341B2 (en) Light reflecting film and light reflector using the same
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
EP2873993A1 (en) Infrared-shielding film
WO2014199990A1 (en) Derivative multilayer film
JP6673220B2 (en) Heat shield film, method of manufacturing the same, and heat shield using the same
WO2017010280A1 (en) Heat ray shielding film
JPWO2014199872A1 (en) Infrared shielding film, infrared shielding body using the same and heat ray reflective laminated glass
WO2016194560A1 (en) Infrared-shielding film
JP2020115157A (en) Light reflection film and manufacturing method for light reflection film
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
WO2014188831A1 (en) Ultraviolet shielding film
WO2016133022A1 (en) Heat shielding film
JP2015125168A (en) Dielectric multilayer film
JP6344069B2 (en) Optical reflective film
JP2007025201A (en) Reflection preventive material and its manufacturing method
JP2016155256A (en) Heat shielding film, and method for producing the same
JP2016109872A (en) Light shield film
JP6759697B2 (en) Roll-shaped optical reflective film
WO2017077810A1 (en) Light reflecting film
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
JP2015212736A (en) Laminated reflective film, manufacturing method therefor, and optical reflector having the same
WO2015037514A1 (en) Method for manufacturing multilayer dielectric film
CN108885288B (en) Optical reflective film
WO2015098767A1 (en) Optical reflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811855

Country of ref document: EP

Kind code of ref document: A1