WO2015022877A1 - Film mirror and reflective device for solar thermal power generation - Google Patents

Film mirror and reflective device for solar thermal power generation Download PDF

Info

Publication number
WO2015022877A1
WO2015022877A1 PCT/JP2014/070574 JP2014070574W WO2015022877A1 WO 2015022877 A1 WO2015022877 A1 WO 2015022877A1 JP 2014070574 W JP2014070574 W JP 2014070574W WO 2015022877 A1 WO2015022877 A1 WO 2015022877A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
film mirror
resin
compound
Prior art date
Application number
PCT/JP2014/070574
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 利継
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015531766A priority Critical patent/JPWO2015022877A1/en
Publication of WO2015022877A1 publication Critical patent/WO2015022877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • G02B5/0866Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers incorporating one or more organic, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • B32B2551/08Mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror and a solar power generation reflector. Reflection caused by corrosion or discoloration of the silver reflective layer due to peeling between the silver reflective layer and other adjacent constituent layers, even when subjected to long-term outdoor use or cleaning work.
  • the present invention relates to a film mirror that can suppress a decrease in rate and the like, and a solar power generation reflection device including the same.
  • a film mirror for solar power generation is accompanied by a discoloration of a resin coating layer that suppresses corrosion of the silver reflection layer on a metal reflection layer provided on the film substrate, for example, a silver reflection layer, and a resin-made structural layer due to exposure to ultraviolet rays.
  • Durability is improved by laminating an ultraviolet absorbing layer that suppresses a decrease in reflectance, a hard coat layer that suppresses scratches on the surface, and the like.
  • an acrylic resin layer containing an ultraviolet absorber is provided on the outermost layer of the film, and a decrease in reflectance due to discoloration of the resin layer due to ultraviolet exposure is suppressed. .
  • the silver reflective layer and the adjacent layer are peeled off to be provided on the adjacent layer.
  • Functions such as a corrosion prevention layer and an ultraviolet absorption layer may be hindered, and corrosion resistance and light resistance may be reduced.
  • a hard coat layer is provided on the surface of such a film mirror, stress is generated on the surface of the film mirror due to peeling between the silver reflective layer and other adjacent constituent layers, and the hard mirror layer is hard. It has also been found that cracks may occur in the coat layer.
  • the present invention has been made in view of the above problems, and the problem to be solved is that, even when subjected to a load due to outdoor use or cleaning work for a long period of time, other constituent layers adjacent to the silver reflective layer It is providing the film mirror which can suppress the fall of the reflectance etc. accompanying corrosion or discoloration of a silver reflective layer resulting from peeling between, and a solar power generation reflective apparatus provided with the same.
  • a silver reflecting layer is provided on a resin substrate, and the nitrogen is made of a compound containing a nitrogen atom adjacent to the silver reflecting layer. And the compound has an effective unshared electron pair content n / M of 2.0 ⁇ 10 ⁇ 3 or more, where n is the number of unshared electron pairs not involved in aromaticity and M is the molecular weight. It is found that a film mirror capable of suppressing a decrease in reflectance caused by corrosion or discoloration of the silver reflective layer caused by peeling between the silver reflective layer and other adjacent constituent layers can be provided. It was. That is, the said subject which concerns on this invention is solved by the following means.
  • a film mirror provided with a silver reflective layer on a resin substrate, A nitrogen-containing layer containing a compound having a nitrogen atom adjacent to the silver reflective layer and having an unshared electron pair not involved in aromaticity;
  • the compound is a compound having an effective unshared electron pair content ratio n / M of 2.0 ⁇ 10 ⁇ 3 or more, where n is the number of unshared electron pairs not involved in aromaticity and M is the molecular weight.
  • the film mirror according to any one of items 1 to 3, And a support base material for supporting the film mirror.
  • the present invention it is possible to suppress the peeling between the silver reflective layer and other constituent layers adjacent to each other even when subjected to a load due to outdoor use or cleaning work for a long period of time.
  • the film mirror which can suppress the fall of the reflectance accompanying corrosion, discoloration, etc. of the silver reflection layer which originates, and a solar power generation reflective apparatus provided with the same can be provided.
  • peeling between the silver reflective layer and other adjacent constituent layers can be suppressed, when a hard coat layer is provided on the surface of the film mirror, the occurrence of cracks in the hard coat layer is suppressed. You can also.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. That is, since the layer adjacent to the silver reflective layer is a nitrogen-containing layer containing a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, the compound contained in the nitrogen-containing layer is not shared. When the electron pair interacts with the silver atom, the adhesion between the silver reflective layer and the nitrogen-containing layer adjacent to the silver reflective layer is improved.
  • the effective unshared electron pair content ratio n / M of the compound contained in the nitrogen-containing layer is 2.0 ⁇ 10 ⁇ 3 or more
  • nitrogen atoms capable of interacting with silver atoms in the silver reflecting layer Are contained in the nitrogen-containing layer in large numbers, and high adhesion between the silver reflecting layer and the nitrogen-containing layer is obtained.
  • high adhesion can be maintained between the silver reflective layer and other adjacent constituent layers even when subjected to a long-term outdoor use or a load due to cleaning work, etc. It is possible to suppress a decrease in reflectance caused by corrosion or discoloration of the silver reflecting layer.
  • the silver reflection layer and the nitrogen-containing layer have high adhesion, peeling does not occur between the layers, and stress is hardly generated on the film mirror surface.
  • the hard-coat layer is provided in the film mirror surface, it can suppress that a crack generate
  • the film mirror of the present invention is a film mirror in which a silver reflective layer is provided on a resin base material, and is a compound having a nitrogen atom adjacent to the silver reflective layer and having an unshared electron pair not involved in aromaticity And when the number of unshared electron pairs not involved in aromaticity is n and the molecular weight is M, the effective unshared electron pair content n / M is 2.0 ⁇ . It is characterized by being a compound of 10 ⁇ 3 or more.
  • This feature is a technical feature common to claims 1 to 4.
  • this invention equips the surface with the hard-coat layer containing the polymer which has a metalloxane skeleton. Thereby, the scratch resistance of the surface can be improved.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the film mirror of the present invention is a film mirror in which a silver reflective layer is provided on a resin base material, and is a compound having a nitrogen atom adjacent to the silver reflective layer and having an unshared electron pair not involved in aromaticity And when the number of unshared electron pairs not involved in aromaticity is n and the molecular weight is M, the effective unshared electron pair content n / M is 2.0 ⁇ . It is characterized by being a compound of 10 ⁇ 3 or more.
  • the film mirror F is configured, for example, as shown in FIG. 1A, in which a silver reflective layer 5 is formed on a resin base material 3 and a hard coat layer 10 is provided as an outermost layer thereon. Therefore, in the example shown in FIG. 1A, the nitrogen-containing layer adjacent to the silver reflecting layer in the present invention corresponds to the resin base material 3 and the hard coat layer 10, and at least one of the resin base material 3 and the hard coat layer 10. Contain a compound having a nitrogen atom with an unshared electron pair not involved in aromaticity.
  • the film mirror F it is preferable to provide various functional layers in the film mirror F in practice, and for example, it may be configured as shown in FIG. 1B.
  • an anchor layer 4 is provided between the resin base material 3 and the silver reflective layer 5, and a resin coat layer containing a corrosion inhibitor or an antioxidant on the light incident side of the silver reflective layer 5.
  • a gas barrier layer 11 that protects the silver reflection layer 5 and the resin coat layer 6
  • an adhesive layer 7 provided on the gas barrier layer 11
  • an acrylic resin layer 8 containing an ultraviolet absorber, and an intermediate provided on the acrylic resin layer 8
  • the layer 9 and the hard coat layer 10 as the outermost layer are provided in this order.
  • the adhesive layer 2 may be provided on the surface of the resin base 3 opposite to the light incident side, and further, a release layer 12 for protecting the adhesive layer is provided on the adhesive layer 2. May be.
  • the structure of the film mirror F is not restricted to this, As long as the resin base material 3 and the silver reflection layer 5 are provided at least, either layer of each said structure layer may not be provided. .
  • the nitrogen-containing layer adjacent to the silver reflecting layer in the present invention corresponds to the anchor layer 4 and the resin coat layer 6, and at least one of the anchor layer 4 and the resin coat layer 6 is aromatic. It contains a compound having a nitrogen atom having an unshared electron pair that is not involved in the family. In order to enhance the effect of the present invention, it is preferable that both the anchor layer 4 and the resin coat layer 6 contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity.
  • the layer adjacent to the silver reflective layer means that the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity acts on the silver atoms of the silver reflective layer in addition to the layer directly in contact with the silver reflective layer.
  • a thin film layer for example, a resin layer
  • a resin layer that does not contain the compound may be present between the layers.
  • the total thickness of the film mirror is preferably in the range of 75 to 250 ⁇ m, more preferably in the range of 90 to 230 ⁇ m, still more preferably in the range of 100 to 220 ⁇ m, from the viewpoints of mirror deflection prevention, regular reflectance, handling properties, and the like. Is within.
  • the nitrogen-containing layer is a layer provided adjacent to the silver reflecting layer 5 and is an unshared electron pair not involved in aromaticity It is comprised using the compound which has a nitrogen atom with.
  • the compound particularly refers to an unshared electron pair of a nitrogen atom that stably binds to silver, which is a main material constituting the silver reflective layer 5, as an “effective unshared electron pair”.
  • the content of the effective unshared electron pair is within a predetermined range.
  • the “effective unshared electron pair” refers to an unshared electron pair that does not participate in aromaticity among the unshared electron pairs of the nitrogen atom contained in the compound.
  • the aromaticity here refers to an unsaturated cyclic structure in which atoms having ⁇ electrons are arranged in a ring, and is aromatic according to the so-called “Hückel rule”, and includes the electrons contained in the ⁇ electron system on the ring.
  • the “effective unshared electron pair” as described above is an unshared electron pair possessed by a nitrogen atom regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a heteroatom constituting an aromatic ring. Is selected depending on whether or not is involved in aromaticity. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, if the nitrogen atom has an unshared electron pair that does not participate in aromaticity, the unshared electron pair is expressed as “effective unshared electron”. It is counted as one of “pair”.
  • the number n of “effective unshared electron pairs” with respect to the molecular weight M of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity is expressed as “effective unshared electron pair content n / M”. It is defined as The nitrogen-containing layer of the present invention is characterized by containing a compound having an effective unshared electron pair content ratio n / M of 2.0 ⁇ 10 ⁇ 3 or more.
  • the effective unshared electron pair content n / M of the compound contained in the nitrogen-containing layer is 3.9 ⁇ 10 ⁇ 3 or more, the adhesion between the silver reflecting layer and the nitrogen-containing layer is further improved. This is preferable.
  • the effective unshared electron pair content n / M of the compound contained in the nitrogen-containing layer is 1.0 ⁇ 10 ⁇ 2 or less because the layer can be easily coated uniformly.
  • the nitrogen-containing layer only needs to be configured using a compound having an effective unshared electron pair content ratio n / M in the above-described predetermined range, or may be configured only with such a compound. You may be comprised with the mixture of such a compound and another compound. The other compound may or may not contain a nitrogen atom, and even if a nitrogen atom is contained, the effective unshared electron pair content n / M may not be within the above-described range.
  • the nitrogen-containing layer is composed of a plurality of compounds, for example, based on the mixing ratio of the compounds, the molecular weight M of the mixed compound obtained by mixing these compounds is obtained, and effective unshared electrons with respect to the molecular weight M are obtained.
  • the total number n of pairs is obtained as an average value of the effective unshared electron pair content n / M, and this value is preferably within the predetermined range described above. That is, it is preferable that the effective unshared electron pair content n / M of the nitrogen-containing layer itself is within a predetermined range.
  • the nitrogen-containing layer is composed of a plurality of compounds and the composition ratio (content ratio) of the compounds is different in the layer thickness direction, the nitrogen on the side in contact with the silver reflective layer 5
  • the effective unshared electron pair content n / M on the surface of the containing layer may be in the predetermined range described above.
  • the number n of effective unshared electron pairs and the molecular weight M are values shown in Table 1, respectively, but this is not limited depending on the value of the repeating unit n in each chemical formula. However, regardless of the value of the repeating unit n in each chemical formula, the value of the effective unshared electron pair content n / M is as shown in Table 1.
  • the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention is used in an amount sufficient to improve the adhesion with the silver reflective layer, and is usually adjacent to the silver reflective layer. It is preferable that at least one layer to be contained is contained in the range of 0.1 to 5% by mass. More preferably, it is in the range of 1 to 5% by mass. If it is in the said range, adhesiveness can fully be improved and the merit on cost is also high.
  • the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity is preferably contained in at least one of the anchor layer and the resin coat layer described later, and is contained in both the anchor layer and the resin coat layer. It is more preferable.
  • Resin base material As the resin base material, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
  • cellulose ester film polyester film
  • polycarbonate film polyarylate film
  • polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. It is particularly preferable to use a polyester film such as polyethylene terephthalate or an acrylic film.
  • the resin film may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the resin base material In order to make the resin base material contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention, for example, if it is a solution casting film, an organic solvent to be prepared is included. It is preferable to add a predetermined amount of the compound to the dope and then cast it on a metal support.
  • the compound When the compound is contained in the resin base material, it is preferably contained in the range of 0.1 to 5% by mass.
  • the resin base material Since the resin base material is located farther from the light incident side than the silver reflecting layer, it is difficult for ultraviolet rays to reach the resin base material.
  • the layer closer to the light incident side than the resin base material contain an ultraviolet absorber or providing an acrylic resin layer containing an ultraviolet absorber, it is even more difficult for ultraviolet rays to reach the resin substrate. Can do.
  • even a resin that is easily deteriorated by ultraviolet rays can be used as a material for the resin base material. From such a viewpoint, it becomes possible to use a polyester film such as polyethylene terephthalate as the material of the resin base material.
  • the thickness of the resin base material is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m. The range is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the film mirror of the present invention is preferably manufactured using a long film as a resin base material, and preferably has a length of 1000 m or more, and is a long film of about 5000 m from the viewpoint of productivity and handling. Is preferably used.
  • Anchor layer The anchor layer is made of a resin, and adheres the resin base material and the silver reflecting layer.
  • the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention It is preferably contained. Therefore, the anchor layer has a close adhesion between the resin base material and the silver reflective layer, heat resistance that can withstand heat when the silver reflective layer is formed by a vacuum deposition method, and the high reflective performance that the silver reflective layer originally has. Smoothness and the like for drawing out are necessary.
  • the resin material used as the material of the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness.
  • Polyester resin, acrylic resin, melamine resin, epoxy resin , Polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used.
  • a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent such as.
  • a method for forming the anchor layer conventionally known coating methods such as a gravure coating method in which a predetermined resin material is applied and applied, a reverse coating method, a die coating method and the like can be used.
  • the thickness of the anchor layer is preferably in the range of 0.01 to 3 ⁇ m, more preferably in the range of 0.1 to 1 ⁇ m.
  • the thickness is greater than 0.01 ⁇ m, the adhesion is improved, the unevenness on the surface of the resin substrate is covered and smoothness is improved, and as a result, the effect of increasing the reflectance of the silver reflective layer is exhibited.
  • the thickness is 3 ⁇ m or less because there is no uneven formation of the anchor layer and the smoothness is high, and the anchor layer is sufficiently cured.
  • the anchor layer preferably contains a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity within a range of 0.1 to 5% by mass, and more preferably within a range of 1 to 5% by mass. It is.
  • the compound is preferably dissolved in an organic solvent such as methanol, glycols, and ketones and added to the resin material.
  • Silver reflection layer is a layer containing silver having a function of reflecting sunlight.
  • the surface reflectance of the silver reflective layer is preferably 80% or more, more preferably 90% or more.
  • the thickness of the silver reflective layer is preferably in the range of 10 to 200 nm, more preferably in the range of 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • a wet method or a dry method can be used as a method for forming this reflective layer.
  • a typical example of the wet method is a plating method, in which a film is formed by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method there is a vacuum film forming method, and concrete examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition. Method and sputtering method.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention.
  • a method of forming a silver reflective layer by silver vapor deposition is preferably used.
  • the functional film having the silver reflective layer can be used as a film mirror for solar power generation. More preferably, it is in the range of 80 to 200 nm from the viewpoint of durability.
  • the resin coat layer is provided on the light incident side of the silver reflective layer, and is preferably adjacent to the silver reflective layer.
  • the adhesion between the silver reflective layer and the resin coat layer can be greatly improved.
  • the content of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity in the resin coat layer is in the range of 0.1 to 5% by mass. More preferably, it is in the range of 1 to 5% by mass.
  • the resin coat layer contains a corrosion inhibitor or an antioxidant, as long as it does not inhibit the effect of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention, and reflects silver. It is also preferable that a function for preventing corrosion and deterioration of the layer is provided.
  • the resin coat layer may be composed of only one layer, or may be composed of a plurality of layers.
  • the thickness of the resin coat layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 8 ⁇ m.
  • the binder for the resin coating layer the following resins can be preferably used.
  • an acrylic resin having high resistance to ultraviolet rays is preferable from the viewpoint of light resistance.
  • the corrosion inhibitor preferably has an adsorptive group for silver.
  • corrosion refers to a phenomenon in which a metal (silver) is chemically or electrochemically eroded or deteriorated by an environmental material surrounding it (see JIS Z0103-2004).
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a compound having a thiol group, a thiourea, a naphthalene-based compound, or a mixture thereof.
  • an ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin.
  • the silicone-modified resin used for the resin coat layer is not particularly limited.
  • Examples of commercially available products include LA31 from ADEKA Corporation and Tinuvin 234 from BASF Japan Corporation.
  • (6-2) Antioxidant It is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant as the antioxidant that is a corrosion inhibitor having antioxidant ability. Moreover, a hindered amine light stabilizer and a nickel ultraviolet stabilizer can be preferably used as the light stabilizer.
  • the optimum content of the antioxidant varies depending on the compound to be used, but generally it is preferably in the range of 0.1 to 1.0 g / m 2 .
  • Adhesive layer is not particularly limited as long as it has a function of enhancing the adhesion between the layers. In the example shown to FIG. 1B, it forms in order to improve the adhesiveness of a resin coat layer and an acrylic resin layer. Therefore, the adhesive layer needs to have close contact between the layers and smoothness to bring out the high reflection performance inherent in the silver reflective layer.
  • the thickness of the adhesive layer is preferably in the range of 0.01 to 10 ⁇ m, more preferably in the range of 0.1 to 10 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflective material, and the like.
  • the resin is not particularly limited as long as it satisfies the above adhesiveness and smoothness conditions, polyester resin, urethane resin, acrylic resin, melamine resin, epoxy resin Resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like can be used alone or a mixed resin thereof. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin is preferable. It is more preferable to use a thermosetting resin mixed with a curing agent such as isocyanate. As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the adhesive layer when the adhesive layer is a metal oxide, the adhesive layer can be formed by depositing, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like by various vacuum film forming methods.
  • a film can be formed by resistance heating vacuum deposition, electron beam heating vacuum deposition, ion plating, ion beam assisted vacuum deposition, sputtering, or the like.
  • Acrylic resin layer is preferably a layer containing an ultraviolet absorber for the purpose of preventing deterioration of the film mirror by ultraviolet rays.
  • the acrylic resin layer is preferably provided on the light incident side with respect to the resin base material, and is preferably provided on the light incident side with respect to the silver reflecting layer.
  • the acrylic resin layer is a layer using an acrylic resin as a binder, and the thickness of the acrylic resin layer is preferably in the range of 1 to 200 ⁇ m.
  • acrylic resin layer Sumipex Technoloy S001G 75 ⁇ m (manufactured by Sumitomo Chemical Co., Ltd.), which is an acrylic film containing a commercially available ultraviolet absorber, can be preferably used.
  • an ultraviolet absorber is added to any one of the constituent layers provided on the light incident side of the resin substrate so that it also serves as the acrylic resin layer. Also good. For example, it is preferable to add an ultraviolet absorber to the hard coat layer.
  • the ultraviolet absorber is roughly classified into an organic type and an inorganic type.
  • organic ultraviolet absorbers include benzophenone, benzotriazole, phenyl salicylate, and triazine
  • inorganic ultraviolet absorbers include, for example, titanium oxide, zinc oxide, cerium oxide, and oxide. Iron etc. are mentioned. Among these, benzophenone compounds, benzotriazole compounds with little coloring, and triazine compounds are preferable.
  • ultraviolet absorbers described in JP-A Nos. 10-182621 and 8-337574, and polymer ultraviolet absorbers described in JP-A Nos. 6-148430 and 2003-113317 may be used.
  • Examples of the ultraviolet absorber preferably used include compounds described in JP-A-2012-232528, paragraphs 0036 to 0045.
  • the content of the ultraviolet absorber is in the range of 0.1 to 20% by mass, preferably in the range of 1 to 15% by mass, and more preferably in the range of 3 to 10% by mass. By making it within these ranges, it becomes possible to improve the weather resistance while maintaining good adhesion of the other constituent layers.
  • Intermediate layer is a constituent layer that improves the adhesion between the acrylic resin layer and a hard coat layer described later.
  • This intermediate layer contains at least one of polyvinyl alcohol resin, vinyl acetate resin, water-soluble cellulose, and water glass.
  • Polyvinyl alcohol resin, vinyl acetate resin, water-soluble cellulose, and water glass have a hydroxy group as a reactive group.
  • Examples of the method for forming the intermediate layer include a method by coating.
  • various conventionally used coating methods such as spray coating, spin coating, bar coating, etc. can be used, such as polyvinyl alcohol resin, vinyl acetate.
  • the intermediate layer can be formed by applying and applying a solution containing at least one of resin, water-soluble cellulose, and water glass on, for example, an acrylic resin layer.
  • the layer thickness of the intermediate layer is preferably from 0.1 to 5 ⁇ m, particularly preferably from 0.1 to 1 ⁇ m.
  • the intermediate layer contains at least one of polyvinyl alcohol resin, vinyl acetate resin, water-soluble cellulose, and water glass, so that they and reactive groups on the surface of the acrylic resin layer (hydroxy group, carboxy group, etc.) And when the hard coat layer and the hard coat layer contain a polysiloxane compound, the intermediate bond between the intermediate layer and the acrylic resin layer and the interlayer between the intermediate layer and the hard coat layer are obtained by chemically bonding with the compound. The bond becomes a stronger bond. As a result, the adhesion between the acrylic resin layer and the hard coat layer via the intermediate layer is improved.
  • the intermediate layer contains polyisocyanate.
  • polyisocyanate a polyvinyl alcohol resin and water-soluble cellulose are used as the material for the intermediate layer, it is preferable that a water-dispersed polyisocyanate is contained.
  • the intermediate layer contains polyisocyanate
  • the interlayer bond between the intermediate layer and the acrylic resin layer and the interlayer bond between the intermediate layer and the hard coat layer are further strengthened.
  • the intermediate layer contains conductive fine particles.
  • the intermediate layer can also function as an antistatic layer.
  • Hard coat layer is a constituent layer (protective layer) provided on the outermost layer of the film mirror.
  • a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention is present in the hard coat layer in an amount of 0.1 to It is preferably contained in the range of 5% by mass.
  • the layer thickness is preferably in the range of 0.5 to 10 ⁇ m, more preferably in the range of 1 to 5 ⁇ m.
  • the hard coat layer used in the present invention preferably has weather resistance, scratch resistance, and antifouling properties.
  • scratch resistance it is preferable that the pencil hardness of the hard coat layer surface is H or more and less than 6H and 30 or less scratches in a steel wool test with a load of 500 g / cm 2 .
  • antifouling property it is preferable that the falling angle of the hard coat layer is larger than 0 ° and not more than 30 ° because water droplets are easily dropped and the antifouling property is excellent.
  • the pencil hardness is evaluated based on the pencil hardness test JIS-K5400.
  • steel wool # 0000
  • HEIDON-14DR manufactured by Shinto Kagaku Co., Ltd.
  • each water repellent / antifouling article was tested under a load of 500 g / cm 2 .
  • the surface is reciprocated 10 times at a speed of 10 mm / sec to evaluate the number of scratches.
  • the sliding angle was measured by attaching a sliding method kit DM-SA01 to a contact angle meter DM501 (Kyowa Interface Chemistry), dropping 50 ⁇ l of water, tilting the support from a horizontal state at a speed of 0.5 ° / second, The angle at which the rolls down is measured as the fall angle.
  • a smaller rolling angle is preferable because water droplets can be easily dropped and have excellent antifouling properties.
  • This hard coat layer is preferably a layer containing an inorganic oxide or inorganic nitride derived from a polymer having a metalloxane skeleton.
  • the metalloxane skeleton as used in the present invention is a skeleton having a bond between a metal atom and an oxygen atom, that is, a MO bond, and a polymer having a metalloxane skeleton has a repeating main chain skeleton of this MO bond.
  • a sol-gel method is preferable as a method for polymerizing the polymer compound.
  • the polymetalloxane include polysiloxane, polytitanoxane, polyaluminoxane, polyzircoxane and the like.
  • polymer material having a metalloxane skeleton examples include polymethoxane such as silicon, titanium, zirconium, and aluminum, or polysilazane, perhydropolysilazane, alkoxysilane, alkylalkoxysilane, and polysiloxane.
  • polymethoxane such as silicon, titanium, zirconium, and aluminum
  • polysilazane perhydropolysilazane
  • alkoxysilane alkylalkoxysilane
  • polysiloxane Preferably, it is a polymer having a metalloxane skeleton containing at least one element selected from silicon, aluminum, zirconium and titanium.
  • the binder having a metalloxane skeleton according to the present invention is preferably a polysiloxane, a polytitanoxane, a polyaluminoxane, or a polyzirconoxane composed of a polymetalloxane formed from a metal alkoxide.
  • Metal alkoxides include Si (OC 2 H 5 ) 4 , Al (OC 2 H 5 ) 4 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (iso-OC 3 H 7 ) 4 , Ti Examples thereof include single metal alkoxides such as (OC 4 H 9 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (iso-OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 .
  • polysiloxane is preferable, and polysiloxane represented by the following general formula (1) is particularly preferable. It is preferable to form the outermost layer by applying and drying a material containing these metalloxane skeletons.
  • the outermost layer is preferably formed by a thermosetting reaction using a sol-gel method.
  • R 11 and R 12 may be the same as or different from each other, and represent a hydrogen atom or an organic group such as an alkyl group or an aryl group.
  • p represents a repeating unit.
  • any of the following may be used. Tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltoxethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycyl Sidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyl Partial hydrolysates of silane compounds having hydrolyzable silyl groups such as methyldiethoxysilane,
  • the binder is preferably applied by a method in which an inorganic oxide is formed by a thermosetting reaction using a sol-gel method.
  • the sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide. That is, using a metal alkoxide, which is a kind of organometallic compound, as a starting material, the solution is hydrolyzed and subjected to polycondensation to form a sol. An inorganic oxide is obtained.
  • a metal alkoxide which is a kind of organometallic compound
  • An inorganic oxide is obtained.
  • tetraethoxysilane Si (OC 2 H 5 ) 4
  • tetraethoxysilane tetraethoxysilane is dissolved in a solvent such as alcohol, and a catalyst such as an acid is used.
  • a liquid polysiloxane sol is formed according to the following reaction formula.
  • the above-described organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction.
  • the diluting solvent may be any solvent that can dissolve the organometallic compound and can be uniformly mixed with water.
  • Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof.
  • a mixed solvent of butanol, cellosolve, and butyl cellosolve or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
  • a preferable method for forming a hard coat layer there is a method in which polysilazane is coated and formed, and is cured by heating at a temperature of about 50 to 200 ° C. to obtain a cured film.
  • the precursor of the hard coat layer contains polysilazane
  • the solvent is evaporated.
  • the polysilazane layer having a layer thickness in the range of 0.05 to 3.0 ⁇ m is left on the film mirror F.
  • a glass-like transparent hard coat film is formed on the film mirror F by locally heating the polysilazane layer in the presence of oxygen, active oxygen, and in some cases nitrogen in an atmosphere containing water vapor. Can be formed.
  • R 1 , R 2 and R 3 may be the same or different from each other, and are independently of each other a hydrogen atom, or an optionally substituted alkyl group, aryl group, Vinyl group or (trialkoxysilyl) alkyl group, preferably hydrogen atom, methyl group, ethyl group, propyl group, iso-propyl group, butyl group, iso-butyl group, tert-butyl group, phenyl group, vinyl group, It represents a group selected from the group consisting of a 3- (triethoxysilyl) propyl group and a 3- (trimethoxysilylpropyl) group.
  • n is an integer, and n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
  • catalysts preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used.
  • the catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably in the range of 0.5 to 7 mol%, based on polysilazane.
  • a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (2) are hydrogen atoms is used.
  • the hard coat layer in the present invention contains at least one polysilazane represented by the following general formula (3).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group or Represents a (trialkoxysilyl) alkyl group.
  • n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent a hydrogen atom
  • R 2 , R 4 and R 5 represent a methyl group
  • Particularly preferred are compounds in which R 1 , R 3 and R 6 represent a hydrogen atom, R 2 and R 4 represent a methyl group, and R 5 represents a vinyl group.
  • Particularly preferred are compounds in which R 1 , R 3 , R 4 and R 6 represent a hydrogen atom and R 2 and R 5 represent a methyl group.
  • the hard coat layer in the present invention contains at least one polysilazane represented by the following general formula (4).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of each other hydrogen or optionally substituted alkyl.
  • n, p and q are integers, and in particular, n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent a hydrogen atom
  • R 2 , R 4 , R 5 and R 8 represent a methyl group
  • R 9 represents a (triethoxysilyl) propyl group
  • R 7 is a compound representing an alkyl group or a hydrogen atom.
  • the ratio of polysilazane in the solvent is generally in the range of 1 to 80% by mass of polysilazane, preferably in the range of 5 to 50% by mass, particularly preferably in the range of 10 to 40% by mass.
  • an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable.
  • aprotic solvent e.g., aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters (eg ethyl acetate or butyl acetate), ketones (eg acetone or methyl ethyl ketone), ethers (eg tetrahydrofuran or dibutyl ether), mono- and Polyalkylene glycol dialkyl ether (diglymes) or a mixture of these solvents.
  • esters eg ethyl acetate or butyl acetate
  • ketones eg acetone or methyl ethyl ketone
  • ethers eg tetrahydrofuran or dibutyl ether
  • diglymes Polyalkylene glycol dialkyl
  • the contact angle of water on the surface of the hard coat layer is preferably in the range of 80 to 170 °.
  • the range is preferably 90 to 150 °.
  • the dynamic friction coefficient of the hard coat layer surface is preferably in the range of 0.10 to 0.35.
  • the hard coat layer may contain a fluorine compound, a silicon compound, fluorine or silicon so that the contact angle of water on the surface of the hard coat layer is in the range of 80 to 170 °. More specifically, the surface energy is lowered by vapor deposition using a mixed gas of a fluorine compound and a silicon compound, or a compound having fluorine and silicon, and the water contact angle of the hard coat layer is in the range of 80 to 170 °. can do.
  • the hard coat layer preferably has a dynamic friction coefficient in the range of 0.10 to 0.35, more preferably in the range of 0.15 to 0.30, in order to improve the scratch resistance.
  • the coefficient of dynamic friction between the film surfaces can be in the range of 0.10 to 0.35.
  • the hard coat layer preferably contains an ultraviolet absorber.
  • organic ultraviolet absorbers examples include benzophenone-based, benzotriazole-based, phenyl salicylate-based, and triazine-based materials used in the above-described acrylic resin layer.
  • examples of the inorganic ultraviolet absorber include metal oxide particles such as titanium oxide, zinc oxide, cerium oxide, and iron oxide.
  • the hard coat layer preferably contains an ultraviolet absorber having an absorption maximum wavelength in the range of 250 to 300 nm.
  • the hard coat layer containing such an ultraviolet absorber suppresses the deterioration of the interface with the intermediate layer, and can maintain the adhesion between the hard coat layer and the intermediate layer over a long period of time. Can be improved.
  • the hard coat layer according to the present invention preferably contains fine particles from the viewpoint of improving scratch resistance and slipperiness.
  • the fine particles are not particularly limited, but are preferably inorganic fine particles composed of an inorganic oxide.
  • the metal constituting the metal oxide is Li, Na, Mg, Al, Si.
  • inorganic oxide fine particles are , Alumina, titanium oxide, is preferably at least one of the transparent inorganic oxide fine particles selected from zinc oxide and zirconium oxide.
  • the fine particles used in the present invention preferably have high transparency.
  • the average particle diameter of the fine particles is preferably in the range of 10 to 180 nm, from the viewpoint that the root mean square roughness Rq of the surface can be controlled in the range of 5 to 50 nm, and more preferably 10 to 100 nm. Range.
  • the root mean square roughness Rq can be 5 nm or more, and a sufficient surface roughness can be ensured. Moreover, if an average particle diameter is 180 nm or less, the root mean square roughness Rq can be 50 nm or less, and the transparency of a film is not impaired.
  • the proportion of fine particles when the binder having the metalloxane skeleton is 100% by mass is preferably in the range of 30 to 90% by mass.
  • a coating film to be the hard coat layer it can be formed by a coating method using a wire bar coating, spin coating, dip coating, or the like.
  • the film can also be formed by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater.
  • the gas barrier layer is preferably provided on the light incident side with respect to the silver reflective layer.
  • the gas barrier layer is intended to prevent the deterioration of humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but with special functions and applications. As long as it has a function of preventing deterioration, various types of gas barrier layers can be provided.
  • the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 ⁇ day or less, more preferably 0.5 g / m 2 ⁇ day or less, still more preferably It is 0.2 g / m 2 ⁇ day or less.
  • the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
  • Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide or an inorganic nitride by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, etc., but inorganic oxidation by a sol-gel method is possible.
  • a method of forming an inorganic oxide film by applying a heat treatment and / or ultraviolet irradiation treatment to the coating film after applying a precursor of the product (polysilazane or the like) is preferably used.
  • Adhesive layer is a constituent layer for adhering and fixing the film mirror to the metal substrate.
  • the adhesive layer is not particularly limited as long as it can adhere a film mirror to a metal substrate.
  • a dry laminating agent, a wet laminating agent, an adhesive, a heat sealing agent, a hot melt agent, or the like is used.
  • polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, or the like may be used.
  • the laminating method in which the adhesive layer is provided on the back surface of the resin base material is not particularly limited, and for example, a roll-type continuous method is preferable from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed and the like.
  • Specific materials used for the adhesive layer include, for example, “SK Dyne Series” manufactured by Soken Chemical Co., Ltd., “Oribain BPW Series”, “BPS Series” manufactured by Toyo Ink Co., Ltd., “Arcon” “Superester” “High Pale” manufactured by Arakawa Chemical Co., Ltd.
  • the pressure-sensitive adhesive can be suitably used.
  • the pressure-sensitive adhesive layer is covered with a release layer, which will be described later, so that the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer is maintained.
  • the aforementioned corrosion inhibitors, amines and derivatives thereof compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring
  • the film mirror of the present invention may have a release layer on the side opposite to the light incident side of the adhesive layer.
  • the film is shipped with the release layer attached to the adhesive layer, the film mirror having the adhesive layer is peeled from the release layer, and is bonded to another substrate to form a solar power generation reflection device. be able to.
  • the release layer only needs to protect the silver reflective layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or sheet, a fluorine film, etc.
  • Plastic film or sheet, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., coating the resin kneaded with these, or surface treatment such as metal deposition of metal such as aluminum A resin film or sheet is used.
  • the thickness of the release layer is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • it may be bonded after providing a concave portion or a convex portion before bonding these release layers to the film mirror, and may be formed to have a concave portion or a convex portion after bonding. It may be simultaneously performed to have a concave portion or a convex portion.
  • the reflective device for solar thermal power generation includes a film mirror and a self-supporting supporting base material, and the reflecting mirror is formed by bonding the film mirror to the supporting base material via an adhesive layer. It is.
  • the "self-supporting property" referred to here is a state in which the supporting base material supports the edge portion of the film mirror in a state of being cut to a size used as a supporting base material for the solar power generation reflection device, This means that the film mirror has rigidity enough to support the film mirror.
  • the support base material of the solar power generation reflecting device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device itself, and it is possible to suppress power consumption during solar tracking.
  • the solar power generation reflecting device R includes, for example, a film mirror F and a metal substrate 1 as a support member, as shown in FIG. Specifically, the reflective layer R for solar power generation is formed by bonding the adhesive layer 2 of the film mirror F to the metal substrate 1.
  • the metal substrate is a support member for supporting the attached film mirror and preferably maintaining the reflecting surface of the film mirror.
  • a metal substrate of the solar power generation reflector for example, a metal material such as a steel plate, a copper plate, an aluminum plate, an aluminum-plated steel plate, an aluminum-based alloy-plated steel plate, a copper-plated steel plate, a tin-plated steel plate, a chrome-plated steel plate, or a stainless steel plate.
  • a metal material such as a steel plate, a copper plate, an aluminum plate, an aluminum-plated steel plate, an aluminum-based alloy-plated steel plate, a copper-plated steel plate, a tin-plated steel plate, a chrome-plated steel plate, or a stainless steel plate.
  • the thickness of these metal base materials is preferably about 0.05 mm to 3 mm from the viewpoints of handleability, thermal conductivity, heat capacity, and the like.
  • the solar power generation reflection device has a holding member that holds the film mirror.
  • the holding member preferably holds the film mirror in a state where the sun can be tracked.
  • the form of the holding member is not particularly limited. For example, a form in which a plurality of places are held by rod-like holding members so that the film mirror can hold a desired shape is preferable.
  • the holding member has a configuration for holding the film mirror in a state in which the sun can be tracked. However, when the sun is tracked, the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. good.
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 ⁇ m) was used as the resin substrate 3.
  • the following compound (1) is coated on one side of the polyethylene terephthalate film by a vacuum deposition method to form an anchor layer 4 having a thickness of 0.1 ⁇ m, and a silver reflective layer 5 is formed on the anchor layer 4 by a vacuum deposition method.
  • a silver reflective layer having a thickness of 100 nm was formed.
  • the following compound (1) was coated on the silver reflective layer 5 by a vacuum vapor deposition method to form a resin coat layer 6 having a thickness of 0.3 ⁇ m.
  • a transparent acrylic film (Mitsubishi Rayon acrylene HBS010P, thickness 100 ⁇ m) as an acrylic resin layer 8 was bonded at a laminating temperature of 60 ° C. by a dry lamination process.
  • an intermediate layer coating solution in which 5 mass% of PVA-403 (manufactured by Kuraray Co., Ltd.) was dissolved in water was applied on the acrylic resin layer 8.
  • the intermediate layer 9 was formed by partial drying. The dry thickness of the intermediate layer 9 was 0.5 ⁇ m.
  • a hard coat layer coating solution having the following composition was prepared as the coating solution, and the hard coat layer coating solution was applied onto the intermediate layer 9 using a microgravure coater so that the layer thickness after curing was 3 ⁇ m. After evaporating and drying the solvent, the hard coat layer 10 was formed by curing with 0.2 J / cm 2 ultraviolet irradiation using a high-pressure mercury lamp. The hard coat layer 10 is laminated at a position that becomes the outermost layer after the dry lamination process.
  • ⁇ Coating liquid for hard coat layer Dipentaerythritol hexaacrylate 70 parts by weight Trimethylolpropane triacrylate 30 parts by weight Photoreaction initiator (Irgacure 184 (BASF Japan)) 4 parts by weight Ethyl acetate 150 parts by weight Propylene glycol monomethyl ether 150 parts by weight Silicon compound (BYK- 307 (manufactured by Big Chemie Japan)) 0.4 parts by mass
  • one side of a 25 ⁇ m thick polyester separate film as a release layer 12 was prepared by adding 1 part of a platinum catalyst to 100 parts of an addition reaction type silicone pressure-sensitive adhesive having a weight average molecular weight of 500,000 to form a 35 mass% toluene solution. After coating at 130 ° C. for 5 minutes to form a 25 ⁇ m-thick silicone adhesive layer 2 (Si-based), the polyethylene terephthalate film is laminated on the side opposite to the anchor layer 4 and the silver reflective layer 5. And the film mirror 1 of the comparative example was obtained.
  • Film mirrors 2 to 11 were produced in the same manner except that the compounds used in the anchor layer 4 and the resin coat layer 6 were changed to the compounds shown in Table 2 in the production of the film mirror 1.
  • Corrosion resistance was evaluated according to the following criteria.
  • the reflective surface of the produced film mirror was irradiated with ultraviolet rays at 150 mW for 96 hours using an I-Super UV tester manufactured by Iwasaki Electric under an environment of 65 ° C., and then the regular reflectance was measured.
  • the regular reflectance was a 5-degree regular reflectance measured by the following method.
  • a relative reflectance measurement with respect to a reference sample having an incident angle of 5 degrees was performed.
  • the wavelength range was measured at 250 to 2500 nm, and it was confirmed whether there was any wavelength range in which the reflectance dropped partially.
  • the reflectance in the visible light region 400 to 800 nm was averaged, and this was defined as a regular reflectance of 5 degrees.
  • the 5-degree regular reflectance of the film mirror before the ultraviolet irradiation is measured in advance, and the smaller the fluctuation range from the 5-degree regular reflectance after the ultraviolet irradiation is, the better the light resistance is.
  • Light resistance was evaluated according to the following criteria.
  • the fluctuation range of the reflectance is less than 3%.
  • the prepared film mirror was irradiated with ultraviolet rays at 150 mW for 96 hours using an I-Super UV tester manufactured by Iwasaki Electric under an environment of 65 ° C., and then when 100 mask loss cut was performed according to JIS K5400 standard. A tape peeling test was performed, and adhesion was evaluated according to the following criteria.
  • Film peeling is 0 square 4: Film peeling is 1 square or more and 5 squares or less 3: Film peeling is 6 square or more and 10 squares or less 2: Film peeling is 11 squares or more 1: Film peeling is 15 squares or more
  • the anchor layer 4 and the resin coat layer 6 contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, and the effective unshared electron pair content ratio n / M of the compound is 2
  • the film mirrors 3 to 11 of the present invention having a size of 0.0 ⁇ 10 ⁇ 3 or more are excellent in corrosion resistance, light resistance and adhesion as compared with the film mirrors 1 and 2 of the comparative example.
  • the occurrence of cracks in the hard coat layer 10 is suppressed in the film mirrors 3 to 11 of the present invention.
  • the reflectance of the silver reflecting layer is reduced due to corrosion or discoloration due to peeling between the silver reflecting layer and other constituent layers. It is possible to provide a film mirror capable of suppressing the above and a solar power generation reflecting device including the same. In addition, since peeling between the silver reflective layer and other constituent layers can be suppressed, deformation and distortion of the film mirror surface can be suppressed, and the occurrence of cracks in the hard coat layer provided on the surface of the film mirror can be suppressed. it can.
  • the present invention provides a silver reflective layer caused by peeling between the silver reflective layer and other adjacent constituent layers even when subjected to a load due to outdoor use or cleaning work for a long period of time. It is suitable for providing a film mirror that can suppress a decrease in reflectance caused by corrosion or discoloration of the solar cell, and a solar power generation reflection device including the film mirror.

Abstract

The objective of the present invention is to provide: a film mirror which is able to be suppressed in deterioration of the reflectance or the like due to corrosion or color change of a silver reflective layer caused by separation between the silver reflective layer and another constituent layer adjacent thereto even if the film mirror is used outdoors for a long period of time or is subjected to a load of cleaning work or the like; and a reflective device for solar thermal power generation, which is provided with this film mirror. This film mirror is characterized by being provided with: a silver reflective layer that is provided on a resin base; and a nitrogen-containing layer that is adjacent to the silver reflective layer and contains a compound having a nitrogen atom that has an unshared electron pair which is not involved in aromaticity. This film mirror is also characterized in that the compound has an effective unshared electron pair content n/M of 2.0 × 10-3 or more, where n is the number of unshared electron pairs which are not involved in aromaticity and M is the molecular weight.

Description

フィルムミラー及び太陽熱発電用反射装置Film mirror and reflector for solar power generation
 本発明は、フィルムミラー及び太陽熱発電用反射装置に関する。特に、長期間に亘る屋外での使用や洗浄作業等による負荷を受けても、銀反射層と隣接する他の構成層との間の剥離に起因する、銀反射層の腐食や変色に伴う反射率の低下等を抑制できるフィルムミラー、及びそれを備えた太陽熱発電用反射装置に関する。 The present invention relates to a film mirror and a solar power generation reflector. Reflection caused by corrosion or discoloration of the silver reflective layer due to peeling between the silver reflective layer and other adjacent constituent layers, even when subjected to long-term outdoor use or cleaning work. The present invention relates to a film mirror that can suppress a decrease in rate and the like, and a solar power generation reflection device including the same.
 近年、化石燃料の代替エネルギーとして最も安定しており、かつ量の多い自然エネルギーは太陽エネルギーであると考えられており、巨大な反射装置で太陽エネルギーを集めることによってその熱エネルギーを媒体として発電する太陽熱発電が提案されている。 In recent years, solar energy has been considered to be the most stable and abundant amount of natural energy that can be used as an alternative to fossil fuels. By collecting solar energy with a huge reflector, power is generated using that thermal energy as a medium. Solar power generation has been proposed.
 この反射装置は、太陽光による紫外線や熱、風雨、砂嵐等に晒されるため、従来ガラス製ミラーが用いられてきたが、最近では軽量で柔軟性が高く、かつ生産コスト及び輸送コストが低い太陽熱発電用のミラーとしてフィルムミラーの検討が進められている。 Since this reflector is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., glass mirrors have been used in the past, but recently it is light and flexible, and solar heat is low in production and transportation costs. A film mirror is being studied as a power generation mirror.
 太陽熱発電用のフィルムミラーは、フィルム基材に設けられた金属反射層、例えば銀反射層上に、銀反射層の腐食を抑制する樹脂コート層、紫外線曝露による樹脂製の構成層の変色に伴う反射率の低下を抑制する紫外線吸収層、表面の傷付きを抑制するハードコート層等が積層されていることで、耐久性が向上されている。
 例えば、特許文献1に記載の技術においては、フィルムの最表層に紫外線吸収剤を含んだアクリル樹脂層を設けており、紫外線曝露に起因する樹脂層の変色による反射率の低下を抑制している。
A film mirror for solar power generation is accompanied by a discoloration of a resin coating layer that suppresses corrosion of the silver reflection layer on a metal reflection layer provided on the film substrate, for example, a silver reflection layer, and a resin-made structural layer due to exposure to ultraviolet rays. Durability is improved by laminating an ultraviolet absorbing layer that suppresses a decrease in reflectance, a hard coat layer that suppresses scratches on the surface, and the like.
For example, in the technique described in Patent Document 1, an acrylic resin layer containing an ultraviolet absorber is provided on the outermost layer of the film, and a decrease in reflectance due to discoloration of the resin layer due to ultraviolet exposure is suppressed. .
 ここで、このようなフィルムミラーは屋外環境下に設置されるため、フィルムミラー表面に砂塵等が付着することに起因する反射率の低下を抑制する目的で、定期的に高圧放水やブラッシングによる洗浄作業が行われる。
 上記特許文献1に記載の技術においては、銀反射層とアクリル樹脂層の間にポリエチレンテレフタレート(PET)層と粘着層とが挟まれており、半年間以上の屋外曝露後にブラッシングによる洗浄を行うと、洗浄時に生じる応力により、銀反射層とPET層との間で剥離が生じてしまうおそれがある。
Here, since such a film mirror is installed in an outdoor environment, it is regularly cleaned by high-pressure water discharge or brushing in order to suppress a decrease in reflectance caused by dust and the like adhering to the film mirror surface. Work is done.
In the technique described in Patent Document 1, a polyethylene terephthalate (PET) layer and an adhesive layer are sandwiched between a silver reflective layer and an acrylic resin layer, and after washing outdoors for more than half a year, washing by brushing is performed. There is a possibility that peeling occurs between the silver reflecting layer and the PET layer due to the stress generated during the cleaning.
 このように、銀反射層と隣接する他の構成層との間で剥離が生じやすいフィルムミラーにあっては、銀反射層と隣接層とが剥離することにより、当該隣接層の上に設けられる腐食防止層や紫外線吸収層等の機能が阻害され、腐食耐性や耐光性が低下してしまう場合がある。
 更に、このようなフィルムミラーの表面にハードコート層が設けられている場合には、銀反射層と隣接する他の構成層との間で剥離が生じることでフィルムミラー表面に応力が生じ、ハードコート層にクラックが生じてしまう場合があることも分かった。
As described above, in the film mirror that easily peels between the silver reflective layer and other adjacent constituent layers, the silver reflective layer and the adjacent layer are peeled off to be provided on the adjacent layer. Functions such as a corrosion prevention layer and an ultraviolet absorption layer may be hindered, and corrosion resistance and light resistance may be reduced.
Furthermore, when a hard coat layer is provided on the surface of such a film mirror, stress is generated on the surface of the film mirror due to peeling between the silver reflective layer and other adjacent constituent layers, and the hard mirror layer is hard. It has also been found that cracks may occur in the coat layer.
特表2009-520174号公報Special table 2009-520174
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、長期間に亘る屋外での使用や洗浄作業等による負荷を受けても、銀反射層と隣接する他の構成層との間の剥離に起因する、銀反射層の腐食や変色に伴う反射率の低下等を抑制できるフィルムミラー、及びそれを備えた太陽熱発電用反射装置を提供することである。 The present invention has been made in view of the above problems, and the problem to be solved is that, even when subjected to a load due to outdoor use or cleaning work for a long period of time, other constituent layers adjacent to the silver reflective layer It is providing the film mirror which can suppress the fall of the reflectance etc. accompanying corrosion or discoloration of a silver reflective layer resulting from peeling between, and a solar power generation reflective apparatus provided with the same.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、樹脂基材上に銀反射層が設けられ、前記銀反射層に隣接し、窒素原子を含有する化合物からなる窒素含有層を備え、前記化合物が、芳香族性に関与しない非共有電子対の数をn、分子量をMとしたとき、有効非共有電子対含有率n/Mが2.0×10-3以上の化合物であることにより、銀反射層と隣接する他の構成層との間の剥離に起因する、銀反射層の腐食や変色に伴う反射率の低下等を抑制できるフィルムミラーを提供できることを見出した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
As a result of investigating the cause of the above-mentioned problems in order to solve the above-mentioned problems relating to the present invention, a silver reflecting layer is provided on a resin substrate, and the nitrogen is made of a compound containing a nitrogen atom adjacent to the silver reflecting layer. And the compound has an effective unshared electron pair content n / M of 2.0 × 10 −3 or more, where n is the number of unshared electron pairs not involved in aromaticity and M is the molecular weight. It is found that a film mirror capable of suppressing a decrease in reflectance caused by corrosion or discoloration of the silver reflective layer caused by peeling between the silver reflective layer and other adjacent constituent layers can be provided. It was.
That is, the said subject which concerns on this invention is solved by the following means.
 1.樹脂基材上に銀反射層が設けられたフィルムミラーであって、
 前記銀反射層に隣接し、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する窒素含有層を備え、
 前記化合物が、芳香族性に関与しない非共有電子対の数をn、分子量をMとしたとき、有効非共有電子対含有率n/Mが2.0×10-3以上の化合物であることを特徴とするフィルムミラー。
1. A film mirror provided with a silver reflective layer on a resin substrate,
A nitrogen-containing layer containing a compound having a nitrogen atom adjacent to the silver reflective layer and having an unshared electron pair not involved in aromaticity;
The compound is a compound having an effective unshared electron pair content ratio n / M of 2.0 × 10 −3 or more, where n is the number of unshared electron pairs not involved in aromaticity and M is the molecular weight. A film mirror characterized by
 2.前記有効非共有電子対含有率n/Mが、3.9×10-3以上であることを特徴とする第1項に記載のフィルムミラー。 2. 2. The film mirror according to item 1, wherein the effective unshared electron pair content ratio n / M is 3.9 × 10 −3 or more.
 3.メタロキサン骨格を有するポリマーを含有するハードコート層を表面に備えていることを特徴とする第1項又は第2項に記載のフィルムミラー。 3. 3. The film mirror according to item 1 or 2, wherein a hard coat layer containing a polymer having a metalloxane skeleton is provided on the surface.
 4.第1項から第3項までのいずれか一項に記載のフィルムミラーと、
 前記フィルムミラーを支持する支持基材と、を備えることを特徴とする太陽熱発電用反射装置。
4). The film mirror according to any one of items 1 to 3,
And a support base material for supporting the film mirror.
 本発明によれば、長期間に亘る屋外での使用や洗浄作業等による負荷を受けても、銀反射層と隣接する他の構成層との間の剥離を抑制することができ、当該剥離に起因する銀反射層の腐食や変色に伴う反射率の低下等を抑制できるフィルムミラー、及びそれを備えた太陽熱発電用反射装置を提供することができる。
 また、銀反射層と隣接する他の構成層との剥離を抑制できるため、フィルムミラーの表面にハードコート層が設けられている場合に、当該ハードコート層にクラックが発生することを抑制することもできる。
According to the present invention, it is possible to suppress the peeling between the silver reflective layer and other constituent layers adjacent to each other even when subjected to a load due to outdoor use or cleaning work for a long period of time. The film mirror which can suppress the fall of the reflectance accompanying corrosion, discoloration, etc. of the silver reflection layer which originates, and a solar power generation reflective apparatus provided with the same can be provided.
In addition, since peeling between the silver reflective layer and other adjacent constituent layers can be suppressed, when a hard coat layer is provided on the surface of the film mirror, the occurrence of cracks in the hard coat layer is suppressed. You can also.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 すなわち、銀反射層に隣接する層を、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する窒素含有層としているので、当該窒素含有層に含有される化合物の非共有電子対が銀原子と相互作用することにより、銀反射層と、当該銀反射層に隣接する窒素含有層との密着性が向上されている。また、窒素含有層に含有される化合物の有効非共有電子対含有率n/Mが、2.0×10-3以上であることにより、銀反射層中の銀原子と相互作用可能な窒素原子が窒素含有層に多数含有されており、銀反射層と窒素含有層との高い密着性が得られる。これにより、長期間に亘る屋外での使用や洗浄作業等による負荷を受けても、銀反射層と隣接する他の構成層との間で高い密着性を保持することができ、層間の剥離に起因する銀反射層の腐食や変色に伴う反射率の低下を抑制することができる。
 また、銀反射層と窒素含有層とが高い密着性を有しているため、その層間で剥離が発生せず、フィルムミラー表面に応力が発生しにくい。これにより、フィルムミラー表面にハードコート層が設けられている場合に、当該ハードコート層にクラックが発生することを抑制することができる。
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
That is, since the layer adjacent to the silver reflective layer is a nitrogen-containing layer containing a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, the compound contained in the nitrogen-containing layer is not shared. When the electron pair interacts with the silver atom, the adhesion between the silver reflective layer and the nitrogen-containing layer adjacent to the silver reflective layer is improved. Further, when the effective unshared electron pair content ratio n / M of the compound contained in the nitrogen-containing layer is 2.0 × 10 −3 or more, nitrogen atoms capable of interacting with silver atoms in the silver reflecting layer Are contained in the nitrogen-containing layer in large numbers, and high adhesion between the silver reflecting layer and the nitrogen-containing layer is obtained. As a result, high adhesion can be maintained between the silver reflective layer and other adjacent constituent layers even when subjected to a long-term outdoor use or a load due to cleaning work, etc. It is possible to suppress a decrease in reflectance caused by corrosion or discoloration of the silver reflecting layer.
Moreover, since the silver reflection layer and the nitrogen-containing layer have high adhesion, peeling does not occur between the layers, and stress is hardly generated on the film mirror surface. Thereby, when the hard-coat layer is provided in the film mirror surface, it can suppress that a crack generate | occur | produces in the said hard-coat layer.
本発明の太陽熱発電用ミラーの構成の一例を示す説明図Explanatory drawing which shows an example of a structure of the mirror for solar power generation of this invention 本発明の太陽熱発電用ミラーの構成の一例を示す説明図Explanatory drawing which shows an example of a structure of the mirror for solar power generation of this invention 本発明の太陽熱発電用反射装置の構成の一例を示す説明図Explanatory drawing which shows an example of a structure of the reflective apparatus for solar thermal power generation of this invention
 本発明のフィルムミラーは、樹脂基材上に銀反射層が設けられたフィルムミラーであって、前記銀反射層に隣接し、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する窒素含有層を備え、前記化合物が、芳香族性に関与しない非共有電子対の数をn、分子量をMとしたとき、有効非共有電子対含有率n/Mが2.0×10-3以上の化合物であることを特徴とする。この特徴は、請求項1から請求項4までの請求項に共通する技術的特徴である。
 また、本発明は、メタロキサン骨格を有するポリマーを含有するハードコート層を表面に備えていることが好ましい。これにより、表面の耐傷性を向上させることができる。
The film mirror of the present invention is a film mirror in which a silver reflective layer is provided on a resin base material, and is a compound having a nitrogen atom adjacent to the silver reflective layer and having an unshared electron pair not involved in aromaticity And when the number of unshared electron pairs not involved in aromaticity is n and the molecular weight is M, the effective unshared electron pair content n / M is 2.0 ×. It is characterized by being a compound of 10 −3 or more. This feature is a technical feature common to claims 1 to 4.
Moreover, it is preferable that this invention equips the surface with the hard-coat layer containing the polymer which has a metalloxane skeleton. Thereby, the scratch resistance of the surface can be improved.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
<本発明のフィルムミラー及び太陽熱発電用反射装置の概要>
 本発明のフィルムミラーは、樹脂基材上に銀反射層が設けられたフィルムミラーであって、前記銀反射層に隣接し、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する窒素含有層を備え、前記化合物が、芳香族性に関与しない非共有電子対の数をn、分子量をMとしたとき、有効非共有電子対含有率n/Mが2.0×10-3以上の化合物であることを特徴とする。
<Outline of Film Mirror and Solar Power Reflecting Device of the Present Invention>
The film mirror of the present invention is a film mirror in which a silver reflective layer is provided on a resin base material, and is a compound having a nitrogen atom adjacent to the silver reflective layer and having an unshared electron pair not involved in aromaticity And when the number of unshared electron pairs not involved in aromaticity is n and the molecular weight is M, the effective unshared electron pair content n / M is 2.0 ×. It is characterized by being a compound of 10 −3 or more.
〔1〕フィルムミラーの構成概要
 本発明のフィルムミラーの概要を説明する。
[1] Outline of configuration of film mirror An outline of the film mirror of the present invention will be described.
 フィルムミラーFは、例えば、図1Aに示すように、樹脂基材3上に銀反射層5が形成され、その上に最表層としてハードコート層10が設けられて構成されている。したがって図1Aに示す例においては、本発明でいう銀反射層に隣接する窒素含有層は、樹脂基材3及びハードコート層10が該当し、樹脂基材3及びハードコート層10のうち少なくとも一層が、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する。 The film mirror F is configured, for example, as shown in FIG. 1A, in which a silver reflective layer 5 is formed on a resin base material 3 and a hard coat layer 10 is provided as an outermost layer thereon. Therefore, in the example shown in FIG. 1A, the nitrogen-containing layer adjacent to the silver reflecting layer in the present invention corresponds to the resin base material 3 and the hard coat layer 10, and at least one of the resin base material 3 and the hard coat layer 10. Contain a compound having a nitrogen atom with an unshared electron pair not involved in aromaticity.
 また、フィルムミラーFには、実際上様々な機能層を設けることが好ましく、例えば、図1Bに示すように構成されていても良い。 Moreover, it is preferable to provide various functional layers in the film mirror F in practice, and for example, it may be configured as shown in FIG. 1B.
 図1Bで示す例では、樹脂基材3と銀反射層5との間にアンカー層4が設けられ、銀反射層5の光入射側に、腐食防止剤や酸化防止剤を含有する樹脂コート層6、銀反射層5や樹脂コート層6を保護するガスバリアー層11、ガスバリアー層11上に設けられる接着層7、紫外線吸収剤を含むアクリル樹脂層8、アクリル樹脂層8上に設けられる中間層9、最表層としてハードコート層10が、この順にそれぞれ設けられている。
 また、樹脂基材3における光入射側とは反対側の面には粘着層2が設けられていても良く、更に、粘着層2上には粘着層を保護するための剥離層12が設けられていても良い。
 なお、フィルムミラーFの構成はこれに限られるものではなく、少なくとも樹脂基材3及び銀反射層5を備えていれば、上記各構成層のうちいずれかの層が設けられていなくても良い。
In the example shown in FIG. 1B, an anchor layer 4 is provided between the resin base material 3 and the silver reflective layer 5, and a resin coat layer containing a corrosion inhibitor or an antioxidant on the light incident side of the silver reflective layer 5. 6, a gas barrier layer 11 that protects the silver reflection layer 5 and the resin coat layer 6, an adhesive layer 7 provided on the gas barrier layer 11, an acrylic resin layer 8 containing an ultraviolet absorber, and an intermediate provided on the acrylic resin layer 8 The layer 9 and the hard coat layer 10 as the outermost layer are provided in this order.
Further, the adhesive layer 2 may be provided on the surface of the resin base 3 opposite to the light incident side, and further, a release layer 12 for protecting the adhesive layer is provided on the adhesive layer 2. May be.
In addition, the structure of the film mirror F is not restricted to this, As long as the resin base material 3 and the silver reflection layer 5 are provided at least, either layer of each said structure layer may not be provided. .
 図1Bの構成の場合は、本発明でいう銀反射層に隣接する窒素含有層は、アンカー層4及び樹脂コート層6が該当し、アンカー層4及び樹脂コート層6のうち少なくとも一層が、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する。
 なお、本発明の効果を高めるために、当該アンカー層4及び樹脂コート層6の両方に、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有させることが好ましい。
In the case of the configuration of FIG. 1B, the nitrogen-containing layer adjacent to the silver reflecting layer in the present invention corresponds to the anchor layer 4 and the resin coat layer 6, and at least one of the anchor layer 4 and the resin coat layer 6 is aromatic. It contains a compound having a nitrogen atom having an unshared electron pair that is not involved in the family.
In order to enhance the effect of the present invention, it is preferable that both the anchor layer 4 and the resin coat layer 6 contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity.
 なお、銀反射層に隣接する層とは、直接当該銀反射層に接する層以外にも、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が銀反射層の銀原子に作用でき、本発明の効果を発現することができる場合は、層間に当該化合物を含有しない薄膜層(例えば、樹脂層)等があっても良い。 In addition, the layer adjacent to the silver reflective layer means that the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity acts on the silver atoms of the silver reflective layer in addition to the layer directly in contact with the silver reflective layer. In the case where the effect of the present invention can be exhibited, a thin film layer (for example, a resin layer) that does not contain the compound may be present between the layers.
 フィルムミラー全体の厚さは、ミラーのたわみ防止、正反射率、取り扱い性等の観点から75~250μmの範囲内が好ましく、より好ましくは90~230μmの範囲内、更に好ましくは100~220μmの範囲内である。 The total thickness of the film mirror is preferably in the range of 75 to 250 μm, more preferably in the range of 90 to 230 μm, still more preferably in the range of 100 to 220 μm, from the viewpoints of mirror deflection prevention, regular reflectance, handling properties, and the like. Is within.
 以下、本発明のフィルムミラーを構成する各構成層について順次説明するが、まず、本発明の特徴である、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物について説明する。 Hereinafter, each constituent layer constituting the film mirror of the present invention will be described in order. First, a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, which is a feature of the present invention, will be described.
〔2〕芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物
 窒素含有層は、銀反射層5に隣接して設けられた層であり、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を用いて構成されている。また、当該化合物は、当該化合物に含有される窒素原子のうち、特に銀反射層5を構成する主材料である銀と安定的に結合する窒素原子の非共有電子対を「有効非共有電子対」とし、この有効非共有電子対の含有率が所定範囲である。
[2] Compound having a nitrogen atom having an unshared electron pair not involved in aromaticity The nitrogen-containing layer is a layer provided adjacent to the silver reflecting layer 5 and is an unshared electron pair not involved in aromaticity It is comprised using the compound which has a nitrogen atom with. In addition, among the nitrogen atoms contained in the compound, the compound particularly refers to an unshared electron pair of a nitrogen atom that stably binds to silver, which is a main material constituting the silver reflective layer 5, as an “effective unshared electron pair”. The content of the effective unshared electron pair is within a predetermined range.
 ここで、「有効非共有電子対」とは、化合物に含有される窒素原子が有する非共有電子対のうち、芳香族性に関与しない非共有電子対をいう。ここでの芳香族性とは、π電子を持つ原子が環状に並んだ不飽和環状構造をいい、いわゆる「ヒュッケル則」に従う芳香族性であって、環上のπ電子系に含まれる電子の数が「4n+2」(n=0又は自然数)個であることを条件としている。 Here, the “effective unshared electron pair” refers to an unshared electron pair that does not participate in aromaticity among the unshared electron pairs of the nitrogen atom contained in the compound. The aromaticity here refers to an unsaturated cyclic structure in which atoms having π electrons are arranged in a ring, and is aromatic according to the so-called “Hückel rule”, and includes the electrons contained in the π electron system on the ring. The condition is that the number is “4n + 2” (n = 0 or a natural number).
 以上のような「有効非共有電子対」は、その非共有電子対を備えた窒素原子自体が、芳香環を構成するヘテロ原子であるか否かにかかわらず、窒素原子が有する非共有電子対が芳香族性と関与しているか否かによって選択される。例えば、ある窒素原子が芳香環を構成するヘテロ原子であっても、その窒素原子が芳香族性に関与しない非共有電子対を有していれば、その非共有電子対は「有効非共有電子対」の一つとしてカウントされる。これに対して、ある窒素原子が芳香環を構成するヘテロ原子でない場合であっても、その窒素原子の非共有電子対の全てが芳香族性に関与していれば、その窒素原子の非共有電子対は「有効非共有電子対」としてカウントされることはない。なお、各化合物において、上述した「有効非共有電子対」の数nは、「有効非共有電子対」を有する窒素原子の数と一致する。 The “effective unshared electron pair” as described above is an unshared electron pair possessed by a nitrogen atom regardless of whether or not the nitrogen atom itself provided with the unshared electron pair is a heteroatom constituting an aromatic ring. Is selected depending on whether or not is involved in aromaticity. For example, even if a nitrogen atom is a heteroatom constituting an aromatic ring, if the nitrogen atom has an unshared electron pair that does not participate in aromaticity, the unshared electron pair is expressed as “effective unshared electron”. It is counted as one of “pair”. In contrast, even if a nitrogen atom is not a heteroatom that constitutes an aromatic ring, if all of the non-shared electron pairs of the nitrogen atom are involved in aromaticity, the nitrogen atom is not shared. An electron pair is not counted as an “effective unshared electron pair”. In each compound, the number n of “effective unshared electron pairs” described above matches the number of nitrogen atoms having “effective unshared electron pairs”.
 本発明においては、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物の分子量Mに対する「有効非共有電子対」の数nを、「有効非共有電子対含有率n/M」と定義する。
 本発明の窒素含有層には、有効非共有電子対含有率n/Mが2.0×10-3以上の化合物が含有されていることを特徴としている。また、窒素含有層に含有される当該化合物の有効非共有電子対含有率n/Mが、3.9×10-3以上であると、銀反射層と窒素含有層の密着性を更に向上させることができるため、好ましい。また、窒素含有層に含有される当該化合物の有効非共有電子対含有率n/Mが、1.0×10-2以下であると、層を均一にコーティングしやすくなるため、好ましい。
In the present invention, the number n of “effective unshared electron pairs” with respect to the molecular weight M of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity is expressed as “effective unshared electron pair content n / M”. It is defined as
The nitrogen-containing layer of the present invention is characterized by containing a compound having an effective unshared electron pair content ratio n / M of 2.0 × 10 −3 or more. In addition, when the effective unshared electron pair content n / M of the compound contained in the nitrogen-containing layer is 3.9 × 10 −3 or more, the adhesion between the silver reflecting layer and the nitrogen-containing layer is further improved. This is preferable. In addition, it is preferable that the effective unshared electron pair content n / M of the compound contained in the nitrogen-containing layer is 1.0 × 10 −2 or less because the layer can be easily coated uniformly.
 また、窒素含有層は、有効非共有電子対含有率n/Mが、上述した所定範囲である化合物を用いて構成されていれば良く、このような化合物のみで構成されていても良いし、このような化合物と他の化合物との混合物で構成されていても良い。当該他の化合物としては、窒素原子が含有されていてもいなくても良いし、窒素原子が含有されていても有効非共有電子対含有率n/Mが上述した範囲でなくても良い。 Further, the nitrogen-containing layer only needs to be configured using a compound having an effective unshared electron pair content ratio n / M in the above-described predetermined range, or may be configured only with such a compound. You may be comprised with the mixture of such a compound and another compound. The other compound may or may not contain a nitrogen atom, and even if a nitrogen atom is contained, the effective unshared electron pair content n / M may not be within the above-described range.
 窒素含有層が、複数の化合物を用いて構成されている場合、例えば化合物の混合比に基づき、これらの化合物を混合した混合化合物の分子量Mを求め、この分子量Mに対しての有効非共有電子対の合計の数nを、有効非共有電子対含有率n/Mの平均値として求め、この値が上述した所定範囲であることが好ましい。つまり、窒素含有層自体の有効非共有電子対含有率n/Mが所定範囲であることが好ましい。 When the nitrogen-containing layer is composed of a plurality of compounds, for example, based on the mixing ratio of the compounds, the molecular weight M of the mixed compound obtained by mixing these compounds is obtained, and effective unshared electrons with respect to the molecular weight M are obtained. The total number n of pairs is obtained as an average value of the effective unshared electron pair content n / M, and this value is preferably within the predetermined range described above. That is, it is preferable that the effective unshared electron pair content n / M of the nitrogen-containing layer itself is within a predetermined range.
 なお、窒素含有層が、複数の化合物を用いて構成されている場合であって、層厚方向に化合物の混合比(含有比)が異なる構成であれば、銀反射層5と接する側の窒素含有層の表面における有効非共有電子対含有率n/Mが上述した所定範囲であれば良い。 In addition, if the nitrogen-containing layer is composed of a plurality of compounds and the composition ratio (content ratio) of the compounds is different in the layer thickness direction, the nitrogen on the side in contact with the silver reflective layer 5 The effective unshared electron pair content n / M on the surface of the containing layer may be in the predetermined range described above.
 以下に、上述した有効非共有電子対含有率n/Mが2.0×10-3以上である化合物の具体例として化合物No.1~No.45を示す。また、下記表1には、これらの化合物No.1~No.45の分子量M、有効非共有電子対の数n、及び有効非共有電子対含有率n/Mを示す。なお、下記化合物No.33の銅フタロシアニンにおいては、窒素原子が有する非共有電子対のうち銅に配位していない非共有電子対が「有効非共有電子対」としてカウントされるものとする。
 また、下記化合物No.19,20においては、有効非共有電子対の数n及び分子量Mをそれぞれ表1に記載の値としているが、各化学式中の繰り返し単位nの値によってはこの限りではない。ただし、各化学式中の繰り返し単位nの値がいずれであっても、有効非共有電子対含有率n/Mの値は表1に記載のとおりである。
Hereinafter, as specific examples of the compound having an effective unshared electron pair content n / M of 2.0 × 10 −3 or more, Compound No. 1-No. 45 is shown. Table 1 below shows these compound Nos. 1-No. A molecular weight M of 45, a number n of effective unshared electron pairs, and an effective unshared electron pair content n / M are shown. In addition, the following compound No. In 33 copper phthalocyanine, of the unshared electron pairs of the nitrogen atom, the unshared electron pairs that are not coordinated to copper are counted as “effective unshared electron pairs”.
In addition, the following compound No. In 19 and 20, the number n of effective unshared electron pairs and the molecular weight M are values shown in Table 1, respectively, but this is not limited depending on the value of the repeating unit n in each chemical formula. However, regardless of the value of the repeating unit n in each chemical formula, the value of the effective unshared electron pair content n / M is as shown in Table 1.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明に係る、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物は、銀反射層との密着性を改良するために十分な量が用いられ、通常、銀反射層に隣接する層の少なくとも一層に、0.1~5質量%の範囲内で含有させることが好ましい。より好ましくは1~5質量%の範囲内である。前記範囲内であれば、密着性を十分に改良でき、コスト上のメリットも高い。 The compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention is used in an amount sufficient to improve the adhesion with the silver reflective layer, and is usually adjacent to the silver reflective layer. It is preferable that at least one layer to be contained is contained in the range of 0.1 to 5% by mass. More preferably, it is in the range of 1 to 5% by mass. If it is in the said range, adhesiveness can fully be improved and the merit on cost is also high.
 芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物は、後述するアンカー層及び樹脂コート層のうち少なくとも一方に含有させることが好ましく、当該アンカー層及び樹脂コート層の両方に含有させることがより好ましい。 The compound having a nitrogen atom having an unshared electron pair not involved in aromaticity is preferably contained in at least one of the anchor layer and the resin coat layer described later, and is contained in both the anchor layer and the resin coat layer. It is more preferable.
 続いて、本発明のフィルムミラーを構成する各構成層について説明する。 Subsequently, each constituent layer constituting the film mirror of the present invention will be described.
〔3〕樹脂基材
 樹脂基材としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましい。また、樹脂フィルムは、溶融流延製膜で製造されたフィルムであっても良いし、溶液流延製膜で製造されたフィルムであっても良い。
[3] Resin base material As the resin base material, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. It is particularly preferable to use a polyester film such as polyethylene terephthalate or an acrylic film. The resin film may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
 樹脂基材に、本発明に係る、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有させるには、例えば、溶液流延製膜であれば、調製する有機溶媒を含むドープに当該化合物を所定量添加し、次いで金属支持体上に流延することが好ましい。
 樹脂基材に当該化合物が含有されている場合には、0.1~5質量%の範囲で含有されていることが好ましい。
In order to make the resin base material contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention, for example, if it is a solution casting film, an organic solvent to be prepared is included. It is preferable to add a predetermined amount of the compound to the dope and then cast it on a metal support.
When the compound is contained in the resin base material, it is preferably contained in the range of 0.1 to 5% by mass.
 樹脂基材は、銀反射層よりも光入射側から遠い位置にあるため、樹脂基材には紫外線は到達しにくい。特に、樹脂基材よりも光入射側にある層に紫外線吸収剤を含有させたり、紫外線吸収剤を含有するアクリル樹脂層を設けたりすることで、更に紫外線が樹脂基材に到達しにくくすることができる。その場合には、紫外線によって劣化しやすい樹脂であっても、樹脂基材の材料に用いることができる。そのような観点から、樹脂基材の材料として、ポリエチレンテレフタレート等のポリエステルフィルムを用いることが可能となる。 Since the resin base material is located farther from the light incident side than the silver reflecting layer, it is difficult for ultraviolet rays to reach the resin base material. In particular, by making the layer closer to the light incident side than the resin base material contain an ultraviolet absorber or providing an acrylic resin layer containing an ultraviolet absorber, it is even more difficult for ultraviolet rays to reach the resin substrate. Can do. In that case, even a resin that is easily deteriorated by ultraviolet rays can be used as a material for the resin base material. From such a viewpoint, it becomes possible to use a polyester film such as polyethylene terephthalate as the material of the resin base material.
 樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さに設定することが好ましい。例えば、一般的には、10~300μmの範囲である。好ましくは20~200μmの範囲であり、より好ましくは30~100μm範囲である。 The thickness of the resin base material is preferably set to an appropriate thickness according to the type and purpose of the resin. For example, it is generally in the range of 10 to 300 μm. The range is preferably 20 to 200 μm, more preferably 30 to 100 μm.
 また、本発明のフィルムミラーは、樹脂基材として長尺状フィルムを用いて製造することが好ましく、長さ1000m以上であることが好ましく、生産性やハンドリングの観点から5000m程度の長尺状フィルムを用いることが好ましい。 In addition, the film mirror of the present invention is preferably manufactured using a long film as a resin base material, and preferably has a length of 1000 m or more, and is a long film of about 5000 m from the viewpoint of productivity and handling. Is preferably used.
〔4〕アンカー層
 アンカー層は、樹脂からなり、樹脂基材と銀反射層とを密着させるものであり、本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が含有されていることが好ましい。したがって、アンカー層は、樹脂基材と銀反射層とを密着する密着性、銀反射層を真空蒸着法等で形成する際の熱に耐え得る耐熱性、及び銀反射層が本来有する高い反射性能を引き出すための平滑性等が必要である。
[4] Anchor layer The anchor layer is made of a resin, and adheres the resin base material and the silver reflecting layer. The compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention It is preferably contained. Therefore, the anchor layer has a close adhesion between the resin base material and the silver reflective layer, heat resistance that can withstand heat when the silver reflective layer is formed by a vacuum deposition method, and the high reflective performance that the silver reflective layer originally has. Smoothness and the like for drawing out are necessary.
 アンカー層の材料として用いられる樹脂材料は、上記密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独又はこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、更にイソシアネート等の硬化剤を混合した熱硬化型樹脂とするとより好ましい。 The resin material used as the material of the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness. Polyester resin, acrylic resin, melamine resin, epoxy resin , Polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent such as.
 アンカー層の形成方法としては、所定の樹脂材料を塗布、塗工するグラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the anchor layer, conventionally known coating methods such as a gravure coating method in which a predetermined resin material is applied and applied, a reverse coating method, a die coating method and the like can be used.
 アンカー層の厚さは、0.01~3μmの範囲が好ましく、より好ましくは0.1~1μmの範囲である。厚さが0.01μmより厚いと、密着性が良くなり、また樹脂基材表面の凹凸を覆い隠し、平滑性が良好になり、結果的には銀反射層の反射率を高める効果を発現する。また、厚さが3μm以下であると、アンカー層の形成ムラがなく平滑性が高く、またアンカー層の硬化状態として十分なものとなり好ましい。 The thickness of the anchor layer is preferably in the range of 0.01 to 3 μm, more preferably in the range of 0.1 to 1 μm. When the thickness is greater than 0.01 μm, the adhesion is improved, the unevenness on the surface of the resin substrate is covered and smoothness is improved, and as a result, the effect of increasing the reflectance of the silver reflective layer is exhibited. . Moreover, it is preferable that the thickness is 3 μm or less because there is no uneven formation of the anchor layer and the smoothness is high, and the anchor layer is sufficiently cured.
 アンカー層へは、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を0.1~5質量%の範囲内で含有させることが好ましく、より好ましくは1~5質量%の範囲である。当該化合物をメタノール、グリコール類、ケトン類等の有機溶媒に適宜溶解させて樹脂材料に添加することが好ましい。 The anchor layer preferably contains a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity within a range of 0.1 to 5% by mass, and more preferably within a range of 1 to 5% by mass. It is. The compound is preferably dissolved in an organic solvent such as methanol, glycols, and ketones and added to the resin material.
〔5〕銀反射層
 銀反射層は、太陽光を反射する機能を有する銀を含有する層である。
[5] Silver reflection layer The silver reflection layer is a layer containing silver having a function of reflecting sunlight.
 銀反射層の表面反射率は好ましくは80%以上、更に好ましくは90%以上である。 The surface reflectance of the silver reflective layer is preferably 80% or more, more preferably 90% or more.
 銀反射層の厚さは、反射率等の観点から、10~200nmの範囲が好ましく、より好ましくは30~150nmの範囲である。 The thickness of the silver reflective layer is preferably in the range of 10 to 200 nm, more preferably in the range of 30 to 150 nm, from the viewpoint of reflectivity and the like.
 この反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。湿式法の代表例としては、めっき法があり、溶液から金属を析出させ膜を形成する方法である。具体例を挙げるとすれば、銀鏡反応などがある。一方、乾式法の代表例としては、真空製膜法があり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に製膜するロール・ツー・ロール方式が可能な蒸着法が好ましく用いられる。例えば、フィルムミラーの製造方法において、銀反射層を銀蒸着によって形成する手法が好ましく用いられる。 As a method for forming this reflective layer, either a wet method or a dry method can be used. A typical example of the wet method is a plating method, in which a film is formed by depositing a metal from a solution. Specific examples include silver mirror reaction. On the other hand, as a typical example of the dry method, there is a vacuum film forming method, and concrete examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition. Method and sputtering method. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. For example, in a film mirror manufacturing method, a method of forming a silver reflective layer by silver vapor deposition is preferably used.
 なお、上記したように銀反射層の厚さを、例えば30~300nmの範囲とすれば、その銀反射層を有する機能性フィルムを太陽熱発電用フィルムミラーとして使用することが可能になる。より好ましくは耐久性の観点から、80~200nmの範囲である。銀反射層の層厚を上記範囲とすることにより、光の透過や、表面に凹凸が生じることによる光の散乱等を原因とする可視光領域での反射率の低下を抑えることが可能となる。 As described above, when the thickness of the silver reflective layer is in the range of, for example, 30 to 300 nm, the functional film having the silver reflective layer can be used as a film mirror for solar power generation. More preferably, it is in the range of 80 to 200 nm from the viewpoint of durability. By making the layer thickness of the silver reflective layer in the above range, it is possible to suppress a decrease in reflectance in the visible light region due to light transmission or light scattering due to unevenness on the surface. .
〔6〕樹脂コート層
 樹脂コート層は、銀反射層の光入射側に設けられており、銀反射層に隣接していることが好ましい。
[6] Resin Coat Layer The resin coat layer is provided on the light incident side of the silver reflective layer, and is preferably adjacent to the silver reflective layer.
 本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を樹脂コート層に含有させることで、銀反射層と樹脂コート層との密着性を大幅に向上することができる。 By incorporating a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention into the resin coat layer, the adhesion between the silver reflective layer and the resin coat layer can be greatly improved. .
 当該樹脂コート層への芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物の含有量は、0.1~5質量%の範囲である。より好ましくは、1~5質量%の範囲である。 The content of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity in the resin coat layer is in the range of 0.1 to 5% by mass. More preferably, it is in the range of 1 to 5% by mass.
 加えて、樹脂コート層は、本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物の効果を阻害しない範囲で、腐食防止剤又は酸化防止剤を含有し、銀反射層の腐食、劣化を防止する機能が付与されていることも好ましい。 In addition, the resin coat layer contains a corrosion inhibitor or an antioxidant, as long as it does not inhibit the effect of the compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention, and reflects silver. It is also preferable that a function for preventing corrosion and deterioration of the layer is provided.
 樹脂コート層は、1層のみから構成されていても良いし、複数層から構成されていても良い。樹脂コート層の厚さは、1~10μmの範囲が好ましく、より好ましくは2~8μmの範囲である。 The resin coat layer may be composed of only one layer, or may be composed of a plurality of layers. The thickness of the resin coat layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 8 μm.
 樹脂コート層のバインダーとしては、以下の樹脂を好ましく用いることができる。例えば、セルロースエステル、ポリエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系、ポリカーボネート、ノルボルネン系、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル樹脂等を挙げることができる。中でも、耐光性の観点から紫外線に耐性の高いアクリル樹脂が好ましい。 As the binder for the resin coating layer, the following resins can be preferably used. For example, cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyethylene naphthalate, polyester, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate propionate , Cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyetherketone, polyetherketoneimide, polyamide, fluororesin, nylon, polymethyl A methacrylate, an acrylic resin, etc. can be mentioned. Among them, an acrylic resin having high resistance to ultraviolet rays is preferable from the viewpoint of light resistance.
(6-1)腐食防止剤
 腐食防止剤としては、銀に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的又は電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。
(6-1) Corrosion inhibitor The corrosion inhibitor preferably has an adsorptive group for silver. Here, “corrosion” refers to a phenomenon in which a metal (silver) is chemically or electrochemically eroded or deteriorated by an environmental material surrounding it (see JIS Z0103-2004).
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0g/mの範囲内であることが好ましい。 The optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
 銀に対する吸着性基を有する腐食防止剤としては、アミン類及びその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオール基を有する化合物、チオ尿素類、ナフタレン系の少なくとも一種又はこれらの混合物から選ばれることが望ましい。 Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a compound having a thiol group, a thiourea, a naphthalene-based compound, or a mixture thereof.
 ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。樹脂コート層に用いられるシリコーン変性樹脂としては特に限定されるものではない。 In compounds such as benzotriazole, an ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. The silicone-modified resin used for the resin coat layer is not particularly limited.
 これらの化合物については、特開2012-232538号公報段落0061~0073に記載の化合物を好ましく用いることができる。 As these compounds, compounds described in paragraphs 0061 to 0073 of JP2012-232538A can be preferably used.
 市販品の例としては、株式会社ADEKAのLA31、BASFジャパン株式会社のチヌビン234などが挙げられる。 Examples of commercially available products include LA31 from ADEKA Corporation and Tinuvin 234 from BASF Japan Corporation.
(6-2)酸化防止剤
 酸化防止能を有する腐食防止剤である酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤、ホスファイト系酸化防止剤を使用することが好ましい。また、光安定剤としてヒンダードアミン系光安定剤、ニッケル系紫外線安定剤を好ましく使用することができる。
(6-2) Antioxidant It is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant as the antioxidant that is a corrosion inhibitor having antioxidant ability. Moreover, a hindered amine light stabilizer and a nickel ultraviolet stabilizer can be preferably used as the light stabilizer.
 これらの化合物については、特開2012-232538号公報段落0046~0053に記載の化合物を好ましく用いることができる。 As these compounds, compounds described in paragraphs 0046 to 0053 of JP2012-232538A can be preferably used.
 酸化防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0g/mの範囲内であることが好ましい。 The optimum content of the antioxidant varies depending on the compound to be used, but generally it is preferably in the range of 0.1 to 1.0 g / m 2 .
〔7〕接着層
 接着層は、層同士の接着性を高める機能があるものであれば特に限定はない。図1Bに示す例においては、樹脂コート層とアクリル樹脂層との接着性を高めるために形成される。したがって、接着層は、層同士を密着する密着性、及び、銀反射層が本来有する高い反射性能を引き出すための平滑性が必要である。
[7] Adhesive layer The adhesive layer is not particularly limited as long as it has a function of enhancing the adhesion between the layers. In the example shown to FIG. 1B, it forms in order to improve the adhesiveness of a resin coat layer and an acrylic resin layer. Therefore, the adhesive layer needs to have close contact between the layers and smoothness to bring out the high reflection performance inherent in the silver reflective layer.
 接着層の厚さは、密着性、平滑性、反射材の反射率等の観点から、0.01~10μmの範囲が好ましく、より好ましくは0.1~10μmの範囲である。 The thickness of the adhesive layer is preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.1 to 10 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflective material, and the like.
 接着層が樹脂である場合、樹脂として、上記の密着性、平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独又はこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 When the adhesive layer is a resin, the resin is not particularly limited as long as it satisfies the above adhesiveness and smoothness conditions, polyester resin, urethane resin, acrylic resin, melamine resin, epoxy resin Resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like can be used alone or a mixed resin thereof. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin is preferable. It is more preferable to use a thermosetting resin mixed with a curing agent such as isocyanate. As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 また、接着層が金属酸化物である場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等を各種真空製膜法によって製膜することで接着層を形成できる。例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などによる製膜が可能である。 Further, when the adhesive layer is a metal oxide, the adhesive layer can be formed by depositing, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like by various vacuum film forming methods. For example, a film can be formed by resistance heating vacuum deposition, electron beam heating vacuum deposition, ion plating, ion beam assisted vacuum deposition, sputtering, or the like.
〔8〕アクリル樹脂層
 アクリル樹脂層は、紫外線によるフィルムミラーの劣化防止の目的で紫外線吸収剤を含有してなる層であることが好ましい。アクリル樹脂層は、樹脂基材よりも光入射側に設けられていることが好ましく、銀反射層よりも光入射側に設けられていることが好ましい。
[8] Acrylic resin layer The acrylic resin layer is preferably a layer containing an ultraviolet absorber for the purpose of preventing deterioration of the film mirror by ultraviolet rays. The acrylic resin layer is preferably provided on the light incident side with respect to the resin base material, and is preferably provided on the light incident side with respect to the silver reflecting layer.
 アクリル樹脂層は、バインダーとしてアクリル樹脂を用いた層であり、アクリル樹脂層の厚さは、1~200μmの範囲であることが好ましい。 The acrylic resin layer is a layer using an acrylic resin as a binder, and the thickness of the acrylic resin layer is preferably in the range of 1 to 200 μm.
 アクリル樹脂層としては、市販の紫外線吸収剤を含有したアクリルフィルムである、スミペックス テクノロイ S001G 75μm(住友化学株式会社製)等が好ましく用いることができる。 As the acrylic resin layer, Sumipex Technoloy S001G 75 μm (manufactured by Sumitomo Chemical Co., Ltd.), which is an acrylic film containing a commercially available ultraviolet absorber, can be preferably used.
 また、フィルムミラーに上記アクリル樹脂層を設ける以外に、樹脂基材よりも光入射側に設けられた構成層のうちのいずれか一層に紫外線吸収剤を添加し、アクリル樹脂層を兼ねるようにしてもよい。例えば、ハードコート層に紫外線吸収剤を添加することが好ましい。 Moreover, in addition to providing the acrylic resin layer on the film mirror, an ultraviolet absorber is added to any one of the constituent layers provided on the light incident side of the resin substrate so that it also serves as the acrylic resin layer. Also good. For example, it is preferable to add an ultraviolet absorber to the hard coat layer.
 紫外線吸収剤には大別して、有機系と無機系がある。
 有機系の紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられ、無機系の紫外線吸収剤としては、例えば、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等が挙げられる。中でも、ベンゾフェノン系化合物や着色の少ないベンゾトリアゾール系化合物、トリアジン系化合物が好ましい。また、特開平10-182621号公報、同8-337574号公報記載の紫外線吸収剤、特開平6-148430号公報、特開2003-113317号公報記載の高分子紫外線吸収剤を用いても良い。また、好ましく用いられる紫外線吸収剤としては、特開2012-232528号公報段落0036~0045に記載の化合物が挙げられる。
The ultraviolet absorber is roughly classified into an organic type and an inorganic type.
Examples of organic ultraviolet absorbers include benzophenone, benzotriazole, phenyl salicylate, and triazine, and inorganic ultraviolet absorbers include, for example, titanium oxide, zinc oxide, cerium oxide, and oxide. Iron etc. are mentioned. Among these, benzophenone compounds, benzotriazole compounds with little coloring, and triazine compounds are preferable. Further, ultraviolet absorbers described in JP-A Nos. 10-182621 and 8-337574, and polymer ultraviolet absorbers described in JP-A Nos. 6-148430 and 2003-113317 may be used. Examples of the ultraviolet absorber preferably used include compounds described in JP-A-2012-232528, paragraphs 0036 to 0045.
 紫外線吸収剤の含有量は、0.1~20質量%の範囲、好ましくは1~15質量%の範囲、より好ましくは3~10質量%の範囲である。これらの範囲内にすることで、他の構成層の密着性を良好に保ちつつ、耐候性を向上させることが可能となる。 The content of the ultraviolet absorber is in the range of 0.1 to 20% by mass, preferably in the range of 1 to 15% by mass, and more preferably in the range of 3 to 10% by mass. By making it within these ranges, it becomes possible to improve the weather resistance while maintaining good adhesion of the other constituent layers.
〔9〕中間層
 中間層は、アクリル樹脂層と後述するハードコート層の密着性を向上させる構成層である。
[9] Intermediate layer The intermediate layer is a constituent layer that improves the adhesion between the acrylic resin layer and a hard coat layer described later.
 この中間層は、ポリビニルアルコール樹脂、酢酸ビニル樹脂、水溶性セルロース、水ガラスのうち、少なくとも1つを含有している。ポリビニルアルコール樹脂、酢酸ビニル樹脂、水溶性セルロース、水ガラスは、反応性基としてヒドロキシ基を有している。 This intermediate layer contains at least one of polyvinyl alcohol resin, vinyl acetate resin, water-soluble cellulose, and water glass. Polyvinyl alcohol resin, vinyl acetate resin, water-soluble cellulose, and water glass have a hydroxy group as a reactive group.
 中間層の形成方法としては、例えば塗布による方法を挙げることができる。塗布方式で中間層となる塗膜を塗設する場合には、従来用いられる種々の塗布方法、例えば、スプレーコート、スピンコート、バーコート等の方法を用いることができ、ポリビニルアルコール樹脂、酢酸ビニル樹脂、水溶性セルロース、水ガラスのうち、少なくとも1つを含有している溶液を、例えばアクリル樹脂層上に塗布・塗工することで、中間層を形成することができる。 Examples of the method for forming the intermediate layer include a method by coating. When coating a coating film to be an intermediate layer by a coating method, various conventionally used coating methods such as spray coating, spin coating, bar coating, etc. can be used, such as polyvinyl alcohol resin, vinyl acetate. The intermediate layer can be formed by applying and applying a solution containing at least one of resin, water-soluble cellulose, and water glass on, for example, an acrylic resin layer.
 中間層の層厚は0.1~5μmが好ましく、特に好ましくは0.1~1μmである。 The layer thickness of the intermediate layer is preferably from 0.1 to 5 μm, particularly preferably from 0.1 to 1 μm.
 中間層が、ポリビニルアルコール樹脂、酢酸ビニル樹脂、水溶性セルロース、水ガラスのうち、少なくとも1つを含有していることで、それらとアクリル樹脂層表面の反応性基(ヒドロキシ基やカルボキシ基など)とが化学結合し、また、それらとハードコート層がポリシロキサン化合物を含有する場合は、当該化合物と化学結合することで、中間層とアクリル樹脂層の層間結合、中間層とハードコート層の層間結合がより強固な結合となる。その結果、中間層を介したアクリル樹脂層とハードコート層の密着力が向上する。 The intermediate layer contains at least one of polyvinyl alcohol resin, vinyl acetate resin, water-soluble cellulose, and water glass, so that they and reactive groups on the surface of the acrylic resin layer (hydroxy group, carboxy group, etc.) And when the hard coat layer and the hard coat layer contain a polysiloxane compound, the intermediate bond between the intermediate layer and the acrylic resin layer and the interlayer between the intermediate layer and the hard coat layer are obtained by chemically bonding with the compound. The bond becomes a stronger bond. As a result, the adhesion between the acrylic resin layer and the hard coat layer via the intermediate layer is improved.
 また、中間層がポリイソシアネートを含有することも好ましい。特に、中間層の材料として、ポリビニルアルコール樹脂及び水溶性セルロースが用いられている場合には、水分散型のポリイソシアネートが含有されていることが好ましい。 It is also preferable that the intermediate layer contains polyisocyanate. In particular, when a polyvinyl alcohol resin and water-soluble cellulose are used as the material for the intermediate layer, it is preferable that a water-dispersed polyisocyanate is contained.
 中間層が、ポリイソシアネートを含有することで、中間層とアクリル樹脂層の層間結合や、中間層とハードコート層の層間結合がより一層強化される。 When the intermediate layer contains polyisocyanate, the interlayer bond between the intermediate layer and the acrylic resin layer and the interlayer bond between the intermediate layer and the hard coat layer are further strengthened.
 また、中間層が、導電性微粒子を含有することも好ましい。中間層が、導電性微粒子を含有する場合、中間層が帯電防止層の機能を兼ねることができる。 It is also preferable that the intermediate layer contains conductive fine particles. When the intermediate layer contains conductive fine particles, the intermediate layer can also function as an antistatic layer.
〔10〕ハードコート層
 ハードコート層は、フィルムミラーの最表層に設けられる構成層(保護層)である。フィルムミラーが図1Aに示すように構成されている場合には、当該ハードコート層に、本発明に係る芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物が、0.1~5質量%の範囲で含有されていることが好ましい。
[10] Hard coat layer The hard coat layer is a constituent layer (protective layer) provided on the outermost layer of the film mirror. When the film mirror is configured as shown in FIG. 1A, a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity according to the present invention is present in the hard coat layer in an amount of 0.1 to It is preferably contained in the range of 5% by mass.
 ハードコート層の層厚は、厚すぎれば応力によって割れる危険性があり、また、ハードコート層の層厚が薄すぎれば硬度を維持できない。そのため、層厚は0.5~10μmの範囲であることが好ましく、より好ましくは、1~5μmの範囲である。 If the thickness of the hard coat layer is too thick, there is a risk of cracking due to stress, and if the thickness of the hard coat layer is too thin, the hardness cannot be maintained. Therefore, the layer thickness is preferably in the range of 0.5 to 10 μm, more preferably in the range of 1 to 5 μm.
 特に、本発明に用いられるハードコート層は、耐侯性、耐傷性、防汚性を有することが好ましい。耐傷性に関しては、ハードコート層表面の鉛筆硬度はH以上6H未満、加重500g/cmのスチールウール試験における傷が30本以下であることが好ましい。防汚性に関しては、ハードコート層の転落角が0°より大きく30°以下であれば水滴が落ちやすく防汚性に優れるため好ましい。 In particular, the hard coat layer used in the present invention preferably has weather resistance, scratch resistance, and antifouling properties. Regarding scratch resistance, it is preferable that the pencil hardness of the hard coat layer surface is H or more and less than 6H and 30 or less scratches in a steel wool test with a load of 500 g / cm 2 . Regarding the antifouling property, it is preferable that the falling angle of the hard coat layer is larger than 0 ° and not more than 30 ° because water droplets are easily dropped and the antifouling property is excellent.
 鉛筆硬度は、鉛筆硬度試験JIS-K5400に基づいて、各サンプルの45°傾斜、1kg荷重における鉛筆硬度を評価する。スチールウール試験は往復摩耗試験機(新東科学(株)製HEIDON-14DR)に摩耗材としてスチールウール(#0000)を取り付け、荷重500g/cmの条件で各撥水・防汚性物品の表面を速度10mm/secで10回往復させ、傷本数を評価する試験である。また、転落角は、接触角計DM501(協和界面化学)に滑落法キットDM‐SA01を取り付け、水50μl滴下し、支持体を水平状態から0.5°/秒の速度で傾けていき、水滴が転がり落ちるときの角度を転落角として測定する。転落角の小さい方が水滴が落ちやすく防汚性に優れ、好ましい。 The pencil hardness is evaluated based on the pencil hardness test JIS-K5400. In the steel wool test, steel wool (# 0000) was attached as a wear material to a reciprocating abrasion tester (HEIDON-14DR manufactured by Shinto Kagaku Co., Ltd.), and each water repellent / antifouling article was tested under a load of 500 g / cm 2 . In this test, the surface is reciprocated 10 times at a speed of 10 mm / sec to evaluate the number of scratches. The sliding angle was measured by attaching a sliding method kit DM-SA01 to a contact angle meter DM501 (Kyowa Interface Chemistry), dropping 50 μl of water, tilting the support from a horizontal state at a speed of 0.5 ° / second, The angle at which the rolls down is measured as the fall angle. A smaller rolling angle is preferable because water droplets can be easily dropped and have excellent antifouling properties.
(10-1)メタロキサン骨格を有するポリマー
 このハードコート層は、メタロキサン骨格を有するポリマー由来の無機酸化物又は無機窒化物を含有する層であることが好ましい。
(10-1) Polymer having a metalloxane skeleton This hard coat layer is preferably a layer containing an inorganic oxide or inorganic nitride derived from a polymer having a metalloxane skeleton.
 本発明でいうメタロキサン骨格とは、メタル原子と酸素原子との結合、すなわちM-O結合を有する骨格であり、メタロキサン骨格を有するポリマーとは、このM-O結合の繰り返しを主鎖骨格とする高分子化合物であり、高分子化する方法としては、ゾル-ゲル法が好ましい。ポリメタロキサンとしては、ポリシロキサン、ポリチタノキサン、ポリアルミノキサン、ポリジルコノキサン等が挙げられる。 The metalloxane skeleton as used in the present invention is a skeleton having a bond between a metal atom and an oxygen atom, that is, a MO bond, and a polymer having a metalloxane skeleton has a repeating main chain skeleton of this MO bond. A sol-gel method is preferable as a method for polymerizing the polymer compound. Examples of the polymetalloxane include polysiloxane, polytitanoxane, polyaluminoxane, polyzircoxane and the like.
 メタロキサン骨格を有するポリマー材料としては、ケイ素、チタン、ジルコニウム、アルミニウム等のポリメトキサン、又はポリシラザン、パーヒドロポリシラザン、アルコキシシラン、アルキルアルコキシシラン、ポリシロキサン等を挙げることができる。好ましくは、ケイ素、アルミニウム、ジルコニウム及びチタンから選ばれる少なくとも1種の元素を含むメタロキサン骨格を有するポリマーである。 Examples of the polymer material having a metalloxane skeleton include polymethoxane such as silicon, titanium, zirconium, and aluminum, or polysilazane, perhydropolysilazane, alkoxysilane, alkylalkoxysilane, and polysiloxane. Preferably, it is a polymer having a metalloxane skeleton containing at least one element selected from silicon, aluminum, zirconium and titanium.
 本発明に係るメタロキサン骨格を有するバインダーとしては、金属アルコキシドから形成されたポリメタロキサンから構成されるポリシロキサン、ポリチタノキサン、ポリアルミノキサン、ポリジルコノキサンであることが好ましい。金属アルコキシドは、Si(OC、Al(OC、Ti(OCH、Ti(OC、Ti(iso-OC、Ti(OC、Zr(OC、Zr(iso-OC、Zr(OC等の単一金属アルコキシドが挙げられる。 The binder having a metalloxane skeleton according to the present invention is preferably a polysiloxane, a polytitanoxane, a polyaluminoxane, or a polyzirconoxane composed of a polymetalloxane formed from a metal alkoxide. Metal alkoxides include Si (OC 2 H 5 ) 4 , Al (OC 2 H 5 ) 4 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (iso-OC 3 H 7 ) 4 , Ti Examples thereof include single metal alkoxides such as (OC 4 H 9 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (iso-OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 .
 上記の中でも、好ましくは、ポリシロキサンであり、特に好ましくは、下記一般式(1)で表されるポリシロキサンである。これらのメタロキサン骨格を含む材料を塗布乾燥して最表層を形成することが好ましい。また、最表層はゾル-ゲル法を用いた熱硬化反応によって形成されることが好ましい。 Among the above, polysiloxane is preferable, and polysiloxane represented by the following general formula (1) is particularly preferable. It is preferable to form the outermost layer by applying and drying a material containing these metalloxane skeletons. The outermost layer is preferably formed by a thermosetting reaction using a sol-gel method.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、R11及びR12は、互いに同一であっても異なっていても良く、水素原子又はアルキル基若しくはアリール基等の有機基を表す。pは繰り返し単位を表す。 In the general formula (1), R 11 and R 12 may be the same as or different from each other, and represent a hydrogen atom or an organic group such as an alkyl group or an aryl group. p represents a repeating unit.
 また、ポリシロキサンとしては、例えば、以下のいずれかを用いても良い。テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトキエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン等の加水分解性シリル基を有するシラン化合物の部分加水分解物や、有機溶媒中に無水ケイ酸の微粒子を安定に分散させたオルガノシリカゾル、又はオルガノシリカゾルにラジカル重合性を有する上記シラン化合物を付加させたもの等を使用することができる。ただし、これに限られるものではない。 Also, as the polysiloxane, for example, any of the following may be used. Tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltoxethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycyl Sidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyl Partial hydrolysates of silane compounds having hydrolyzable silyl groups such as methyldiethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropylmethyldimethoxysilane , It can be used such as those obtained by adding the silane compound having a radical polymerizable organo silica sol, or organosilica sol fine particles of silicic anhydride was stably dispersed in an organic solvent. However, the present invention is not limited to this.
 上記バインダーは、ゾル-ゲル法を用いた熱硬化反応によって無機酸化物が形成される方法を適用することが好ましい。 The binder is preferably applied by a method in which an inorganic oxide is formed by a thermosetting reaction using a sol-gel method.
 ゾル-ゲル法は、無機酸化物の前駆体である有機金属化合物から無機酸化物を形成する方法である。すなわち、有機金属化合物の一種である金属アルコキシドを出発物質とし、その溶液を加水分解、縮重合させゾルを形成した後、空気中の水分などによって更に反応を進めてゲル化させることによって、固体の無機酸化物が得られる。例えば、シリカガラス膜の形成過程では、ケイ素の金属アルコキシドであるテトラエトキシシラン(Si(OC)を用いる場合、テトラエトキシシランをアルコール等の溶媒に溶解し、酸等の触媒と少量の水を加えて十分に混合することにより下記の反応式に従い液状のポリシロキサン・ゾルが形成される。 The sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide. That is, using a metal alkoxide, which is a kind of organometallic compound, as a starting material, the solution is hydrolyzed and subjected to polycondensation to form a sol. An inorganic oxide is obtained. For example, in the process of forming a silica glass film, when tetraethoxysilane (Si (OC 2 H 5 ) 4 ), which is a metal alkoxide of silicon, is used, tetraethoxysilane is dissolved in a solvent such as alcohol, and a catalyst such as an acid is used. By adding a small amount of water and mixing well, a liquid polysiloxane sol is formed according to the following reaction formula.
 加水分解反応
   Si(OC+4HO→Si(OH)+4COH
 脱水縮合反応
   nSi(OH)→[SiO]n+2nH
Hydrolysis reaction Si (OC 2 H 5 ) 4 + 4H 2 O → Si (OH) 4 + 4C 2 H 5 OH
Dehydration condensation reaction nSi (OH) 4 → [SiO 2 ] n + 2nH 2 O
 ポリシロキサン・ゾルを、樹脂基材に塗布して乾燥させると、溶媒や反応によって生じたエチルアルコール(COH)と水の蒸発に伴いゾルの体積が収縮し、その結果、隣り合うポリマー末端の残留OH基同士が脱水縮合反応を起こして結合し、塗膜はゲル(固化体)となる。更に、得られたゲル被膜を焼成して、ポリシロキサン粒子同士の結合を強化すると、強度の強いゲル被膜を得ることができる。 When a polysiloxane sol is applied to a resin substrate and dried, the volume of the sol shrinks with the evaporation of water and ethyl alcohol (C 2 H 5 OH) generated by the solvent and reaction. Residual OH groups at the ends of the polymer undergo a dehydration condensation reaction and are bonded, and the coating film becomes a gel (solidified body). Furthermore, when the obtained gel film is baked to strengthen the bond between the polysiloxane particles, a strong gel film can be obtained.
 ゾル-ゲル法において、上記した有機金属化合物は、そのまま反応に用いても良いが、反応の制御を容易にするため溶媒で希釈して用いることが好ましい。希釈用溶媒は、有機金属化合物を溶解することができ、かつ水と均一に混合することができるものであれば良い。そのような希釈用溶媒としては、脂肪族の低級アルコール、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、プロピレングリコール、及びそれらの混合物が好適に挙げられる。また、ブタノールとセロソルブとブチルセロソルブの混合溶媒、あるいはキシロールとセロソルブアセテートとメチルイソブチルケトンとシクロヘキサンの混合溶媒などを使用することもできる。 In the sol-gel method, the above-described organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction. The diluting solvent may be any solvent that can dissolve the organometallic compound and can be uniformly mixed with water. Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof. Further, a mixed solvent of butanol, cellosolve, and butyl cellosolve, or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
 また、好ましいハードコート層の形成方法として、ポリシラザンを塗布製膜し、50~200℃程度の温度で加熱硬化して硬化膜を得る方法がある。ハードコート層の前駆体が、ポリシラザンを含有する場合、例えば下記の一般式(2)で表されるポリシラザンを含む有機溶剤中に必要に応じて触媒を加えた溶液を塗布した後、溶剤を蒸発させて除去し、それによってフィルムミラーF上に0.05~3.0μmの範囲の層厚を有するポリシラザン層を残す。そして、水蒸気を含む雰囲気中で酸素、活性酸素、場合によっては窒素の存在下で、上記のポリシラザン層を局所的に加熱することによって、フィルムミラーF上にガラス様の透明なハードコートの被膜を形成することができる。 In addition, as a preferable method for forming a hard coat layer, there is a method in which polysilazane is coated and formed, and is cured by heating at a temperature of about 50 to 200 ° C. to obtain a cured film. When the precursor of the hard coat layer contains polysilazane, for example, after applying a solution to which a catalyst is added if necessary in an organic solvent containing polysilazane represented by the following general formula (2), the solvent is evaporated. The polysilazane layer having a layer thickness in the range of 0.05 to 3.0 μm is left on the film mirror F. Then, a glass-like transparent hard coat film is formed on the film mirror F by locally heating the polysilazane layer in the presence of oxygen, active oxygen, and in some cases nitrogen in an atmosphere containing water vapor. Can be formed.
 一般式(2)
  -(SiR-NR
General formula (2)
-(SiR 1 R 2 -NR 3 ) n-
 一般式(2)中、R、R及びRは、互いに同一であっても異なっていても良く、互いに独立して、水素原子、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基、好ましくは、水素原子、メチル基、エチル基、プロピル基、iso-プロピル基、ブチル基、iso-ブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリルプロピル)基からなる群から選択される基を表す。この際、nは整数であり、nは、ポリシラザンが150~150000g/モルの範囲の数平均分子量を有するように定められる。 In the general formula (2), R 1 , R 2 and R 3 may be the same or different from each other, and are independently of each other a hydrogen atom, or an optionally substituted alkyl group, aryl group, Vinyl group or (trialkoxysilyl) alkyl group, preferably hydrogen atom, methyl group, ethyl group, propyl group, iso-propyl group, butyl group, iso-butyl group, tert-butyl group, phenyl group, vinyl group, It represents a group selected from the group consisting of a 3- (triethoxysilyl) propyl group and a 3- (trimethoxysilylpropyl) group. In this case, n is an integer, and n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
 触媒としては、好ましくは、塩基性触媒、特にN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン又はN-複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1~10モル%の範囲、好ましくは0.5~7モル%の範囲である。 As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. . The catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably in the range of 0.5 to 7 mol%, based on polysilazane.
 なお、好ましい態様の一つでは、一般式(2)中のR、R及びRの全てが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one preferred embodiment, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (2) are hydrogen atoms is used.
 また、別の好ましい態様の一つでは、本発明におけるハードコート層は、下記の一般式(3)で表される少なくとも一種のポリシラザンを含む。 In another preferred embodiment, the hard coat layer in the present invention contains at least one polysilazane represented by the following general formula (3).
 一般式(3)
  -(SiR-NR-(SiR-NR
General formula (3)
-(SiR 1 R 2 -NR 3 ) n- (SiR 4 R 5 -NR 6 ) p-
 一般式(3)中、R、R、R、R、R及びRは、互いに独立して、水素原子、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n及びpは整数であり、特にnは、ポリシラザンが150~150000g/モルの範囲の数平均分子量を有するように定められる。 In the general formula (3), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group or Represents a (trialkoxysilyl) alkyl group. In this case, n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
 特に好ましいものは、R、R及びRが水素原子を表し、R、R及びRがメチル基を表す化合物である。また、特に好ましいものは、R、R及びRが水素原子を表し、R及びRがメチル基を表し、Rがビニル基を表す化合物である。また、特に好ましいものは、R、R、R及びRが水素原子を表し、R及びRがメチル基を表す化合物である。 Particularly preferred are compounds in which R 1 , R 3 and R 6 represent a hydrogen atom, and R 2 , R 4 and R 5 represent a methyl group. Particularly preferred are compounds in which R 1 , R 3 and R 6 represent a hydrogen atom, R 2 and R 4 represent a methyl group, and R 5 represents a vinyl group. Particularly preferred are compounds in which R 1 , R 3 , R 4 and R 6 represent a hydrogen atom and R 2 and R 5 represent a methyl group.
 更に、別の好ましい態様の一つでは、本発明におけるハードコート層は、下記の一般式(4)で表される少なくとも一種のポリシラザンを含む。 Furthermore, in another preferred embodiment, the hard coat layer in the present invention contains at least one polysilazane represented by the following general formula (4).
 一般式(4)
  -(SiR-NR-(SiR-NR-(SiR-NR
General formula (4)
-(SiR 1 R 2 -NR 3 ) n- (SiR 4 R 5 -NR 6 ) p- (SiR 7 R 8 -NR 9 ) q-
 一般式(4)中、R、R、R、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n、p及びqは整数であり、特にnは、ポリシラザンが150~150000g/モルの範囲の数平均分子量を有するように定められる。 In general formula (4), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of each other hydrogen or optionally substituted alkyl. Represents a group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, n, p and q are integers, and in particular, n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
 特に好ましいものは、R、R及びRが水素原子を表し、R、R、R及びRがメチル基を表し、Rが(トリエトキシシリル)プロピル基を表し、そしてRがアルキル基又は水素原子を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 represent a hydrogen atom, R 2 , R 4 , R 5 and R 8 represent a methyl group, R 9 represents a (triethoxysilyl) propyl group, and R 7 is a compound representing an alkyl group or a hydrogen atom.
 溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1~80質量%の範囲、好ましくは5~50質量%の範囲、特に好ましくは10~40質量%の範囲である。 The ratio of polysilazane in the solvent is generally in the range of 1 to 80% by mass of polysilazane, preferably in the range of 5 to 50% by mass, particularly preferably in the range of 10 to 40% by mass.
 溶剤としては、特に、水及び反応性基(例えばヒドロキシ基又はアミン基)を含まず、ポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族又は芳香族炭化水素、ハロゲン炭化水素、エステル(例えば、酢酸エチル又は酢酸ブチル)、ケトン(例えば、アセトン又はメチルエチルケトン)、エーテル(例えば、テトラヒドロフラン又はジブチルエーテル)、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)又はこれらの溶剤からなる混合物である。 As the solvent, in particular, an organic solvent which does not contain water and a reactive group (for example, a hydroxy group or an amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters (eg ethyl acetate or butyl acetate), ketones (eg acetone or methyl ethyl ketone), ethers (eg tetrahydrofuran or dibutyl ether), mono- and Polyalkylene glycol dialkyl ether (diglymes) or a mixture of these solvents.
 ハードコート層の表面の水の接触角は、80~170°の範囲であることが好ましい。好ましくは90~150°の範囲である。また、ハードコート層の表面の動摩擦係数が0.10~0.35の範囲であることが好ましい。 The contact angle of water on the surface of the hard coat layer is preferably in the range of 80 to 170 °. The range is preferably 90 to 150 °. Further, the dynamic friction coefficient of the hard coat layer surface is preferably in the range of 0.10 to 0.35.
 例えば、ハードコート層にフッ素化合物、ケイ素化合物、フッ素又はケイ素を含有させることにより、ハードコート層の表面の水の接触角が80~170°の範囲とするようにしても良い。より具体的には、フッ素化合物及びケイ素化合物の混合ガス、またフッ素及びケイ素を有する化合物を用いた蒸着により、表面エネルギーを低くし、ハードコート層の水の接触角を80~170°の範囲とすることができる。 For example, the hard coat layer may contain a fluorine compound, a silicon compound, fluorine or silicon so that the contact angle of water on the surface of the hard coat layer is in the range of 80 to 170 °. More specifically, the surface energy is lowered by vapor deposition using a mixed gas of a fluorine compound and a silicon compound, or a compound having fluorine and silicon, and the water contact angle of the hard coat layer is in the range of 80 to 170 °. can do.
 また、ハードコート層は耐傷性を向上するために、動摩擦係数が0.10~0.35の範囲であることが好ましく、より好ましくは0.15~0.30の範囲の範囲である。 Also, the hard coat layer preferably has a dynamic friction coefficient in the range of 0.10 to 0.35, more preferably in the range of 0.15 to 0.30, in order to improve the scratch resistance.
 メタロキサン骨格を有する材料をハードコート層に用いることで、フィルム表面同士の動摩擦係数を0.10~0.35の範囲にすることが可能となる。 By using a material having a metalloxane skeleton for the hard coat layer, the coefficient of dynamic friction between the film surfaces can be in the range of 0.10 to 0.35.
(10-2)紫外線吸収剤
 ハードコート層は、紫外線吸収剤を含有していることも好ましい。
(10-2) Ultraviolet Absorber The hard coat layer preferably contains an ultraviolet absorber.
 有機系の紫外線吸収剤としては、前述のアクリル樹脂層に用いられるベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられる。 Examples of organic ultraviolet absorbers include benzophenone-based, benzotriazole-based, phenyl salicylate-based, and triazine-based materials used in the above-described acrylic resin layer.
 また無機系の紫外線吸収剤としては、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等の金属酸化物粒子が挙げられる。 In addition, examples of the inorganic ultraviolet absorber include metal oxide particles such as titanium oxide, zinc oxide, cerium oxide, and iron oxide.
 特に、ハードコート層は、250~300nmの範囲に吸収極大波長を有する紫外線吸収剤を含有していることが好ましい。このような紫外線吸収剤を含有しているハードコート層は、中間層との界面の劣化が抑制されて、ハードコート層と中間層の密着力を長期に亘って維持でき、ハードコート層の耐久性を向上させることができる。 Particularly, the hard coat layer preferably contains an ultraviolet absorber having an absorption maximum wavelength in the range of 250 to 300 nm. The hard coat layer containing such an ultraviolet absorber suppresses the deterioration of the interface with the intermediate layer, and can maintain the adhesion between the hard coat layer and the intermediate layer over a long period of time. Can be improved.
(10-3)ハードコート層に含有される無機微粒子
 本発明に係るハードコート層は、耐傷性や滑り性を向上させる観点から微粒子を含有することも好ましい。微粒子としては、特に制限はないが、無機酸化物から構成される無機微粒子であることが好ましく、無機酸化物微粒子としては、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi等を挙げることができ、具体的には、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化インジウム、酸化錫、酸化鉛等が挙げられるが、本発明においては、無機酸化物微粒子が、シリカ、アルミナ、酸化チタン、酸化亜鉛及び酸化ジルコニウムから選ばれる少なくとも1種の透明な無機酸化物微粒子であることが好ましい。また、本発明に用いられる微粒子は、透明性が高いことが好ましい。
(10-3) Inorganic fine particles contained in hard coat layer The hard coat layer according to the present invention preferably contains fine particles from the viewpoint of improving scratch resistance and slipperiness. The fine particles are not particularly limited, but are preferably inorganic fine particles composed of an inorganic oxide. As the inorganic oxide fine particles, the metal constituting the metal oxide is Li, Na, Mg, Al, Si. , K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba La, Ta, Hf, W, Ir, Tl, Pb, Bi, etc., specifically, silicon oxide, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide, hafnium oxide, niobium oxide, oxidation Examples include tantalum, magnesium oxide, calcium oxide, strontium oxide, barium oxide, indium oxide, tin oxide, and lead oxide. In the present invention, inorganic oxide fine particles are , Alumina, titanium oxide, is preferably at least one of the transparent inorganic oxide fine particles selected from zinc oxide and zirconium oxide. The fine particles used in the present invention preferably have high transparency.
 また、微粒子の平均粒径は、10~180nmの範囲であることが、表面の二乗平均平方根粗さRqを5~50nmの範囲に制御することができる観点から好ましく、更に好ましくは、10~100nmの範囲である。 The average particle diameter of the fine particles is preferably in the range of 10 to 180 nm, from the viewpoint that the root mean square roughness Rq of the surface can be controlled in the range of 5 to 50 nm, and more preferably 10 to 100 nm. Range.
 平均粒径が10nm以上であれば、二乗平均平方根粗さRqを5nm以上とすることができ、十分な表面粗さを確保することができる。また、平均粒径が180nm以下であれば、二乗平均平方根粗さRqを50nm以下とすることができ、かつフィルムの透明性を損なうことがない。 If the average particle diameter is 10 nm or more, the root mean square roughness Rq can be 5 nm or more, and a sufficient surface roughness can be ensured. Moreover, if an average particle diameter is 180 nm or less, the root mean square roughness Rq can be 50 nm or less, and the transparency of a film is not impaired.
 また、本発明に係るハードコート層においては、上記メタロキサン骨格を有するバインダーを100質量%としたときの微粒子の割合としては、30~90質量%の範囲であることが好ましい。 In the hard coat layer according to the present invention, the proportion of fine particles when the binder having the metalloxane skeleton is 100% by mass is preferably in the range of 30 to 90% by mass.
(10-4)ハードコート層の形成
 上記した樹脂材料を、樹脂基材上に設けた中間層上に塗工し、加熱硬化させることで、脱水縮合反応が促進し、硬化・架橋することでハードコート層が製膜される。
(10-4) Formation of hard coat layer The above-mentioned resin material is applied on an intermediate layer provided on a resin base material and cured by heating, whereby the dehydration condensation reaction is promoted and cured / crosslinked. A hard coat layer is formed.
 このハードコート層となる塗膜の形成方法として、ワイヤーバーによるコーティング、スピンコーティング、ディップコーティングなどによる塗布・塗工方式で形成することができる。また、ダイコーター、グラビアコーター、コンマコーターなどの連続塗布装置でも製膜することが可能である。 As a method for forming a coating film to be the hard coat layer, it can be formed by a coating method using a wire bar coating, spin coating, dip coating, or the like. The film can also be formed by a continuous coating apparatus such as a die coater, a gravure coater, or a comma coater.
〔11〕ガスバリアー層
 本発明のフィルムミラーでは、必要であればガスバリアー層を形成することが好ましく、図1Bに示すように、ガスバリアー層11としてフィルムミラーを構成していることが好ましい。
[11] Gas Barrier Layer In the film mirror of the present invention, it is preferable to form a gas barrier layer if necessary, and it is preferable that a film mirror is formed as the gas barrier layer 11 as shown in FIG. 1B.
 ガスバリアー層は、銀反射層よりも光入射側に設けることが好ましい。 The gas barrier layer is preferably provided on the light incident side with respect to the silver reflective layer.
 ガスバリアー層は、湿度の変動、特に高湿度による樹脂基材及び樹脂基材に支持される各構成層等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであっても良く、劣化防止機能を有する限りにおいて、種々の態様のガスバリアー層を設けることができる。 The gas barrier layer is intended to prevent the deterioration of humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but with special functions and applications. As long as it has a function of preventing deterioration, various types of gas barrier layers can be provided.
 ガスバリアー層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下であることが好ましく、より好ましくは0.5g/m・day以下、更に好ましくは0.2g/m・day以下である。 As the moisture resistance of the gas barrier layer, the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 · day or less, more preferably 0.5 g / m 2 · day or less, still more preferably It is 0.2 g / m 2 · day or less.
 また、ガスバリアー層の酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 In addition, the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
 ガスバリアー層の形成方法は、真空蒸着法、スパッタリング、イオンビームアシスト、化学気相成長法等の方法により無機酸化物又は無機窒化物を形成する方法が挙げられるが、ゾル-ゲル法による無機酸化物の前駆体(ポリシラザン等)を塗布した後に、その塗布膜に加熱処理及び/又は紫外線照射処理を施して、無機酸化物膜を形成する方法が好ましく用いられる。 Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide or an inorganic nitride by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, etc., but inorganic oxidation by a sol-gel method is possible. A method of forming an inorganic oxide film by applying a heat treatment and / or ultraviolet irradiation treatment to the coating film after applying a precursor of the product (polysilazane or the like) is preferably used.
 無機酸化物の前駆体、及びゾル-ゲル法の詳細については、特開2012-047861号公報の段落0049~0072に記載され、ポリシラザン法については、同文献の段落0073~0085に記載されている。 Details of the precursor of the inorganic oxide and the sol-gel method are described in paragraphs 0049 to 0072 of JP2012-047661A, and the polysilazane method is described in paragraphs 0073 to 0085 of the same document. .
〔12〕粘着層
 粘着層は、フィルムミラーを金属基材に接着し、固定するための構成層である。
[12] Adhesive layer The adhesive layer is a constituent layer for adhering and fixing the film mirror to the metal substrate.
 この粘着層としては、フィルムミラーを金属基材に接着することができるものであれば特に制限されず、例えばドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤などを用いることができる。また、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴムなどを用いても良い。 The adhesive layer is not particularly limited as long as it can adhere a film mirror to a metal substrate. For example, a dry laminating agent, a wet laminating agent, an adhesive, a heat sealing agent, a hot melt agent, or the like is used. Can do. Further, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, or the like may be used.
 樹脂基材の裏面に粘着層を設けるラミネート方法は特に制限されず、例えばロール式で連続的に行う方法が経済性及び生産性の点から好ましい。 The laminating method in which the adhesive layer is provided on the back surface of the resin base material is not particularly limited, and for example, a roll-type continuous method is preferable from the viewpoint of economy and productivity.
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~50μm程度の範囲であることが好ましい。 The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed and the like.
 粘着層に用いられる具体的な材料としては、例えば、綜研化学社製「SKダインシリーズ」、東洋インキ社製Oribain BPWシリーズ、BPSシリーズ、荒川化学社製「アルコン」「スーパーエステル」「ハイペール」等の粘着剤を好適に用いることができる。 Specific materials used for the adhesive layer include, for example, “SK Dyne Series” manufactured by Soken Chemical Co., Ltd., “Oribain BPW Series”, “BPS Series” manufactured by Toyo Ink Co., Ltd., “Arcon” “Superester” “High Pale” manufactured by Arakawa Chemical Co., Ltd. The pressure-sensitive adhesive can be suitably used.
 なお、フィルムミラーを金属基材に接着するまで、粘着層は後述する剥離層で覆われており、粘着層の粘着力を保つようになっている。 In addition, until the film mirror is bonded to the metal substrate, the pressure-sensitive adhesive layer is covered with a release layer, which will be described later, so that the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer is maintained.
 粘着層には前述の腐食防止剤である、アミン類及びその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、メルカプト基を有する化合物、チオ尿素類、ナフタレン系の少なくとも一種又はこれらの混合物を含有させることも好ましい。 In the adhesive layer, the aforementioned corrosion inhibitors, amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring It is also preferable to contain a compound having an indazole ring, a copper chelate compound, a compound having a mercapto group, a thiourea, a naphthalene-based compound, or a mixture thereof.
〔13〕剥離層
 本発明のフィルムミラーは、粘着層の光入射側と逆側に剥離層を有していても良い。例えば、フィルムミラーの出荷時には剥離層が粘着層に張り付けられた状態で出荷し、剥離層から粘着層を有するフィルムミラーを剥離し、他の基材に貼り合わせて太陽熱発電用反射装置を形成することができる。
[13] Release layer The film mirror of the present invention may have a release layer on the side opposite to the light incident side of the adhesive layer. For example, when a film mirror is shipped, the film is shipped with the release layer attached to the adhesive layer, the film mirror having the adhesive layer is peeled from the release layer, and is bonded to another substrate to form a solar power generation reflection device. be able to.
 剥離層としては、銀反射層を保護することができれば良く、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂をコーティングしたりアルミニウム等の金属を金属蒸着などの表面加工を施した樹脂フィルム又はシートが用いられる。 The release layer only needs to protect the silver reflective layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or sheet, a fluorine film, etc. Plastic film or sheet, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., coating the resin kneaded with these, or surface treatment such as metal deposition of metal such as aluminum A resin film or sheet is used.
 剥離層の厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the release layer is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 また、これらの剥離層をフィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せても良く、貼り合せた後で凹部や凸部を有するように成形しても良く、貼り合わせと凹部や凸部を有するように成形することを同時にしても良い。 In addition, it may be bonded after providing a concave portion or a convex portion before bonding these release layers to the film mirror, and may be formed to have a concave portion or a convex portion after bonding. It may be simultaneously performed to have a concave portion or a convex portion.
〔14〕太陽熱発電用反射装置
 太陽熱発電用反射装置は、フィルムミラーと自己支持性の支持基材とを有しており、粘着層を介してフィルムミラーが支持基材に接合されてなる反射鏡である。
[14] Reflector for solar thermal power generation The reflective device for solar thermal power generation includes a film mirror and a self-supporting supporting base material, and the reflecting mirror is formed by bonding the film mirror to the supporting base material via an adhesive layer. It is.
 なお、ここでいう「自己支持性」とは、太陽熱発電用反射装置の支持基材として用いられる大きさに断裁された状態で、支持基材がフィルムミラーの端縁部分を支持することで、フィルムミラーを担持することが可能な程度の剛性を有することを表す。太陽熱発電用反射装置の支持基材が自己支持性を有することで、太陽熱発電用反射装置を設置する際に取り扱い性に優れるとともに、太陽熱発電用反射装置を保持するための保持部材を簡素な構成とすることが可能となるため、反射装置自体を軽量化することが可能となり、太陽追尾の際の消費電力を抑制することが可能となる。 In addition, the "self-supporting property" referred to here is a state in which the supporting base material supports the edge portion of the film mirror in a state of being cut to a size used as a supporting base material for the solar power generation reflection device, This means that the film mirror has rigidity enough to support the film mirror. The support base material of the solar power generation reflecting device has self-supporting properties, so that it is easy to handle when installing the solar power generation reflecting device, and the holding member for holding the solar power generation reflecting device has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device itself, and it is possible to suppress power consumption during solar tracking.
 太陽熱発電用反射装置Rは、例えば、図2に示すように、フィルムミラーFと、支持部材としての金属基材1とから構成されている。具体的には、フィルムミラーFの粘着層2を金属基材1に接着させて、太陽熱発電用反射装置Rが形成されている。 The solar power generation reflecting device R includes, for example, a film mirror F and a metal substrate 1 as a support member, as shown in FIG. Specifically, the reflective layer R for solar power generation is formed by bonding the adhesive layer 2 of the film mirror F to the metal substrate 1.
(14-1)金属基材
 金属基材は、貼付されたフィルムミラーを支持し、フィルムミラーの反射面を好適に維持するための支持部材である。
(14-1) Metal Substrate The metal substrate is a support member for supporting the attached film mirror and preferably maintaining the reflecting surface of the film mirror.
 太陽熱発電用反射装置の金属基材としては、例えば、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板などの金属材料を用いることができる。本発明においては、特に耐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などを用いることが好ましい。 As a metal substrate of the solar power generation reflector, for example, a metal material such as a steel plate, a copper plate, an aluminum plate, an aluminum-plated steel plate, an aluminum-based alloy-plated steel plate, a copper-plated steel plate, a tin-plated steel plate, a chrome-plated steel plate, or a stainless steel plate. Can be used. In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate, or the like having good corrosion resistance.
 これらの金属基材の厚みは、取扱性、熱伝導性、熱容量等の観点から、0.05mm~3mm程度が好ましい。 The thickness of these metal base materials is preferably about 0.05 mm to 3 mm from the viewpoints of handleability, thermal conductivity, heat capacity, and the like.
(14-2)保持部材
 太陽熱発電用反射装置は、フィルムミラーを保持する保持部材を有する。保持部材は、太陽を追尾可能な状態でフィルムミラーを保持することが好ましい。保持部材の形態としては、特に制限されないが、例えば、フィルムミラーが所望の形状を保持できるように、複数個所を棒状の保持部材により、保持する形態が好ましい。保持部材は太陽を追尾可能な状態でフィルムミラーを保持する構成を有するが、太陽追尾に際しては、手動で駆動させても良いし、別途駆動装置を設けて自動的に太陽を追尾する構成としても良い。
(14-2) Holding Member The solar power generation reflection device has a holding member that holds the film mirror. The holding member preferably holds the film mirror in a state where the sun can be tracked. The form of the holding member is not particularly limited. For example, a form in which a plurality of places are held by rod-like holding members so that the film mirror can hold a desired shape is preferable. The holding member has a configuration for holding the film mirror in a state in which the sun can be tracked. However, when the sun is tracked, the holding member may be driven manually, or a separate driving device may be provided to automatically track the sun. good.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 ここで、以下に説明する実施例で用いられる化合物の構造を以下に示す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
Here, the structures of the compounds used in the examples described below are shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
《フィルムミラー1の作製》
 樹脂基材3として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、下記化合物(1)を真空蒸着法によりコーティングして、厚さ0.1μmのアンカー層4を形成し、アンカー層4上に、銀反射層5として、真空蒸着法により厚さ100nmの銀反射層を形成した。更に、上記銀反射層5上に、下記化合物(1)を真空蒸着法によりコーティングして、厚さ0.3μmの樹脂コート層6を形成した。
<< Production of Film Mirror 1 >>
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used as the resin substrate 3. The following compound (1) is coated on one side of the polyethylene terephthalate film by a vacuum deposition method to form an anchor layer 4 having a thickness of 0.1 μm, and a silver reflective layer 5 is formed on the anchor layer 4 by a vacuum deposition method. Thus, a silver reflective layer having a thickness of 100 nm was formed. Further, the following compound (1) was coated on the silver reflective layer 5 by a vacuum vapor deposition method to form a resin coat layer 6 having a thickness of 0.3 μm.
 次に、樹脂コート層6上に、ドライラミネーションプロセスにより、接着層7と、アクリル樹脂層8として透明アクリルフィルム(三菱レイヨン製アクリプレンHBS010P 厚さ100μm)を、ラミネート温度60℃にて貼合した。 Next, on the resin coat layer 6, a transparent acrylic film (Mitsubishi Rayon acrylene HBS010P, thickness 100 μm) as an acrylic resin layer 8 was bonded at a laminating temperature of 60 ° C. by a dry lamination process.
 前記アクリル樹脂層8のドライラミネーションプロセスの前に、アクリル樹脂層8上に、PVA-403(クラレ株式会社製)を水に5質量%溶解した中間層塗工液を塗布し、80℃で2分乾燥して中間層9を形成した。中間層9の乾燥層厚は0.5μmであった。 Prior to the dry lamination process of the acrylic resin layer 8, an intermediate layer coating solution in which 5 mass% of PVA-403 (manufactured by Kuraray Co., Ltd.) was dissolved in water was applied on the acrylic resin layer 8. The intermediate layer 9 was formed by partial drying. The dry thickness of the intermediate layer 9 was 0.5 μm.
 塗布液として下記組成のハードコート層用塗布液を調製し、前記中間層9上に、ハードコート層用塗布液を硬化後の層厚が3μmとなるようにマイクログラビアコーターを用いて塗布し、溶剤を蒸発乾燥後、高圧水銀灯を用いて0.2J/cmの紫外線照射により硬化させハードコート層10を形成した。ハードコート層10は、ドライラミネーションプロセス後に最外層となる位置に積層する。 A hard coat layer coating solution having the following composition was prepared as the coating solution, and the hard coat layer coating solution was applied onto the intermediate layer 9 using a microgravure coater so that the layer thickness after curing was 3 μm. After evaporating and drying the solvent, the hard coat layer 10 was formed by curing with 0.2 J / cm 2 ultraviolet irradiation using a high-pressure mercury lamp. The hard coat layer 10 is laminated at a position that becomes the outermost layer after the dry lamination process.
〈ハードコート層用塗布液〉
 ジペンタエリスリトールヘキサアクリレート             70質量部
 トリメチロールプロパントリアクリレート              30質量部
 光反応開始剤(イルガキュア184(BASFジャパン社製))     4質量部
 酢酸エチル                           150質量部
 プロピレングリコールモノメチルエーテル             150質量部
 シリコン化合物(BYK-307(ビックケミージャパン社製))  0.4質量部
<Coating liquid for hard coat layer>
Dipentaerythritol hexaacrylate 70 parts by weight Trimethylolpropane triacrylate 30 parts by weight Photoreaction initiator (Irgacure 184 (BASF Japan)) 4 parts by weight Ethyl acetate 150 parts by weight Propylene glycol monomethyl ether 150 parts by weight Silicon compound (BYK- 307 (manufactured by Big Chemie Japan)) 0.4 parts by mass
 次いで重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、剥離層12である厚さ25μmのポリエステル製セパレートフィルムの片面に塗布し、130℃で5分間加熱して厚さ25μmのシリコーン系粘着層2(Si系)を形成した後、上記ポリエチレンテレフタレートフィルムのアンカー層4及び銀反射層5とは反対面側にラミネートし、比較例のフィルムミラー1を得た。 Next, one side of a 25 μm thick polyester separate film as a release layer 12 was prepared by adding 1 part of a platinum catalyst to 100 parts of an addition reaction type silicone pressure-sensitive adhesive having a weight average molecular weight of 500,000 to form a 35 mass% toluene solution. After coating at 130 ° C. for 5 minutes to form a 25 μm-thick silicone adhesive layer 2 (Si-based), the polyethylene terephthalate film is laminated on the side opposite to the anchor layer 4 and the silver reflective layer 5. And the film mirror 1 of the comparative example was obtained.
《フィルムミラー2~11の作製》
 フィルムミラー1の作製において、アンカー層4及び樹脂コート層6に用いられる化合物を、表2に記載の化合物に変更した以外は同様にして、フィルムミラー2~11を作製した。
<< Production of film mirrors 2 to 11 >>
Film mirrors 2 to 11 were produced in the same manner except that the compounds used in the anchor layer 4 and the resin coat layer 6 were changed to the compounds shown in Table 2 in the production of the film mirror 1.
《フィルムミラー1~11の評価》
 上記のように作製したフィルムミラー1~11について、下記の方法に従って、腐食耐性、耐光性、銀反射層と樹脂コート層間、又は銀反射層とアンカー層間の密着性、クラックの発生について評価した。評価結果を下記表2に示す。
<< Evaluation of film mirrors 1 to 11 >>
The film mirrors 1 to 11 produced as described above were evaluated for corrosion resistance, light resistance, adhesion between the silver reflective layer and the resin coat layer or between the silver reflective layer and the anchor layer, and generation of cracks according to the following methods. The evaluation results are shown in Table 2 below.
〈腐食耐性〉
 作製したフィルムミラーを5cm□に断栽後、5質量%の硫化アンモニウム水溶液に浸漬し、3日間放置後に反射面の損傷を目視で確認した。下記の基準に従って腐食耐性の評価を行った。
<Corrosion resistance>
The produced film mirror was cut to 5 cm □, immersed in a 5% by mass ammonium sulfide aqueous solution, and left to stand for 3 days. Corrosion resistance was evaluated according to the following criteria.
 5:全く腐食は見られない。
 4:断栽した端部に黒化した腐食部が見えるが、正面には変色はない。
 3:断栽した端部より黒化した腐食部が正面からも確認できるが、腐食部は端部より5mm以内の範囲にある。
 2:反射面の50%以上が腐食し黒化している。
 1:反射面の全てが腐食し黒化している。
5: No corrosion is seen at all.
4: A blackened corroded portion can be seen at the cut end, but there is no discoloration on the front.
3: Although the corrosion part blackened from the cut edge part can also be confirmed from the front, the corrosion part exists in the range within 5 mm from the edge part.
2: 50% or more of the reflecting surface is corroded and blackened.
1: All of the reflective surface is corroded and blackened.
〈耐光性〉
 作製したフィルムミラーの反射面に対し、65℃の環境下で、岩崎電気製アイスーパーUVテスターを用いて150mW、96時間の紫外線照射を行った後、正反射率を測定した。
 ここで、正反射率は、下記の方法で測定される5度正反射率とした。
<Light resistance>
The reflective surface of the produced film mirror was irradiated with ultraviolet rays at 150 mW for 96 hours using an I-Super UV tester manufactured by Iwasaki Electric under an environment of 65 ° C., and then the regular reflectance was measured.
Here, the regular reflectance was a 5-degree regular reflectance measured by the following method.
 日立ハイテクノロジーズ社製の分光光度計U-4100(固体試料測定システム)を使って、入射角5度の基準サンプルに対する相対反射率測定を行った。波長範囲は250~2500nmで測定し、部分的に反射率が落ちる波長範囲がないかどうかを確認した。可視光領域(400~800nm)における反射率を平均し、これを5度正反射率とした。 Using a spectrophotometer U-4100 (solid sample measurement system) manufactured by Hitachi High-Technologies Corporation, a relative reflectance measurement with respect to a reference sample having an incident angle of 5 degrees was performed. The wavelength range was measured at 250 to 2500 nm, and it was confirmed whether there was any wavelength range in which the reflectance dropped partially. The reflectance in the visible light region (400 to 800 nm) was averaged, and this was defined as a regular reflectance of 5 degrees.
 あらかじめ上記紫外線照射前のフィルムミラーの5度正反射率を測定しておき、紫外線照射後の5度正反射率との変動幅が少ないほど耐光性に優れていることを表す。
 下記の基準に従って耐光性の評価を行った。
The 5-degree regular reflectance of the film mirror before the ultraviolet irradiation is measured in advance, and the smaller the fluctuation range from the 5-degree regular reflectance after the ultraviolet irradiation is, the better the light resistance is.
Light resistance was evaluated according to the following criteria.
 5:反射率の変動幅が3%未満。
 4:反射率の変動幅が3%以上5%未満
 3:反射率の変動幅が5%以上8%未満
 2:反射率の変動幅が8%以上10%未満
 1:反射率の変動幅が10%以上
5: The fluctuation range of the reflectance is less than 3%.
4: Reflectance fluctuation range of 3% to less than 5% 3: Reflectance fluctuation range of 5% to less than 8% 2: Reflectance fluctuation range of 8% to less than 10% 1: Reflectance fluctuation range 10% or more
〈密着性〉 <Adhesion>
 作製したフィルムミラーに対し、65℃の環境下で、岩崎電気製アイスーパーUVテスターを用いて、150mW、96時間の紫外線照射を行った後、JIS K5400規格に基づき碁盤目100マスクロスカットした際のテープ剥離試験を行い、下記の基準に従って密着性の評価を行った。 The prepared film mirror was irradiated with ultraviolet rays at 150 mW for 96 hours using an I-Super UV tester manufactured by Iwasaki Electric under an environment of 65 ° C., and then when 100 mask loss cut was performed according to JIS K5400 standard. A tape peeling test was performed, and adhesion was evaluated according to the following criteria.
 5:膜剥離が0マス
 4:膜剥離が1マス以上5マス以下
 3:膜剥離が6マス以上10マス以下
 2:膜剥離が11マス以上
 1:膜剥離が15マス以上
5: Film peeling is 0 square 4: Film peeling is 1 square or more and 5 squares or less 3: Film peeling is 6 square or more and 10 squares or less 2: Film peeling is 11 squares or more 1: Film peeling is 15 squares or more
〈クラック〉
 作製したフィルムミラーに対し、65℃の環境下で、岩崎電気製アイスーパーUVテスターを用いて、150mW、30日間の紫外線照射を行った後、表面(ハードコート層10)のクラックの発生を目視確認した。下記の基準に従ってクラックの評価を行った。
<crack>
The produced film mirror was irradiated with ultraviolet rays at 150 mW for 30 days in an environment of 65 ° C. using an I-Super UV tester manufactured by Iwasaki Electric Co., Ltd., and then the occurrence of cracks on the surface (hard coat layer 10) was visually observed. confirmed. Cracks were evaluated according to the following criteria.
 ○:発生していない
 △:わずかに発生している(ルーペでわかる程度)
 ×:明らかに発生している(肉眼でわかる程度)
○: Not generated △: Slightly generated (appropriate with loupe)
×: Appears clearly (appreciable with the naked eye)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2から、アンカー層4及び樹脂コート層6に、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有し、当該化合物の有効非共有電子対含有率n/Mが2.0×10-3以上である、本発明のフィルムミラー3~11は、比較例のフィルムミラー1,2と比較して、腐食耐性、耐光性、密着性に優れていることが明らかである。
 また、本発明のフィルムミラー3~11では、ハードコート層10におけるクラックの発生が抑制されていることが明らかである。
From Table 2, the anchor layer 4 and the resin coat layer 6 contain a compound having a nitrogen atom having an unshared electron pair not involved in aromaticity, and the effective unshared electron pair content ratio n / M of the compound is 2 It is clear that the film mirrors 3 to 11 of the present invention having a size of 0.0 × 10 −3 or more are excellent in corrosion resistance, light resistance and adhesion as compared with the film mirrors 1 and 2 of the comparative example. .
In addition, it is clear that the occurrence of cracks in the hard coat layer 10 is suppressed in the film mirrors 3 to 11 of the present invention.
 したがって、本発明によれば、砂漠のような紫外線照射量が非常に多い環境でも、銀反射層と他の構成層間の剥離に起因する、銀反射層の腐食や変色に伴う反射率の低下等を抑制できるフィルムミラー及びそれを備えた太陽熱発電用反射装置を提供することができる。また、銀反射層と他の構成層間での剥離を抑制できるため、フィルムミラー表面の変形や歪みを抑制でき、フィルムミラーの表面に設けられるハードコート層にクラックが発生することを抑制することができる。 Therefore, according to the present invention, even in an environment where the amount of ultraviolet irradiation is very large such as a desert, the reflectance of the silver reflecting layer is reduced due to corrosion or discoloration due to peeling between the silver reflecting layer and other constituent layers. It is possible to provide a film mirror capable of suppressing the above and a solar power generation reflecting device including the same. In addition, since peeling between the silver reflective layer and other constituent layers can be suppressed, deformation and distortion of the film mirror surface can be suppressed, and the occurrence of cracks in the hard coat layer provided on the surface of the film mirror can be suppressed. it can.
 以上のように、本発明は、長期間に亘る屋外での使用や洗浄作業等による負荷を受けても、銀反射層と隣接する他の構成層との間の剥離に起因する、銀反射層の腐食や変色に伴う反射率の低下等を抑制できるフィルムミラー、及びそれを備えた太陽熱発電用反射装置を提供することに適している。 As described above, the present invention provides a silver reflective layer caused by peeling between the silver reflective layer and other adjacent constituent layers even when subjected to a load due to outdoor use or cleaning work for a long period of time. It is suitable for providing a film mirror that can suppress a decrease in reflectance caused by corrosion or discoloration of the solar cell, and a solar power generation reflection device including the film mirror.
 1  金属基材
 2  粘着層
 3  樹脂基材
 4  アンカー層
 5  銀反射層
 6  樹脂コート層
 7  接着層
 8  アクリル樹脂層
 9  中間層
 10 ハードコート層
 11 ガスバリアー層
 12 剥離層
 F  フィルムミラー
 R  太陽熱発電用反射装置
DESCRIPTION OF SYMBOLS 1 Metal base material 2 Adhesive layer 3 Resin base material 4 Anchor layer 5 Silver reflection layer 6 Resin coat layer 7 Adhesive layer 8 Acrylic resin layer 9 Intermediate layer 10 Hard coat layer 11 Gas barrier layer 12 Release layer F Film mirror R For solar power generation Reflector

Claims (4)

  1.  樹脂基材上に銀反射層が設けられたフィルムミラーであって、
     前記銀反射層に隣接し、芳香族性に関与しない非共有電子対を持つ窒素原子を有する化合物を含有する窒素含有層を備え、
     前記化合物が、芳香族性に関与しない非共有電子対の数をn、分子量をMとしたとき、有効非共有電子対含有率n/Mが2.0×10-3以上の化合物であることを特徴とするフィルムミラー。
    A film mirror provided with a silver reflective layer on a resin substrate,
    A nitrogen-containing layer containing a compound having a nitrogen atom adjacent to the silver reflective layer and having an unshared electron pair not involved in aromaticity;
    The compound is a compound having an effective unshared electron pair content ratio n / M of 2.0 × 10 −3 or more, where n is the number of unshared electron pairs not involved in aromaticity and M is the molecular weight. A film mirror characterized by
  2.  前記有効非共有電子対含有率n/Mが、3.9×10-3以上であることを特徴とする請求項1に記載のフィルムミラー。 2. The film mirror according to claim 1, wherein the effective unshared electron pair content ratio n / M is 3.9 × 10 −3 or more.
  3.  メタロキサン骨格を有するポリマーを含有するハードコート層を表面に備えていることを特徴とする請求項1又は請求項2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein a hard coat layer containing a polymer having a metalloxane skeleton is provided on the surface.
  4.  請求項1から請求項3までのいずれか一項に記載のフィルムミラーと、
     前記フィルムミラーを支持する支持基材と、を備えることを特徴とする太陽熱発電用反射装置。
    The film mirror according to any one of claims 1 to 3,
    And a support base material for supporting the film mirror.
PCT/JP2014/070574 2013-08-13 2014-08-05 Film mirror and reflective device for solar thermal power generation WO2015022877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015531766A JPWO2015022877A1 (en) 2013-08-13 2014-08-05 Film mirror and reflector for solar power generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-168068 2013-08-13
JP2013168068 2013-08-13

Publications (1)

Publication Number Publication Date
WO2015022877A1 true WO2015022877A1 (en) 2015-02-19

Family

ID=52468264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070574 WO2015022877A1 (en) 2013-08-13 2014-08-05 Film mirror and reflective device for solar thermal power generation

Country Status (2)

Country Link
JP (1) JPWO2015022877A1 (en)
WO (1) WO2015022877A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224875A (en) * 2010-04-20 2011-11-10 Mitsubishi Chemicals Corp Heat-ray-reflective laminated-body, and composition for forming heat-ray-reflective-layer protection layer
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224875A (en) * 2010-04-20 2011-11-10 Mitsubishi Chemicals Corp Heat-ray-reflective laminated-body, and composition for forming heat-ray-reflective-layer protection layer
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power

Also Published As

Publication number Publication date
JPWO2015022877A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
EP2667226B1 (en) Film mirror and reflecting apparatus for solar power generation
JP5742726B2 (en) Film mirror, method for manufacturing the same, and mirror for reflecting sunlight
JP5747823B2 (en) Film mirror, film mirror for solar power generation and reflector for solar power generation
TWI531812B (en) Antireflection film and antireflection plate
WO2013015112A1 (en) Mirror for solar light reflection, reflection device for solar-heat power generation, functional film, and electrostatic charge preventing composition for outdoor use
WO2005085913A1 (en) Antireflection film and process for producing the same
JP2014198376A (en) Functional film
WO2012057004A1 (en) Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes
JP3953829B2 (en) Anti-reflection layer, anti-reflection material, and anti-reflection body with enhanced surface
JP5994845B2 (en) Sunlight reflector
JP5962014B2 (en) Film mirror and manufacturing method thereof
JP2014214986A (en) Mirror for solar thermal power generation and reflection device for solar thermal power generation equipped with the same
JP2011203553A (en) Film mirror, method of producing the same and solar light reflecting mirror
WO2015022877A1 (en) Film mirror and reflective device for solar thermal power generation
WO2012057005A1 (en) Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes
JP2013245849A (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflecting device for solar power generation
WO2013094577A1 (en) Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
WO2015064312A1 (en) Film mirror and light reflection device for solar heat reflection using same
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
JP4747438B2 (en) Conductive antireflection film
WO2013180202A1 (en) Functional film and method for producing functional film
WO2019239810A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
JP2012048006A (en) Method for manufacturing film mirror and solar light reflecting mirror
JP2016009034A (en) Light reflection film
JP2016080948A (en) Light reflection film, light reflection body having the same, and solar light reflection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836826

Country of ref document: EP

Kind code of ref document: A1