WO2015079803A1 - Film mirror - Google Patents

Film mirror Download PDF

Info

Publication number
WO2015079803A1
WO2015079803A1 PCT/JP2014/076593 JP2014076593W WO2015079803A1 WO 2015079803 A1 WO2015079803 A1 WO 2015079803A1 JP 2014076593 W JP2014076593 W JP 2014076593W WO 2015079803 A1 WO2015079803 A1 WO 2015079803A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
resin layer
acrylate
meth
Prior art date
Application number
PCT/JP2014/076593
Other languages
French (fr)
Japanese (ja)
Inventor
光範 後藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015079803A1 publication Critical patent/WO2015079803A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • B32B2551/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror. More specifically, the present invention relates to a film mirror that can suppress an increase in haze under a high temperature environment.
  • the film mirror of this invention can be used conveniently for the reflective apparatus for solar power generation.
  • Solar energy is considered to be the most stable and abundant amount of natural energy as an alternative energy to fossil fuels.
  • the vast desert spreads near the equator which is called the world's sun belt, and the solar energy that falls there is truly inexhaustible.
  • 7,000 GW of energy can be obtained if only a few percent of the desert that extends to the southeastern United States is used. It is also believed that using only a few percent of the Arabian peninsula and the deserts of North Africa can cover all the energy used by all centuries.
  • the condensing device Since the condensing device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., conventionally, a glass mirror having good weather resistance has been used.
  • the glass mirror has high environmental durability, but it is damaged during transportation, and because of its heavy mass, it is necessary to increase the strength of the frame on which the mirror is installed, which increases the construction cost of the plant. There was a problem.
  • Patent Document 1 With respect to the problem of such a resin reflecting mirror, a technique is known in which an acrylic film having excellent light resistance to ultraviolet rays is used on the surface by separating the upper side of the silver layer from contact with the adhesive (for example, Patent Document 1).
  • Patent Document 1 has a problem that haze increases under a high temperature environment.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a film mirror capable of suppressing and preventing an increase in haze under a high temperature environment.
  • Another object of the present invention is to provide a film mirror that can suppress / prevent a decrease in reflectance under a high temperature environment.
  • the present inventor has arranged a urethane-modified acrylic resin layer between a translucent resin layer containing an ultraviolet absorber and a resin substrate or a light reflecting layer.
  • the above-mentioned objects are, in order from the light incident side, a light-transmitting resin layer containing an ultraviolet absorber, a urethane-modified acrylic resin layer, and a resin base material and a light reflecting layer, or an ultraviolet absorber in order from the light incident side.
  • a film mirror having at least a translucent resin layer containing urethane, a urethane-modified acrylic resin layer, and a light reflecting layer and a resin base material.
  • FIG. 1A 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; and 10 is a film mirror. Show. It is a schematic sectional drawing which shows one Embodiment of the structure of the solar power generation reflective apparatus which concerns on this invention.
  • FIG. 1B 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; 7 is a supporting substrate; Reference numeral 20 denotes a solar power generation reflecting device.
  • FIG. 2A 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; and 10 is a film mirror. Show. It is a schematic sectional drawing which shows other embodiment of the structure of the solar power generation reflective apparatus which concerns on this invention.
  • FIG. 2B 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; 7 is a supporting substrate; Indicates solar power generation reflectors, respectively.
  • FIG. 3A 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 5 is a hard coat layer; 6 is an adhesive layer; Reference numeral 10 denotes a film mirror.
  • FIG. 3A shows other embodiment of the structure of the solar power generation reflective apparatus which concerns on this invention.
  • 3B 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 5 is a hard coat layer; 6 is an adhesive layer; Reference numeral 20 denotes a supporting substrate; and 20 denotes a reflector for solar power generation.
  • the present invention includes (i) a light-transmitting resin layer containing an ultraviolet absorber (hereinafter also simply referred to as “light-transmitting resin layer”), a urethane-modified acrylic resin layer, a resin base material, and light, in order from the light incident side.
  • the present invention relates to a reflective layer, or (ii) a film mirror having at least a light-transmitting resin layer containing a UV absorber, a urethane-modified acrylic resin layer, and a light reflecting layer and a resin base material in this order from the light incident side.
  • the present invention is characterized in that a urethane-modified acrylic resin layer is disposed between a translucent resin layer containing an ultraviolet absorber and (i) a resin substrate or (ii) a light reflecting layer.
  • the film mirror of the present invention can suppress / prevent an increase in haze under a high temperature environment. More specifically, with this configuration, an increase in haze under a high temperature environment and a decrease in reflectance can be suppressed / prevented.
  • the mechanism for exerting the above-described effects by the configuration of the present invention is presumed as follows. The present invention is not limited to the following mechanism.
  • a UV shielding acrylic film (translucent resin layer containing an ultraviolet absorber) is placed on a polymer film (resin base material) disposed on a silver overlay (light reflecting layer).
  • the silver mirror structure (film mirror) configured to be disposed in the structure can reduce the number of layers / interfaces on the light reflection layer and suppress the reduction in reflectance, as compared with the conventional resin film bonding type.
  • film mirrors are often used for solar power generation reflectors in vast deserts where solar energy falls infinitely. For this reason, the film mirror needs to exhibit and maintain a high reflectance and a low haze even in a high temperature environment.
  • the urethane-modified acrylic resin layer efficiently traps the ultraviolet absorber bleed out from the translucent resin layer in a high temperature environment. For this reason, according to the film mirror of this invention, since whitening can be suppressed, a high reflectance can be exhibited, and also a high reflectance can be maintained by suppressing / preventing a decrease in reflectance even in a high temperature environment.
  • the urethane-modified acrylic resin layer is excellent in adhesion (integration) with the translucent resin layer. For this reason, according to the film mirror of this invention, the raise of the haze in a high temperature environment can be suppressed / prevented effectively. In particular, when a hard coat layer is further provided on the translucent resin layer, bleed-out (whitening) from the translucent resin layer is more effectively suppressed, and a reduction in reflectance under a high temperature environment is more effective. It is possible to prevent.
  • the film mirror of the present invention can effectively suppress and prevent the increase in haze and the decrease in reflectivity under high temperature environment.
  • the said effect becomes remarkable when it exposes to a high temperature environment especially for a long period (for example, 40 days or more, Preferably about 20 years).
  • the film mirror of this invention can be used conveniently for the solar power generation reflective apparatus.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the film mirror of this invention has (a) the translucent resin layer containing a ultraviolet absorber, the urethane-modified acrylic resin layer, the resin base material, and the light reflection layer in order from the light incident side, as shown in FIG. Or (b) As shown in FIG. 2, in order from the light incident side, it has a translucent resin layer containing a UV absorber, a urethane-modified acrylic resin layer, a light reflecting layer, and a resin base material.
  • FIG. 1A is a schematic cross-sectional view showing an embodiment of the configuration of the film mirror of the present invention.
  • the film mirror 10 of the form (a) includes, in order from the light incident side, a translucent resin layer 4, a urethane-modified acrylic resin layer 3, a resin base material (for example, a resin film) 2, And at least a light reflection layer (for example, a silver reflection layer) 1.
  • the film mirror 10 may have an adhesive layer 6 on the side where the resin base material 2 of the light reflecting layer 1 is not disposed.
  • another layer may be interposed between each of the above-mentioned layers, and each layer may be adjacent.
  • the haze fall under a high temperature environment can be suppressed / prevented more effectively.
  • FIG. 2A is a schematic sectional view showing another embodiment of the configuration of the film mirror of the present invention.
  • the film mirror 10 according to the embodiment (b) includes a light-transmitting resin layer 4, a urethane-modified acrylic resin layer 3, and a light reflection layer (for example, a silver reflection layer) 1 in order from the light incident side.
  • the film mirror 10 may have an adhesive layer 6 on the side of the resin substrate 2 on which the light reflecting layer 1 is not disposed.
  • another layer may be interposed between each of the above-mentioned layers, and each layer may be adjacent.
  • the resin base material 2 is provided between the pressure-sensitive adhesive layer 6 and the light reflecting layer 1, the unevenness of the pressure-sensitive adhesive layer 6 is not reflected on the light reflecting layer 1, and the light reflecting layer 1 with high flatness is obtained. And a higher reflectance can be achieved.
  • the translucent resin layer 4 is laminated with the resin base material 2 (form (a); FIG. 1A) or the light reflection layer 1 (form (b); FIG. 2A) through the urethane-modified acrylic resin layer 3. Is done. Conventionally, under a high temperature environment, the ultraviolet absorber bleeds out from the translucent resin layer 4 to induce whitening, thereby causing a decrease in the reflectance of the film mirror. On the other hand, according to the present invention, the urethane-modified acrylic resin layer 3 efficiently traps the ultraviolet absorber that bleeds out from the translucent resin layer 4 in a high-temperature environment. Whitening can be effectively suppressed / prevented.
  • the film mirror of the present invention can exhibit a high reflectivity, and can maintain and maintain a high reflectivity by suppressing / preventing a decrease in reflectivity even under a high temperature environment.
  • the urethane-modified acrylic resin layer 3 is excellent in adhesiveness with the translucent resin layer 4, the haze is hardly increased or does not increase even in a high temperature environment.
  • the urethane-modified acrylic resin layer 3 and the translucent resin layer 4 can be formed by coating. For this reason, it is not necessary to attach a translucent resin film by melt film formation, and the problem of scattering of reflected light due to surface irregularities caused by melt film formation can be prevented. Therefore, the film mirror of the present invention can achieve a high reflectance. In addition, when the urethane-modified acrylic resin layer 3 and the translucent resin layer 4 are bonded together, there is a possibility that air bubbles and foreign substances are not mixed between the layers and the light reflectivity is lowered.
  • the film mirror of the present invention may have any configuration as long as it has at least the above members.
  • a hard coat layer 5 may be provided on the light incident side surface of the translucent resin layer 4. That is, the film mirror preferably further includes a hard coat layer on the light incident side surface of the translucent resin layer.
  • the ultraviolet absorber in a translucent resin layer comes out on the surface, and causes a raise of a haze. For this reason, even if a film mirror is used for a solar power generation reflection device and exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc.
  • the hard coat layer is disposed on the translucent resin layer of the film mirror according to the form of FIG. 1A.
  • the present invention is not limited to the above form, for example, according to the form of FIG. 2A.
  • a form in which the hard coat layer is disposed on the translucent resin layer of the film mirror is also preferable.
  • a corrosion prevention layer is disposed between the light reflecting layer 1 and the adhesive layer 6; an anchor layer is disposed between the light reflecting layer 1 and the resin substrate 2; A configuration such as a combination can be applied.
  • the thickness of the entire film mirror of the present invention is not particularly limited, but is preferably 20 to 300 ⁇ m, more preferably 30 to 200 ⁇ m, and still more preferably 50 to 170 ⁇ m from the viewpoints of prevention of bending, regular reflectance, and handling properties. .
  • the center line average roughness (Ra) of the outermost surface layer on the light incident side of the film mirror is 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency.
  • FIGS. 1A to 3A An outline of the solar power generation reflecting device is shown in FIGS. 1B to 3B.
  • a film mirror 10 shown in FIG. 1A is provided by laminating a resin base material 2, a urethane-modified acrylic resin layer 3, and a translucent resin layer 4 on a light reflecting layer 1 in this order.
  • An adhesive layer 6 is provided on the opposite surface of the light reflecting layer 1 to the light incident side.
  • the solar power generation reflection device 20 using the film mirror joins the adhesive layer 6 in the film mirror 10 to the support substrate 9, and bonds the film mirror 10 and the support substrate 9 together. It is a reflecting mirror.
  • the film mirror 10 shown in FIG. 2A is provided by laminating a light reflecting layer 1, a urethane-modified acrylic resin layer 3, and a translucent resin layer 4 in this order on a resin substrate 2.
  • An adhesive layer 6 is provided on the opposite surface of the resin substrate 2 on the light incident side.
  • the solar power generation reflecting device 20 using the film mirror joins the adhesive layer 6 in the film mirror 10 to the support substrate 9, and bonds the film mirror 10 and the support substrate 9 together. It is a reflecting mirror.
  • the film mirror 10 shown in FIG. 3A is provided by laminating a resin base material 2, a urethane-modified acrylic resin layer 3, a translucent resin layer 4, and a hard coat layer 5 in this order on a light reflecting layer 1.
  • An adhesive layer 6 is provided on the opposite surface of the light reflecting layer 1 to the light incident side.
  • the solar power generation reflection device 20 using the film mirror joins the adhesive layer 6 in the film mirror 10 to the support substrate 9, and bonds the film mirror 10 and the support substrate 9 together. It is a reflecting mirror.
  • the translucent resin layer is a resin layer made of a resin material having optical transparency and containing an ultraviolet absorber.
  • the resin material used for the translucent resin layer is not particularly limited, and various conventionally known synthetic resins that can maintain transparency when a thin film is formed can be used.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose Cellulose esters such as acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone imide, polyamide, fluorine Fat, nylon, polymethyl methacrylate (PMMA), polymethyl acrylate (PM
  • the method for forming the translucent resin layer is not particularly limited, and examples thereof include a method by coating.
  • a coating film that becomes a translucent resin layer is applied by a coating method, various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used. That is, the translucent resin layer can be formed by directly applying the material constituting the translucent resin layer on the light incident side surface of the urethane-modified acrylic resin layer.
  • the smoothness of the translucent resin layer can be improved.
  • the center line average roughness (Ra) of the translucent resin layer formed by the coating method can be 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, the translucent resin film produced by melt film formation is not a translucent resin layer provided by bonding with an adhesive layer, but the translucent resin film. It can be considered that the conductive resin layer is provided by coating.
  • the center line average roughness (Ra) which is an index of smoothness of the translucent resin layer, can be determined by a measuring method based on JIS B0601-1982.
  • the thickness (dry film thickness) of the translucent resin layer is not particularly limited, but is preferably 5 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, and particularly preferably 20 to 80 ⁇ m. With such a thickness, sufficient translucency is secured, and the solvent can be sufficiently evaporated by drying during film formation, which is preferable in terms of productivity.
  • a (meth) acrylic material is preferably used as the material for forming the light-transmitting resin layer.
  • the translucent resin layer is formed of a (meth) acrylic material
  • the plasticizer fine particles are added for the purpose of obtaining an acrylic translucent resin layer that is soft and difficult to break. You may make it contain.
  • the plasticizer include acrylic rubber, butyl rubber and butyl acrylate.
  • the amount of the plasticizer to be added is not particularly limited, but in consideration of desired flexibility, it is about 10 to 25% by mass with respect to the resin (translucent resin) (in terms of solid content). preferable.
  • the translucent resin layer is formed with a methacrylic resin as a main component.
  • the methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester.
  • the methacrylic acid ester is 50% by mass or more and the other monomer is 50% by mass or less.
  • a copolymer may also be used.
  • the methacrylic acid ester an alkyl ester of methacrylic acid is usually used.
  • a particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
  • the preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0.1 to 50% by mass, and other monomers are 0 to 49% by mass.
  • examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like, and the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. It is. Of these, methyl methacrylate is preferably used.
  • alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like.
  • the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
  • the monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule, or a polyfunctional monofunctional monomer. Although it may be a monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used.
  • the monofunctional monomer include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon.
  • Alkenyl esters of unsaturated carboxylic acids such as allyl acids
  • polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate
  • aromatic polyalkenyl compounds such as divinylbenzene, etc.
  • alkyl methacrylate alkyl methacrylate
  • alkyl acrylate and monomers other than these, respectively, you may use those 2 or more types as needed.
  • the glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
  • the methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization.
  • the amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
  • a commercially available product may be used as the resin material used for the translucent resin layer such as methacrylic resin.
  • organic such as a thiazolidone type, a benzotriazole type, an acrylonitrile type, a benzophenone type, an aminobutadiene type, a triazine type, a phenyl salicylate, a benzoate type
  • ultraviolet absorbers fine powder type ultraviolet blocking agents such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide and the like, and organic ultraviolet absorbers are particularly preferable.
  • organic ultraviolet absorbers for example, JP-A-46-3335, JP-A-55-152776, JP-A-5-197004, JP-A-5-232630, JP-A-5-307232, JP-A-6-2111813, -53427, 8-234364, 8-239368, 9-310667, 10-115898, 10-147777, 10-182621, German Patent No. 19739797A, Europe Japanese Patent No. 711804A and Japanese Patent Publication No. 8-501291, US Patent No. 1,023,859, No. 2,685,512, No. 2,739,888, No. 2,784, No. 087, No. 2,748,021, No. 3,004,896, No. 3,052,636, No.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy.
  • benzophenone 2-hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4 4,4′-tetrahydroxy-benzophenone and the like.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1, 3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-phenylethyl) phenol (molecular weight 447.6; examples of commercially available products are TINUVIN 234 manufactured by BASF), 2- (2H-benzotriazole 2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-te
  • phenyl salicylate ultraviolet absorber examples include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • benzoate UV absorbers examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; Sumisorb 400).
  • UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. it can.
  • the ultraviolet absorber having a molecular weight of 400 or more has little transferability from the thin translucent resin layer 4 to other constituent layers and hardly deposits on the surface of the laminate, the amount of the ultraviolet absorber contained is small. It is preferable from the viewpoints of being maintained for a long time and being excellent in the durability of the weather resistance improving effect.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl)- Benzotriazoles such as 4- (1,1,3,3-tetramethylbutyl) phenol, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6) , 6-pentamethyl-4-piperidyl) sebacate and other hindered amines, and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1 , 2,2,6,6-pentamethyl-4-piperidy
  • the ultraviolet absorber a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination.
  • quenchers light stabilizers acting as a light energy conversion agent
  • each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary.
  • an ultraviolet absorber other than the above-described ultraviolet absorber for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
  • the content (in terms of solid content) of the ultraviolet absorber in the translucent resin layer is not particularly limited, but is preferably from 0.1 to 25% by mass, more preferably based on the translucent resin layer. 0.5 to 20% by mass, more preferably 1 to 15% by mass. Further, the content (content per unit area of the film) of the ultraviolet absorber in the translucent resin layer is not particularly limited, but preferably 0.17 to 2.28 g / m 2 , more preferably 0.4. To 2.28 g / m 2 .
  • the translucent resin layer may further contain an antioxidant in order to prevent deterioration.
  • an antioxidant in order to prevent deterioration.
  • it does not restrict
  • the phenol-based antioxidant, the thiol-based antioxidant, and the phosphite-based antioxidant known antioxidants described in WO 2012/165460 and the like can be used, respectively.
  • the urethane-modified acrylic resin layer is provided on the surface opposite to the light incident side of the translucent resin layer.
  • the urethane-modified acrylic resin used for the urethane-modified acrylic resin layer is not particularly limited, but the following general formula (I):
  • the urethane-modified acrylic resin layer formed using such a urethane-modified acrylic resin traps UV absorbers (UV absorbers) that bleed out from the translucent resin layer in a high-temperature environment more effectively, Adhesion with the translucent resin layer is also higher. Therefore, by using a film mirror having a urethane-modified acrylic resin layer formed using such a urethane-modified acrylic resin, even when it is exposed to a high temperature environment for a long time, the haze increase and reflectance Can be suppressed and prevented more effectively.
  • UV absorbers UV absorbers
  • R and R ′ represent an alkylene group.
  • R and R ′ may be the same or different.
  • each unit (—O—C ( ⁇ O) —NH—R—NH—C ( ⁇ O) —O—R′—) (unit (c)) is May be the same or different.
  • Specific examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a propylene group. Of these, an alkylene group having 1 to 10 carbon atoms is preferable, and an alkylene group having 1 to 5 carbon atoms is more preferable.
  • the degree of polymerization of the unit (a) (acrylic unit) represented by the formula: is an integer of 10 to 500, preferably an integer of 50 to 300.
  • n is the following formula:
  • the degree of polymerization of the unit (b) represented by the formula is an integer of 10 to 500, preferably an integer of 50 to 300.
  • p is the number of units (c) (—O—C ( ⁇ O) —NH—R—NH—C ( ⁇ O) —O—R′—; urethane unit) present in the unit (b).
  • an integer of 10 to 200 preferably an integer of 50 to 150.
  • each unit (b) may be the same or different.
  • the composition of the units (a) and (b) in the urethane-modified acrylic resin having the units (a) and (b) is not particularly limited, but the trapping property of the ultraviolet absorber that bleeds out from the translucent resin layer.
  • the urethane / acrylic ratio (unit (b) / unit (a) molar ratio) is preferably 5/95 to 50/50, more preferably 10 / 90 to 30/70, more preferably 15/85 to 25/75.
  • the units (a) and (b) may be block-shaped or random.
  • the weight average molecular weight of the urethane-modified acrylic resin is not particularly limited, but is preferably 10,000 from the viewpoint of the trapping property of the ultraviolet absorber that bleeds out from the translucent resin layer, the adhesion with the translucent resin layer, and the like. To 100,000, more preferably 20,000 to 50,000.
  • “weight average molecular weight” is a value measured by gel permeation chromatography (Gel Permeation Chromatography, GPC) using polystyrene as a standard substance.
  • the hydroxyl value of the urethane-modified acrylic resin constituting the translucent resin layer is also not particularly limited, but the ultraviolet absorber that bleeds out from the translucent resin layer, the adhesiveness with the translucent resin layer, etc. From the viewpoint, it is preferably 15 to 40, more preferably 25 to 35.
  • the “hydroxyl value of urethane-modified acrylic resin” is a value measured under the following conditions / method. It is expressed in mg of potassium hydroxide required to acetylate the hydroxyl group contained in 1 g of urethane-modified acrylic resin and neutralize acetic acid required for acetylation. For this reason, the hydroxyl value of urethane-modified acrylic resin can be controlled based on the carboxyl group and the amount of hydroxyl groups contained in the monomer to be blended.
  • the urethane-modified acrylic resin may be produced by polymerization using an appropriate monomer, or a commercially available product may be used. In the latter case, for example, ACRYT 8UA series (urethane-modified acrylic polymer) manufactured by Taisei Fine Chemical Co., Ltd. is used.
  • the formation method in particular of a urethane-modified acrylic resin layer is not restrict
  • coating can be mentioned.
  • various conventionally used coating methods such as spray coating, spin coating, bar coating, and gravure coating can be used.
  • the urethane-modified acrylic resin layer is formed by directly applying the urethane-modified acrylic resin on the light incident side surface of the resin substrate or the light reflecting layer or another layer formed on the resin substrate or the light reflecting layer. Can be formed.
  • the thickness (dry film thickness) of the urethane-modified acrylic resin layer is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, still more preferably 0.1 to 2 ⁇ m, particularly preferably 0.5 to 1.5 ⁇ m. If the thickness of the urethane-modified acrylic resin layer is too thin, the effect of reducing bleed out is reduced, and the increase in haze over time is increased. If the thickness is too thick, the effect of reducing bleed out is obtained, but the resin over time Is greatly deformed, leading to a decrease in reflectance. Therefore, if it is the above thickness, the ultraviolet absorber bleed out from the translucent resin layer can be efficiently trapped, and sufficient adhesion with the translucent resin layer can be secured.
  • resin base material Various conventionally known resin films can be used as the resin base material.
  • polycarbonate films polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable.
  • a polyester film such as polyethylene terephthalate or an acrylic film is preferably used, and a polyester film such as polyethylene terephthalate is particularly preferable.
  • the resin base material may be manufactured by any method, and may be, for example, a film manufactured by melt casting film formation or a film manufactured by solution casting film formation. .
  • the resin substrate Since the resin substrate is located farther from the light incident side than the light reflecting layer, it is difficult for ultraviolet rays to reach the resin substrate.
  • an ultraviolet absorber when contained in a translucent resin layer or the like that is closer to the light incident side than the resin base material, the ultraviolet rays are more difficult to reach the resin base material. Therefore, the resin base material can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin base material.
  • the thickness of the resin substrate is not particularly limited, but is preferably an appropriate thickness depending on the type and purpose of the resin.
  • the thickness of the resin substrate is preferably in the range of 10 to 250 ⁇ m, for example, and more preferably 20 to 200 ⁇ m.
  • the light reflecting layer is a layer made of metal or the like having a function of reflecting sunlight.
  • the surface reflectance of the light reflecting layer is preferably 80% or more, more preferably 90% or more.
  • This light reflecting layer is preferably formed of a material containing any element selected from the group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au. Among these, it is preferable that Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed.
  • a light reflecting layer mainly composed of silver is used.
  • the thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided on the light reflecting layer to further improve the reflectance.
  • a wet method or a dry method can be used as a method for forming this light reflecting layer.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention.
  • the adhesive layer has adhesiveness that enables the film mirror to be attached to the support substrate, and the adhesive layer is used to join the film mirror to the support substrate to form a solar power generation reflection device. It is a constituent layer.
  • the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent and the like can be used.
  • a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 ⁇ m from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the film mirror may include a release sheet (not shown) that covers the surface of the adhesive layer on the side opposite to the resin substrate.
  • a film mirror has a peeling sheet, after peeling a peeling sheet from an adhesion layer, a film mirror can be affixed on a support base material through an adhesion layer.
  • the release sheet is a member that covers the surface opposite to the light incident side of the adhesive layer in the film mirror.
  • the release sheet is attached to the adhesive layer, and then the release sheet is released from the adhesive layer of the film mirror, and the film mirror is attached to the support substrate to reflect the solar power generation reflection device. Can be formed.
  • the release sheet may be any sheet that can protect the adhesiveness of the adhesive layer.
  • a resin film or sheet subjected to surface processing such as vapor deposition is used.
  • the thickness of the release sheet is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • the hard coat layer is provided for the purpose of preventing damage to the surface of the film mirror and adhesion of dirt.
  • the transparent hard coat layer is preferably the outermost layer on the light incident side, or the second or third layer from the light incident side.
  • Another thin layer (preferably 1 ⁇ m or less) may be provided on the hard coat layer. More preferably, the hard coat layer is particularly preferably provided on the light incident side surface of the translucent resin layer.
  • the hard coat layer may be in the form of a single layer or a laminate of two or more layers. In the latter case, each layer may have the same composition or different compositions.
  • Examples of methods for producing the hard coat layer include conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method. In addition to applying and coating a predetermined material, various surface treatments and the like may be combined.
  • the thickness of the hard coat layer is preferably 0.05 ⁇ m or more and 10 ⁇ m or less from the viewpoint of preventing the film mirror from warping while obtaining sufficient scratch resistance. More preferably, they are 1 micrometer or more and 7 micrometers or less.
  • the material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained.
  • the hard coat layer can be composed of an acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, or the like.
  • silicone resins and acrylic resins are preferable in terms of hardness and durability.
  • active energy ray-curable acrylic resins or thermosetting acrylic resins are preferable, but there are concerns about weather resistance, and hard There is a concern that discoloration as a coating layer occurs with time and haze increases, resulting in a decrease in reflectance.
  • metalloxane an organic silicate compound, a silicone resin
  • the hard coat layer is preferably a metalloxane-based hard coat layer.
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc.
  • thermosetting resin composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable.
  • materials that can be used for the hard coat layer an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No.
  • Resin film used Japanese Patent Laid-Open No. 2004-142161
  • photocatalytic oxide-containing silica film such as titanium oxide or alumina
  • photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio
  • photocatalyst Examples thereof include a fluorine-containing resin coating (Pierex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) in organic / inorganic polysilazane.
  • AZ Electronics hydrophilization accelerator
  • thermosetting silicone hard coat layer a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used.
  • An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with.
  • an acid catalyst such as hydrochloric acid or nitric acid
  • the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction.
  • a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply
  • an acrylic compound having an unsaturated group such as pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethyloltetra
  • a polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply
  • a hydrophilic property by subjecting the hard coat layer to a surface treatment.
  • the treatment for imparting hydrophilicity include corona treatment (Japanese Patent Laid-Open No. 11-172028), plasma surface treatment, ultraviolet / ozone treatment, surface protrusion formation (Japanese Patent Laid-Open No. 2009-226613), surface fine processing treatment, and the like. Can be mentioned.
  • the hard coat layer is made of an inorganic material
  • silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like can be formed by vacuum film formation.
  • the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • the hard coat layer is made of an inorganic material, it is preferably made of a film obtained by coating polysilazane and heat-curing it.
  • the precursor of the hard coat layer contains polysilazane, for example, after applying a solution to which a catalyst is added as necessary in an organic solvent containing polysilazane represented by the following general formula (6), the solvent is evaporated. Thereby leaving a polysilazane layer having a layer thickness of 0.05 to 3.0 ⁇ m on the film mirror. Then, a glass-like transparent hard coat film is formed on the film mirror by locally heating the polysilazane layer in the presence of oxygen, active oxygen, and in some cases nitrogen in an atmosphere containing water vapor. It is preferable to adopt the method.
  • R 1 , R 2 and R 3 are the same or different and are independently of each other a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group or (trialkoxy).
  • (Silyl) alkyl group preferably hydrogen atom, methyl group, ethyl group, propyl group, iso-propyl group, butyl group, iso-butyl group, tert-butyl group, phenyl group, vinyl group or 3- (triethoxysilyl) Represents a group selected from the group consisting of a propyl group and a 3- (trimethoxysilylpropyl) group.
  • n is an integer, and n is determined so that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • catalysts preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used.
  • the catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
  • a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (6) are hydrogen atoms is used.
  • the hard coat layer contains at least one polysilazane represented by the following general formula (7).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group or Represents a (trialkoxysilyl) alkyl group.
  • n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent a hydrogen atom
  • R 2 , R 4 and R 5 represent a methyl group
  • R 1 , R 3 , R 4 and R 6 represent a hydrogen atom
  • R 2 and R 5 represent a methyl group.
  • the transparent hard coat layer contains at least one polysilazane represented by the following general formula (8).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of each other a hydrogen atom or optionally substituted.
  • n, p and q are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent a hydrogen atom
  • R 2 , R 4 , R 5 and R 8 represent a methyl group
  • R 9 represents a (triethoxysilyl) propyl group
  • R 7 is a compound representing an alkyl group or a hydrogen atom.
  • the proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
  • an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane preferably an aprotic solvent is suitable.
  • aprotic solvent preferably an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane.
  • binders such as those conventionally used in the production of paints can be used.
  • cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
  • an additive that affects the viscosity, wettability of the preparation, film forming property, lubricating action or exhaust property, or inorganic nanoparticles such as SiO 2 TiO 2 , ZnO, ZrO 2 or Al 2 O 3 can be used.
  • the transparent hard coat layer of polysilazane thus formed can also be used as an oxygen / water vapor barrier film.
  • a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin can be given.
  • a polyfunctional acrylic monomer is hereinafter referred to as “A” component
  • the silicone resin is hereinafter referred to as “B” component.
  • the polyfunctional acrylic monomer “A” component preferably has an unsaturated group, particularly an active energy ray-reactive unsaturated group.
  • the active energy ray referred to in this specification preferably means an electron beam or an ultraviolet ray.
  • a radical polymerization monomer is used, preferably a bifunctional or higher functional monomer having an ⁇ , ⁇ -unsaturated double bond in the molecule.
  • a certain polyfunctional acrylate type or polyfunctional methacrylate type monomer may be mentioned.
  • a vinyl monomer, an allyl monomer, or a monofunctional monomer may be included.
  • the radical polymerization monomer can be used alone or in combination of two or more kinds of monomers in order to adjust the crosslinking density.
  • the “A” component in addition to these relatively low molecular weight compounds, for example, so-called narrowly-defined monomers having a molecular weight of less than 1000, oligomers and prepolymers having a somewhat high molecular weight, for example, a weight average molecular weight of 1,000 to 10,000 are also used. Is possible.
  • monofunctional (meth) acrylate monomers include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and 2- (meth) acryloyloxyethyl.
  • polyfunctional (meth) acrylate monomer examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol F di (meth) acrylate, diethylene glycol di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, di (meth) acrylate phthalate Rate, polyethylene glycol di (meth) acrylate
  • Examples of such commercially available “A” component that is a polymerizable organic compound include Aronix M-400, M-408, M-450, M-305, M-309, M-manufactured by Toagosei Co., Ltd. 310, M-315, M-320, M-350, M-360, M-208, M-210, M-215, M-220, M-225, M-233, M-240, M-245, M-260, M-270, M-1100, M-1200, M-1210, M-1310, M-1600, M-221, M-203, TO-924, TO-1270, TO-1231, TO- 595, TO-756, TO-1343, TO-902, TO-904, TO-905, TO-1330, KAYARAD D-310, D-330, DPHA, DPCA-20, DP manufactured by Nippon Kayaku Co., Ltd.
  • the content of the polyfunctional acrylic monomer “A” component is 10 to 90% by mass with the total composition of “A” + “B” being 100% by mass from the viewpoint of improving antifouling properties and light resistance. It is preferably 15 to 80% by mass.
  • the silicone resin “B” component is preferably a silicone resin having an active energy ray-reactive unsaturated group.
  • the silicone resin contains a polyorganosiloxane, and is preferably a compound having a polyorganosiloxane chain having an active energy ray-curable unsaturated bond in the molecule.
  • the silicone resin contains 1 to 50% by mass of the monomer (a) having a radically polymerizable double bond and a polyorganosiloxane chain, and other than (a) having a radically polymerizable double bond and a reactive functional group.
  • a monomer containing 10 to 95% by mass of the monomer (b) and 0 to 89% by mass of the monomer (c) having a radical polymerizable double bond other than (a) and (b) is polymerized.
  • a vinyl copolymer having a number average molecular weight of 5,000 to 100,000 obtained by reacting the polymer ( ⁇ ) with a functional group capable of reacting with the reactive functional group and a compound ( ⁇ ) having a radical polymerizable double bond.
  • An active energy ray-curable resin that is a coalescence is preferable.
  • the monomer (a) having a radical polymerizable double bond and a polyorganosiloxane chain include, for example, one end of Silaplane FM-0711, FM-0721, FM-0725, etc. manufactured by Chisso Corporation.
  • Examples include (meth) acryloxy group-containing polyorganosiloxane compounds, AC-SQ SI-20 manufactured by Toagosei Co., Ltd., POSS (Polyhydrogen Oligomeric Silsesquioxane) series acrylates and methacrylate-containing compounds manufactured by Hybrid Plastics.
  • the “B” component can be used alone or in combination of two or more depending on the required performance.
  • the polymerization ratio is preferably such that the monomer (a) is 1 to 50% by mass, more preferably 10 to 35% by mass, based on the total mass of monomers constituting the polymer. %.
  • the copolymerization ratio of the “B” component is less than 1% by mass, it becomes difficult to impart antifouling properties and weather resistance to the upper surface of the cured product, and when it exceeds 50% by mass, scratch resistance is obtained.
  • the coating composition performance such as compatibility with other components contained in the active energy ray-curable composition, adhesion to the substrate, toughness, and solubility of the polymer in the solvent are obtained. It becomes difficult.
  • An appropriate amount of polysiloxane can also be contained in the above components, and depending on the chemical structure and quantitative ratio of the “B” component, the durability can be improved by adding polysiloxane.
  • the metalloxane-based hard coat material may be a commercially available product.
  • a Surcoat series for example, BP-16 N
  • surcoat series for example, NP-720, NP-730
  • polysiloxane compounds such as OCD T7, OCD T11, OCD T12 manufactured by Tokyo Ohka Kogyo Co., Ltd., Toagosei Co., Ltd.
  • Silicone copolymers such as Cymac US-150, US-270, US-350, US-450, Reseda GP-700 (or more), etc. may be used as the hard coat material.
  • This hard coat layer is preferably flexible and does not warp.
  • the transparent hard coat layer on the outermost surface layer of the film mirror may form a dense cross-linked structure, so the film may be bent or it may be prone to cracking due to lack of flexibility and handling. It becomes difficult. In such a case, it is preferable to design so as to obtain flexibility and flatness by adjusting the amount of the inorganic substance in the hard coat layer composition.
  • the hard coat layer may contain an ultraviolet absorber or an antioxidant.
  • the ultraviolet absorber or antioxidant the ultraviolet absorber or antioxidant used in the above-described translucent resin layer can be used.
  • the antioxidant used in the hard coat layer it is preferable to use an organic antioxidant such as a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant. The falling angle can also be reduced by including an organic antioxidant in the hard coat layer.
  • An antioxidant and a light stabilizer may be used in combination.
  • the light stabilizer is not particularly limited, but the same light stabilizer as described in the above-mentioned section of the light transmissive resin layer can be used. Description is omitted.
  • a preferred UV absorber in a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin is a benzotriazole UV absorber.
  • a benzotriazole-based ultraviolet absorber in the hard coat layer, it is possible to obtain an excellent effect that not only the weather resistance is further improved, but also the falling angle can be further reduced.
  • the compound represented by the following general formula (9) is contained in the hard coat layer, the effect of reducing the falling angle is remarkable.
  • the falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which the water drop of a predetermined mass that has been stationary falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
  • the amount of the UV absorber used in the hard coat layer is preferably 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is 0.25 to 15% by mass, and more preferably 0.5 to 10% by mass.
  • the hard coat layer particularly the hard coat layer containing a polyfunctional acrylic monomer and a silicone resin, preferably contains an initiator for initiating polymerization.
  • Photoinitiators of active energy ray-curable resins such as ultraviolet rays are preferably used. Examples include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and the like.
  • the above initiator can also be used as a photosensitizer.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the initiator or photosensitizer is used in an amount of 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, based on 100 parts by weight of the composition.
  • Two types of initiators can be used in combination.
  • the polymerization reaction of all the monomers may not be performed by the initiator.
  • the initiator that absorbs longer wavelengths improves the reactivity, but the initiator may be colored during long-term use. Therefore, it is preferable to use radical initiators that absorb different wavelengths in order to improve the weather resistance and also the polymerization reactivity without coloring even during long-term use.
  • various additives can be further blended as necessary.
  • a surfactant for example, a surfactant, a leveling agent and an antistatic agent can be used.
  • ⁇ Leveling agents are effective in reducing surface irregularities.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • SH190 manufactured by Toray Dow Corning Co., Ltd. is suitable as the silicone leveling agent.
  • the anchor layer can be disposed between the resin substrate and the light reflecting layer.
  • An anchor layer consists of resin and makes a resin base material and a light reflection layer closely_contact
  • the material used for the anchor layer (resin material) and the method for forming the anchor layer are not particularly limited.
  • the corrosion prevention layer is a resin layer containing a corrosion inhibitor and is preferably adjacent to the light reflection layer. For example, it can be provided between the light reflecting layer and the adhesive layer.
  • the corrosion prevention layer may consist of only one layer or a plurality of layers.
  • the thickness of the corrosion prevention layer is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • the resin and corrosion inhibitor used in the corrosion prevention layer are not particularly limited, but are similar to those described in known documents such as WO 2012/165460 pamphlet (particularly, paragraphs “0079” to “0095”). Material can be used.
  • a corrosion prevention layer can be formed by applying and coating these resin materials (binders) on the light reflection layer 1 or the like.
  • the corrosion inhibitor it is preferable to have an adsorptive group for silver.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
  • the gas barrier layer is preferably provided on the light incident side with respect to the light reflecting layer. In particular, it is preferable to provide a gas barrier layer between the resin substrate and the light reflecting layer.
  • the gas barrier layer is intended to prevent the deterioration of humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but with special functions and applications. As long as it has a function of preventing deterioration, a gas barrier layer of various modes can be provided.
  • the moisture resistance of the gas barrier layer the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 ⁇ day or less, more preferably 0.5 g / m 2 ⁇ day or less, still more preferably It is 0.2 g / m 2 ⁇ day or less.
  • the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
  • the material used for the gas barrier layer and the method for forming the gas barrier layer are not particularly limited, and are described in known documents such as WO 2012/165460 pamphlet (particularly, paragraphs “0188” to “0209”). The same materials and methods can be used.
  • a film mirror for solar power generation can be manufactured by appropriately laminating the above-described constituent layers.
  • this invention is not limited to the following form.
  • a resin base material for example, a polyethylene terephthalate film manufactured by melt film formation
  • an anchor layer is formed by applying a predetermined resin material on the resin substrate (after application, drying if necessary).
  • a light reflecting layer for example, a silver reflecting layer
  • a method such as vacuum deposition is used to form the resin substrate (or an anchor layer when an anchor layer is provided on the resin substrate) by a method such as vacuum deposition.
  • the urethane-modified acrylic resin solution is prepared by dissolving the urethane-modified acrylic resin in a suitable solvent.
  • the solvent that can be used for preparing the urethane-modified acrylic resin liquid is not particularly limited as long as it can dissolve the urethane-modified acrylic resin, and is appropriately selected depending on the type of the urethane-modified acrylic resin to be used.
  • methyl ethyl ketone (MEK), toluene, xylene, methylene chloride, 1,2-dichloroethane, cyclohexane, ethyl acetate, t-butyl acetate, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, t-butyl
  • examples include alcohol, sec-butyl alcohol butanol, methyl cellosolve, 4-methoxy-4-methyl-2-pentanone, ethyl cellosolve, tetrahydrofuran, 1-dioxane, 1,3-dioxolane, pyridine, and diethylamine.
  • the concentration of the urethane-modified acrylic resin in the urethane-modified acrylic resin liquid is not particularly limited, but is preferably 5 to 30% by mass, more preferably in consideration of ease of application, ease of adjusting a desired thickness, and the like. 5 to 15% by mass.
  • the urethane-modified acrylic resin layer is formed by drying the coating film.
  • the application method is not particularly limited, but roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating. Methods, such as a spray coating method and a doctor coating method, can be used.
  • the drying conditions are not particularly limited as long as a sufficient amount of solvent can be evaporated from the coating film (a urethane-modified acrylic resin layer can be formed).
  • the drying temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C.
  • the drying time is preferably 0.5 to 2 minutes, more preferably 0.5 to 1.5 minutes.
  • a translucent resin layer forming liquid containing a resin material and an ultraviolet absorber is applied (after application, if necessary, dried), A translucent resin layer is formed.
  • the solvent that can be used for the preparation of the translucent resin layer forming liquid is not particularly limited as long as it can dissolve the resin material and the ultraviolet absorber, and is appropriately selected depending on the type of the resin material and the ultraviolet absorber to be used. Selected.
  • methyl ethyl ketone (MEK), toluene, xylene, methylene chloride, 1,2-dichloroethane, cyclohexane, ethyl acetate, t-butyl acetate, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, t-butyl
  • examples include alcohol, sec-butyl alcohol butanol, methyl cellosolve, 4-methoxy-4-methyl-2-pentanone, ethyl cellosolve, tetrahydrofuran, 1-dioxane, 1,3-dioxolane, pyridine, and diethylamine.
  • the concentration of the resin material (translucent resin) in the translucent resin layer forming liquid is not particularly limited, but it is preferably 10 to 40 in consideration of ease of application, ease of adjusting a desired thickness, and the like. % By mass, more preferably 15 to 30% by mass. Moreover, it does not restrict
  • the drying condition when drying is such that a sufficient amount of solvent can be evaporated from the coating film (the translucent resin layer can be formed).
  • the drying temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C.
  • the drying time is preferably 0.5 to 5 minutes, more preferably 1 to 3 minutes.
  • a hard coat layer forming liquid containing a hard coat material is applied onto the thus formed translucent resin layer (after application, dried if necessary, and further cured as necessary).
  • the solvent that can be used for the preparation of the hard coat layer forming liquid is not particularly limited as long as it can dissolve the hard coat material, and is appropriately selected depending on the type of the hard coat material to be used.
  • the same solvent as the solvent that can be used for the preparation of the translucent resin layer forming liquid can be used. These solvents can be used alone or in combination of two or more.
  • the concentration of the hard coat material in the hard coat layer forming liquid is not particularly limited, but is preferably 20 to 40% by mass, more preferably 25 in consideration of ease of application, ease of adjusting a desired thickness, and the like. Is 35% by mass. Moreover, it does not restrict
  • the drying conditions for drying after applying the hard coat layer forming liquid on the translucent resin layer are not particularly limited as long as a sufficient amount of solvent can be evaporated from the coating film (a hard coat layer can be formed). . Specifically, the drying temperature is preferably 70 to 100 ° C., more preferably 80 to 90 ° C. The drying time is preferably 0.5 to 3.0 minutes, more preferably 0.5 to 1.5 minutes. In the case where a thermosetting hard coat material is used, the drying and curing can be performed simultaneously.
  • an adhesive material is formed on the back side of the light reflecting layer or the resin base (the side on which the resin base and the light reflecting layer are not formed respectively) to form an adhesive layer, and the adhesive layer is covered with a release sheet. As a result, a film mirror is manufactured.
  • the desired film mirrors are manufactured by laminating the constituent layers necessary for each film mirror in a predetermined order on the resin base material or light reflecting layer.
  • a predetermined resin material an anchor coat layer forming liquid containing a predetermined resin material if necessary
  • Is applied after application, it is dried if necessary
  • the solvent, drying conditions, and the like that can be used for the preparation of the anchor coat layer forming liquid are not limited. For example, the same description as above can be applied, and thus the description thereof is omitted here.
  • a resin material containing a corrosion inhibitor on the light reflection layer if necessary, a predetermined resin material and corrosion. It is possible to form a corrosion prevention layer by applying (corrosion prevention layer forming liquid containing an inhibitor) (after application, drying if necessary).
  • the solvent, drying conditions, and the like that can be used for the preparation of the corrosion-preventing layer forming liquid are not limited.
  • the gas barrier layer can be formed by subjecting a predetermined layer to a sol-gel method and heating / UV treatment.
  • the resin base material is a resin film produced by melt film formation, etc.
  • the resin film is not used for the other constituent layers, and sequentially with respect to the resin base material, It is preferable to manufacture a film mirror by repeating film formation by application, coating, vapor deposition, or the like of each constituent layer and laminating predetermined constituent layers.
  • the method for producing a film mirror of the present invention includes a resin film having at least a light reflecting layer, a layer disposed on the light incident side (for example, a translucent resin layer containing an ultraviolet absorber, a urethane-modified acrylic resin layer), It is preferable that the process which manufactures separately the resin film which becomes and does not include the process of bonding any two resin films with an adhesive agent (adhesive layer) after that is preferable.
  • the solar power generation reflecting device is a reflecting mirror that includes a film mirror and a self-supporting support base material, and the film mirror is bonded to the support base material via an adhesive layer.
  • the "self-supporting property" as used herein means that the supporting substrate supports the edge portion of the film mirror in a state where the supporting substrate is cut to a size used as a supporting substrate of the solar power generation reflecting device.
  • the film mirror has rigidity enough to support the film mirror.
  • the support base material of the solar power generation reflecting device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device itself, and it is possible to suppress power consumption during solar tracking.
  • a self-supporting support base material there are one having a pair of metal flat plates and an intermediate layer interposed between the metal flat plates (type A), or one made of a resin material having a hollow structure (type B). It is preferable.
  • self-supporting substrates A and B described in WO 11/162154 pamphlet or US Patent Application Publication No. 2013/0114155 can be employed.
  • the solar power generation reflection device has a holding member that holds the reflection device itself.
  • the holding member holds the reflecting surface (film mirror) of the solar power generation reflecting device in a state where the sun can be tracked.
  • the form of the holding member is not particularly limited, but for example, a plurality of places on the support base on the back side of the solar power generation reflecting device are formed in a bar shape so that the solar power generating reflection device can hold a desired shape and posture.
  • the form held by a columnar member or a beam-like member is preferable.
  • the holding member has a configuration for holding the solar power generation reflecting device in a state in which the sun can be tracked.
  • the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
  • Example 1 A biaxially stretched polyester film (polyethylene terephthalate film, thickness: 25 ⁇ m) was used as the resin substrate. A silver reflective layer having a thickness of 100 nm was formed as a light reflective layer on one side of the resin base material by a vacuum deposition method.
  • MEK methyl ethyl ketone
  • the urethane-modified acrylic resin layer forming liquid prepared in this way is applied to the surface of the polyethylene terephthalate film on the side where the light reflecting layer is not formed by gravure coating so that the thickness (dry film thickness) is 1 ⁇ m.
  • a urethane-modified acrylic resin layer having a thickness of 1 ⁇ m was formed by drying at 80 ° C. for 1 minute.
  • PMMA resin manufactured by Mitsubishi Rayon Co., Ltd., EMB457
  • acrylic rubber manufactured by Asahi Kasei Chemicals Co., Ltd., SRB215
  • triazine ultraviolet absorber manufactured by BASF, Tinuvin479
  • benzotriazole ultraviolet absorber manufactured by BASF, Tinuvin928, Is mixed in methyl ethyl ketone (MEK) so that the mixing ratio is 17: 3: 0.68: 0.43 (solid content ratio) and the solid content concentration is 21% by mass, and the translucent resin layer is mixed.
  • MEK methyl ethyl ketone
  • This translucent resin layer forming solution is applied on the urethane-modified acrylic resin layer formed above with a bar coater so that the thickness (dry film thickness) is 25 ⁇ m, and dried at 80 ° C. for 2 minutes. Thus, a translucent resin layer having a thickness of 25 ⁇ m was formed.
  • the amount of the ultraviolet absorber in the translucent resin layer was 5% by mass.
  • a metalloxane-based silicone liquid (manufactured by Doken Co., Ltd., acrylic silicone-based thermosetting resin, Surcoat BP-16 N; 45% by mass methanol solution) is diluted with methyl ethyl ketone (MEK) to a concentration of 30% by mass.
  • MEK methyl ethyl ketone
  • a hard coat layer forming solution was prepared. This hard coat layer forming liquid is applied on the translucent resin layer formed above by gravure coating so that the thickness (dry film thickness) becomes 3 ⁇ m, and dried / cured at 85 ° C. for 1 minute. Thus, a hard coat layer having a thickness of 3 ⁇ m was formed to obtain a film mirror 1.
  • Example 2 Example 1 except that the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) in Example 1 was 15% by mass. In the same manner as described above, a film mirror 2 was obtained.
  • Example 3 Example 1 except that the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) in Example 1 was changed to 1% by mass. In the same manner as described above, a film mirror 3 was obtained.
  • Example 4 In Example 1, the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) was changed to 0.5% by mass. In the same manner as in Example 1, a film mirror 4 was obtained.
  • Example 5 In Example 4, the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) was changed to 20% by mass. In the same manner as described above, a film mirror 5 was obtained.
  • Example 6 In Example 4, the film mirror 6 was obtained like Example 4 except not having formed the hard-coat layer.
  • Example 7 In Example 1, a film mirror 7 was obtained in the same manner as in Example 1 except that the hard coat layer was not formed.
  • Example 8 In Example 1, the hard coat layer was coated with an acrylic hard coat paint (Desolite Z7501 manufactured by JSR Corporation) in a gravure coating coating method so that the coating thickness after drying was 3 ⁇ m. Other than forming by irradiating with ultraviolet rays under conditions of 200 mJ / cm 2 with a UV light irradiation device (Fusion UV Systems Japan Co., Ltd. product name: Fusion H bulb) after drying under the condition of °C ⁇ 1 minute. Obtained a film mirror 8 in the same manner as in Example 1.
  • an acrylic hard coat paint (Desolite Z7501 manufactured by JSR Corporation) in a gravure coating coating method so that the coating thickness after drying was 3 ⁇ m.
  • a UV light irradiation device Fusion UV Systems Japan Co., Ltd. product name: Fusion H bulb
  • Example 9 In Example 1, a film mirror 9 was obtained in the same manner as in Example 1 except that the thickness of the urethane-modified acrylic resin layer was 0.05 ⁇ m.
  • Example 10 In Example 1, a film mirror 10 was obtained in the same manner as in Example 1 except that the thickness of the urethane-modified acrylic resin layer was 0.1 ⁇ m.
  • Example 11 In Example 1, a film mirror 11 was obtained in the same manner as in Example 1 except that the thickness of the urethane-modified acrylic resin layer was 5 ⁇ m.
  • Comparative Example 1 A film mirror 14 was obtained in the same manner as in Example 4 except that the urethane-modified acrylic resin layer was not formed in Example 4.
  • Example 2 Comparative Example 2 In Example 1, the film mirror 15 was obtained like Example 1 except not having formed the urethane-modified acrylic resin layer.
  • Example 7 Comparative Example 3 In Example 7, the film mirror 16 was obtained like Example 7 except not having formed the urethane-modified acrylic resin layer.
  • Example 7 Comparative Example 5 In Example 7, the film mirror 18 was obtained like Example 7 except having formed the PMMA resin layer as follows instead of the urethane-modified acrylic resin layer.
  • MEK methyl ethyl ketone
  • the PMMA resin layer forming solution thus prepared was applied to the surface of the polyethylene terephthalate film on the side where the light reflecting layer was not formed by gravure coating so that the thickness (dry film thickness) was 1 ⁇ m.
  • the PMMA resin layer having a thickness of 1 ⁇ m was formed by drying at 80 ° C. for 1 minute.
  • the film mirrors 1 to 13 of the present invention in which the urethane-modified acrylic resin layer is disposed between the translucent resin layer and the resin base material are comparative examples 1 to 13 in which no urethane-modified acrylic resin layer is disposed.
  • the film mirror 18 of Comparative Example 5 in which the film mirrors 14 to 17 and the acrylic resin layer (non-urethane modified acrylic resin layer) 4 are disposed the haze increase and the reflectivity decrease under a high temperature environment. It can be seen that it can be significantly suppressed and prevented.

Abstract

A film mirror is provided which can suppress and prevent increases in haze in a high-temperature environment. In order from the light incidence side, this film mirror comprises at least a transparent resin layer having a UV absorbent, a urethane-modified acrylic resin layer, and either a resin substrate and a light reflecting layer, or a light reflecting layer and a resin substrate.

Description

フィルムミラーFilm mirror
 本発明は、フィルムミラーに関する。より詳しくは、本発明は、高温環境下でのヘイズ上昇を抑制できるフィルムミラーに関する。本発明のフィルムミラーは太陽熱発電用反射装置に好適に使用できる。 The present invention relates to a film mirror. More specifically, the present invention relates to a film mirror that can suppress an increase in haze under a high temperature environment. The film mirror of this invention can be used conveniently for the reflective apparatus for solar power generation.
 近年の地球温暖化は一層深刻な事態に発展している。その主原因は、20世紀に入りエネルギー源として多量に使用されてきた化石燃料から放出された大気中の二酸化炭素(CO)であると考えられている。したがって、近い将来、化石燃料をこのまま使い続けることは許されなくなると考えられる。また、他方で、中国、インド、ブラジル等のいわゆる発展途上国の急激な経済成長に伴うエネルギー需用の増大により、かつては無尽蔵と考えられていた石油、天然ガスの枯渇が現実味を帯びてきている。 In recent years, global warming has developed into a more serious situation. Its main cause is believed to be the atmospheric carbon dioxide released from fossil fuels it has been used in a large amount as an energy source in the 20th century (CO 2). Therefore, it is considered that it will not be allowed to continue using fossil fuels in the near future. On the other hand, the depletion of oil and natural gas, once thought to be inexhaustible, has become a reality due to the increase in energy demand accompanying the rapid economic growth of so-called developing countries such as China, India and Brazil. Yes.
 化石燃料の代替エネルギーとして最も安定しており、かつ量の多い自然エネルギーは、太陽エネルギーであると考えられる。特に世界のサンベルト地帯と呼ばれている赤道近くには、広大な砂漠が広がっており、そこに降りそそぐ太陽エネルギーは正に無尽蔵と言える。太陽エネルギーの利用に関して、米国南西部に拡がる砂漠のわずか数%を使えば、実に7,000GWものエネルギーを得ることが可能であると考えられている。また、アラビア半島、北アフリカの砂漠のわずか数%を使えば、全人類の使うエネルギーを全て賄うことができるとも考えられている。 Solar energy is considered to be the most stable and abundant amount of natural energy as an alternative energy to fossil fuels. In particular, the vast desert spreads near the equator, which is called the world's sun belt, and the solar energy that falls there is truly inexhaustible. With regard to the use of solar energy, it is thought that 7,000 GW of energy can be obtained if only a few percent of the desert that extends to the southwestern United States is used. It is also believed that using only a few percent of the Arabian peninsula and the deserts of North Africa can cover all the energy used by all mankind.
 このように、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを社会活動の中で活用するためには、(1)太陽エネルギーのエネルギー密度が低いこと、並びに(2)太陽エネルギーの貯蔵及び移送が困難であることが、問題となると考えられる。これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な集光装置で太陽エネルギーを集めることによって解決することが提案されている。 Thus, although solar energy is a very powerful alternative energy, in order to utilize it in social activities, (1) the energy density of solar energy is low, and (2) solar energy storage. And the difficulty of transport is considered a problem. On the other hand, it has been proposed to solve the problem that the energy density of solar energy is low by collecting solar energy with a huge concentrator.
 集光装置は太陽光による紫外線や熱、風雨、砂嵐などに晒されるため、従来は耐候性のよいガラス製ミラーが用いられてきた。但し、そのガラス製ミラーは環境に対する耐久性が高い反面、輸送時に破損してしまうことや、質量が重いためにミラーを設置する架台の強度を持たせる必要が生じてプラントの建設費がかさむことといった問題があった。 Since the condensing device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., conventionally, a glass mirror having good weather resistance has been used. However, the glass mirror has high environmental durability, but it is damaged during transportation, and because of its heavy mass, it is necessary to increase the strength of the frame on which the mirror is installed, which increases the construction cost of the plant. There was a problem.
 上記問題を解決するために、ガラス製ミラーを樹脂製反射ミラーに置き換えることが考えられてきた。 In order to solve the above problem, it has been considered to replace the glass mirror with a resin reflecting mirror.
 しかしながら、樹脂製反射ミラーの反射層に銀などの金属を用いると、樹脂層を介して酸素や水蒸気、硫化水素などが透過して、銀を腐食してしまうといった問題や、紫外線により樹脂層が劣化し、変色や膜剥がれが発生するなどの問題が生じるので、集光装置に樹脂製反射ミラーを適用することは困難であった。 However, when a metal such as silver is used for the reflection layer of the resin reflection mirror, oxygen, water vapor, hydrogen sulfide, etc. are transmitted through the resin layer, and silver is corroded. Since it deteriorates and causes problems such as discoloration and film peeling, it is difficult to apply a resin reflection mirror to the light collecting device.
 このような樹脂製反射ミラーの問題に対して、銀層の上部側を接着剤との接触から離すことによって、紫外線に対する耐光性に優れたアクリルフィルムを表面に用いる技術が知られている(例えば、特許文献1)。 With respect to the problem of such a resin reflecting mirror, a technique is known in which an acrylic film having excellent light resistance to ultraviolet rays is used on the surface by separating the upper side of the silver layer from contact with the adhesive (for example, Patent Document 1).
特表2009-520174号公報(WO 2007/076282に対応)Special table 2009-520174 (corresponding to WO 2007/076282)
 しかしながら、特許文献1に記載される銀鏡構造は、高温環境下でヘイズが上昇するといった問題があった。 However, the silver mirror structure described in Patent Document 1 has a problem that haze increases under a high temperature environment.
 したがって、本発明は、上記事情を鑑みてなされたものであり、高温環境下でのヘイズの上昇を抑制・防止できるフィルムミラーを提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a film mirror capable of suppressing and preventing an increase in haze under a high temperature environment.
 本発明の他の目的は、高温環境下での反射率の低下を抑制・防止できるフィルムミラーを提供することである。 Another object of the present invention is to provide a film mirror that can suppress / prevent a decrease in reflectance under a high temperature environment.
 本発明者は、上記課題を解決すべく、鋭意研究を行った結果、紫外線吸収剤を含む透光性樹脂層と樹脂基材または光反射層との間にウレタン変性アクリル樹脂層を配置することによって、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor has arranged a urethane-modified acrylic resin layer between a translucent resin layer containing an ultraviolet absorber and a resin substrate or a light reflecting layer. Thus, the inventors have found that the above-mentioned problems can be solved and completed the present invention.
 すなわち、上記諸目的は、光入射側から順に、紫外線吸収剤を含む透光性樹脂層、ウレタン変性アクリル樹脂層、ならびに樹脂基材および光反射層、または、光入射側から順に、紫外線吸収剤を含む透光性樹脂層、ウレタン変性アクリル樹脂層、ならびに光反射層および樹脂基材を少なくとも有するフィルムミラーによって達成できる。 That is, the above-mentioned objects are, in order from the light incident side, a light-transmitting resin layer containing an ultraviolet absorber, a urethane-modified acrylic resin layer, and a resin base material and a light reflecting layer, or an ultraviolet absorber in order from the light incident side. Can be achieved by a film mirror having at least a translucent resin layer containing urethane, a urethane-modified acrylic resin layer, and a light reflecting layer and a resin base material.
本発明のフィルムミラーの構成の一実施形態を示す概略断面図である。図1A中、1は光反射層を;2は樹脂基材を;3はウレタン変性アクリル樹脂層を;4は透光性樹脂層を;6は粘着層を;および10はフィルムミラーを、それぞれ、示す。It is a schematic sectional drawing which shows one Embodiment of the structure of the film mirror of this invention. In FIG. 1A, 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; and 10 is a film mirror. Show. 本発明に係る太陽熱発電用反射装置の構成の一実施形態を示す概略断面図である。図1B中、1は光反射層を;2は樹脂基材を;3はウレタン変性アクリル樹脂層を;4は透光性樹脂層を;6は粘着層を;7は支持基材を;および20は太陽熱発電用反射装置を、それぞれ、示す。It is a schematic sectional drawing which shows one Embodiment of the structure of the solar power generation reflective apparatus which concerns on this invention. In FIG. 1B, 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; 7 is a supporting substrate; Reference numeral 20 denotes a solar power generation reflecting device. 本発明のフィルムミラーの構成の他の実施形態を示す概略断面図である。図2A中、1は光反射層を;2は樹脂基材を;3はウレタン変性アクリル樹脂層を;4は透光性樹脂層を;6は粘着層を;および10はフィルムミラーを、それぞれ、示す。It is a schematic sectional drawing which shows other embodiment of the structure of the film mirror of this invention. In FIG. 2A, 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; and 10 is a film mirror. Show. 本発明に係る太陽熱発電用反射装置の構成の他の実施形態を示す概略断面図である。図2B中、1は光反射層を;2は樹脂基材を;3はウレタン変性アクリル樹脂層を;4は透光性樹脂層を;6は粘着層;7は支持基材を;および20は太陽熱発電用反射装置を、それぞれ、示す。It is a schematic sectional drawing which shows other embodiment of the structure of the solar power generation reflective apparatus which concerns on this invention. In FIG. 2B, 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 6 is an adhesive layer; 7 is a supporting substrate; Indicates solar power generation reflectors, respectively. 本発明のフィルムミラーの構成のさらなる他の実施形態を示す概略断面図である。図3A中、1は光反射層を;2は樹脂基材を;3はウレタン変性アクリル樹脂層を;4は透光性樹脂層を;5はハードコート層を;6は粘着層を;および10はフィルムミラーを、それぞれ、示す。It is a schematic sectional drawing which shows other embodiment of the structure of the film mirror of this invention. In FIG. 3A, 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 5 is a hard coat layer; 6 is an adhesive layer; Reference numeral 10 denotes a film mirror. 本発明に係る太陽熱発電用反射装置の構成のさらなる他の実施形態を示す概略断面図である。図3B中、1は光反射層を;2は樹脂基材を;3はウレタン変性アクリル樹脂層を;4は透光性樹脂層を;5はハードコート層を;6は粘着層;7は支持基材を;および20は太陽熱発電用反射装置を、それぞれ、示す。It is a schematic sectional drawing which shows other embodiment of the structure of the solar power generation reflective apparatus which concerns on this invention. In FIG. 3B, 1 is a light reflecting layer; 2 is a resin substrate; 3 is a urethane-modified acrylic resin layer; 4 is a translucent resin layer; 5 is a hard coat layer; 6 is an adhesive layer; Reference numeral 20 denotes a supporting substrate; and 20 denotes a reflector for solar power generation.
 本発明は、(i)光入射側から順に、紫外線吸収剤を含む透光性樹脂層(以下、単に「透光性樹脂層」とも称する)、ウレタン変性アクリル樹脂層、ならびに樹脂基材および光反射層、または、(ii)光入射側から順に、紫外線吸収剤を含む透光性樹脂層、ウレタン変性アクリル樹脂層、ならびに光反射層および樹脂基材、を少なくとも有するフィルムミラーに関する。本発明は、紫外線吸収剤を含む透光性樹脂層と(i)樹脂基材または(ii)光反射層との間にウレタン変性アクリル樹脂層を配置することを特徴とする。当該構成によって、本発明のフィルムミラーは、高温環境下でのヘイズの上昇を抑制・防止できる。より詳細には、当該構成によって、高温環境下でのヘイズの上昇、さらには反射率の低下を抑制・防止できる。ここで、本発明の構成による上記作用効果の発揮のメカニズムは以下のように推測される。なお、本発明は下記メカニズムに限定されるものではない。 The present invention includes (i) a light-transmitting resin layer containing an ultraviolet absorber (hereinafter also simply referred to as “light-transmitting resin layer”), a urethane-modified acrylic resin layer, a resin base material, and light, in order from the light incident side. The present invention relates to a reflective layer, or (ii) a film mirror having at least a light-transmitting resin layer containing a UV absorber, a urethane-modified acrylic resin layer, and a light reflecting layer and a resin base material in this order from the light incident side. The present invention is characterized in that a urethane-modified acrylic resin layer is disposed between a translucent resin layer containing an ultraviolet absorber and (i) a resin substrate or (ii) a light reflecting layer. With this configuration, the film mirror of the present invention can suppress / prevent an increase in haze under a high temperature environment. More specifically, with this configuration, an increase in haze under a high temperature environment and a decrease in reflectance can be suppressed / prevented. Here, the mechanism for exerting the above-described effects by the configuration of the present invention is presumed as follows. The present invention is not limited to the following mechanism.
 すなわち、特許文献1によるように、UV遮蔽アクリルフィルム(紫外線吸収剤を含む透光性樹脂層)を、銀のオーバーレイ(光反射層)の上に配置されるポリマフィルム(樹脂基材)の上に配置する構成の銀鏡構造(フィルムミラー)は、従来の樹脂フィルム貼り合わせタイプに比べて、光反射層の上の層数・界面を減らし、反射率の低減を抑えることが可能である。一方、フィルムミラーは、しばしば、太陽エネルギーが無尽蔵に降り注ぐ広大な砂漠で太陽熱発電用反射装置に使用される。このため、フィルムミラーは、高温環境下でも高い反射率及び低いヘイズを発揮・維持する必要がある。しかしながら、特許文献1に記載されるフィルムミラーは、このような高温環境下ではUV遮蔽アクリルフィルムに含まれる紫外線吸収剤がブリードアウトし、ポリマフィルム等の白化を引き起こす。このため、高温環境にさらされると、フィルムミラーのヘイズが上昇し、フィルムミラーの反射率は次第に低下してしまう。 That is, as disclosed in Patent Document 1, a UV shielding acrylic film (translucent resin layer containing an ultraviolet absorber) is placed on a polymer film (resin base material) disposed on a silver overlay (light reflecting layer). The silver mirror structure (film mirror) configured to be disposed in the structure can reduce the number of layers / interfaces on the light reflection layer and suppress the reduction in reflectance, as compared with the conventional resin film bonding type. On the other hand, film mirrors are often used for solar power generation reflectors in vast deserts where solar energy falls infinitely. For this reason, the film mirror needs to exhibit and maintain a high reflectance and a low haze even in a high temperature environment. However, in the film mirror described in Patent Document 1, under such a high temperature environment, the ultraviolet absorber contained in the UV shielding acrylic film bleeds out and causes whitening of the polymer film or the like. For this reason, when exposed to a high temperature environment, the haze of a film mirror will rise and the reflectance of a film mirror will fall gradually.
 これに対して、本発明では、ウレタン変性アクリル樹脂層が高温環境下で透光性樹脂層からブリードアウトした紫外線吸収剤を効率よくトラップする。このため、本発明のフィルムミラーによると、白化を抑制できるため、高い反射率を発揮でき、また、高温環境下でも反射率の低下を抑制・防止して、高い反射率を維持できる。また、ウレタン変性アクリル樹脂層は透光性樹脂層との密着性(一体性)に優れる。このため、本発明のフィルムミラーによると、高温環境下でのヘイズの上昇を有効に抑制・防止できる。特に、さらにハードコート層を透光性樹脂層の上に設けると、透光性樹脂層からのブリードアウト(白化)をより有効に抑制し、高温環境下での反射率の低下をより有効に防止することが可能である。 On the other hand, in the present invention, the urethane-modified acrylic resin layer efficiently traps the ultraviolet absorber bleed out from the translucent resin layer in a high temperature environment. For this reason, according to the film mirror of this invention, since whitening can be suppressed, a high reflectance can be exhibited, and also a high reflectance can be maintained by suppressing / preventing a decrease in reflectance even in a high temperature environment. The urethane-modified acrylic resin layer is excellent in adhesion (integration) with the translucent resin layer. For this reason, according to the film mirror of this invention, the raise of the haze in a high temperature environment can be suppressed / prevented effectively. In particular, when a hard coat layer is further provided on the translucent resin layer, bleed-out (whitening) from the translucent resin layer is more effectively suppressed, and a reduction in reflectance under a high temperature environment is more effective. It is possible to prevent.
 したがって、本発明のフィルムミラーは、高温環境下でのヘイズの上昇および反射率の低下を有効に抑制・防止できる。なお、上記効果は、特に長期間(例えば、40日以上、好ましくは20年程度)高温環境にさらされた時に顕著に現れる。このため、本発明のフィルムミラーは、太陽熱発電用反射装置に好適に使用できる。 Therefore, the film mirror of the present invention can effectively suppress and prevent the increase in haze and the decrease in reflectivity under high temperature environment. In addition, the said effect becomes remarkable when it exposes to a high temperature environment especially for a long period (for example, 40 days or more, Preferably about 20 years). For this reason, the film mirror of this invention can be used conveniently for the solar power generation reflective apparatus.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 [フィルムミラー]
 本発明のフィルムミラーは、(a)図1に示されるように、光入射側から順に、紫外線吸収剤を含む透光性樹脂層、ウレタン変性アクリル樹脂層、樹脂基材および光反射層を有する;または(b)図2に示されるように、光入射側から順に、紫外線吸収剤を含む透光性樹脂層、ウレタン変性アクリル樹脂層、光反射層および樹脂基材を有する。
[Film mirror]
The film mirror of this invention has (a) the translucent resin layer containing a ultraviolet absorber, the urethane-modified acrylic resin layer, the resin base material, and the light reflection layer in order from the light incident side, as shown in FIG. Or (b) As shown in FIG. 2, in order from the light incident side, it has a translucent resin layer containing a UV absorber, a urethane-modified acrylic resin layer, a light reflecting layer, and a resin base material.
 詳細には、図1Aは、本発明のフィルムミラーの構成の一実施形態を示す概略断面図である。図1Aに示されるように、当該形態(a)のフィルムミラー10は、光入射側から順に、透光性樹脂層4、ウレタン変性アクリル樹脂層3、樹脂基材(例えば、樹脂フィルム)2、および光反射層(例えば、銀反射層)1を少なくとも有している。フィルムミラー10は、上記に加えて、光反射層1の樹脂基材2が配置されていない側に粘着層6を有していてもよい。なお、上記各層間に他の層を介していてもよいし、それぞれの層が隣接していてもよい。当該形態によると、ウレタン変性アクリル樹脂層3と樹脂基材2(例えば、PET等のポリエステル基材)との密着性に優れるので、高温環境下でのヘイズの低下をより有効に抑制・防止できる。 Specifically, FIG. 1A is a schematic cross-sectional view showing an embodiment of the configuration of the film mirror of the present invention. As shown in FIG. 1A, the film mirror 10 of the form (a) includes, in order from the light incident side, a translucent resin layer 4, a urethane-modified acrylic resin layer 3, a resin base material (for example, a resin film) 2, And at least a light reflection layer (for example, a silver reflection layer) 1. In addition to the above, the film mirror 10 may have an adhesive layer 6 on the side where the resin base material 2 of the light reflecting layer 1 is not disposed. In addition, another layer may be interposed between each of the above-mentioned layers, and each layer may be adjacent. According to the said form, since it is excellent in the adhesiveness of the urethane-modified acrylic resin layer 3 and the resin base material 2 (for example, polyester base materials, such as PET), the haze fall under a high temperature environment can be suppressed / prevented more effectively. .
 図1Aのフィルムミラー10では、樹脂基材2が光反射層1に対して光入射側に配置されていたが、本発明は当該形態に限定されず、光反射層1が樹脂基材2に対して光入射側に配置されていてよい(上記形態(b))。すなわち、図2Aは、本発明のフィルムミラーの構成の他の実施形態を示す概略断面図である。図2Aに示されるように、当該形態(b)のフィルムミラー10は、光入射側から順に、透光性樹脂層4、ウレタン変性アクリル樹脂層3、光反射層(例えば、銀反射層)1、および樹脂基材(例えば、樹脂フィルム)2を少なくとも有している。フィルムミラー10は、上記に加えて、樹脂基材2の光反射層1が配置されていない側に粘着層6を有していてもよい。なお、上記各層間に他の層を介していてもよいし、それぞれの層が隣接していてもよい。当該形態によると、光反射層1が粘着層6と接しないため、粘着層6と光反射層1との界面から汚染物質が侵入し、光反射層1が腐食して反射率が低下することを抑制・防止できる。また、粘着層6と光反射層1との間に樹脂基材2を設けているため、粘着層6の凹凸が光反射層1に反映されることがなくなり、平面性の高い光反射層1を得ることができ、より高い反射率を達成できる。 In the film mirror 10 of FIG. 1A, the resin base material 2 is disposed on the light incident side with respect to the light reflection layer 1, but the present invention is not limited to this form, and the light reflection layer 1 is formed on the resin base material 2. On the other hand, it may be arranged on the light incident side (form (b) above). That is, FIG. 2A is a schematic sectional view showing another embodiment of the configuration of the film mirror of the present invention. As shown in FIG. 2A, the film mirror 10 according to the embodiment (b) includes a light-transmitting resin layer 4, a urethane-modified acrylic resin layer 3, and a light reflection layer (for example, a silver reflection layer) 1 in order from the light incident side. And a resin base material (for example, resin film) 2 at least. In addition to the above, the film mirror 10 may have an adhesive layer 6 on the side of the resin substrate 2 on which the light reflecting layer 1 is not disposed. In addition, another layer may be interposed between each of the above-mentioned layers, and each layer may be adjacent. According to the said form, since the light reflection layer 1 does not contact | connect the adhesion layer 6, a contaminant invades from the interface of the adhesion layer 6 and the light reflection layer 1, the light reflection layer 1 corrodes, and a reflectance falls. Can be suppressed / prevented. Moreover, since the resin base material 2 is provided between the pressure-sensitive adhesive layer 6 and the light reflecting layer 1, the unevenness of the pressure-sensitive adhesive layer 6 is not reflected on the light reflecting layer 1, and the light reflecting layer 1 with high flatness is obtained. And a higher reflectance can be achieved.
 ここで、透光性樹脂層4は、ウレタン変性アクリル樹脂層3を介して、樹脂基材2(形態(a);図1A)または光反射層1(形態(b);図2A)と積層される。従来では、高温環境下では、透光性樹脂層4から、紫外線吸収剤がブリードアウトして白化を誘発して、フィルムミラーの反射率の低下を引き起こす。これに対して、本発明によると、ウレタン変性アクリル樹脂層3が高温環境下で透光性樹脂層4からブリードアウトした紫外線吸収剤を効率よくトラップするため、紫外線吸収剤由来のブリードアウト、ゆえに白化を有効に抑制・防止できる。ゆえに、本発明のフィルムミラーは高い反射率を発揮でき、また、高温環境下でも反射率の低下を抑制・防止して、高い反射率を維持できる。加えて、ウレタン変性アクリル樹脂層3は透光性樹脂層4との密着性に優れるため、フィルムミラーは、高温環境下でもヘイズが上昇しにくいまたは上昇しない。 Here, the translucent resin layer 4 is laminated with the resin base material 2 (form (a); FIG. 1A) or the light reflection layer 1 (form (b); FIG. 2A) through the urethane-modified acrylic resin layer 3. Is done. Conventionally, under a high temperature environment, the ultraviolet absorber bleeds out from the translucent resin layer 4 to induce whitening, thereby causing a decrease in the reflectance of the film mirror. On the other hand, according to the present invention, the urethane-modified acrylic resin layer 3 efficiently traps the ultraviolet absorber that bleeds out from the translucent resin layer 4 in a high-temperature environment. Whitening can be effectively suppressed / prevented. Therefore, the film mirror of the present invention can exhibit a high reflectivity, and can maintain and maintain a high reflectivity by suppressing / preventing a decrease in reflectivity even under a high temperature environment. In addition, since the urethane-modified acrylic resin layer 3 is excellent in adhesiveness with the translucent resin layer 4, the haze is hardly increased or does not increase even in a high temperature environment.
 また、本発明のフィルムミラーでは、ウレタン変性アクリル樹脂層3及び透光性樹脂層4は、塗布により形成することが可能である。このため、溶融製膜による透光性樹脂フィルムを貼り合わせる必要がなくなり、溶融製膜などに起因する表面凹凸による反射光の散乱といった問題も防止できる。ゆえに、本発明のフィルムミラーは、高い反射率を達成できる。なお、ウレタン変性アクリル樹脂層3と透光性樹脂層4とを貼り合わせる場合には、層間に気泡や異物が混入せず、光反射性が低下する可能性がある。 In the film mirror of the present invention, the urethane-modified acrylic resin layer 3 and the translucent resin layer 4 can be formed by coating. For this reason, it is not necessary to attach a translucent resin film by melt film formation, and the problem of scattering of reflected light due to surface irregularities caused by melt film formation can be prevented. Therefore, the film mirror of the present invention can achieve a high reflectance. In addition, when the urethane-modified acrylic resin layer 3 and the translucent resin layer 4 are bonded together, there is a possibility that air bubbles and foreign substances are not mixed between the layers and the light reflectivity is lowered.
 本発明のフィルムミラーは、上記部材を少なくとも有するものであれば、いずれの構成を有してもよい。具体的には、図3Aに示されるように、透光性樹脂層4の光入射側の面に、ハードコート層5を設けてもよい。すなわち、フィルムミラーは、透光性樹脂層の光入射側の面に、ハードコート層をさらに有することが好ましい。当該構成により、フィルムミラー表面の傷つきや汚れの付着を効果的に抑制・防止できる。また、透光性樹脂層中の紫外線吸収剤が表面に出てヘイズの上昇原因となることを防止することもできる。このため、フィルムミラーが太陽熱発電用反射装置に使用され、太陽光による紫外線や熱、風雨、砂嵐などに長持間晒されたとしても、フィルムミラーの高い反射率をより有効に発揮・維持できる。なお、図3Aでは、図1Aの形態に係るフィルムミラーの透光性樹脂層上にハードコート層が配置されているが、本発明は上記形態に限定されず、例えば、図2Aの形態に係るフィルムミラーの透光性樹脂層上にハードコート層が配置される形態もまた好ましい。また、上記構成以外にも、光反射層1と粘着層6との間に腐食防止層を配置する;光反射層1と樹脂基材2との間にアンカー層を配置する;上記いずれかの組み合わせなどの構成が適用できる。 The film mirror of the present invention may have any configuration as long as it has at least the above members. Specifically, as shown in FIG. 3A, a hard coat layer 5 may be provided on the light incident side surface of the translucent resin layer 4. That is, the film mirror preferably further includes a hard coat layer on the light incident side surface of the translucent resin layer. With this configuration, it is possible to effectively suppress or prevent the film mirror surface from being damaged or contaminated. Moreover, it can also prevent that the ultraviolet absorber in a translucent resin layer comes out on the surface, and causes a raise of a haze. For this reason, even if a film mirror is used for a solar power generation reflection device and exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc. for a long time, the high reflectivity of the film mirror can be exhibited and maintained more effectively. In FIG. 3A, the hard coat layer is disposed on the translucent resin layer of the film mirror according to the form of FIG. 1A. However, the present invention is not limited to the above form, for example, according to the form of FIG. 2A. A form in which the hard coat layer is disposed on the translucent resin layer of the film mirror is also preferable. In addition to the above configuration, a corrosion prevention layer is disposed between the light reflecting layer 1 and the adhesive layer 6; an anchor layer is disposed between the light reflecting layer 1 and the resin substrate 2; A configuration such as a combination can be applied.
 本発明のフィルムミラー全体の厚さは、特に制限されないが、撓み防止、正反射率、取り扱い性等の観点から20~300μmが好ましく、より好ましくは30~200μm、更に好ましくは50~170μmである。また、フィルムミラーの光入射側の最表面層の中心線平均粗さ(Ra)が、3nm以上20nm以下であることが、反射光の散乱を防止でき集光効率を高めるという観点から好ましい。 The thickness of the entire film mirror of the present invention is not particularly limited, but is preferably 20 to 300 μm, more preferably 30 to 200 μm, and still more preferably 50 to 170 μm from the viewpoints of prevention of bending, regular reflectance, and handling properties. . In addition, it is preferable that the center line average roughness (Ra) of the outermost surface layer on the light incident side of the film mirror is 3 nm or more and 20 nm or less from the viewpoint of preventing scattering of reflected light and increasing the light collection efficiency.
 ここで、太陽熱発電用のフィルムミラーの好ましい層構成の一例について、図1A~図3Aを用いて説明する。また、太陽熱発電用反射装置の概要を、図1B~図3Bに示す。 Here, an example of a preferable layer configuration of a film mirror for solar power generation will be described with reference to FIGS. 1A to 3A. An outline of the solar power generation reflecting device is shown in FIGS. 1B to 3B.
 図1Aに示されるフィルムミラー10は、光反射層1上に、樹脂基材2、ウレタン変性アクリル樹脂層3、透光性樹脂層4が順に積層されて設けられている。また、光反射層1の光入射側の反対面に粘着層6が設けられている。当該フィルムミラーを用いてなる太陽熱発電用反射装置20は、図1Bに示されるように、フィルムミラー10における粘着層6を支持基材9に接合し、フィルムミラー10と支持基材9を貼り合わせてなる反射鏡である。 A film mirror 10 shown in FIG. 1A is provided by laminating a resin base material 2, a urethane-modified acrylic resin layer 3, and a translucent resin layer 4 on a light reflecting layer 1 in this order. An adhesive layer 6 is provided on the opposite surface of the light reflecting layer 1 to the light incident side. As shown in FIG. 1B, the solar power generation reflection device 20 using the film mirror joins the adhesive layer 6 in the film mirror 10 to the support substrate 9, and bonds the film mirror 10 and the support substrate 9 together. It is a reflecting mirror.
 図2Aに示されるフィルムミラー10は、樹脂基材2上に、光反射層1、ウレタン変性アクリル樹脂層3、透光性樹脂層4が順に積層されて設けられている。また、樹脂基材2の光入射側の反対面に粘着層6が設けられている。当該フィルムミラーを用いてなる太陽熱発電用反射装置20は、図2Bに示されるように、フィルムミラー10における粘着層6を支持基材9に接合し、フィルムミラー10と支持基材9を貼り合わせてなる反射鏡である。 The film mirror 10 shown in FIG. 2A is provided by laminating a light reflecting layer 1, a urethane-modified acrylic resin layer 3, and a translucent resin layer 4 in this order on a resin substrate 2. An adhesive layer 6 is provided on the opposite surface of the resin substrate 2 on the light incident side. As shown in FIG. 2B, the solar power generation reflecting device 20 using the film mirror joins the adhesive layer 6 in the film mirror 10 to the support substrate 9, and bonds the film mirror 10 and the support substrate 9 together. It is a reflecting mirror.
 図3Aに示されるフィルムミラー10は、光反射層1上に、樹脂基材2、ウレタン変性アクリル樹脂層3、透光性樹脂層4、ハードコート層5が順に積層されて設けられている。また、光反射層1の光入射側の反対面に粘着層6が設けられている。当該フィルムミラーを用いてなる太陽熱発電用反射装置20は、図3Bに示されるように、フィルムミラー10における粘着層6を支持基材9に接合し、フィルムミラー10と支持基材9を貼り合わせてなる反射鏡である。 The film mirror 10 shown in FIG. 3A is provided by laminating a resin base material 2, a urethane-modified acrylic resin layer 3, a translucent resin layer 4, and a hard coat layer 5 in this order on a light reflecting layer 1. An adhesive layer 6 is provided on the opposite surface of the light reflecting layer 1 to the light incident side. As shown in FIG. 3B, the solar power generation reflection device 20 using the film mirror joins the adhesive layer 6 in the film mirror 10 to the support substrate 9, and bonds the film mirror 10 and the support substrate 9 together. It is a reflecting mirror.
 以下、各構成層の詳細について記載する。 The details of each component layer are described below.
 (透光性樹脂層)
 透光性樹脂層は、光透過性を有する樹脂材料からなり、紫外線吸収剤を含有している樹脂層である。
(Translucent resin layer)
The translucent resin layer is a resin layer made of a resin material having optical transparency and containing an ultraviolet absorber.
 透光性樹脂層に用いられる樹脂材料は、特に制限されないが、薄膜を形成した際に透明性を維持しうる、従来公知の種々の合成樹脂を用いることができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、及びセルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート(PMMA)、ポリメチルアクリレート(PMA)、ポリ(メタ)アクリレート等の(メタ)アクリル系材料、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 The resin material used for the translucent resin layer is not particularly limited, and various conventionally known synthetic resins that can maintain transparency when a thin film is formed can be used. For example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose Cellulose esters such as acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (PES), polysulfones, polyether ketone imide, polyamide, fluorine Fat, nylon, polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), (meth) acrylic materials such as poly (meth) acrylate, acrylic or polyarylates, Arton (trade name manufactured by JSR) or Appel (product) And a cycloolefin resin such as “Mitsui Chemicals”.
 この透光性樹脂層の形成方法は特に制限されないが、例えば、塗布による方法を挙げることができる。塗布方式で透光性樹脂層となる塗膜を塗設する場合には、従来用いられる種々の塗布方法、例えば、スプレーコート、スピンコート、バーコート等の方法を用いることができる。すなわち、ウレタン変性アクリル樹脂層の光入射側の面上に、透光性樹脂層を構成する材料を直接塗布することによって、透光性樹脂層を形成することができる。 The method for forming the translucent resin layer is not particularly limited, and examples thereof include a method by coating. When a coating film that becomes a translucent resin layer is applied by a coating method, various conventionally used coating methods such as spray coating, spin coating, and bar coating can be used. That is, the translucent resin layer can be formed by directly applying the material constituting the translucent resin layer on the light incident side surface of the urethane-modified acrylic resin layer.
 こうした塗布方式で透光性樹脂層を形成することによって、透光性樹脂層の平滑性を高めることができる。具体的には、塗布方式で形成した透光性樹脂層の中心線平均粗さ(Ra)は、3nm以上20nm以下にすることができる。換言すれば、中心線平均粗さがこの値を満たせば、溶融製膜によって製造された透光性樹脂フィルムを接着剤層で貼り合わせて設けられた透光性樹脂層ではなく、その透光性樹脂層が塗布によって設けられたものとみなすことができる。なお、透光性樹脂層の平滑性の指標となる中心線平均粗さ(Ra)は、JIS B0601-1982に基づく測定方法により求めることができる。 By forming the translucent resin layer by such a coating method, the smoothness of the translucent resin layer can be improved. Specifically, the center line average roughness (Ra) of the translucent resin layer formed by the coating method can be 3 nm or more and 20 nm or less. In other words, if the center line average roughness satisfies this value, the translucent resin film produced by melt film formation is not a translucent resin layer provided by bonding with an adhesive layer, but the translucent resin film. It can be considered that the conductive resin layer is provided by coating. The center line average roughness (Ra), which is an index of smoothness of the translucent resin layer, can be determined by a measuring method based on JIS B0601-1982.
 透光性樹脂層の厚さ(乾燥膜厚)は、特に制限されないが、5~150μmであることが好ましく、より好ましくは10~100μmであり、特に好ましくは20~80μmである。このような厚みであれば、十分な透光性を確保し、また、製膜時に乾燥により溶剤を十分に蒸発でき、生産性上好ましい。 The thickness (dry film thickness) of the translucent resin layer is not particularly limited, but is preferably 5 to 150 μm, more preferably 10 to 100 μm, and particularly preferably 20 to 80 μm. With such a thickness, sufficient translucency is secured, and the solvent can be sufficiently evaporated by drying during film formation, which is preferable in terms of productivity.
 透光性樹脂層を形成する材料として、上記例示した樹脂材料の中では、(メタ)アクリル系材料が好適に用いられる。透光性樹脂層を(メタ)アクリル系材料で形成する場合、(メタ)アクリル系材料は固いので、柔らかくて破損しにくいアクリル製の透光性樹脂層を得る目的で、可塑剤の微粒子を含有させてもよい。可塑剤の好ましい一例としては、例えば、アクリルゴム、ブチルゴムやブチルアクリレートなどが挙げられる。ここで、可塑剤の添加量は、特に制限されないが、所望の柔軟性などを考慮すると、樹脂(透光性樹脂)(固形分換算)に対して、10~25質量%程度であることが好ましい。 Among the resin materials exemplified above, a (meth) acrylic material is preferably used as the material for forming the light-transmitting resin layer. When the translucent resin layer is formed of a (meth) acrylic material, since the (meth) acrylic material is hard, the plasticizer fine particles are added for the purpose of obtaining an acrylic translucent resin layer that is soft and difficult to break. You may make it contain. Preferable examples of the plasticizer include acrylic rubber, butyl rubber and butyl acrylate. Here, the amount of the plasticizer to be added is not particularly limited, but in consideration of desired flexibility, it is about 10 to 25% by mass with respect to the resin (translucent resin) (in terms of solid content). preferable.
 より好ましくは、透光性樹脂層は、メタクリル樹脂を主成分として形成される。メタクリル樹脂は、メタクリル酸エステルを主体とする重合体であり、メタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステル50質量%以上とこれ以外の単量体50質量%以下との共重合体であってもよい。ここで、メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル樹脂(PMMA)である。 More preferably, the translucent resin layer is formed with a methacrylic resin as a main component. The methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester. The methacrylic acid ester is 50% by mass or more and the other monomer is 50% by mass or less. A copolymer may also be used. Here, as the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
 メタクリル樹脂の好ましい単量体組成は、全単量体を基準として、メタクリル酸エステルが50~100質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%であり、より好ましくは、メタクリル酸エステルが50~99.9質量%、アクリル酸エステルが0.1~50質量%、これら以外の単量体が0~49質量%である。 The preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0.1 to 50% by mass, and other monomers are 0 to 49% by mass.
 ここで、メタクリル酸アルキルの例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。中でもメタクリル酸メチルが好ましく用いられる。 Here, examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like, and the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. It is. Of these, methyl methacrylate is preferably used.
 また、アクリル酸アルキルの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。 Examples of alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
 また、メタクリル酸アルキル及びアクリル酸アルキル以外の単量体は、単官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を1個有する化合物であってもよいし、多官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を少なくとも2個有する化合物であってもよいが、単官能単量体が好ましく用いられる。そして、この単官能単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエンの如き芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルの如きアルケニルシアン化合物などが挙げられる。また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートの如き多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルの如き不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートの如き多塩基酸のポリアルケニルエステル、ジビニルベンゼンの如き芳香族ポリアルケニル化合物などが挙げられる。 The monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule, or a polyfunctional monofunctional monomer. Although it may be a monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used. Examples of the monofunctional monomer include aromatic alkenyl compounds such as styrene, α-methylstyrene, and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile. Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Alkenyl esters of unsaturated carboxylic acids such as allyl acids, polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, aromatic polyalkenyl compounds such as divinylbenzene, etc. Can be mentioned.
 なお、上記のメタクリル酸アルキル、アクリル酸アルキル、及びこれら以外の単量体は、それぞれ、必要に応じてそれらの2種以上を用いてもよい。 In addition, as for said alkyl methacrylate, alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed.
 メタクリル樹脂は、フィルムの耐熱性の点から、そのガラス転移温度が40℃以上であることが好ましく、60℃以上であることがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。 The glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
 メタクリル樹脂は、その単量体成分を、懸濁重合、乳化重合、塊状重合などの方法により重合させることにより調製することができる。その際、好適なガラス転移温度を得るため、又は好適なフィルムへの成形性を示す粘度を得るため、重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤の量は、単量体の種類やその割合などに応じて、適宜決定すればよい。 The methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization. The amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
 または、メタクリル樹脂などの透光性樹脂層に用いる樹脂材料は、市販品を使用してもよい。 Alternatively, a commercially available product may be used as the resin material used for the translucent resin layer such as methacrylic resin.
 透光性樹脂層に含まれる紫外線吸収剤には、特に制限はないが、例えばチアゾリドン系、ベンゾトリアゾール系、アクリロニトリル系、ベンゾフェノン系、アミノブタジエン系、トリアジン系、サリチル酸フェニル系、ベンゾエート系などの有機系の紫外線吸収剤、あるいは酸化セリウム、酸化マグネシウムなどの微粉末系の紫外線遮断剤や酸化チタン、酸化亜鉛、酸化鉄等などがあり、特に有機系の紫外線吸収剤が好ましい。 Although there is no restriction | limiting in particular in the ultraviolet absorber contained in a translucent resin layer, For example, organic, such as a thiazolidone type, a benzotriazole type, an acrylonitrile type, a benzophenone type, an aminobutadiene type, a triazine type, a phenyl salicylate, a benzoate type Type ultraviolet absorbers, fine powder type ultraviolet blocking agents such as cerium oxide and magnesium oxide, titanium oxide, zinc oxide, iron oxide and the like, and organic ultraviolet absorbers are particularly preferable.
 有機系の紫外線吸収剤として、例えば特開昭46-3335号、同55-152776号、特開平5-197074号、同5-232630号、同5-307232号、同6-211813号、同8-53427号、同8-234364号、同8-239368号、同9-31067号、同10-115898号、同10-147577号、同10-182621号各公報、独国特許第19739797A号、欧州特許第711804A号各公報及び特表平8-501291号公報、米国特許第1,023,859号、同第2,685,512号、同第2,739,888号、同第2,784,087号、同第2,748,021号、同第3,004,896号、同第3,052,636号、同第3,215,530号、同第3,253,921号、同第3,533,794号、同第3,692,525号、同第3,705,805号、同第3,707,375号、同第3,738,837号、同第3,754,919号、英国特許第1,321,355号明細書等に記載されている化合物を用いることができる。 As organic ultraviolet absorbers, for example, JP-A-46-3335, JP-A-55-152776, JP-A-5-197004, JP-A-5-232630, JP-A-5-307232, JP-A-6-2111813, -53427, 8-234364, 8-239368, 9-310667, 10-115898, 10-147777, 10-182621, German Patent No. 19739797A, Europe Japanese Patent No. 711804A and Japanese Patent Publication No. 8-501291, US Patent No. 1,023,859, No. 2,685,512, No. 2,739,888, No. 2,784, No. 087, No. 2,748,021, No. 3,004,896, No. 3,052,636, No. 3,215,530, No. 3,253, No. 21, No. 3,533,794, No. 3,692,525, No. 3,705,805, No. 3,707,375, No. 3,738,837, No. The compounds described in 3,754,919, British Patent 1,321,355 and the like can be used.
 具体的には、ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-ベンゾフェノン、2,2’,4,4’-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Specific examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy. -Benzophenone, 2-hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4 4,4′-tetrahydroxy-benzophenone and the like.
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては株式会社ADEKAのLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;市販品の例としてはBASF社製のTINUVIN234)、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(TINUVIN928、商品名、BASF製)などが挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1, 3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-phenylethyl) phenol (molecular weight 447.6; examples of commercially available products are TINUVIN 234 manufactured by BASF), 2- (2H-benzotriazole 2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol (TINUVIN928, trade name, manufactured by BASF), and the like.
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、〔2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノール〕(TINUVIN1577FF、商品名、BASF製)、TINUVIN479(商品名、BASF社製)等のヒドロキシフェニルトリアジン、〔2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール〕(CYASORB UV-1164、商品名、サイテックインダストリーズ製)等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (TINUVIN1577FF, trade name, manufactured by BASF), TINUVIN479 (Trade name, manufactured by BASF) and the like, [2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) ) Phenol] (CYASORB UV-1164, trade name, manufactured by Cytec Industries).
 ベンゾエート系紫外線吸収剤としては、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(分子量438.7;市販品の例としては住友化学株式会社のSumisorb400)などが挙げられる。 Examples of benzoate UV absorbers include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; Sumisorb 400).
 これら紫外線吸収剤のなかでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 Among these UV absorbers, UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. it can.
 また、分子量が400以上の紫外線吸収剤は、薄い透光性樹脂層4から他の構成層への移行性も小さく、積層体の表面にも析出しにくいため、含有された紫外線吸収剤量が長時間維持され、耐候性改良効果の持続性に優れるなどの点から好ましい。 In addition, since the ultraviolet absorber having a molecular weight of 400 or more has little transferability from the thin translucent resin layer 4 to other constituent layers and hardly deposits on the surface of the laminate, the amount of the ultraviolet absorber contained is small. It is preferable from the viewpoints of being maintained for a long time and being excellent in the durability of the weather resistance improving effect.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl)- Benzotriazoles such as 4- (1,1,3,3-tetramethylbutyl) phenol, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6) , 6-pentamethyl-4-piperidyl) sebacate and other hindered amines, and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1 , 2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine and the like of a hybrid system having both hindered phenol and hindered amine structures in the molecule These can be used, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2- (2H-benzotriazol-2-yl) -6- (1 -Methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2,2-methylenebis [4- (1,1,3,3-tetrabutyl) -6- (2H -Benzotriazol-2-yl) phenol] is particularly preferred.
 また、紫外線吸収剤としては上記した以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギー等として放出する機能を有する化合物を用いることもできる。さらに、酸化防止剤あるいは着色剤等との併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In addition to the above, as the ultraviolet absorber, a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator. When a normal ultraviolet absorber is used, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 なお、上記紫外線吸収剤はそれぞれ、必要に応じてそれらの2種以上を用いることもできる。また、必要により、上記紫外線吸収剤以外の紫外線吸収剤、例えば、サリチル酸誘導体、置換アクリロニトリル、ニッケル錯体などを含有させることもできる。 In addition, each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary. Further, if necessary, an ultraviolet absorber other than the above-described ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
 透光性樹脂層への紫外線吸収剤の含有量(固形分換算)は、特に制限されないが、透光性樹脂層に対して、0.1~25質量%であることが好ましく、より好ましくは0.5~20質量%、さらに好ましくは1~15質量%である。また、紫外線吸収剤の透光性樹脂層への含有量(フィルム単位面積当たりの含有量)もまた特に制限されないが、好ましくは0.17~2.28g/m、より好ましくは0.4~2.28g/mである。紫外線吸収剤の含有量を上記の範囲にすることによって、耐候性能をより十分発揮しつつ、紫外線吸収剤のブリードアウトによるロールやフィルムの汚れを起こすこと(ゆえに、ヘイズの上昇)をより有効に抑制・防止できる。 The content (in terms of solid content) of the ultraviolet absorber in the translucent resin layer is not particularly limited, but is preferably from 0.1 to 25% by mass, more preferably based on the translucent resin layer. 0.5 to 20% by mass, more preferably 1 to 15% by mass. Further, the content (content per unit area of the film) of the ultraviolet absorber in the translucent resin layer is not particularly limited, but preferably 0.17 to 2.28 g / m 2 , more preferably 0.4. To 2.28 g / m 2 . By making the content of the UV absorber in the above range, it is more effective to cause rolls and films to become dirty due to bleeding out of the UV absorber (and hence haze increase) while exhibiting sufficient weather resistance. Can be suppressed / prevented.
 透光性樹脂層は、劣化を防止するために、酸化防止剤をさらに含有させてもよい。酸化防止剤としては、特に制限されないが、フェノール系酸化防止剤、チオール系酸化防止剤、ホスファイト系酸化防止剤を使用することが好ましい。ここで、フェノール系酸化防止剤、チオール系酸化防止剤、ホスファイト系酸化防止剤としては、それぞれ、WO 2012/165460号などに記載される公知の酸化防止剤が使用できる。 The translucent resin layer may further contain an antioxidant in order to prevent deterioration. Although it does not restrict | limit especially as antioxidant, It is preferable to use a phenolic antioxidant, a thiol antioxidant, and a phosphite antioxidant. Here, as the phenol-based antioxidant, the thiol-based antioxidant, and the phosphite-based antioxidant, known antioxidants described in WO 2012/165460 and the like can be used, respectively.
 (ウレタン変性アクリル樹脂層)
 ウレタン変性アクリル樹脂層は、上記透光性樹脂層の光入射側の反対面に設けられている。
(Urethane-modified acrylic resin layer)
The urethane-modified acrylic resin layer is provided on the surface opposite to the light incident side of the translucent resin layer.
 ウレタン変性アクリル樹脂層に用いられるウレタン変性アクリル樹脂は、特に制限されないが、下記一般式(I): The urethane-modified acrylic resin used for the urethane-modified acrylic resin layer is not particularly limited, but the following general formula (I):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
で示されることが好ましい。このようなウレタン変性アクリル樹脂を用いて形成されたウレタン変性アクリル樹脂層は、高温環境下で透光性樹脂層からブリードアウトする紫外線吸収剤(UV吸収剤)をより有効にトラップし、また、透光性樹脂層との密着性もより高い。このため、このようなウレタン変性アクリル樹脂を用いて形成されたウレタン変性アクリル樹脂層を有するフィルムミラーを用いることによって、高温環境に長持間晒された場合であっても、ヘイズの上昇および反射率の低下をより有効に抑制・防止できる。 It is preferable that it is shown by. The urethane-modified acrylic resin layer formed using such a urethane-modified acrylic resin traps UV absorbers (UV absorbers) that bleed out from the translucent resin layer in a high-temperature environment more effectively, Adhesion with the translucent resin layer is also higher. Therefore, by using a film mirror having a urethane-modified acrylic resin layer formed using such a urethane-modified acrylic resin, even when it is exposed to a high temperature environment for a long time, the haze increase and reflectance Can be suppressed and prevented more effectively.
 上記一般式(I)中、RおよびR’は、アルキレン基を表す。ここで、RおよびR’は、同じであってもあるいは異なるものであってもよい。また、pが2以上の場合には、各ユニット(-O-C(=O)-NH-R-NH-C(=O)-O-R’-)(ユニット(c))は、それぞれ、同じであってもあるいは異なるものであってもよい。アルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基などが挙げられる。これらのうち、炭素原子数1~10のアルキレン基が好ましく、炭素原子数1~5のアルキレン基がより好ましい。 In the general formula (I), R and R ′ represent an alkylene group. Here, R and R ′ may be the same or different. When p is 2 or more, each unit (—O—C (═O) —NH—R—NH—C (═O) —O—R′—) (unit (c)) is May be the same or different. Specific examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a propylene group. Of these, an alkylene group having 1 to 10 carbon atoms is preferable, and an alkylene group having 1 to 5 carbon atoms is more preferable.
 また、mは、下記式: M is the following formula:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表されるユニット(a)(アクリルユニット)の重合度を表わし、10~500の整数、好ましくは50~300の整数である。nは、下記式: The degree of polymerization of the unit (a) (acrylic unit) represented by the formula: is an integer of 10 to 500, preferably an integer of 50 to 300. n is the following formula:
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
で表されるユニット(b)の重合度を表わし、10~500の整数、好ましくは50~300の整数である。pは、上記ユニット(b)中に存在するユニット(c)(-O-C(=O)-NH-R-NH-C(=O)-O-R’-;ウレタンユニット)の数であり、10~200の整数、好ましくは50~150の整数である。なお、ユニット(b)が複数存在する場合には、各ユニット(b)は、同じであってもあるいは異なるものであってもよい。 The degree of polymerization of the unit (b) represented by the formula is an integer of 10 to 500, preferably an integer of 50 to 300. p is the number of units (c) (—O—C (═O) —NH—R—NH—C (═O) —O—R′—; urethane unit) present in the unit (b). Yes, an integer of 10 to 200, preferably an integer of 50 to 150. When a plurality of units (b) are present, each unit (b) may be the same or different.
 また、上記ユニット(a)及び(b)を有するウレタン変性アクリル樹脂における、ユニット(a)および(b)の組成は、特にされないが、透光性樹脂層からブリードアウトする紫外線吸収剤のトラップ性、透光性樹脂層との密着性などの観点から、ウレタン/アクリル比(ユニット(b)/ユニット(a)のモル比)が、好ましくは5/95~50/50、より好ましくは10/90~30/70、より好ましくは15/85~25/75である。なお、上記ユニット(a)および(b)は、ブロック状であってもまたはランダム状であってもよい。 In addition, the composition of the units (a) and (b) in the urethane-modified acrylic resin having the units (a) and (b) is not particularly limited, but the trapping property of the ultraviolet absorber that bleeds out from the translucent resin layer. From the viewpoint of adhesion to the translucent resin layer, the urethane / acrylic ratio (unit (b) / unit (a) molar ratio) is preferably 5/95 to 50/50, more preferably 10 / 90 to 30/70, more preferably 15/85 to 25/75. The units (a) and (b) may be block-shaped or random.
 ウレタン変性アクリル樹脂の重量平均分子量は、特に制限されないが、透光性樹脂層からブリードアウトする紫外線吸収剤のトラップ性、透光性樹脂層との密着性などの観点から、好ましくは10,000~100,000、より好ましくは20,000~50,000である。なお、本明細書において、「重量平均分子量」は、ポリスチレンを標準物質とするゲル浸透クロマトグラフィー(Gel Permeation Chromatography、GPC)により測定した値を採用するものとする。 The weight average molecular weight of the urethane-modified acrylic resin is not particularly limited, but is preferably 10,000 from the viewpoint of the trapping property of the ultraviolet absorber that bleeds out from the translucent resin layer, the adhesion with the translucent resin layer, and the like. To 100,000, more preferably 20,000 to 50,000. In the present specification, “weight average molecular weight” is a value measured by gel permeation chromatography (Gel Permeation Chromatography, GPC) using polystyrene as a standard substance.
 透光性樹脂層を構成するウレタン変性アクリル樹脂の水酸基価もまた、特に制限されないが、透光性樹脂層からブリードアウトする紫外線吸収剤のトラップ性、透光性樹脂層との密着性などの観点から、好ましくは15~40、より好ましくは25~35である。本明細書において、「ウレタン変性アクリル樹脂の水酸基価」は、以下の条件・方法で測定した値である。ウレタン変性アクリル樹脂1gに含まれる水酸基をアセチル化して、アセチル化に要した酢酸を中和するのに必要な水酸化カリウムのmg数で示される。このため、ウレタン変性アクリル樹脂の水酸基価は、配合される単量体に含まれるカルボキシル基や水酸基量に基づいて、制御できる。 The hydroxyl value of the urethane-modified acrylic resin constituting the translucent resin layer is also not particularly limited, but the ultraviolet absorber that bleeds out from the translucent resin layer, the adhesiveness with the translucent resin layer, etc. From the viewpoint, it is preferably 15 to 40, more preferably 25 to 35. In the present specification, the “hydroxyl value of urethane-modified acrylic resin” is a value measured under the following conditions / method. It is expressed in mg of potassium hydroxide required to acetylate the hydroxyl group contained in 1 g of urethane-modified acrylic resin and neutralize acetic acid required for acetylation. For this reason, the hydroxyl value of urethane-modified acrylic resin can be controlled based on the carboxyl group and the amount of hydroxyl groups contained in the monomer to be blended.
 ウレタン変性アクリル樹脂は、適切な単量体を用いて重合することによって製造しても、あるいは市販品を使用してもよい。後者の場合には、例えば、大成ファインケミカル(株)製の、アクリット8UAシリーズ(ウレタン変性アクリルポリマー)などが使用される。 The urethane-modified acrylic resin may be produced by polymerization using an appropriate monomer, or a commercially available product may be used. In the latter case, for example, ACRYT 8UA series (urethane-modified acrylic polymer) manufactured by Taisei Fine Chemical Co., Ltd. is used.
 ウレタン変性アクリル樹脂層の形成方法は特に制限されないが、例えば、塗布による方法を挙げることができる。塗布方式でウレタン変性アクリル樹脂層となる塗膜を塗設する場合には、従来用いられる種々の塗布方法、例えば、スプレーコート、スピンコート、バーコート、グラビアコート法等の方法を用いることができる。すなわち、樹脂基材もしくは光反射層または樹脂基材もしくは光反射層上に形成された他の層の光入射側の面上に、ウレタン変性アクリル樹脂を直接塗布することによって、ウレタン変性アクリル樹脂層を形成することができる。 Although the formation method in particular of a urethane-modified acrylic resin layer is not restrict | limited, For example, the method by application | coating can be mentioned. When coating a coating film to be a urethane-modified acrylic resin layer by a coating method, various conventionally used coating methods such as spray coating, spin coating, bar coating, and gravure coating can be used. . That is, the urethane-modified acrylic resin layer is formed by directly applying the urethane-modified acrylic resin on the light incident side surface of the resin substrate or the light reflecting layer or another layer formed on the resin substrate or the light reflecting layer. Can be formed.
 ウレタン変性アクリル樹脂層の厚さ(乾燥膜厚)は、特に制限されないが、0.01~10μmであることが好ましく、より好ましくは0.05~5μmであり、さらにより好ましくは0.1~2μmであり、特に好ましくは0.5~1.5μmである。ウレタン変性アクリル樹脂層の厚みが薄すぎると、ブリードアウトの低減効果が減ってしまい、経時でのヘイズ上昇が大きくなってしまい、厚すぎると、ブリードアウトの低減効果はあるものの、経時での樹脂の変形が大きく、反射率の低下を招いてしまう。そのため、上記のような厚みであれば、透光性樹脂層からブリードアウトした紫外線吸収剤を効率よくトラップでき、また、透光性樹脂層との十分な密着性を確保できる。 The thickness (dry film thickness) of the urethane-modified acrylic resin layer is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm, still more preferably 0.1 to 2 μm, particularly preferably 0.5 to 1.5 μm. If the thickness of the urethane-modified acrylic resin layer is too thin, the effect of reducing bleed out is reduced, and the increase in haze over time is increased. If the thickness is too thick, the effect of reducing bleed out is obtained, but the resin over time Is greatly deformed, leading to a decrease in reflectance. Therefore, if it is the above thickness, the ultraviolet absorber bleed out from the translucent resin layer can be efficiently trapped, and sufficient adhesion with the translucent resin layer can be secured.
 (樹脂基材)
 樹脂基材としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。これらのうち、ポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、ポリエチレンテレフタレート等のポリエステル系フィルムが特に好ましい。ここで、樹脂基材は、いずれの方法によって製造されてもよく、例えば、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
(Resin base material)
Various conventionally known resin films can be used as the resin base material. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate (PET), polyester film such as polyethylene naphthalate, polyethylene film, polypropylene film Cellophane, cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene Resin film, polymethyl Down Ten films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. Of these, a polyester film such as polyethylene terephthalate or an acrylic film is preferably used, and a polyester film such as polyethylene terephthalate is particularly preferable. Here, the resin base material may be manufactured by any method, and may be, for example, a film manufactured by melt casting film formation or a film manufactured by solution casting film formation. .
 樹脂基材は、光反射層よりも光入射側から遠い位置にあるため、紫外線が樹脂基材に到達しにくい。特に、樹脂基材よりも光入射側にある透光性樹脂層等に紫外線吸収剤を含有させたりする場合は、紫外線が樹脂基材により一層到達しにくい。従って、樹脂基材は、紫外線に対して劣化しやすい樹脂であっても用いることが可能となる。そのような観点から、樹脂基材として、ポリエチレンテレフタレート等のポリエステルフィルムを用いることが可能となる。 Since the resin substrate is located farther from the light incident side than the light reflecting layer, it is difficult for ultraviolet rays to reach the resin substrate. In particular, when an ultraviolet absorber is contained in a translucent resin layer or the like that is closer to the light incident side than the resin base material, the ultraviolet rays are more difficult to reach the resin base material. Therefore, the resin base material can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, a polyester film such as polyethylene terephthalate can be used as the resin base material.
 樹脂基材の厚さは、特に制限されないが、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。樹脂基材の厚さは、例えば、10~250μmの範囲内であることが好ましく、より好ましくは20~200μmである。 The thickness of the resin substrate is not particularly limited, but is preferably an appropriate thickness depending on the type and purpose of the resin. The thickness of the resin substrate is preferably in the range of 10 to 250 μm, for example, and more preferably 20 to 200 μm.
 (光反射層)
 光反射層は、太陽光を反射する機能を有する金属等からなる層である。
(Light reflection layer)
The light reflecting layer is a layer made of metal or the like having a function of reflecting sunlight.
 光反射層の表面反射率は好ましくは80%以上、さらに好ましくは90%以上である。この光反射層は、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。中でも、反射率、耐食性の観点からAlまたはAgを主成分としていることが好ましく、このような金属の薄膜を2層以上形成するようにしてもよい。本発明においては、特に銀を主成分とする光反射層としている。 The surface reflectance of the light reflecting layer is preferably 80% or more, more preferably 90% or more. This light reflecting layer is preferably formed of a material containing any element selected from the group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au. Among these, it is preferable that Al or Ag is a main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed. In the present invention, a light reflecting layer mainly composed of silver is used.
 光反射層の厚さは、反射率等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the light reflecting layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
 また、光反射層にSiO、TiO等の金属酸化物からなる層を設けてさらに反射率を向上させてもよい。 Moreover, a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided on the light reflecting layer to further improve the reflectance.
 この光反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例をあげるとすれば、銀鏡反応などがある。一方、乾式法とは、真空製膜法の総称であり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に製膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。例えば、太陽熱発電用フィルムミラーの製造方法において、光反射層を銀蒸着(特に真空蒸着)によって形成する製造方法であることが好ましい。 As a method for forming this light reflecting layer, either a wet method or a dry method can be used. The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction. On the other hand, the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. For example, in the manufacturing method of the film mirror for solar power generation, it is preferable that it is a manufacturing method which forms a light reflection layer by silver vapor deposition (especially vacuum vapor deposition).
 (粘着層)
 粘着層は、フィルムミラーを支持基材に貼り付けることを可能にする粘着性を有しており、この粘着層によってフィルムミラーを支持基材に接合して、太陽熱発電用反射装置を形成するための構成層である。
(Adhesive layer)
The adhesive layer has adhesiveness that enables the film mirror to be attached to the support substrate, and the adhesive layer is used to join the film mirror to the support substrate to form a solar power generation reflection device. It is a constituent layer.
 粘着層としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。 The adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent and the like can be used. As the adhesive, for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used. The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity. The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 μm from the viewpoints of the pressure-sensitive adhesive effect, the drying speed, and the like.
 なお、フィルムミラーは、粘着層における樹脂基材とは反対側の面を覆う剥離シート(図示省略)を備えていてもよい。フィルムミラーが剥離シートを有する場合、剥離シートを粘着層から剥離した後に、粘着層を介してフィルムミラーを支持基材に貼り付けることができる。 The film mirror may include a release sheet (not shown) that covers the surface of the adhesive layer on the side opposite to the resin substrate. When a film mirror has a peeling sheet, after peeling a peeling sheet from an adhesion layer, a film mirror can be affixed on a support base material through an adhesion layer.
 剥離シートは、フィルムミラーにおける粘着層の光入射側とは反対側の面を覆う部材である。 The release sheet is a member that covers the surface opposite to the light incident side of the adhesive layer in the film mirror.
 例えば、フィルムミラーの出荷時には剥離シートが粘着層に張り付いた状態であり、その後、剥離シートをフィルムミラーの粘着層から剥離し、そのフィルムミラーを支持基材に貼り合わせて太陽熱発電用反射装置を形成することができる。 For example, when the film mirror is shipped, the release sheet is attached to the adhesive layer, and then the release sheet is released from the adhesive layer of the film mirror, and the film mirror is attached to the support substrate to reflect the solar power generation reflection device. Can be formed.
 剥離シートとしては、粘着層の粘着性を保護することができるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂にコーティングを施したりアルミニウム等の金属を金属蒸着したりなどの表面加工を施した樹脂フィルム又はシートが用いられる。 The release sheet may be any sheet that can protect the adhesiveness of the adhesive layer. For example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film Or a plastic film or sheet such as a sheet, a fluorine film, a resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., or a metal such as aluminum is applied to the resin kneaded with these. A resin film or sheet subjected to surface processing such as vapor deposition is used.
 剥離シートの厚さは、特に制限されないが、通常12~250μmの範囲であることが好ましい。 The thickness of the release sheet is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 (ハードコート層)
 ハードコート層は、フィルムミラー表面の傷つきや汚れの付着を防止する目的に設けられる。透明なハードコート層は、光入射側の最外層、または光入射側から2層目又は3層目のいずれかであることが好ましい。ハードコート層の上に更に薄い(1μm以下が好ましい)別の層を設けてもよい。より好ましくは、ハードコート層は透光性樹脂層の光入射側の面に設けられることが特に好ましい。
(Hard coat layer)
The hard coat layer is provided for the purpose of preventing damage to the surface of the film mirror and adhesion of dirt. The transparent hard coat layer is preferably the outermost layer on the light incident side, or the second or third layer from the light incident side. Another thin layer (preferably 1 μm or less) may be provided on the hard coat layer. More preferably, the hard coat layer is particularly preferably provided on the light incident side surface of the translucent resin layer.
 または、ハードコート層は、1層単層の形態であっても、または2層以上の積層形態であってもよい。後者の場合、各層は、同じ組成であってもまたは相互に異なる組成であってもよい。 Alternatively, the hard coat layer may be in the form of a single layer or a laminate of two or more layers. In the latter case, each layer may have the same composition or different compositions.
 ハードコート層の作製方法としては、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法を挙げることができる。また、所定の材料を塗布、塗工することに加え、各種表面処理等を組み合わせてもよい。 Examples of methods for producing the hard coat layer include conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method. In addition to applying and coating a predetermined material, various surface treatments and the like may be combined.
 なお、ハードコート層の厚みは、十分な耐傷性を得つつ、フィルムミラーにそりが発生することを防止するという観点から、0.05μm以上、10μm以下であることが好ましい。より好ましくは、1μm以上、7μm以下である。 The thickness of the hard coat layer is preferably 0.05 μm or more and 10 μm or less from the viewpoint of preventing the film mirror from warping while obtaining sufficient scratch resistance. More preferably, they are 1 micrometer or more and 7 micrometers or less.
 ハードコート層を形成する材料としては、透明性、耐候性、硬度、機械的強度等が得られるものであれば、特に限定されるものではない。ハードコート層は、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、硬度と耐久性などの点で、シリコーン系樹脂やアクリル系樹脂が好ましい。さらに、硬化性、可撓性および生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂からなるものが好ましいが、耐侯性面での不安があり、ハードコート層としての変色が経時で発生し、ヘイズが上昇することで、反射率が低下する懸念がある。そのため、表面保護性、耐侯性が高いという点で、メタロキサン(有機シリケート化合物、シリコーン系樹脂)が好ましく使用される。すなわち、ハードコート層は、メタロキサン系のハードコート層であることが好ましい。 The material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained. The hard coat layer can be composed of an acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, or the like. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Furthermore, in terms of curability, flexibility, and productivity, active energy ray-curable acrylic resins or thermosetting acrylic resins are preferable, but there are concerns about weather resistance, and hard There is a concern that discoloration as a coating layer occurs with time and haze increases, resulting in a decrease in reflectance. For this reason, metalloxane (an organic silicate compound, a silicone resin) is preferably used in terms of high surface protection and weather resistance. That is, the hard coat layer is preferably a metalloxane-based hard coat layer.
 活性エネルギー線硬化型のアクリル系樹脂または熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社;(商品名“ダイヤビーム(登録商標)”シリーズなど)、長瀬産業株式会社;(商品名“デナコール(登録商標)”シリーズなど)、新中村株式会社;(商品名“NKエステル”シリーズなど)、大日本インキ化学工業株式会社;(商品名“UNIDIC(登録商標)”シリーズなど)、東亞合成化学工業株式会社;(商品名“アロニックス(登録商標)”シリーズなど)、日本油脂株式会社;(商品名“ブレンマー(登録商標)”シリーズなど)、日本化薬株式会社;(商品名“KAYARAD(登録商標)”シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズなど)などの製品を利用することができる。 Commercially available polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd .; (trade name “NK Ester” series, etc.), Dainippon Ink and Chemicals Co., Ltd .; (trade name “UNIDIC (registered trademark)” series, etc.), Toagosei Chemical Industry Co., Ltd .; "Aronix (registered trademark)" series, etc.), Nippon Oil and Fats Corporation; (trade name "Blemmer (registered trademark)" series, etc.), Nippon Kayaku Co., Ltd. (trade name "KAYARAD (registered trademark)" series, etc.), Kyoeisha Chemical Co., Ltd .; (Product name “Light Ester” series, “Light acrylate” series, etc.) Kill.
 更に具体的には、例えば、電子線や紫外線の照射により硬化する樹脂や熱硬化性の樹脂等を使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート、熱硬化型のポリシロキサン樹脂からなるハードコート、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート、熱硬化型無機材料であることが好ましい。また、ハードコート層に用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(特開2005-66824号公報)、ポリウレタン系樹脂組成物(特開2005-110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004-142161号公報)、酸化チタン等の光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009-62216)、光触媒含有フッ素樹脂コーティング(ピアレックス・テクノロジーズ社)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(AZエレクトロニクス社)を用いた膜、等も挙げることができる。 More specifically, for example, a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used. In particular, a thermosetting silicone hard coat composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable. As materials that can be used for the hard coat layer, an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No. 2005-110918), and an aqueous silicone compound as a binder. Resin film used (Japanese Patent Laid-Open No. 2004-142161), photocatalytic oxide-containing silica film such as titanium oxide or alumina, photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio (Japanese Patent Laid-Open No. 2009-62216), photocatalyst Examples thereof include a fluorine-containing resin coating (Pierex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) in organic / inorganic polysilazane.
 熱硬化型シリコーン系のハードコート層には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下の通りである。まず、アルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法によりフィルムミラー等の外面に塗布し、80~140℃の温度で加熱硬化することによって透明ハードコート層を形成させる。但しこの場合、フィルムミラーの熱変形温度以下での硬化温度の設定が前提となる。なお、テトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシラン、並びに/或いはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系の透明ハードコート層を製造することが可能である。 For the thermosetting silicone hard coat layer, a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated to the outer surface of a film mirror etc. by the coating method in a normal coating material, and a transparent hard-coat layer is formed by heat-hardening at the temperature of 80-140 degreeC. However, in this case, the setting of the curing temperature below the thermal deformation temperature of the film mirror is a prerequisite. In addition, by using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane, a polysiloxane-based transparent hard coat layer is similarly produced. Is possible.
 紫外線硬化型アクリル系のハードコート層には、不飽和基を有するアクリル系化合物として、例えばペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールテトラ(メタ)アクリレート等の多官能(メタ)アクリレート混合物等を使用することができ、これにベンゾイン、ベンゾインメチルエーテル、ベンゾフェノン等の光重合開始剤を配合して用いる。そしてこれを反射フィルム基材の外面に塗布し、紫外線硬化することによって透明なハードコート層が形成される。 For the ultraviolet curable acrylic hard coat layer, for example, an acrylic compound having an unsaturated group, such as pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethyloltetra A polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply | coated to the outer surface of a reflective film base material, and a transparent hard-coat layer is formed by carrying out ultraviolet curing.
 また、ハードコート層に表面処理を施して、親水性を付与することが好ましい。親水性を付与する処理としては、例えば、コロナ処理(特開平11-172028公報)、プラズマ表面処理、紫外線・オゾン処理、表面突起物形成(特開2009-226613公報)、表面微細加工処理などを挙げることができる。 Further, it is preferable to impart a hydrophilic property by subjecting the hard coat layer to a surface treatment. Examples of the treatment for imparting hydrophilicity include corona treatment (Japanese Patent Laid-Open No. 11-172028), plasma surface treatment, ultraviolet / ozone treatment, surface protrusion formation (Japanese Patent Laid-Open No. 2009-226613), surface fine processing treatment, and the like. Can be mentioned.
 ハードコート層が無機物からなる場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等を、真空製膜法により製膜することで形成できる。真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 When the hard coat layer is made of an inorganic material, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like can be formed by vacuum film formation. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 また、ハードコート層が無機物からなる場合、ポリシラザンを塗布製膜し、加熱硬化した膜からなることが好ましい。ハードコート層の前駆体が、ポリシラザンを含有する場合、例えば下記一般式(6)で表されるポリシラザンを含む有機溶剤中に必要に応じて触媒を加えた溶液を塗布した後、溶剤を蒸発させて除去し、それによってフィルムミラー上に0.05~3.0μmの層厚を有するポリシラザン層を残す。そして、水蒸気を含む雰囲気中で酸素、活性酸素、場合によっては窒素の存在下で、上記のポリシラザン層を局所的加熱することによって、フィルムミラー上にガラス様の透明なハードコートの被膜を形成する方法を採用することが好ましい。 Further, when the hard coat layer is made of an inorganic material, it is preferably made of a film obtained by coating polysilazane and heat-curing it. When the precursor of the hard coat layer contains polysilazane, for example, after applying a solution to which a catalyst is added as necessary in an organic solvent containing polysilazane represented by the following general formula (6), the solvent is evaporated. Thereby leaving a polysilazane layer having a layer thickness of 0.05 to 3.0 μm on the film mirror. Then, a glass-like transparent hard coat film is formed on the film mirror by locally heating the polysilazane layer in the presence of oxygen, active oxygen, and in some cases nitrogen in an atmosphere containing water vapor. It is preferable to adopt the method.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(6)において、R、R及びRは、同一か又は異なり、互いに独立して、水素原子、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基、好ましくは水素原子、メチル基、エチル基、プロピル基、iso-プロピル基、ブチル基、iso-ブチル基、tert-ブチル基、フェニル基、ビニル基又は3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリルプロピル)基からなる群から選択される基を表す。この際、nは整数であり、nは、ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。 In the general formula (6), R 1 , R 2 and R 3 are the same or different and are independently of each other a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group or (trialkoxy). (Silyl) alkyl group, preferably hydrogen atom, methyl group, ethyl group, propyl group, iso-propyl group, butyl group, iso-butyl group, tert-butyl group, phenyl group, vinyl group or 3- (triethoxysilyl) Represents a group selected from the group consisting of a propyl group and a 3- (trimethoxysilylpropyl) group. In this case, n is an integer, and n is determined so that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 触媒としては、好ましくは、塩基性触媒、特にN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン又はN-複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1~10モル%、好ましくは0.5~7モル%の範囲である。 As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. . The catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
 なお、好ましい態様の一つでは、一般式(6)中のR、R及びRのすべてが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one preferred embodiment, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (6) are hydrogen atoms is used.
 また、別の好ましい態様の一つでは、ハードコート層が、下記の一般式(7)で表される少なくとも一種のポリシラザンを含むことである。 In another preferred embodiment, the hard coat layer contains at least one polysilazane represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(7)中、R、R、R、R、R及びRは、互いに独立して、水素原子、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n及びpは整数であり、特にnは、ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。 In the general formula (7), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group or Represents a (trialkoxysilyl) alkyl group. In this case, n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、R、R及びRが水素原子を表し、そしてR、R及びRがメチル基を表す化合物。またR、R及びRが水素原子を表し、そしてR、Rがメチル基を表し、そしてRがビニル基を表す化合物。また、R、R、R及びRが水素原子を表し、そしてR及びRがメチル基を表す化合物である。 Particularly preferred are compounds in which R 1 , R 3 and R 6 represent a hydrogen atom, and R 2 , R 4 and R 5 represent a methyl group. A compound in which R 1 , R 3 and R 6 represent a hydrogen atom, R 2 and R 4 represent a methyl group, and R 5 represents a vinyl group. R 1 , R 3 , R 4 and R 6 represent a hydrogen atom, and R 2 and R 5 represent a methyl group.
 さらに、別の好ましい態様の一つでは、透明ハードコート層が、下記の一般式(8)で表される少なくとも一種のポリシラザンを含むことである。 Furthermore, in another preferred embodiment, the transparent hard coat layer contains at least one polysilazane represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(8)中、R、R、R、R、R、R、R、R及びRは、互いに独立して、水素原子、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n、p及びqは整数であり、特にnは、ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。 In general formula (8), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of each other a hydrogen atom or optionally substituted. Represents an alkyl group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group; In this case, n, p and q are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、R、R及びRが水素原子を表し、そしてR、R、R及びRがメチル基を表し、Rが(トリエトキシシリル)プロピル基を表し、そしてRがアルキル基又は水素原子を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 represent a hydrogen atom, R 2 , R 4 , R 5 and R 8 represent a methyl group, R 9 represents a (triethoxysilyl) propyl group, R 7 is a compound representing an alkyl group or a hydrogen atom.
 溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1~80質量%、好ましくは5~50質量%、特に好ましくは10~40質量%である。 The proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
 溶剤としては、特に、水及び反応性基(例えばヒドロキシ基又はアミン基)を含まず、ポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族又は芳香族炭化水素、ハロゲン炭化水素、エステル、例えば酢酸エチル又は酢酸ブチル、ケトン、例えばアセトン又はメチルエチルケトン、エーテル、例えばテトラヒドロフラン又はジブチルエーテル、並びにモノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)又はこれらの溶剤からなる混合物である。 As the solvent, in particular, an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
 このポリシラザン溶液の追加の成分に、塗料の製造に慣用されているもののような、更に別のバインダーを用いることができる。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテート又はセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、又は合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、又はポリシロキサンである。 As an additional component of this polysilazane solution, further binders such as those conventionally used in the production of paints can be used. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
 また、このポリシラザン調合物に更に追加する別の成分として、例えば、調合物の粘度、下地の濡れ、成膜性、潤滑作用又は排気性に影響を与える添加剤、あるいは無機ナノ粒子、例えばSiO、TiO、ZnO、ZrO又はAlを用いることができる。 Further, as another component to be further added to the polysilazane preparation, for example, an additive that affects the viscosity, wettability of the preparation, film forming property, lubricating action or exhaust property, or inorganic nanoparticles such as SiO 2 TiO 2 , ZnO, ZrO 2 or Al 2 O 3 can be used.
 このようにして形成したポリシラザンの透明なハードコート層は、酸素・水蒸気バリアー膜としても用いることができる。 The transparent hard coat layer of polysilazane thus formed can also be used as an oxygen / water vapor barrier film.
 また、透明なハードコート層の特に好ましい例の一つとして、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層が挙げられる。ここで、当該ハードコート層の一形態として、例えば、メタロキサン系のハードコート層がある。多官能アクリルモノマーを以下「A」成分とし、シリコーン樹脂を以下「B」成分とする。 Also, as a particularly preferable example of the transparent hard coat layer, a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin can be given. Here, as one form of the hard coat layer, for example, there is a metalloxane-based hard coat layer. The polyfunctional acrylic monomer is hereinafter referred to as “A” component, and the silicone resin is hereinafter referred to as “B” component.
 多官能アクリルモノマー「A」成分は、不飽和基、特に、活性エネルギー線反応性不飽和基を有することが好ましい。尚、本明細書で言う活性エネルギー線とは、好ましくは電子線か紫外線をいう。活性エネルギー線反応性不飽和基を有する多官能アクリルモノマーとしては、ラジカル重合系モノマーが用いられ、好ましくは、分子中にα,β-不飽和二重結合を有する2官能以上の多官能モノマーである多官能アクリレート型もしくは多官能メタクリレート型モノマー等が挙げられる。他に、ビニル型モノマー、アリル型モノマーや単官能のモノマーを有していてもよい。また、ラジカル重合系モノマーは、単独でも、または架橋密度を調整すべく2種類以上のモノマーを併用することも可能である。「A」成分としては、これら比較的低分子量化合物、例えば分子量が1000未満のいわゆる狭義のモノマーの他、ある程度分子量の大きい、例えば重量平均分子量が1000以上10000未満のオリゴマー、プレポリマーも用いることが可能である。 The polyfunctional acrylic monomer “A” component preferably has an unsaturated group, particularly an active energy ray-reactive unsaturated group. The active energy ray referred to in this specification preferably means an electron beam or an ultraviolet ray. As the polyfunctional acrylic monomer having an active energy ray-reactive unsaturated group, a radical polymerization monomer is used, preferably a bifunctional or higher functional monomer having an α, β-unsaturated double bond in the molecule. A certain polyfunctional acrylate type or polyfunctional methacrylate type monomer may be mentioned. In addition, a vinyl monomer, an allyl monomer, or a monofunctional monomer may be included. Further, the radical polymerization monomer can be used alone or in combination of two or more kinds of monomers in order to adjust the crosslinking density. As the “A” component, in addition to these relatively low molecular weight compounds, for example, so-called narrowly-defined monomers having a molecular weight of less than 1000, oligomers and prepolymers having a somewhat high molecular weight, for example, a weight average molecular weight of 1,000 to 10,000 are also used. Is possible.
 単官能(メタ)アクリレートモノマーとして、具体的には、2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタレート、2-(メタ)アクリロイロキシプロピルフタレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、セチル(メタ)アクリレート、クレゾール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウロキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、コハク酸(メタ)アクリレート、t-ブチル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリデシル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(メタ)アクリレート、およびこれらの誘導体、変性品等が挙げられる。 Specific examples of monofunctional (meth) acrylate monomers include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and 2- (meth) acryloyloxyethyl. Hexahydrophthalate, 2- (meth) acryloyloxypropyl phthalate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, benzyl (meth) acrylate, butanediol mono (Meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, caprolactone (meth) acrylate, cetyl (meth) acrylate, cresol (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, dimethylaminoethyl (meth) acrylate, dipropylene glycol (meth) acrylate, phenyl (meth) acrylate, ethyl (Meth) acrylate, isoamyl (meth) acrylate, isobornyl (meth) acrylate, isobutyl (meth) acrylate, isodecyl (meth) ) Acrylate, isooctyl (meth) acrylate, isostearyl (meth) acrylate, isomyristyl (meth) acrylate, lauroxy polyethylene glycol (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene Glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene Glycol (meth) acrylate, octafluoropentyl (meth) acrylate, Octoxy polyethylene glycol-polypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, perfluorooctylethyl (meth) acrylate, phenoxy (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, Phenoxyethyl (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, stearyl (meth) acrylate, succinic acid (meth) acrylate, t-butyl (meth) ) Acrylate, t-butylcyclohexyl (meth) acrylate, tetrafluoropropyl (meth) Chryrate, tetrahydrofurfuryl (meth) acrylate, tribromophenyl (meth) acrylate, tridecyl (meth) acrylate, trifluoroethyl (meth) acrylate, β-carboxyethyl (meth) acrylate, ω-carboxy-polycaprolactone (meth) Examples thereof include acrylates, derivatives thereof, and modified products.
 多官能(メタ)アクリレートモノマーとして、具体的には、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ヘキサヒドロフタル酸ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、フタル酸ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、リン酸トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンベンゾエートトリ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、およびこれらの誘導体、変性品等が挙げられる。 Specific examples of the polyfunctional (meth) acrylate monomer include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol F di (meth) acrylate, diethylene glycol di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, di (meth) acrylate phthalate Rate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene Glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) acrylate , Triglycerol di (meth) acrylate, dipropylene glycol di (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol Litol tri (meth) acrylate, phosphoric acid tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane benzoate tri (meth) acrylate, tris ((meth) acryloxyethyl) isocyanurate, di (meth) acrylic Isocyanurate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and derivatives and modified products thereof It is done.
 このような重合性有機化合物である「A」成分の市販品としては、例えば、東亞合成(株)製アロニックスM-400、M-408、M-450、M-305、M-309、M-310、M-315、M-320、M-350、M-360、M-208、M-210、M-215、M-220、M-225、M-233、M-240、M-245、M-260、M-270、M-1100、M-1200、M-1210、M-1310、M-1600、M-221、M-203、TO-924、TO-1270、TO-1231、TO-595、TO-756、TO-1343、TO-902、TO-904、TO-905、TO-1330、日本化薬(株)製KAYARAD D-310、D-330、DPHA、DPCA-20、DPCA-30、DPCA-60、DPCA-120、DN-0075、DN-2475、SR-295、SR-355、SR-399E、SR-494、SR-9041、SR-368、SR-415、SR-444、SR-454、SR-492、SR-499、SR-502、SR-9020、SR-9035、SR-111、SR-212、SR-213、SR-230、SR-259、SR-268、SR-272、SR-344、SR-349、SR-601、SR-602、SR-610、SR-9003、PET-30、T-1420、GPO-303、TC-120S、HDDA、NPGDA、TPGDA、PEG400DA、MANDA、HX-220、HX-620、R-551、R-712、R-167、R-526、R-551、R-712、R-604、R-684、TMPTA、THE-330、TPA-320、TPA-330、KS-HDDA、KS-TPGDA、KS-TMPTA、共栄社化学(株)製ライトアクリレート PE-4A、DPE-6A、DTMP-4A等を挙げることができる。 Examples of such commercially available “A” component that is a polymerizable organic compound include Aronix M-400, M-408, M-450, M-305, M-309, M-manufactured by Toagosei Co., Ltd. 310, M-315, M-320, M-350, M-360, M-208, M-210, M-215, M-220, M-225, M-233, M-240, M-245, M-260, M-270, M-1100, M-1200, M-1210, M-1310, M-1600, M-221, M-203, TO-924, TO-1270, TO-1231, TO- 595, TO-756, TO-1343, TO-902, TO-904, TO-905, TO-1330, KAYARAD D-310, D-330, DPHA, DPCA-20, DP manufactured by Nippon Kayaku Co., Ltd. A-30, DPCA-60, DPCA-120, DN-0075, DN-2475, SR-295, SR-355, SR-399E, SR-494, SR-9041, SR-368, SR-415, SR- 444, SR-454, SR-492, SR-499, SR-502, SR-9020, SR-9035, SR-111, SR-212, SR-213, SR-230, SR-259, SR-268, SR-272, SR-344, SR-349, SR-601, SR-602, SR-610, SR-9003, PET-30, T-1420, GPO-303, TC-120S, HDDA, NPGDA, TPGDA, PEG400DA, MANDA, HX-220, HX-620, R-551, R-712, R-167, R-526, -551, R-712, R-604, R-684, TMPTA, THE-330, TPA-320, TPA-330, KS-HDDA, KS-TPGDA, KS-TMPTA, Kyoeisha Chemical Co., Ltd. light acrylate PE -4A, DPE-6A, DTMP-4A and the like.
 多官能アクリルモノマー「A」成分の含有量は、防汚性や耐光性を良好にする観点から、「A」+「B」の組成物全体を100質量%として、10~90質量%であることが好ましく、15~80質量%がさらに好ましい。 The content of the polyfunctional acrylic monomer “A” component is 10 to 90% by mass with the total composition of “A” + “B” being 100% by mass from the viewpoint of improving antifouling properties and light resistance. It is preferably 15 to 80% by mass.
 シリコーン樹脂「B」成分としては、活性エネルギー線反応性不飽和基を有するシリコーン樹脂であることが好ましい。シリコーン樹脂は、ポリオルガノシロキサンを含有し、好ましくは、活性エネルギー線硬化性不飽和結合を分子内に有したポリオルガノシロキサン鎖を有する化合物である。特に、シリコーン樹脂は、ラジカル重合性二重結合およびポリオルガノシロキサン鎖を有する単量体(a)1~50質量%と、ラジカル重合性二重結合および反応性官能基を有する(a)以外の単量体(b)10~95質量%と、(a)および(b)以外のラジカル重合性二重結合を有する単量体(c)0~89質量%とを含む単量体を重合してなる重合体(α)に、前記した反応性官能基と反応可能な官能基、およびラジカル重合性二重結合を有する化合物(β)を反応させてなる数平均分子量5000~100000のビニル共重合体である活性エネルギー線硬化性樹脂であることが好ましい。 The silicone resin “B” component is preferably a silicone resin having an active energy ray-reactive unsaturated group. The silicone resin contains a polyorganosiloxane, and is preferably a compound having a polyorganosiloxane chain having an active energy ray-curable unsaturated bond in the molecule. In particular, the silicone resin contains 1 to 50% by mass of the monomer (a) having a radically polymerizable double bond and a polyorganosiloxane chain, and other than (a) having a radically polymerizable double bond and a reactive functional group. A monomer containing 10 to 95% by mass of the monomer (b) and 0 to 89% by mass of the monomer (c) having a radical polymerizable double bond other than (a) and (b) is polymerized. A vinyl copolymer having a number average molecular weight of 5,000 to 100,000 obtained by reacting the polymer (α) with a functional group capable of reacting with the reactive functional group and a compound (β) having a radical polymerizable double bond. An active energy ray-curable resin that is a coalescence is preferable.
 ラジカル重合性二重結合およびポリオルガノシロキサン鎖を有する単量体(a)として、具体的には、例えばチッソ(株)製のサイラプレーンFM-0711、FM-0721、FM-0725などの片末端(メタ)アクリロキシ基含有ポリオルガノシロキサン化合物、東亞合成(株)製のAC-SQ SI-20、Hybrid Plastics社製POSS(Polyhedral Oligomeric Silsesquioxane)シリーズのアクリレート、メタクリレート含有化合物等が挙げられる。 Specific examples of the monomer (a) having a radical polymerizable double bond and a polyorganosiloxane chain include, for example, one end of Silaplane FM-0711, FM-0721, FM-0725, etc. manufactured by Chisso Corporation. Examples include (meth) acryloxy group-containing polyorganosiloxane compounds, AC-SQ SI-20 manufactured by Toagosei Co., Ltd., POSS (Polyhydrogen Oligomeric Silsesquioxane) series acrylates and methacrylate-containing compounds manufactured by Hybrid Plastics.
 「B」成分は、要求性能に応じて1種、または2種以上を混合して用いることができる。また、重合比率は、上記単量体(a)が、重合体を構成する単量体の総質量を基準として1~50質量%となる比率であることが好ましく、さらに好ましくは10~35質量%である。「B」成分の共重合比率が1質量%未満の場合には、硬化物の上部表面に防汚性、耐候性を付与することが困難となり、50質量%を超える場合には、耐擦傷性が低下する上、活性エネルギー線硬化型組成物に含まれる他の成分との相溶性、基材との密着性、強靭性等の塗膜性能、および重合体の溶媒への溶解性を得ることが困難となる。上記成分中に、ポリシロキサンを適当量含有することもでき、「B」成分の化学構造や量比によっては、ポリシロキサンを添加することによって、耐久性が向上する。 The “B” component can be used alone or in combination of two or more depending on the required performance. The polymerization ratio is preferably such that the monomer (a) is 1 to 50% by mass, more preferably 10 to 35% by mass, based on the total mass of monomers constituting the polymer. %. When the copolymerization ratio of the “B” component is less than 1% by mass, it becomes difficult to impart antifouling properties and weather resistance to the upper surface of the cured product, and when it exceeds 50% by mass, scratch resistance is obtained. In addition, the coating composition performance such as compatibility with other components contained in the active energy ray-curable composition, adhesion to the substrate, toughness, and solubility of the polymer in the solvent are obtained. It becomes difficult. An appropriate amount of polysiloxane can also be contained in the above components, and depending on the chemical structure and quantitative ratio of the “B” component, the durability can be improved by adding polysiloxane.
 または、メタロキサン系のハードコート材料は、市販品であってもよい。例えば、(株)動研製のサーコートシリーズ(例えば、BP-16 N)などがある。また、(株)動研製のサーコートシリーズ(例えば、NP-720、NP-730)、東京応化工業(株)製のOCD T7、OCD T11、OCD T12等のポリシロキサン系化合物、東亞合成(株)製のサイマックUS-150、US-270、US-350、US-450、レゼダGP-700(以上、)等のシリコーン共重合体などをハードコート材料として使用してもよい。 Alternatively, the metalloxane-based hard coat material may be a commercially available product. For example, there is a Surcoat series (for example, BP-16 N) manufactured by Doken Co., Ltd. In addition, surcoat series (for example, NP-720, NP-730) manufactured by Doken Co., Ltd., polysiloxane compounds such as OCD T7, OCD T11, OCD T12 manufactured by Tokyo Ohka Kogyo Co., Ltd., Toagosei Co., Ltd. Silicone copolymers such as Cymac US-150, US-270, US-350, US-450, Reseda GP-700 (or more), etc. may be used as the hard coat material.
 このハードコート層は、屈曲性があり、反りが生じないことが好ましい。フィルムミラーの最表面層における透明なハードコート層は密な架橋構造を形成する場合があり、そのためフィルムが反り曲がることや、屈曲性がないためにクラックが入りやすいようなことがあり、取り扱いが困難になる。このような場合、ハードコート層組成中の無機物の量を調整するなどして、柔軟性があり、平面性が得られるように設計することが好ましい。 This hard coat layer is preferably flexible and does not warp. The transparent hard coat layer on the outermost surface layer of the film mirror may form a dense cross-linked structure, so the film may be bent or it may be prone to cracking due to lack of flexibility and handling. It becomes difficult. In such a case, it is preferable to design so as to obtain flexibility and flatness by adjusting the amount of the inorganic substance in the hard coat layer composition.
 また、ハードコート層は、紫外線吸収剤や酸化防止剤を含有してもよい。紫外線吸収剤や酸化防止剤としては、上述の透光性樹脂層で用いた紫外線吸収剤や酸化防止剤を用いることができる。ハードコート層に用いられる酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。有機系酸化防止剤をハードコート層に含有させることでも、転落角を低下し得る。酸化防止剤と光安定剤を併用してもよい。ここで、光反射層の酸化防止剤および併用する場合には光安定剤は、特に制限されないが、上記透光性樹脂層の項で記載されたものと同様のものが使用できるため、ここでは説明を省略する。 Further, the hard coat layer may contain an ultraviolet absorber or an antioxidant. As the ultraviolet absorber or antioxidant, the ultraviolet absorber or antioxidant used in the above-described translucent resin layer can be used. As the antioxidant used in the hard coat layer, it is preferable to use an organic antioxidant such as a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant. The falling angle can also be reduced by including an organic antioxidant in the hard coat layer. An antioxidant and a light stabilizer may be used in combination. Here, when used together with the antioxidant of the light reflecting layer and the light stabilizer, the light stabilizer is not particularly limited, but the same light stabilizer as described in the above-mentioned section of the light transmissive resin layer can be used. Description is omitted.
 特に、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層において好ましい紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤である。ベンゾトリアゾール系の紫外線吸収剤をハードコート層に含有させることにより、耐候性を更に良好にするだけでなく、転落角も更に低下できるという優れた効果を得ることができる。特に、下記の一般式(9)で表される化合物をハードコート層に含有させた場合、転落角の低下という効果が著しい。尚、転落角とは、水平なミラー上に水滴を滴下し、その後、当該ミラーの傾斜角を徐々に上げていき、静止していた所定質量の水滴が転落する最小の角度を計測したものをいう。転落角が小さければ小さい程、水滴が表面から転がり落ちやすく、水滴が付着しにくい表面であると言える。 In particular, a preferred UV absorber in a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin is a benzotriazole UV absorber. By including a benzotriazole-based ultraviolet absorber in the hard coat layer, it is possible to obtain an excellent effect that not only the weather resistance is further improved, but also the falling angle can be further reduced. In particular, when the compound represented by the following general formula (9) is contained in the hard coat layer, the effect of reducing the falling angle is remarkable. The falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which the water drop of a predetermined mass that has been stationary falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 なお、ハードコート層における紫外線吸収剤の使用量は、密着性を良好に保ちつつ、耐候性を良好にするために、0.1~20質量%であることが好ましい。さらに好ましくは0.25~15質量%、より好ましくは0.5~10質量%である。 The amount of the UV absorber used in the hard coat layer is preferably 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is 0.25 to 15% by mass, and more preferably 0.5 to 10% by mass.
 ハードコート層、特に、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層は、重合を開始するための開始剤を含有することが好ましい。紫外線などの活性エネルギー線硬化性樹脂の光重合開始剤が好ましく用いられる。例えば、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、開始剤を光増感剤と共に使用してもよい。上記開始剤も光増感剤として使用できる。また、エポキシアクリレート系の開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。開始剤また光増感剤は該組成物100質量部に対して0.1~15質量部であり、好ましくは1~10質量部、より好ましくは、2~5質量部である。2種類の開始剤を併用することもでき、特にラジカル系開始剤の場合、少なくとも2種類の開始剤、好ましくは互いに異なる波長を吸収するラジカル系開始剤を用いることである。より好ましくは、互いに紫外線吸収波長の異なる2種類の開始剤を使用することである。例えば、より短波長の波長を吸収する開始剤のみでは、開始剤によってモノマー全ての重合反応を行えない場合がある。一方、より長波長の波長を吸収する開始剤のみでは、反応性はよくなるが、長期使用時に開始剤が着色してしまう可能性がある。そこで、長期使用時においても着色することなく、耐候性を良好にし、更に、重合反応性も良好にするために、互いに異なる波長を吸収するラジカル系開始剤を用いることが好ましい。 The hard coat layer, particularly the hard coat layer containing a polyfunctional acrylic monomer and a silicone resin, preferably contains an initiator for initiating polymerization. Photoinitiators of active energy ray-curable resins such as ultraviolet rays are preferably used. Examples include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Moreover, you may use an initiator with a photosensitizer. The above initiator can also be used as a photosensitizer. In addition, when using an epoxy acrylate initiator, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used. The initiator or photosensitizer is used in an amount of 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, based on 100 parts by weight of the composition. Two types of initiators can be used in combination. In particular, in the case of radical initiators, at least two types of initiators, preferably radical initiators that absorb different wavelengths, are used. More preferably, two kinds of initiators having different ultraviolet absorption wavelengths are used. For example, with only an initiator that absorbs a shorter wavelength, the polymerization reaction of all the monomers may not be performed by the initiator. On the other hand, only an initiator that absorbs longer wavelengths improves the reactivity, but the initiator may be colored during long-term use. Therefore, it is preferable to use radical initiators that absorb different wavelengths in order to improve the weather resistance and also the polymerization reactivity without coloring even during long-term use.
 ハードコート層中には、さらに各種の添加剤を必要に応じて配合することができる。例えば、界面活性剤、レベリング剤および帯電防止剤などを用いることができる。 In the hard coat layer, various additives can be further blended as necessary. For example, a surfactant, a leveling agent and an antistatic agent can be used.
 レベリング剤は、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば東レダウコーニング(株)製SH190)が好適である。 ¡Leveling agents are effective in reducing surface irregularities. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicone leveling agent.
 (アンカー層)
 アンカー層は、樹脂基材と光反射層との間に配置されうる。アンカー層は、樹脂からなり、樹脂基材と光反射層とを密着させるものである。したがって、アンカー層は、樹脂基材と光反射層とを密着する密着性、光反射層を真空蒸着法等で形成する際の熱にも耐え得る耐熱性、及び光反射層が本来有する高い反射性能を引き出すための平滑性が必要である。
(Anchor layer)
The anchor layer can be disposed between the resin substrate and the light reflecting layer. An anchor layer consists of resin and makes a resin base material and a light reflection layer closely_contact | adhere. Therefore, the anchor layer has an adhesion property that allows the resin base material and the light reflection layer to adhere to each other, heat resistance that can withstand heat when the light reflection layer is formed by a vacuum deposition method, and the high reflection that the light reflection layer originally has. Smoothness is required to bring out performance.
 アンカー層に使用される材料(樹脂材料)、アンカー層の形成方法は、特に制限されないが、例えば、WO 2012/165460号パンフレット(特に、段落「0209」~「0212」)等の公知の文献に記載されるのと同様の材料や方法が使用できる。 The material used for the anchor layer (resin material) and the method for forming the anchor layer are not particularly limited. For example, it is disclosed in known documents such as WO 2012/165460 pamphlet (particularly, paragraphs “0209” to “0212”). Similar materials and methods as described can be used.
 (腐食防止層)
 腐食防止層は、腐食防止剤を含有している樹脂層であり、光反射層に隣接していることが好ましい。例えば、光反射層と粘着層との間に設けられうる。
(Corrosion prevention layer)
The corrosion prevention layer is a resin layer containing a corrosion inhibitor and is preferably adjacent to the light reflection layer. For example, it can be provided between the light reflecting layer and the adhesive layer.
 腐食防止層は、1層のみからなっていてもよいし、複数層からなっていてもよい。腐食防止層の厚さは、1~10μmが好ましく、より好ましくは2~8μmである。 The corrosion prevention layer may consist of only one layer or a plurality of layers. The thickness of the corrosion prevention layer is preferably 1 to 10 μm, more preferably 2 to 8 μm.
 腐食防止層に用いる樹脂、腐食防止剤は、特に制限されないが、例えば、WO 2012/165460号パンフレット(特に、段落「0079」~「0095」)等の公知の文献に記載されるのと同様の材料が使用できる。 The resin and corrosion inhibitor used in the corrosion prevention layer are not particularly limited, but are similar to those described in known documents such as WO 2012/165460 pamphlet (particularly, paragraphs “0079” to “0095”). Material can be used.
 これら樹脂材料(バインダー)を光反射層1上などに塗布、塗工するなどして、腐食防止層を形成することができる。 A corrosion prevention layer can be formed by applying and coating these resin materials (binders) on the light reflection layer 1 or the like.
 腐食防止剤としては、銀に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。 As the corrosion inhibitor, it is preferable to have an adsorptive group for silver. Here, the term “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0g/mの範囲内であることが好ましい。 The optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
 (ガスバリアー層)
 ガスバリアー層は、光反射層よりも光入射側に設けることが好ましい。特に、樹脂基材と光反射層の間にガスバリアー層を設けることが好ましい。
(Gas barrier layer)
The gas barrier layer is preferably provided on the light incident side with respect to the light reflecting layer. In particular, it is preferable to provide a gas barrier layer between the resin substrate and the light reflecting layer.
 ガスバリアー層は、湿度の変動、特に高湿度による樹脂基材及び樹脂基材に支持される各構成層等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、劣化防止機能を有する限りにおいて、種々の態様のガスバリアー層を設けることができる。ガスバリアー層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下であることが好ましく、より好ましくは0.5g/m・day以下、更に好ましくは0.2g/m・day以下である。また、ガスバリアー層の酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 The gas barrier layer is intended to prevent the deterioration of humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but with special functions and applications. As long as it has a function of preventing deterioration, a gas barrier layer of various modes can be provided. As the moisture resistance of the gas barrier layer, the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 · day or less, more preferably 0.5 g / m 2 · day or less, still more preferably It is 0.2 g / m 2 · day or less. In addition, the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
 ガスバリアー層に使用される材料、ガスバリアー層の形成方法は、特に制限されないが、例えば、WO 2012/165460号パンフレット(特に、段落「0188」~「0209」)等の公知の文献に記載されるのと同様の材料や方法が使用できる。 The material used for the gas barrier layer and the method for forming the gas barrier layer are not particularly limited, and are described in known documents such as WO 2012/165460 pamphlet (particularly, paragraphs “0188” to “0209”). The same materials and methods can be used.
 (フィルムミラーの製造方法)
 上述した各構成層を適宜積層することによって、太陽熱発電用のフィルムミラーを製造することができる。以下、図1Aに示されるフィルムミラーの製造方法の好ましい実施形態を説明するが、本発明は下記形態に限定されるものではない。
(Film mirror manufacturing method)
A film mirror for solar power generation can be manufactured by appropriately laminating the above-described constituent layers. Hereinafter, although preferable embodiment of the manufacturing method of the film mirror shown by FIG. 1A is described, this invention is not limited to the following form.
 まず、樹脂基材(例えば、溶融製膜などで作製されたポリエチレンテレフタレートフィルム)を用意する。なお、必要であれば、樹脂基材上に、所定の樹脂材料を塗布する(塗布後、必要であれば乾燥する)ことによってアンカー層を形成する。次いで、樹脂基材(または、アンカー層を樹脂基材上に設ける場合には、アンカー層)上に、真空蒸着等の方法によって光反射層(例えば、銀反射層)を形成する。 First, a resin base material (for example, a polyethylene terephthalate film manufactured by melt film formation) is prepared. If necessary, an anchor layer is formed by applying a predetermined resin material on the resin substrate (after application, drying if necessary). Next, a light reflecting layer (for example, a silver reflecting layer) is formed on the resin substrate (or an anchor layer when an anchor layer is provided on the resin substrate) by a method such as vacuum deposition.
 別途、ウレタン変性アクリル樹脂を適当な溶剤に溶解して、ウレタン変性アクリル樹脂液を調製する。ここで、ウレタン変性アクリル樹脂液の調製に使用できる溶剤としては、ウレタン変性アクリル樹脂を溶解できるものであれば特に制限されず、使用されるウレタン変性アクリル樹脂の種類によって適宜選択される。例えば、メチルエチルケトン(MEK)、トルエン、キシレン、メチレンクロライド、1,2-ジクロロエタン、シクロヘキサン、酢酸エチル、酢酸t-ブチル、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、sec-ブチルアルコールブタノール、メチルセロソルブ、4-メトキシ-4-メチル-2-ペンタノン、エチルセロソルブ、テトラヒドロフラン、1-ジオキサン、1,3-ジオキソラン、ピリジン、ジエチルアミン等が挙げられるが、これらに限定されるものではない。これらの溶剤は、単独でもまたは2種以上組み合わせても用いることができる。ウレタン変性アクリル樹脂液中のウレタン変性アクリル樹脂の濃度は、特に制限されないが、塗布しやすさ、所望の厚みの調節のしやすさなどを考慮すると、好ましくは5~30質量%、より好ましくは5~15質量%である。 Separately, the urethane-modified acrylic resin solution is prepared by dissolving the urethane-modified acrylic resin in a suitable solvent. Here, the solvent that can be used for preparing the urethane-modified acrylic resin liquid is not particularly limited as long as it can dissolve the urethane-modified acrylic resin, and is appropriately selected depending on the type of the urethane-modified acrylic resin to be used. For example, methyl ethyl ketone (MEK), toluene, xylene, methylene chloride, 1,2-dichloroethane, cyclohexane, ethyl acetate, t-butyl acetate, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, t-butyl Examples include alcohol, sec-butyl alcohol butanol, methyl cellosolve, 4-methoxy-4-methyl-2-pentanone, ethyl cellosolve, tetrahydrofuran, 1-dioxane, 1,3-dioxolane, pyridine, and diethylamine. Is not to be done. These solvents can be used alone or in combination of two or more. The concentration of the urethane-modified acrylic resin in the urethane-modified acrylic resin liquid is not particularly limited, but is preferably 5 to 30% by mass, more preferably in consideration of ease of application, ease of adjusting a desired thickness, and the like. 5 to 15% by mass.
 次いで、上記で調製されたウレタン変性アクリル樹脂液を、上記樹脂基材または光反射層上に塗布した後、塗膜を乾燥することによって、ウレタン変性アクリル樹脂層を形成する。ここで、塗布方法としては、特に制限されないが、ロールコーティング法、バーコーティング法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコーティング法、ブレードコーティング法、バーコーティング法、グラビアコーティング法、カーテンコーティング法、スプレーコーティング法、ドクターコーティング法等の方法を用いることができる。また、乾燥条件は、塗膜から十分量の溶剤が蒸発できる(ウレタン変性アクリル樹脂層が形成できる)条件であれば特に制限されない。具体的には、乾燥温度は、好ましくは60~100℃、より好ましくは70~90℃である。また、乾燥時間は、好ましくは0.5~2分、より好ましくは0.5~1.5分である。 Next, after applying the urethane-modified acrylic resin solution prepared above on the resin substrate or the light reflecting layer, the urethane-modified acrylic resin layer is formed by drying the coating film. Here, the application method is not particularly limited, but roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating. Methods, such as a spray coating method and a doctor coating method, can be used. The drying conditions are not particularly limited as long as a sufficient amount of solvent can be evaporated from the coating film (a urethane-modified acrylic resin layer can be formed). Specifically, the drying temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C. The drying time is preferably 0.5 to 2 minutes, more preferably 0.5 to 1.5 minutes.
 さらに、このようにして形成されたウレタン変性アクリル樹脂層上に、樹脂材料及び紫外線吸収剤を含有する透光性樹脂層形成液を塗布する(塗布後、必要であれば乾燥する)ことによって、透光性樹脂層を形成する。ここで、透光性樹脂層形成液の調製に使用できる溶剤としては、樹脂材料及び紫外線吸収剤を溶解できるものであれば特に制限されず、使用される樹脂材料及び紫外線吸収剤の種類によって適宜選択される。例えば、メチルエチルケトン(MEK)、トルエン、キシレン、メチレンクロライド、1,2-ジクロロエタン、シクロヘキサン、酢酸エチル、酢酸t-ブチル、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、sec-ブチルアルコールブタノール、メチルセロソルブ、4-メトキシ-4-メチル-2-ペンタノン、エチルセロソルブ、テトラヒドロフラン、1-ジオキサン、1,3-ジオキソラン、ピリジン、ジエチルアミン等が挙げられるが、これらに限定されるものではない。これらの溶剤は、単独でもまたは2種以上組み合わせても用いることができる。透光性樹脂層形成液中の樹脂材料(透光性樹脂)の濃度は、特に制限されないが、塗布しやすさ、所望の厚みの調節のしやすさなどを考慮すると、好ましくは10~40質量%、より好ましくは15~30質量%である。また、塗布方法としては、特に制限されず、上記ウレタン変性アクリル樹脂液の塗布方法と同様の方法が適用できる。透光性樹脂層形成液をウレタン変性アクリル樹脂層上に塗布した後、乾燥する際の乾燥条件は、塗膜から十分量の溶剤が蒸発できる(透光性樹脂層が形成できる)条件であれば特に制限されない。具体的には、乾燥温度は、好ましくは60~100℃、より好ましくは70~90℃である。また、乾燥時間は、好ましくは0.5~5分、より好ましくは1~3分である。 Furthermore, on the urethane-modified acrylic resin layer formed in this manner, a translucent resin layer forming liquid containing a resin material and an ultraviolet absorber is applied (after application, if necessary, dried), A translucent resin layer is formed. Here, the solvent that can be used for the preparation of the translucent resin layer forming liquid is not particularly limited as long as it can dissolve the resin material and the ultraviolet absorber, and is appropriately selected depending on the type of the resin material and the ultraviolet absorber to be used. Selected. For example, methyl ethyl ketone (MEK), toluene, xylene, methylene chloride, 1,2-dichloroethane, cyclohexane, ethyl acetate, t-butyl acetate, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, t-butyl Examples include alcohol, sec-butyl alcohol butanol, methyl cellosolve, 4-methoxy-4-methyl-2-pentanone, ethyl cellosolve, tetrahydrofuran, 1-dioxane, 1,3-dioxolane, pyridine, and diethylamine. Is not to be done. These solvents can be used alone or in combination of two or more. The concentration of the resin material (translucent resin) in the translucent resin layer forming liquid is not particularly limited, but it is preferably 10 to 40 in consideration of ease of application, ease of adjusting a desired thickness, and the like. % By mass, more preferably 15 to 30% by mass. Moreover, it does not restrict | limit especially as a coating method, The method similar to the coating method of the said urethane modified acrylic resin liquid is applicable. After the translucent resin layer forming liquid is applied on the urethane-modified acrylic resin layer, the drying condition when drying is such that a sufficient amount of solvent can be evaporated from the coating film (the translucent resin layer can be formed). There is no particular limitation. Specifically, the drying temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C. The drying time is preferably 0.5 to 5 minutes, more preferably 1 to 3 minutes.
 次いで、このようにして形成された透光性樹脂層上に、ハードコート材料を含むハードコート層形成液を塗布する(塗布後、必要であれば乾燥し、さらに必要に応じて硬化する)ことによってハードコート層を形成する。ここで、ハードコート層形成液の調製に使用できる溶剤としては、ハードコート材料を溶解できるものであれば特に制限されず、使用されるハードコート材料の種類によって適宜選択される。具体的には、上記透光性樹脂層形成液の調製に使用できる溶剤と同様の溶剤が使用できる。これらの溶剤は、単独でもまたは2種以上組み合わせても用いることができる。ハードコート層形成液中のハードコート材料の濃度は、特に制限されないが、塗布しやすさ、所望の厚みの調節のしやすさなどを考慮すると、好ましくは20~40質量%、より好ましくは25~35質量%である。また、塗布方法としては、特に制限されず、上記ウレタン変性アクリル樹脂層と同様の塗布方法と同様の方法が適用できる。ハードコート層形成液を透光性樹脂層上に塗布した後、乾燥する際の乾燥条件は、塗膜から十分量の溶剤が蒸発できる(ハードコート層が形成できる)条件であれば特に制限されない。具体的には、乾燥温度は、好ましくは70~100℃、より好ましくは80~90℃である。また、乾燥時間は、好ましくは0.5~3.0分、より好ましくは0.5~1.5分である。なお、熱硬化型のハードコート材料を使用する場合には、上記乾燥および硬化は、同時に行うことができる。 Next, a hard coat layer forming liquid containing a hard coat material is applied onto the thus formed translucent resin layer (after application, dried if necessary, and further cured as necessary). To form a hard coat layer. Here, the solvent that can be used for the preparation of the hard coat layer forming liquid is not particularly limited as long as it can dissolve the hard coat material, and is appropriately selected depending on the type of the hard coat material to be used. Specifically, the same solvent as the solvent that can be used for the preparation of the translucent resin layer forming liquid can be used. These solvents can be used alone or in combination of two or more. The concentration of the hard coat material in the hard coat layer forming liquid is not particularly limited, but is preferably 20 to 40% by mass, more preferably 25 in consideration of ease of application, ease of adjusting a desired thickness, and the like. Is 35% by mass. Moreover, it does not restrict | limit especially as a coating method, The method similar to the coating method similar to the said urethane-modified acrylic resin layer is applicable. The drying conditions for drying after applying the hard coat layer forming liquid on the translucent resin layer are not particularly limited as long as a sufficient amount of solvent can be evaporated from the coating film (a hard coat layer can be formed). . Specifically, the drying temperature is preferably 70 to 100 ° C., more preferably 80 to 90 ° C. The drying time is preferably 0.5 to 3.0 minutes, more preferably 0.5 to 1.5 minutes. In the case where a thermosetting hard coat material is used, the drying and curing can be performed simultaneously.
 さらに、光反射層または樹脂基材の裏面側(それぞれ、樹脂基材および光反射層が形成されない側)に、粘着材料を塗工して粘着層を形成し、その粘着層を剥離シートで覆うことによって、フィルムミラーが製造される。 Further, an adhesive material is formed on the back side of the light reflecting layer or the resin base (the side on which the resin base and the light reflecting layer are not formed respectively) to form an adhesive layer, and the adhesive layer is covered with a release sheet. As a result, a film mirror is manufactured.
 なお、上記構成以外の層を有するフィルムミラーを製造する際には、各フィルムミラーに必要な構成層を樹脂基材または光反射層に所定順に積層することで、所望のフィルムミラーを製造することができる。例えば、アンカーコート層を樹脂基材と光反射層との間に形成する場合には、樹脂基材上に、所定の樹脂材料(必要であれば、所定の樹脂材料を含むアンカーコート層形成液)を塗布する(塗布後、必要であれば乾燥する)ことによって、アンカーコート層を形成することが可能である。ここで、アンカーコート層形成液の調製に使用できる溶剤、乾燥条件などは、制限されず、例えば、上記と同様の記載が適用できるため、ここでは説明を省略する。同様にして、腐食防止層を光反射層と粘着層との間に形成する場合には、光反射層上に、腐食防止剤を含有した樹脂材料(必要であれば、所定の樹脂材料及び腐食防止剤を含む腐食防止層形成液)を塗布する(塗布後、必要であれば乾燥する)ことによって、腐食防止層を形成することが可能である。ここで、腐食防止層形成液の調製に使用できる溶剤、乾燥条件などは、制限されず、例えば、上記と同様の記載が適用できるため、ここでは説明を省略する。また、フィルムミラーがガスバリアー層を有する場合には、ガスバリアー層は、所定の層上にゾル-ゲル法および加熱/UV処理を施すことによって形成されうる。 When manufacturing film mirrors having layers other than those described above, the desired film mirrors are manufactured by laminating the constituent layers necessary for each film mirror in a predetermined order on the resin base material or light reflecting layer. Can do. For example, when the anchor coat layer is formed between the resin base material and the light reflecting layer, a predetermined resin material (an anchor coat layer forming liquid containing a predetermined resin material if necessary) is formed on the resin base material. ) Is applied (after application, it is dried if necessary) to form an anchor coat layer. Here, the solvent, drying conditions, and the like that can be used for the preparation of the anchor coat layer forming liquid are not limited. For example, the same description as above can be applied, and thus the description thereof is omitted here. Similarly, when the corrosion prevention layer is formed between the light reflection layer and the adhesive layer, a resin material containing a corrosion inhibitor on the light reflection layer (if necessary, a predetermined resin material and corrosion). It is possible to form a corrosion prevention layer by applying (corrosion prevention layer forming liquid containing an inhibitor) (after application, drying if necessary). Here, the solvent, drying conditions, and the like that can be used for the preparation of the corrosion-preventing layer forming liquid are not limited. When the film mirror has a gas barrier layer, the gas barrier layer can be formed by subjecting a predetermined layer to a sol-gel method and heating / UV treatment.
 そして、本発明のフィルムミラーでは、樹脂基材のみが溶融製膜などで作製された樹脂フィルムであり、他の構成層には樹脂フィルムを用いておらず、その樹脂基材に対して順次、各構成層の材料の塗布・塗工や蒸着などによる成膜を繰り返し、所定の構成層を積層することでフィルムミラーを製造することが好ましい。つまり、本発明のフィルムミラーの製造方法は、少なくとも光反射層を有する樹脂フィルムと、光入射側に配置される層(例えば、紫外線吸収剤入り透光性樹脂層、ウレタン変性アクリル樹脂層)となる樹脂フィルムとを別々に製造し、その後いずれか2つの樹脂フィルムを接着剤(接着層)によって貼り合わせる工程を含まないことが好ましい。 And in the film mirror of the present invention, only the resin base material is a resin film produced by melt film formation, etc., the resin film is not used for the other constituent layers, and sequentially with respect to the resin base material, It is preferable to manufacture a film mirror by repeating film formation by application, coating, vapor deposition, or the like of each constituent layer and laminating predetermined constituent layers. That is, the method for producing a film mirror of the present invention includes a resin film having at least a light reflecting layer, a layer disposed on the light incident side (for example, a translucent resin layer containing an ultraviolet absorber, a urethane-modified acrylic resin layer), It is preferable that the process which manufactures separately the resin film which becomes and does not include the process of bonding any two resin films with an adhesive agent (adhesive layer) after that is preferable.
 (太陽熱発電用反射装置)
 太陽熱発電用反射装置は、フィルムミラーと自己支持性の支持基材とを有しており、粘着層を介してフィルムミラーが支持基材に接合されている反射鏡である。
(Reflector for solar thermal power generation)
The solar power generation reflecting device is a reflecting mirror that includes a film mirror and a self-supporting support base material, and the film mirror is bonded to the support base material via an adhesive layer.
 なお、ここで言う「自己支持性」とは、太陽熱発電用反射装置の支持基材として用いられる大きさに断裁された状態で、支持基材がフィルムミラーの端縁部分を支持することで、フィルムミラーを担持することが可能な程度の剛性を有することを表す。太陽熱発電用反射装置の支持基材が自己支持性を有することで、太陽熱発電用反射装置を設置する際に取り扱い性に優れるとともに、太陽熱発電用反射装置を保持するための保持部材を簡素な構成とすることが可能となるため、反射装置自体を軽量化することが可能となり、太陽追尾の際の消費電力を抑制することが可能となる。 In addition, the "self-supporting property" as used herein means that the supporting substrate supports the edge portion of the film mirror in a state where the supporting substrate is cut to a size used as a supporting substrate of the solar power generation reflecting device. This means that the film mirror has rigidity enough to support the film mirror. The support base material of the solar power generation reflecting device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device itself, and it is possible to suppress power consumption during solar tracking.
 (支持基材)
 自己支持性の支持基材としては、一対の金属平板とその金属平板間に介装された中間層を有するもの(タイプA)か、中空構造を有する樹脂材料からなるもの(タイプB)であることが好ましい。具体的な構成については、WO 11/162154号パンフレットまたは米国特許出願公開第2013/0114155号公報などに記載される自己支持性基材AやBを採用することができる。
(Supporting substrate)
As a self-supporting support base material, there are one having a pair of metal flat plates and an intermediate layer interposed between the metal flat plates (type A), or one made of a resin material having a hollow structure (type B). It is preferable. For a specific configuration, self-supporting substrates A and B described in WO 11/162154 pamphlet or US Patent Application Publication No. 2013/0114155 can be employed.
 (保持部材)
 太陽熱発電用反射装置は、反射装置自体を保持する保持部材を有する。
(Holding member)
The solar power generation reflection device has a holding member that holds the reflection device itself.
 保持部材は、太陽熱発電用反射装置における反射面(フィルムミラー)が、太陽を追尾可能な状態で保持することが好ましい。保持部材の形態としては、特に制限はないが、太陽熱発電用反射装置が所望の形状や姿勢を保持できるように、例えば、太陽熱発電用反射装置の裏面側の支持基材における複数個所を棒状の柱状部材や梁状部材によって保持する形態が好ましい。 It is preferable that the holding member holds the reflecting surface (film mirror) of the solar power generation reflecting device in a state where the sun can be tracked. The form of the holding member is not particularly limited, but for example, a plurality of places on the support base on the back side of the solar power generation reflecting device are formed in a bar shape so that the solar power generating reflection device can hold a desired shape and posture. The form held by a columnar member or a beam-like member is preferable.
 保持部材は、太陽を追尾可能な状態で太陽熱発電用反射装置を保持する構成を有するが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。 The holding member has a configuration for holding the solar power generation reflecting device in a state in which the sun can be tracked. However, in the case of solar tracking, the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.
 実施例1
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ:25μm)を用いた。上記樹脂基材の片面に光反射層として、真空蒸着法により厚さ100nmの銀反射層を形成した。
Example 1
A biaxially stretched polyester film (polyethylene terephthalate film, thickness: 25 μm) was used as the resin substrate. A silver reflective layer having a thickness of 100 nm was formed as a light reflective layer on one side of the resin base material by a vacuum deposition method.
 ウレタン変性アクリル樹脂(大成ファインケミカル(株)製、8UA-239;水酸基価=30mgKOH/g、分子量=3万、ウレタン/アクリル比=20/80)をメチルエチルケトン(MEK)で10質量%濃度となるように希釈して、ウレタン変性アクリル樹脂層形成液を調製した。このようにして調製されたウレタン変性アクリル樹脂層形成液を、上記光反射層が形成されていない側のポリエチレンテレフタレートフィルム面に、厚さ(乾燥膜厚)が1μmになるようにグラビアコーティングで塗布して、80℃で1分間乾燥することによって、厚さが1μmのウレタン変性アクリル樹脂層を形成した。 Urethane-modified acrylic resin (manufactured by Taisei Fine Chemical Co., Ltd., 8UA-239; hydroxyl value = 30 mgKOH / g, molecular weight = 30,000, urethane / acrylic ratio = 20/80) is adjusted to a concentration of 10% by mass with methyl ethyl ketone (MEK). To prepare a urethane-modified acrylic resin layer forming solution. The urethane-modified acrylic resin layer forming liquid prepared in this way is applied to the surface of the polyethylene terephthalate film on the side where the light reflecting layer is not formed by gravure coating so that the thickness (dry film thickness) is 1 μm. Then, a urethane-modified acrylic resin layer having a thickness of 1 μm was formed by drying at 80 ° C. for 1 minute.
 PMMA樹脂(三菱レイヨン(株)製、EMB457)、アクリルゴム(旭化成ケミカルズ(株)製、SRB215)、トリアジン系紫外線吸収剤(BASF製、Tinuvin479)、ベンゾトリアゾール系紫外線吸収剤(BASF製、Tinuvin928)を、混合比が17:3:0.68:0.43(固形分比率)で、固形分濃度が21質量%となるように、メチルエチルケトン(MEK)中に混合して、透光性樹脂層形成液を調製した。この透光性樹脂層形成液を、上記で形成したウレタン変性アクリル樹脂層上に、バーコーターで厚さ(乾燥膜厚)が25μmになるように塗布して、80℃で2分間乾燥することによって、厚さ25μmの透光性樹脂層を形成した。なお、上記透光性樹脂層中の紫外線吸収剤の量(トリアジン系紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤の合計量;固形分換算)は、5質量%であった。 PMMA resin (manufactured by Mitsubishi Rayon Co., Ltd., EMB457), acrylic rubber (manufactured by Asahi Kasei Chemicals Co., Ltd., SRB215), triazine ultraviolet absorber (manufactured by BASF, Tinuvin479), benzotriazole ultraviolet absorber (manufactured by BASF, Tinuvin928) Is mixed in methyl ethyl ketone (MEK) so that the mixing ratio is 17: 3: 0.68: 0.43 (solid content ratio) and the solid content concentration is 21% by mass, and the translucent resin layer is mixed. A forming solution was prepared. This translucent resin layer forming solution is applied on the urethane-modified acrylic resin layer formed above with a bar coater so that the thickness (dry film thickness) is 25 μm, and dried at 80 ° C. for 2 minutes. Thus, a translucent resin layer having a thickness of 25 μm was formed. The amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) was 5% by mass.
 メタロキサン系のシリコーン液((株)動研製、アクリルシリコーン系熱硬化性樹脂、サーコートBP-16 N;45質量%のメタノール溶液)をメチルエチルケトン(MEK)で30質量%濃度となるように希釈して、ハードコート層形成液を調製した。このハードコート層形成液を、上記で形成された透光性樹脂層上に、グラビアコーティングで厚さ(乾燥膜厚)が3μmになるように塗布して、85℃で1分間乾燥/硬化することによって、厚さ3μmのハードコート層を形成して、フィルムミラー1を得た。 A metalloxane-based silicone liquid (manufactured by Doken Co., Ltd., acrylic silicone-based thermosetting resin, Surcoat BP-16 N; 45% by mass methanol solution) is diluted with methyl ethyl ketone (MEK) to a concentration of 30% by mass. A hard coat layer forming solution was prepared. This hard coat layer forming liquid is applied on the translucent resin layer formed above by gravure coating so that the thickness (dry film thickness) becomes 3 μm, and dried / cured at 85 ° C. for 1 minute. Thus, a hard coat layer having a thickness of 3 μm was formed to obtain a film mirror 1.
 実施例2
 実施例1において、透光性樹脂層中の紫外線吸収剤の量(トリアジン系紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤の合計量;固形分換算)を15質量%とした以外は、実施例1と同様にして、フィルムミラー2を得た。
Example 2
Example 1 except that the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) in Example 1 was 15% by mass. In the same manner as described above, a film mirror 2 was obtained.
 実施例3
 実施例1において、透光性樹脂層中の紫外線吸収剤の量(トリアジン系紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤の合計量;固形分換算)を1質量%とした以外は、実施例1と同様にして、フィルムミラー3を得た。
Example 3
Example 1 except that the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) in Example 1 was changed to 1% by mass. In the same manner as described above, a film mirror 3 was obtained.
 実施例4
 実施例1において、透光性樹脂層中の紫外線吸収剤の量(トリアジン系紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤の合計量;固形分換算)を0.5質量%とした以外は、実施例1と同様にして、フィルムミラー4を得た。
Example 4
In Example 1, the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) was changed to 0.5% by mass. In the same manner as in Example 1, a film mirror 4 was obtained.
 実施例5
 実施例4において、透光性樹脂層中の紫外線吸収剤の量(トリアジン系紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤の合計量;固形分換算)を20質量%とした以外は、実施例1と同様にして、フィルムミラー5を得た。
Example 5
In Example 4, the amount of the ultraviolet absorber in the translucent resin layer (total amount of triazine-based ultraviolet absorber and benzotriazole-based ultraviolet absorber; solid content conversion) was changed to 20% by mass. In the same manner as described above, a film mirror 5 was obtained.
 実施例6
 実施例4において、ハードコート層を形成しなかった以外は、実施例4と同様にして、フィルムミラー6を得た。
Example 6
In Example 4, the film mirror 6 was obtained like Example 4 except not having formed the hard-coat layer.
 実施例7
 実施例1において、ハードコート層を形成しなかった以外は、実施例1と同様にして、フィルムミラー7を得た。
Example 7
In Example 1, a film mirror 7 was obtained in the same manner as in Example 1 except that the hard coat layer was not formed.
 実施例8
 実施例1において、ハードコート層を、アクリル系のハードコート塗料(JSR(株)製、デソライトZ7501)をグラビアコーティング塗工方式で、乾燥後の塗布厚みが3μmになるように塗工し、80℃×1分間の条件で乾燥した後、紫外線照射装置(FusionUV Systems Japan(株)製:商品名フュージョンHバルブ)を用いて、光量200mJ/cmの条件で紫外線を照射することによって形成した以外は、実施例1と同様にして、フィルムミラー8を得た。
Example 8
In Example 1, the hard coat layer was coated with an acrylic hard coat paint (Desolite Z7501 manufactured by JSR Corporation) in a gravure coating coating method so that the coating thickness after drying was 3 μm. Other than forming by irradiating with ultraviolet rays under conditions of 200 mJ / cm 2 with a UV light irradiation device (Fusion UV Systems Japan Co., Ltd. product name: Fusion H bulb) after drying under the condition of ℃ × 1 minute. Obtained a film mirror 8 in the same manner as in Example 1.
 実施例9
 実施例1において、ウレタン変性アクリル樹脂層の厚みを0.05μmとした以外は、実施例1と同様にして、フィルムミラー9を得た。
Example 9
In Example 1, a film mirror 9 was obtained in the same manner as in Example 1 except that the thickness of the urethane-modified acrylic resin layer was 0.05 μm.
 実施例10
 実施例1において、ウレタン変性アクリル樹脂層の厚みを0.1μmとした以外は、実施例1と同様にして、フィルムミラー10を得た。
Example 10
In Example 1, a film mirror 10 was obtained in the same manner as in Example 1 except that the thickness of the urethane-modified acrylic resin layer was 0.1 μm.
 実施例11
 実施例1において、ウレタン変性アクリル樹脂層の厚みを5μmとした以外は、実施例1と同様にして、フィルムミラー11を得た。
Example 11
In Example 1, a film mirror 11 was obtained in the same manner as in Example 1 except that the thickness of the urethane-modified acrylic resin layer was 5 μm.
 実施例12
 実施例1において、ウレタン変性アクリル樹脂を、大成ファインケミカル(株)製、8UA-017;水酸基価=0mgKOH/g、分子量=4万、ウレタン/アクリル比=50/50)とした以外は、実施例1と同様にして、フィルムミラー12を得た。
Example 12
In Example 1, except that the urethane-modified acrylic resin was made by Taisei Fine Chemical Co., Ltd., 8UA-017; hydroxyl value = 0 mgKOH / g, molecular weight = 40,000, urethane / acryl ratio = 50/50) In the same manner as in Example 1, a film mirror 12 was obtained.
 実施例13
 実施例1において、ウレタン変性アクリル樹脂を、大成ファインケミカル(株)製、8UA-318;水酸基価=17mgKOH/g、分子量=3万、ウレタン/アクリル比=30/70)とした以外は、実施例1と同様にして、フィルムミラー13を得た。
Example 13
In Example 1, except that the urethane-modified acrylic resin was made by Taisei Fine Chemical Co., Ltd., 8UA-318; hydroxyl value = 17 mgKOH / g, molecular weight = 30,000, urethane / acryl ratio = 30/70) In the same manner as in Example 1, a film mirror 13 was obtained.
 比較例1
 実施例4において、ウレタン変性アクリル樹脂層を形成しなかった以外は、実施例4と同様にして、フィルムミラー14を得た。
Comparative Example 1
A film mirror 14 was obtained in the same manner as in Example 4 except that the urethane-modified acrylic resin layer was not formed in Example 4.
 比較例2
 実施例1において、ウレタン変性アクリル樹脂層を形成しなかった以外は、実施例1と同様にして、フィルムミラー15を得た。
Comparative Example 2
In Example 1, the film mirror 15 was obtained like Example 1 except not having formed the urethane-modified acrylic resin layer.
 比較例3
 実施例7において、ウレタン変性アクリル樹脂層を形成しなかった以外は、実施例7と同様にして、フィルムミラー16を得た。
Comparative Example 3
In Example 7, the film mirror 16 was obtained like Example 7 except not having formed the urethane-modified acrylic resin layer.
 比較例4
 比較例3において、紫外線吸収剤を添加せずに(即ち、透光性樹脂層中の紫外線吸収剤の量=0質量%)透光性樹脂層を形成した以外は、比較例3と同様にして、フィルムミラー17を得た。
Comparative Example 4
In Comparative Example 3, the same procedure as in Comparative Example 3 was performed except that the light-transmitting resin layer was formed without adding the UV absorber (that is, the amount of the UV absorber in the light-transmitting resin layer = 0% by mass). Thus, a film mirror 17 was obtained.
 比較例5
 実施例7において、ウレタン変性アクリル樹脂層の代わり、PMMA樹脂層を以下のようにして形成した以外は、実施例7と同様にして、フィルムミラー18を得た。
Comparative Example 5
In Example 7, the film mirror 18 was obtained like Example 7 except having formed the PMMA resin layer as follows instead of the urethane-modified acrylic resin layer.
 (PMMA樹脂層の形成)
 PMMA樹脂(三菱レイヨン製、EMB457;分子量=30万)をメチルエチルケトン(MEK)で5質量%濃度となるように希釈して、PMMA樹脂層形成液を調製した。このようにして調製されたPMMA樹脂層形成液を、上記光反射層が形成されていない側のポリエチレンテレフタレートフィルム面に、厚さ(乾燥膜厚)が1μmになるようにグラビアコーティングで塗布して、80℃で1分間乾燥することによって、厚さが1μmのPMMA樹脂層を形成した。
(Formation of PMMA resin layer)
PMMA resin (manufactured by Mitsubishi Rayon, EMB457; molecular weight = 300,000) was diluted with methyl ethyl ketone (MEK) to a concentration of 5% by mass to prepare a PMMA resin layer forming solution. The PMMA resin layer forming solution thus prepared was applied to the surface of the polyethylene terephthalate film on the side where the light reflecting layer was not formed by gravure coating so that the thickness (dry film thickness) was 1 μm. The PMMA resin layer having a thickness of 1 μm was formed by drying at 80 ° C. for 1 minute.
 [評価]
 上記実施例及び比較例で得られたフィルムミラーについて、下記の方法により初期の正反射率及びヘイズならびに耐久性試験(85℃×1000時間放置後ならびに100サイクル(1サイクル=10℃×12時間及び60℃×12時間)後)の着色、正反射率及びヘイズを測定した。結果を下記表1に示す。
[Evaluation]
For the film mirrors obtained in the above Examples and Comparative Examples, the initial specular reflectance and haze and durability test (after 85 ° C. × 1000 hours and 100 cycles (1 cycle = 10 ° C. × 12 hours and Coloring, regular reflectance and haze after 60 ° C. × 12 hours) were measured. The results are shown in Table 1 below.
 <正反射率の測定>
 島津製作所社製の分光光度計「UV265」に、積分球反射付属装置を取り付けたものを改造し、反射面の法線に対して、入射光の入射角を5°となるように調整し、反射角5°の正反射率を測定した。評価は、350nmから700nmまでの平均反射率(太陽光加重平均反射率)(%)として測定した。
<Measurement of regular reflectance>
A spectrophotometer “UV265” manufactured by Shimadzu Corporation was modified with an integrating sphere reflection accessory, and the incident angle of incident light was adjusted to 5 ° with respect to the normal of the reflecting surface. The regular reflectance at a reflection angle of 5 ° was measured. Evaluation was measured as an average reflectance (sunlight weighted average reflectance) (%) from 350 nm to 700 nm.
 <耐久性試験(85℃×1000時間放置)後の正反射率の測定>
 各フィルムミラーを温度85℃、湿度85%RHの条件で、1000時間放置した後、各フィルムミラーの正反射率を上記正反射率の測定と同様の方法により測定した。
<Measurement of regular reflectance after durability test (left at 85 ° C. for 1000 hours)>
Each film mirror was allowed to stand for 1000 hours under the conditions of a temperature of 85 ° C. and a humidity of 85% RH, and then the regular reflectance of each film mirror was measured by the same method as the above-described regular reflectance measurement.
 <耐久性試験[(10℃×12時間及び60℃×12時間/サイクル)×100サイクル]後の正反射率の測定>
 各フィルムミラーについて、10℃×12時間及び60℃×12時間を1サイクルとして、100サイクル繰り返した後、各フィルムミラーの正反射率を上記正反射率の測定と同様の方法により測定した。
<Measurement of specular reflectance after durability test [(10 ° C. × 12 hours and 60 ° C. × 12 hours / cycle) × 100 cycles]>
For each film mirror, 10 cycles of 10 ° C. × 12 hours and 60 ° C. × 12 hours were repeated 100 cycles, and then the regular reflectance of each film mirror was measured by the same method as the measurement of regular reflectance.
 <ヘイズの測定>
 日本電色工業(株)製 Haze Meter NDH7000を用いて、各フィルムミラーのヘイズを測定した。
<Measurement of haze>
The haze of each film mirror was measured using Haze Meter NDH7000 manufactured by Nippon Denshoku Industries Co., Ltd.
 <耐久性試験(85℃×1000時間放置後)後のヘイズの測定>
 各フィルムミラーを温度85℃、湿度85%RHの条件で、1000時間放置した後、各フィルムミラーのヘイズを上記ヘイズの測定と同様の方法により測定した。
<Measurement of haze after durability test (after standing at 85 ° C. × 1000 hours)>
Each film mirror was allowed to stand for 1000 hours under the conditions of a temperature of 85 ° C. and a humidity of 85% RH, and then the haze of each film mirror was measured by the same method as the above haze measurement.
 <耐久性試験[(10℃×12時間及び60℃×12時間/サイクル)×100サイクル]後のヘイズの測定>
 各フィルムミラーについて、10℃×12時間及び60℃×12時間を1サイクルとして、100サイクル繰り返した後、各フィルムミラーのヘイズを上記ヘイズの測定と同様の方法により測定した。
<Measurement of haze after durability test [(10 ° C. × 12 hours and 60 ° C. × 12 hours / cycle) × 100 cycles]>
Each film mirror was repeated 100 cycles with 10 ° C. × 12 hours and 60 ° C. × 12 hours as one cycle, and then the haze of each film mirror was measured by the same method as the measurement of haze.
 <耐久性試験(85℃×1000時間放置後)後の着色の評価>
 各フィルムミラーを10cm×10cmに切り出し、温度85℃、湿度85%RHの条件で、1000時間放置した後、各フィルムミラーをハードコート層側から目視し、下記スコアによって変色度合を評価した。
<Evaluation of coloring after durability test (after standing at 85 ° C. × 1000 hours)>
Each film mirror was cut into 10 cm × 10 cm and allowed to stand for 1000 hours under conditions of a temperature of 85 ° C. and a humidity of 85% RH, and then each film mirror was visually observed from the hard coat layer side, and the degree of color change was evaluated by the following score.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 <耐久性試験[(10℃×12時間及び60℃×12時間/サイクル)×100サイクル]後の着色の評価>
 各フィルムミラーについて、10℃×12時間及び60℃×12時間を1サイクルとして、100サイクル繰り返した後、各フィルムミラーをハードコート層側から目視し、上記と同様にして変色度合を評価した。
<Evaluation of coloring after durability test [(10 ° C. × 12 hours and 60 ° C. × 12 hours / cycle) × 100 cycles]>
For each film mirror, 10 cycles of 10 ° C. × 12 hours and 60 ° C. × 12 hours were repeated 100 cycles, and then each film mirror was visually observed from the hard coat layer side, and the degree of color change was evaluated in the same manner as described above.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表1から、透光性樹脂層と樹脂基材との間にウレタン変性アクリル樹脂層を配置してなる本発明のフィルムミラー1~13は、ウレタン変性アクリル樹脂層を配置しない比較例1~4のフィルムミラー14~17およびアクリル樹脂層(非ウレタン変性アクリル樹脂層)を配置してなる比較例5のフィルムミラー18に比して、高温環境下でのヘイズの上昇および反射率の低下を有意に抑制・防止できることが分かる。 From Table 1 above, the film mirrors 1 to 13 of the present invention in which the urethane-modified acrylic resin layer is disposed between the translucent resin layer and the resin base material are comparative examples 1 to 13 in which no urethane-modified acrylic resin layer is disposed. As compared with the film mirror 18 of Comparative Example 5 in which the film mirrors 14 to 17 and the acrylic resin layer (non-urethane modified acrylic resin layer) 4 are disposed, the haze increase and the reflectivity decrease under a high temperature environment. It can be seen that it can be significantly suppressed and prevented.
 さらに、本出願は、2013年11月28日に出願された日本特許出願番号2013-246333号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2013-246333 filed on November 28, 2013, the disclosure of which is incorporated by reference in its entirety.

Claims (6)

  1.  光入射側から順に、紫外線吸収剤を含む透光性樹脂層、ウレタン変性アクリル樹脂層、ならびに樹脂基材および光反射層、または、
     光入射側から順に、紫外線吸収剤を含む透光性樹脂層、ウレタン変性アクリル樹脂層、ならびに光反射層および樹脂基材、
    を少なくとも有するフィルムミラー。
    In order from the light incident side, a translucent resin layer containing an ultraviolet absorber, a urethane-modified acrylic resin layer, and a resin base material and a light reflecting layer, or
    In order from the light incident side, a translucent resin layer containing an ultraviolet absorber, a urethane-modified acrylic resin layer, and a light reflecting layer and a resin base material,
    A film mirror having at least.
  2.  前記透光性樹脂層の光入射側の面に、ハードコート層をさらに有する、請求項1に記載のフィルムミラー。 The film mirror according to claim 1, further comprising a hard coat layer on a light incident side surface of the translucent resin layer.
  3.  前記ハードコート層は、メタロキサン系のハードコート層である、請求項2に記載のフィルムミラー。 The film mirror according to claim 2, wherein the hard coat layer is a metalloxane-based hard coat layer.
  4.  前記透光性樹脂層は、紫外線吸収剤を固形分換算で1~15質量%の量で含む、請求項1~3のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 3, wherein the translucent resin layer contains an ultraviolet absorber in an amount of 1 to 15% by mass in terms of solid content.
  5.  前記ウレタン変性アクリル樹脂は、下記一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    式中、RおよびR’は、それぞれ独立して、アルキレン基を表し;mは、10~500の整数であり;nは、10~500の整数であり;およびpは、10~200の整数であり、ウレタン/アクリル比(モル比)が10/90~30/70である、
    で示される、請求項1~4のいずれか1項に記載のフィルムミラー。
    The urethane-modified acrylic resin has the following general formula (I):
    Figure JPOXMLDOC01-appb-C000001
    Wherein R and R ′ each independently represents an alkylene group; m is an integer from 10 to 500; n is an integer from 10 to 500; and p is an integer from 10 to 200. The urethane / acrylic ratio (molar ratio) is 10/90 to 30/70,
    The film mirror according to any one of claims 1 to 4, which is represented by:
  6.  前記ウレタン変性アクリル樹脂層の厚みは、0.05~5μmである、請求項1~5のいずれか1項に記載のフィルムミラー。 6. The film mirror according to claim 1, wherein the urethane-modified acrylic resin layer has a thickness of 0.05 to 5 μm.
PCT/JP2014/076593 2013-11-28 2014-10-03 Film mirror WO2015079803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013246333A JP2017026644A (en) 2013-11-28 2013-11-28 Film mirror
JP2013-246333 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015079803A1 true WO2015079803A1 (en) 2015-06-04

Family

ID=53198757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076593 WO2015079803A1 (en) 2013-11-28 2014-10-03 Film mirror

Country Status (2)

Country Link
JP (1) JP2017026644A (en)
WO (1) WO2015079803A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096309A1 (en) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 Film mirror, process for producing same, and sunlight-reflecting mirror
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power
WO2012165460A1 (en) * 2011-05-31 2012-12-06 コニカミノルタアドバンストレイヤー株式会社 Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror
WO2013018518A1 (en) * 2011-08-02 2013-02-07 コニカミノルタアドバンストレイヤー株式会社 Functional film
WO2013094633A1 (en) * 2011-12-21 2013-06-27 コニカミノルタ株式会社 Film mirror for solar light reflection, and reflective device for solar power generation
JP2013208746A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Functional film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096309A1 (en) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 Film mirror, process for producing same, and sunlight-reflecting mirror
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power
WO2012165460A1 (en) * 2011-05-31 2012-12-06 コニカミノルタアドバンストレイヤー株式会社 Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror
WO2013018518A1 (en) * 2011-08-02 2013-02-07 コニカミノルタアドバンストレイヤー株式会社 Functional film
WO2013094633A1 (en) * 2011-12-21 2013-06-27 コニカミノルタ株式会社 Film mirror for solar light reflection, and reflective device for solar power generation
JP2013208746A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Functional film

Also Published As

Publication number Publication date
JP2017026644A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6176116B2 (en) Manufacturing method of film mirror
WO2012133517A1 (en) Mirror and reflective device for generating solar power
WO2012165460A1 (en) Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror
WO2012090987A1 (en) Functional film, film mirror, and reflecting device for solar thermal power generation
JP5741586B2 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
WO2013094633A1 (en) Film mirror for solar light reflection, and reflective device for solar power generation
JP5691811B2 (en) Film mirror, solar reflective mirror, and solar power generation reflector
JP6874862B2 (en) Resin composition, cured product and laminate
JP2007038199A (en) Laminate production method
JP5672071B2 (en) Film mirror manufacturing method, film mirror, and solar power generation reflector
WO2014061497A1 (en) Film mirror, and reflecting apparatus for solar thermal power generation
KR101220567B1 (en) Curable resin composition and cured film comprising the same and laminate
KR101213367B1 (en) Curable resin composition, cured film formed therefrom and multilayer body
WO2015079803A1 (en) Film mirror
JPWO2012057003A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JPWO2014061497A6 (en) Film mirror and reflector for solar power generation
WO2015098627A1 (en) Film mirror and reflective device for solar thermal power generation using same
JPWO2012043606A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP5747547B2 (en) Reflector for film mirror and solar power generation
JP2016057419A (en) Sunlight reflection mirror and reflection device for solar thermal power generation
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
WO2013054869A1 (en) Mirror for reflecting sunlight and reflecting device for solar power generation
JP2016009034A (en) Light reflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP