JP2007065261A - Reflector - Google Patents

Reflector Download PDF

Info

Publication number
JP2007065261A
JP2007065261A JP2005250856A JP2005250856A JP2007065261A JP 2007065261 A JP2007065261 A JP 2007065261A JP 2005250856 A JP2005250856 A JP 2005250856A JP 2005250856 A JP2005250856 A JP 2005250856A JP 2007065261 A JP2007065261 A JP 2007065261A
Authority
JP
Japan
Prior art keywords
film
silver
gas
silicon compound
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005250856A
Other languages
Japanese (ja)
Other versions
JP4751675B2 (en
Inventor
Tamotsu Morimoto
保 森本
Hideaki Miyazawa
英明 宮澤
Kazuya Saito
斎藤  一也
Yoshio Shimizu
美穂 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Ulvac Inc filed Critical Asahi Glass Co Ltd
Priority to JP2005250856A priority Critical patent/JP4751675B2/en
Publication of JP2007065261A publication Critical patent/JP2007065261A/en
Application granted granted Critical
Publication of JP4751675B2 publication Critical patent/JP4751675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflector which has a high reflectance on a visible light region and is excellent in moisture resistance and sulfur resistance. <P>SOLUTION: The reflector 10 comprises: a base material 11; a silicon compound film 14 which comprises one kind selected from a group consisting of silicon nitride, silicon oxide and silicon oxide nitride; a silver film 13 made of silver or silver alloy which is disposed between the base material 11 and the silicon compound film 14; a hydrocarbon film 15 formed by applying the silicon compound film 14 to plasma treatment; and a substrate film 12 made of oxide which is disposed between the base material 11 and the silver film 13 as necessary. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、可視光領域で高い反射率を有し、耐湿性、耐硫黄性を有する反射鏡に関する。   The present invention relates to a reflecting mirror having high reflectance in the visible light region and having moisture resistance and sulfur resistance.

従来より、照明器具、携帯電話、液晶ディスプレイ等に用いられる、ガラス等の基材上に、反射膜としてアルミニウム、銀等の金属膜を製膜した反射鏡が知られている(たとえば、特許文献1)。最近では、可視光領域の全域にわたり反射率が高いことから、銀膜を有する反射鏡が主に検討されている。しかし、銀は、化学的に不安定であるため、空気中の酸素、水分、亜硫酸ガス、硫化水素等により、酸化銀、硫化銀等に変質して変色しやすいという問題がある。   2. Description of the Related Art Conventionally, a reflecting mirror in which a metal film such as aluminum or silver is formed as a reflecting film on a base material such as glass, which is used for lighting fixtures, mobile phones, liquid crystal displays, and the like is known (for example, Patent Documents). 1). Recently, since the reflectance is high over the entire visible light region, a reflecting mirror having a silver film has been mainly studied. However, since silver is chemically unstable, there is a problem that it is easily changed in color by changing to silver oxide, silver sulfide, or the like due to oxygen, moisture, sulfurous acid gas, hydrogen sulfide, etc. in the air.

この問題を解決するため、保護膜として酸化アルミニウム等の酸化物膜を銀膜上に製膜した反射鏡が開示されている(特許文献2)。しかし、該反射鏡では、銀膜の上にスパッタ等の方法により酸化アルミニウム等の酸化物膜を形成するため、酸化性雰囲気下で製膜することから、銀膜表面が酸化され、充分な反射率のものが得られにくい問題がある。また、該保護膜では、空気中の酸素、水分、亜硫酸ガス、硫化水素等による銀の変質を充分に抑えることができず、反射鏡の耐湿性、耐硫黄性は、充分とはいえない。   In order to solve this problem, a reflecting mirror in which an oxide film such as aluminum oxide is formed on a silver film as a protective film is disclosed (Patent Document 2). However, since the reflecting mirror forms an oxide film such as aluminum oxide on the silver film by sputtering or the like, the film is formed in an oxidizing atmosphere, so that the surface of the silver film is oxidized and sufficient reflection is achieved. There is a problem that the rate is difficult to obtain. In addition, the protective film cannot sufficiently suppress the alteration of silver due to oxygen, moisture, sulfurous acid gas, hydrogen sulfide, etc. in the air, and the moisture resistance and sulfur resistance of the reflector cannot be said to be sufficient.

また、保護膜として窒化アルミニウム、ダイヤモンドライクカーボン等の膜を銀膜の上に積層した反射鏡が開示されている(特許文献3)。また、保護膜としてスパッタ法によって窒化ケイ素膜を銀膜の上に製膜した反射鏡が開示されている(特許文献4)。しかし、該保護膜であっても、空気中の酸素、水分、亜硫酸ガス、硫化水素等による銀の変質を充分に抑えることができず、反射鏡の耐湿性、耐硫黄性は、充分とはいえない。
実開平5−73809号公報 特開2001−343510号公報 特開2001−13309号公報 特開2001−337210号公報
Further, a reflecting mirror is disclosed in which a film such as aluminum nitride or diamond-like carbon is laminated on a silver film as a protective film (Patent Document 3). Further, a reflecting mirror in which a silicon nitride film is formed on a silver film by a sputtering method as a protective film is disclosed (Patent Document 4). However, even with this protective film, the alteration of silver due to oxygen, moisture, sulfurous acid gas, hydrogen sulfide, etc. in the air cannot be sufficiently suppressed, and the moisture resistance and sulfur resistance of the reflector are not sufficient. I can't say that.
Japanese Utility Model Publication No. 5-73809 JP 2001-343510 A JP 2001-13309 A JP 2001-337210 A

本発明は、可視光領域での反射率が高く、耐湿性、耐硫黄性に優れる反射鏡を提供することを目的とする。   An object of the present invention is to provide a reflecting mirror that has a high reflectance in the visible light region and is excellent in moisture resistance and sulfur resistance.

本発明の反射鏡は、基材と、窒化ケイ素、酸化ケイ素および酸窒化ケイ素からなる群から選ばれる1種からなるケイ素化合物膜と、基材とケイ素化合物膜との間に設けられた銀または銀合金からなる銀膜と、ケイ素化合物膜上にプラズマ処理を施すことによって形成された炭化水素膜とを有することを特徴とする。
炭化水素膜は、プラズマCVD法により形成された膜であることが好ましい。
The reflecting mirror of the present invention includes a base material, a silicon compound film selected from the group consisting of silicon nitride, silicon oxide, and silicon oxynitride, and silver provided between the base material and the silicon compound film. It has the silver film which consists of a silver alloy, and the hydrocarbon film formed by performing a plasma process on a silicon compound film, It is characterized by the above-mentioned.
The hydrocarbon film is preferably a film formed by a plasma CVD method.

炭化水素膜は、基材温度を−20〜150℃とし、0.1〜1000Paの圧力下、100kHz〜100MHzの高周波を電力密度0.1〜5W/cm2 で原料ガスに印加して原料ガスをプラズマ化し、原料ガスの反応物をケイ素化合物膜上に析出させることにより形成された膜であることが好ましい。
原料ガスは、メタンガス、エタンガス、プロパンガス、アセチレンガスおよびエチレンガスからなる群から選ばれる1種以上であることが好ましい。
The hydrocarbon film has a base material temperature of −20 to 150 ° C., a high frequency of 100 kHz to 100 MHz is applied to the raw material gas at a power density of 0.1 to 5 W / cm 2 under a pressure of 0.1 to 1000 Pa, and the raw material gas. It is preferable that the film be formed into a plasma by depositing a reactant of the source gas on the silicon compound film.
The source gas is preferably at least one selected from the group consisting of methane gas, ethane gas, propane gas, acetylene gas and ethylene gas.

本発明の反射鏡は、基材と銀膜との間に設けられた酸化物からなる下地膜をさらに有することが好ましい。
酸化物は、TiOx (1.5≦x<2)で表される酸化チタンであることが好ましい。
銀膜の膜厚は、60〜300nmであり、ケイ素化合物膜の膜厚は、2〜20nmであることが好ましい。
炭化水素膜の膜厚は、0.5〜20nmであることが好ましい。
下地膜の膜厚は、1〜50nmであることが好ましい。
The reflecting mirror of the present invention preferably further has a base film made of an oxide provided between the base material and the silver film.
The oxide is preferably titanium oxide represented by TiO x (1.5 ≦ x <2).
The film thickness of the silver film is preferably 60 to 300 nm, and the film thickness of the silicon compound film is preferably 2 to 20 nm.
The film thickness of the hydrocarbon film is preferably 0.5 to 20 nm.
The film thickness of the base film is preferably 1 to 50 nm.

本発明の反射鏡は、可視光領域での反射率が高く、耐湿性、耐硫黄性に優れる。   The reflecting mirror of the present invention has a high reflectance in the visible light region and is excellent in moisture resistance and sulfur resistance.

<反射鏡>
図1は、本発明の反射鏡の一例を示す断面図である。反射鏡10は、基材11と、該基材11上に設けられた下地膜12と、該下地膜12上に設けられた銀膜13と、該銀膜13上に設けられたケイ素化合物膜14と、該ケイ素化合物膜14上に設けられた炭化水素膜15とを有するものである。
<Reflector>
FIG. 1 is a cross-sectional view showing an example of the reflecting mirror of the present invention. The reflecting mirror 10 includes a base material 11, a base film 12 provided on the base material 11, a silver film 13 provided on the base film 12, and a silicon compound film provided on the silver film 13. 14 and a hydrocarbon film 15 provided on the silicon compound film 14.

(基材)
基材11の材質としては、たとえば、ガラス;ポリエチレンテレフタレート、アクリル樹脂、ポリカーボネート等のプラスチック等が挙げられる。
基材の形状は、平面、拡散面、凹面、凸面、台形等、各種の反射鏡の基材として求められる形状であればよい。
基材11としては、軽量化できる点で、プラスチックのフィルムが特に好ましい。
基材11の厚さは、平面形状である場合、30〜500μmが好ましい。
基材11は、フィルムである場合、下地膜12、銀膜13等との密着性を向上させるために、プラズマ処理等が施されていてもよい。
(Base material)
Examples of the material of the substrate 11 include glass; plastics such as polyethylene terephthalate, acrylic resin, and polycarbonate.
The shape of a base material should just be a shape calculated | required as a base material of various reflective mirrors, such as a plane, a diffusion surface, a concave surface, a convex surface, and a trapezoid.
As the base material 11, a plastic film is particularly preferable in that it can be reduced in weight.
When the thickness of the base material 11 is a planar shape, 30-500 micrometers is preferable.
When the base material 11 is a film, a plasma treatment or the like may be performed in order to improve the adhesion with the base film 12, the silver film 13, and the like.

(下地膜)
下地膜12は、酸化物からなる膜である。下地膜12を設けることにより、これに接する基材11と銀膜13との密着性を高めることができ、その結果、反射鏡10の耐湿性をさらに向上できる。
酸化物としては、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化アルミニウム、酸化クロム、酸化ニオブ等が挙げられる。これらのうち、密着性の点から、酸化チタンが好ましく、TiOx (1.5≦x<2)で表される、酸素欠損を有する酸化チタンが特に好ましい。
(Undercoat)
The base film 12 is a film made of an oxide. By providing the base film 12, the adhesion between the base material 11 and the silver film 13 in contact with the base film 12 can be improved, and as a result, the moisture resistance of the reflecting mirror 10 can be further improved.
Examples of the oxide include titanium oxide, zinc oxide, tin oxide, indium oxide, aluminum oxide, chromium oxide, and niobium oxide. Of these, titanium oxide is preferable from the viewpoint of adhesion, and titanium oxide having oxygen deficiency represented by TiO x (1.5 ≦ x <2) is particularly preferable.

下地膜12は、単層であってもよく、複数の層から構成されていてもよい。
下地膜12の膜厚は、1〜50nmが好ましく、3〜15nmが特に好ましい。下地膜12の膜厚が1nm未満では、基材11と銀膜13との密着性を向上させる効果が現れにくい。下地膜12の膜厚が50nmを超えると、下地膜12表面の凹凸が大きくなり、反射率が低くなったり、内部応力が高くなるため密着性が低下したりするおそれがある。膜厚は、物理膜厚であり、物理膜厚は、エリプソメーター、触針式段差計等により求めることができる。
The base film 12 may be a single layer or may be composed of a plurality of layers.
1-50 nm is preferable and, as for the film thickness of the base film 12, 3-15 nm is especially preferable. When the film thickness of the base film 12 is less than 1 nm, the effect of improving the adhesion between the base material 11 and the silver film 13 hardly appears. When the film thickness of the base film 12 exceeds 50 nm, the unevenness of the surface of the base film 12 becomes large, and the reflectivity may be lowered, or the internal stress may be increased, and the adhesion may be lowered. The film thickness is a physical film thickness, and the physical film thickness can be obtained by an ellipsometer, a stylus type step gauge or the like.

(銀膜)
銀膜13は、銀または銀合金からなる膜であり、光を反射させる反射膜としての役割を果たす。反射膜を銀膜13とすることにより、反射鏡10の可視光領域の反射率を高め、入射角による反射率の依存性を低減させることができる。可視光領域とは、400〜700nmの波長領域を意味する。また、入射角とは、膜面に対して垂直な線に対する角度を意味する。
(Silver film)
The silver film 13 is a film made of silver or a silver alloy, and plays a role as a reflection film that reflects light. By using the silver film 13 as the reflection film, the reflectance in the visible light region of the reflector 10 can be increased, and the dependence of the reflectance on the incident angle can be reduced. The visible light region means a wavelength region of 400 to 700 nm. The incident angle means an angle with respect to a line perpendicular to the film surface.

銀合金としては、銀と、金、パラジウム、スズ、ガリウム、インジウム、銅、チタンおよびビスマスからなる群から選ばれる1種以上のその他の金属とからなる合金が、銀膜13の耐久性が向上し、反射率がさらに向上するため好ましい。その他の金属としては、高温耐湿性、反射率の点から、金が特に好ましい。
銀膜13が銀合金からなる膜である場合、銀は、銀膜13における銀とその他の金属との合計(100原子%)中、90〜99.8原子%が好ましい。また、その他の金属は、耐久性の点から0.2〜10原子%が好ましい。
As the silver alloy, an alloy composed of silver and one or more other metals selected from the group consisting of gold, palladium, tin, gallium, indium, copper, titanium, and bismuth improves the durability of the silver film 13. In addition, the reflectance is further improved, which is preferable. As the other metal, gold is particularly preferable from the viewpoint of high temperature humidity resistance and reflectance.
When the silver film 13 is a film made of a silver alloy, the silver is preferably 90 to 99.8 atomic% in the total (100 atomic%) of silver and other metals in the silver film 13. Moreover, 0.2-10 atomic% of other metals is preferable from a durable point.

銀膜13の膜厚は、60〜300nmが好ましく、80〜200nmが特に好ましい。銀膜13の膜厚が60nm未満では、可視光領域の反射率が低下するおそれがある。銀膜13の膜厚が300nmを超えると、銀膜13表面に凹凸が発生しやすくなり、これにより光の散乱が生じてしまい、可視光領域での反射率が低下するおそれがある。   The film thickness of the silver film 13 is preferably 60 to 300 nm, particularly preferably 80 to 200 nm. When the film thickness of the silver film 13 is less than 60 nm, the reflectance in the visible light region may decrease. If the film thickness of the silver film 13 exceeds 300 nm, irregularities are likely to occur on the surface of the silver film 13, thereby causing light scattering, which may reduce the reflectance in the visible light region.

(ケイ素化合物膜)
ケイ素化合物膜14は、窒化ケイ素、酸化ケイ素および酸窒化ケイ素からなる群から選ばれる1種からなる膜であり、これに接する銀膜13の変質を抑え、その結果、反射鏡10の耐湿性、耐硫黄性を向上させる膜である。
ケイ素化合物膜14は、化学気相成長法(以下、CVD法と記す。)により製膜された窒化ケイ素膜であることが好ましい。CVD法により製膜された窒化ケイ素膜は、スパッタ法により製膜された窒化ケイ素膜に比べ、膜応力が低い、複雑形状へのカバレッジがよい、ガスバリア性能が高い等の利点を有する。この結果、反射鏡10の耐硫黄性が向上する。
(Silicon compound film)
The silicon compound film 14 is a film made of one kind selected from the group consisting of silicon nitride, silicon oxide, and silicon oxynitride, and suppresses the alteration of the silver film 13 in contact with the film. As a result, the moisture resistance of the reflecting mirror 10 is improved. It is a film that improves sulfur resistance.
The silicon compound film 14 is preferably a silicon nitride film formed by a chemical vapor deposition method (hereinafter referred to as a CVD method). The silicon nitride film formed by the CVD method has advantages such as low film stress, good coverage to a complicated shape, and high gas barrier performance compared to the silicon nitride film formed by the sputtering method. As a result, the sulfur resistance of the reflecting mirror 10 is improved.

ケイ素化合物膜14の膜厚は、2〜20nmが好ましく、3〜15nmが特に好ましい。ケイ素化合物膜14の膜厚が2nm未満では、反射鏡10の耐湿性、耐硫黄性が不充分となるおそれがある。ケイ素化合物膜14の膜厚が20nmを超えると、ケイ素化合物膜14による着色(吸収)で反射率が低下するおそれがある。   2-20 nm is preferable and, as for the film thickness of the silicon compound film | membrane 14, 3-15 nm is especially preferable. If the thickness of the silicon compound film 14 is less than 2 nm, the moisture resistance and sulfur resistance of the reflecting mirror 10 may be insufficient. When the film thickness of the silicon compound film 14 exceeds 20 nm, the reflectance may decrease due to coloring (absorption) by the silicon compound film 14.

(炭化水素膜)
炭化水素膜15は、反射鏡10の最表面に設けられる、炭化水素からなる膜である。炭化水素膜15を設けることにより、反射鏡10の耐湿性、耐硫黄性をさらに向上できる。
耐硫黄性の向上する理由としては、詳細には解明できてはいないが、以下のとおりであると考えられる。すなわち、炭化水素中の炭素原子と硫化水素等の含硫黄分子中の硫黄原子との吸着エネルギーが低いため、その結果、炭化水素膜15表面に含硫黄分子が付着しにくくなり、耐硫黄性が向上しているものと考えられる。
(Hydrocarbon film)
The hydrocarbon film 15 is a film made of hydrocarbon provided on the outermost surface of the reflecting mirror 10. By providing the hydrocarbon film 15, the moisture resistance and sulfur resistance of the reflecting mirror 10 can be further improved.
Although the reason for improving the sulfur resistance has not been elucidated in detail, it is considered as follows. That is, since the adsorption energy between the carbon atom in the hydrocarbon and the sulfur atom in the sulfur-containing molecule such as hydrogen sulfide is low, it is difficult for the sulfur-containing molecule to adhere to the surface of the hydrocarbon film 15 and the sulfur resistance is improved. It is thought that it is improving.

炭化水素は、水素化炭素、硬質炭素、ダイヤモンドライクカーボン(DLC)、i−カーボン、アモルファス炭素とも呼ばれており、従来より公知のものを適宜用いることができる。該炭化水素からなる膜は、表面平滑性に優れる、表面の摩擦係数が小さい、化学的に不活性である、濡れ性が低いため汚れにくい等、保護膜として優れた特性を有している。   Hydrocarbons are also called hydrogenated carbon, hard carbon, diamond-like carbon (DLC), i-carbon, and amorphous carbon, and conventionally known hydrocarbons can be appropriately used. The film made of hydrocarbon has excellent properties as a protective film, such as excellent surface smoothness, a small coefficient of friction on the surface, chemical inertness, and low wettability so that it is difficult to get dirty.

炭化水素膜15は、反射鏡10の反射率の点から、透明な膜であることが必要である。具体的には、可視光領域での消衰係数が0.1以下が好ましく、0.08以下が特に好ましく、0.05以下が最も好ましい。消衰係数とは、可視光領域における複素屈折率の虚数部を意味し、分光エリプソメーターにより測定できる。
炭化水素膜15の膜厚は、0.5〜20nmが好ましく、1〜5nmが特に好ましい。炭化水素膜15の膜厚が0.5nm未満であると、ガスバリア性が低下する。炭化水素膜15の膜厚が20nmを超えると、反射率が低くなるおそれがある。
The hydrocarbon film 15 needs to be a transparent film in view of the reflectance of the reflecting mirror 10. Specifically, the extinction coefficient in the visible light region is preferably 0.1 or less, particularly preferably 0.08 or less, and most preferably 0.05 or less. The extinction coefficient means the imaginary part of the complex refractive index in the visible light region and can be measured by a spectroscopic ellipsometer.
The film thickness of the hydrocarbon film 15 is preferably 0.5 to 20 nm, and particularly preferably 1 to 5 nm. If the thickness of the hydrocarbon film 15 is less than 0.5 nm, the gas barrier property is lowered. If the thickness of the hydrocarbon film 15 exceeds 20 nm, the reflectance may be lowered.

(反射鏡の製造方法)
反射鏡10は、基材11上に、各膜を順次、スパッタ法、CVD法、プラズマ処理等により製膜することにより得られる。
(Manufacturing method of reflecting mirror)
The reflecting mirror 10 is obtained by sequentially forming each film on the substrate 11 by sputtering, CVD, plasma treatment, or the like.

下地膜12は、スパッタ法により製膜されることが好ましい。雰囲気としては、酸化性ガスを実質的に含まないアルゴン等の希ガス雰囲気が好ましい。酸素等の酸化性ガスは、18体積%以下が好ましい。
下地膜12用のターゲットとしては、酸化性ガスを実質的に含まない雰囲気下で酸化物膜を製膜できる点で、酸化物ターゲットが好ましい。酸化物ターゲットとしては、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化アルミニウム、酸化クロムおよび酸化ニオブからなる群から選ばれる1種以上を含むターゲットが挙げられる。
DCスパッタ法で下地膜12を製膜する場合、高速で製膜できる点で、酸素欠損ターゲットが好ましい。酸素欠損ターゲットとしては、たとえば、TiOx (1.5≦x<2.0)として表されるものが挙げられる。
The base film 12 is preferably formed by sputtering. The atmosphere is preferably a rare gas atmosphere such as argon that does not substantially contain an oxidizing gas. The oxidizing gas such as oxygen is preferably 18% by volume or less.
The target for the base film 12 is preferably an oxide target in that an oxide film can be formed in an atmosphere that does not substantially contain an oxidizing gas. Examples of the oxide target include a target including one or more selected from the group consisting of titanium oxide, zinc oxide, tin oxide, indium oxide, aluminum oxide, chromium oxide, and niobium oxide.
When the base film 12 is formed by the DC sputtering method, an oxygen deficient target is preferable because it can be formed at a high speed. Examples of the oxygen deficient target include those expressed as TiO x (1.5 ≦ x <2.0).

銀膜13は、アルゴンガス雰囲気下で、銀または銀合金からなるターゲットを用いて、スパッタ法により製膜されることが好ましい。
銀ターゲットとしては、銀を95質量%以上含有するターゲットが好ましい。銀合金ターゲットとしては、銀を95〜99.7質量%含有し、その他の金属を0.3〜5.0質量%含有するターゲットが好ましい。
The silver film 13 is preferably formed by sputtering using a target made of silver or a silver alloy in an argon gas atmosphere.
As a silver target, the target containing 95 mass% or more of silver is preferable. As the silver alloy target, a target containing 95 to 99.7% by mass of silver and 0.3 to 5.0% by mass of other metals is preferable.

ケイ素化合物膜14は、CVD法により製膜されることが好ましい。CVD法によりケイ素化合物膜14を製膜することにより、反射鏡10の耐硫黄性が向上する。
CVD法は、原料ガスに、熱または光によってエネルギーを与えたり、高周波でプラズマ化したりすることにより、原料ガスを反応させ、反応物の膜を析出させる方法である。
原料ガスとしては、シランガスとアンモニアガスとの混合ガス等が挙げられる。
The silicon compound film 14 is preferably formed by a CVD method. By forming the silicon compound film 14 by the CVD method, the sulfur resistance of the reflecting mirror 10 is improved.
The CVD method is a method in which a raw material gas is reacted by applying energy to the raw material gas by heat or light, or by plasmaizing at a high frequency to deposit a film of a reaction product.
Examples of the source gas include a mixed gas of silane gas and ammonia gas.

炭化水素膜15は、ケイ素化合物膜14上にプラズマ処理を施すことによって形成される。プラズマ処理とは、コロナ放電、アーク放電、グロー放電のいずれかにより生成した電離気体に処理対象を曝すことをいう。プラズマ処理としては、熱ダメージ、分布(均一性)の点で、グロー放電によるプラズマ処理が好ましい。該プラズマ処理としては、プラズマCVD法が挙げられる。   The hydrocarbon film 15 is formed by performing plasma treatment on the silicon compound film 14. Plasma treatment refers to exposing a treatment target to an ionized gas generated by any one of corona discharge, arc discharge, and glow discharge. As the plasma treatment, plasma treatment by glow discharge is preferable in terms of thermal damage and distribution (uniformity). An example of the plasma treatment is a plasma CVD method.

炭化水素膜15は、プラズマCVD法により形成されることが好ましく、具体的には、プラズマCVD装置内の基材温度を−20〜150℃とした後、プラズマCVD装置内に原料ガスを導入し、0.1〜1000Paの圧力下、100kHz〜100MHzの高周波を電力密度0.1〜5W/cm2 で原料ガスに印加して原料ガスをプラズマ化し、原料ガスの反応物をケイ素化合物膜14上に析出させることにより製膜される。 The hydrocarbon film 15 is preferably formed by a plasma CVD method. Specifically, after the substrate temperature in the plasma CVD apparatus is set to −20 to 150 ° C., a source gas is introduced into the plasma CVD apparatus. A high frequency of 100 kHz to 100 MHz is applied to the raw material gas at a power density of 0.1 to 5 W / cm 2 under a pressure of 0.1 to 1000 Pa, and the raw material gas is turned into plasma, and the reactant of the raw material gas is formed on the silicon compound film 14. To form a film.

基材温度が−20℃未満では、低分子モノマーの状態でしか製膜できず、膜強度等に問題がある。基材温度が150℃を超えると、膜の付着力が弱くなる。
プラズマCVD装置内の圧力が0.1Pa未満では、放電維持が困難となる。プラズマCVD装置内の圧力が1000Paを超えると、アーク放電が起こり、均一性よく製膜できない。
高周波の周波数が100kHz未満では、充分なプラズマ密度が得られず、得られる膜のバリア性能が不充分となる。高周波の周波数が100MHzを超えると、プラズマの均一性が悪く、基材が発熱する。
電力密度が0.1W/cm2 未満では、プラズマ密度があがらず、5W/cm2 を超えると、熱負荷がかかる。
When the substrate temperature is less than −20 ° C., the film can be formed only in the state of a low molecular weight monomer, and there is a problem in film strength and the like. When the substrate temperature exceeds 150 ° C., the adhesion of the film becomes weak.
When the pressure in the plasma CVD apparatus is less than 0.1 Pa, it is difficult to maintain discharge. When the pressure in the plasma CVD apparatus exceeds 1000 Pa, arc discharge occurs and film formation cannot be performed with good uniformity.
If the frequency of the high frequency is less than 100 kHz, a sufficient plasma density cannot be obtained, and the barrier performance of the resulting film becomes insufficient. When the frequency of the high frequency exceeds 100 MHz, the uniformity of the plasma is poor and the substrate generates heat.
When the power density is less than 0.1 W / cm 2 , the plasma density is not increased, and when it exceeds 5 W / cm 2 , a heat load is applied.

原料ガスとしては、メタンガス、エタンガス、プロパンガス、アセチレンガス、エチレンガスが挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。   Examples of the source gas include methane gas, ethane gas, propane gas, acetylene gas, and ethylene gas. These may be used alone or in combination of two or more.

反射鏡10は、JIS Z 8701の規定による視感反射率が90%以上であることが好ましく、95%以上であることがより好ましく、97%以上であることが最も好ましい。これにより、反射鏡10の反射率が高くなり、プロジェクションテレビ、液晶ディスプレイ等の画像装置に用いた場合、輝度を下げることなく画像を映し出すことができる。   The reflector 10 preferably has a luminous reflectance according to JIS Z 8701 of 90% or more, more preferably 95% or more, and most preferably 97% or more. Thereby, the reflectance of the reflecting mirror 10 becomes high, and when used in an image apparatus such as a projection television or a liquid crystal display, an image can be projected without lowering the luminance.

〔実施例1〕
真空槽内に、基材として、アクリルハードコートを施した平坦なポリエチレンテレフタレートフィルム(厚さ:50μm)を配置した。
ターゲットとして、TiOx 酸素欠損ターゲット(商品名「TXO」、旭硝子セラミックス社製)、金を添加した銀合金ターゲット(金含有率1質量%、銀の含有率99質量%)を、それぞれカソード上部の基材に対向するように設置した。真空槽内を2×10-5Paまで排気した。
[Example 1]
In the vacuum chamber, a flat polyethylene terephthalate film (thickness: 50 μm) with an acrylic hard coat was disposed as a substrate.
As targets, a TiO x oxygen deficient target (trade name “TXO”, manufactured by Asahi Glass Ceramics Co., Ltd.), and a silver alloy target (gold content 1 mass%, silver content 99 mass%) added with gold, It installed so that it might oppose a base material. The inside of the vacuum chamber was evacuated to 2 × 10 −5 Pa.

真空槽内にアルゴンガスを200sccm導入し、100Wの電力を投入し、イオンビームソース(LIS−150、アドバンストエナジー社製)からイオン化されたアルゴンイオンを基材に照射し、基材の乾式洗浄を行った。   200 sccm of argon gas is introduced into the vacuum chamber, 100 W of electric power is applied, and the substrate is irradiated with argon ions ionized from an ion beam source (LIS-150, manufactured by Advanced Energy) to dry-clean the substrate. went.

ついで、スパッタガスとしてアルゴンガスを真空槽内へ導入した。TiOx 酸素欠損ターゲットを用いて、DCスパッタリング法により、0.15Paの圧力で、周波数100kHz、電力密度0.79W/cm2 、反転パルス幅1μ秒のパルススパッタを行い、基材上に酸化チタン膜(下地膜)を5nmの膜厚で製膜した。酸化チタン膜の成分はターゲットと同等であった。 Subsequently, argon gas was introduced into the vacuum chamber as a sputtering gas. Using a TiO x oxygen deficient target, pulse sputtering with a pressure of 0.15 Pa, a frequency of 100 kHz, a power density of 0.79 W / cm 2 , and an inversion pulse width of 1 μsec was performed by a DC sputtering method, and titanium oxide was formed on the substrate. A film (underlying film) was formed to a thickness of 5 nm. The components of the titanium oxide film were equivalent to the target.

ついで、残存ガスを排気後、スパッタガスとしてアルゴンガスを真空槽内へ導入した。金を1質量%添加した銀合金ターゲットを用いて、DCスパッタリング法により、0.15Paの圧力で、周波数100kHz、電力密度2.46W/cm2 、反転パルス幅5μ秒のパルススパッタを行い、酸化チタン膜上に金を含む銀合金膜(銀膜)を150nmの膜厚で製膜した。銀合金膜の成分はターゲットと同等であった。 Next, after exhausting the residual gas, argon gas was introduced into the vacuum chamber as a sputtering gas. Using a silver alloy target to which 1% by mass of gold is added, pulse sputtering with a frequency of 100 kHz, a power density of 2.46 W / cm 2 , and a reverse pulse width of 5 μs is performed by a DC sputtering method at a pressure of 0.15 Pa. A silver alloy film (silver film) containing gold was formed to a thickness of 150 nm on the titanium film. The composition of the silver alloy film was equivalent to that of the target.

ついで、プラズマCVD装置(CC−200、アルバック社製)を用い、銀合金膜の上に、窒化ケイ素膜を製膜した。原料ガスとしては、シランガス(SiH4 )およびアンモニアガス(NH3 )を用い、キャリアガスとしては窒素ガスを用いた。原料ガスおよびキャリアガスを、NH3 /SiH4 の流量比50体積%、(NH3 +SiH4 )/全ガスの流量比10体積%で導入し、圧力100Paで、原料ガスに27.12MHzの高周波を500Wで印加して、原料ガスをプラズマ化し、窒化ケイ素膜(ケイ素化合物膜)を10nmの膜厚で製膜した。このときの基材温度は80℃とした。 Next, a silicon nitride film was formed on the silver alloy film using a plasma CVD apparatus (CC-200, manufactured by ULVAC). Silane gas (SiH 4 ) and ammonia gas (NH 3 ) were used as the source gas, and nitrogen gas was used as the carrier gas. Source gas and carrier gas are introduced at a flow rate ratio of NH 3 / SiH 4 of 50% by volume and (NH 3 + SiH 4 ) / total gas of 10% by volume, and at a pressure of 100 Pa, a high frequency of 27.12 MHz is supplied to the source gas. Was applied at 500 W to turn the source gas into plasma, and a silicon nitride film (silicon compound film) was formed to a thickness of 10 nm. The substrate temperature at this time was 80 degreeC.

ついで、プラズマCVD装置(CC−200、アルバック社製)を用い、窒化ケイ素膜の上に、炭化水素膜を製膜した。原料ガスとしては、メタンガスを用いた。原料ガスを導入し、圧力100Paで、原料ガスに27.12MHzの高周波を500Wで印加して、原料ガスをプラズマ化し、炭化水素膜を4nmの膜厚で製膜した。このときの基材温度は80℃とした。
得られた反射鏡について、以下の評価を行った。結果を表1〜3に示す。また、耐硫化水素試験後の反射鏡の膜面側の写真を図2に示す。
Next, a hydrocarbon film was formed on the silicon nitride film using a plasma CVD apparatus (CC-200, manufactured by ULVAC). Methane gas was used as the source gas. A raw material gas was introduced, a high frequency of 27.12 MHz was applied to the raw material gas at a pressure of 100 Pa, and the raw material gas was turned into plasma to form a hydrocarbon film with a thickness of 4 nm. The substrate temperature at this time was 80 degreeC.
The following evaluation was performed about the obtained reflective mirror. The results are shown in Tables 1-3. Moreover, the photograph of the film surface side of the reflecting mirror after the hydrogen sulfide resistance test is shown in FIG.

(1)高温耐湿試験:
反射鏡を50mm×100mmに切り出しサンプルに供した。温度60℃、相対湿度90%の雰囲気中にサンプルを100時間放置し、放置後の膜剥離および腐食の有無を確認した。
○:膜の剥離もなく、腐食の検出も見られなかった。
×:膜に剥離および/または腐食の検出が見られた。
(1) High temperature and humidity resistance test:
The reflector was cut into 50 mm × 100 mm and used for the sample. The sample was allowed to stand for 100 hours in an atmosphere at a temperature of 60 ° C. and a relative humidity of 90%, and the presence or absence of film peeling and corrosion after the standing was confirmed.
○: There was no peeling of the film, and no corrosion was detected.
X: Detachment and / or corrosion was detected on the film.

(2)高温試験:
反射鏡を50mm×100mmに切り出しサンプルに供した。温度85℃、相対湿度30%以下の雰囲気中にサンプルを100時間放置し、放置後の膜剥離および腐食の有無を確認した。
○:膜の剥離もなく、腐食の検出も見られなかった。
×:膜に剥離および/または腐食の検出が見られた。
(2) High temperature test:
The reflector was cut into 50 mm × 100 mm and used for the sample. The sample was allowed to stand for 100 hours in an atmosphere at a temperature of 85 ° C. and a relative humidity of 30% or less, and the presence or absence of film peeling and corrosion after the standing was confirmed.
○: There was no peeling of the film, and no corrosion was detected.
X: Detachment and / or corrosion was detected on the film.

(3)耐硫化水素試験:
反射鏡を50×100mmに切り出しサンプルに供した。10ppmの硫化水素を導入し、温度50℃、相対湿度80%の雰囲気中に100時間サンプルを放置し、放置後の視感反射率、膜剥離および腐食の有無(外観)を確認した。
膜剥離および腐食の有無(外観)については、以下の基準で評価した。
○:膜の剥離もなく、腐食の検出も見られなかった。
×:膜に剥離および/または腐食の検出が見られた。
(3) Hydrogen sulfide resistance test:
The reflecting mirror was cut into 50 × 100 mm and used for the sample. 10 ppm of hydrogen sulfide was introduced, and the sample was allowed to stand for 100 hours in an atmosphere at a temperature of 50 ° C. and a relative humidity of 80%, and the visual reflectance after the storage, film peeling, and the presence or absence of corrosion (appearance) were confirmed.
The presence or absence (appearance) of film peeling and corrosion was evaluated according to the following criteria.
○: There was no peeling of the film, and no corrosion was detected.
X: Detachment and / or corrosion was detected on the film.

(4)膜面反射率:
カラーアナライザー(TOPSCAN、東京電色社製)を用いて膜面側の反射率を測定し、JIS Z 8701(1982年)に規定する三刺激値の色度Yを計算により求め、視感反射率とした。測定は正反射光および拡散光の両方を測定することにより測定するSCI方式で行った。視感反射率は製膜直後、高温耐湿試験後、高温試験後、および耐硫化水素試験後に測定した。
(4) Film surface reflectance:
The reflectance on the film surface side is measured using a color analyzer (TOPSCAN, manufactured by Tokyo Denshoku Co., Ltd.), and tristimulus chromaticity Y specified in JIS Z 8701 (1982) is obtained by calculation. It was. The measurement was performed by the SCI method in which measurement is performed by measuring both regular reflection light and diffused light. The luminous reflectance was measured immediately after film formation, after the high temperature and humidity resistance test, after the high temperature test, and after the hydrogen sulfide resistance test.

〔比較例1〕
窒化ケイ素膜上に炭化水素膜を形成しない以外は、実施例1と同様にして反射鏡を得た。
得られた反射鏡について、実施例1と同様の方法で評価した。結果を表1〜3に示す。また、耐硫化水素試験後の反射鏡の膜面側の写真を図3に示す。
[Comparative Example 1]
A reflecting mirror was obtained in the same manner as in Example 1 except that the hydrocarbon film was not formed on the silicon nitride film.
The obtained reflecting mirror was evaluated in the same manner as in Example 1. The results are shown in Tables 1-3. Moreover, the photograph of the film surface side of the reflecting mirror after the hydrogen sulfide resistance test is shown in FIG.

Figure 2007065261
Figure 2007065261

Figure 2007065261
Figure 2007065261

Figure 2007065261
Figure 2007065261

本発明の反射鏡は、フラットパネルディスプレイ、プロジェクションテレビ、携帯電話等の表示ディスプレイ等の光源用の反射部材、特に、モバイル用パーソナルコンピュータ、携帯電話、PDA、携帯型のゲーム機器等の電子機器の表示ディスプレイの光源用の反射部材として有用である。   The reflecting mirror of the present invention is a reflective member for a light source such as a flat panel display, a projection television, a display such as a mobile phone, and more particularly an electronic device such as a mobile personal computer, a mobile phone, a PDA, a portable game device. It is useful as a reflection member for a light source of a display.

本発明の反射鏡の一例を示す断面図である。It is sectional drawing which shows an example of the reflective mirror of this invention. 耐硫化水素試験後における実施例1の反射鏡の膜面側の写真である。It is the photograph of the film surface side of the reflective mirror of Example 1 after a hydrogen sulfide resistance test. 耐硫化水素試験後における比較例1の反射鏡の膜面側の写真である。It is the photograph of the film surface side of the reflective mirror of the comparative example 1 after a hydrogen sulfide resistance test.

符号の説明Explanation of symbols

10 反射鏡
11 基材
12 下地膜
13 銀膜
14 ケイ素化合物膜
15 炭化水素膜
DESCRIPTION OF SYMBOLS 10 Reflective mirror 11 Base material 12 Base film 13 Silver film 14 Silicon compound film 15 Hydrocarbon film

Claims (9)

基材と、
窒化ケイ素、酸化ケイ素および酸窒化ケイ素からなる群から選ばれる1種からなるケイ素化合物膜と、
基材とケイ素化合物膜との間に設けられた銀または銀合金からなる銀膜と、
ケイ素化合物膜上にプラズマ処理を施すことによって形成された炭化水素膜と
を有する反射鏡。
A substrate;
A silicon compound film made of one selected from the group consisting of silicon nitride, silicon oxide and silicon oxynitride;
A silver film made of silver or a silver alloy provided between the base material and the silicon compound film;
And a hydrocarbon film formed by performing plasma treatment on the silicon compound film.
炭化水素膜が、プラズマCVD法により形成された膜である、請求項1に記載の反射鏡。   The reflecting mirror according to claim 1, wherein the hydrocarbon film is a film formed by a plasma CVD method. 炭化水素膜が、基材温度を−20〜150℃とし、0.1〜1000Paの圧力下、100kHz〜100MHzの高周波を電力密度0.1〜5W/cm2 で原料ガスに印加して原料ガスをプラズマ化し、原料ガスの反応物をケイ素化合物膜上に析出させることにより形成された膜である、請求項1または2に記載の反射鏡。 The hydrocarbon film has a base material temperature of −20 to 150 ° C., a high frequency of 100 kHz to 100 MHz is applied to the raw material gas at a power density of 0.1 to 5 W / cm 2 under a pressure of 0.1 to 1000 Pa, and the raw material gas The reflecting mirror according to claim 1, which is a film formed by converting plasma into a plasma and depositing a reactant of a source gas on the silicon compound film. 原料ガスが、メタンガス、エタンガス、プロパンガス、アセチレンガスおよびエチレンガスからなる群から選ばれる1種以上である、請求項3に記載の反射鏡。   The reflecting mirror according to claim 3, wherein the source gas is at least one selected from the group consisting of methane gas, ethane gas, propane gas, acetylene gas, and ethylene gas. 基材と銀膜との間に設けられた酸化物からなる下地膜をさらに有する、請求項1〜4のいずれかに記載の反射鏡。   The reflective mirror in any one of Claims 1-4 which further has the base film which consists of an oxide provided between the base material and the silver film. 酸化物が、TiOx (1.5≦x<2)で表される酸化チタンである、請求項5に記載の反射鏡。 The reflecting mirror according to claim 5, wherein the oxide is titanium oxide represented by TiO x (1.5 ≦ x <2). 銀膜の膜厚が、60〜300nmであり、
ケイ素化合物膜の膜厚が、2〜20nmである、請求項1〜6のいずれかに記載の反射鏡。
The film thickness of the silver film is 60 to 300 nm,
The reflective mirror in any one of Claims 1-6 whose film thickness of a silicon compound film | membrane is 2-20 nm.
炭化水素膜の膜厚が、0.5〜20nmである、請求項1〜7のいずれかに記載の反射鏡。   The reflective mirror in any one of Claims 1-7 whose film thickness of a hydrocarbon film | membrane is 0.5-20 nm. 下地膜の膜厚が、1〜50nmである、請求項5に記載の反射鏡。
The reflective mirror of Claim 5 whose film thickness of a base film is 1-50 nm.
JP2005250856A 2005-08-31 2005-08-31 Reflector Active JP4751675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250856A JP4751675B2 (en) 2005-08-31 2005-08-31 Reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250856A JP4751675B2 (en) 2005-08-31 2005-08-31 Reflector

Publications (2)

Publication Number Publication Date
JP2007065261A true JP2007065261A (en) 2007-03-15
JP4751675B2 JP4751675B2 (en) 2011-08-17

Family

ID=37927548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250856A Active JP4751675B2 (en) 2005-08-31 2005-08-31 Reflector

Country Status (1)

Country Link
JP (1) JP4751675B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041529A1 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Kobe Seiko Sho Reflective film, reflective film laminate, led, organic el display, and organic el illuminating device
JP2010002776A (en) * 2008-06-20 2010-01-07 Canon Electronics Inc Micromirror device, optical scanning device and image forming apparatus
WO2011077816A1 (en) * 2009-12-21 2011-06-30 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and reflection device for solar power generation purposes
WO2011096151A1 (en) * 2010-02-04 2011-08-11 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and sunlight collection mirror
JP2012042584A (en) * 2010-08-17 2012-03-01 Seiko Epson Corp Optical filter, optical filter module, spectrometry device, and optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105901U (en) * 1988-01-07 1989-07-17
JPH02287302A (en) * 1989-04-27 1990-11-27 Copal Co Ltd Reflecting mirror with silica gel protective film and production thereof
JPH0651110A (en) * 1992-07-29 1994-02-25 Central Glass Co Ltd Surface reflecting mirror
JP2001013309A (en) * 1999-04-30 2001-01-19 Matsushita Electric Works Ltd Reflection mirror
JP2001091712A (en) * 1999-09-17 2001-04-06 Ichikoh Ind Ltd Resin parts with reflection film
JP2005070240A (en) * 2003-08-22 2005-03-17 Tsujiden Co Ltd Backlight reflecting film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105901U (en) * 1988-01-07 1989-07-17
JPH02287302A (en) * 1989-04-27 1990-11-27 Copal Co Ltd Reflecting mirror with silica gel protective film and production thereof
JPH0651110A (en) * 1992-07-29 1994-02-25 Central Glass Co Ltd Surface reflecting mirror
JP2001013309A (en) * 1999-04-30 2001-01-19 Matsushita Electric Works Ltd Reflection mirror
JP2001091712A (en) * 1999-09-17 2001-04-06 Ichikoh Ind Ltd Resin parts with reflection film
JP2005070240A (en) * 2003-08-22 2005-03-17 Tsujiden Co Ltd Backlight reflecting film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041529A1 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Kobe Seiko Sho Reflective film, reflective film laminate, led, organic el display, and organic el illuminating device
EP2204674A1 (en) * 2007-09-25 2010-07-07 Kabushiki Kaisha Kobe Seiko Sho Reflective film, reflective film laminate, led, organic el display, and organic el illuminating device
EP2204674A4 (en) * 2007-09-25 2012-12-05 Kobe Steel Ltd Reflective film, reflective film laminate, led, organic el display, and organic el illuminating device
CN101809467B (en) * 2007-09-25 2012-12-12 株式会社神户制钢所 Reflective film, reflective film laminate, LED, organic EL display, and organic EL illuminating device
US8399100B2 (en) 2007-09-25 2013-03-19 Kobe Steel, Ltd. Reflection film, reflection film laminate, LED, organic EL display, and organic EL illuminating instrument
JP2010002776A (en) * 2008-06-20 2010-01-07 Canon Electronics Inc Micromirror device, optical scanning device and image forming apparatus
WO2011077816A1 (en) * 2009-12-21 2011-06-30 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and reflection device for solar power generation purposes
WO2011096151A1 (en) * 2010-02-04 2011-08-11 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and sunlight collection mirror
JP2012042584A (en) * 2010-08-17 2012-03-01 Seiko Epson Corp Optical filter, optical filter module, spectrometry device, and optical device

Also Published As

Publication number Publication date
JP4751675B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JPWO2007013269A1 (en) Reflective film laminate
KR20050001425A (en) High reflectance mirror
TWI703233B (en) Scratch-resistant materials and articles including the same
TWI237128B (en) Reflector, usage of relfector, and manufacture method of reflector
US20090258221A1 (en) Light-Reflective Articles and Methods for Making Same
RU2004136588A (en) GLASS PRODUCT WITH REFLECTIVE SUN COATING
JP4751675B2 (en) Reflector
TW201605610A (en) High-durability silver mirror
KR20050099970A (en) Reflector and application thereof
JP2008129153A (en) Manufacturing method of reflection mirror
JP2008164768A (en) Reflection mirror
JPWO2007007570A1 (en) Reflector and manufacturing method thereof
JP2012032551A (en) Reflective lamination film
JP4428152B2 (en) High reflector
JP2006010930A (en) High reflectance mirror
JP2007017607A (en) Reflection mirror
JP2004268311A (en) Highly scratch-resistant film for preventing adhesion of stain
WO2017030046A1 (en) Laminate
TW200909885A (en) Reflector and method of manufacturing the same
JP2006309102A (en) High reflection mirror and its manufacturing method
JP2005250229A (en) High reflection mirror
CN114728497A (en) Laminate and door or wall
JP2006010929A (en) High reflectance mirror
CN101151557A (en) High reflection mirror and process for producing the same
JP2007140371A (en) Surface mirror

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4751675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250