WO2012165460A1 - Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror - Google Patents

Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror Download PDF

Info

Publication number
WO2012165460A1
WO2012165460A1 PCT/JP2012/063882 JP2012063882W WO2012165460A1 WO 2012165460 A1 WO2012165460 A1 WO 2012165460A1 JP 2012063882 W JP2012063882 W JP 2012063882W WO 2012165460 A1 WO2012165460 A1 WO 2012165460A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
resin
film mirror
light
Prior art date
Application number
PCT/JP2012/063882
Other languages
French (fr)
Japanese (ja)
Inventor
仁 安達
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2012165460A1 publication Critical patent/WO2012165460A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar power generation reflector, a film mirror, and a method of manufacturing a film mirror.
  • Solar energy is considered to be the most stable and abundant amount of natural energy as an alternative energy to fossil fuels.
  • the vast desert spreads near the equator which is called the world's sun belt, and the solar energy that falls there is truly inexhaustible.
  • 7,000 GW of energy can be obtained if only a few percent of the desert that extends to the southeastern United States is used. It is also believed that using only a few percent of the Arabian peninsula and the deserts of North Africa can cover all the energy used by all centuries.
  • the condensing device Since the condensing device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., conventionally, a glass mirror having good weather resistance has been used.
  • the glass mirror has high environmental durability, but it is damaged during transportation, and because of its heavy mass, it is necessary to increase the strength of the frame on which the mirror is installed, which increases the construction cost of the plant. There was a problem.
  • Patent Document 3 A technique using an acrylic film having excellent light resistance against ultraviolet rays on the surface of the resin reflecting mirror is known (for example, Patent Document 3).
  • the silver reflective layer is in direct contact with the adhesive layer, the unevenness of the adhesive layer affects the silver reflective surface, and there is a problem that the reflected light is scattered and the light collection efficiency is lowered.
  • the problem to be solved by the present invention is to provide a solar power generation reflecting device, a film mirror, and a film mirror that have high scratch resistance, weather resistance, high reflectance, and high productivity that can withstand the practical use of collecting sunlight. It is to provide a manufacturing method.
  • One aspect of the present invention is: In order from the light incident side, a light transmitting resin layer, a light reflecting layer, a resin base material, and a film mirror having at least an adhesive layer,
  • the translucent resin layer contains an ultraviolet absorber, and the translucent resin layer has a thickness of 10 ⁇ m to 150 ⁇ m.
  • the translucent resin layer is directly on the surface of the light reflecting layer on the light incident side or on the surface of the constituent layer provided on the light incident side of the light reflecting layer without using an adhesive layer. Is formed.
  • the center line average roughness (Ra) of the surface of the translucent resin layer is 3 nm or more and 20 nm or less.
  • a corrosion prevention layer is provided adjacent to the light incident side of the light reflecting layer.
  • a hard coat layer is provided on the light incident side surface of the translucent resin layer.
  • a gas barrier layer is provided on the light incident side of the light reflecting layer.
  • the manufacturing method of the film mirror which manufactures an above-described film mirror, By directly applying a material to be the translucent resin layer on the light incident side surface of the light reflecting layer or on the surface of the constituent layer provided on the light incident side with respect to the light reflecting layer, the light transmitting resin layer is directly applied. It is characterized by forming a light-sensitive resin layer.
  • Another aspect of the present invention is a solar power generation reflecting device,
  • the adhesive layer provided in the film mirror is formed by bonding to a support base material.
  • the support base is made of a resin material having a hollow structure.
  • the support substrate has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates, and the intermediate layer is made of a material having a hollow structure or a resin material.
  • a solar thermal power generation reflector having high scratch resistance, weather resistance, high reflectance, and high productivity that can endure practical use for concentrating sunlight, a film mirror, and a film mirror manufacturing method can be provided.
  • Schematic sectional view showing an example of the configuration of the film mirror for solar power generation of the present invention Schematic sectional view showing an example of the configuration of the solar power generation reflector of the present invention
  • Schematic sectional view showing an example of the configuration of the solar power generation reflector of the present invention Schematic sectional view showing an example of the configuration of the film mirror for solar power generation of the present invention
  • Schematic sectional view showing an example of the configuration of a film mirror for solar power generation as a comparative example Schematic cross-sectional view showing an example of the configuration of a solar power generation reflector as a comparative example
  • the film mirror of the present invention is, in order from the light incident side, a translucent resin layer 6 containing an ultraviolet absorber, a silver reflection layer 3 as a light reflection layer, and a resin film.
  • the resin base material 1 and the pressure-sensitive adhesive layer 8 are included.
  • another layer may be interposed between these layers, and each layer may be adjacent.
  • the adhesive layer 8 and the silver reflective layer 3 are not in contact with each other, it prevents a problem that contaminants enter from the interface between the adhesive layer 8 and the silver reflective layer 3 to corrode the silver reflective layer 3 to reduce the reflectance. it can. Further, if the adhesive layer 8 and the silver reflective layer 3 are in contact with each other, the unevenness of the adhesive layer 8 is directly reflected on the silver reflective layer 3, scattering occurs in the silver reflective layer 3, and the light reflectivity is lowered. However, since the resin base material 1 is provided between the pressure-sensitive adhesive layer 8 and the silver reflective layer 3, the unevenness of the pressure-sensitive adhesive layer 8 is not reflected in the silver reflective layer 3, and the silver reflective layer 3 having high planarity. And high reflection performance can be obtained.
  • the translucent resin layer 6 containing an ultraviolet absorber in the film mirror of the present invention does not have an adhesive layer on the upper surface of the silver reflective layer 3 or the upper surfaces of other constituent layers provided on the silver reflective layer 3. It is preferable to be laminated. Since there is no need to bond the layers through the adhesive layer (11), bubbles and foreign substances are not mixed between the layers, and a decrease in light reflectivity can be prevented. Further, since the translucent resin layer 6 can be provided by coating, it is not necessary to attach a translucent resin film by melt film formation, and scattering of reflected light due to surface irregularities caused by melt film formation, etc. Problems can also be prevented.
  • the UV-absorbing translucent resin layer 6 and the silver reflecting layer 3 are adjacent (see FIG. 1), the UV-absorbing translucent resin layer 6 and silver.
  • Another constituent layer may be provided between the constituent layers described above or on the constituent layer.
  • the anchor layer 2 may be provided between the resin base material 1 and the silver reflective layer 3.
  • the corrosion prevention layer 4 may be provided adjacent to the light incident side of the silver reflective layer 3.
  • the gas barrier layer 5 may be provided closer to the light incident side than the silver reflective layer 3.
  • the hard coat layer 7 may be provided on the light incident side surface of the translucent resin layer 6 containing an ultraviolet absorber.
  • the thickness of the entire film mirror according to the present invention is preferably 80 to 300 ⁇ m, more preferably 80 to 200 ⁇ m, and still more preferably 80 to 170 ⁇ m from the viewpoints of prevention of bending, regular reflectance, handling properties, and the like.
  • the center line average roughness (Ra) of the outermost surface layer on the light incident side of the film mirror is 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency.
  • FIGS. 1A to 4A an example of a preferable layer configuration of a film mirror for solar power generation will be described with reference to FIGS. 1A to 4A. Moreover, the outline
  • the film mirror 10a is provided by laminating an anchor layer 2, a silver reflection layer 3, and a translucent resin layer 6 in this order on a resin substrate 1.
  • An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
  • the solar power generation reflecting device 20a is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10a to the supporting base material 9 and bonding the film mirror 10a and the supporting base material 9 together.
  • the film mirror 10b is provided by laminating an anchor layer 2, a silver reflection layer 3, a corrosion prevention layer 4, and a translucent resin layer 6 in this order on a resin base material 1.
  • An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
  • the solar power generation reflecting device 20b is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10b to the supporting base material 9 and bonding the film mirror 10b and the supporting base material 9 together.
  • the film mirror 10 c is provided by laminating an anchor layer 2, a silver reflection layer 3, a corrosion prevention layer 4, a translucent resin layer 6, and a hard coat layer 7 in this order on the resin base material 1. ing.
  • An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
  • the solar power generation reflecting device 20 c is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10 c to the supporting base material 9 and bonding the film mirror 10 c and the supporting base material 9 together.
  • the film mirror 10d has an anchor layer 2, a silver reflection layer 3, a corrosion prevention layer 4, a gas barrier layer 5, a translucent resin layer 6, and a hard coat layer 7 in this order on the resin substrate 1. Laminated and provided. An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
  • the solar power generation reflecting device 20 d is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10 d to the support base 9 and bonding the film mirror 10 d and the support base 9 together.
  • the translucent resin layer 6 is a resin layer made of a resin material having optical transparency and containing an ultraviolet absorber.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose Cellulose esters such as acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone imide, polyamide, fluorine Fat, nylon, polymethyl methacrylate, acrylic or
  • a method for forming the translucent resin layer 6 for example, a method by coating can be mentioned.
  • various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used.
  • the translucent resin layer 6 can be formed by directly applying a material that becomes the transparent resin layer 6.
  • the smoothness of the translucent resin layer 6 can be improved.
  • the center line average roughness (Ra) of the translucent resin layer 6 formed by a coating method can be 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, the translucent resin film produced by melt film formation is not a translucent resin layer provided by bonding with an adhesive layer, but the translucent resin film. It can be considered that the conductive resin layer 6 is provided by coating.
  • the thickness of the translucent resin layer 6 is preferably 10 to 150 ⁇ m. More preferably, the thickness is 20 to 100 ⁇ m, and still more preferably 40 to 100 ⁇ m. If the film thickness exceeds 150 ⁇ m, the coating speed must be greatly reduced in order to sufficiently evaporate the solvent during drying, which is not preferable because productivity is significantly impaired.
  • the center line average roughness (Ra), which is an index of smoothness of the translucent resin layer 6, can be determined by a measuring method based on JIS B0601-1982.
  • acrylic can be suitably used as a material for forming the translucent resin layer 6.
  • the translucent resin layer 6 is formed of acrylic
  • the acrylic resin is hard, in order to obtain an acrylic translucent resin layer 6 that is soft and hardly damaged, plasticizer fine particles may be included.
  • the plasticizer include butyl rubber and butyl acrylate.
  • the acrylic translucent resin layer 6 is preferably mainly composed of methacrylic resin.
  • the methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester.
  • the methacrylic acid ester is 50% by mass or more and the other monomer is 50% by mass or less.
  • a copolymer may also be used.
  • the methacrylic acid ester an alkyl ester of methacrylic acid is usually used.
  • a particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
  • the preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0.1 to 50% by mass, and other monomers are 0 to 49% by mass.
  • examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like, and the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. It is. Of these, methyl methacrylate is preferably used.
  • alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like.
  • the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
  • the monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule, or a polyfunctional monofunctional monomer. Although it may be a monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used.
  • the monofunctional monomer include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon.
  • Alkenyl esters of unsaturated carboxylic acids such as allyl acid
  • polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate
  • aromatic polyalkenyl compounds such as divinylbenzene, etc.
  • alkyl methacrylate alkyl methacrylate
  • alkyl acrylate and monomers other than these, respectively, you may use those 2 or more types as needed.
  • the glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
  • the methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization.
  • the amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
  • (2-1) Ultraviolet Absorber The ultraviolet absorber contained in the translucent resin layer 6 is not particularly limited.
  • thiazolidone-based, benzotriazole-based, acrylonitrile-based, benzophenone-based, aminobutadiene-based, triazine-based there are organic UV absorbers such as phenyl salicylate and benzoate, or fine powder UV blockers such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide, etc., especially organic UV absorption Agents are preferred.
  • organic ultraviolet absorbers examples include JP-A-46-3335, JP-A-55-15276, JP-A-5-197004, JP-A-5-232630, JP-A-5-307232, JP-A-6-218131, and 8- No. 53427, No. 8-234364, No. 8-239368, No. 9-310667, No. 10-115898, No. 10-147777, No. 10-182621, German Patent No. 19739797A, European Patent Nos. 711804A and JP-A-8-501291, U.S. Pat. Nos. 1,023,859, 2,685,512, 2,739,888, 2,784,087. No. 2,748,021, No. 3,004,896, No.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1, 3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-Phenylethyl) phenol (molecular weight 447.6; examples of commercially available products include Tinuvin 234 from Ciba Specialty Chemicals) It is.
  • phenyl salicylate ultraviolet absorber examples include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorbers include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-) Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • benzoate UV absorbers examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; Sumisorb 400).
  • UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. it can.
  • the ultraviolet absorber having a molecular weight of 400 or more has little transferability from the thin translucent resin layer 6 to other constituent layers and hardly deposits on the surface of the laminate, the amount of contained ultraviolet absorber is small. It is preferable from the viewpoints of being maintained for a long time and being excellent in the durability of the weather resistance improving effect.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • the ultraviolet absorber a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination.
  • quenchers light stabilizers acting as a light energy conversion agent
  • each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary.
  • an ultraviolet absorber other than the above-described ultraviolet absorber for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
  • the content of the ultraviolet absorber in the translucent resin layer 6 is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and further preferably 3 to 10% by mass.
  • the content of the ultraviolet absorber in the translucent resin layer 6 is 0.17 to 2.28 g / m 2 per unit area of the film, more preferably, the content per unit area is 0.1. 4 to 2.28 g / m 2 or more.
  • antioxidant it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant.
  • phenolic antioxidants examples include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-
  • thiol-based antioxidant examples include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • phosphite antioxidant examples include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
  • the above antioxidant and the following light stabilizer can be used in combination.
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,2,
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • -Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate Alternatively, a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferable.
  • Nickel-based UV stabilizers can also be used as light stabilizers.
  • Nickel-based UV stabilizers include [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Examples thereof include hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, and the like.
  • a phosphorus-based flame retardant may be added to the translucent resin layer 6.
  • Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
  • Corrosion prevention layer 4 is a resin layer containing a corrosion inhibitor.
  • the corrosion prevention layer 4 is provided between the translucent resin layer 6 and the silver reflection layer 3, and in particular, the corrosion prevention layer. 4 is preferably adjacent to the silver reflective layer 3.
  • the corrosion prevention layer 4 may consist of only one layer or may consist of a plurality of layers.
  • the thickness of the corrosion prevention layer 4 is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • Examples of the resin used for the corrosion prevention layer 4 include cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, and cellulose diester.
  • the corrosion prevention layer 4 can be formed by applying and coating these resin materials (binders) on the silver reflective layer 3 or the like.
  • (3-1) Corrosion inhibitor The corrosion inhibitor preferably has an adsorptive group for silver.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 / m 2 .
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof.
  • the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylamine
  • Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
  • Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethy
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto
  • the light reflecting layer is a layer made of metal or the like having a function of reflecting sunlight.
  • the surface reflectance of the light reflecting layer is preferably 80% or more, more preferably 90% or more.
  • This light reflecting layer is preferably formed of a material containing any element selected from the group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au. Among these, it is preferable that Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed.
  • a light reflecting layer mainly composed of silver is used.
  • the thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • the reflectance may be further improved by providing a layer made of a metal oxide such as SiO 2 or TiO 2 in the light reflecting layer.
  • a wet method or a dry method can be used as a method for forming the light reflecting layer.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention.
  • the manufacturing method of the film mirror for solar power generation it is preferable that it is a manufacturing method which forms the silver reflection layer 3 by silver vapor deposition.
  • (4-1) Silver complex compound having a ligand that can be vaporized / desorbed In addition, when forming the silver reflective layer 3, a coating film containing a silver complex compound whose ligand can be vaporized / desorbed is heated and fired. By doing so, the silver reflective layer 3 may be formed.
  • “Silver complex compound having a ligand that can be vaporized / desorbed” has a ligand for stably dissolving silver in a solution, but the ligand is removed by removing the solvent and heating and firing. Is a silver complex compound that can be thermally decomposed into CO 2 or a low molecular weight amine compound, vaporized and eliminated, and only metallic silver remains.
  • the silver complex compound is contained in the silver coating solution composition, and by applying this, a coating film containing the complex according to the present invention is formed on the support to be a film mirror. That is, it is preferable to form the silver reflective layer 3 by forming a coating film on a film using a silver complex compound and then baking the coating film at a temperature in the range of 80 to 250 ° C. More preferably, it is in the range of 100 to 220, particularly preferably in the range of 120 to 200 ° C. There is no restriction
  • X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrite, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, acetylacetonate.
  • n is an integer of 1 to 4
  • R 1 to R 6 are independently of each other hydrogen, C1 to C30 aliphatic or It is a substituent selected from an alicyclic alkyl group, an aryl group or an aralkyl group, an alkyl and aryl group substituted with a functional group, a heterocyclic compound group, a polymer compound and derivatives thereof.
  • Specific examples of the general formula (1) include, for example, silver oxide, silver thiocyanate, silver sulfide, silver chloride, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, perchlorine.
  • Examples include, but are not limited to, acid silver, silver tetrafluoroborate, silver acetylacetonate, silver acetate, silver lactate, silver oxalate and derivatives thereof.
  • R 1 to R 6 are specifically, for example, hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, amyl, hexyl, ethylhexyl, heptyl, octyl, isooctyl.
  • Examples of compounds of the general formulas (2) to (4) include, for example, ammonium carbamate, ammonium carbonate, ammonium bicarbonate, ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, n- Butyl ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2-ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate 2-cyanoethylammonium 2-cyanoethylcarbamate, dibutylammonium dibutylcarbamate, dioctadecylammonium dioctadecy
  • ammonium carbamate compound ammonium carbonate compound or ammonium bicarbonate compound
  • US Pat. No. 4,542,214 describes that ammonium carbamate compounds can be prepared from carbon dioxide and primary amines, secondary amines, tertiary amines, or at least one of these mixtures. When 0.5 mol of water is further added per 1 mol of the amine, an ammonium carbonate compound is obtained. When 1 mol or more of water is added, an ammonium bicarbonate compound can be obtained.
  • alcohols such as water, methanol, ethanol, isopropanol, butanol, ethylene glycol, glycerin, etc.
  • Glycols ethyl acetate, butyl acetate, acetates such as carbitol acetate, ethers such as diethyl ether, tetrahydrofuran, dioxane, ketones such as methyl ethyl ketone, acetone, hydrocarbons such as hexane, heptane, Examples include aromatics such as benzene and toluene, and halogen-substituted solvents such as chloroform, methylene chloride, and carbon tetrachloride, or mixed solvents thereof. Is carbon dioxide bubbled in the gas phase?
  • any known method may be used for the production of the ammonium carbamate or ammonium carbonate derivative as long as the structure of the final substance is the same. That is, it is not necessary to specifically limit the solvent, reaction temperature, concentration or catalyst for production, and the production yield is not affected.
  • An organic silver complex compound can be produced by reacting the ammonium carbamate compound, ammonium carbonate compound or ammonium bicarbonate compound thus produced with a silver compound.
  • a silver compound for example, at least one silver compound represented by the general formula (1) and at least one ammonium carbamate, ammonium carbonate or ammonium bicarbonate represented by the general formulas (2) to (4) Reacting the compound and a mixture thereof directly under a nitrogen atmosphere at normal pressure or without using a solvent, or when using a solvent, alcohols such as water, methanol, ethanol, isopropanol, butanol, Ethylene glycol, glycols such as glycerin, ethyl acetate, butyl acetate, acetates such as carbitol acetate, ethers such as diethyl ether, tetrahydrofuran, dioxane, ketones such as methyl ethyl ketone, acetone, hexane,
  • a silver complex compound (a silver complex compound having a ligand that can be vaporized / desorbed)
  • a silver compound of the general formula (1) and one or more amine compounds may be used.
  • carbon dioxide can be reacted to produce a silver complex compound.
  • the reaction can be performed directly without using a solvent in a normal pressure or pressurized state of a nitrogen atmosphere, or can be performed using a solvent.
  • any known method may be used as long as the structure of the final material is the same. That is, it is not necessary to specifically limit the solvent for the production, the reaction temperature, the concentration, the presence or absence of the catalyst, and the production yield is not affected.
  • Such a silver complex compound has a production method described in JP-T-2008-530001, and is recognized by the structure of the following general formula (5).
  • the silver coating liquid composition used for forming a highly reflective and highly glossy reflective surface on the silver reflective layer 3 contains the above silver complex compound, and optionally contains a solvent, a stabilizer, and a leveling agent (Leveling agent), thin film auxiliary agents, reducing agents, thermal decomposition reaction accelerators and other additives.
  • the stabilizer examples include amine compounds such as primary amines, secondary amines and tertiary amines, ammonium carbamates, ammonium carbonates, ammonium bicarbonate compounds, phosphines, phosphites, and phosphates.
  • amine compounds such as primary amines, secondary amines and tertiary amines, ammonium carbamates, ammonium carbonates, ammonium bicarbonate compounds, phosphines, phosphites, and phosphates.
  • a phosphorus compound such as (phosphate), a sulfur compound such as thiol or sulfide, and a mixture of at least one of them.
  • amine compound examples include methylamine, Ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, isoamylamine, n-hexylamine, 2-ethylhexylamine, n-heptylamine, n-octyla , Isooctylamine, nonylamine, decylamine, dodecylamine, hexadecylamine, octadecylamine, docodecylamine, cyclopropylamine, cyclopentylamine, cyclohexylamine, arylamine, hydroxyamine, ammonium hydroxide, methoxyamine, 2-ethanol Amine, methoxyethylamine, 2-hydroxypropylamine, 2-hydroxy-2-methylpropylamine, methoxypropylamine, cyanoethylamine, ethoxyamine, n-butoxy
  • ammonium carbamate, carbonate and bicarbonate compounds include, for example, ammonium carbamate, ammonium carbonate, ammonium bicarbonate, ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, and n-butyl.
  • Ammonium n-butylcarbamate isobutylammonium isobutylcarbamate, t-butylammonium t-butylcarbamate, 2-ethylhexylammonium 2-ethylhexylcarbamate, octadecylammonium octadecylcarbamate, 2-methoxyethylammonium 2- Toxiethyl carbamate, 2-cyanoethylammonium 2-cyanoethylcarbamate, dibutylammonium dibutylcarbamate, dioctadecylammonium dioctadecylcarbamate, methyldecylammonium methyldecylcarbamate, hexamethyleneimineammonium hexamethyleneiminecarbamate, morpholinium morpholinecarbamate, pyridiumethylhexylcarbamate, Triethylenediamin
  • R 3 P examples include a phosphorus compound represented by (RO) 3 P or (RO) 3 PO.
  • R represents an alkyl or aryl group having 1 to 20 carbon atoms, and specific examples thereof include tributylphosphine, triphenylphosphine, triethyl phosphite, triphenyl phosphite, dibenzyl phosphate, triethyl phosphate and the like.
  • sulfur compound examples include butanethiol, n-hexanethiol, diethyl sulfide, tetrahydrothiophene, aryl disulfide, 2-mercaptobenzoazole, tetrahydrothiophene, octylthioglycolate, and the like.
  • the amount of such a stabilizer used is not particularly limited. However, the content is preferably 0.1% to 90% in terms of molar ratio with respect to the silver compound.
  • examples of the thin film auxiliary agent include organic acids and organic acid derivatives, or at least one mixture thereof. Specifically, for example, acetic acid, butyric acid (valeric acid), valeric acid (pivalic acid), hexanoic acid, octanoic acid, 2-ethyl-hexanoic acid, neodecanoic acid, lauric acid ( Lauric acid), stearic acid, naphthalic acid, and the like.
  • organic acid derivatives include ammonium acetate, ammonium citrate, ammonium laurate, ammonium lactate, and ammonium maleate.
  • Organic acid ammonium salts such as ammonium oxalate and ammonium molybdate, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, O
  • organic acid metal salts such as silver, silver octoate, silver neodecanoate, cobalt stearate, nickel naphthalate and cobalt naphthalate.
  • the amount of the thin film auxiliary used is not particularly limited, but is preferably 0.1 to 25% in terms of molar ratio with respect to the silver complex compound.
  • Examples of the reducing agent include Lewis acid or weak Bronsted acid, and specific examples thereof include hydrazine, hydrazine monohydrate, acetohydrazide, sodium borohydride or potassium borohydride, dimethylamine borane. , Amine compounds such as butylamine borane, ferrous chloride, metal salts such as iron lactate, hydrogen, hydrogen iodide, carbon monoxide, aldehyde compounds such as formaldehyde, acetaldehyde, glyoxal, methyl formate, butyl formate, triethyl Examples thereof include a mixture of at least one reducing organic compound such as formic acid compound such as o-formic acid, glucose, ascorbic acid and hydroquinone.
  • thermal decomposition reaction accelerator examples include ethanolamine, methyldiethanolamine, triethanolamine, propanolamine, butanolamine, hexanolamine, hydroxyalkylamines such as dimethylethanolamine, piperidine, and N-methyl.
  • a solvent is required for adjusting the viscosity of the silver coating liquid composition and for forming a smooth thin film.
  • the solvent that can be used in this case include water, methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, Ethyl hexyl alcohol, alcohols such as terpineol, glycols such as ethylene glycol and glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, acetates such as ethyl carbitol acetate, methyl cellosolve, butyl cellosolve, diethyl Ethers such as ether, tetrahydrofuran and dioxane, methyl ethyl ketone, acetone, dimethylformamide, ketones such as 1-methyl-2-pyrrolidone, hexane, Hydrocarbons such as t
  • Nitrogen-containing cyclic compound When the silver reflective layer 3 is formed, when the coating film containing a silver complex compound capable of vaporizing and desorbing a ligand is heated and fired, It is preferable to contain a nitrogen-containing cyclic compound in the adjacent constituent layer.
  • a nitrogen-containing cyclic compound having an adsorptive group for silver is preferably used as a corrosion inhibitor for the silver reflective layer 3.
  • the nitrogen-containing cyclic compound as a corrosion inhibitor is a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, a compound having an indazole ring, or a mixture thereof. It is desirable to be selected.
  • Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethy
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • (4-3) Antioxidant An antioxidant may be used for the purpose of preventing corrosion of the silver reflecting layer 3.
  • the antioxidant of the silver reflection layer 3 it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
  • phenolic antioxidants examples include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-
  • thiol-based antioxidant examples include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • phosphite antioxidant examples include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,2,
  • nickel-based UV stabilizers include [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
  • Resin Substrate As the resin substrate 1, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
  • cellulose ester film polyester film
  • polycarbonate film polycarbonate film
  • polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable.
  • a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the resin base material 1 Since the resin base material 1 is located farther from the light incident side than the silver reflection layer 3, it is difficult for ultraviolet rays to reach the resin base material 1. In particular, when an ultraviolet absorber is contained in the translucent resin layer 6 or the like that is closer to the light incident side than the resin substrate 1, the ultraviolet rays are more difficult to reach the resin substrate 1. Therefore, the resin substrate 1 can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin substrate 1.
  • the thickness of the resin substrate 1 is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 ⁇ m. The thickness is preferably 20 to 200 ⁇ m.
  • Adhesive layer The adhesive layer 8 has adhesiveness that allows the film mirror to be attached to the support substrate 9, and the adhesive layer 8 joins the film mirror to the support substrate 9, It is a structure layer for forming the reflective apparatus for solar thermal power generation.
  • the adhesive layer 8 is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent and the like can be used.
  • a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 ⁇ m from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the film mirror may include a release sheet (not shown) that covers the surface of the adhesive layer 8 opposite to the resin base material 1.
  • a release sheet covers the surface of the adhesive layer 8 opposite to the resin base material 1.
  • the film mirror can be attached to the support substrate 9 through the adhesive layer 8 after the release sheet is released from the adhesive layer 8.
  • (6-1) Release Sheet is a member that covers the surface of the film mirror opposite to the light incident side of the adhesive layer 8.
  • the release sheet is stuck to the adhesive layer 8, and then the release sheet is released from the adhesive layer 8 of the film mirror, and the film mirror is attached to the support substrate 9 to achieve solar thermal power generation.
  • a reflective device can be formed.
  • Any release sheet may be used as long as it can protect the adhesiveness of the adhesive layer 8.
  • a resin film or sheet subjected to surface processing such as metal vapor deposition is used.
  • the thickness of the release sheet is not particularly limited but is usually preferably in the range of 12 to 250 ⁇ m.
  • Hard coat layer The hard coat layer 7 is provided for the purpose of preventing the film mirror surface from being scratched or contaminated.
  • the transparent hard coat layer 7 is preferably the outermost layer on the light incident side or the second or third layer from the light incident side.
  • Another thin layer (preferably 1 ⁇ m or less) may be provided on the hard coat layer 7.
  • Examples of the method for producing the hard coat layer 7 include conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method. In addition to applying and coating a predetermined material, various surface treatments and the like may be combined.
  • the thickness of the hard coat layer 7 is preferably 0.05 ⁇ m or more and 10 ⁇ m or less from the viewpoint of preventing the film mirror from being warped while obtaining sufficient scratch resistance. More preferably, they are 1 micrometer or more and 10 micrometers or less.
  • the material for forming the hard coat layer 7 is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained.
  • the hard coat layer 7 can be composed of an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like.
  • silicone resins and acrylic resins are preferable in terms of hardness and durability. Further, in terms of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc.
  • thermosetting resin composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable.
  • materials that can be used for the hard coat layer 7 include an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No.
  • AZ Electronics hydrophilization accelerator
  • a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used for the thermosetting silicone hard coat layer 7.
  • An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with.
  • an acid catalyst such as hydrochloric acid or nitric acid
  • the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction.
  • a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply
  • the ultraviolet curable acrylic hard coat layer 7 includes, for example, pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylol as an acrylic compound having an unsaturated group.
  • a polyfunctional (meth) acrylate mixture such as tetra (meth) acrylate or the like can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply
  • a hydrophilic property by subjecting the hard coat layer 7 to a surface treatment.
  • the treatment for imparting hydrophilicity include corona treatment (Japanese Patent Laid-Open No. 11-172028), plasma surface treatment, ultraviolet / ozone treatment, surface protrusion formation (Japanese Patent Laid-Open No. 2009-226613), surface fine processing treatment, and the like. Can be mentioned.
  • the hard coat layer 7 When the hard coat layer 7 is made of an inorganic material, it can be formed, for example, by depositing silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like by a vacuum film forming method.
  • the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • the hard coat layer 7 is made of an inorganic material, it is preferably made of a film obtained by coating polysilazane and heat-curing it.
  • the precursor of the hard coat layer contains polysilazane, for example, after applying a solution to which a catalyst is added if necessary in an organic solvent containing polysilazane represented by the following general formula (6), the solvent is evaporated.
  • the solvent is evaporated.
  • a glass-like transparent hard coat film is formed on the film mirror by locally heating the polysilazane layer in the presence of oxygen, active oxygen, and in some cases nitrogen in an atmosphere containing water vapor. It is preferable to adopt the method.
  • R 1 , R 2 , and R 3 are the same or different and are independently of each other hydrogen, or optionally substituted alkyl, aryl, vinyl, or (trialkoxysilyl).
  • n is an integer, and n is determined so that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • catalysts preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used.
  • the catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
  • a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (6) are hydrogen atoms is used.
  • the hard coat layer 7 contains at least one polysilazane represented by the following general formula (7).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, or an optionally substituted alkyl group, aryl group, vinyl group or ( Represents a trialkoxysilyl) alkyl group;
  • n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl.
  • R 1 , R 3 , R 4 and R 6 represent hydrogen, and R 2 and R 5 represent methyl.
  • the transparent hard coat layer contains at least one polysilazane represented by the following general formula (8).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of each other hydrogen or optionally substituted alkyl.
  • n, p and q are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
  • the proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
  • an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane preferably an aprotic solvent is suitable.
  • aprotic solvent preferably an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane.
  • binders such as those conventionally used in the production of paints can be used.
  • cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
  • an additive that affects the viscosity of the formulation, wettability of the base, film forming property, lubricating action or exhaust property, or inorganic nanoparticles such as SiO 2 it can be used TiO 2, ZnO, ZrO 2 or Al 2 O 3.
  • the transparent hard coat layer 7 of polysilazane thus formed can also be used as an oxygen / water vapor barrier film.
  • a hard coat layer 7 containing a polyfunctional acrylic monomer and a silicone resin can be given.
  • the polyfunctional acrylic monomer is hereinafter referred to as “A” component
  • the silicone resin is hereinafter referred to as “B” component.
  • Component “A” The polyfunctional acrylic monomer “A” component preferably has an unsaturated group, particularly an active energy ray-reactive unsaturated group.
  • the active energy ray referred to in this specification preferably means an electron beam or an ultraviolet ray.
  • a radical polymerization monomer is used, preferably a bifunctional or higher functional monomer having an ⁇ , ⁇ -unsaturated double bond in the molecule.
  • a certain polyfunctional acrylate type or polyfunctional methacrylate type monomer may be mentioned.
  • the radical polymerization monomer can be used alone or in combination of two or more kinds of monomers in order to adjust the crosslinking density.
  • oligomers and prepolymers having a somewhat high molecular weight for example, a weight average molecular weight of 1,000 to 10,000 are also used. Is possible.
  • monofunctional (meth) acrylate monomers include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and 2- (meth) acryloyloxyethyl.
  • polyfunctional (meth) acrylate monomer examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol F di (meth) acrylate, diethylene glycol di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, di (meth) acrylate phthalate Rate, polyethylene glycol di (meth) acrylate
  • Examples of such commercially available “A” component that is a polymerizable organic compound include Aronix M-400, M-408, M-450, M-305, M-309, M-manufactured by Toagosei Co., Ltd. 310, M-315, M-320, M-350, M-360, M-208, M-210, M-215, M-220, M-225, M-233, M-240, M-245, M-260, M-270, M-1100, M-1200, M-1210, M-1310, M-1600, M-221, M-203, TO-924, TO-1270, TO-1231, TO- 595, TO-756, TO-1343, TO-902, TO-904, TO-905, TO-1330, KAYARAD D-310, D-330, DPHA, DPCA-20, DP manufactured by Nippon Kayaku Co., Ltd.
  • the content of the polymerizable organic compound “A” component is 10 to 90% by mass with the total composition of “A” + “B” being 100% by mass from the viewpoint of improving antifouling properties and light resistance. It is preferably 15 to 80% by mass.
  • the silicone resin “B” component is preferably a silicone resin having an active energy ray-reactive unsaturated group.
  • the silicone resin contains a polyorganosiloxane, and is preferably a compound having a polyorganosiloxane chain having an active energy ray-curable unsaturated bond in the molecule.
  • the monomer (a) having 1 to 50% by mass of a radically polymerizable double bond and a polyorganosiloxane chain, and a monomer other than (a) having a radically polymerizable double bond and a reactive functional group ( b) a polymer obtained by polymerizing a monomer containing 10 to 95% by mass and a monomer having a radical polymerizable double bond other than (a) and (b) (c) 0 to 89% by mass Activity which is a vinyl copolymer having a number average molecular weight of 5000 to 100,000, which is obtained by reacting ( ⁇ ) with a functional group capable of reacting with the above-mentioned reactive functional group and a compound ( ⁇ ) having a radical polymerizable double bond It is preferable that it is an energy beam curable resin composition.
  • the monomer (a) having a radical polymerizable double bond and a polyorganosiloxane chain include, for example, one end of Silaplane FM-0711, FM-0721, FM-0725, etc. manufactured by Chisso Corporation.
  • Examples include (meth) acryloxy group-containing polyorganosiloxane compounds, AC-SQ SI-20 manufactured by Toagosei Co., Ltd., Hybrid Plastics POSS (Polyhydrogen Oligomeric Silsesquioxane) series acrylate, methacrylate-containing compounds, and the like.
  • the “B” component can be used alone or in combination of two or more depending on the required performance.
  • the polymerization ratio is preferably 1 to 50% by mass, more preferably 10 to 35% by mass, based on the total mass of monomers constituting the polymer.
  • the copolymerization ratio of the “B” component is less than 1% by mass, it becomes difficult to impart antifouling properties and weather resistance to the upper surface of the cured product, and when it exceeds 50% by mass, scratch resistance is obtained.
  • An appropriate amount of polysiloxane can also be contained in the above components, and depending on the chemical structure and quantitative ratio of the “B” component, the durability can be improved by adding polysiloxane.
  • the hard coat layer 7 is preferably flexible and does not warp.
  • the transparent hard coat layer 7 on the outermost surface layer of the film mirror may form a dense cross-linked structure, so that the film may be bent or may be cracked due to lack of flexibility. Becomes difficult. In such a case, it is preferable to design so as to obtain flexibility and flatness by adjusting the amount of the inorganic substance in the hard coat layer composition. (7-3) Additive
  • the hard coat layer 7 may contain an ultraviolet absorber or an antioxidant. As the ultraviolet absorber or antioxidant, the ultraviolet absorber or antioxidant used in the above-described translucent resin layer 6 can be used.
  • a preferable UV absorber in the hard coat layer 7 containing a polyfunctional acrylic monomer and a silicone resin is a benzotriazole-based UV absorber.
  • the benzotriazole-based ultraviolet absorber in the hard coat layer 7 not only the weather resistance can be further improved, but also the excellent effect that the falling angle can be further reduced can be obtained.
  • the compound represented by the following general formula (9) is contained in the hard coat layer 7, the effect of lowering the falling angle is remarkable.
  • the falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which the water drop of a predetermined mass that has been stationary falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
  • the amount of the ultraviolet absorber used in the hard coat layer 7 is preferably 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is 0.25 to 15% by mass, and more preferably 0.5 to 10% by mass.
  • antioxidant used for the hard coat layer 7 it is preferable to use organic antioxidants such as phenolic antioxidants, thiol antioxidants, and phosphite antioxidants.
  • the falling angle can also be reduced by including an organic antioxidant in the hard coat layer 7.
  • An antioxidant and a light stabilizer may be used in combination.
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,2,
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • -Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate Alternatively, a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferable.
  • nickel-based UV stabilizers can be used as light stabilizers
  • [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II) can be used as nickel-based UV stabilizers.
  • Photoinitiators of active energy ray-curable resins such as ultraviolet rays are preferably used. Examples include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and the like.
  • the above initiator can also be used as a photosensitizer.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the initiator or photosensitizer is used in an amount of 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, based on 100 parts by weight of the composition.
  • Two types of initiators can be used in combination.
  • the polymerization reaction of all the monomers may not be performed by the initiator.
  • the initiator that absorbs longer wavelengths improves the reactivity, but the initiator may be colored during long-term use. Therefore, it is preferable to use radical initiators that absorb different wavelengths in order to improve the weather resistance and also the polymerization reactivity without coloring even during long-term use.
  • various additives can be further blended as necessary.
  • a surfactant for example, a surfactant, a leveling agent and an antistatic agent can be used.
  • the leveling agent is effective in reducing surface irregularities.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • SH190 manufactured by Toray Dow Corning Co., Ltd. is suitable as the silicone leveling agent.
  • the gas barrier layer 5 is preferably provided on the light incident side with respect to the light reflecting layer. In particular, it is preferable to provide the gas barrier layer 5 between the translucent resin layer 6 and the light reflecting layer.
  • the gas barrier layer 5 is for preventing deterioration of the humidity, particularly deterioration of the resin base material 1 and each component layer supported by the resin base material 1 due to high humidity, but has a special function and application. As long as it has a function of preventing deterioration, various types of gas barrier layers can be provided.
  • the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 ⁇ day or less, more preferably 0.5 g / m 2 ⁇ day or less, still more preferably Is 0.2 g / m 2 ⁇ day or less.
  • the oxygen permeability of the gas barrier layer 5 is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
  • Examples of the method for forming the gas barrier layer 5 include a method of forming an inorganic oxide by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, and the like.
  • a method of forming an inorganic oxide film by applying a heat treatment and / or ultraviolet irradiation treatment to the coating film after coating the body is also preferably used.
  • (8-1) Inorganic oxide An inorganic oxide is formed by local heating from a sol using an organometallic compound as a raw material.
  • An oxide of an element such as tin (Sn) or niobium (Nb) for example, silicon oxide, aluminum oxide, zirconium oxide, or the like. Of these, silicon oxide is preferable.
  • the sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide
  • the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide.
  • the gas barrier layer 5 can be formed by applying a general heating method after applying a precursor for forming an inorganic oxide by heating. It is preferable to form by. This precursor is preferably a sol-shaped organometallic compound or polysilazane.
  • the organometallic compound includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium ( It is preferable to contain at least one element of Ba), indium (In), tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb).
  • the organometallic compound contains at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
  • the organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.
  • This metal alkoxide is represented by the following general formula (10).
  • M represents a metal having an oxidation number n.
  • R 1 and R 2 each independently represents an alkyl group.
  • m represents an integer of 0 to (n ⁇ 1).
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 are preferably an alkyl group having 4 or less carbon atoms, such as a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), and a propyl group.
  • C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
  • Examples of the metal alkoxide represented by the general formula (10) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , and aluminum isopropoxide.
  • the metal alkoxide is also commercially available as a low condensate obtained by partial hydrolysis, and it can be used as a raw material.
  • the “sol-gel method” refers to a hydroxide sol obtained by hydrolyzing an organometallic compound, etc., and dehydrated to form a gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.) by heat-treating the gel.
  • a multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like. Specifically, it is preferable to produce an inorganic oxide by a sol-gel method having the following steps.
  • the organometallic compound in a reaction solution containing at least water and an organic solvent, is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion.
  • Generation of micropores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
  • the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides described above. It is done.
  • the above-described organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction.
  • the dilution solvent may be any solvent that can dissolve the organometallic compound and can be uniformly mixed with water.
  • Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof.
  • a mixed solvent of butanol, cellosolve, and butyl cellosolve or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
  • the metal when the metal is Ca, Mg, Al, etc., it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution.
  • the concentration of the organometallic compound when mixed and dissolved in the solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
  • the reaction solution used in the sol-gel method contains at least water and an organic solvent.
  • the organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali.
  • the same aliphatic aliphatic alcohols used for diluting the organometallic compound are preferably used.
  • aliphatic lower alcohols propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable.
  • the ratio of water is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
  • an organometallic compound is hydrolyzed in a reaction solution in the presence of boron ions using a halogen ion as a catalyst.
  • a preferred example of the compound that gives boron ion B 3+ is trialkoxyborane B (OR) 3 .
  • OR trialkoxyborane B
  • OEt triethoxyborane B
  • the B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
  • a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used.
  • the compound to be used is not particularly limited as long as it generates fluorine ions and / or chlorine ions in the reaction solution described above.
  • a fluorine ion source ammonium hydrogen fluoride NH 4 HF ⁇ HF, sodium fluoride NaF or the like is suitable.
  • Preferred examples of the chloride ion source include ammonium chloride NH 4 Cl.
  • the concentration of halogen ions in the reaction solution varies depending on the film thickness of the inorganic composition having the inorganic matrix to be produced and other conditions. A range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg is preferable with respect to the total mass. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Moreover, since the produced
  • boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of
  • boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersing in methanol.
  • a main agent solution in which a predetermined amount of an organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent, and After mixing a predetermined amount of a reaction solution containing a predetermined amount of halogen ions at a predetermined ratio and stirring sufficiently to obtain a uniform reaction solution, the pH of the reaction solution is adjusted to a desired value with an acid or alkali, The reaction product is obtained by aging for several hours. A predetermined amount of the boron compound is previously mixed and dissolved in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
  • the pH of the reaction solution is selected according to the purpose, and when the purpose is to form a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the measurement temperature is measured using an acid such as hydrochloric acid. It is preferable to age at 25 ° C. by adjusting the pH to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
  • the main component solution of the same component and the same concentration and the reaction solution (including B 3+ and halogen ions) are successively added at the same rate while adjusting to a predetermined pH.
  • the reaction product can also be produced simply and continuously.
  • the concentration of the reaction solution is in the range of ⁇ 50% by mass
  • the concentration of water (including acid or alkali) is in the range of ⁇ 30% by mass
  • the concentration of the halogen ion is in the range of ⁇ 30% by mass.
  • the reaction product (reaction solution after aging) obtained in the previous step is heated to a temperature of 200 ° C. or lower, dried and vitrified.
  • the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature.
  • This drying is important for forming a non-porous film in the case of film formation.
  • the temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
  • Anchor layer Anchor layer 2 consists of resin, and makes resin base material 1 and silver reflective layer 3 stick.
  • the anchor layer 2 has adhesiveness for closely adhering the resin substrate 1 and the silver reflective layer 3, heat resistance that can withstand heat when the silver reflective layer 3 is formed by a vacuum deposition method, and the silver reflective layer 3. Smoothness is required to bring out the high reflection performance inherent in
  • the resin material used for the anchor layer 2 is not particularly limited as long as it satisfies the above adhesiveness, heat resistance, and smoothness conditions, and polyester resin, acrylic resin, melamine resin, epoxy resin. , Polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or mixed resins thereof can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent such as.
  • a conventionally known coating method such as a gravure coating method, a reverse coating method, a die coating method, or the like in which a predetermined resin material is applied and coated can be used.
  • the thickness of the anchor layer 2 is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 1 ⁇ m. If the thickness is less than 0.01 ⁇ m, the adhesion is poor and the effect of forming the anchor layer 2 is not obtained, and it is difficult to cover the unevenness on the surface of the resin substrate 1, resulting in poor smoothness and consequently silver. Since the reflectance of the reflective layer 3 becomes low, it is not preferable. Further, even if the thickness is greater than 3 ⁇ m, improvement in adhesion cannot be expected. On the contrary, smoothness is deteriorated due to occurrence of uneven coating, and the anchor layer 2 may be insufficiently cured, which is not preferable. (10) Film mirror manufacturing method A film mirror for solar power generation can be manufactured by appropriately laminating the above-described constituent layers.
  • the film mirror 10d shown in FIG. 4A will be described as an example.
  • the anchor layer 2 is formed by applying a predetermined resin material on a polyethylene terephthalate film that is a resin base material 1 manufactured by melt film formation or the like.
  • the silver reflection layer 3 is formed on the anchor layer 2 by vacuum deposition.
  • the corrosion prevention layer 4 is formed on the silver reflection layer 3 by applying a resin material containing a corrosion inhibitor.
  • a gas barrier layer 5 is formed on the corrosion prevention layer 4 by performing a sol-gel method and heating / UV treatment.
  • a translucent resin layer 6 is formed on the gas barrier layer 5 by applying a resin material containing an ultraviolet absorber.
  • a hard coat layer 7 is formed on the translucent resin layer 6 by applying a hard coat material.
  • a film mirror 10d is manufactured by applying an adhesive material to the back side of the resin substrate 1 to form an adhesive layer 2 and covering the adhesive layer 2 with a release sheet.
  • the step of forming a constituent layer that is not included in the film mirror 10d is omitted, and the constituent layers necessary for each film mirror are laminated on the resin base material 1 in a predetermined order.
  • a desired film mirror can be manufactured.
  • the resin base material 1 is a resin film produced by melt film-forming etc., and the resin film is not used for the other component layers
  • the film mirror is manufactured by sequentially repeating film formation by coating, coating, vapor deposition or the like of the material of each constituent layer, and laminating predetermined constituent layers.
  • the film mirror manufacturing method of the present invention includes a resin film having at least a silver reflective layer and a layer (for example, a translucent resin layer containing an ultraviolet absorber) disposed on the light incident side of the silver reflective layer.
  • the resin film and the resin film are manufactured separately, and thereafter the step of bonding the two resin films with an adhesive (adhesive layer) is not included.
  • Reflector for solar power generation includes a film mirror and a self-supporting support base material 9, and the film mirror is bonded to the support base material 9 through an adhesive layer 8. It is a reflector.
  • self-supporting property said here is that the support base material 9 supports the edge part of a film mirror in the state cut
  • the film mirror has rigidity enough to support the film mirror. Since the support base material 9 of the solar power generation reflecting device has self-supporting properties, it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device is simple. Since it becomes possible to make it into a structure, it becomes possible to reduce the weight of the reflecting device itself, and it becomes possible to suppress the power consumption at the time of solar tracking.
  • the self-supporting support base material 9 has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates (type A), or a resin material having a hollow structure. It is preferable that it consists of (type B).
  • (11-2) Support base type A The support base 9 has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates, and the intermediate layer is made of a material having a hollow structure or a resin material, whereby a support base
  • the material 9 has high flatness due to the metal flat plate, and can significantly reduce the weight of the support base material itself as compared with the case where the support base material is constituted by only the metal flat plate.
  • the rigidity can be increased by the metal flat plate while using a relatively lightweight intermediate layer, it is possible to function as a support substrate that is lightweight and has a self-supporting property.
  • the intermediate layer is made of a resin material
  • further weight reduction can be achieved by using a resin material layer having a hollow structure.
  • the intermediate layer when the intermediate layer has a hollow structure, the intermediate layer functions as a heat insulating material, so that the temperature change of the metal flat plate on the side opposite to the adhesive layer 8 is suppressed from being transmitted to the film mirror, and dew condensation occurs. It is possible to prevent or suppress deterioration due to heat.
  • heat conduction such as steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc.
  • a metal material having a high rate can be preferably used.
  • a material such as a metal, an inorganic material (glass or the like), or a resin material can be used.
  • this intermediate layer has a hollow structure, a cellular structure made of foamed resin, a three-dimensional structure having a wall surface made of metal, an inorganic material or a resin material (honeycomb structure, etc.), a resin material to which hollow fine particles are added, etc. are applied. be able to.
  • the cellular structure of the foamed resin refers to a foamed or porous shape formed by finely dispersing gas in the resin material.
  • a known foamed resin material can be used as the material, but polyolefin resin, polyurethane, polyethylene, polystyrene and the like are preferably used.
  • the honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls.
  • the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene.
  • Polyolefin eg, polypropylene, high density polyethylene
  • polyamide polystyrene
  • polyvinyl chloride polyacrylonitrile
  • acrylic derivatives such as ethylene-ethyl acrylate copolymer
  • polycarbonate vinyl acetate such as ethylene-vinyl acetate copolymer Copolymers
  • vinyl acetate such as ethylene-vinyl acetate copolymer Copolymers
  • ionomers terpolymers
  • terpolymers such as ethylene-propylene-dienes
  • thermoplastic resins such as ABS resin, polyolefin oxide, and polyacetal are preferably used.
  • these may be used individually by 1 type, or may mix and use 2 or more types.
  • thermoplastic resins olefin-based resins or resins mainly composed of olefin-based resins
  • polypropylene-based resins or resins based mainly on polypropylene-based resins are preferable because of excellent balance between mechanical strength and moldability.
  • the resin material may contain an additive.
  • the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents.
  • An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
  • the intermediate layer may be a layer made of a resin plate.
  • the resin material constituting the intermediate layer is preferably the same as the material constituting the resin substrate 1 of the film mirror described above. Can be used.
  • the intermediate layer does not need to be provided in all regions of the support base 9, and is provided in some regions as long as the flatness of the metal flat plate and the self-supporting property as the support base can be ensured. It may be.
  • the intermediate layer has the above-described three-dimensional structure, it is preferable to provide the three-dimensional structure in a region of about 90 to 95% with respect to the area of the metal flat plate. It is preferable to provide it.
  • Support base material type B It is also possible for the support substrate 9 to be a layer made of a resin material having a hollow structure.
  • the support base material 9 is made of a resin material only, the thickness required to obtain rigidity sufficient to provide self-supporting properties increases, and as a result, the mass of the support base material 9 increases.
  • the support substrate 9 can be reduced in weight while providing self-supporting properties.
  • the support substrate 9 is made of a resin material having a hollow structure
  • a resin material having a hollow structure as an intermediate layer and to provide a resin sheet having smooth surfaces as both surface layers thereof. This is preferable from the viewpoint of increasing the reflectance.
  • the material of the resin sheet the same material as that constituting the resin substrate 1 of the film mirror described above can be preferably used.
  • the resin material having a hollow structure the above-described foamed material and the resin material having a three-dimensional structure (honeycomb structure) can be preferably used.
  • (11-4) Holding Member The solar power generation reflecting device has a holding member that holds the reflecting device itself.
  • the holding member holds the reflecting surface (film mirror) of the solar power generation reflecting device in a state where the sun can be tracked.
  • the form of the holding member is not particularly limited, but, for example, a plurality of points on the support base 9 on the back side of the solar power generation reflecting device are rod-shaped so that the solar power generating reflection device can hold a desired shape and posture.
  • the form held by the columnar member or the beam-shaped member is preferable.
  • the holding member has a configuration for holding the solar power generation reflecting device in a state in which the sun can be tracked.
  • the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
  • the film mirror of this example is an embodiment shown in FIGS. 1A to 4A.
  • the present invention is not limited to these.
  • “part” or “%” is used, and “part by mass” or “% by mass” is expressed unless otherwise specified.
  • a transparent acrylic film (transparent resin layer 6 made of Mitsubishi Rayon Acryprene HBS010P thickness) is formed by a dry lamination process. 75 ⁇ m) was bonded at a laminating temperature of 60 ° C. via the adhesive layer 11.
  • a support base material 9 made of an aluminum plate having a thickness of 0.1 mm, a length of 4 cm and a width of 5 cm, and the film mirror 10 e of Comparative Example 1 are bonded together via the adhesive layer 8, and the solar power generation reflection device 20 e (A -1) was obtained (see FIG. 5B).
  • Comparative Example 2 (Preparation of film mirror of Comparative Example 2) A silver reflective layer 3 having a thickness of 100 nm was formed as a light reflective layer on one side of a resin base material 1 made of a transparent acrylic film (Acryprene HBS010P, thickness 75 ⁇ m manufactured by Mitsubishi Rayon) containing an ultraviolet absorber.
  • a resin base material 1 made of a transparent acrylic film (Acryprene HBS010P, thickness 75 ⁇ m manufactured by Mitsubishi Rayon) containing an ultraviolet absorber.
  • a solar power generation reflection device 20f (B-1) was produced by using the film mirror 10f of Comparative Example 2 in the same manner as the solar power generation reflection device 20e (A-1) (see FIG. 6B).
  • Example 1 Preparation of film mirror of Example 1
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 ⁇ m) was used as the resin substrate 1 of the resin film support.
  • Polyester resin Polyethylene Terephthalate film, thickness 25 ⁇ m
  • melamine resin manufactured by Super Becamine J-820 DIC
  • TDI tolylene diisocyanate
  • HMDI hexamethylene diisocyanate
  • Resin was coated by a gravure coating method to form an anchor layer 2 having a thickness of 0.1 ⁇ m, and a silver reflecting layer 3 having a thickness of 100 nm was formed as a light reflecting layer on the anchor layer 2 by a vacuum deposition method. .
  • an acrylic resin (Acrypet VH made by Mitsubishi Rayon) and UV absorber (Tinuvin 477 made by BASF) were dissolved at a solid content ratio of 95: 5 at a solid content of 20% in MEK, and then the above silver reflective layer was formed by an extrusion coater. 3 was coated and dried (90 ° C., 1 minute) so as to have a film thickness of 30 ⁇ m, thereby forming a translucent resin layer 6.
  • a solar power generation reflection device 20a (C-1) was produced by using the film mirror 10a of Example 1 by the same method as the solar power generation reflection device 20e (A-1) (see FIG. 1B).
  • Example 2 (Preparation of film mirror of Example 2) A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 ⁇ m) was used as the resin substrate 1 of the resin film support. Polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), melamine resin (manufactured by Super Becamine J-820 DIC), TDI-based isocyanate (2,4-tolylene diisocyanate), HDMI on one side of the resin base material 1 A resin in which toluene-based isocyanate (1,6-hexamethylene diisocyanate) was mixed in toluene at a resin solid content ratio of 20: 1: 1: 2 to a solid content concentration of 10% was coated by a gravure coating method. Then, an anchor layer 2 having a thickness of 0.1 ⁇ m was formed, and a silver reflecting layer 3 having a thickness of 100 nm was formed on the anchor layer 2 as a light reflecting layer by a vacuum deposition method.
  • Polyester resin Polyethylene
  • 2-mercaptobenzothiazole as a silver corrosion inhibitor is 10% of the resin in which polyester resin and TDI isocyanate are mixed at a resin solid content ratio of 10: 2 on the silver reflection layer 3.
  • the coating solution which was added so as to be in mass% and the solid content was adjusted to 5% by MEK, was coated by a gravure coating method to form a corrosion prevention layer 4 having a thickness of 3.0 ⁇ m.
  • a solar thermal power generation reflection device 20b (D-1) was produced by using the film mirror 10b of Example 2 in the same manner as the solar power generation reflection device 20e (A-1) (see FIG. 2B).
  • Example 3 (Preparation of film mirror of Example 3) The same method as in Example 2 except that a UV curable transparent hard coat layer 7 (Ryoduras TYZ manufactured by Toyo Ink Co., Ltd .: 5 ⁇ m thick) is applied on the UV-absorbing translucent resin layer 6 of Example 2. Thus, a film mirror 10c of Example 3 was obtained (see FIG. 3A).
  • a UV curable transparent hard coat layer 7 (Ryoduras TYZ manufactured by Toyo Ink Co., Ltd .: 5 ⁇ m thick) is applied on the UV-absorbing translucent resin layer 6 of Example 2.
  • a film mirror 10c of Example 3 was obtained (see FIG. 3A).
  • a solar power generation reflection device 20c (E-1) was produced using the film mirror 10c of Example 3 by the same method as that of the solar power generation reflection device 20e (A-1) (see FIG. 3B).
  • Example 4 (Preparation of film mirror of Example 4) A 3% perhydropolysilazane solution in dibutyl ether (NL120 manufactured by Clariant) was bar-coated on the corrosion prevention layer 4 of Example 3 so that the film thickness after drying was 100 nm, and 3 minutes. After natural drying, a film mirror 10d of Example 4 was obtained by the same method as Example 3 except that annealing was performed in an oven at 90 ° C. for 30 minutes to provide the gas barrier layer 5 (see FIG. 4A).
  • dibutyl ether NL120 manufactured by Clariant
  • a solar power generation reflection device 20d (F-1) was produced by using the film mirror 10d of Example 4 by a method similar to that of the solar power generation reflection device 20e (A-1) (see FIG. 4B).
  • each film is replaced with a supporting base material made of an aluminum plate having a thickness of 0.1 mm, a length of 4 cm and a width of 5 cm.
  • a reflective device for solar thermal power generation was produced, in which a mirror adhesive layer 8 and a support base material 9 having a sandwich structure were bonded together ((C-2) to (F-2)).
  • the support substrate 9 having a sandwich structure refers to, for example, a material in which a resin layer having a hollow structure is sandwiched between metal flat plates.
  • a supporting substrate 9 having a sandwich structure of 2 mm in thickness formed by sandwiching a foamed polyethylene resin layer having a thickness of 1.76 mm as an intermediate layer between a pair of metal flat plates using aluminum having a thickness of 0.12 mm. It was used.
  • each film is replaced with a supporting substrate made of an aluminum plate having a thickness of 0.1 mm, a length of 4 cm and a width of 5 cm.
  • a reflective device for solar thermal power generation was produced in which the adhesive layer 8 of the mirror and the support substrate 9 having a hollow structure were bonded together ((C-3) to (F-3)).
  • the hollow structure is a case where the support base 9 described above is a layer made of a resin material having a hollow structure. Specifically, a polypropylene layer having a honeycomb structure and a thickness of 3 mm is formed from an aluminum plate having a thickness of 0.3 mm. A resin honeycomb plate sandwiched from both sides was used.
  • the centerline average roughness (Ra) was measured based on JIS B0601-1982.
  • the measuring apparatus measured the area of 2 square mm using WYCO VISION32 by Veeco.
  • a spectrophotometer “UV265” manufactured by Shimadzu Corporation was modified with an integrating sphere reflection accessory, and the incident angle of incident light was adjusted to 5 ° with respect to the normal of the reflecting surface.
  • the regular reflectance at a reflection angle of 5 ° was measured. Evaluation was measured as an average reflectance from 350 nm to 700 nm.
  • ⁇ Weather resistance test for regular reflectance> The specular reflectance of the solar power generation reflecting device (sunlight reflecting mirror) after being left for 30 days at a temperature of 85 ° C. and a humidity of 85% RH is measured by the same method as the above-mentioned light reflectance measurement, before forced deterioration. From the regular reflectance of the solar reflective mirror and the regular reflectance of the film mirror after forced deterioration, the decrease rate of the regular reflectance was calculated. The evaluation criteria for the weather resistance test are described below.
  • the rate of decrease in regular reflectance is less than 5% 4: The rate of decrease in regular reflectance is 5% or more and less than 10% 3: The rate of decrease in regular reflectance is 10% or more but less than 15% 2: The rate of decrease in regular reflectance 15% or more and less than 20% 1: Regular reflectance decrease rate is 20% or more ⁇ Yellow change of solar reflective mirror>
  • the obtained sample was irradiated with ultraviolet rays for 7 days in an environment of 65 ° C. using an I-super UV tester manufactured by Iwasaki Electric Co., Ltd., and then the yellow color was visually changed.
  • The difference in color is not visible.
  • A slight difference in color is visually observed.
  • X The difference in color is clearly visible.
  • ⁇ Anti-fouling test> A solar reflective mirror was cut into a 10 cm wide x 10 cm long test piece, fixed to an aluminum frame, and exposed to the outdoors at an angle of 45 ° (January to June 2010, location: Hachioji City, Tokyo) ). The degree of contamination after 6 months of outdoor exposure was visually observed and evaluated in three stages ( ⁇ : no dust adhesion, ⁇ : little dust adhesion, ⁇ : much dust adhesion).
  • Table 3 shows the result of measuring the 1.0 m 2 size mass of the obtained sunlight reflecting mirrors F-1 and F-2.
  • Table 3 shows the ratio when the driving power applied to one tracking unit incorporating the solar thermal power generation reflection device F-1 is 100 when the solar thermal power generation reflection device is incorporated in the solar tracking type device.
  • Table 1 shows the contents of the various film mirrors obtained (layer structure), and Table 2 shows the results of evaluation of the characteristics.
  • the present invention it is possible to prevent a decrease in regular reflectance due to deterioration of the silver reflective layer 3, and to be lightweight and flexible, to reduce the manufacturing cost, to increase the area and to mass-produce, scratch resistance, Film mirror for solar power generation (10a, 10b) having excellent anti-fouling properties and excellent weather resistance that can maintain good regular reflectance for sunlight for a long time even when installed in a harsh environment for a long time 10c, 10d) and a solar power generation reflection device (20a, 20b, 20c, 20d) can be provided.
  • the film mirror (10a, 10b, 10c, 10d) according to the present invention is a material of each constituent layer sequentially with respect to the resin substrate 1 without bonding the resin films together with an adhesive layer using an adhesive. Since the coating, coating, and film formation are repeated and a predetermined constituent layer is laminated, there is no possibility that bubbles or foreign matters are mixed between constituent layers. Therefore, in the film mirror of this invention, the malfunction which causes the fall of light reflectivity by a bubble and a foreign material mixing in between constituent layers does not arise.
  • the smoothness of the translucent resin layer 6 can be improved.
  • the center line average roughness of the translucent resin layer 6 can be 3 nm or more and 20 nm or less, unlike the prior art, the reflected light is not scattered by the surface unevenness of the resin film, and the film mirror of the present invention has suitable light reflectivity.
  • Example 5 (Preparation of solar thermal power generation reflector G-1)
  • the film mirror 10c of Example 3 the film mirror was produced so that the thickness of the translucent resin layer of 30 ⁇ m was changed only by the flow rate of the extrusion coater, and the film thickness was 5 ⁇ m. Thereafter, a solar power generation reflector (G-1) was produced using this film mirror in the same manner as the solar power generator reflector 20e (A-1).
  • the film mirror of the present invention has high scratch resistance, weather resistance and high reflectivity that can withstand the practical use of collecting sunlight, and can be suitably used for a solar power generation reflector.

Abstract

The present invention addresses the problem of providing a reflecting device for solar thermal power generation having high reflectance and high scratch resistance and weather resistance for withstanding practical use for collecting solar light, and also having high productivity, as well as providing a film mirror and a method for producing a film mirror. This film mirror having at least a light-transmissive resin layer, a light-reflecting layer, a resin substrate, and an adhesive layer in the stated order from a light-incidence side is characterized in that the light-transmissive resin layer contains an ultraviolet absorber and the thickness of the light-transmissive resin layer is 10-150 μm.

Description

太陽熱発電用反射装置、フィルムミラー及びフィルムミラーの製造方法Reflector for solar power generation, film mirror, and method for manufacturing film mirror
 本発明は、太陽熱発電用反射装置、フィルムミラー及びフィルムミラーの製造方法に関する。 The present invention relates to a solar power generation reflector, a film mirror, and a method of manufacturing a film mirror.
 近年の地球温暖化は一層深刻な事態に発展し、将来の人類の生存すら脅かされる可能性がでてきている。その主原因は、20世紀に入りエネルギー源として多量に使用されてきた化石燃料から放出された大気中の二酸化炭素(CO2)であると考えられている。したがって近い将来、化石燃料をこのまま使い続けることは許されなくなると考えられる。また、他方で、中国、インド、ブラジル等のいわゆる発展途上国の急激な経済成長に伴うエネルギー需用の増大により、かつては無尽蔵と考えられていた石油、天然ガスの枯渇が現実味を帯びてきている。 In recent years, global warming has developed into a more serious situation, and even the future survival of humankind may be threatened. The main cause is thought to be atmospheric carbon dioxide (CO 2 ) released from fossil fuels that have been used in large quantities as an energy source in the 20th century. Therefore, it is considered that it will not be allowed to continue using fossil fuels in the near future. On the other hand, the depletion of oil and natural gas, once thought to be inexhaustible, has become a reality due to the increase in energy demand accompanying the rapid economic growth of so-called developing countries such as China, India and Brazil. Yes.
 化石燃料の代替エネルギーとして最も安定しており、且つ量の多い自然エネルギーは、太陽エネルギーであると考えられる。特に世界のサンベルト地帯と呼ばれている赤道近くには、広大な砂漠が広がっており、そこに降りそそぐ太陽エネルギーは正に無尽蔵と言える。太陽エネルギーの利用に関して、米国南西部に拡がる砂漠のわずか数%を使えば、実に7,000GWものエネルギーを得ることが可能であると考えられている。また、アラビア半島、北アフリカの砂漠のわずか数%を使えば、全人類の使うエネルギーを全て賄うことができるとも考えられている。 Solar energy is considered to be the most stable and abundant amount of natural energy as an alternative energy to fossil fuels. In particular, the vast desert spreads near the equator, which is called the world's sun belt, and the solar energy that falls there is truly inexhaustible. With regard to the use of solar energy, it is thought that 7,000 GW of energy can be obtained if only a few percent of the desert that extends to the southwestern United States is used. It is also believed that using only a few percent of the Arabian peninsula and the deserts of North Africa can cover all the energy used by all mankind.
 このように、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを社会活動の中で活用するためには、(1)太陽エネルギーのエネルギー密度が低いこと、並びに(2)太陽エネルギーの貯蔵及び移送が困難であることが、問題となると考えられる。これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な集光装置で太陽エネルギーを集めることによって解決することが提案されている。 Thus, although solar energy is a very powerful alternative energy, in order to utilize it in social activities, (1) the energy density of solar energy is low, and (2) solar energy storage. And the difficulty of transport is considered a problem. On the other hand, it has been proposed to solve the problem that the energy density of solar energy is low by collecting solar energy with a huge concentrator.
 集光装置は太陽光による紫外線や熱、風雨、砂嵐などに晒されるため、従来は耐候性のよいガラス製ミラーが用いられてきた。但し、そのガラス製ミラーは環境に対する耐久性が高い反面、輸送時に破損してしまうことや、質量が重いためにミラーを設置する架台の強度を持たせる必要が生じてプラントの建設費がかさむことといった問題があった。 Since the condensing device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., conventionally, a glass mirror having good weather resistance has been used. However, the glass mirror has high environmental durability, but it is damaged during transportation, and because of its heavy mass, it is necessary to increase the strength of the frame on which the mirror is installed, which increases the construction cost of the plant. There was a problem.
 上記問題を解決するために、ガラス製ミラーを樹脂製反射ミラーに置き換えることが考えられてきた(例えば、特許文献1及び特許文献2)。 In order to solve the above problems, it has been considered to replace a glass mirror with a resin reflecting mirror (for example, Patent Document 1 and Patent Document 2).
 しかしながら、樹脂製反射ミラーの反射層に銀などの金属を用いると、樹脂層を介して酸素や水蒸気、硫化水素などが透過して、銀を腐食してしまうといった問題や、紫外線により樹脂層が劣化し、変色や膜剥がれが発生するなどの問題が生じるので、集光装置に樹脂製反射ミラーを適用することは困難であった。 However, when a metal such as silver is used for the reflection layer of the resin reflection mirror, oxygen, water vapor, hydrogen sulfide, etc. are transmitted through the resin layer, and silver is corroded. Since it deteriorates and causes problems such as discoloration and film peeling, it is difficult to apply a resin reflection mirror to the light collecting device.
 このような樹脂製反射ミラーの問題に対して、紫外線に対する耐光性に優れたアクリルフィルムを表面に用いる技術が知られている(例えば、特許文献3)。 A technique using an acrylic film having excellent light resistance against ultraviolet rays on the surface of the resin reflecting mirror is known (for example, Patent Document 3).
 しかしながら、特許文献3で提案されている層構成では、アクリルフィルムとポリエステルフィルムを接着剤層で貼り合わせる際に、層間に気泡や異物が混入してしまい、光反射性が低下してしまうことがあるという問題があった。また、溶融成膜などによって成形されたアクリルフィルムが有する表面凹凸によって反射光が散乱してしまい集光効率が低下するといった問題があった。 However, in the layer configuration proposed in Patent Document 3, when the acrylic film and the polyester film are bonded together with an adhesive layer, bubbles and foreign substances may be mixed between the layers, resulting in a decrease in light reflectivity. There was a problem that there was. Further, there is a problem in that reflected light is scattered by the surface unevenness of the acrylic film formed by melt film formation and the like and the light collection efficiency is lowered.
 また、粘着層と銀反射層の界面から汚染物質が侵入し、銀反射層が腐食して反射率が低下してしまうといった問題や、長期間の紫外線曝露によって接着剤層が劣化しアクリルフィルムが剥がれたり、銀反射層よりも光源側にあるポリエステルフィルムが黄変してしまったりするといった問題があった。 In addition, contaminants may invade from the interface between the adhesive layer and the silver reflective layer, causing the silver reflective layer to corrode and lowering the reflectance. There was a problem that it peeled off or the polyester film on the light source side of the silver reflecting layer was yellowed.
 更に、銀反射層が粘着層と直接接触するため、粘着層が持っている凹凸が銀反射面に影響を及ぼしてしまい、反射光が散乱して集光効率が低下するといった問題があった。 Furthermore, since the silver reflective layer is in direct contact with the adhesive layer, the unevenness of the adhesive layer affects the silver reflective surface, and there is a problem that the reflected light is scattered and the light collection efficiency is lowered.
 これら問題が生じるため、特許文献3で提案されている樹脂製反射ミラーは、太陽光を集光するためのミラーとして、使用に耐えうるものでは無かった。 Since these problems occur, the resin reflecting mirror proposed in Patent Document 3 cannot be used as a mirror for collecting sunlight.
米国特許第4,307,150号明細書US Pat. No. 4,307,150 米国特許第4,645,714号明細書US Pat. No. 4,645,714 特表2009-520174号公報Special table 2009-520174
 そこで、本発明の解決課題は、太陽光を集光する実用に耐えうる高い耐傷性、耐候性と高い反射率を有し、かつ高い生産性を有する太陽熱発電用反射装置、フィルムミラー及びフィルムミラーの製造方法を提供することである。 Therefore, the problem to be solved by the present invention is to provide a solar power generation reflecting device, a film mirror, and a film mirror that have high scratch resistance, weather resistance, high reflectance, and high productivity that can withstand the practical use of collecting sunlight. It is to provide a manufacturing method.
 本発明の一の態様は、
 光入射側から順に、透光性樹脂層、光反射層、樹脂基材、及び粘着層を少なくとも有するフィルムミラーであって、
 前記透光性樹脂層は紫外線吸収剤を含有しており、その透光性樹脂層の厚さが10μm以上150μm以下であることを特徴としている。
One aspect of the present invention is:
In order from the light incident side, a light transmitting resin layer, a light reflecting layer, a resin base material, and a film mirror having at least an adhesive layer,
The translucent resin layer contains an ultraviolet absorber, and the translucent resin layer has a thickness of 10 μm to 150 μm.
 好ましくは、前記透光性樹脂層が、前記光反射層の光入射側の面上または前記光反射層よりも光入射側に設けられた構成層の面上に、接着層を介さずに直接形成されている。 Preferably, the translucent resin layer is directly on the surface of the light reflecting layer on the light incident side or on the surface of the constituent layer provided on the light incident side of the light reflecting layer without using an adhesive layer. Is formed.
 好ましくは、前記透光性樹脂層の表面の中心線平均粗さ(Ra)が3nm以上20nm以下である。 Preferably, the center line average roughness (Ra) of the surface of the translucent resin layer is 3 nm or more and 20 nm or less.
 好ましくは、前記光反射層の光入射側に隣接して、腐食防止層が設けられている。 Preferably, a corrosion prevention layer is provided adjacent to the light incident side of the light reflecting layer.
 好ましくは、前記透光性樹脂層の光入射側の面に、ハードコート層が設けられている。 Preferably, a hard coat layer is provided on the light incident side surface of the translucent resin layer.
 好ましくは、前記光反射層よりも光入射側に、ガスバリアー層が設けられている。 Preferably, a gas barrier layer is provided on the light incident side of the light reflecting layer.
 そして、上記したフィルムミラーを製造するフィルムミラーの製造方法は、
 前記光反射層の光入射側の面上または前記光反射層よりも光入射側に設けられた構成層の面上に、前記透光性樹脂層となる材料を直接塗布することによって、前記透光性樹脂層を形成することを特徴としている。
And the manufacturing method of the film mirror which manufactures an above-described film mirror,
By directly applying a material to be the translucent resin layer on the light incident side surface of the light reflecting layer or on the surface of the constituent layer provided on the light incident side with respect to the light reflecting layer, the light transmitting resin layer is directly applied. It is characterized by forming a light-sensitive resin layer.
 また、本発明の他の態様は、太陽熱発電用反射装置であって、
 フィルムミラーが備える前記粘着層を、支持基材に接合して形成したことを特徴としている。
Another aspect of the present invention is a solar power generation reflecting device,
The adhesive layer provided in the film mirror is formed by bonding to a support base material.
 好ましくは、前記支持基材は、中空構造を有する樹脂材料からなる。 Preferably, the support base is made of a resin material having a hollow structure.
 好ましくは、前記支持基材は、一対の金属平板と、前記金属平板間に介装された中間層を有し、前記中間層は中空構造を有する材料または樹脂材料からなる。 Preferably, the support substrate has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates, and the intermediate layer is made of a material having a hollow structure or a resin material.
 本発明によれば、太陽光を集光する実用に耐えうる高い耐傷性、耐候性と高い反射率を有し、かつ高い生産性を有する太陽熱発電用反射装置、フィルムミラー及びフィルムミラーの製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a solar thermal power generation reflector having high scratch resistance, weather resistance, high reflectance, and high productivity that can endure practical use for concentrating sunlight, a film mirror, and a film mirror manufacturing method Can be provided.
本発明の太陽熱発電用フィルムミラーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the film mirror for solar power generation of the present invention 本発明の太陽熱発電用反射装置の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the solar power generation reflector of the present invention 本発明の太陽熱発電用フィルムミラーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the film mirror for solar power generation of the present invention 本発明の太陽熱発電用反射装置の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the solar power generation reflector of the present invention 本発明の太陽熱発電用フィルムミラーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the film mirror for solar power generation of the present invention 本発明の太陽熱発電用反射装置の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the solar power generation reflector of the present invention 本発明の太陽熱発電用フィルムミラーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the film mirror for solar power generation of the present invention 本発明の太陽熱発電用反射装置の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the solar power generation reflector of the present invention 比較例としての太陽熱発電用フィルムミラーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of a film mirror for solar power generation as a comparative example 比較例としての太陽熱発電用反射装置図の構成の一例を示す概略断面図Schematic cross-sectional view showing an example of the configuration of a solar power generation reflector as a comparative example 比較例としての太陽熱発電用フィルムミラーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of a film mirror for solar power generation as a comparative example 比較例としての太陽熱発電用反射装置図の構成の一例を示す概略断面図Schematic cross-sectional view showing an example of the configuration of a solar power generation reflector as a comparative example
 以下、本発明に係る太陽熱発電用フィルムミラーについて詳細について説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
(1)太陽熱発電用フィルムミラーの構成概要
 本発明のフィルムミラーは、光入射側から順に、紫外線吸収剤入り透光性樹脂層6と、光反射層としての銀反射層3と、樹脂フィルム状の樹脂基材1と、粘着層8とを少なくとも有している。なお、これらの層の間に他の層を介していてもよいし、それぞれの層が隣接していてもよい。粘着層8と銀反射層3が接していないため、粘着層8と銀反射層3の界面から汚染物質が侵入し、銀反射層3が腐食して反射率が低下してしまうという問題を防止できる。また、粘着層8と銀反射層3が接していると、粘着層8の凹凸が銀反射層3に直接反映されてしまい、銀反射層3で散乱が発生し、光反射性が低下してしまうが、粘着層8と銀反射層3の間に樹脂基材1を設けているため、粘着層8の凹凸が銀反射層3に反映されることがなくなり、平面性の高い銀反射層3を得ることができ、高い反射性能を得ることが可能となる。
Hereinafter, the film mirror for solar power generation according to the present invention will be described in detail. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.
(1) Outline of Configuration of Film Mirror for Solar Power Generation The film mirror of the present invention is, in order from the light incident side, a translucent resin layer 6 containing an ultraviolet absorber, a silver reflection layer 3 as a light reflection layer, and a resin film. The resin base material 1 and the pressure-sensitive adhesive layer 8 are included. In addition, another layer may be interposed between these layers, and each layer may be adjacent. Since the adhesive layer 8 and the silver reflective layer 3 are not in contact with each other, it prevents a problem that contaminants enter from the interface between the adhesive layer 8 and the silver reflective layer 3 to corrode the silver reflective layer 3 to reduce the reflectance. it can. Further, if the adhesive layer 8 and the silver reflective layer 3 are in contact with each other, the unevenness of the adhesive layer 8 is directly reflected on the silver reflective layer 3, scattering occurs in the silver reflective layer 3, and the light reflectivity is lowered. However, since the resin base material 1 is provided between the pressure-sensitive adhesive layer 8 and the silver reflective layer 3, the unevenness of the pressure-sensitive adhesive layer 8 is not reflected in the silver reflective layer 3, and the silver reflective layer 3 having high planarity. And high reflection performance can be obtained.
 尚、本発明のフィルムミラーにおける紫外線吸収剤入り透光性樹脂層6は、銀反射層3の上面や、銀反射層3上に設けられた他の構成層の上面に、接着層を介さずに積層されていることが好ましい。接着層(11)を介して層を貼り合わせる必要がなくなるため、層間に気泡や異物が混入せず、光反射性の低下を防止できる。また、透光性樹脂層6を塗布により設けることが可能となるため、溶融製膜による透光性樹脂フィルムを貼り合わせる必要がなくなり、溶融製膜などに起因する表面凹凸による反射光の散乱といった問題も防止できる。 In addition, the translucent resin layer 6 containing an ultraviolet absorber in the film mirror of the present invention does not have an adhesive layer on the upper surface of the silver reflective layer 3 or the upper surfaces of other constituent layers provided on the silver reflective layer 3. It is preferable to be laminated. Since there is no need to bond the layers through the adhesive layer (11), bubbles and foreign substances are not mixed between the layers, and a decrease in light reflectivity can be prevented. Further, since the translucent resin layer 6 can be provided by coating, it is not necessary to attach a translucent resin film by melt film formation, and scattering of reflected light due to surface irregularities caused by melt film formation, etc. Problems can also be prevented.
 例えば、本発明のフィルムミラーの層構成としては、紫外線吸収剤入り透光性樹脂層6と銀反射層3が隣接したもの(図1参照)、紫外線吸収剤入り透光性樹脂層6と銀反射層3の間に腐食防止層4が設けられたもの(図2、図3参照)、紫外線吸収剤入り透光性樹脂層6と銀反射層3の間にガスバリアー層5と腐食防止層4が設けられたもの(図4参照)などが好ましい。 For example, as the layer structure of the film mirror of the present invention, the UV-absorbing translucent resin layer 6 and the silver reflecting layer 3 are adjacent (see FIG. 1), the UV-absorbing translucent resin layer 6 and silver. A gas barrier layer 5 and a corrosion prevention layer provided with a corrosion prevention layer 4 between the reflection layers 3 (see FIGS. 2 and 3), a translucent resin layer 6 containing an ultraviolet absorber and the silver reflection layer 3. 4 is preferable (see FIG. 4).
 また、上記した各構成層の間や、構成層上に、更に別の構成層を設けてもよい。 Further, another constituent layer may be provided between the constituent layers described above or on the constituent layer.
 例えば、樹脂基材1と銀反射層3の間にアンカー層2を設けてもよい。(図1、図2、図3、図4参照)
 例えば、銀反射層3の光入射側に隣接して腐食防止層4を設けてもよい。(図2、図3、図4参照)
 例えば、銀反射層3よりも光入射側に、ガスバリアー層5を設けてもよい。(図4参照)
 例えば、紫外線吸収剤入り透光性樹脂層6の光入射側の面に、ハードコート層7を設けてもよい。(図3、図4参照)
 そして、本発明に係るフィルムミラー全体の厚さは、撓み防止、正反射率、取り扱い性等の観点から80~300μmが好ましく、より好ましくは80~200μm、更に好ましくは80~170μmである。また、フィルムミラーの光入射側の最表面層の中心線平均粗さ(Ra)が、3nm以上20nm以下であることが、反射光の散乱を防止でき集光効率を高めるという観点から好ましい。
For example, the anchor layer 2 may be provided between the resin base material 1 and the silver reflective layer 3. (See FIGS. 1, 2, 3, and 4)
For example, the corrosion prevention layer 4 may be provided adjacent to the light incident side of the silver reflective layer 3. (See FIGS. 2, 3, and 4)
For example, the gas barrier layer 5 may be provided closer to the light incident side than the silver reflective layer 3. (See Figure 4)
For example, the hard coat layer 7 may be provided on the light incident side surface of the translucent resin layer 6 containing an ultraviolet absorber. (See Figs. 3 and 4)
The thickness of the entire film mirror according to the present invention is preferably 80 to 300 μm, more preferably 80 to 200 μm, and still more preferably 80 to 170 μm from the viewpoints of prevention of bending, regular reflectance, handling properties, and the like. In addition, it is preferable that the center line average roughness (Ra) of the outermost surface layer on the light incident side of the film mirror is 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency.
 ここで、太陽熱発電用のフィルムミラーの好ましい層構成の一例について、図1Aから図4Aを用いて説明する。また、太陽熱発電用反射装置の概要を、図1Bから図4Bを用いて説明する。 Here, an example of a preferable layer configuration of a film mirror for solar power generation will be described with reference to FIGS. 1A to 4A. Moreover, the outline | summary of the solar power generation reflective apparatus is demonstrated using FIG. 1B to FIG. 4B.
 フィルムミラー10aは、図1Aに示すように、樹脂基材1上にアンカー層2、銀反射層3、透光性樹脂層6が順に積層されて設けられている。また、樹脂基材1における光入射側の反対面に粘着層8が設けられている。 As shown in FIG. 1A, the film mirror 10a is provided by laminating an anchor layer 2, a silver reflection layer 3, and a translucent resin layer 6 in this order on a resin substrate 1. An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
 太陽熱発電用反射装置20aは、図1Bに示すように、フィルムミラー10aにおける粘着層8を支持基材9に接合し、フィルムミラー10aと支持基材9を貼り合わせてなる反射鏡である。 As shown in FIG. 1B, the solar power generation reflecting device 20a is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10a to the supporting base material 9 and bonding the film mirror 10a and the supporting base material 9 together.
 フィルムミラー10bは、図2Aに示すように、樹脂基材1上にアンカー層2、銀反射層3、腐食防止層4、透光性樹脂層6が順に積層されて設けられている。また、樹脂基材1における光入射側の反対面に粘着層8が設けられている。 As shown in FIG. 2A, the film mirror 10b is provided by laminating an anchor layer 2, a silver reflection layer 3, a corrosion prevention layer 4, and a translucent resin layer 6 in this order on a resin base material 1. An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
 太陽熱発電用反射装置20bは、図2Bに示すように、フィルムミラー10bにおける粘着層8を支持基材9に接合し、フィルムミラー10bと支持基材9を貼り合わせてなる反射鏡である。 As shown in FIG. 2B, the solar power generation reflecting device 20b is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10b to the supporting base material 9 and bonding the film mirror 10b and the supporting base material 9 together.
 フィルムミラー10cは、図3Aに示すように、樹脂基材1上にアンカー層2、銀反射層3、腐食防止層4、透光性樹脂層6、ハードコート層7が順に積層されて設けられている。また、樹脂基材1における光入射側の反対面に粘着層8が設けられている。 As shown in FIG. 3A, the film mirror 10 c is provided by laminating an anchor layer 2, a silver reflection layer 3, a corrosion prevention layer 4, a translucent resin layer 6, and a hard coat layer 7 in this order on the resin base material 1. ing. An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
 太陽熱発電用反射装置20cは、図3Bに示すように、フィルムミラー10cにおける粘着層8を支持基材9に接合し、フィルムミラー10cと支持基材9を貼り合わせてなる反射鏡である。 As shown in FIG. 3B, the solar power generation reflecting device 20 c is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10 c to the supporting base material 9 and bonding the film mirror 10 c and the supporting base material 9 together.
 フィルムミラー10dは、図4Aに示すように、樹脂基材1上にアンカー層2、銀反射層3、腐食防止層4、ガスバリアー層5、透光性樹脂層6、ハードコート層7が順に積層されて設けられている。また、樹脂基材1における光入射側の反対面に粘着層8が設けられている。 As shown in FIG. 4A, the film mirror 10d has an anchor layer 2, a silver reflection layer 3, a corrosion prevention layer 4, a gas barrier layer 5, a translucent resin layer 6, and a hard coat layer 7 in this order on the resin substrate 1. Laminated and provided. An adhesive layer 8 is provided on the opposite surface of the resin substrate 1 on the light incident side.
 太陽熱発電用反射装置20dは、図4Bに示すように、フィルムミラー10dにおける粘着層8を支持基材9に接合し、フィルムミラー10dと支持基材9を貼り合わせてなる反射鏡である。 As shown in FIG. 4B, the solar power generation reflecting device 20 d is a reflecting mirror formed by bonding the adhesive layer 8 in the film mirror 10 d to the support base 9 and bonding the film mirror 10 d and the support base 9 together.
 以下、各構成層の詳細について記載する。
(2)透光性樹脂層
 透光性樹脂層6は、光透過性を有する樹脂材料からなり、紫外線吸収剤を含有している樹脂層である。
Details of each constituent layer will be described below.
(2) Translucent resin layer The translucent resin layer 6 is a resin layer made of a resin material having optical transparency and containing an ultraviolet absorber.
 透光性樹脂層6に用いる樹脂材料には特に制限はないが、薄膜を形成した際に透明性を維持しうる、従来公知の種々の合成樹脂を用いることができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、及びセルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Although there is no restriction | limiting in particular in the resin material used for the translucent resin layer 6, Conventionally well-known various synthetic resins which can maintain transparency when a thin film is formed can be used. For example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose Cellulose esters such as acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone imide, polyamide, fluorine Fat, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (trade name JSR Corp.) or APEL (trade name Mitsui Chemicals, Inc.).
 この透光性樹脂層6の形成方法としては、例えば塗布による方法を挙げることができる。塗布方式で透光性樹脂層6となる塗膜を塗設する場合には、従来用いられる種々の塗布方法、例えば、スプレーコート、スピンコート、バーコート等の方法を用いることができる。 As a method for forming the translucent resin layer 6, for example, a method by coating can be mentioned. When a coating film that becomes the translucent resin layer 6 is applied by a coating method, various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used.
 そして、銀反射層3の光入射側の面上、または銀反射層3よりも光入射側に設けられた構成層(例えば、腐食防止層4、ガスバリアー層5)の面上に、透光性樹脂層6となる材料を直接塗布することによって、透光性樹脂層6を形成することができる。 Then, on the surface on the light incident side of the silver reflective layer 3 or on the surface of the constituent layers (for example, the corrosion prevention layer 4 and the gas barrier layer 5) provided on the light incident side with respect to the silver reflective layer 3, light is transmitted. The translucent resin layer 6 can be formed by directly applying a material that becomes the transparent resin layer 6.
 こうした塗布方式で透光性樹脂層6を形成することによって、透光性樹脂層6の平滑性を高めることができる。具体的には、塗布方式で形成した透光性樹脂層6の中心線平均粗さ(Ra)は、3nm以上20nm以下にすることができる。換言すれば、中心線平均粗さがこの値を満たせば、溶融製膜によって製造された透光性樹脂フィルムを接着剤層で貼り合わせて設けられた透光性樹脂層ではなく、その透光性樹脂層6が塗布によって設けられたものとみなすことができる。 By forming the translucent resin layer 6 by such a coating method, the smoothness of the translucent resin layer 6 can be improved. Specifically, the center line average roughness (Ra) of the translucent resin layer 6 formed by a coating method can be 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, the translucent resin film produced by melt film formation is not a translucent resin layer provided by bonding with an adhesive layer, but the translucent resin film. It can be considered that the conductive resin layer 6 is provided by coating.
 この透光性樹脂層6の厚さは、10~150μmであることが好ましい。より好ましくは、20~100μmであり、更に好ましくは、40~100μmである。膜厚が150μmを超えると、乾燥の際に溶剤を十分に蒸発させるためには塗布速度を大幅に下げなければならず、生産性が著しく損なわれるために、好ましくない。
 なお、透光性樹脂層6の平滑性の指標となる中心線平均粗さ(Ra)は、JIS B0601-1982に基づく測定方法により求めることができる。
The thickness of the translucent resin layer 6 is preferably 10 to 150 μm. More preferably, the thickness is 20 to 100 μm, and still more preferably 40 to 100 μm. If the film thickness exceeds 150 μm, the coating speed must be greatly reduced in order to sufficiently evaporate the solvent during drying, which is not preferable because productivity is significantly impaired.
The center line average roughness (Ra), which is an index of smoothness of the translucent resin layer 6, can be determined by a measuring method based on JIS B0601-1982.
 透光性樹脂層6を形成する材料として、上記例示した樹脂材料の中では、アクリルを好適に用いることができる。 Among the resin materials exemplified above, acrylic can be suitably used as a material for forming the translucent resin layer 6.
 透光性樹脂層6をアクリルで形成する場合、アクリル樹脂は固いので、柔らかくて破損しにくいアクリル製の透光性樹脂層6を得るため、可塑剤の微粒子を含有させてもよい。可塑剤の好ましい一例としては、例えば、ブチルゴムやブチルアクリレートなどが挙げられる。 When the translucent resin layer 6 is formed of acrylic, since the acrylic resin is hard, in order to obtain an acrylic translucent resin layer 6 that is soft and hardly damaged, plasticizer fine particles may be included. Preferable examples of the plasticizer include butyl rubber and butyl acrylate.
 アクリル製の透光性樹脂層6は、メタクリル樹脂を主成分としていることが好ましい。メタクリル樹脂は、メタクリル酸エステルを主体とする重合体であり、メタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステル50質量%以上とこれ以外の単量体50質量%以下との共重合体であってもよい。ここで、メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル樹脂(PMMA)である。 The acrylic translucent resin layer 6 is preferably mainly composed of methacrylic resin. The methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester. The methacrylic acid ester is 50% by mass or more and the other monomer is 50% by mass or less. A copolymer may also be used. Here, as the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
 メタクリル樹脂の好ましい単量体組成は、全単量体を基準として、メタクリル酸エステルが50~100質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%であり、より好ましくは、メタクリル酸エステルが50~99.9質量%、アクリル酸エステルが0.1~50質量%、これら以外の単量体が0~49質量%である。 The preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0.1 to 50% by mass, and other monomers are 0 to 49% by mass.
 ここで、メタクリル酸アルキルの例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。中でもメタクリル酸メチルが好ましく用いられる。 Here, examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like, and the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. It is. Of these, methyl methacrylate is preferably used.
 また、アクリル酸アルキルの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。 Examples of alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
 また、メタクリル酸アルキル及びアクリル酸アルキル以外の単量体は、単官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を1個有する化合物であってもよいし、多官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を少なくとも2個有する化合物であってもよいが、単官能単量体が好ましく用いられる。そして、この単官能単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエンの如き芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルの如きアルケニルシアン化合物などが挙げられる。また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートの如き多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルの如き不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートの如き多塩基酸のポリアルケニルエステル、ジビニルベンゼンの如き芳香族ポリアルケニル化合物などが挙げられる。 The monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule, or a polyfunctional monofunctional monomer. Although it may be a monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used. Examples of the monofunctional monomer include aromatic alkenyl compounds such as styrene, α-methylstyrene, and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile. Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Alkenyl esters of unsaturated carboxylic acids such as allyl acid, polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, aromatic polyalkenyl compounds such as divinylbenzene, etc. Can be mentioned.
 なお、上記のメタクリル酸アルキル、アクリル酸アルキル、及びこれら以外の単量体は、それぞれ、必要に応じてそれらの2種以上を用いてもよい。 In addition, as for said alkyl methacrylate, alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed.
 メタクリル樹脂は、フィルムの耐熱性の点から、そのガラス転移温度が40℃以上であることが好ましく、60℃以上であることがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。 The glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
 メタクリル樹脂は、その単量体成分を、懸濁重合、乳化重合、塊状重合などの方法により重合させることにより調製することができる。その際、好適なガラス転移温度を得るため、又は好適なフィルムへの成形性を示す粘度を得るため、重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤の量は、単量体の種類やその割合などに応じて、適宜決定すればよい。
(2-1)紫外線吸収剤
 透光性樹脂層6に含まれる紫外線吸収剤には、特に制限はないが、例えばチアゾリドン系、ベンゾトリアゾール系、アクリロニトリル系、ベンゾフェノン系、アミノブタジエン系、トリアジン系、サリチル酸フェニル系、ベンゾエート系などの有機系の紫外線吸収剤、あるいは酸化セリウム、酸化マグネシウムなどの微粉末系の紫外線遮断剤や酸化チタン、酸化亜鉛、酸化鉄等などがあり、特に有機系の紫外線吸収剤が好ましい。
The methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization. The amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
(2-1) Ultraviolet Absorber The ultraviolet absorber contained in the translucent resin layer 6 is not particularly limited. For example, thiazolidone-based, benzotriazole-based, acrylonitrile-based, benzophenone-based, aminobutadiene-based, triazine-based, There are organic UV absorbers such as phenyl salicylate and benzoate, or fine powder UV blockers such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide, etc., especially organic UV absorption Agents are preferred.
 有機系紫外線吸収剤として、例えば特開昭46-3335号、同55-152776号、特開平5-197074号、同5-232630号、同5-307232号、同6-211813号、同8-53427号、同8-234364号、同8-239368号、同9-31067号、同10-115898号、同10-147577号、同10-182621号各公報、独国特許第19739797A号、欧州特許第711804A号各公報及び特表平8-501291号公報、米国特許第1,023,859号、同第2,685,512号、同第2,739,888号、同第2,784,087号、同第2,748,021号、同第3,004,896号、同第3,052,636号、同第3,215,530号、同第3,253,921号、同第3,533,794号、同第3,692,525号、同第3,705,805号、同第3,707,375号、同第3,738,837号、同第3,754,919号、英国特許第1,321,355号明細書等に記載されている化合物を用いることができる。 Examples of organic ultraviolet absorbers include JP-A-46-3335, JP-A-55-15276, JP-A-5-197004, JP-A-5-232630, JP-A-5-307232, JP-A-6-218131, and 8- No. 53427, No. 8-234364, No. 8-239368, No. 9-310667, No. 10-115898, No. 10-147777, No. 10-182621, German Patent No. 19739797A, European Patent Nos. 711804A and JP-A-8-501291, U.S. Pat. Nos. 1,023,859, 2,685,512, 2,739,888, 2,784,087. No. 2,748,021, No. 3,004,896, No. 3,052,636, No. 3,215,530, No. 3,253,9 No. 1, No. 3,533,794, No. 3,692,525, No. 3,705,805, No. 3,707,375, No. 3,738,837, No. The compounds described in 3,754,919, British Patent 1,321,355 and the like can be used.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては株式会社ADEKAのLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;市販品の例としてはチバ・スペシャルティ・ケミカルズ株式会社のチヌビン234)などが挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1, 3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-Phenylethyl) phenol (molecular weight 447.6; examples of commercially available products include Tinuvin 234 from Ciba Specialty Chemicals) It is.
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of hindered amine ultraviolet absorbers include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、〔2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノール〕(チヌビン1577FF、商品名、チバ・スペシャルティ・ケミカルズ製)、〔2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール〕(CYASORB UV-1164、商品名、サイテックインダストリーズ製)等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-) Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (Tinuvine 1577FF, trade name, Ciba Specialty Chemicals), [2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol] (CYASORB UV-1164, commodity Name, manufactured by Cytec Industries).
 ベンゾエート系紫外線吸収剤としては、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(分子量438.7;市販品の例としては住友化学株式会社のSumisorb400)などが挙げられる。 Examples of benzoate UV absorbers include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; Sumisorb 400).
 これら紫外線吸収剤のなかでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 Among these UV absorbers, UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. it can.
 また、分子量が400以上の紫外線吸収剤は、薄い透光性樹脂層6から他の構成層への移行性も小さく、積層体の表面にも析出しにくいため、含有された紫外線吸収剤量が長時間維持され、耐候性改良効果の持続性に優れるなどの点から好ましい。 In addition, since the ultraviolet absorber having a molecular weight of 400 or more has little transferability from the thin translucent resin layer 6 to other constituent layers and hardly deposits on the surface of the laminate, the amount of contained ultraviolet absorber is small. It is preferable from the viewpoints of being maintained for a long time and being excellent in the durability of the weather resistance improving effect.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine A hybrid system having both structures can be mentioned, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 また、紫外線吸収剤としては上記した以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギー等として放出する機能を有する化合物を用いることもできる。さらに、酸化防止剤あるいは着色剤等との併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In addition to the above, as the ultraviolet absorber, a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator. When a normal ultraviolet absorber is used, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 なお、上記紫外線吸収剤はそれぞれ、必要に応じてそれらの2種以上を用いることもできる。また、必要により、上記紫外線吸収剤以外の紫外線吸収剤、例えば、サリチル酸誘導体、置換アクリロニトリル、ニッケル錯体などを含有させることもできる。 In addition, each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary. Further, if necessary, an ultraviolet absorber other than the above-described ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
 透光性樹脂層6への紫外線吸収剤の含有量は、0.1~20質量%であることが好ましく、より好ましくは1~15質量%、さらに好ましくは3~10質量%である。また、紫外線吸収剤の透光性樹脂層6への含有量は、フィルム単位面積当たりの含有量が0.17~2.28g/m2で、より好ましくは単位面積当たりの含有量が0.4~2.28g/m2以上である。含有量を上記の範囲にすることによって、耐候性能を十分発揮しつつ、紫外線吸収剤のブリードアウトによるロールやフィルムの汚れを起こすことを防止できる。
(2-2)酸化防止剤
 紫外線吸収剤入り透光性樹脂層6の劣化を防止するために、透光性樹脂層6に酸化防止剤を含有させてもよい。好ましい酸化防止剤の例を以下に挙げる。
The content of the ultraviolet absorber in the translucent resin layer 6 is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and further preferably 3 to 10% by mass. In addition, the content of the ultraviolet absorber in the translucent resin layer 6 is 0.17 to 2.28 g / m 2 per unit area of the film, more preferably, the content per unit area is 0.1. 4 to 2.28 g / m 2 or more. By setting the content within the above range, it is possible to prevent the roll and the film from being soiled by bleeding out of the ultraviolet absorber while sufficiently exhibiting the weather resistance.
(2-2) Antioxidant In order to prevent deterioration of the translucent resin layer 6 containing the ultraviolet absorber, the translucent resin layer 6 may contain an antioxidant. Examples of preferred antioxidants are listed below.
 酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤、ホスファイト系酸化防止剤を使用することが好ましい。 As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant.
 フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2′-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4′-チオビス(3-メチル-6-t-ブチルフェノール)、4,4′-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3′,5′-ジ-t-ブチル-4′-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。 Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-dimethyl-2- [β- (3- t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 And 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えば、ジステアリル-3,3′-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等を挙げられる。 Examples of the thiol-based antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
 ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4′-ビフェニレン-ジホスホナイト、2,2′-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
 なお、本発明においては、上記した酸化防止剤と下記の光安定剤を併用することもできる。 In the present invention, the above antioxidant and the following light stabilizer can be used in combination.
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。 Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 特に、ヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、または1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。 In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. ) -Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, Alternatively, a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferable.
 その他、光安定剤としてニッケル系紫外線安定剤も使用可能である。ニッケル系紫外線安定剤としては、〔2,2′-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等が挙げられる。 In addition, nickel-based UV stabilizers can also be used as light stabilizers. Nickel-based UV stabilizers include [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Examples thereof include hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, and the like.
 また、透光性樹脂層6に帯電防止剤を加えて、帯電防止性能を付与することも可能である。 It is also possible to add an antistatic agent to the translucent resin layer 6 to impart antistatic performance.
 また、透光性樹脂層6にリン系難燃剤を加えてもよい。ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。 Further, a phosphorus-based flame retardant may be added to the translucent resin layer 6. Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。
(3)腐食防止層
 腐食防止層4は、腐食防止剤を含有している樹脂層であり、例えば、透光性樹脂層6と銀反射層3の間に設けられており、特に腐食防止層4は銀反射層3に隣接していることが好ましい。
Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
(3) Corrosion prevention layer The corrosion prevention layer 4 is a resin layer containing a corrosion inhibitor. For example, the corrosion prevention layer 4 is provided between the translucent resin layer 6 and the silver reflection layer 3, and in particular, the corrosion prevention layer. 4 is preferably adjacent to the silver reflective layer 3.
 腐食防止層4は、1層のみからなっていてもよいし、複数層からなっていてもよい。腐食防止層4の厚さは、1~10μmが好ましく、より好ましくは2~8μmである。 The corrosion prevention layer 4 may consist of only one layer or may consist of a plurality of layers. The thickness of the corrosion prevention layer 4 is preferably 1 to 10 μm, more preferably 2 to 8 μm.
 腐食防止層4に用いる樹脂としては、例えば、セルロースエステル、ポリエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系、ポリカーボネート、ノルボルネン系、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル樹脂等を挙げることができる。中でも、アクリル樹脂が好ましい。 Examples of the resin used for the corrosion prevention layer 4 include cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, and cellulose diester. Acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyetherketone, polyetherketoneimide , Polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic resin, etc. It can be mentioned. Among these, an acrylic resin is preferable.
 これら樹脂材料(バインダー)を銀反射層3上などに塗布、塗工するなどして、腐食防止層4を形成することができる。
(3-1)腐食防止剤
 腐食防止剤としては、銀に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。
The corrosion prevention layer 4 can be formed by applying and coating these resin materials (binders) on the silver reflective layer 3 or the like.
(3-1) Corrosion inhibitor The corrosion inhibitor preferably has an adsorptive group for silver. Here, “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0/m2の範囲内であることが好ましい。 The optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 / m 2 .
 銀に対する吸着性基を有する腐食防止剤としては、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。シリコーン変性樹脂として特に限定されない。 Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin.
 アミン類およびその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては株式会社ADEKAのLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;市販品の例としてはチバ・スペシャルティ・ケミカルズ株式会社のチヌビン234)などが挙げられる。あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) Benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- ( 1,1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis ( 1-methyl-1-phenylethyl) phenol (molecular weight 447.6; an example of a commercially available product is Chinu, manufactured by Ciba Specialty Chemicals Co., Ltd. Down 234), and the like. Alternatively, a mixture thereof can be mentioned.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
 チオ尿素類としては、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。 As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be used by adding the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
 ナフタレン系としては、チオナリド等が挙げられる。
(4)光反射層
 光反射層は、太陽光を反射する機能を有する金属等からなる層である。
Examples of the naphthalene type include thionalide.
(4) Light reflecting layer The light reflecting layer is a layer made of metal or the like having a function of reflecting sunlight.
 光反射層の表面反射率は好ましくは80%以上、さらに好ましくは90%以上である。この光反射層は、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。中でも、反射率、耐食性の観点からAlまたはAgを主成分としていることが好ましく、このような金属の薄膜を二層以上形成するようにしてもよい。本発明においては、特に銀を主成分とする光反射層としている。 The surface reflectance of the light reflecting layer is preferably 80% or more, more preferably 90% or more. This light reflecting layer is preferably formed of a material containing any element selected from the group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au. Among these, it is preferable that Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed. In the present invention, a light reflecting layer mainly composed of silver is used.
 光反射層の厚さは、反射率等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
 また、光反射層にSiO2、TiO2等の金属酸化物からなる層を設けてさらに反射率を向上させてもよい。 Further, the reflectance may be further improved by providing a layer made of a metal oxide such as SiO 2 or TiO 2 in the light reflecting layer.
 この光反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例をあげるとすれば、銀鏡反応などがある。一方、乾式法とは、真空製膜法の総称であり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に製膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。例えば、太陽熱発電用フィルムミラーの製造方法において、銀反射層3を銀蒸着によって形成する製造方法であることが好ましい。
(4-1)気化・脱離しうる配位子を有する銀錯体化合物
 また、銀反射層3を形成する際に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより銀反射層3を形成するようにしてもよい。
As a method for forming the light reflecting layer, either a wet method or a dry method can be used. The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction. On the other hand, the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. For example, in the manufacturing method of the film mirror for solar power generation, it is preferable that it is a manufacturing method which forms the silver reflection layer 3 by silver vapor deposition.
(4-1) Silver complex compound having a ligand that can be vaporized / desorbed In addition, when forming the silver reflective layer 3, a coating film containing a silver complex compound whose ligand can be vaporized / desorbed is heated and fired. By doing so, the silver reflective layer 3 may be formed.
 「気化・脱離しうる配位子を有する銀錯体化合物」とは、溶液中では銀が安定に溶解するための配位子を有するが、溶媒を除去し、加熱焼成することによって、配位子が熱分解し、CO2や低分子量のアミン化合物となり、気化・脱離し、金属銀のみが残存することのできる銀錯体化合物のことをいう。 “Silver complex compound having a ligand that can be vaporized / desorbed” has a ligand for stably dissolving silver in a solution, but the ligand is removed by removing the solvent and heating and firing. Is a silver complex compound that can be thermally decomposed into CO 2 or a low molecular weight amine compound, vaporized and eliminated, and only metallic silver remains.
 このような錯体の例は、公知である特表2009-535661号、特表2010-500475号各公報等に記載されており、下記の一般式(1)で表される銀化合物と、一般式(2)~(4)で表されるアンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物又はアンモニウムバイカーボネート系化合物とを反応して得られる銀錯体化合物であることが好ましい。 Examples of such complexes are described in known Japanese translations of PCT publication No. 2009-535661, Japanese translations of PCT publication No. 2010-500475, etc., and a silver compound represented by the following general formula (1): Silver complex compounds obtained by reacting ammonium carbamate compounds, ammonium carbonate compounds or ammonium bicarbonate compounds represented by (2) to (4) are preferred.
 また、銀錯体化合物は銀コーティング液組成物に含有され、これを塗布することによりフィルムミラーとなる支持体上に本発明に係る錯体を含有する塗布膜が形成される。すなわち、銀錯体化合物を用いてフィルム上に塗布膜を形成した後に、塗布膜を80~250℃の範囲内の温度において加熱焼成することにより銀反射層3を形成することが好ましい。更に好ましくは100~220の範囲内、特に好ましくは120~200℃の範囲内である。加熱焼成手段としては、特に制限は無く、一般的に用いられる加熱手段はどんなものでも適用できる。 Further, the silver complex compound is contained in the silver coating solution composition, and by applying this, a coating film containing the complex according to the present invention is formed on the support to be a film mirror. That is, it is preferable to form the silver reflective layer 3 by forming a coating film on a film using a silver complex compound and then baking the coating film at a temperature in the range of 80 to 250 ° C. More preferably, it is in the range of 100 to 220, particularly preferably in the range of 120 to 200 ° C. There is no restriction | limiting in particular as a heat-firing means, What kind of heating means generally used can be applied.
 以下、下記の一般式(1)で表される銀化合物と、一般式(2)~(4)で表されるアンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物又はアンモニウムバイカーボネート系化合物等について説明をする。 Hereinafter, the silver compound represented by the following general formula (1) and the ammonium carbamate compounds, ammonium carbonate compounds, or ammonium bicarbonate compounds represented by the general formulas (2) to (4) will be described. .
     AgnX ・・・(1)
Figure JPOXMLDOC01-appb-C000001
Ag n X (1)
Figure JPOXMLDOC01-appb-C000001
 上記した一般式(1)~(4)において、Xは、酸素、硫黄、ハロゲン、シアノ、シアネート、カーボネート、ニトレート、ニトライト、サルフェート、ホスフェート、チオシアネート、クロレート、パークロレート、テトラフルオロボレート、アセチルアセトネート、カルボキシレート、及びこれらの誘導体から選択される置換基であり、nは、1~4の整数であって、R1~R6は、互いに独立して、水素、C1~C30の脂肪族や脂環族アルキル基、アリール基又はアラルキル(aralkyl)基、官能基が置換されたアルキル及びアリール基、ヘテロ環化合物基と高分子化合物及びその誘導体から選択される置換基である。 In the above general formulas (1) to (4), X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrite, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, acetylacetonate. , Carboxylate, and a substituent selected from these derivatives, n is an integer of 1 to 4, and R 1 to R 6 are independently of each other hydrogen, C1 to C30 aliphatic or It is a substituent selected from an alicyclic alkyl group, an aryl group or an aralkyl group, an alkyl and aryl group substituted with a functional group, a heterocyclic compound group, a polymer compound and derivatives thereof.
 一般式(1)の具体例としては、例えば、酸化銀、チオシアネート化銀、硫化銀、塩化銀、シアン化銀、シアネート化銀、炭酸銀、硝酸銀、亜硝酸銀、硫酸銀、燐酸銀、過塩素酸銀、四フッ素ボレート化銀、アセチルアセトネート化銀、酢酸銀、乳酸銀、シュウ酸銀及びその誘導体などが挙げられるが、これに限定されるものではない。 Specific examples of the general formula (1) include, for example, silver oxide, silver thiocyanate, silver sulfide, silver chloride, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, perchlorine. Examples include, but are not limited to, acid silver, silver tetrafluoroborate, silver acetylacetonate, silver acetate, silver lactate, silver oxalate and derivatives thereof.
 また、一般式(2)~(4)において、R1~R6は、具体的に例えば、水素、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、アミル、ヘキシル、エチルヘキシル、ヘプチル、オクチル、イソオクチル、ノニル、デシル、ドデシル、ヘキサデシル、オクタデシル、ドコデシル、シクロプロピル、シクロペンチル、シクロヘキシル、アリール、ヒドロキシ、メトキシ、ヒドロキシエチル、メトキシエチル、2-ヒドロキシプロピル、メトキシプロピル、シアノエチル、エトキシ、ブトキシ、ヘキシルオキシ、メトキシエトキシエチル、メトキシエトキシエトキシエチル、ヘキサメチレンイミン、モルホリン、ピペリジン、ピペラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、ピロール、イミダゾール、ピリジン、カルボキシメチル、トリメトキシシリルプロピル、トリエトキシシリルプロピル、フェニル、メトキシフェニル、シアノフェニル、フェノキシ、トリル、ベンジル及びその誘導体、そしてポリアリールアミンやポリエチレンアミンのような高分子化合物及びこれらの誘導体などが挙げられるが、これに限定されるものではない。 In the general formulas (2) to (4), R 1 to R 6 are specifically, for example, hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, amyl, hexyl, ethylhexyl, heptyl, octyl, isooctyl. , Nonyl, decyl, dodecyl, hexadecyl, octadecyl, docodecyl, cyclopropyl, cyclopentyl, cyclohexyl, aryl, hydroxy, methoxy, hydroxyethyl, methoxyethyl, 2-hydroxypropyl, methoxypropyl, cyanoethyl, ethoxy, butoxy, hexyloxy, methoxy Ethoxyethyl, methoxyethoxyethoxyethyl, hexamethyleneimine, morpholine, piperidine, piperazine, ethylenediamine, propylenediamine, hexamethylenediamine, triethylenediamine , Pyrrole, imidazole, pyridine, carboxymethyl, trimethoxysilylpropyl, triethoxysilylpropyl, phenyl, methoxyphenyl, cyanophenyl, phenoxy, tolyl, benzyl and derivatives thereof, and polymer compounds such as polyarylamine and polyethyleneamine And derivatives thereof, but are not limited thereto.
 一般式(2)~(4)の化合物例としては、例えば、アンモニウムカルバメート(ammonium carbamate)、アンモニウムカーボネート(ammoniumcarbonate)、アンモニウムバイカーボネート(ammonium bicarbonate)、エチルアンモニウム エチルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、n-ブチルアンモニウム n-ブチルカルバメート、イソブチルアンモニウム イソブチルカルバメート、t-ブチルアンモニウム t-ブチルカルバメート、2-エチルヘキシルアンモニウム 2-エチルヘキシルカルバメート、オクタデシルアンモニウム オクタデシルカルバメート、2-メトキシエチルアンモニウム 2-メトキシエチルカルバメート、2-シアノエチルアンモニウム 2-シアノエチルカルバメート、ジブチルアンモニウム ジブチルカルバメート、ジオクタデシルアンモニウムジオクタデシルカルバメート、メチルデシルアンモニウム メチルデシルカルバメート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカルバメート、モルホリニウム モルホリンカルバメート、ピリジウムエチルヘキシルカルバメート、トリエチレンジアミニウム イソプロピルバイカルバメート、ベンジルアンモニウム ベンジルカルバメート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカルバメート、エチルアンモニウム エチルカーボネート、イソプロピルアンモニウム イソプロピルカーボネート、イソプロピルアンモニウム バイカーボネート、n-ブチルアンモニウム n-ブチルカーボネート、イソブチルアンモニウム イソブチルカーボネート、t-ブチルアンモニウム t-ブチルカーボネート、t-ブチルアンモニウム バイカーボネート、2-エチルヘキシルアンモニウム 2-エチルヘキシルカーボネート、2-エチルヘキシルアンモニウム バイカーボネート、2-メトキシエチルアンモニウム 2-メトキシエチルカーボネート、2-メトキシエチルアンモニウム バイカーボネート、2-シアノエチルアンモニウム 2-シアノエチルカーボネート、2-シアノエチルアンモニウム バイカーボネート、オクタデシルアンモニウム オクタデシルカーボネート、ジブチルアンモニウム ジブチルカーボネート、ジオクタデシルアンモニウム ジオクタデシルカーボネート、ジオクタデシルアンモニウム バイカーボネート、メチルデシルアンモニウム メチルデシルカーボネート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカーボネート、モルホリンアンモニウム モルホリンカーボネート、ベンジルアンモニウム ベンジルカーボネート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカーボネート、ピリジウム バイカーボネート、トリエチレンジアミニウム イソプロピルカーボネート、トリエチレンジアミニウム バイカーボネート、及びその誘導体から選択される一種又は二種以上の混合物などが挙げられるが、これに限定されるものではない。 Examples of compounds of the general formulas (2) to (4) include, for example, ammonium carbamate, ammonium carbonate, ammonium bicarbonate, ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, n- Butyl ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2-ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate 2-cyanoethylammonium 2-cyanoethylcarbamate, dibutylammonium dibutylcarbamate, dioctadecylammonium dioctadecylcarbamate, methyldecylammonium methyldecylcarbamate, hexamethyleneimineammonium hexamethyleneiminecarbamate, morpholinium morpholinecarbamate, pyridiumethylhexylcarbamate, triethylenediaminium Isopropyl bicarbamate, benzylammonium benzylcarbamate, triethoxysilylpropylammonium, triethoxysilylpropylcarbamate, ethylammonium ethyl carbonate, isopropylammonium isopropylcarbonate, isopropylammonium bikerbo N-butylammonium n-butyl carbonate, isobutylammonium isobutyl carbonate, t-butylammonium t-butyl carbonate, t-butylammonium bicarbonate, 2-ethylhexylammonium 2-ethylhexylcarbonate, 2-ethylhexylammonium bicarbonate, 2 -Methoxyethylammonium 2-methoxyethyl carbonate, 2-methoxyethylammonium bicarbonate, 2-cyanoethylammonium 2-cyanoethyl carbonate, 2-cyanoethylammonium bicarbonate, octadecylammonium octadecylcarbonate, dibutylammonium dibutylcarbonate, dioctadecylammonium dioctadecyl Carbonate, dioctadecyl ammonium bicarbonate, methyl decyl ammonium methyl decyl carbonate, hexamethylene imine ammonium hexamethylene imine carbonate, morpholine ammonium morpholine carbonate, benzyl ammonium benzyl carbonate, triethoxysilylpropyl ammonium triethoxysilylpropyl carbonate, pyridium bicarbonate, tri Examples thereof include, but are not limited to, ethylenediaminium isopropyl carbonate, triethylenediaminium bicarbonate, and one or a mixture of two or more selected from derivatives thereof.
 一方、上記のアンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物又はアンモニウムバイカーボネート系化合物の種類及び製造方法は、特に制限する必要はない。例えば、米国特許第4,542,214号では、第1アミン、第2アミン、第3アミン、又は少なくとも1つ以上のこれらの混合物と二酸化炭素からアンモニウムカルバメート系化合物が製造できると記述しており、前記アミン1モル当り水0.5モルをさらに添加すると、アンモニウムカーボネート系化合物が得られて、水1モル以上を添加する場合は、アンモニウムバイカーボネート系化合物を得ることができる。この際、常圧又は加圧状態で特別な溶媒を使用せずに直接製造するか、溶媒を使用する場合、水、メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、カルビトールアセテートのようなアセテート類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトンのようなケトン類、ヘキサン、ヘプタンのような炭化水素系、ベンゼン、トルエンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒又はこれらの混合溶媒などが挙げられて、二酸化炭素は、気相状態でバブリング(bubbling)するか、固体相ドライアイスを使用することができて、超臨界(supercritical)状態でも反応することができる。アンモニウムカルバメート又はアンモニウムカーボネート誘導体の製造には、上記の方法の他にも、最終物質の構造が同一であれば、公知のいかなる方法を使用してもよい。即ち、製造のための溶媒、反応温度、濃度又は触媒などを特に限定する必要はなく、製造収率にも影響しない。 On the other hand, the type and production method of the ammonium carbamate compound, ammonium carbonate compound or ammonium bicarbonate compound are not particularly limited. For example, US Pat. No. 4,542,214 describes that ammonium carbamate compounds can be prepared from carbon dioxide and primary amines, secondary amines, tertiary amines, or at least one of these mixtures. When 0.5 mol of water is further added per 1 mol of the amine, an ammonium carbonate compound is obtained. When 1 mol or more of water is added, an ammonium bicarbonate compound can be obtained. At this time, it is produced directly without using a special solvent at normal pressure or under pressure, or when a solvent is used, alcohols such as water, methanol, ethanol, isopropanol, butanol, ethylene glycol, glycerin, etc. Glycols, ethyl acetate, butyl acetate, acetates such as carbitol acetate, ethers such as diethyl ether, tetrahydrofuran, dioxane, ketones such as methyl ethyl ketone, acetone, hydrocarbons such as hexane, heptane, Examples include aromatics such as benzene and toluene, and halogen-substituted solvents such as chloroform, methylene chloride, and carbon tetrachloride, or mixed solvents thereof. Is carbon dioxide bubbled in the gas phase? To be able to use the solid phase dry ice, it can be reacted in supercritical (supercritical) state. In addition to the above method, any known method may be used for the production of the ammonium carbamate or ammonium carbonate derivative as long as the structure of the final substance is the same. That is, it is not necessary to specifically limit the solvent, reaction temperature, concentration or catalyst for production, and the production yield is not affected.
 このように製造されたアンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物又はアンモニウムバイカーボネート系化合物と銀化合物とを反応して、有機銀錯体化合物を製造することができる。例えば、一般式(1)に示したような少なくとも一つ以上の銀化合物と、一般式(2)~(4)に示したような少なくとも一つ以上のアンモニウムカルバメート、アンモニウムカーボネート又はアンモニウムバイカーボネート系化合物及びこれらの混合物を、窒素雰囲気の常圧又は加圧状態で、溶媒を使用せずに直接反応するか、溶媒を使用する場合、水、メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、カルビトールアセテートのようなアセテート類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトンのようなケトン類、ヘキサン、ヘプタンのような炭化水素系、ベンゼン、トルエンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒又はこれらの混合溶媒などを使用することができる。 An organic silver complex compound can be produced by reacting the ammonium carbamate compound, ammonium carbonate compound or ammonium bicarbonate compound thus produced with a silver compound. For example, at least one silver compound represented by the general formula (1) and at least one ammonium carbamate, ammonium carbonate or ammonium bicarbonate represented by the general formulas (2) to (4) Reacting the compound and a mixture thereof directly under a nitrogen atmosphere at normal pressure or without using a solvent, or when using a solvent, alcohols such as water, methanol, ethanol, isopropanol, butanol, Ethylene glycol, glycols such as glycerin, ethyl acetate, butyl acetate, acetates such as carbitol acetate, ethers such as diethyl ether, tetrahydrofuran, dioxane, ketones such as methyl ethyl ketone, acetone, hexane, heptane like Hydrocarbon-based, benzene, can be used aromatic, such as toluene, and chloroform and methylene chloride, and the like halogenated solvent or a mixed solvent such as carbon tetrachloride.
 このような銀錯体化合物(気化・脱離しうる配位子を有する銀錯体化合物)の製造には、上記の方法の他に、一般式(1)の銀化合物と一つ以上のアミン化合物とが混合された溶液を製造した後、二酸化炭素を反応して、銀錯体化合物を製造することもできる。上記のように、窒素雰囲気の常圧又は加圧状態で、溶媒を使用せずに直接反応するか、溶媒を使用して反応することができる。しかしながら、最終物質の構造が同一であれば、公知の如何なる方法を使用してもよい。即ち、製造のための溶媒、反応温度、濃度又は触媒の使用有無などを特に限定する必要はなく、製造収率にも影響しない。 For the production of such a silver complex compound (a silver complex compound having a ligand that can be vaporized / desorbed), in addition to the above-described method, a silver compound of the general formula (1) and one or more amine compounds may be used. After producing a mixed solution, carbon dioxide can be reacted to produce a silver complex compound. As described above, the reaction can be performed directly without using a solvent in a normal pressure or pressurized state of a nitrogen atmosphere, or can be performed using a solvent. However, any known method may be used as long as the structure of the final material is the same. That is, it is not necessary to specifically limit the solvent for the production, the reaction temperature, the concentration, the presence or absence of the catalyst, and the production yield is not affected.
 このような銀錯体化合物は、特表2008-530001号公報にその製造方法が記載されており、下記の一般式(5)の構造で認識される。 Such a silver complex compound has a production method described in JP-T-2008-530001, and is recognized by the structure of the following general formula (5).
     Ag[A]m ・・・(5)
 (一般式(5)において、Aは、一般式(2)~(4)の化合物であり、mは、0.5~1.5である。)
 銀反射層3に高反射、高光沢の反射面を形成するために使用される銀コーティング液組成物は、上記の銀錯体化合物を含有し、必要に応じて、溶媒、安定剤、レベリング剤(Leveling agent)、薄膜補助剤、還元剤、熱分解反応促進剤等の添加剤を含むことができる。
Ag [A] m (5)
(In the general formula (5), A is a compound of the general formulas (2) to (4), and m is 0.5 to 1.5.)
The silver coating liquid composition used for forming a highly reflective and highly glossy reflective surface on the silver reflective layer 3 contains the above silver complex compound, and optionally contains a solvent, a stabilizer, and a leveling agent ( Leveling agent), thin film auxiliary agents, reducing agents, thermal decomposition reaction accelerators and other additives.
 上記の安定剤としては例えば、第1アミン、第2アミン又は第3アミンのようなアミン化合物や、アンモニウムカルバメート、アンモニウムカーボネート、アンモニウムバイカーボネート系化合物、又はホスフィン(phosphine)、ホスファイ(phosphite)、ホスフェート(phosphate)のようなリン化合物、チオール(thiol)やスルフィド(sulfide)のような硫黄化合物と、少なくとも一つ以上のこれらの混合物が挙げられ、アミン化合物としては、具体的に例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、イソアミルアミン、n-ヘキシルアミン、2-エチルヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、イソオクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ドコデシルアミン、シクロプロピルアミン、シクロペンチルアミン、シクロヘキシルアミン、アリールアミン、ヒドロキシアミン、アンモニウムヒドロキシド、メトキシアミン、2-エタノールアミン、メトキシエチルアミン、2-ヒドロキシプロピルアミン、2-ヒドロキシ-2-メチルプロピルアミン、メトキシプロピルアミン、シアノエチルアミン、エトキシアミン、n-ブトキシアミン、2-ヘキシルオキシアミン、メトキシエトキシエチルアミン、メトキシエトキシエトキシエチルアミン、ジメチルアミン、ジプロピルアミン、ジエタノールアミン、ヘキサメチレンイミン、モルホリン、ピペリジン、ピペラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、2,2-(エチレンジオキシ)ビスエチルアミン、トリエチルアミン、トリエタノールアミン、ピロール、イミダゾール、ピリジン、アミノアセトアルデヒドジメチルアセタル、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、アニリン、アニシジン、アミノベンゾニトリル、ベンジルアミン及びその誘導体、そしてポリアリールアミンやポリエチレンイミンのような高分子化合物及びその誘導体などのようなアミン化合物が挙げられる。 Examples of the stabilizer include amine compounds such as primary amines, secondary amines and tertiary amines, ammonium carbamates, ammonium carbonates, ammonium bicarbonate compounds, phosphines, phosphites, and phosphates. A phosphorus compound such as (phosphate), a sulfur compound such as thiol or sulfide, and a mixture of at least one of them. Specific examples of the amine compound include methylamine, Ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, isoamylamine, n-hexylamine, 2-ethylhexylamine, n-heptylamine, n-octyla , Isooctylamine, nonylamine, decylamine, dodecylamine, hexadecylamine, octadecylamine, docodecylamine, cyclopropylamine, cyclopentylamine, cyclohexylamine, arylamine, hydroxyamine, ammonium hydroxide, methoxyamine, 2-ethanol Amine, methoxyethylamine, 2-hydroxypropylamine, 2-hydroxy-2-methylpropylamine, methoxypropylamine, cyanoethylamine, ethoxyamine, n-butoxyamine, 2-hexyloxyamine, methoxyethoxyethylamine, methoxyethoxyethoxyethylamine , Dimethylamine, dipropylamine, diethanolamine, hexamethyleneimine, morpholine, piperidine, pipera , Ethylenediamine, propylenediamine, hexamethylenediamine, triethylenediamine, 2,2- (ethylenedioxy) bisethylamine, triethylamine, triethanolamine, pyrrole, imidazole, pyridine, aminoacetaldehyde dimethyl acetal, 3-aminopropyltrimethoxy Examples include silane, 3-aminopropyltriethoxysilane, aniline, anisidine, aminobenzonitrile, benzylamine and derivatives thereof, and amine compounds such as polymer compounds such as polyarylamine and polyethyleneimine and derivatives thereof.
 アンモニウムカルバメート、カーボネート、バイカーボネート系化合物として具体的に例えば、アンモニウムカルバメート(ammonium carbamate)、アンモニウムカーボネート(ammonium carbonate)、アンモニウムバイカーボネート(ammonium bicarbonate)、エチルアンモニウム エチルカルバメート、イソプロピルアンモニウム イソプロピルカルバメート、n-ブチルアンモニウム n-ブチルカルバメート、イソブチルアンモニウム イソブチルカルバメート、t-ブチルアンモニウム t-ブチルカルバメート、2-エチルヘキシルアンモニウム
 2-エチルヘキシルカルバメート、オクタデシルアンモニウム オクタデシルカルバメート、2-メトキシエチルアンモニウム 2-メトキシエチルカルバメート、2-シアノエチルアンモニウム 2-シアノエチルカルバメート、ジブチルアンモニウム ジブチルカルバメート、ジオクタデシルアンモニウム ジオクタデシルカルバメート、メチルデシルアンモニウム メチルデシルカルバメート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカルバメート、モルホリニウム モルホリンカルバメート、ピリジウムエチルヘキシルカルバメート、トリエチレンジアミニウム イソプロピルバイカルバメート、ベンジルアンモニウム ベンジルカルバメート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカルバメート、エチルアンモニウム エチルカーボネート、イソプロピルアンモニウム イソプロピルカーボネート、イソプロピルアンモニウム バイカーボネート、n-ブチルアンモニウム n-ブチルカーボネート、イソブチルアンモニウム イソブチルカーボネート、t-ブチルアンモニウム t-ブチルカーボネート、t-ブチルアンモニウム バイカーボネート、2-エチルヘキシルアンモニウム
 2-エチルヘキシルカーボネート、2-エチルヘキシルアンモニウム バイカーボネート、2-メトキシエチルアンモニウム 2-メトキシエチルカーボネート、2-メトキシエチルアンモニウム バイカーボネート、2-シアノエチルアンモニウム 2-シアノエチルカーボネート、2-シアノエチルアンモニウム バイカーボネート、オクタデシルアンモニウム オクタデシルカーボネート、ジブチルアンモニウム ジブチルカーボネート、ジオクタデシルアンモニウム ジオクタデシルカーボネート、ジオクタデシルアンモニウム バイカーボネート、メチルデシルアンモニウム メチルデシルカーボネート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカーボネート、モルホリンアンモニウム モルホリンカーボネート、ベンジルアンモニウム ベンジルカーボネート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカーボネート、ピリジウム バイカーボネート、トリエチレンジアミニウム イソプロピルカーボネート、トリエチレンジアミニウム バイカーボネート、及びその誘導体などが挙げられる。
Specific examples of ammonium carbamate, carbonate and bicarbonate compounds include, for example, ammonium carbamate, ammonium carbonate, ammonium bicarbonate, ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, and n-butyl. Ammonium n-butylcarbamate, isobutylammonium isobutylcarbamate, t-butylammonium t-butylcarbamate, 2-ethylhexylammonium 2-ethylhexylcarbamate, octadecylammonium octadecylcarbamate, 2-methoxyethylammonium 2- Toxiethyl carbamate, 2-cyanoethylammonium 2-cyanoethylcarbamate, dibutylammonium dibutylcarbamate, dioctadecylammonium dioctadecylcarbamate, methyldecylammonium methyldecylcarbamate, hexamethyleneimineammonium hexamethyleneiminecarbamate, morpholinium morpholinecarbamate, pyridiumethylhexylcarbamate, Triethylenediaminium isopropyl bicarbamate, benzylammonium benzylcarbamate, triethoxysilylpropylammonium triethoxysilylpropylcarbamate, ethylammonium ethyl carbonate, isopropylammonium isopropylcarbonate, isopropylammonium Bicarbonate, n-butylammonium n-butylcarbonate, isobutylammonium isobutylcarbonate, t-butylammonium t-butylcarbonate, t-butylammonium bicarbonate, 2-ethylhexylammonium 2-ethylhexylcarbonate, 2-ethylhexylammonium bicarbonate, 2 -Methoxyethylammonium 2-methoxyethyl carbonate, 2-methoxyethylammonium bicarbonate, 2-cyanoethylammonium 2-cyanoethyl carbonate, 2-cyanoethylammonium bicarbonate, octadecylammonium octadecylcarbonate, dibutylammonium dibutylcarbonate, dioctadecylammonium dioctadecylcarbo , Dioctadecyl ammonium bicarbonate, methyl decyl ammonium methyl decyl carbonate, hexamethylene imine ammonium hexamethylene imine carbonate, morpholine ammonium morpholine carbonate, benzyl ammonium benzyl carbonate, triethoxysilylpropyl ammonium triethoxysilylpropyl carbonate, pyridium bicarbonate, tri Examples thereof include ethylenediaminium isopropyl carbonate, triethylenediaminium bicarbonate, and derivatives thereof.
 また、リン化合物としては、一般式R3P、(RO)3P又は(RO)3POで表されるリン化合物で挙げられる。ここでRは、炭素数1~20のアルキル又はアリール基を示し、具体的に例えば、トリブチルホスフィン、トリフェニルホスフィン、トリエチルホスファイト、トリフェニルホスファイト、ジベンジルホスフェート、トリエチルホスフェートなどが挙げられる。 As the phosphorus compounds of the general formula R 3 P, include a phosphorus compound represented by (RO) 3 P or (RO) 3 PO. Here, R represents an alkyl or aryl group having 1 to 20 carbon atoms, and specific examples thereof include tributylphosphine, triphenylphosphine, triethyl phosphite, triphenyl phosphite, dibenzyl phosphate, triethyl phosphate and the like.
 そして、硫黄化合物として、具体的に例えば、ブタンチオール、n-ヘキサンチオール、ジエチルスルフィド、テトラヒドロチオフェン、アリールジスルフィド、2-メルカプトベンゾアゾール、テトラヒドロチオフェン、オクチルチオグリコレートなどが挙げられる。 Specific examples of the sulfur compound include butanethiol, n-hexanethiol, diethyl sulfide, tetrahydrothiophene, aryl disulfide, 2-mercaptobenzoazole, tetrahydrothiophene, octylthioglycolate, and the like.
 このような安定剤の使用量は、特に制限する必要はない。しかしながら、その含量は、銀化合物に対し、モル比で0.1%~90%が好ましい。 The amount of such a stabilizer used is not particularly limited. However, the content is preferably 0.1% to 90% in terms of molar ratio with respect to the silver compound.
 また、薄膜補助剤としては、有機酸及び有機酸誘導体、又は少なくとも一つ以上のこれらの混合物が挙げられる。具体的に例えば、酢酸、酪酸(Butyric acid)、吉草酸(Valeric acid)、ピバル酸(Pivalic acid)、ヘキサン酸、オクタン酸、2-エチル-ヘキサン酸、ネオデカン酸(Neodecanoic acid)、ラウリン酸(Lauric acid)、ステアリン酸、ナフタル酸などの有機酸が挙げられ、有機酸誘導体としては、具体的に例えば、酢酸アンモニウム塩、クエン酸アンモニウム塩、ラウリン酸アンモニウム塩、乳酸アンモニウム塩、マレイン酸アンモニウム塩、シュウ酸アンモニウム塩、モリブデン酸アンモニウム塩などの有機酸アンモニウム塩と、Au、Cu、Zn、Ni、Co、Pd、Pt、Ti、V、Mn、Fe、Cr、Zr、Nb、Mo、W、Ru、Cd、Ta、Re、Os、Ir、Al、Ga、Ge、In、Sn、Sb、Pb、Bi、Sm、Eu、Ac、Thなどのような金属を含有するシュウ酸マンガン、酢酸金、シュウ酸パラジウム、2-エチルヘキサン酸銀、オクタン酸銀、ネオデカン酸銀、ステアリン酸コバルト、ナフタル酸ニッケル、ナフタル酸コバルトなどの有機酸金属塩が挙げられる。前記薄膜補助剤の使用量は、特に限定されないが、銀錯体化合物に対して、モル比で0.1~25%が好ましい。 Moreover, examples of the thin film auxiliary agent include organic acids and organic acid derivatives, or at least one mixture thereof. Specifically, for example, acetic acid, butyric acid (valeric acid), valeric acid (pivalic acid), hexanoic acid, octanoic acid, 2-ethyl-hexanoic acid, neodecanoic acid, lauric acid ( Lauric acid), stearic acid, naphthalic acid, and the like. Specific examples of organic acid derivatives include ammonium acetate, ammonium citrate, ammonium laurate, ammonium lactate, and ammonium maleate. Organic acid ammonium salts such as ammonium oxalate and ammonium molybdate, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, O Manganese oxalate, gold acetate, palladium oxalate, 2-ethylhexanoic acid containing metals such as Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac, Th Examples thereof include organic acid metal salts such as silver, silver octoate, silver neodecanoate, cobalt stearate, nickel naphthalate and cobalt naphthalate. The amount of the thin film auxiliary used is not particularly limited, but is preferably 0.1 to 25% in terms of molar ratio with respect to the silver complex compound.
 また、還元剤としては、ルイス酸又は弱いブレンステッド酸(bronsted acid)が挙げられ、具体的に例えば、ヒドラジン、ヒドラジンモノハイドレート、アセトヒドラジド、水酸化ホウ素ナトリウム又は水酸化ホウ素カリウム、ジメチルアミンボラン、ブチルアミンボランのようなアミン化合物、第1塩化鉄、乳酸鉄のような金属塩、水素、ヨウ化水素、一酸化炭素、ホルムアルデヒド、アセトアルデヒド、グリオキサールのようなアルデヒド化合物、ギ酸メチル、ギ酸ブチル、トリエチル-o-ギ酸のようなギ酸化合物、グルコース、アスコルビン酸、ヒドロキノンのような還元性有機化合物を少なくとも一つ以上含有するこれらの混合物を挙げることができる。 Examples of the reducing agent include Lewis acid or weak Bronsted acid, and specific examples thereof include hydrazine, hydrazine monohydrate, acetohydrazide, sodium borohydride or potassium borohydride, dimethylamine borane. , Amine compounds such as butylamine borane, ferrous chloride, metal salts such as iron lactate, hydrogen, hydrogen iodide, carbon monoxide, aldehyde compounds such as formaldehyde, acetaldehyde, glyoxal, methyl formate, butyl formate, triethyl Examples thereof include a mixture of at least one reducing organic compound such as formic acid compound such as o-formic acid, glucose, ascorbic acid and hydroquinone.
 また、熱分解反応促進剤としては、具体的に例えば、エタノールアミン、メチルジエタノールアミン、トリエタノールアミン、プロパノールアミン、ブタノールアミン、ヘキサノールアミン、ジメチルエタノールアミンのようなヒドロキシアルキルアミン類、ピペリジン、N-メチルピペリジン、ピペラジン、N,N′-ジメチルピペラジン、1-アミノ-4メチルピペラジン、ピロリジン、N-メチルピロリジン、モルホリンのようなアミン化合物、アセトンオキシム、ジメチルグリオキシム、2-ブタノンオキシム、2,3-ブタジオンモノオキシムのようなアルキルオキシム類、エチレングリコール、ジエチレングリコール、トリエチレングリコールのようなグリコール類、メトキシエチルアミン、エトキシエチルアミン、メトキシプロピルアミンのようなアルコキシアルキルアミン類、メトキシエタノール、メトキシプロパノール、エトキシエタノールのようなアルコキシアルカノール類、アセトン、メチルエチルケトン、メチルイソブチルケトンのようなケトン類、アセトール、ジアセトンアルコールのようなケトンアルコール類、多価フェノール化合物、フェノール樹脂、アルキド樹脂、ピロール、エチレンジオキシチオフェン(EDOT)のような酸化重合性樹脂などが挙げられる。 Specific examples of the thermal decomposition reaction accelerator include ethanolamine, methyldiethanolamine, triethanolamine, propanolamine, butanolamine, hexanolamine, hydroxyalkylamines such as dimethylethanolamine, piperidine, and N-methyl. Piperidine, piperazine, N, N'-dimethylpiperazine, 1-amino-4methylpiperazine, pyrrolidine, N-methylpyrrolidine, amine compounds such as morpholine, acetone oxime, dimethylglyoxime, 2-butanone oxime, 2,3- Alkyl oximes such as butadione monooxime, glycols such as ethylene glycol, diethylene glycol, triethylene glycol, methoxyethylamine, ethoxyethylamine, methoxy Alkoxyalkylamines such as propylamine, alkoxyalkanols such as methoxyethanol, methoxypropanol and ethoxyethanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ketone alcohols such as acetol and diacetone alcohol, Examples thereof include hydric phenol compounds, phenol resins, alkyd resins, pyrroles, and oxidatively polymerizable resins such as ethylenedioxythiophene (EDOT).
 なお、銀コーティング液組成物の粘度調節や円滑な薄膜形成のために溶媒が必要な場合があるが、この際使用できる溶媒としては、水、メタノール、エタノール、イソプロパノール、1-メトキシプロパノール、ブタノール、エチルヘキシルアルコール、テルピネオールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、メトキシプロピルアセテート、カルビトールアセテート、エチルカルビトールアセテートのようなアセテート類、メチルセロソルブ、ブチルセロソルブ、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトン、ジメチルホルムアミド、1-メチル-2-ピロリドンのようなケトン類、ヘキサン、ヘプタン、ドデカン、パラフィンオイル、ミネラルスピリットのような炭化水素系、ベンゼン、トルエン、キシレンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒、アセトニトリル、ジメチルスルホキシド、又はこれらの混合溶媒などを使用することができる。
(4-2)含窒素環状化合物
 銀反射層3を形成する際に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成する工程を有する場合、銀反射層3に隣接する構成層に含窒素環状化合物を含有することが好ましい。銀に対する吸着性基を有する含窒素環状化合物は、銀反射層3の腐食防止剤として好ましく用いられる。
In some cases, a solvent is required for adjusting the viscosity of the silver coating liquid composition and for forming a smooth thin film. Examples of the solvent that can be used in this case include water, methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, Ethyl hexyl alcohol, alcohols such as terpineol, glycols such as ethylene glycol and glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, acetates such as ethyl carbitol acetate, methyl cellosolve, butyl cellosolve, diethyl Ethers such as ether, tetrahydrofuran and dioxane, methyl ethyl ketone, acetone, dimethylformamide, ketones such as 1-methyl-2-pyrrolidone, hexane, Hydrocarbons such as tan, dodecane, paraffin oil, mineral spirits, aromatics such as benzene, toluene, xylene, and halogen-substituted solvents such as chloroform, methylene chloride, carbon tetrachloride, acetonitrile, dimethyl sulfoxide, or these Or a mixed solvent thereof can be used.
(4-2) Nitrogen-containing cyclic compound When the silver reflective layer 3 is formed, when the coating film containing a silver complex compound capable of vaporizing and desorbing a ligand is heated and fired, It is preferable to contain a nitrogen-containing cyclic compound in the adjacent constituent layer. A nitrogen-containing cyclic compound having an adsorptive group for silver is preferably used as a corrosion inhibitor for the silver reflective layer 3.
 銀に対する吸着性基を有する含窒素環状化合物を腐食防止剤として用いることで、銀反射層3に対する所望の腐食防止効果を得ることができる。例えば、腐食防止剤としての含窒素環状化合物は、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物の少なくとも一種又はこれらの混合物から選ばれることが望ましい。 By using a nitrogen-containing cyclic compound having an adsorptive group for silver as a corrosion inhibitor, a desired corrosion prevention effect for the silver reflection layer 3 can be obtained. For example, the nitrogen-containing cyclic compound as a corrosion inhibitor is a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, a compound having an indazole ring, or a mixture thereof. It is desirable to be selected.
 ピロール環を有する化合物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) Examples thereof include benzotriazole and a mixture thereof.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。
(4-3)酸化防止剤
 銀反射層3の腐食防止を目的とし、酸化防止剤を用いることができる。
Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
(4-3) Antioxidant An antioxidant may be used for the purpose of preventing corrosion of the silver reflecting layer 3.
 銀反射層3の酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤及びホスファイト系酸化防止剤を使用することが好ましい。 As the antioxidant of the silver reflection layer 3, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
 フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2′-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4′-チオビス(3-メチル-6-t-ブチルフェノール)、4,4′-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3′,5′-ジ-t-ブチル-4′-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。 Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-dimethyl-2- [β- (3- t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 And 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えば、ジステアリル-3,3′-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等が挙げられる。 Examples of the thiol-based antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
 ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4′-ビフェニレン-ジホスホナイト、2,2′-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
 なお、上記の酸化防止剤と下記の光安定剤を併用することもできる。 In addition, the above antioxidant and the following light stabilizer can be used in combination.
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。 Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 その他ニッケル系紫外線安定剤として、〔2,2′-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等も使用することが可能である。 Other nickel-based UV stabilizers include [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
 特にヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、又は1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。
(5)樹脂基材
 樹脂基材1としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, or A condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
(5) Resin Substrate As the resin substrate 1, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. In particular, it is preferable to use a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
 樹脂基材1は、銀反射層3よりも光入射側から遠い位置にあるため、紫外線が樹脂基材1に到達しにくい。特に、樹脂基材1よりも光入射側にある透光性樹脂層6等に紫外線吸収剤を含有させたりする場合は、紫外線が樹脂基材1により一層到達しにくい。従って、樹脂基材1は、紫外線に対して劣化しやすい樹脂であっても用いることが可能となる。そのような観点から、樹脂基材1として、ポリエチレンテレフタレート等のポリエステルフィルムを用いることが可能となる。 Since the resin base material 1 is located farther from the light incident side than the silver reflection layer 3, it is difficult for ultraviolet rays to reach the resin base material 1. In particular, when an ultraviolet absorber is contained in the translucent resin layer 6 or the like that is closer to the light incident side than the resin substrate 1, the ultraviolet rays are more difficult to reach the resin substrate 1. Therefore, the resin substrate 1 can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin substrate 1.
 この樹脂基材1の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~250μmの範囲内である。好ましくは20~200μmである。
(6)粘着層
 粘着層8は、フィルムミラーを支持基材9に貼り付けることを可能にする粘着性を有しており、この粘着層8によってフィルムミラーを支持基材9に接合して、太陽熱発電用反射装置を形成するための構成層である。
The thickness of the resin substrate 1 is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 250 μm. The thickness is preferably 20 to 200 μm.
(6) Adhesive layer The adhesive layer 8 has adhesiveness that allows the film mirror to be attached to the support substrate 9, and the adhesive layer 8 joins the film mirror to the support substrate 9, It is a structure layer for forming the reflective apparatus for solar thermal power generation.
 粘着層8としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。 The adhesive layer 8 is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent and the like can be used. As the adhesive, for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used. The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity. The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 μm from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like.
 なお、フィルムミラーは、粘着層8における樹脂基材1とは反対側の面を覆う剥離シート(図示省略)を備えていてもよい。フィルムミラーが剥離シートを有する場合、剥離シートを粘着層8から剥離した後に、粘着層8を介してフィルムミラーを支持基材9に貼り付けることができる。
(6-1)剥離シート
 剥離シートは、フィルムミラーにおける粘着層8の光入射側とは反対側の面を覆う部材である。
The film mirror may include a release sheet (not shown) that covers the surface of the adhesive layer 8 opposite to the resin base material 1. When the film mirror has a release sheet, the film mirror can be attached to the support substrate 9 through the adhesive layer 8 after the release sheet is released from the adhesive layer 8.
(6-1) Release Sheet The release sheet is a member that covers the surface of the film mirror opposite to the light incident side of the adhesive layer 8.
 例えば、フィルムミラーの出荷時には剥離シートが粘着層8に張り付いた状態であり、その後、剥離シートをフィルムミラーの粘着層8から剥離し、そのフィルムミラーを支持基材9に貼り合わせて太陽熱発電用反射装置を形成することができる。 For example, when the film mirror is shipped, the release sheet is stuck to the adhesive layer 8, and then the release sheet is released from the adhesive layer 8 of the film mirror, and the film mirror is attached to the support substrate 9 to achieve solar thermal power generation. A reflective device can be formed.
 剥離シートとしては、粘着層8の粘着性を保護することができるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂にコーティングを施したりアルミニウム等の金属を金属蒸着したりなどの表面加工を施した樹脂フィルム又はシートが用いられる。 Any release sheet may be used as long as it can protect the adhesiveness of the adhesive layer 8. For example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, polyethylene terephthalate Plastic film or sheet such as film or sheet, fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., coating the resin kneaded with these, or metal such as aluminum A resin film or sheet subjected to surface processing such as metal vapor deposition is used.
 剥離シートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。
(7)ハードコート層
 ハードコート層7は、フィルムミラー表面の傷つきや汚れの付着を防止する目的に設けられる。透明なハードコート層7は、光入射側の最外層、または光入射側から2層目又は3層目のいずれかであることが好ましい。ハードコート層7の上に更に薄い(1μm以下が好ましい)別の層を設けてもよい。
The thickness of the release sheet is not particularly limited but is usually preferably in the range of 12 to 250 μm.
(7) Hard coat layer The hard coat layer 7 is provided for the purpose of preventing the film mirror surface from being scratched or contaminated. The transparent hard coat layer 7 is preferably the outermost layer on the light incident side or the second or third layer from the light incident side. Another thin layer (preferably 1 μm or less) may be provided on the hard coat layer 7.
 ハードコート層7の作製方法としては、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法を挙げることができる。また、所定の材料を塗布、塗工することに加え、各種表面処理等を組み合わせてもよい。 Examples of the method for producing the hard coat layer 7 include conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method. In addition to applying and coating a predetermined material, various surface treatments and the like may be combined.
 なお、ハードコート層7の厚みは、十分な耐傷性を得つつ、フィルムミラーにそりが発生することを防止するという観点から、0.05μm以上、10μm以下であることが好ましい。より好ましくは、1μm以上、10μm以下である。 The thickness of the hard coat layer 7 is preferably 0.05 μm or more and 10 μm or less from the viewpoint of preventing the film mirror from being warped while obtaining sufficient scratch resistance. More preferably, they are 1 micrometer or more and 10 micrometers or less.
 ハードコート層7を形成する材料としては、透明性、耐候性、硬度、機械的強度等が得られるものであれば、特に限定されるものではない。ハードコート層7は、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、硬度と耐久性などの点で、シリコーン系樹脂やアクリル系樹脂が好ましい。さらに、硬化性、可撓性および生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂からなるものが好ましい。 The material for forming the hard coat layer 7 is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained. The hard coat layer 7 can be composed of an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Further, in terms of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.
 活性エネルギー線硬化型のアクリル系樹脂または熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社;(商品名“ダイヤビーム(登録商標)”シリーズなど)、長瀬産業株式会社;(商品名“デナコール(登録商標)”シリーズなど)、新中村株式会社;(商品名“NKエステル”シリーズなど)、大日本インキ化学工業株式会社;(商品名“UNIDIC(登録商標)”シリーズなど)、東亞合成化学工業株式会社;(商品名“アロニックス(登録商標)”シリーズなど)、日本油脂株式会社;(商品名“ブレンマー(登録商標)”シリーズなど)、日本化薬株式会社;(商品名“KAYARAD(登録商標)”シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズなど)などの製品を利用することができる。 Commercially available polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd .; (trade name “NK Ester” series, etc.), Dainippon Ink and Chemicals Co., Ltd .; (trade name “UNIDIC (registered trademark)” series, etc.) "Aronix (registered trademark)" series, etc.), Nippon Oil and Fats Corporation; (trade name "Blemmer (registered trademark)" series, etc.), Nippon Kayaku Co., Ltd .; Kyoeisha Chemical Co., Ltd .; (Product name “Light Ester” series, “Light acrylate” series, etc.) Kill.
 更に具体的には、例えば、電子線や紫外線の照射により硬化する樹脂や熱硬化性の樹脂等を使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート、熱硬化型のポリシロキサン樹脂からなるハードコート、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート、熱硬化型無機材料であることが好ましい。また、ハードコート層7に用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(特開2005-66824号公報)、ポリウレタン系樹脂組成物(特開2005-110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004-142161号公報)、酸化チタン等の光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009-62216)、光触媒含有フッ素樹脂コーティング(ピアレックス・テクノロジーズ社)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(AZエレクトロニクス社)を用いた膜、等も挙げることができる。 More specifically, for example, a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used. In particular, a thermosetting silicone hard coat composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable. Examples of materials that can be used for the hard coat layer 7 include an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No. 2005-110918), and a water-based silicone compound as a binder. Resin film used as JP-A-2004-142161, silica film containing alumina or photocatalytic oxide such as titanium oxide, photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio (JP-A 2009-62216), Examples thereof include a photocatalyst-containing fluororesin coating (Pyrex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) on organic / inorganic polysilazane.
 熱硬化型シリコーン系のハードコート層7には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下の通りである。まず、アルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法によりフィルムミラー等の外面に塗布し、80~140℃の温度で加熱硬化することによって透明ハードコート層を形成させる。但しこの場合、フィルムミラーの熱変形温度以下での硬化温度の設定が前提となる。なお、テトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシラン、並びに/或いはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系の透明ハードコート層を製造することが可能である。 A partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used for the thermosetting silicone hard coat layer 7. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated to the outer surface of a film mirror etc. by the coating method in a normal coating material, and a transparent hard-coat layer is formed by heat-hardening at the temperature of 80-140 degreeC. However, in this case, the setting of the curing temperature below the thermal deformation temperature of the film mirror is a prerequisite. In addition, by using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane, a polysiloxane-based transparent hard coat layer is similarly produced. Is possible.
 紫外線硬化型アクリル系のハードコート層7には、不飽和基を有するアクリル系化合物として、例えばペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールテトラ(メタ)アクリレート等の多官能(メタ)アクリレート混合物等を使用することができ、これにベンゾイン、ベンゾインメチルエーテル、ベンゾフェノン等の光重合開始剤を配合して用いる。そしてこれを反射フィルム基材の外面に塗布し、紫外線硬化することによって透明なハードコート層7が形成される。 The ultraviolet curable acrylic hard coat layer 7 includes, for example, pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylol as an acrylic compound having an unsaturated group. A polyfunctional (meth) acrylate mixture such as tetra (meth) acrylate or the like can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply | coated to the outer surface of a reflective film base material, and the transparent hard-coat layer 7 is formed by ultraviolet-curing.
 また、ハードコート層7に表面処理を施して、親水性を付与することが好ましい。親水性を付与する処理としては、例えば、コロナ処理(特開平11-172028公報)、プラズマ表面処理、紫外線・オゾン処理、表面突起物形成(特開2009-226613公報)、表面微細加工処理などを挙げることができる。 Further, it is preferable to impart a hydrophilic property by subjecting the hard coat layer 7 to a surface treatment. Examples of the treatment for imparting hydrophilicity include corona treatment (Japanese Patent Laid-Open No. 11-172028), plasma surface treatment, ultraviolet / ozone treatment, surface protrusion formation (Japanese Patent Laid-Open No. 2009-226613), surface fine processing treatment, and the like. Can be mentioned.
 ハードコート層7が無機物からなる場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等を、真空製膜法により製膜することで形成できる。真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 When the hard coat layer 7 is made of an inorganic material, it can be formed, for example, by depositing silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like by a vacuum film forming method. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 また、ハードコート層7が無機物からなる場合、ポリシラザンを塗布製膜し、加熱硬化した膜からなることが好ましい。ハードコート層の前駆体が、ポリシラザンを含有する場合、例えば下記の一般式(6)で表されるポリシラザンを含む有機溶剤中に必要に応じて触媒を加えた溶液を塗布した後、溶剤を蒸発させて除去し、それによってフィルムミラー上に0.05~3.0μmの層厚を有するポリシラザン層を残す。そして、水蒸気を含む雰囲気中で酸素、活性酸素、場合によっては窒素の存在下で、上記のポリシラザン層を局所的加熱することによって、フィルムミラー上にガラス様の透明なハードコートの被膜を形成する方法を採用することが好ましい。 Further, when the hard coat layer 7 is made of an inorganic material, it is preferably made of a film obtained by coating polysilazane and heat-curing it. When the precursor of the hard coat layer contains polysilazane, for example, after applying a solution to which a catalyst is added if necessary in an organic solvent containing polysilazane represented by the following general formula (6), the solvent is evaporated. To remove the polysilazane layer having a layer thickness of 0.05 to 3.0 μm on the film mirror. Then, a glass-like transparent hard coat film is formed on the film mirror by locally heating the polysilazane layer in the presence of oxygen, active oxygen, and in some cases nitrogen in an atmosphere containing water vapor. It is preferable to adopt the method.
 -(SiR12-NR3n- ・・・(6)
 一般式(6)中、R1、R2、及びR3は、同一か又は異なり、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基、好ましくは水素、メチル、エチル、プロピル、iso-プロピル、ブチル、iso-ブチル、tert-ブチル、フェニル、ビニル又は3-(トリエトキシシリル)プロピル、3-(トリメトキシシリルプロピル)からなる群から選択される基を表す。この際、nは整数であり、nは、ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
-(SiR 1 R 2 -NR 3 ) n- (6)
In general formula (6), R 1 , R 2 , and R 3 are the same or different and are independently of each other hydrogen, or optionally substituted alkyl, aryl, vinyl, or (trialkoxysilyl). ) From an alkyl group, preferably hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl or 3- (triethoxysilyl) propyl, 3- (trimethoxysilylpropyl) Represents a group selected from the group consisting of In this case, n is an integer, and n is determined so that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 触媒としては、好ましくは、塩基性触媒、特にN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン又はN-複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1~10モル%、好ましくは0.5~7モル%の範囲である。 As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. . The catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
 なお、好ましい態様の一つでは、一般式(6)中のR1、R2及びR3のすべてが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one preferred embodiment, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (6) are hydrogen atoms is used.
 また、別の好ましい態様の一つでは、ハードコート層7が、下記の一般式(7)で表される少なくとも一種のポリシラザンを含むことである。 In another preferred embodiment, the hard coat layer 7 contains at least one polysilazane represented by the following general formula (7).
 -(SiR12-NR3n-(SiR45-NR6p- ・・・(7)
 一般式(7)中、R1、R2、R3、R4、R5及びR6は、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n及びpは整数であり、特にnは、ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
-(SiR 1 R 2 -NR 3 ) n- (SiR 4 R 5 -NR 6 ) p- (7)
In the general formula (7), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, or an optionally substituted alkyl group, aryl group, vinyl group or ( Represents a trialkoxysilyl) alkyl group; In this case, n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、R1、R3及びR6が水素を表し、そしてR2、R4及びR5がメチルを表す化合物。またR1、R3及びR6が水素を表し、そしてR2、R4がメチルを表し、そしてR5がビニルを表す化合物。また、R1、R3、R4及びR6が水素を表し、そしてR2及びR5がメチルを表す化合物である。 Particularly preferred are compounds in which R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl. A compound in which R 1 , R 3 and R 6 represent hydrogen, R 2 and R 4 represent methyl, and R 5 represents vinyl. In addition, R 1 , R 3 , R 4 and R 6 represent hydrogen, and R 2 and R 5 represent methyl.
 さらに、別の好ましい態様の一つでは、透明ハードコート層が、下記の一般式(8)で表される少なくとも一種のポリシラザンを含むことである。 Furthermore, in another preferred embodiment, the transparent hard coat layer contains at least one polysilazane represented by the following general formula (8).
 -(SiR12-NR3n-(SiR45-NR6p-(SiR78-NR9q- ・・・(8)
 一般式(8)中、R1、R2、R3、R4、R5、R6、R7、R8及びR9は、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n、p及びqは整数であり、特にnは、ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
-(SiR 1 R 2 -NR 3 ) n- (SiR 4 R 5 -NR 6 ) p- (SiR 7 R 8 -NR 9 ) q- (8)
In general formula (8), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of each other hydrogen or optionally substituted alkyl. Represents a group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, n, p and q are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、R1、R3及びR6が水素を表し、そしてR2、R4、R5及びR8がメチルを表し、R9が(トリエトキシシリル)プロピルを表し、そしてR7がアルキル又は水素を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
 溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1~80質量%、好ましくは5~50質量%、特に好ましくは10~40質量%である。 The proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
 溶剤としては、特に、水及び反応性基(例えばヒドロキシ基又はアミン基)を含まず、ポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族又は芳香族炭化水素、ハロゲン炭化水素、エステル、例えば酢酸エチル又は酢酸ブチル、ケトン、例えばアセトン又はメチルエチルケトン、エーテル、例えばテトラヒドロフラン又はジブチルエーテル、並びにモノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)又はこれらの溶剤からなる混合物である。 As the solvent, in particular, an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
 このポリシラザン溶液の追加の成分に、塗料の製造に慣用されているもののような、更に別のバインダーを用いることができる。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテート又はセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、又は合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、又はポリシロキサンである。 As an additional component of this polysilazane solution, further binders such as those conventionally used in the production of paints can be used. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
 また、このポリシラザン調合物に更に追加する別の成分として、例えば、調合物の粘度、下地の濡れ、成膜性、潤滑作用又は排気性に影響を与える添加剤、あるいは無機ナノ粒子、例えばSiO2、TiO2、ZnO、ZrO2又はAl23を用いることができる。 Further, as another component to be further added to the polysilazane formulation, for example, an additive that affects the viscosity of the formulation, wettability of the base, film forming property, lubricating action or exhaust property, or inorganic nanoparticles such as SiO 2 it can be used TiO 2, ZnO, ZrO 2 or Al 2 O 3.
 このようにして形成したポリシラザンの透明なハードコート層7は、酸素・水蒸気バリアー膜としても用いることができる。 The transparent hard coat layer 7 of polysilazane thus formed can also be used as an oxygen / water vapor barrier film.
 また、透明なハードコート層7の特に好ましい例の一つとして、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層7が挙げられる。多官能アクリルモノマーを以下「A」成分とし、シリコーン樹脂を以下「B」成分とする。
(7-1)「A」成分
 多官能アクリルモノマー「A」成分は、不飽和基、特に、活性エネルギー線反応性不飽和基を有することが好ましい。尚、本明細書で言う活性エネルギー線とは、好ましくは電子線か紫外線をいう。活性エネルギー線反応性不飽和基を有する多官能アクリルモノマーとしては、ラジカル重合系モノマーが用いられ、好ましくは、分子中にα,β-不飽和二重結合を有する2官能以上の多官能モノマーである多官能アクリレート型もしくは多官能メタクリレート型モノマー等が挙げられる。他に、ビニル型モノマー、アリル型モノマーや単官能のモノマーを有していてもよい。また、ラジカル重合系モノマーは、単独でも、または架橋密度を調整すべく2種類以上のモノマーを併用することも可能である。「A」成分としては、これら比較的低分子量化合物、例えば分子量が1000未満のいわゆる狭義のモノマーの他、ある程度分子量の大きい、例えば重量平均分子量が1000以上10000未満のオリゴマー、プレポリマーも用いることが可能である。
Moreover, as a particularly preferable example of the transparent hard coat layer 7, a hard coat layer 7 containing a polyfunctional acrylic monomer and a silicone resin can be given. The polyfunctional acrylic monomer is hereinafter referred to as “A” component, and the silicone resin is hereinafter referred to as “B” component.
(7-1) Component “A” The polyfunctional acrylic monomer “A” component preferably has an unsaturated group, particularly an active energy ray-reactive unsaturated group. The active energy ray referred to in this specification preferably means an electron beam or an ultraviolet ray. As the polyfunctional acrylic monomer having an active energy ray-reactive unsaturated group, a radical polymerization monomer is used, preferably a bifunctional or higher functional monomer having an α, β-unsaturated double bond in the molecule. A certain polyfunctional acrylate type or polyfunctional methacrylate type monomer may be mentioned. In addition, you may have a vinyl type monomer, an allyl type monomer, and a monofunctional monomer. Further, the radical polymerization monomer can be used alone or in combination of two or more kinds of monomers in order to adjust the crosslinking density. As the “A” component, in addition to these relatively low molecular weight compounds, for example, so-called narrowly-defined monomers having a molecular weight of less than 1000, oligomers and prepolymers having a somewhat high molecular weight, for example, a weight average molecular weight of 1,000 to 10,000 are also used. Is possible.
 単官能(メタ)アクリレートモノマーとして、具体的には、2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタレート、2-(メタ)アクリロイロキシプロピルフタレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、セチル(メタ)アクリレート、クレゾール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウロキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、コハク酸(メタ)アクリレート、t-ブチル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリデシル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(メタ)アクリレート、およびこれらの誘導体、変性品等が挙げられる。 Specific examples of monofunctional (meth) acrylate monomers include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and 2- (meth) acryloyloxyethyl. Hexahydrophthalate, 2- (meth) acryloyloxypropyl phthalate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, benzyl (meth) acrylate, butanediol mono (Meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, caprolactone (meth) acrylate, cetyl (meth) acrylate, cresol (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, dimethylaminoethyl (meth) acrylate, dipropylene glycol (meth) acrylate, phenyl (meth) acrylate, ethyl (Meth) acrylate, isoamyl (meth) acrylate, isobornyl (meth) acrylate, isobutyl (meth) acrylate, isodecyl (medium) ) Acrylate, isooctyl (meth) acrylate, isostearyl (meth) acrylate, isomyristyl (meth) acrylate, lauroxy polyethylene glycol (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene Glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene Glycol (meth) acrylate, octafluoropentyl (meth) acrylate, Octoxy polyethylene glycol-polypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, perfluorooctylethyl (meth) acrylate, phenoxy (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, Phenoxyethyl (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, stearyl (meth) acrylate, succinic acid (meth) acrylate, t-butyl (meth) ) Acrylate, t-butylcyclohexyl (meth) acrylate, tetrafluoropropyl (meth) Chryrate, tetrahydrofurfuryl (meth) acrylate, tribromophenyl (meth) acrylate, tridecyl (meth) acrylate, trifluoroethyl (meth) acrylate, β-carboxyethyl (meth) acrylate, ω-carboxy-polycaprolactone (meth) Examples thereof include acrylates, derivatives thereof, and modified products.
 多官能(メタ)アクリレートモノマーとして、具体的には、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ヘキサヒドロフタル酸ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、フタル酸ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、リン酸トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンベンゾエートトリ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、およびこれらの誘導体、変性品等が挙げられる。 Specific examples of the polyfunctional (meth) acrylate monomer include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol F di (meth) acrylate, diethylene glycol di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, di (meth) acrylate phthalate Rate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene Glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) acrylate , Triglycerol di (meth) acrylate, dipropylene glycol di (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol Litol tri (meth) acrylate, phosphoric acid tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane benzoate tri (meth) acrylate, tris ((meth) acryloxyethyl) isocyanurate, di (meth) acrylic Isocyanurate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and derivatives and modified products thereof It is done.
 このような重合性有機化合物である「A」成分の市販品としては、例えば、東亞合成(株)製アロニックスM-400、M-408、M-450、M-305、M-309、M-310、M-315、M-320、M-350、M-360、M-208、M-210、M-215、M-220、M-225、M-233、M-240、M-245、M-260、M-270、M-1100、M-1200、M-1210、M-1310、M-1600、M-221、M-203、TO-924、TO-1270、TO-1231、TO-595、TO-756、TO-1343、TO-902、TO-904、TO-905、TO-1330、日本化薬(株)製KAYARAD D-310、D-330、DPHA、DPCA-20、DPCA-30、DPCA-60、DPCA-120、DN-0075、DN-2475、SR-295、SR-355、SR-399E、SR-494、SR-9041、SR-368、SR-415、SR-444、SR-454、SR-492、SR-499、SR-502、SR-9020、SR-9035、SR-111、SR-212、SR-213、SR-230、SR-259、SR-268、SR-272、SR-344、SR-349、SR-601、SR-602、SR-610、SR-9003、PET-30、T-1420、GPO-303、TC-120S、HDDA、NPGDA、TPGDA、PEG400DA、MANDA、HX-220、HX-620、R-551、R-712、R-167、R-526、R-551、R-712、R-604、R-684、TMPTA、THE-330、TPA-320、TPA-330、KS-HDDA、KS-TPGDA、KS-TMPTA、共栄社化学(株)製ライトアクリレート PE-4A、DPE-6A、DTMP-4A等を挙げることができる。 Examples of such commercially available “A” component that is a polymerizable organic compound include Aronix M-400, M-408, M-450, M-305, M-309, M-manufactured by Toagosei Co., Ltd. 310, M-315, M-320, M-350, M-360, M-208, M-210, M-215, M-220, M-225, M-233, M-240, M-245, M-260, M-270, M-1100, M-1200, M-1210, M-1310, M-1600, M-221, M-203, TO-924, TO-1270, TO-1231, TO- 595, TO-756, TO-1343, TO-902, TO-904, TO-905, TO-1330, KAYARAD D-310, D-330, DPHA, DPCA-20, DP manufactured by Nippon Kayaku Co., Ltd. A-30, DPCA-60, DPCA-120, DN-0075, DN-2475, SR-295, SR-355, SR-399E, SR-494, SR-9041, SR-368, SR-415, SR- 444, SR-454, SR-492, SR-499, SR-502, SR-9020, SR-9035, SR-111, SR-212, SR-213, SR-230, SR-259, SR-268, SR-272, SR-344, SR-349, SR-601, SR-602, SR-610, SR-9003, PET-30, T-1420, GPO-303, TC-120S, HDDA, NPGDA, TPGDA, PEG400DA, MANDA, HX-220, HX-620, R-551, R-712, R-167, R-526, -551, R-712, R-604, R-684, TMPTA, THE-330, TPA-320, TPA-330, KS-HDDA, KS-TPGDA, KS-TMPTA, Kyoeisha Chemical Co., Ltd. light acrylate PE -4A, DPE-6A, DTMP-4A and the like.
 重合性有機化合物「A」成分の含有量は、防汚性や耐光性を良好にする観点から、「A」+「B」の組成物全体を100質量%として、10~90質量%であることが好ましく、15~80質量%がさらに好ましい。
(7-2)「B」成分
 シリコーン樹脂「B」成分としては、活性エネルギー線反応性不飽和基を有するシリコーン樹脂であることが好ましい。シリコーン樹脂は、ポリオルガノシロキサンを含有し、好ましくは、活性エネルギー線硬化性不飽和結合を分子内に有したポリオルガノシロキサン鎖を有する化合物である。特に、ラジカル重合性二重結合およびポリオルガノシロキサン鎖を有する単量体(a)1~50質量%と、ラジカル重合性二重結合および反応性官能基を有する(a)以外の単量体(b)10~95質量%と、(a)および(b)以外のラジカル重合性二重結合を有する単量体(c)0~89質量%とを含む単量体を重合してなる重合体(α)に、前記した反応性官能基と反応可能な官能基、およびラジカル重合性二重結合を有する化合物(β)を反応させてなる数平均分子量5000~100000のビニル共重合体である活性エネルギー線硬化性樹脂組成物であることが好ましい。
The content of the polymerizable organic compound “A” component is 10 to 90% by mass with the total composition of “A” + “B” being 100% by mass from the viewpoint of improving antifouling properties and light resistance. It is preferably 15 to 80% by mass.
(7-2) “B” Component The silicone resin “B” component is preferably a silicone resin having an active energy ray-reactive unsaturated group. The silicone resin contains a polyorganosiloxane, and is preferably a compound having a polyorganosiloxane chain having an active energy ray-curable unsaturated bond in the molecule. In particular, the monomer (a) having 1 to 50% by mass of a radically polymerizable double bond and a polyorganosiloxane chain, and a monomer other than (a) having a radically polymerizable double bond and a reactive functional group ( b) a polymer obtained by polymerizing a monomer containing 10 to 95% by mass and a monomer having a radical polymerizable double bond other than (a) and (b) (c) 0 to 89% by mass Activity which is a vinyl copolymer having a number average molecular weight of 5000 to 100,000, which is obtained by reacting (α) with a functional group capable of reacting with the above-mentioned reactive functional group and a compound (β) having a radical polymerizable double bond It is preferable that it is an energy beam curable resin composition.
 ラジカル重合性二重結合およびポリオルガノシロキサン鎖を有する単量体(a)として、具体的には、例えばチッソ(株)製のサイラプレーンFM-0711、FM-0721、FM-0725などの片末端(メタ)アクリロキシ基含有ポリオルガノシロキサン化合物、東亞合成(株)製のAC-SQ SI-20、Hybrid Plastics社製POSS(Polyhedral Oligomeric Silsesquioxane)シリーズのアクリレート、メタクリレート含有化合物等が挙げられる。 Specific examples of the monomer (a) having a radical polymerizable double bond and a polyorganosiloxane chain include, for example, one end of Silaplane FM-0711, FM-0721, FM-0725, etc. manufactured by Chisso Corporation. Examples include (meth) acryloxy group-containing polyorganosiloxane compounds, AC-SQ SI-20 manufactured by Toagosei Co., Ltd., Hybrid Plastics POSS (Polyhydrogen Oligomeric Silsesquioxane) series acrylate, methacrylate-containing compounds, and the like.
 「B」成分は、要求性能に応じて1種、または2種以上を混合して用いることができる。また、重合比率は、重合体を構成する単量体の総質量を基準として1~50質量%であることが好ましく、さらに好ましくは10~35質量%である。「B」成分の共重合比率が1質量%未満の場合には、硬化物の上部表面に防汚性、耐候性を付与することが困難となり、50質量%を越える場合には、耐擦傷性が低下する上、放射線硬化型組成物に含まれる他の成分との相溶性、基材との密着性、強靭性等の塗膜性能、および重合体の溶媒への溶解性を得ることが困難となる。上記成分中に、ポリシロキサンを適当量含有することもでき、「B」成分の化学構造や量比によっては、ポリシロキサンを添加することによって、耐久性が向上する。 The “B” component can be used alone or in combination of two or more depending on the required performance. The polymerization ratio is preferably 1 to 50% by mass, more preferably 10 to 35% by mass, based on the total mass of monomers constituting the polymer. When the copolymerization ratio of the “B” component is less than 1% by mass, it becomes difficult to impart antifouling properties and weather resistance to the upper surface of the cured product, and when it exceeds 50% by mass, scratch resistance is obtained. In addition, it is difficult to obtain compatibility with other components contained in the radiation curable composition, coating performance such as adhesion to a substrate, toughness, and solubility of a polymer in a solvent. It becomes. An appropriate amount of polysiloxane can also be contained in the above components, and depending on the chemical structure and quantitative ratio of the “B” component, the durability can be improved by adding polysiloxane.
 このハードコート層7は、屈曲性があり、反りが生じないことが好ましい。フィルムミラーの最表面層における透明なハードコート層7は密な架橋構造を形成する場合があり、そのためフィルムが反り曲がることや、屈曲性がないためにクラックが入りやすいようなことがあり、取り扱いが困難になる。このような場合、ハードコート層組成中の無機物の量を調整するなどして、柔軟性があり、平面性が得られるように設計することが好ましい。
(7-3)添加剤
 また、ハードコート層7に紫外線吸収剤や酸化防止剤を含有させてもよい。紫外線吸収剤や酸化防止剤としては、上述の透光性樹脂層6で用いた紫外線吸収剤や酸化防止剤を用いることができる。
The hard coat layer 7 is preferably flexible and does not warp. The transparent hard coat layer 7 on the outermost surface layer of the film mirror may form a dense cross-linked structure, so that the film may be bent or may be cracked due to lack of flexibility. Becomes difficult. In such a case, it is preferable to design so as to obtain flexibility and flatness by adjusting the amount of the inorganic substance in the hard coat layer composition.
(7-3) Additive The hard coat layer 7 may contain an ultraviolet absorber or an antioxidant. As the ultraviolet absorber or antioxidant, the ultraviolet absorber or antioxidant used in the above-described translucent resin layer 6 can be used.
 特に、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層7において好ましい紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤である。ベンゾトリアゾール系の紫外線吸収剤をハードコート層7に含有させることにより、耐候性を更に良好にするだけでなく、転落角も更に低下できるという優れた効果を得ることができる。特に、下記の一般式(9)で表される化合物をハードコート層7に含有させた場合、転落角の低下という効果が著しい。尚、転落角とは、水平なミラー上に水滴を滴下し、その後、当該ミラーの傾斜角を徐々に上げていき、静止していた所定質量の水滴が転落する最小の角度を計測したものをいう。転落角が小さければ小さい程、水滴が表面から転がり落ちやすく、水滴が付着しにくい表面であると言える。 Particularly, a preferable UV absorber in the hard coat layer 7 containing a polyfunctional acrylic monomer and a silicone resin is a benzotriazole-based UV absorber. By including the benzotriazole-based ultraviolet absorber in the hard coat layer 7, not only the weather resistance can be further improved, but also the excellent effect that the falling angle can be further reduced can be obtained. In particular, when the compound represented by the following general formula (9) is contained in the hard coat layer 7, the effect of lowering the falling angle is remarkable. The falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which the water drop of a predetermined mass that has been stationary falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 なお、ハードコート層7における紫外線吸収剤の使用量は、密着性を良好に保ちつつ、耐候性を良好にするために、0.1~20質量%であることが好ましい。さらに好ましくは0.25~15質量%、より好ましくは0.5~10質量%である。 The amount of the ultraviolet absorber used in the hard coat layer 7 is preferably 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is 0.25 to 15% by mass, and more preferably 0.5 to 10% by mass.
 ハードコート層7に用いられる酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。有機系酸化防止剤をハードコート層7に含有させることでも、転落角を低下し得る。酸化防止剤と光安定剤を併用してもよい。 As the antioxidant used for the hard coat layer 7, it is preferable to use organic antioxidants such as phenolic antioxidants, thiol antioxidants, and phosphite antioxidants. The falling angle can also be reduced by including an organic antioxidant in the hard coat layer 7. An antioxidant and a light stabilizer may be used in combination.
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。 Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 特に、ヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、または1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。 In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. ) -Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, Alternatively, a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferable.
 その他、光安定剤としてニッケル系紫外線安定剤も使用可能であり、ニッケル系紫外線安定剤として、〔2,2′-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等が挙げられる。 In addition, nickel-based UV stabilizers can be used as light stabilizers, and [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II) can be used as nickel-based UV stabilizers. Nickel complex-3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, and the like.
 ハードコート層7、特に、多官能アクリルモノマーとシリコン樹脂を含有するハードコート層7は、重合を開始するための開始剤を含有することが好ましい。紫外線などの活性エネルギー線硬化性樹脂の光重合開始剤が好ましく用いられる。例えば、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、開始剤を光増感剤と共に使用してもよい。上記開始剤も光増感剤として使用できる。また、エポキシアクリレート系の開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。開始剤また光増感剤は該組成物100質量部に対して0.1~15質量部であり、好ましくは1~10質量部、より好ましくは、2~5質量部である。2種類の開始剤を併用することもでき、特にラジカル系開始剤の場合、少なくとも2種類の開始剤、好ましくは互いに異なる波長を吸収するラジカル系開始剤を用いることである。より好ましくは、互いに紫外線吸収波長の異なる2種類の開始剤を使用することである。例えば、より短波長の波長を吸収する開始剤のみでは、開始剤によってモノマー全ての重合反応を行えない場合がある。一方、より長波長の波長を吸収する開始剤のみでは、反応性はよくなるが、長期使用時に開始剤が着色してしまう可能性がある。そこで、長期使用時においても着色することなく、耐候性を良好にし、更に、重合反応性も良好にするために、互いに異なる波長を吸収するラジカル系開始剤を用いることが好ましい。 The hard coat layer 7, particularly the hard coat layer 7 containing a polyfunctional acrylic monomer and a silicon resin, preferably contains an initiator for initiating polymerization. Photoinitiators of active energy ray-curable resins such as ultraviolet rays are preferably used. Examples include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Moreover, you may use an initiator with a photosensitizer. The above initiator can also be used as a photosensitizer. In addition, when using an epoxy acrylate initiator, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used. The initiator or photosensitizer is used in an amount of 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, based on 100 parts by weight of the composition. Two types of initiators can be used in combination. In particular, in the case of radical initiators, at least two types of initiators, preferably radical initiators that absorb different wavelengths, are used. More preferably, two kinds of initiators having different ultraviolet absorption wavelengths are used. For example, with only an initiator that absorbs a shorter wavelength, the polymerization reaction of all the monomers may not be performed by the initiator. On the other hand, only an initiator that absorbs longer wavelengths improves the reactivity, but the initiator may be colored during long-term use. Therefore, it is preferable to use radical initiators that absorb different wavelengths in order to improve the weather resistance and also the polymerization reactivity without coloring even during long-term use.
 ハードコート層7中には、さらに各種の添加剤を必要に応じて配合することができる。例えば、界面活性剤、レベリング剤および帯電防止剤などを用いることができる。 In the hard coat layer 7, various additives can be further blended as necessary. For example, a surfactant, a leveling agent and an antistatic agent can be used.
 レベリング剤は、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば東レダウコーニング(株)製SH190)が好適である。
(8)ガスバリアー層
 ガスバリアー層5は、光反射層よりも光入射側に設けることが好ましい。特に、透光性樹脂層6と光反射層の間にガスバリアー層5を設けることが好ましい。
The leveling agent is effective in reducing surface irregularities. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicone leveling agent.
(8) Gas Barrier Layer The gas barrier layer 5 is preferably provided on the light incident side with respect to the light reflecting layer. In particular, it is preferable to provide the gas barrier layer 5 between the translucent resin layer 6 and the light reflecting layer.
 ガスバリアー層5は、湿度の変動、特に高湿度による樹脂基材1及び樹脂基材1に支持される各構成層等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、劣化防止機能を有する限りにおいて、種々の態様のガスバリアー層を設けることができる。 The gas barrier layer 5 is for preventing deterioration of the humidity, particularly deterioration of the resin base material 1 and each component layer supported by the resin base material 1 due to high humidity, but has a special function and application. As long as it has a function of preventing deterioration, various types of gas barrier layers can be provided.
 ガスバリアー層5の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m2・day以下であることが好ましく、より好ましくは0.5g/m2・day以下、更に好ましくは0.2g/m2・day以下である。 As the moisture barrier property of the gas barrier layer 5, the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 · day or less, more preferably 0.5 g / m 2 · day or less, still more preferably Is 0.2 g / m 2 · day or less.
 また、ガスバリアー層5の酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m2/day/atm以下であることが好ましい。 The oxygen permeability of the gas barrier layer 5 is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
 ガスバリアー層5の形成方法は、真空蒸着法、スパッタリング、イオンビームアシスト、化学気相成長法等の方法により無機酸化物を形成する方法が挙げられるが、ゾル-ゲル法による無機酸化物の前駆体を塗布した後に、その塗布膜に加熱処理及び/又は紫外線照射処理を施して、無機酸化物膜を形成する方法も好ましく用いられる。
(8-1)無機酸化物
 無機酸化物は、有機金属化合物を原料とするゾルから局所的加熱により形成されたものである。例えば、有機金属化合物に含有されているケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)等の元素の酸化物であり、例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等である。これらのうち、好ましくは、酸化ケイ素である。
Examples of the method for forming the gas barrier layer 5 include a method of forming an inorganic oxide by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, and the like. A method of forming an inorganic oxide film by applying a heat treatment and / or ultraviolet irradiation treatment to the coating film after coating the body is also preferably used.
(8-1) Inorganic oxide An inorganic oxide is formed by local heating from a sol using an organometallic compound as a raw material. For example, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, An oxide of an element such as tin (Sn) or niobium (Nb), for example, silicon oxide, aluminum oxide, zirconium oxide, or the like. Of these, silicon oxide is preferable.
 無機酸化物を形成する方法としては、いわゆるゾル-ゲル法またはポリシラザン法を用いることが好ましい。ゾル-ゲル法は無機酸化物の前駆体である有機金属化合物から無機酸化物を形成する方法であり、ポリシラザン法は無機酸化物の前駆体であるポリシラザンから無機酸化物を形成する方法である。
(8-2)無機酸化物の前駆体
 ガスバリアー層5は、加熱により無機酸化物を形成する前駆体を塗布した後に、一般的な加熱方法が適用して形成することできるが、局所的加熱により形成することが好ましい。この前駆体は、ゾル状の有機金属化合物又はポリシラザンが好ましい。
(8-3)有機金属化合物
 有機金属化合物は、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ランタン(La)、イットリウム(Y)、及びニオブ(Nb)のうちの少なくとも一つの元素を含有することが好ましい。特に、有機金属化合物が、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することが好ましい。さらに、ケイ素(Si)、アルミニウム(Al)、及びリチウム(Li)のうちの少なくとも一つの元素を含有することが好ましい。
As a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method. The sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide, and the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide.
(8-2) Inorganic Oxide Precursor The gas barrier layer 5 can be formed by applying a general heating method after applying a precursor for forming an inorganic oxide by heating. It is preferable to form by. This precursor is preferably a sol-shaped organometallic compound or polysilazane.
(8-3) Organometallic compound The organometallic compound includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium ( It is preferable to contain at least one element of Ba), indium (In), tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb). In particular, the organometallic compound contains at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
 有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、金属アルコキシドが挙げられる。この金属アルコキシドは、下記の一般式(10)で表される。 The organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides. This metal alkoxide is represented by the following general formula (10).
   MR2 m(OR1n-m ・・・(10)
 上記の一般式(10)において、Mは、酸化数nの金属を表す。R1及びR2は、各々独立にアルキル基を表す。mは、0~(n-1)の整数を表す。また、R1及びR2は、同一でもよく、異なっていてもよい。R1及びR2としては、炭素原子4個以下のアルキル基が好ましく、例えば、メチル基CH3(以下、Meで表す。)、エチル基C25(以下、Etで表す)、プロピル基C37(以下、Prで表す。)、イソプロピル基i-C37(以下、i-Prで表す。)、ブチル基C49(以下、Buで表す)、イソブチル基i-C49(以下、i-Buで表す)等の低級アルキル基がより好ましい。
MR 2 m (OR 1 ) nm (10)
In the above general formula (10), M represents a metal having an oxidation number n. R 1 and R 2 each independently represents an alkyl group. m represents an integer of 0 to (n−1). R 1 and R 2 may be the same or different. R 1 and R 2 are preferably an alkyl group having 4 or less carbon atoms, such as a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), and a propyl group. C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
 また、上記の一般式(10)で表される金属アルコキシドとしては、例えば、リチウムエトキシドLiOEt、ニオブエトキシドNb(OEt)5、マグネシウムイソプロポキシドMg(OPr-i)2、アルミニウムイソプロポキシドAl(OPr-i)3、亜鉛プロポキシドZn(OPr)2、テトラエトキシシランSi(OEt)4、チタンイソプロポキシドTi(OPr-i)4、バリウムエトキシドBa(OEt)2、バリウムイソプロポキシドBa(OPr-i)2、トリエトキシボランB(OEt)3、ジルコニウムプロポキシドZn(OPr)4、ランタンプロポキシドLa(OPr)3、イットリウムプロポキシドY(OPr)3、鉛イソプロポキシドPb(OPr-i)2等が好適に挙げられる。これらの金属アルコキシドは何れも市販品があり、容易に入手することができる。また、金属アルコキシドは、部分的に加水分解して得られる低縮合物も市販されており、これを原料として使用することも可能である。
(8-4)ゾル-ゲル法
 ここで、「ゾル-ゲル法」とは、有機金属化合物を加水分解すること等により、水酸化物のゾルを得て、脱水処理してゲルとし、さらにこのゲルを加熱処理することで、ある一定の形状(フィルム状、粒子状、繊維状等)の金属酸化物ガラスを調製する方法をいう。異なる複数のゾル溶液を混合する方法、他の金属イオンを添加する方法等により、多成分系の金属酸化物ガラスを得ることも可能である。具体的には、下記の工程を有するゾル-ゲル法で、無機酸化物を製造することが好ましい。
Examples of the metal alkoxide represented by the general formula (10) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , and aluminum isopropoxide. Al (OPr-i) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxy Ba (OPr-i) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb (OPr-i) 2 and the like are preferred. All of these metal alkoxides are commercially available and can be easily obtained. Moreover, the metal alkoxide is also commercially available as a low condensate obtained by partial hydrolysis, and it can be used as a raw material.
(8-4) Sol-gel method Here, the “sol-gel method” refers to a hydroxide sol obtained by hydrolyzing an organometallic compound, etc., and dehydrated to form a gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.) by heat-treating the gel. A multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like. Specifically, it is preferable to produce an inorganic oxide by a sol-gel method having the following steps.
 すなわち、少なくとも水及び有機溶媒を含有する反応液中で、ホウ素イオン存在下にてハロゲンイオンを触媒として、pHを4.5~5.0に調整しながら、有機金属化合物を加水分解及び脱水縮合して反応生成物を得る工程、及びその反応生成物を200℃以下の温度で加熱してガラス化する工程、を有するゾル-ゲル法により製造されてなることが、高温熱処理による微細孔の発生や膜の劣化等が発生しないという観点から特に好ましい。 That is, in a reaction solution containing at least water and an organic solvent, the organometallic compound is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion. Generation of micropores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
 このゾル-ゲル法において、原料として用いられる有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、上記した金属アルコキシドが挙げられる。 In this sol-gel method, the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides described above. It is done.
 ゾル-ゲル法において、上記した有機金属化合物は、そのまま反応に用いてもよいが、反応の制御を容易にするため溶媒で希釈して用いることが好ましい。希釈用溶媒は、有機金属化合物を溶解することができ、かつ水と均一に混合することができるものであればよい。そのような希釈用溶媒としては、脂肪族の低級アルコール、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、プロピレングリコール、及びそれらの混合物が好適に挙げられる。また、ブタノールとセロソルブとブチルセロソルブの混合溶媒、あるいはキシロールとセロソルブアセテートとメチルイソブチルケトンとシクロヘキサンの混合溶媒などを使用することもできる。 In the sol-gel method, the above-described organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction. The dilution solvent may be any solvent that can dissolve the organometallic compound and can be uniformly mixed with water. Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof. Further, a mixed solvent of butanol, cellosolve, and butyl cellosolve, or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
 この有機金属化合物において、金属がCa、Mg、Al等である場合には、反応液中の水と反応して水酸化物を生成したり、炭酸イオンCO3 2-が存在すると炭酸塩を生成したりして沈殿を生ずるため、反応液に隠蔽剤としてトリエタノールアミンのアルコール溶液を添加することが好ましい。溶媒に混合溶解するときの有機金属化合物の濃度としては、70質量%以下が好ましく、5~70質量%の範囲に希釈して使用することがより好ましい。 In this organometallic compound, when the metal is Ca, Mg, Al, etc., it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution. The concentration of the organometallic compound when mixed and dissolved in the solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
 ゾル-ゲル法において用いられる反応液は、少なくとも水及び有機溶媒を含有する。有機溶媒としては、水及び酸、アルカリと均一な溶液をつくるものであればよく、通常、有機金属化合物の希釈に用いる脂肪族の低級アルコール類と同様のものが好適に挙げられる。脂肪族の低級アルコール類の中でも、メタノール、エタノールより、炭素数の多いプロパノール、イソプロパノール、ブタノール、及びイソブタノールが好ましい。これは、生成する金属酸化物ガラスの膜の成長が安定であるためである。この反応液において、水の割合としては、水の濃度として0.2~50mol/Lの範囲が好ましい。 The reaction solution used in the sol-gel method contains at least water and an organic solvent. The organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali. Usually, the same aliphatic aliphatic alcohols used for diluting the organometallic compound are preferably used. Among aliphatic lower alcohols, propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable. In this reaction solution, the ratio of water is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
 また、ゾル-ゲル法においては、反応液中において、ホウ素イオンの存在下にて、ハロゲンイオンを触媒として、有機金属化合物を加水分解する。ホウ素イオンB3+を与える化合物としては、トリアルコキシボランB(OR)3が好適に挙げられる。その中でも、トリエトキシボランB(OEt)3がより好ましい。また、反応液中のB3+イオン濃度としては、1.0~10.0mol/Lの範囲が好ましい。 In the sol-gel method, an organometallic compound is hydrolyzed in a reaction solution in the presence of boron ions using a halogen ion as a catalyst. A preferred example of the compound that gives boron ion B 3+ is trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable. The B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
 ハロゲンイオンとしては、フッ素イオン及び/又は塩素イオンが好適に挙げられる。即ち、フッ素イオン単独、塩素イオン単独でもよく、これらの混合物でもよい。用いる化合物としては、上記した反応液中でフッ素イオン及び/又は塩素イオンを生ずるものであればよく、例えば、フッ素イオン源として、フッ化水素アンモニウムNH4HF・HF、フッ化ナトリウムNaF等が好適に挙げられ、塩素イオン源として、塩化アンモニウムNH4Cl等が好適に挙げられる。 As a halogen ion, a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used. The compound to be used is not particularly limited as long as it generates fluorine ions and / or chlorine ions in the reaction solution described above. For example, as a fluorine ion source, ammonium hydrogen fluoride NH 4 HF · HF, sodium fluoride NaF or the like is suitable. Preferred examples of the chloride ion source include ammonium chloride NH 4 Cl.
 また、反応液中のハロゲンイオンの濃度としては、製造しようとする無機マトリックスを有する無機組成物からなるフィルムの膜厚や、その他の条件によって異なるが、一般的には、触媒を含む反応液の合計質量に対して、0.001~2mol/kg、特に0.002~0.3mol/kgの範囲が好ましい。ハロゲンイオンの濃度が0.001mol/kgより低いと、有機金属化合物の加水分解が十分に進行し難くなり、膜の形成が困難となる。またハロゲンイオンの濃度が2mol/kgを超えると、生成する無機マトリックス(金属酸化物ガラス)が不均一になり易いため、いずれも好ましくない。 The concentration of halogen ions in the reaction solution varies depending on the film thickness of the inorganic composition having the inorganic matrix to be produced and other conditions. A range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg is preferable with respect to the total mass. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Moreover, since the produced | generated inorganic matrix (metal oxide glass) will become non-uniform easily when the density | concentration of a halogen ion exceeds 2 mol / kg, neither is preferable.
 なお、反応時に使用したホウ素に関しては、得られる無機マトリックスの設計組成中にB23成分として含有させる場合は、その含有量に応じた有機ホウ素化合物の計算量を添加したまま生成物とすればよく、またホウ素を除去したいときは、成膜後、溶媒としてのメタノールの存在下、又はメタノールに浸漬して加熱すればホウ素はホウ素メチルエステルとして蒸発させて除去することができる。 With respect to the boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of In addition, when it is desired to remove boron, boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersing in methanol.
 有機金属化合物を、加水分解及び脱水縮合して反応生成物を得る工程においては、通常所定量の有機金属化合物を、所定量の水及び有機溶媒を含有する混合溶媒に混合溶解した主剤溶液、ならびに所定量のハロゲンイオンを含有する所定量の反応液を、所定の比で混合し十分に攪拌して均一な反応溶液とした後、酸又はアルカリで反応溶液のpHを希望の値に調整し、数時間熟成することにより進行させて反応生成物を得る。ホウ素化合物は、主剤溶液又は反応液に予め所定量を混合溶解しておく。また、アルコキシボランを用いる場合は、他の有機金属化合物と共に主剤溶液に溶解するのが有利である。 In the step of obtaining a reaction product by hydrolysis and dehydration condensation of an organometallic compound, a main agent solution in which a predetermined amount of an organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent, and After mixing a predetermined amount of a reaction solution containing a predetermined amount of halogen ions at a predetermined ratio and stirring sufficiently to obtain a uniform reaction solution, the pH of the reaction solution is adjusted to a desired value with an acid or alkali, The reaction product is obtained by aging for several hours. A predetermined amount of the boron compound is previously mixed and dissolved in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
 反応溶液のpHは、目的によって選択され、無機マトリックス(金属酸化物ガラス)を有する無機組成物からなる膜(フィルム)の形成を目的とするときは、例えば、塩酸等の酸を用いて測定温度25℃でpHを4.5~5の範囲に調整して熟成するのが好ましい。この場合は、例えば、指示薬としてメチルレッドとブロモクレゾールグリーンとを混合したもの等を用いると便利である。 The pH of the reaction solution is selected according to the purpose, and when the purpose is to form a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the measurement temperature is measured using an acid such as hydrochloric acid. It is preferable to age at 25 ° C. by adjusting the pH to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
 なお、ゾル-ゲル法においては、同一成分の同一濃度の主剤溶液、及び反応液(B3+及びハロゲンイオンを含む。)を所定のpHに調整しながら、逐次同一割合で追加添加することにより簡単に継続して、反応生成物を製造することもできる。なお、反応溶液の濃度は±50質量%の範囲で、水(酸又はアルカリを含む。)の濃度は、±30質量%の範囲で、及びハロゲンイオンの濃度は±30質量%の範囲で変化させることができる。 In the sol-gel method, the main component solution of the same component and the same concentration and the reaction solution (including B 3+ and halogen ions) are successively added at the same rate while adjusting to a predetermined pH. The reaction product can also be produced simply and continuously. The concentration of the reaction solution is in the range of ± 50% by mass, the concentration of water (including acid or alkali) is in the range of ± 30% by mass, and the concentration of the halogen ion is in the range of ± 30% by mass. Can be made.
 次に、前工程で得られた反応生成物(熟成後の反応溶液)を、200℃以下の温度に加熱して乾燥しガラス化させる。加熱にあたって、特に50~70℃の温度区間を注意して徐々に昇温して、予備乾燥(溶媒揮散)工程を経た後さらに昇温することが好ましい。この乾燥は、膜形成の場合、無孔化膜とするために重要である。予備乾燥工程後、加熱し乾燥する温度としては、70~150℃が好ましく、80~130℃がより好ましい。
(9)アンカー層
 アンカー層2は、樹脂からなり、樹脂基材1と銀反射層3とを密着させるものである。従って、アンカー層2は、樹脂基材1と銀反射層3とを密着する密着性、銀反射層3を真空蒸着法等で形成する際の熱にも耐え得る耐熱性、及び銀反射層3が本来有する高い反射性能を引き出すための平滑性が必要である。
Next, the reaction product (reaction solution after aging) obtained in the previous step is heated to a temperature of 200 ° C. or lower, dried and vitrified. In heating, it is preferable that the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature. This drying is important for forming a non-porous film in the case of film formation. The temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
(9) Anchor layer Anchor layer 2 consists of resin, and makes resin base material 1 and silver reflective layer 3 stick. Therefore, the anchor layer 2 has adhesiveness for closely adhering the resin substrate 1 and the silver reflective layer 3, heat resistance that can withstand heat when the silver reflective layer 3 is formed by a vacuum deposition method, and the silver reflective layer 3. Smoothness is required to bring out the high reflection performance inherent in
 アンカー層2に使用する樹脂材料は、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin material used for the anchor layer 2 is not particularly limited as long as it satisfies the above adhesiveness, heat resistance, and smoothness conditions, and polyester resin, acrylic resin, melamine resin, epoxy resin. , Polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or mixed resins thereof can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent such as.
 アンカー層2の形成方法としては、所定の樹脂材料を塗布、塗工するグラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the anchor layer 2, a conventionally known coating method such as a gravure coating method, a reverse coating method, a die coating method, or the like in which a predetermined resin material is applied and coated can be used.
 アンカー層2の厚さは、0.01~3μmが好ましく、より好ましくは0.1~1μmである。厚さが0.01μmより薄いと、密着性が悪くなりアンカー層2を形成した効果がなく、また樹脂基材1表面の凹凸を覆い隠し難くなり、平滑性が悪くなって結果的には銀反射層3の反射率が低くなってしまうので好ましくない。また、厚さが3μmより厚くても、密着性の向上は望めず、かえって塗りムラの発生により平滑性が悪くなり、アンカー層2の硬化が不充分となる場合があるので好ましくない。
(10)フィルムミラーの製造方法
 上述した各構成層を適宜積層することによって、太陽熱発電用のフィルムミラーを製造することができる。
The thickness of the anchor layer 2 is preferably 0.01 to 3 μm, more preferably 0.1 to 1 μm. If the thickness is less than 0.01 μm, the adhesion is poor and the effect of forming the anchor layer 2 is not obtained, and it is difficult to cover the unevenness on the surface of the resin substrate 1, resulting in poor smoothness and consequently silver. Since the reflectance of the reflective layer 3 becomes low, it is not preferable. Further, even if the thickness is greater than 3 μm, improvement in adhesion cannot be expected. On the contrary, smoothness is deteriorated due to occurrence of uneven coating, and the anchor layer 2 may be insufficiently cured, which is not preferable.
(10) Film mirror manufacturing method A film mirror for solar power generation can be manufactured by appropriately laminating the above-described constituent layers.
 ここでは、図4Aに示すフィルムミラー10dを例に説明する。 Here, the film mirror 10d shown in FIG. 4A will be described as an example.
 例えば、溶融製膜などで作製された樹脂基材1であるポリエチレンテレフタレートフィルム上に、所定の樹脂材料を塗布することによってアンカー層2を形成する。 For example, the anchor layer 2 is formed by applying a predetermined resin material on a polyethylene terephthalate film that is a resin base material 1 manufactured by melt film formation or the like.
 次いで、アンカー層2上に、真空蒸着によって銀反射層3を形成する。 Next, the silver reflection layer 3 is formed on the anchor layer 2 by vacuum deposition.
 次いで、銀反射層3上に、腐食防止剤を含有した樹脂材料を塗布することによって腐食防止層4を形成する。 Next, the corrosion prevention layer 4 is formed on the silver reflection layer 3 by applying a resin material containing a corrosion inhibitor.
 次いで、腐食防止層4上に、ゾル-ゲル法および加熱/UV処理を施すことによってガスバリアー層5を形成する。 Next, a gas barrier layer 5 is formed on the corrosion prevention layer 4 by performing a sol-gel method and heating / UV treatment.
 次いで、ガスバリアー層5上に、紫外線吸収剤を含有した樹脂材料を塗布することによって透光性樹脂層6を形成する。 Next, a translucent resin layer 6 is formed on the gas barrier layer 5 by applying a resin material containing an ultraviolet absorber.
 次いで、透光性樹脂層6上に、ハードコート材料を塗布することによってハードコート層7を形成する。 Next, a hard coat layer 7 is formed on the translucent resin layer 6 by applying a hard coat material.
 さらに、樹脂基材1の裏面側に、粘着材料を塗工して粘着層2を形成し、その粘着層2を剥離シートで覆うことによって、フィルムミラー10dが製造される。 Furthermore, a film mirror 10d is manufactured by applying an adhesive material to the back side of the resin substrate 1 to form an adhesive layer 2 and covering the adhesive layer 2 with a release sheet.
 なお、フィルムミラー10a、10b、10cを製造する際には、フィルムミラー10dには無い構成層を形成する工程を省き、各フィルムミラーに必要な構成層を樹脂基材1に所定順に積層することで、所望のフィルムミラーを製造することができる。 In addition, when manufacturing the film mirrors 10a, 10b, and 10c, the step of forming a constituent layer that is not included in the film mirror 10d is omitted, and the constituent layers necessary for each film mirror are laminated on the resin base material 1 in a predetermined order. Thus, a desired film mirror can be manufactured.
 そして、本発明のフィルムミラーでは、樹脂基材1のみが溶融製膜などで作製された樹脂フィルムであり、他の構成層には樹脂フィルムを用いておらず、その樹脂基材1に対して順次、各構成層の材料の塗布・塗工や蒸着などによる成膜を繰り返し、所定の構成層を積層することでフィルムミラーを製造している。 And in the film mirror of this invention, only the resin base material 1 is a resin film produced by melt film-forming etc., and the resin film is not used for the other component layers, The film mirror is manufactured by sequentially repeating film formation by coating, coating, vapor deposition or the like of the material of each constituent layer, and laminating predetermined constituent layers.
 つまり、本発明のフィルムミラーの製造方法は、少なくとも銀反射層を有する樹脂フィルムと、銀反射層よりも光入射側に配置される層(例えば、紫外線吸収剤入り透光性樹脂層)となる樹脂フィルムとを別々に製造し、その後2つの樹脂フィルムを接着剤(接着層)によって貼り合わせる工程を含まないことを特徴としている。
(11)太陽熱発電用反射装置
 太陽熱発電用反射装置は、フィルムミラーと自己支持性の支持基材9とを有しており、粘着層8を介してフィルムミラーが支持基材9に接合されている反射鏡である。
That is, the film mirror manufacturing method of the present invention includes a resin film having at least a silver reflective layer and a layer (for example, a translucent resin layer containing an ultraviolet absorber) disposed on the light incident side of the silver reflective layer. The resin film and the resin film are manufactured separately, and thereafter the step of bonding the two resin films with an adhesive (adhesive layer) is not included.
(11) Reflector for solar power generation The reflector for solar power generation includes a film mirror and a self-supporting support base material 9, and the film mirror is bonded to the support base material 9 through an adhesive layer 8. It is a reflector.
 なお、ここで言う「自己支持性」とは、太陽熱発電用反射装置の支持基材として用いられる大きさに断裁された状態で、支持基材9がフィルムミラーの端縁部分を支持することで、フィルムミラーを担持することが可能な程度の剛性を有することを表す。太陽熱発電用反射装置の支持基材9が自己支持性を有することで、太陽熱発電用反射装置を設置する際に取り扱い性に優れるとともに、太陽熱発電用反射装置を保持するための保持部材を簡素な構成とすることが可能となるため、反射装置自体を軽量化することが可能となり、太陽追尾の際の消費電力を抑制することが可能となる。
(11-1)支持基材
 自己支持性の支持基材9としては、一対の金属平板とその金属平板間に介装された中間層を有するもの(タイプA)か、中空構造を有する樹脂材料からなるもの(タイプB)であることが好ましい。
(11-2)支持基材タイプA
 支持基材9が、一対の金属平板とその金属平板間に介装された中間層を有するものであって、その中間層が中空構造を有する材料または樹脂材料から構成されることにより、支持基材9は、金属平板による高い平面性を有するとともに、金属平板のみで支持基材を構成する場合に比べて、支持基材自体を大幅に軽量化することが可能となる。また、比較的軽量な中間層を用いつつ金属平板によって剛性を上げることができるため、軽量且つ自己支持性を有する支持基材として機能させることが可能になる。
In addition, "self-supporting property" said here is that the support base material 9 supports the edge part of a film mirror in the state cut | judged to the magnitude | size used as a support base material of the reflective apparatus for solar thermal power generation. This means that the film mirror has rigidity enough to support the film mirror. Since the support base material 9 of the solar power generation reflecting device has self-supporting properties, it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device is simple. Since it becomes possible to make it into a structure, it becomes possible to reduce the weight of the reflecting device itself, and it becomes possible to suppress the power consumption at the time of solar tracking.
(11-1) Support base material The self-supporting support base material 9 has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates (type A), or a resin material having a hollow structure. It is preferable that it consists of (type B).
(11-2) Support base type A
The support base 9 has a pair of metal flat plates and an intermediate layer interposed between the metal flat plates, and the intermediate layer is made of a material having a hollow structure or a resin material, whereby a support base The material 9 has high flatness due to the metal flat plate, and can significantly reduce the weight of the support base material itself as compared with the case where the support base material is constituted by only the metal flat plate. In addition, since the rigidity can be increased by the metal flat plate while using a relatively lightweight intermediate layer, it is possible to function as a support substrate that is lightweight and has a self-supporting property.
 更に、中間層が樹脂材料からなる場合においても、中空構造を有する樹脂材料の層とすることでより一層の軽量化を図ることができる。 Furthermore, even when the intermediate layer is made of a resin material, further weight reduction can be achieved by using a resin material layer having a hollow structure.
 また、中間層を中空構造とした場合には、中間層が断熱材としての機能を果たすため、粘着層8とは反対側の金属平板の温度変化がフィルムミラーへ伝わることを抑制し、結露の防止や、熱による劣化を抑制することが可能となる。 Further, when the intermediate layer has a hollow structure, the intermediate layer functions as a heat insulating material, so that the temperature change of the metal flat plate on the side opposite to the adhesive layer 8 is suppressed from being transmitted to the film mirror, and dew condensation occurs. It is possible to prevent or suppress deterioration due to heat.
 支持基材9の両面の表面層となる金属平板としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料が好ましく用いることができる。本発明においては、特に、耐腐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などを用いることが好ましい。 As a metal flat plate used as the surface layer on both sides of the support base 9, heat conduction such as steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc. A metal material having a high rate can be preferably used. In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
 支持基材9の中間層としては、金属、無機材料(ガラス等)、樹脂材料等の素材を用いることができる。 As the intermediate layer of the support base 9, a material such as a metal, an inorganic material (glass or the like), or a resin material can be used.
 この中間層を中空構造とする場合、発泡樹脂からなる気泡構造や、金属、無機材料又は樹脂材料からなる壁面を有する立体構造(ハニカム構造等)や、中空微粒子を添加した樹脂材料等を適用することができる。 When this intermediate layer has a hollow structure, a cellular structure made of foamed resin, a three-dimensional structure having a wall surface made of metal, an inorganic material or a resin material (honeycomb structure, etc.), a resin material to which hollow fine particles are added, etc. are applied. be able to.
 発泡樹脂の気泡構造は、樹脂材料中にガスを細かく分散させ、発泡状又は多孔質形状に形成されたものを指す。その材料としては公知の発泡樹脂材料を使用可能であるが、ポリオレフィン系樹脂、ポリウレタン、ポリエチレン、ポリスチレン等が好ましく用いられる。 The cellular structure of the foamed resin refers to a foamed or porous shape formed by finely dispersing gas in the resin material. A known foamed resin material can be used as the material, but polyolefin resin, polyurethane, polyethylene, polystyrene and the like are preferably used.
 ハニカム構造とは、空間が側壁で囲まれた複数の小空間で構成される立体構造全般を表すものとする。 The honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls.
 中間層の中空構造を樹脂材料からなる壁面を有する立体構造とする場合、壁面を構成する樹脂材料としては、エチレン、プロピレン、ブテン、イソプレンペンテン、メチルペンテン等のオレフィン類の単独重合体あるいは共重合体であるポリオレフィン(例えば、ポリプロピレン、高密度ポリエチレン)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリアクリロニトリル、エチレン-エチルアクリレート共重合体等のアクリル誘導体、ポリカーボネート、エチレン-酢酸ビニル共重合体等の酢酸ビニル共重合体、アイオノマー、エチレン-プロピレン-ジエン類等のターポリマー、ABS樹脂、ポリオレフィンオキサイド、ポリアセタール等の熱可塑性樹脂が好ましく用いられる。なお、これらは一種類を単独で用いても、二種類以上を混合して用いてもよい。特に、熱可塑性樹脂のなかでもオレフィン系樹脂又はオレフィン系樹脂を主体にした樹脂、ポリプロピレン系樹脂又はポリプロピレン系樹脂を主体にした樹脂が、機械的強度及び成形性のバランスに優れている点で好ましい。樹脂材料には、添加剤が含まれていてもよく、その添加剤としては、シリカ、マイカ、タルク、炭酸カルシウム、ガラス繊維、カーボン繊維等の無機フィラー、可塑剤、安定剤、着色剤、帯電防止剤、難燃剤、発泡剤等が挙げられる。 When the intermediate layer has a three-dimensional structure having a wall surface made of a resin material, the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene. Polyolefin (eg, polypropylene, high density polyethylene), polyamide, polystyrene, polyvinyl chloride, polyacrylonitrile, acrylic derivatives such as ethylene-ethyl acrylate copolymer, polycarbonate, vinyl acetate such as ethylene-vinyl acetate copolymer Copolymers, ionomers, terpolymers such as ethylene-propylene-dienes, and thermoplastic resins such as ABS resin, polyolefin oxide, and polyacetal are preferably used. In addition, these may be used individually by 1 type, or may mix and use 2 or more types. In particular, among thermoplastic resins, olefin-based resins or resins mainly composed of olefin-based resins, polypropylene-based resins or resins based mainly on polypropylene-based resins are preferable because of excellent balance between mechanical strength and moldability. . The resin material may contain an additive. Examples of the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents. An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
 また、中間層を樹脂プレートからなる層とすることも可能であり、この場合に中間層を構成する樹脂材料としては、前述のフィルムミラーの樹脂基材1を構成する材料と同様のものを好ましく用いることができる。 The intermediate layer may be a layer made of a resin plate. In this case, the resin material constituting the intermediate layer is preferably the same as the material constituting the resin substrate 1 of the film mirror described above. Can be used.
 なお、中間層は、支持基材9の全ての領域に設けられる必要はなく、金属平板の平面性及び支持基材としての自己支持性を担保できる範囲であれば、一部の領域に設けられていてもよい。中間層を上述の立体構造とする場合、金属平板の面積に対して、90~95%程度の領域に立体構造を設けることが好ましく、発泡樹脂を用いる場合は、30~40%程度の領域に設けることが好ましい。
(11-3)支持基材タイプB
 支持基材9が、中空構造を有する樹脂材料からなる層とすることも可能である。
The intermediate layer does not need to be provided in all regions of the support base 9, and is provided in some regions as long as the flatness of the metal flat plate and the self-supporting property as the support base can be ensured. It may be. When the intermediate layer has the above-described three-dimensional structure, it is preferable to provide the three-dimensional structure in a region of about 90 to 95% with respect to the area of the metal flat plate. It is preferable to provide it.
(11-3) Support base material type B
It is also possible for the support substrate 9 to be a layer made of a resin material having a hollow structure.
 支持基材9を樹脂材料のみからなる層とした場合、自己支持性を持たせる程度の剛性を得るために必要な厚さが大きくなり、結果として支持基材9の質量が重くなるが、樹脂材料に中空構造を持たせることにより、自己支持性を持たせながら支持基材9を軽量化することができる。 When the support base material 9 is made of a resin material only, the thickness required to obtain rigidity sufficient to provide self-supporting properties increases, and as a result, the mass of the support base material 9 increases. By providing the material with a hollow structure, the support substrate 9 can be reduced in weight while providing self-supporting properties.
 支持基材9が、中空構造を有する樹脂材料からなる場合、中空構造を有する樹脂材料を中間層として用い、その両面の表面層として平滑な面を有する樹脂シートを設けることが、フィルムミラーの正反射率を高める観点で好ましい。この樹脂シートの材料としては、前述のフィルムミラーの樹脂基材1を構成する材料と同様のものを好ましく用いることができる。中空構造を有する樹脂材料としては、上述の発泡材料や立体構造(ハニカム構造)を有する樹脂材料を好ましく用いることができる。
(11-4)保持部材
 太陽熱発電用反射装置は、反射装置自体を保持する保持部材を有する。
When the support substrate 9 is made of a resin material having a hollow structure, it is possible to use a resin material having a hollow structure as an intermediate layer and to provide a resin sheet having smooth surfaces as both surface layers thereof. This is preferable from the viewpoint of increasing the reflectance. As the material of the resin sheet, the same material as that constituting the resin substrate 1 of the film mirror described above can be preferably used. As the resin material having a hollow structure, the above-described foamed material and the resin material having a three-dimensional structure (honeycomb structure) can be preferably used.
(11-4) Holding Member The solar power generation reflecting device has a holding member that holds the reflecting device itself.
 保持部材は、太陽熱発電用反射装置における反射面(フィルムミラー)が、太陽を追尾可能な状態で保持することが好ましい。保持部材の形態としては、特に制限はないが、太陽熱発電用反射装置が所望の形状や姿勢を保持できるように、例えば、太陽熱発電用反射装置の裏面側の支持基材9における複数個所を棒状の柱状部材や梁状部材によって保持する形態が好ましい。 It is preferable that the holding member holds the reflecting surface (film mirror) of the solar power generation reflecting device in a state where the sun can be tracked. The form of the holding member is not particularly limited, but, for example, a plurality of points on the support base 9 on the back side of the solar power generation reflecting device are rod-shaped so that the solar power generating reflection device can hold a desired shape and posture. The form held by the columnar member or the beam-shaped member is preferable.
 保持部材は、太陽を追尾可能な状態で太陽熱発電用反射装置を保持する構成を有するが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。 The holding member has a configuration for holding the solar power generation reflecting device in a state in which the sun can be tracked. However, in the case of solar tracking, the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
 以下、本発明について実施例および比較例を用いて具体的に説明する。本実施例のフィルムミラーは、図1A~図4Aに示す実施態様である。但し、本発明はこれらに限定されるものではない。以下の実施例や比較例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The film mirror of this example is an embodiment shown in FIGS. 1A to 4A. However, the present invention is not limited to these. In the following examples and comparative examples, “part” or “%” is used, and “part by mass” or “% by mass” is expressed unless otherwise specified.
 [比較例1]
 (比較例1のフィルムミラーの作製)
 樹脂フィルム状支持体の樹脂基材1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。上記樹脂基材1の片面に光反射層として、真空蒸着法により厚さ100nmの銀反射層3を形成した。
[Comparative Example 1]
(Preparation of film mirror of Comparative Example 1)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used as the resin substrate 1 of the resin film support. A silver reflecting layer 3 having a thickness of 100 nm was formed as a light reflecting layer on one surface of the resin substrate 1 by a vacuum deposition method.
 次に、上記樹脂基材1における銀反射層3とは反対面側に、ドライラミネーションプロセスにより、紫外線吸収剤を含有する透光性樹脂層6としての透明アクリルフィルム(三菱レイヨン製アクリプレンHBS010P 厚さ75μm)を、接着層11を介してラミネート温度60℃にて貼合した。 Next, on the side opposite to the silver reflecting layer 3 in the resin base material 1, a transparent acrylic film (transparent resin layer 6 made of Mitsubishi Rayon Acryprene HBS010P thickness) is formed by a dry lamination process. 75 μm) was bonded at a laminating temperature of 60 ° C. via the adhesive layer 11.
 更に、重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、厚さ25μmのポリエステル製セパレートフィルムの片面に塗布し、120℃で5分間加熱して厚さ25μmの粘着層8(Si系)を形成した後、上記ポリエチレンテレフタレートフィルムの銀反射層3上にラミネートし、比較例1のフィルムミラー10e(図5A参照)を得た。 Further, 100 parts of an addition reaction type silicone adhesive having a weight average molecular weight of 500,000 was added with 1 part of a platinum catalyst to form a 35 mass% toluene solution, and applied to one side of a 25 μm thick polyester separate film. After heating at 120 ° C. for 5 minutes to form an adhesive layer 8 (Si-based) having a thickness of 25 μm, it was laminated on the silver reflective layer 3 of the polyethylene terephthalate film, and the film mirror 10e of Comparative Example 1 (see FIG. 5A) Got.
 (太陽熱発電用反射装置の作製)
 厚さ0.1mm、縦4cm×横5cmのアルミ板からなる支持基材9と、上記比較例1のフィルムミラー10eを、粘着層8を介して貼り合せて、太陽熱発電用反射装置20e(A-1)を得た(図5B参照)。
(Preparation of solar power generation reflector)
A support base material 9 made of an aluminum plate having a thickness of 0.1 mm, a length of 4 cm and a width of 5 cm, and the film mirror 10 e of Comparative Example 1 are bonded together via the adhesive layer 8, and the solar power generation reflection device 20 e (A -1) was obtained (see FIG. 5B).
 以下同様にして、下記実施例、比較例のフィルムミラーを用いて、太陽熱発電用反射装置をそれぞれ作製した。 In the same manner, solar power generation reflectors were respectively produced using the film mirrors of the following examples and comparative examples.
 [比較例2]
 (比較例2のフィルムミラーの作製)
 紫外線吸収剤を含有する透明アクリルフィルム(三菱レイヨン製アクリプレンHBS010P 厚さ75μm)からなる樹脂基材1の片側に光反射層として、真空蒸着法により厚さ100nmの銀反射層3を形成した。
[Comparative Example 2]
(Preparation of film mirror of Comparative Example 2)
A silver reflective layer 3 having a thickness of 100 nm was formed as a light reflective layer on one side of a resin base material 1 made of a transparent acrylic film (Acryprene HBS010P, thickness 75 μm manufactured by Mitsubishi Rayon) containing an ultraviolet absorber.
 更に、重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、厚さ25μmのポリエステル製セパレートフィルムの片面に塗布し、120℃で5分間加熱して厚さ25μmの粘着層8(Si系)を形成した後、上記透明アクリルフィルムの銀反射層3上にラミネートし、比較例2の10f(図6A参照)を得た。 Further, 100 parts of an addition reaction type silicone adhesive having a weight average molecular weight of 500,000 was added with 1 part of a platinum catalyst to form a 35 mass% toluene solution, and applied to one side of a 25 μm thick polyester separate film. After heating at 120 ° C. for 5 minutes to form an adhesive layer 8 (Si-based) having a thickness of 25 μm, it was laminated on the silver reflective layer 3 of the transparent acrylic film to obtain 10f of Comparative Example 2 (see FIG. 6A). It was.
 また、太陽熱発電用反射装置20e(A-1)と同様の方法により、比較例2のフィルムミラー10fを用いて、太陽熱発電用反射装置20f(B-1)を作製した(図6B参照)。 Further, a solar power generation reflection device 20f (B-1) was produced by using the film mirror 10f of Comparative Example 2 in the same manner as the solar power generation reflection device 20e (A-1) (see FIG. 6B).
 [実施例1]
 (実施例1のフィルムミラーの作製)
 樹脂フィルム状支持体の樹脂基材1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。上記樹脂基材1の片面に、ポリエステル樹脂(ポリエスター SP-181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ-820 DIC製)、TDI(トリレンジイソシアネート)系イソシアネート(2,4-トリレンジイソシアネート)、HMDI(ヘキサメチレンジイソシアネート)系イソシアネート(1,6-ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmのアンカー層2を形成し、そのアンカー層2上に光反射層として、真空蒸着法により厚さ100nmの銀反射層3を形成した。
[Example 1]
(Preparation of film mirror of Example 1)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used as the resin substrate 1 of the resin film support. Polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), melamine resin (manufactured by Super Becamine J-820 DIC), TDI (tolylene diisocyanate) isocyanate (2,4-tri Diisocyanate) and HMDI (hexamethylene diisocyanate) -based isocyanate (1,6-hexamethylene diisocyanate) were mixed in toluene at a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10%. Resin was coated by a gravure coating method to form an anchor layer 2 having a thickness of 0.1 μm, and a silver reflecting layer 3 having a thickness of 100 nm was formed as a light reflecting layer on the anchor layer 2 by a vacuum deposition method. .
 更に、アクリル樹脂(三菱レイヨン製アクリペットVH)、UV吸収剤(BASF製Tinuvin477)を固形分比95:5で、MEK中に固形分20%で溶解した後、押し出しコーターにて上記銀反射層3上に、膜厚30μmとなるように塗布、乾燥(90℃、1分)を行い、透光性樹脂層6を形成した。 Further, an acrylic resin (Acrypet VH made by Mitsubishi Rayon) and UV absorber (Tinuvin 477 made by BASF) were dissolved at a solid content ratio of 95: 5 at a solid content of 20% in MEK, and then the above silver reflective layer was formed by an extrusion coater. 3 was coated and dried (90 ° C., 1 minute) so as to have a film thickness of 30 μm, thereby forming a translucent resin layer 6.
 次に、重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、厚さ25μmのポリエステル製セパレートフィルムの片面に塗布し、120℃で5分間加熱して厚さ25μmの粘着層8(Si系)を形成した後、上記ポリエチレンテレフタレートフィルムの銀反射層3と反対面側にラミネートし、実施例1のフィルムミラー10aを得た(図1A参照)。 Next, 100 parts of an addition reaction type silicone adhesive having a weight average molecular weight of 500,000 was added with 1 part of a platinum catalyst to form a 35 mass% toluene solution, and applied to one side of a 25 μm thick polyester separate film. After heating at 120 ° C. for 5 minutes to form a 25 μm thick adhesive layer 8 (Si-based), the film was laminated on the side opposite to the silver reflective layer 3 of the polyethylene terephthalate film, and the film mirror 10a of Example 1 was Obtained (see FIG. 1A).
 また、太陽熱発電用反射装置20e(A-1)と同様の方法により、実施例1のフィルムミラー10aを用いて、太陽熱発電用反射装置20a(C-1)を作製した(図1B参照)。 Further, a solar power generation reflection device 20a (C-1) was produced by using the film mirror 10a of Example 1 by the same method as the solar power generation reflection device 20e (A-1) (see FIG. 1B).
 [実施例2]
 (実施例2のフィルムミラーの作製)
 樹脂フィルム状支持体の樹脂基材1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。上記樹脂基材1の片面に、ポリエステル樹脂(ポリエスター SP-181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ-820 DIC製)、TDI系イソシアネート(2,4-トリレンジイソシアネート)、HDMI系イソシアネート(1,6-ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmのアンカー層2を形成し、そのアンカー層2上に光反射層として、真空蒸着法により厚さ100nmの銀反射層3を形成した。
[Example 2]
(Preparation of film mirror of Example 2)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used as the resin substrate 1 of the resin film support. Polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), melamine resin (manufactured by Super Becamine J-820 DIC), TDI-based isocyanate (2,4-tolylene diisocyanate), HDMI on one side of the resin base material 1 A resin in which toluene-based isocyanate (1,6-hexamethylene diisocyanate) was mixed in toluene at a resin solid content ratio of 20: 1: 1: 2 to a solid content concentration of 10% was coated by a gravure coating method. Then, an anchor layer 2 having a thickness of 0.1 μm was formed, and a silver reflecting layer 3 having a thickness of 100 nm was formed on the anchor layer 2 as a light reflecting layer by a vacuum deposition method.
 更に、銀反射層3上に、ポリエステル系樹脂とTDI系イソシアネートを樹脂固形分比率で10:2に混合した樹脂に対して、銀の腐食防止剤として2-メルカプトベンゾチアゾールを樹脂に対して10質量%となるように添加し、MEKにより固形分を5%に調整した塗布液を、グラビアコート法によりコーティングして、厚さ3.0μmの腐食防止層4を形成した。 Further, 2-mercaptobenzothiazole as a silver corrosion inhibitor is 10% of the resin in which polyester resin and TDI isocyanate are mixed at a resin solid content ratio of 10: 2 on the silver reflection layer 3. The coating solution, which was added so as to be in mass% and the solid content was adjusted to 5% by MEK, was coated by a gravure coating method to form a corrosion prevention layer 4 having a thickness of 3.0 μm.
 次に、上記腐食防止層4上に、アクリル樹脂(三菱レイヨン製アクリペットVH)、UV吸収剤(BASF製Tinuvin477)を固形分比95:5で、MEK中に固形分20%で溶解した後、押し出しコーターにて上記銀反射層上に、膜厚30μmとなるように塗布、乾燥(90℃、1分)を行い、UV吸収剤入り透光性樹脂層6を形成した。 Next, after dissolving acrylic resin (Mitsubishi Rayon Acrypet VH) and UV absorber (BASF Tinuvin 477) at a solid content ratio of 95: 5 and 20% solid content in MEK on the corrosion prevention layer 4 Then, coating and drying (90 ° C., 1 minute) were performed on the silver reflective layer with an extrusion coater so as to have a film thickness of 30 μm, thereby forming a translucent resin layer 6 containing a UV absorber.
 次に、重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、厚さ25μmのポリエステル製セパレートフィルムの片面に塗布し、120℃で5分間加熱して厚さ25μmの粘着層8(Si系)を形成した後、上記ポリエチレンテレフタレートフィルムの銀反射層3と反対面側にラミネートし、実施例2のフィルムミラー10bを得た(図2A参照)。 Next, 100 parts of an addition reaction type silicone adhesive having a weight average molecular weight of 500,000 was added with 1 part of a platinum catalyst to form a 35 mass% toluene solution, and applied to one side of a 25 μm thick polyester separate film. After heating at 120 ° C. for 5 minutes to form a 25 μm thick adhesive layer 8 (Si-based), the film was laminated on the opposite side of the polyethylene terephthalate film from the silver reflecting layer 3, and the film mirror 10b of Example 2 was Obtained (see FIG. 2A).
 また、太陽熱発電用反射装置20e(A-1)と同様の方法により、実施例2のフィルムミラー10bを用いて、太陽熱発電用反射装置20b(D-1)を作製した(図2B参照)。 Further, a solar thermal power generation reflection device 20b (D-1) was produced by using the film mirror 10b of Example 2 in the same manner as the solar power generation reflection device 20e (A-1) (see FIG. 2B).
 [実施例3]
 (実施例3のフィルムミラーの作製)
 実施例2のUV吸収剤入り透光性樹脂層6上に、UV硬化型透明ハードコート層7(東洋インキ製リオデュラスTYZ:膜厚5μm)を塗布する以外は、全て実施例2と同様の方法により、実施例3のフィルムミラー10cを得た(図3A参照)。
[Example 3]
(Preparation of film mirror of Example 3)
The same method as in Example 2 except that a UV curable transparent hard coat layer 7 (Ryoduras TYZ manufactured by Toyo Ink Co., Ltd .: 5 μm thick) is applied on the UV-absorbing translucent resin layer 6 of Example 2. Thus, a film mirror 10c of Example 3 was obtained (see FIG. 3A).
 また、太陽熱発電用反射装置20e(A-1)と同様の方法により、実施例3のフィルムミラー10cを用いて、太陽熱発電用反射装置20c(E-1)を作製した(図3B参照)。 Further, a solar power generation reflection device 20c (E-1) was produced using the film mirror 10c of Example 3 by the same method as that of the solar power generation reflection device 20e (A-1) (see FIG. 3B).
 [実施例4]
 (実施例4のフィルムミラーの作製)
 実施例3の腐食防止層4上に、ジブチルエーテル中(クラリアント社製 NL120)の3%パーヒドロポリシラザン液を用いて、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、3分間自然乾燥した後、90℃のオーブンで30分間アニールし、ガスバリアー層5を設ける以外は、実施例3と同様の方法により、実施例4のフィルムミラー10dを得た(図4A参照)。
[Example 4]
(Preparation of film mirror of Example 4)
A 3% perhydropolysilazane solution in dibutyl ether (NL120 manufactured by Clariant) was bar-coated on the corrosion prevention layer 4 of Example 3 so that the film thickness after drying was 100 nm, and 3 minutes. After natural drying, a film mirror 10d of Example 4 was obtained by the same method as Example 3 except that annealing was performed in an oven at 90 ° C. for 30 minutes to provide the gas barrier layer 5 (see FIG. 4A).
 また、太陽熱発電用反射装置20e(A-1)と同様の方法により、実施例4のフィルムミラー10dを用いて、太陽熱発電用反射装置20d(F-1)を作製した(図4B参照)。 Further, a solar power generation reflection device 20d (F-1) was produced by using the film mirror 10d of Example 4 by a method similar to that of the solar power generation reflection device 20e (A-1) (see FIG. 4B).
 又、上記太陽熱発電用反射装置(C-1)~(F-1)を作製する際に、厚さ0.1mm、縦4cm×横5cmのアルミ板からなる支持基材に替えて、各フィルムミラーの粘着層8と、サンドイッチ構造を有する支持基材9を貼り合わせた太陽熱発電用反射装置を作製した((C-2)~(F-2))。 Further, when the solar power generation reflectors (C-1) to (F-1) are produced, each film is replaced with a supporting base material made of an aluminum plate having a thickness of 0.1 mm, a length of 4 cm and a width of 5 cm. A reflective device for solar thermal power generation was produced, in which a mirror adhesive layer 8 and a support base material 9 having a sandwich structure were bonded together ((C-2) to (F-2)).
 サンドイッチ構造を有する支持基材9とは、例えば、中空構造を有する樹脂層を金属平板で挟んだ材料を言う。ここでは、厚さ0.12mmのアルミニウムを用いた一対の金属平板で、中間層となる厚さ1.76mmの発泡ポリエチレン樹脂層を挟んでなる、厚さ2mmのサンドイッチ構造を有する支持基材9を使用した。 The support substrate 9 having a sandwich structure refers to, for example, a material in which a resin layer having a hollow structure is sandwiched between metal flat plates. Here, a supporting substrate 9 having a sandwich structure of 2 mm in thickness formed by sandwiching a foamed polyethylene resin layer having a thickness of 1.76 mm as an intermediate layer between a pair of metal flat plates using aluminum having a thickness of 0.12 mm. It was used.
 さらに、上記太陽熱発電用反射装置(C-1)~(F-1)を作製する際に、厚さ0.1mm、縦4cm×横5cmのアルミ板からなる支持基材に替えて、各フィルムミラーの粘着層8と、中空構造を有する支持基材9を貼り合わせた太陽熱発電用反射装置を作製した((C-3)~(F-3))。中空構造とは前述した支持基材9が、中空構造を有する樹脂材料からなる層とした場合で、具体的にはハニカム構造を有する厚さ3mmのポリプロピレン層を、厚さ0.3mmのアルミ板で両側からサンドイッチした構造の樹脂ハニカムプレートを用いた。 Further, when the solar power generation reflectors (C-1) to (F-1) are produced, each film is replaced with a supporting substrate made of an aluminum plate having a thickness of 0.1 mm, a length of 4 cm and a width of 5 cm. A reflective device for solar thermal power generation was produced in which the adhesive layer 8 of the mirror and the support substrate 9 having a hollow structure were bonded together ((C-3) to (F-3)). The hollow structure is a case where the support base 9 described above is a layer made of a resin material having a hollow structure. Specifically, a polypropylene layer having a honeycomb structure and a thickness of 3 mm is formed from an aluminum plate having a thickness of 0.3 mm. A resin honeycomb plate sandwiched from both sides was used.
 上記の支持基材を用いて作製した太陽熱発電用反射装置の重さ及び駆動電力消費率を測定した結果、従来の太陽熱発電用反射装置に対して大幅に軽量化でき、その結果、搬送効率がアップし、作業の短縮化が図れ、コスト低減にも寄与した。 As a result of measuring the weight and driving power consumption rate of the solar power generation reflector manufactured using the above support substrate, it can be significantly reduced in weight compared to the conventional solar power generation reflector, and as a result, the transport efficiency is The work has been shortened and the work has been shortened, contributing to cost reduction.
 なお、実施例1~4のフィルムミラーの作製において、透光性樹脂層の中心線平均粗さ測定した結果、中心線平均粗さ(Ra)が3nm以上20nm以下であることを確認した。これに対し、銀反射層と粘着層が接触する比較例-1,2は中心線平均粗さ(Ra)がそれぞれ50nmと65nmであった。 In the production of the film mirrors of Examples 1 to 4, as a result of measuring the center line average roughness of the translucent resin layer, it was confirmed that the center line average roughness (Ra) was 3 nm or more and 20 nm or less. On the other hand, Comparative Examples-1 and 2 in which the silver reflective layer and the adhesive layer contact each other had centerline average roughness (Ra) of 50 nm and 65 nm, respectively.
 中心線平均粗さ(Ra)はJIS B0601-1982に基づき測定した。測定機器はVeeco社製WYCO VISION32を用いて2mm角のエリアを測定した。 The centerline average roughness (Ra) was measured based on JIS B0601-1982. The measuring apparatus measured the area of 2 square mm using WYCO VISION32 by Veeco.
 [評価]
 上記で得た太陽熱発電用反射装置(太陽光反射用ミラー)について、下記の方法により正反射率及び耐候性、耐光性等の測定をそれぞれ行った。
[Evaluation]
About the reflective apparatus for solar power generation (mirror for sunlight reflection) obtained above, the regular reflectance, weather resistance, light resistance, etc. were measured by the following methods, respectively.
 <正反射率の測定>
 島津製作所社製の分光光度計「UV265」に、積分球反射付属装置を取り付けたものを改造し、反射面の法線に対して、入射光の入射角を5°となるように調整し、反射角5°の正反射率を測定した。評価は、350nmから700nmまでの平均反射率として測定した。
<Measurement of regular reflectance>
A spectrophotometer “UV265” manufactured by Shimadzu Corporation was modified with an integrating sphere reflection accessory, and the incident angle of incident light was adjusted to 5 ° with respect to the normal of the reflecting surface. The regular reflectance at a reflection angle of 5 ° was measured. Evaluation was measured as an average reflectance from 350 nm to 700 nm.
 <正反射率の耐候性試験>
 温度85℃、湿度85%RHの条件で30日間放置後の太陽熱発電用反射装置(太陽光反射用ミラー)の正反射率を、上記光線反射率測定と同様の方法により測定し、強制劣化前の太陽光反射用ミラーの正反射率と強制劣化後のフィルムミラーの正反射率から、正反射率の低下率を算出した。以下に耐候性試験の評価基準を記す。
5:正反射率の低下率が5%未満
4:正反射率の低下率が5%以上10%未満
3:正反射率の低下率が10%以上15%未満
2:正反射率の低下率が15%以上20%未満
1:正反射率の低下率が20%以上
 <太陽光反射用ミラーの黄色変化>
 得られたサンプルを岩崎電気製アイスーパーUVテスターを用いて、65℃の環境下で7日間紫外線照射を行ったのち、目視により黄色変化を行った。
○:目視で色味の差が見えない。
△:目視で色味の差がわずかに見える。
×:目視で色味の差がはっきり見える。
<Weather resistance test for regular reflectance>
The specular reflectance of the solar power generation reflecting device (sunlight reflecting mirror) after being left for 30 days at a temperature of 85 ° C. and a humidity of 85% RH is measured by the same method as the above-mentioned light reflectance measurement, before forced deterioration. From the regular reflectance of the solar reflective mirror and the regular reflectance of the film mirror after forced deterioration, the decrease rate of the regular reflectance was calculated. The evaluation criteria for the weather resistance test are described below.
5: The rate of decrease in regular reflectance is less than 5% 4: The rate of decrease in regular reflectance is 5% or more and less than 10% 3: The rate of decrease in regular reflectance is 10% or more but less than 15% 2: The rate of decrease in regular reflectance 15% or more and less than 20% 1: Regular reflectance decrease rate is 20% or more <Yellow change of solar reflective mirror>
The obtained sample was irradiated with ultraviolet rays for 7 days in an environment of 65 ° C. using an I-super UV tester manufactured by Iwasaki Electric Co., Ltd., and then the yellow color was visually changed.
○: The difference in color is not visible.
Δ: A slight difference in color is visually observed.
X: The difference in color is clearly visible.
 <防汚性試験>
 太陽光反射用ミラーを幅10cm×長さ10cmの試験片に切り抜き、アルミ製の枠に固定し、45°に傾けて屋外に暴露した(平成22年1~6月、場所:東京都八王子市)。屋外暴露6ヵ月後の汚れの程度を目視観察し、3段階(○:埃の付着無し、△:埃の付着少々、×:埃の付着多い)で評価した。
<Anti-fouling test>
A solar reflective mirror was cut into a 10 cm wide x 10 cm long test piece, fixed to an aluminum frame, and exposed to the outdoors at an angle of 45 ° (January to June 2010, location: Hachioji City, Tokyo) ). The degree of contamination after 6 months of outdoor exposure was visually observed and evaluated in three stages (◯: no dust adhesion, Δ: little dust adhesion, ×: much dust adhesion).
 <鉛筆硬度試験>
 JIS-K5400に基づいて、各サンプルの45°傾斜、1kg荷重における鉛筆硬度を測定した。
<Pencil hardness test>
Based on JIS-K5400, the pencil hardness of each sample at 45 ° inclination and 1 kg load was measured.
 <質量>
 得られた太陽光反射用ミラーF-1、F-2の1.0m2サイズの質量を測定した結果を表3に示す。
<Mass>
Table 3 shows the result of measuring the 1.0 m 2 size mass of the obtained sunlight reflecting mirrors F-1 and F-2.
 <駆動電力消費率>
 太陽熱発電用反射装置を太陽追尾型の装置に組み込んだ際、太陽熱発電用反射装置F-1を組み込んだ1基の追尾にかかる駆動電力を100とした時の比率を表3に示す。
<Drive power consumption rate>
Table 3 shows the ratio when the driving power applied to one tracking unit incorporating the solar thermal power generation reflection device F-1 is 100 when the solar thermal power generation reflection device is incorporated in the solar tracking type device.
 得られた各種フィルムミラーの構成内容(層構成)を表1に、特性を評価した結果を表2に示す。 Table 1 shows the contents of the various film mirrors obtained (layer structure), and Table 2 shows the results of evaluation of the characteristics.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2、3に示した評価結果から明らかなように、本発明に係る実施例の各種特性は、比較例に対して優れていることが分かる。すなわち、本発明の上記手段により、銀反射層3の劣化による正反射率の低下を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのできる耐光性、耐候性及び防汚性、耐傷性に優れ、太陽光に対して良好な正反射率を有するフィルムミラー、その製造方法、及びそれを用いた太陽熱発電用反射装置を提供することができることが分かる。 As is clear from the evaluation results shown in Tables 2 and 3, it can be seen that the various characteristics of the examples according to the present invention are superior to the comparative examples. That is, by the above means of the present invention, it is possible to prevent a decrease in regular reflectance due to deterioration of the silver reflective layer 3, and to be light and flexible, light resistance that can reduce the manufacturing cost, increase the area and mass-produce, It can be seen that a film mirror having excellent weather resistance, antifouling property, and scratch resistance and having good regular reflectance with respect to sunlight, a production method thereof, and a solar power generation reflector using the film mirror can be provided.
 すなわち、本発明によれば、銀反射層3の劣化による正反射率の低下を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのでき、耐傷性、防汚性に優れ、過酷な環境に長期間設置しても、太陽光に対して良好な正反射率を長期間保ち続けることができる耐候性の優れた太陽熱発電用のフィルムミラー(10a、10b、10c、10d)と太陽熱発電用反射装置(20a、20b、20c、20d)を提供することができることが分かる。 That is, according to the present invention, it is possible to prevent a decrease in regular reflectance due to deterioration of the silver reflective layer 3, and to be lightweight and flexible, to reduce the manufacturing cost, to increase the area and to mass-produce, scratch resistance, Film mirror for solar power generation (10a, 10b) having excellent anti-fouling properties and excellent weather resistance that can maintain good regular reflectance for sunlight for a long time even when installed in a harsh environment for a long time 10c, 10d) and a solar power generation reflection device (20a, 20b, 20c, 20d) can be provided.
 特に、本発明に係るフィルムミラー(10a、10b、10c、10d)は、接着剤を用いた接着層で樹脂フィルム同士を貼り合わせることなく、樹脂基材1に対して順次、各構成層の材料の塗布・塗工や成膜を繰り返し、所定の構成層を積層するようにして製造しているので、構成層間に気泡や異物が混入してしまうようなことはない。従って、本発明のフィルムミラーでは、構成層間に気泡や異物が混入したことによる光反射性の低下を招くような不具合は生じない。 In particular, the film mirror (10a, 10b, 10c, 10d) according to the present invention is a material of each constituent layer sequentially with respect to the resin substrate 1 without bonding the resin films together with an adhesive layer using an adhesive. Since the coating, coating, and film formation are repeated and a predetermined constituent layer is laminated, there is no possibility that bubbles or foreign matters are mixed between constituent layers. Therefore, in the film mirror of this invention, the malfunction which causes the fall of light reflectivity by a bubble and a foreign material mixing in between constituent layers does not arise.
 また、塗布方式で透光性樹脂層6を形成したことによって、透光性樹脂層6の平滑性を高めることができ、具体的には、透光性樹脂層6の中心線平均粗さ(Ra)を3nm以上20nm以下にすることができるので、従来技術のように、樹脂フィルムが有する表面凹凸によって反射光が散乱してしまうことはなく、本発明のフィルムミラーは、好適な光反射性を有する。 Moreover, by forming the translucent resin layer 6 by a coating method, the smoothness of the translucent resin layer 6 can be improved. Specifically, the center line average roughness of the translucent resin layer 6 ( Since Ra) can be 3 nm or more and 20 nm or less, unlike the prior art, the reflected light is not scattered by the surface unevenness of the resin film, and the film mirror of the present invention has suitable light reflectivity. Have
 [実施例5]
 (太陽熱発電用反射装置G-1の作製)
 実施例3のフィルムミラー10cの作製において、30μmの透光性樹脂層の厚さを、押し出しコーターの流量のみを変え、膜厚が5μmになるようフィルムミラーを作製した。その後、太陽熱発電用反射装置20e(A-1)と同様の方法により、このフィルムミラーを用いて、太陽熱発電用反射装置(G-1)を作製した。
[Example 5]
(Preparation of solar thermal power generation reflector G-1)
In the production of the film mirror 10c of Example 3, the film mirror was produced so that the thickness of the translucent resin layer of 30 μm was changed only by the flow rate of the extrusion coater, and the film thickness was 5 μm. Thereafter, a solar power generation reflector (G-1) was produced using this film mirror in the same manner as the solar power generator reflector 20e (A-1).
 (太陽熱発電用反射装置H-1及びI-1の作製)
 太陽熱発電用反射装置G-1の作製において、透光性樹脂層の厚さのみ、表4のように変えて、フィルムミラーを作製した。このフィルムミラーを用いて、太陽熱発電用反射装置20e(A-1)と同様の方法により、それぞれ、太陽熱発電用反射装置H-1及びI-1を作製した。なお、透光性樹脂層の厚さのみを同様にして170μmに変更したフィルムミラーの作製を試みたが、乾燥の際に、溶剤を十分に蒸発させるためには塗布速度を下げなければならなかった。このため大幅に生産性を下げる結果となった。
(Preparation of solar power generation reflectors H-1 and I-1)
In the production of the solar power generation reflection device G-1, only the thickness of the translucent resin layer was changed as shown in Table 4 to produce a film mirror. Using this film mirror, solar power generation reflectors H-1 and I-1 were respectively produced by the same method as solar power generation reflector 20e (A-1). In addition, although the production of the film mirror which changed only the thickness of the translucent resin layer into 170 micrometers similarly was tried, in order to fully evaporate a solvent at the time of drying, you have to reduce a coating speed. It was. This resulted in a significant reduction in productivity.
 これらの太陽熱発電用反射装置と実施例3で作製した太陽熱発電用反射装置(E-1)とについて、それぞれ、正反射率の耐候性試験及び太陽光反射用ミラーの黄色変化の試験と評価を前記した方法で行った。その結果を表4に示す。 For these solar power generation reflectors and the solar power generation reflector (E-1) produced in Example 3, the specular reflectance weather resistance test and the solar reflection mirror yellow change test and evaluation were performed respectively. This was done by the method described above. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4の結果から、透光性樹脂層の厚さが10~150μmの範囲内にあると、耐候性試験と太陽光反射用ミラーの黄色変化試験に加えて生産性が共に良好な結果が得られることが分かる。 From the results of Table 4, when the thickness of the translucent resin layer is in the range of 10 to 150 μm, in addition to the weather resistance test and the yellowing change test of the solar reflective mirror, good productivity is obtained. You can see that
 なお、本発明の適用は上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 The application of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
 本発明のフィルムミラーは、太陽光を集光する実用に耐えうる高い耐傷性、耐候性と高い反射率を有し、太陽熱発電用反射装置に好適に使用できる。 The film mirror of the present invention has high scratch resistance, weather resistance and high reflectivity that can withstand the practical use of collecting sunlight, and can be suitably used for a solar power generation reflector.
 1   樹脂基材
 2   アンカー層
 3   銀反射層(光反射層)
 4   腐食防止層
 5   ガスバリアー層
 6   透光性樹脂層
 7   ハードコート層
 8   粘着層
 9   支持基材
 11  接着層
 10a、10b、10c、10d フィルムミラー
 20a、20b、20c、20d 太陽熱発電用反射装置
DESCRIPTION OF SYMBOLS 1 Resin base material 2 Anchor layer 3 Silver reflection layer (light reflection layer)
DESCRIPTION OF SYMBOLS 4 Corrosion prevention layer 5 Gas barrier layer 6 Translucent resin layer 7 Hard coat layer 8 Adhesive layer 9 Support base material 11 Adhesive layer 10a, 10b, 10c, 10d Film mirror 20a, 20b, 20c, 20d Solar power generation reflective apparatus

Claims (10)

  1.  光入射側から順に、透光性樹脂層、光反射層、樹脂基材、及び粘着層を少なくとも有するフィルムミラーであって、
     前記透光性樹脂層は紫外線吸収剤を含有しており、その透光性樹脂層の厚さが10μm以上150μm以下であることを特徴とするフィルムミラー。
    In order from the light incident side, a light transmitting resin layer, a light reflecting layer, a resin base material, and a film mirror having at least an adhesive layer,
    The translucent resin layer contains an ultraviolet absorber, and the translucent resin layer has a thickness of 10 μm to 150 μm.
  2.  前記透光性樹脂層が、前記光反射層の光入射側の面上または前記光反射層よりも光入射側に設けられた構成層の面上に、接着層を介さずに直接形成されていることを特徴とする請求項1に記載のフィルムミラー。 The translucent resin layer is formed directly on the surface of the light reflecting layer on the light incident side or on the surface of the constituent layer provided on the light incident side of the light reflecting layer without an adhesive layer. The film mirror according to claim 1.
  3.  前記透光性樹脂層の表面の中心線平均粗さ(Ra)が3nm以上20nm以下であることを特徴とする請求項1又は2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein a center line average roughness (Ra) of the surface of the translucent resin layer is 3 nm or more and 20 nm or less.
  4.  前記光反射層の光入射側に隣接して、腐食防止層が設けられていることを特徴とする請求項1~3の何れか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 3, wherein a corrosion prevention layer is provided adjacent to the light incident side of the light reflecting layer.
  5.  前記透光性樹脂層の光入射側の面に、ハードコート層が設けられていることを特徴とする請求項1~4の何れか一項に記載のフィルムミラー。 5. The film mirror according to claim 1, wherein a hard coat layer is provided on a light incident side surface of the translucent resin layer.
  6.  前記光反射層よりも光入射側に、ガスバリアー層が設けられていることを特徴とする請求項1~5の何れか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 5, wherein a gas barrier layer is provided on a light incident side of the light reflection layer.
  7.  請求項1~6の何れか一項に記載のフィルムミラーを製造するフィルムミラーの製造方法であって、
     前記光反射層の光入射側の面上または前記光反射層よりも光入射側に設けられた構成層の面上に、前記透光性樹脂層となる材料を直接塗布することによって、前記透光性樹脂層を形成することを特徴とするフィルムミラーの製造方法。
    A film mirror manufacturing method for manufacturing the film mirror according to any one of claims 1 to 6,
    By directly applying a material to be the translucent resin layer on the light incident side surface of the light reflecting layer or on the surface of the constituent layer provided on the light incident side with respect to the light reflecting layer, the light transmitting resin layer is directly applied. A method for producing a film mirror, comprising forming a light-sensitive resin layer.
  8.  請求項1~6の何れか一項に記載のフィルムミラーにおける前記粘着層を、支持基材に接合して形成したことを特徴とする太陽熱発電用反射装置。 A solar power generation reflecting device, wherein the adhesive layer of the film mirror according to any one of claims 1 to 6 is formed by bonding to a support base material.
  9.  前記支持基材は、中空構造を有する樹脂材料からなることを特徴とする請求項8に記載の太陽熱発電用反射装置。 The solar power generation reflecting device according to claim 8, wherein the supporting substrate is made of a resin material having a hollow structure.
  10.  前記支持基材は、一対の金属平板と、前記金属平板間に介装された中間層を有し、前記中間層は中空構造を有する材料または樹脂材料からなることを特徴とする請求項8に記載の太陽熱発電用反射装置。 The said support base material has a pair of metal flat plate and the intermediate | middle layer interposed between the said metal flat plates, The said intermediate | middle layer consists of a material or resin material which has a hollow structure, It is characterized by the above-mentioned. The solar power generation reflective apparatus described.
PCT/JP2012/063882 2011-05-31 2012-05-30 Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror WO2012165460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011121513 2011-05-31
JP2011-121513 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165460A1 true WO2012165460A1 (en) 2012-12-06

Family

ID=47259313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063882 WO2012165460A1 (en) 2011-05-31 2012-05-30 Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror

Country Status (2)

Country Link
JP (1) JPWO2012165460A1 (en)
WO (1) WO2012165460A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189585A (en) * 2013-03-26 2014-10-06 Lintec Corp Curable resin composition, resin film, gas barrier film and electronic device
JP2014194469A (en) * 2013-03-28 2014-10-09 Fujifilm Corp Solar light collecting film mirror, manufacturing method therefor, and solar light reflector
JP2014199319A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Method for manufacturing film mirror for collecting sunlight, and film mirror for collecting sunlight
JP2014199292A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Film mirror and method of producing the same, and solar light reflecting plate
WO2015079803A1 (en) * 2013-11-28 2015-06-04 コニカミノルタ株式会社 Film mirror
JP2015161826A (en) * 2014-02-27 2015-09-07 コニカミノルタ株式会社 Film mirror and reflection device for solar thermal power generation
CN105403938A (en) * 2015-12-25 2016-03-16 巨洋神州(苏州)数字技术有限公司 Optical extinction reflection sheet and rear projection system
JP2020119924A (en) * 2019-01-18 2020-08-06 株式会社ディスコ Protective film agent for laser dicing, manufacturing method of protective film agent for laser dicing, and processing method of workpiece using protective film agent for laser dicing
CN112216758A (en) * 2020-09-29 2021-01-12 玉环晶科能源有限公司 Solar cell backboard, photovoltaic module and manufacturing method of solar cell backboard

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JPH05188206A (en) * 1992-01-08 1993-07-30 Hitachi Ltd Mirror
JPH0732537A (en) * 1993-07-21 1995-02-03 Mitsui Toatsu Chem Inc Reflective sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JPH05188206A (en) * 1992-01-08 1993-07-30 Hitachi Ltd Mirror
JPH0732537A (en) * 1993-07-21 1995-02-03 Mitsui Toatsu Chem Inc Reflective sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189585A (en) * 2013-03-26 2014-10-06 Lintec Corp Curable resin composition, resin film, gas barrier film and electronic device
JP2014194469A (en) * 2013-03-28 2014-10-09 Fujifilm Corp Solar light collecting film mirror, manufacturing method therefor, and solar light reflector
JP2014199319A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Method for manufacturing film mirror for collecting sunlight, and film mirror for collecting sunlight
JP2014199292A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Film mirror and method of producing the same, and solar light reflecting plate
WO2015079803A1 (en) * 2013-11-28 2015-06-04 コニカミノルタ株式会社 Film mirror
JP2015161826A (en) * 2014-02-27 2015-09-07 コニカミノルタ株式会社 Film mirror and reflection device for solar thermal power generation
CN105403938A (en) * 2015-12-25 2016-03-16 巨洋神州(苏州)数字技术有限公司 Optical extinction reflection sheet and rear projection system
JP2020119924A (en) * 2019-01-18 2020-08-06 株式会社ディスコ Protective film agent for laser dicing, manufacturing method of protective film agent for laser dicing, and processing method of workpiece using protective film agent for laser dicing
JP7258420B2 (en) 2019-01-18 2023-04-17 株式会社ディスコ Protective film agent for laser dicing, method for producing protective film agent for laser dicing, and method for processing workpiece using protective film agent for laser dicing
CN112216758A (en) * 2020-09-29 2021-01-12 玉环晶科能源有限公司 Solar cell backboard, photovoltaic module and manufacturing method of solar cell backboard

Also Published As

Publication number Publication date
JPWO2012165460A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2012165460A1 (en) Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror
JP6176116B2 (en) Manufacturing method of film mirror
JP5691811B2 (en) Film mirror, solar reflective mirror, and solar power generation reflector
WO2013094633A1 (en) Film mirror for solar light reflection, and reflective device for solar power generation
WO2012133517A1 (en) Mirror and reflective device for generating solar power
WO2012090987A1 (en) Functional film, film mirror, and reflecting device for solar thermal power generation
US20130155497A1 (en) Film mirror for solar thermal power generation,emthod for producing film mirror for solar thermal power generation, and reflectng device for solar thermal power generation
WO2013018518A1 (en) Functional film
JP5672071B2 (en) Film mirror manufacturing method, film mirror, and solar power generation reflector
WO2011078156A1 (en) Film mirror, method for producing same, and reflecting device for solar thermal power generator using said film mirror
JP2015121806A (en) Film mirror, film mirror manufacturing method, and film mirror for sunlight collection
WO2011077816A1 (en) Film mirror and process for production thereof, and reflection device for solar power generation purposes
WO2014061497A1 (en) Film mirror, and reflecting apparatus for solar thermal power generation
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
WO2011077982A1 (en) Film mirror, process for production of same, and reflection device for solar power generation purposes comprising same
JPWO2014061497A6 (en) Film mirror and reflector for solar power generation
WO2012057003A1 (en) Film mirror for solar power generation purposes and reflection device for solar power generation purposes
WO2011162153A1 (en) Film mirror for solar heat generation and process for production thereof, and reflection device for solar heat generation
JP5747547B2 (en) Reflector for film mirror and solar power generation
WO2013054869A1 (en) Mirror for reflecting sunlight and reflecting device for solar power generation
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
WO2012043606A1 (en) Film mirror for solar power generation, process for manufacturing film mirror for solar power generation, and reflection device for solar power generation
WO2011158665A1 (en) Film mirror and reflective device for solar thermal power generation
WO2015079803A1 (en) Film mirror
WO2015098627A1 (en) Film mirror and reflective device for solar thermal power generation using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792602

Country of ref document: EP

Kind code of ref document: A1