WO2015133007A1 - Method for producing transparent conductor - Google Patents

Method for producing transparent conductor Download PDF

Info

Publication number
WO2015133007A1
WO2015133007A1 PCT/JP2014/079789 JP2014079789W WO2015133007A1 WO 2015133007 A1 WO2015133007 A1 WO 2015133007A1 JP 2014079789 W JP2014079789 W JP 2014079789W WO 2015133007 A1 WO2015133007 A1 WO 2015133007A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent
refractive index
metal layer
high refractive
Prior art date
Application number
PCT/JP2014/079789
Other languages
French (fr)
Japanese (ja)
Inventor
節夫 徳弘
一成 多田
仁一 粕谷
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016506078A priority Critical patent/JPWO2015133007A1/en
Publication of WO2015133007A1 publication Critical patent/WO2015133007A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a method for producing a transparent conductor. More specifically, the present invention relates to a method for manufacturing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance.
  • a transparent conductive film made of ITO having high light transmittance is often used.
  • a capacitive touch panel display device has been developed, and the surface electrical resistance of the transparent conductive film is further reduced, and specifically, a resistance value of 50 ⁇ / ⁇ or less is strongly demanded.
  • the ITO film that has been widely used conventionally has a resistance value of only about 150 ⁇ / ⁇ , which is insufficient for the above demand.
  • development of next-generation transparent conductive films to replace ITO has been actively conducted.
  • Japanese Patent Application Laid-Open No. 2011-138628 discloses a method for manufacturing a conductive element to which a silver mesh is applied.
  • the mesh diameter is about 20 ⁇ m, it can be visually recognized by human eyes, and it is difficult to apply to a touch panel display device or the like.
  • silver nanowires that are commercially available from some manufacturers have a minute size that is invisible to the naked eye and expresses electrical conductivity in the film, but the sheet resistance is about 60 ⁇ / ⁇ , The quality required for current touch panel display devices was insufficient.
  • the film thickness of the conductive film needs to be laminated to about 200 nm, and it was formed in the manufacturing process.
  • stress is applied to the conductive film, cracks and the like are likely to occur in the film, resulting in a decrease in yield and a problem in terms of production efficiency.
  • Patent Document 1 a method of applying a silver vapor-deposited film as a transparent conductive film has been actively studied (for example, see Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver thin film is formed by sputtering, a metal film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium zinc oxide), ICO A transparent conductive film having a structure sandwiched between (indium cerium oxide) and a-GIO (a film of an amorphous oxide made of gallium, indium and oxygen) is also proposed (for example, Patent Documents 2 to 4, Non-Patent Documents (See Patent Document 1). Furthermore, a method of sandwiching a silver thin film with a zinc sulfide film has also been proposed (see, for example, Non-Patent Documents 2 and 3).
  • a metal film having a high refractive index for example, niobium oxide (Nb 2 O 5
  • the moisture resistance of the transparent conductor is sufficiently high, but when forming a silver thin film layer or a zinc sulfide layer During the formation of silver, silver is easily sulfided to form silver sulfide. As a result, there are problems such as a decrease in light transmittance of the transparent conductor and an increase in unnecessary absorption due to sulfurization.
  • a sulfidation prevention layer made of a metal oxide or the like between the transparent metal layer and the zinc sulfide layer for the purpose of preventing sulfidation of silver which is a transparent metal layer material.
  • the zinc sulfide layer is formed before the sulfidation prevention layer is formed on the transparent substrate. This sulfur component sulfides the silver of the transparent metal layer material, making it difficult to obtain a transparent conductor having sufficient light transmittance.
  • a transparent conductive film on a long substrate such as a film by a vacuum film forming method in order to efficiently form a film with high productivity.
  • a to-roll film forming method is known.
  • a partition wall and a differential pressure chamber are provided so as not to affect the film formation in the adjacent film formation chambers (for example, patents).
  • the target is divided in order to prevent the target size from becoming large and cracking due to a difference in thermal expansion between the backing plate (support for fixing the target) and the target (metal material).
  • the technology is known (for example, refer to Patent Document 6), no consideration has been given to film formation using, for example, a metal oxide as a split target material.
  • the present invention has been made in view of the above-mentioned problems and situations, and a solution to that problem is to provide a method for producing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.
  • the present inventor has a plurality of film forming steps for forming a thin film layer on a transparent substrate by a plurality of evaporation sources in the process of examining the cause of the above problems. It has been found that the reduction of the light transmittance due to the sulfidation of the transparent metal layer material can be suppressed by the method for producing a transparent conductor, which is a split target composed of different materials, of the targets possessed by the two evaporation sources.
  • a first high-refractive index layer, a transparent metal layer, and a second high-refractive index layer are sequentially laminated on a transparent substrate that is continuously transported, and further, the first high-refractive index layer and the second high-refractive index layer.
  • the at least two divided targets include a divided target that is a material of the anti-sulfurization layer and a divided target that is a material of the transparent metal layer.
  • splitting target which is a material of the antisulfurization layer, is Zn, a metal oxide containing Zn, or a metal oxide containing Ga.
  • the above-mentioned means of the present invention can provide a method for producing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.
  • the deposition distance between the sulfidation prevention layer and the transparent metal layer is reduced, that is, the target constituting the sulfidation prevention layer and the target constituting the transparent metal layer are used as one evaporation source.
  • the target constituting the sulfidation prevention layer and the target constituting the transparent metal layer are used as one evaporation source.
  • Schematic sectional view showing an example of a layer structure of a transparent conductor according to the present invention Schematic sectional view showing an example of a layer structure of a transparent conductor according to the present invention
  • Graph showing the deposition rate of each target with respect to the electric power supplied to the evaporation source Schematic diagram showing an example of transparent conductor manufacturing equipment
  • Schematic diagram of split targets in transparent conductor manufacturing equipment Schematic diagram of split targets in transparent conductor manufacturing equipment
  • Schematic diagram of split targets in transparent conductor manufacturing equipment Schematic diagram showing an example of transparent conductor manufacturing equipment
  • Schematic diagram showing an example of transparent conductor manufacturing equipment Schematic diagram showing a conventional transparent conductor manufacturing device
  • a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are sequentially laminated on a transparent substrate that is continuously conveyed
  • a method of manufacturing a transparent conductor in which a sulfidation prevention layer is laminated between at least one of a high refractive index layer and a second high refractive index layer and a transparent metal layer, and a plurality of evaporation sources on a transparent substrate It has a plurality of film forming steps for forming a thin film layer, and the target of at least one evaporation source is composed of at least two divided targets made of different materials.
  • At least two division targets are a division target that is a material for an antisulfation layer and a division target that is a material for a transparent metal layer. are preferably included.
  • the divided target that is the material of the transparent metal layer is silver or an alloy containing silver.
  • the split target that is the material of the sulfidation prevention layer is a metal oxide containing Zn or Zn, or a metal oxide containing Ga.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • ⁇ Layer structure of transparent conductor ⁇ 1A to 1C are schematic cross-sectional views showing an example of a layer structure of a transparent conductor according to the present invention.
  • a transparent conductor 1 according to the present invention is formed on a transparent substrate 2 from the transparent substrate 2 side, a first high refractive index layer 3a, an antisulfurization layer 4a (also referred to as a first antisulfurization layer). ), A transparent metal layer 5 and a second high refractive index layer 3b are sequentially laminated.
  • the first high refractive index layer 3a or the second high refractive index layer 3b contains at least zinc sulfide (ZnS).
  • an antisulfurization layer 3 b (also referred to as a second antisulfurization layer) is provided between the second high refractive index layer 3 b and the transparent metal layer 5. It is good also as a formed structure, and as shown to FIG. 1C, between the 1st high refractive index layer 3a and the transparent metal layer 5, the 1st antisulfurization layer 4a, the 2nd high refractive index layer 3b, and a transparent metal
  • the second sulfidation preventing layer 4b may be formed between the layer 5 and the layer 5.
  • the antisulfurization layer 4a or 4b between at least the first high refractive index layer 3a or the second high refractive index layer 3b and the transparent metal layer 5, the first high refractive index layer 3a or the first high refractive index layer 3a or 2 It is possible to prevent movement and mixing of sulfur atoms constituting the zinc sulfide contained in the high refractive index layer 3b to the transparent metal layer 5, which is a preferable mode.
  • the transparent metal layer 5 for example, silver layer
  • the first high refractive index layer 3a or the second high refractive index layer 3b containing at least a metal sulfide such as ZnS are formed adjacent to each other, the metal sulfide
  • an object for example, silver sulfide
  • the light transmittance of the transparent conductor 1 is likely to be lowered.
  • the metal sulfide is presumed to be generated under the following conditions.
  • the transparent metal layer 5 When the transparent metal layer 5 is formed on the first high refractive index layer 3a containing at least zinc sulfide, the unreacted sulfur component in the first high refractive index layer 3a containing zinc sulfide is converted into the transparent metal layer 5
  • the material for example, silver
  • the ejected sulfur component reacts with a metal, for example, silver, and metal sulfide (silver sulfide) is deposited on the first high refractive index layer 3a containing zinc sulfide.
  • the transparent metal layer 5 on the 1st high refractive index layer 3a containing zinc sulfide when forming the transparent metal layer 5 on the 1st high refractive index layer 3a containing zinc sulfide by the continuous film-forming process, it is contained in the formation atmosphere of the 1st high refractive index layer 3a containing zinc sulfide.
  • the sulfur component remains in the atmosphere of the transparent metal layer 5.
  • metal sulfide silver sulfide
  • there are some Zn and unbonded sulfur on the outermost surface of the first high refractive index layer 3a and then when the transparent metal layer 5 is laminated, the unbonded active sulfur component becomes transparent metal. Bonds with constituent atoms of layer 5, for example silver.
  • the metal in the transparent metal layer 5 is a material of the second high refractive index layer 3b containing zinc sulfide. Is played in the forming atmosphere. The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer 5. Furthermore, a metal sulfide is also generated on the surface of the transparent metal layer 5 when the surface of the transparent metal layer 5 comes into contact with the sulfur component in the forming atmosphere.
  • the zinc and sulfur are partly present in the atmosphere in a free state, and the free sulfur is present in the transparent metal layer 5 Bonds to a constituent atom, such as silver.
  • an antisulfurization layer 4a is formed on the first high refractive index layer 3a.
  • the first high refractive index layer 3a is protected by the sulfidation preventing layer 4a, so that the sulfur component in the first high refractive index layer 3a is not easily ejected when the transparent metal layer 5 is formed.
  • the sulfur component contained in the atmosphere in which the first high refractive index layer 3a is formed reacts with the constituent components of the sulfurization preventing layer 4a.
  • the atmosphere in which the transparent metal layer 5 is formed is less likely to contain sulfur, and the formation of metal sulfide is suppressed.
  • the sulfidation preventing layer 4b is laminated on the transparent metal layer 5.
  • the metal in the transparent metal layer 5 is not easily ejected when the second high refractive index layer 3b is formed.
  • the sulfur component in the atmosphere in which the second high refractive index layer 3 b is formed is less likely to come into contact with the surface of the transparent metal layer 5. As a result, metal sulfides are hardly generated on the surface of the transparent metal layer 5.
  • the transparent conductor 1 includes a known functional layer as necessary. It may be provided.
  • an underlayer that can be a growth nucleus when the transparent metal layer 5 is formed may be formed between the transparent metal layer 5 and the first high refractive index layer 3a.
  • a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are sequentially laminated on a transparent substrate that is continuously conveyed
  • a method of manufacturing a transparent conductor in which a sulfidation prevention layer is laminated between at least one of a high refractive index layer and a second high refractive index layer and a transparent metal layer, and a plurality of evaporation sources on a transparent substrate It has a plurality of film forming steps for forming a thin film layer, and the target of at least one evaporation source is composed of at least two divided targets made of different materials.
  • the “divided target” means each target obtained by dividing one target into at least two parts having different chemical compositions (see FIGS. 4A to 4C).
  • a sputtering method may be mentioned as a method for forming the high refractive index layer, the sulfurization preventing layer and the transparent metal layer.
  • the type of the sputtering method is not particularly limited, and ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, bias sputtering, RF sputtering, counter sputtering, and the like can be used.
  • the transparent metal layer is preferably a layer formed by an RF sputtering method or a counter sputtering method, and more preferably a layer formed by a counter sputtering method.
  • the transparent metal layer is a layer formed by an RF sputtering method or a counter sputtering method
  • the transparent metal layer becomes dense and surface smoothness is likely to increase.
  • the surface electrical resistance of the transparent metal layer can be further reduced, and the light transmittance can be improved.
  • At least two split targets include a split target that is a material for an antisulfurization layer and a split target that is a material for a transparent metal layer.
  • the sulfide prevention layer material (for example, metal oxide) target is a divided target that is disposed adjacent to the metal (for example, silver) target, so that the input power to the evaporation source is not reduced. Since the same effect as reducing the input power to the metal oxide target can be obtained, the antisulfurization layer can be stably formed.
  • the transparent metal layer material and the antisulfurization layer material which are ultrathin films, are provided as a split target on one evaporation source, the number of targets of the high refractive index layer can be increased. Therefore, even if the conveyance speed is increased, a high refractive index layer having a sufficient layer thickness can be formed with an input power of 10 W / cm 2 .
  • the metal oxide target (ITO, IZO, GZO, ZnO, IGZO), which is an antisulfurization layer material, is stable at an input power of 4 W / cm 2 or more. Sputtering failed.
  • the anti-sulfurization layer material target is a split target, the same effect as reducing the input power to the split target can be obtained, and stable sputtering can be achieved.
  • FIG. 3 is a schematic view showing an example of a transparent conductor manufacturing apparatus according to the present invention.
  • the manufacturing apparatus 100 mainly includes a feed roller 180 that sends out the transparent substrate 2 before forming various functional layers into the vacuum chamber 110, guide rollers 181 and 183 that guide the transparent substrate 2, and a transparent substrate. 2, a main roller 182 that transports 2, a winding roller 184 that winds up the transparent substrate 2 on which various functional layers are formed, an evaporation source 131 that forms a first high refractive index layer, an evaporation that forms a sulfidation prevention layer and a transparent metal layer. It comprises a source 151, an evaporation source 171 that forms the second high refractive index layer, and partition walls 190 to 195 that partition the space in the vacuum chamber 110.
  • the inside of the vacuum chamber 110 is partitioned by a main roller 182 and partition walls 190 to 195.
  • a main roller 182 Around the main roller 182, there are an unwind chamber 120, a first film formation chamber 130, a first differential pressure chamber 140, a second formation chamber.
  • a film chamber 150, a second differential pressure chamber 160, and a third film formation chamber 170 are formed.
  • the unwinding chamber 120 includes an inner wall surface of the vacuum chamber 110, a peripheral surface of the main roller 182 and partition walls 190 and 195 extending from the inner wall surface of the vacuum chamber 110 to the vicinity of the peripheral surface of the main roller 182. Yes.
  • the ends of the partition walls 190 and 195 extend to a position where they do not contact the transparent substrate 2 stretched around the main roller 182, close to the peripheral surface of the main roller 182, and the unwind chamber 120 and the first
  • the film formation chamber 130 and the third film formation chamber 170 are separated in a substantially airtight manner.
  • the other partition walls 191 to 194 are similarly configured, and the first film formation chamber 130 and the first differential pressure chamber 140 are partitioned by the partition wall 191, and the first differential pressure chamber 140 and the second film formation chamber 150 are formed by the partition wall 192.
  • the second film forming chamber 150 and the second differential pressure chamber 160 are partitioned by a partition wall 193, and the second differential pressure chamber 160 and the third film forming chamber 170 are partitioned by a partition wall 194. Since each chamber is partitioned by the partition walls 190 to 195, it is possible to suppress the target of each film formation chamber from entering another film formation chamber. In particular, for example, the sulfur component contained in the material of the first high refractive index layer or the second high refractive index layer is prevented from entering the second film forming chamber 150, and corrosion of the transparent metal layer containing silver is prevented. Can be suppressed.
  • the unwinding chamber 120, the first film forming chamber 130, the first differential pressure chamber 140, the second film forming chamber 150, the second differential pressure chamber 160, and the third film forming chamber 170 are respectively evacuated (not shown). And an inert gas supply means (not shown) and the like are provided, and the degree of vacuum in each chamber can be adjusted.
  • the vacuum exhaust means is not particularly limited.
  • a vacuum pump such as a turbo pump, a mechanical booster pump, a rotary pump, or a dry pump, an auxiliary means such as a cryocoil, an ultimate vacuum degree or exhaust amount adjusting means, etc.
  • a known (vacuum) evacuation means or the like used in a vacuum film forming apparatus can be used.
  • the partition walls 190 to 195 are provided between the chambers and are separated from each other in a substantially hermetic manner.
  • the first differential pressure chamber 140 is provided between the first film formation chamber 130 and the second film formation chamber 150
  • the second differential pressure chamber 160 is provided between the second film formation chamber 150 and the third film formation chamber 170.
  • the degree of vacuum in the first differential pressure chamber 140 and the second differential pressure chamber 160 is lower than that in the first to third film formation chambers 130, 150, and 170, that is, the pressure is high. By doing so, it is possible to suppress the target in each film formation chamber from entering another film formation chamber. In particular, for example, the sulfur component contained in the first high-refractive index layer or the second high-refractive index layer is prevented from entering the second film forming chamber 150 and the corrosion of the transparent metal layer containing silver is suppressed. Can do.
  • the degree of vacuum of the second film formation chamber 150 is lower than that of the first film formation chamber 130 and the third film formation chamber 170, that is, the pressure is high. It is preferable that Thereby, it can suppress that the sulfur component in the 1st film-forming chamber 130 and the 3rd film-forming chamber 170 penetrate
  • the transparent substrate 2 used in the manufacturing apparatus 100 is formed in a long length, is unwound from the feed roller 180 in the unwind chamber 120, and is taken up by the take-up roller 184.
  • the transparent substrate 2 unwound from the delivery roller 180 is conveyed to the main roller 182 via the guide roller 181, and sequentially in the first film formation chamber 130, the second film formation chamber 150, and the third film formation chamber 170.
  • a thin film layer is formed, and is further wound around a winding roller 184 via a guide roller 183.
  • the composition of each layer formed by sputtering changes, so the moisture is removed from the transparent substrate 2 before forming the layer. It is preferable. Specifically, it is preferable to perform preliminary heating, evacuation by a cryopump, or the like on the transparent substrate 2, and the manufacturing apparatus 100 may have a configuration for performing them.
  • the manufacturing apparatus 100 may be equipped with the structure for performing them.
  • the feed roller 180 supplies the long transparent substrate 2 and sends it to the downstream side in the transport direction X. Further, the winding roller 184 winds the layer-formed transparent substrate 2.
  • the feed roller 180 and the take-up roller 184 are provided in the unwind chamber 120.
  • the control unit (not shown) of the manufacturing apparatus 100 synchronizes the feeding of the transparent substrate 2 by the feeding roller 180 and the winding of the transparent substrate 2 on which the layer has been formed by the winding roller 184, so Layers are sequentially formed in the first film formation chamber 130, the second film formation chamber 150, and the third film formation chamber 170 while the transparent substrate 2 is conveyed in the longitudinal direction along a predetermined conveyance path. Therefore, the unwinding chamber 120 is the most upstream chamber in the transport direction X of the transparent substrate 2 and the most downstream chamber in the manufacturing apparatus 100.
  • the guide rollers 181 and 183 are normal guide rollers that are provided in the unwind chamber 120 and guide the transparent substrate 2 along a predetermined transport path.
  • the main roller 182 is a cylindrical member that rotates in the direction of the arrow in FIG.
  • the main roller 182 wraps the transparent substrate 2 conveyed by the guide roller 181 in a predetermined path around a predetermined area of the peripheral surface and conveys the transparent substrate 2 in the longitudinal direction while holding it at a predetermined position.
  • the transparent substrate 2 is passed through the first differential pressure chamber 140, the second film formation chamber 150, the second differential pressure chamber 160, and the third film formation chamber 170 in this order, and is sent to the guide roller 183 in the unwind chamber 120.
  • the main roller 182 also functions as a counter electrode for the evaporation source 131 of the first film formation chamber 130, the evaporation source 151 of the second film formation chamber 150, and the evaporation source 171 of the third film formation chamber 170.
  • the main roller 182 may incorporate a cooling means for cooling the transparent substrate 2.
  • the cooling means for the main roller 182 is not particularly limited, and may be a cooling means for circulating a refrigerant or the like, or a cooling means using a piezo element or the like.
  • the cooling means is configured to cool the temperature of the transparent substrate 2 to about ⁇ 20 to 65 ° C., for example.
  • the evaporation source 131 is provided in the first film forming chamber 130, and a target 133 that is a raw material for the first high refractive index layer is attached to the sputtering cathode 132.
  • the evaporation source 131 forms a first high refractive index layer having a layer thickness corresponding to the input power amount on the transparent substrate 2 conveyed by the main roller 182 when power is input.
  • the evaporation source 151 is provided in the second film formation chamber 150, and the split targets 153 a and 153 b that are raw materials for the sulfurization prevention layer and the transparent metal layer are attached to the sputtering cathode 152.
  • the split target 153a of the sulfidation prevention layer (first sulfidation prevention layer) is upstream in the transport direction X upstream of the transparent substrate 2, and the transparent metal is downstream in the transport direction X of the transparent substrate 2.
  • a layer split target 153b is provided. As shown in FIG.
  • the split target provided on the sputtering cathode 152 is provided with a transparent metal layer split target 153 b on the upstream side in the transport direction X of the transparent substrate 2, and prevents sulfurization on the downstream side in the transport direction X of the transparent substrate 2.
  • a split target 153c for the layer may be provided, and as shown in FIG. 4C, the first anti-sulfur layer is divided from the upstream side toward the downstream side in the transport direction X of the transparent substrate 2.
  • the evaporation source 151 forms an anti-sulfurization layer and a transparent metal layer having a layer thickness corresponding to the input power amount on the transparent substrate 2 conveyed by the main roller 182 when power is input.
  • a partition plate 196 may be provided on the extended line of the boundary between the divided targets 153a and 153b so that the divided targets are not mixed.
  • the partition plate 196 is held by a holding shaft 197 extending substantially horizontally between the opposing wall surfaces of the partition walls 192 and 193. Both ends of the partition plate 196 are disposed so as not to contact the main roller 182 and the divided targets 153a and 153b, but may be provided to extend as close as possible so that the divided targets do not mix. preferable.
  • the partition plate 196 may be provided in a straight line with respect to the direction perpendicular to the divided target surface, or may be provided in a curved shape in one of the divided targets 153a and 153b. Note that the partition plate 196 is appropriately provided on the extended line of the boundary according to the number of division targets (see FIGS. 4A to 4C).
  • an opening limiting mask (not shown) may be provided between the transparent substrate 2 transported to the main roller 182 and the evaporation source 151.
  • the opening limiting mask is not provided in the first film formation chamber 130 and the third film formation chamber 170.
  • a thin layer is formed by reducing the amount of input power input to the evaporation source.
  • the transparent metal layer is formed by reducing the amount of electric power input to the evaporation source, the average light absorptance of the formed transparent metal layer increases and the average light transmittance decreases.
  • the width in the substrate transport direction of the region facing the transparent substrate 2 in the divided target 153b can be increased.
  • a transparent metal layer having a thin layer thickness can be formed without reducing the function.
  • the evaporation source 171 is provided in the third film formation chamber 170, and a target 173, which is a raw material for the second high refractive index layer, is attached to the sputtering cathode 172.
  • the evaporation source 171 forms a second high refractive index layer having a layer thickness corresponding to the input power amount on the transparent substrate 2 conveyed by the main roller 182 when power is input.
  • the sputtering cathodes 132, 152, and 172 those of the so-called magnetron cathode type in which a magnet is disposed inside and the plasma is confined by a magnetic field to increase the sputtering efficiency are preferable.
  • sputtering cathodes 132, 152 and 172 either a flat cathode or a rotary cathode may be used.
  • the rotary cathode is used. More preferably.
  • the magnetic flux density of the magnet is preferably in the range of 300 to 1000 G (3 ⁇ 10 ⁇ 2 to 10 ⁇ 10 ⁇ 2 T).
  • Examples of sputtering conditions in each of the film forming chambers 130, 150, and 170 include an inert gas flow rate of 5 to 40 sccm (Standard Cubic Centimeter per Minute), a pressure of 0.1 to 1.0 Pa, such as Ar, Kr, and Xe. And by setting to such conditions, it can suppress that the surface of each layer formed becomes rough.
  • the layer thickness of each layer formed in each of the film formation chambers 130, 150, and 170 is preferably monitored by a layer thickness monitor such as a crystal resonator or an interferometer.
  • the first differential pressure chamber 140 is provided between the first film formation chamber 130 and the second film formation chamber 150, and the second film formation chamber 150, the third film formation chamber 170,
  • the first differential pressure chamber 140 and the second differential pressure chamber 160 may not be provided.
  • the first film formation chamber 130, the second film formation chamber 150, and the third film formation chamber 170 are provided.
  • the first differential pressure chamber 140 and the second differential pressure are provided.
  • a film forming chamber for forming another functional layer constituting the transparent conductor may be provided. That is, as shown in FIG. 6, the manufacturing apparatus 200 includes a first film formation chamber 230 and a second film formation chamber 240 that form the first high refractive index layer, a third formation layer that forms the sulfidation prevention layer and the transparent metal layer.
  • the film chamber 250 and the fourth film forming chamber 260 and the fifth film forming chamber 270 for forming the second high refractive index layer may be provided.
  • the transparent conductor according to the present invention is preferably performed using the manufacturing apparatus 100.
  • the case where the said manufacturing apparatus 100 is used is demonstrated.
  • a film forming process of the first high refractive index layer is performed by the evaporation source 131 on the transparent substrate 2 that is fed from the feed roller 180 and conveyed by the main roller 182. Subsequently, a film forming step of an antisulfurization layer and a transparent metal layer is performed on the transparent substrate 2 conveyed by the main roller 182 by the evaporation source 151. Under the present circumstances, you may perform the film-forming process of a sulfide prevention layer and a transparent metal layer through the opening restriction
  • the sulfidation prevention layer and the transparent metal layer By forming the sulfidation prevention layer and the transparent metal layer through the opening limiting mask, the sulfidation prevention layer and the transparent metal layer having a thinner thickness than the first and second high refractive index layers can be formed without reducing the function. Can be formed. Subsequently, a film forming process of the second high refractive index layer is performed by the evaporation source 171 on the transparent substrate 2 conveyed by the main roller 182. Thus, the transparent substrate 2 on which the first high refractive index layer, the sulfidation preventing layer, the transparent metal layer, and the second high refractive index layer are formed is wound up by the winding roller 184. As described above, a desired transparent conductor can be manufactured.
  • the transparent substrate 2 may be a transparent substrate and may be the same as the transparent substrate of various conventionally known display devices.
  • transparent means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the transparent substrate 2 for example, a glass substrate, a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetyl propionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Ltd.)), cyclo Olefin resins (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (Sumitomo) Chemical)), polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate (PEN)), polyethersulfone, ABS AS resin, MBS resin, polys
  • examples of the material of the transparent substrate 2 include a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, and polyphenylene.
  • a transparent resin film made of ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, or the like is preferable. .
  • the transparent substrate 2 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more. is there.
  • the average light transmittance of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to increase.
  • the average absorption rate of light at a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and still more preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2.
  • the average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light at a wavelength of 570 nm of the transparent substrate 2 is preferably 1.40 to 1.95 at 25 ° C., more preferably 1.45 to 1.75, still more preferably 1.45 to 1. .70.
  • the refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2. The refractive index of the transparent substrate 2 is measured with an ellipsometer.
  • the haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5, more preferably in the range of 0.1 to 1.2.
  • the haze value of the transparent conductor 1 is suppressed as the haze value of the transparent substrate 2 is 2.5 or less.
  • the haze value is measured with a haze meter.
  • the thickness of the transparent substrate 2 is preferably in the range of 1 ⁇ m to 20 mm, more preferably in the range of 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate 2 is 1 ⁇ m or more, the strength of the transparent substrate 2 is increased, and it is possible to suppress cracking or tearing when the first high refractive index layer 3a is formed.
  • the thickness of the transparent substrate 2 is 20 mm or less, the flexibility of the transparent conductor 1 is sufficient.
  • the thickness of the apparatus using the transparent conductor 1 can be reduced.
  • the apparatus using the transparent conductor 1 can also be reduced in weight.
  • a glass substrate, a resin film, or the like is used as the transparent substrate 2.
  • a smooth layer (clear hard coat layer: CHC layer), a protective layer, an adhesion layer, a reflective layer is used.
  • a layer (film) for expressing various functions such as an antireflection layer may be formed.
  • the average surface roughness Ra is preferably 3 nm or less.
  • the first high refractive index layer 3 a is a layer that adjusts the light transmittance (optical admittance) of the transparent metal layer 5.
  • the first high refractive index layer 3a includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 2 described above.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 3a may be an insulating material or a conductive material.
  • a metal oxide can be used as the dielectric material or the oxide semiconductor material.
  • the first high refractive index layer 3a may contain only one kind of the metal oxide or two or more kinds.
  • zinc sulfide can be used as the dielectric material or the oxide semiconductor material included in the first high refractive index layer 3a.
  • the first high refractive index layer 3a may contain only zinc sulfide, or may contain other materials together with zinc sulfide. Material contained together with zinc sulphide, a metal oxide or SiO 2 or the like which can be used as the dielectric material or an oxide semiconductor material, as will be described later, particularly preferably SiO 2.
  • SiO 2 is contained together with zinc sulfide, the first high refractive index layer 3a is likely to be amorphous, and the flexibility of the transparent conductor 1 is likely to be enhanced.
  • the content of zinc sulfide is 0. 0 relative to the total number of moles of all the materials constituting the first high refractive index layer 3a. It is preferably in the range of 1 to 95% by mass, more preferably in the range of 50 to 90% by mass, and still more preferably in the range of 60 to 85% by mass.
  • the content of zinc sulfide is large, the sputtering rate is increased and the formation rate of the first high refractive index layer 3a is increased.
  • the amorphousness of the first high refractive index layer 3a is increased, and cracking of the first high refractive index layer 3a is suppressed.
  • the refractive index of light at a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light at a wavelength of 570 nm of the transparent substrate 2, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light at a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 3a is preferably greater than 1.5 at 25 ° C. More preferably, it is within the range of .5, and even more preferably within the range of 1.8 to 2.5.
  • the optical admittance of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3a.
  • the refractive index of the first high refractive index layer 3a is adjusted by the refractive index of the material included in the first high refractive index layer 3a and the density of the material included in the first high refractive index layer 3a.
  • the layer thickness of the first high refractive index layer 3a is preferably in the range of 15 to 150 nm, more preferably in the range of 20 to 80 nm.
  • the optical admittance of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3a.
  • the thickness of the first high refractive index layer 3a is 150 nm or less, the light transmittance of the region where the first high refractive index layer 3a is formed is unlikely to decrease.
  • the layer thickness of the first high refractive index layer 3a is measured with an ellipsometer.
  • the first high refractive index layer 3a preferably contains zinc sulfide, but more preferably contains amorphous zinc sulfide. Since the amorphous zinc sulfide is contained in the first high refractive index layer 3a, the stress generated in the transparent conductor 1 can be reduced, and the occurrence of warpage in the transparent conductor 1 can be suppressed. It is possible to suppress the generation of cracks when the transparent conductor 1 is bent. Furthermore, the light transmittance of the first high refractive index layer 3a can be improved by containing amorphous zinc sulfide in the first high refractive index layer 3a.
  • the zinc sulfide can be made amorphous.
  • the content of the amorphized metal material can be appropriately changed, whereby the refractive index of light can be changed. Therefore, the light transmittance can be made desired.
  • the first high refractive index layer 3a is not amorphized by containing, for example, TiO 2 or Nb 2 O 5 which is a transparent material having a higher refractive index than zinc sulfide as an amorphized metal material. That is, the reflection band can be expanded as compared with the first high refractive index layer made of crystalline zinc sulfide alone. Thereby, adjustment of the optical characteristic of the transparent conductor 1 becomes easy.
  • the transparent metal layer 5 can be protected more reliably. Therefore, for example, by containing Si 3 N 4 or Al 2 O 3 as an amorphized metal material together with zinc sulfide in the first high refractive index layer 3a, it is possible to improve the scratch resistance of the transparent conductor 1. Become.
  • amorphized metal material for example, a metal oxide, a metal fluoride, a metal nitride, or the like can be used.
  • Examples of the metal oxide used as the amorphized metal material include TiO 2 , In 2 O 5 , ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7.
  • the metal oxide is used to include SiO 2 .
  • SiO 2 and TiO 2 are preferable.
  • SiO 2 zinc sulfide can be made amorphous even if its content is small. Therefore, by incorporating the SiO 2, after amorphization of zinc sulfide, high adhesion (peeling resistance) and high durability (e.g., moisture resistance, etc.) it can be particularly well achieved a.
  • TiO 2 exhibits a particularly high refractive index among transparent materials, by using TiO 2 , a wide reflection band can be obtained and the optical characteristics of the transparent conductor 1 can be easily adjusted.
  • Examples of the metal fluoride used as the amorphized metal material include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , CeF 3 , NdF 3 , YF 3 etc. are mentioned.
  • examples of the metal nitride used as the amorphized metal material include Si 3 N 4 and AlN. Among these, Si 3 N 4 is preferable. Since Si 3 N 4 has a high hardness, it is possible to improve the scratch resistance of the first high refractive index layer 3a by using Si 3 N 4 . In the present invention, the metal nitride is used in the meaning including Si 3 N 4 .
  • these amorphized metal materials may be used independently, and 2 or more types may be used in arbitrary ratios and combinations.
  • the amount of the amorphized metal material contained with respect to the crystalline zinc sulfide there is no particular limitation on the amount of the amorphized metal material contained with respect to the crystalline zinc sulfide.
  • SiO 2 when SiO 2 is used as the amorphized metal material, it is usually 1% by mass or more, more preferably 5% by mass with respect to crystalline zinc sulfide. % Or more and usually 99% by mass or less, and more preferably 95% by mass or less of SiO 2 can be used to make amorphous zinc sulfide.
  • the first sulfidation preventing layer 4a for example, metal oxide, metal nitride, metal fluoride, or Zn can be used. Among these, Zn, a metal oxide containing Zn, or a metal oxide containing Ga is preferable. Only 1 type may be contained in the 1st sulfurization prevention layer 4a, and 2 or more types may be contained. However, when the first high refractive index layer 3a, the first antisulfurization layer 4a, and the transparent metal layer 5 are continuously formed, the first antisulfurization layer 4a is composed of a compound capable of reacting with sulfur, It is preferable to contain a compound capable of adsorbing sulfur. When the material contained in the first sulfurization prevention layer 4a is a compound that reacts with sulfur, the reaction product with the sulfur preferably has a high visible light transmittance.
  • metal oxide examples include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2.
  • Examples of the metal fluoride include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , CeF 3 , NdF 3 , YF 3 and the like.
  • Examples of the metal nitride include Si 3 N 4 and AlN.
  • the material constituting the first anti-sulfuration layer 4a preferably a metal oxide, in particular, ZnO, ITO, IGZO, Ga 2 O 3, Nb 2 O 5, SnO 2, Y 2 O 3 and M3 (registered Trademark) is preferred.
  • a metal oxide in particular, ZnO, ITO, IGZO, Ga 2 O 3, Nb 2 O 5, SnO 2, Y 2 O 3 and M3 (registered Trademark) is preferred.
  • adhesiveness with the zinc sulfide contained in the 1st high refractive index layer 3a or the 2nd high refractive index layer 3b can be improved, and durability can be improved more.
  • the layer thickness of the first sulfidation preventing layer 4a is preferably a layer thickness capable of protecting the surface of the first high refractive index layer 3a from an impact when forming the transparent metal layer 5 described later.
  • zinc sulfide that can be contained in the first high refractive index layer 4 a has high affinity with the metal contained in the transparent metal layer 5. Therefore, if the thickness of the first anti-sulfurization layer 4a is very thin and a part of the first high refractive index layer 3a is slightly exposed, the transparent metal layer 5 grows around the exposed part and is transparent. The metal layer 5 tends to be dense.
  • the first antisulfurization layer 4a is preferably relatively thin, preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably 1 to 3 nm. Is within the range.
  • the layer thickness of the first sulfidation preventing layer 4a is measured with an ellipsometer.
  • the transparent metal layer 5 is a layer for conducting electricity in the transparent conductor 1.
  • the transparent metal layer 5 preferably contains silver. From the viewpoint of obtaining high conductivity, the transparent metal layer 5 is preferably made of silver or an alloy containing 90 at% or more of silver. As a metal combined with silver, for example, zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, nickel, iron, cobalt, tungsten, tantalum, chromium, indium, titanium, or the like can be used. Among these, copper, palladium, or bismuth is preferable.
  • the transparent metal layer 5 may contain a simple substance or compound of silver and a simple substance or compound of copper, palladium, or bismuth, or is included in the form of an alloy of silver and at least one of these metals. However, it is preferably contained in the form of an alloy. Moreover, it is preferable that all of the materials constituting the transparent metal layer 5 are an alloy of silver and at least one of these metals. By including at least one of these metals in the transparent metal layer 5, it is possible to further improve the durability, peel resistance, and the like of the transparent conductor 1. Further, for example, when the transparent metal layer 5 contains an alloy of silver and zinc, the sulfidation resistance of the transparent metal layer 5 can be improved.
  • the transparent metal layer 5 contains an alloy of silver and gold
  • the salt resistance (NaCl) resistance of the transparent metal layer 5 can be improved.
  • the transparent metal layer 5 contains an alloy of silver and copper
  • the oxidation resistance of the transparent metal layer 5 can be improved.
  • the plasmon absorption rate of the transparent metal layer 5 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the transparent conductor 1 is easily colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 5 is measured by the following procedure.
  • Platinum palladium is formed to 0.1 nm on a glass substrate by a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of metal is formed with a thickness of 20 nm on the substrate to which platinum palladium is adhered by sputtering. (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the light transmittance and light reflectance of the metal film are measured.
  • the light transmittance and light reflectance are measured with a spectrophotometer.
  • a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, light transmittance and light reflectance are measured similarly.
  • the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
  • the layer thickness of the transparent metal layer 5 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm.
  • the layer thickness of the transparent metal layer 5 is measured with an ellipsometer.
  • the transparent metal layer 5 may be formed by any film formation method, but from the viewpoint of increasing the average transmittance of the transparent metal layer 5, it is preferably a layer formed by a sputtering method. It is preferable that the transparent metal layer 5 be a layer formed on an underlayer that can become a growth nucleus when forming the transparent metal layer 5. When the transparent metal layer 5 is a layer formed on the underlayer, the underlayer becomes a growth nucleus when the transparent metal layer 5 is formed, so that the transparent metal layer 5 tends to be a smooth layer. As a result, even if the transparent metal layer 5 is thin, plasmon absorption is less likely to occur.
  • the material collides with the deposition target at high speed, so that a dense and smooth film can be easily obtained and the light transmittance of the transparent metal layer 5 can be improved. Further, when the transparent metal layer 5 is a layer formed by sputtering, the transparent metal layer 5 is hardly corroded even in a high temperature and low humidity environment.
  • the type of the sputtering method is not particularly limited, and ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, bias sputtering, RF sputtering, counter sputtering, and the like can be used.
  • the transparent metal layer 5 is preferably a layer formed by RF sputtering or counter sputtering.
  • the transparent metal layer 5 becomes dense and the surface smoothness is likely to be increased. As a result, the surface electrical resistance of the transparent metal layer 5 can be further reduced, and the light transmittance can be improved.
  • a second antisulfurization layer 4b is provided between the transparent metal layer 5 and the second high refractive index layer 3b. Is preferred. Since the second sulfidation preventing layer 4b is configured in the same manner as the first sulfidation preventing layer 4a, description of common points is omitted, and only points different from the first sulfidation preventing layer 4a are described below. .
  • the layer thickness of the second antisulfurization layer 4b is preferably a layer thickness that can protect the surface of the transparent metal layer 5 from an impact during the formation of the second high refractive index layer 3b.
  • the metal contained in the transparent metal layer 5 and zinc sulfide that can be contained in the second high refractive index layer 3b have high affinity. Therefore, if the thickness of the second antisulfurization layer 4b is very thin and a part of the transparent metal layer 5 is slightly exposed, the transparent metal layer 5, the second antisulfurization layer 4b, and the second high refractive index layer. Adhesion with 3b tends to increase.
  • the specific layer thickness of the second antisulfurization layer 4b is preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably 1 to 3 nm. Is within the range.
  • the layer thickness of the second sulfurization preventing layer 4b is measured with an ellipsometer.
  • the second high refractive index layer 3b is a layer for adjusting the light transmittance (optical admittance) of the region where the transparent metal layer 5 is formed.
  • the second high-refractive index layer 3b is configured in the same manner as the first high-refractive index layer 3a. Therefore, description of common points is omitted, and only differences from the first high-refractive index layer 3a are described below. Explained.
  • the second high-refractive index layer 3b may contain zinc sulfide. If the second high-refractive index layer 3b contains zinc sulfide, the second metal layer 5b transmits moisture to the transparent metal layer 5. It is possible to suppress the corrosion of the transparent metal layer 5.
  • the average transmittance of light at a wavelength of 450 to 800 nm of the transparent conductor according to the present invention is preferably 94% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average transmittance of light at a wavelength of 400 to 1000 nm of the transparent conductor is preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more.
  • the present invention also relates to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells.
  • a transparent conductor can be applied.
  • the average absorptance of light at a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably 7% or less.
  • the maximum value of the light absorptance at a wavelength of 450 to 800 nm of the transparent conductor is preferably 15% or less, more preferably 10% or less, and further preferably 9% or less.
  • the average reflectance of light at a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
  • the average transmittance and the average reflectance are preferably the average transmittance and the average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air.
  • the average transmittance and average reflectance can be measured with a spectrophotometer by making measurement light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent conductor. The average absorptance is calculated from a calculation formula of 100 ⁇ (average transmittance + average reflectance).
  • the luminous reflectance of the transparent conductor is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100: manufactured by Hitachi High-Technologies Corporation).
  • the a * value and b * value in the L * a * b * color system of the transparent conductor are each preferably within ⁇ 30, more preferably within ⁇ 5.0, and ⁇ 3. It is further preferably within 0, and particularly preferably within ⁇ 2.0.
  • the a * value and b * value in the L * a * b * color system are within ⁇ 30, the color is observed as colorless and transparent.
  • the a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance value of the transparent conductor is preferably 50 ⁇ / ⁇ or less, and more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electrical resistance value of 50 ⁇ / ⁇ or less can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent conductor is adjusted by the thickness of the transparent metal layer and the like.
  • the surface electrical resistance value of the transparent conductor is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the transparent conductor according to the present invention includes various types of optoelectronics such as liquid crystal, plasma, organic electroluminescence, field emission, various types of displays, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence dimming elements, etc. It can be preferably used for a substrate of a device.
  • the first high refractive index layer and the first sulfurization prevention are produced as follows using the production apparatus 300 shown in FIG. A transparent metal layer 101, a transparent metal layer, a second anti-sulfurization layer, and a second high-refractive index layer to produce transparent conductors 101 to 104, and the manufacturing apparatus 200 shown in FIG. In this way, the first high refractive index layer, the first antisulfurization layer, the transparent metal layer, the second antisulfurization layer, and the second high refractive index layer were formed, and the transparent conductors 105 to 108 were produced.
  • the split target shown in FIG. 4C was used.
  • first sulfidation prevention layer On the first high refractive index layer, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.), the electric power input to the evaporation source 341 is 1.2 W. ZnO was sputtered at / cm 2 to form a first sulfidation preventive layer having a layer thickness of 2.4 nm. The target length of the evaporation source 341 was 0.20 m.
  • ZnS is used as the target 333 of the evaporation source 331
  • ZnO is used as the target 343 of the evaporation source 341
  • Ag is used as the target 353 of the evaporation source 351
  • ZnO is used as the target 363 of the evaporation source 361.
  • ZnS was used as the target 373 of the evaporation source 371.
  • the conveyance speed of the transparent substrate was set to 0.36 m / min.
  • first sulfidation prevention layer On the first high refractive index layer, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.), the amount of power supplied to the evaporation source 341 is 1.9 W. ZnO was sputtered at / cm 2 to form a first sulfidation preventing layer having a layer thickness of 2.1 nm. The target length of the evaporation source 341 was 0.20 m.
  • Transparent conductor 104 was produced in the same manner as in production of transparent conductor 103, except that the target length was changed when forming the first and second sulfidation prevention layers.
  • first anti-sulfuration layer (5.2) Formation of first anti-sulfuration layer, transparent metal layer and second anti-sulfur layer
  • evaporation source 151 is sputtered at an input power amount of 1.9 W / cm 2 to form a first antisulfurization layer having a thickness of 0.7 nm, a transparent metal layer having a thickness of 8.4 nm, and a first metal having a thickness of 0.7 nm.
  • a disulfide prevention layer was formed.
  • the division target lengths corresponding to the first sulfidation prevention layer, the transparent metal layer, and the second sulfidation prevention layer of the evaporation source 151 were 0.08 m, 0.04 m, and 0.08 m, respectively.
  • the target lengths of the first anti-sulfuration layer, the transparent metal layer, and the second anti-sulfur layer were controlled using an opening limiting mask.
  • the width of the aperture limiting mask is the target length.
  • a second high refractive index layer is formed on each second antisulfurization layer by the respective evaporation sources 171 in the same manner as the first high refractive index layer.
  • a body 105 was produced.
  • Transparent conductor 106 was produced in the same manner as in production of transparent conductor 105, except that the amount of electric power applied to evaporation source 151 was changed as shown in Table 2.
  • each layer in the transparent conductors 101 to 108 is J.P. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • the static formation speed at the time of forming each layer was calculated.
  • the static deposition rate (nm / min) is the thickness of the layer actually deposited on the transparent substrate after the transparent substrate passes over the region facing the transparent substrate of the deposition source.
  • t (nm) the transport speed (constant speed) of the transparent substrate is R (m / min)
  • the width in the substrate transport direction of the region facing the transparent substrate of the film forming source is w (m)
  • the width of the opening of the film formation mask in the substrate transport direction is w (m).
  • the substrate transport direction is a direction substantially parallel to the surface of the film forming source facing the transparent substrate, and is a direction along the direction in which the transparent substrate is transported on the film forming source.
  • measurement light (light having a wavelength of 450 to 800 nm) is incident from an angle inclined by 5 ° with respect to the normal line of the surface of the alkali-free glass substrate, and the spectrophotometer U4100 manufactured by Hitachi, Ltd.
  • the transmittance (%) and the reflectance (%) were measured.
  • the average absorptance was calculated from a calculation formula of 100 ⁇ (average transmittance + average reflectance). The measurement results are shown in Table 2.
  • the average reflectance of the transparent conductor is the reflection at the interface between the non-alkali glass substrate and the atmosphere (4%), and the reflection at the interface between the transparent substrate of the transparent conductor and the atmosphere. A value obtained by subtracting (4%) was used. Further, the transmittance of the transparent conductor is 8 in the measured value of the transmittance considering the reflection at the interface between the alkali-free glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere of the transparent conductor. % was added.
  • the transparent conductor 101 of the comparative example has a large amount of absorption loss and a low average light transmittance.
  • improvements were observed in the average light transmittance, the amount of absorption loss, and the resistance value.
  • the transparent conductor manufacturing method is useful for suppressing a decrease in light transmittance due to sulfidation of the transparent metal layer material.
  • the present invention can be particularly suitably used for providing a method for producing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

The objective of the present invention is to provide a method for producing a transparent conductor, which suppresses a decrease of the light transmittance due to sulfurization of a transparent metal layer material. In a method for producing a transparent conductor (1) according to the present invention, a first high-refractive-index layer (3a), a transparent metal layer (5) and a second high-refractive-index layer (3b) are sequentially laminated on a transparent substrate (2) that is continuously conveyed, and a sulfurization prevention layer is laminated between the first high-refractive-index layer (3a) and the transparent metal layer (5) and/or between the second high-refractive-index layer (3b) and the transparent metal layer (5). This method for producing a transparent conductor (1) is characterized by having a plurality of film formation steps for forming thin film layers on the transparent substrate (2) by means of a plurality of evaporation sources, and is also characterized in that a target of at least one evaporation source is configured of at least two split targets that are formed of different materials.

Description

透明導電体の製造方法Method for producing transparent conductor
 本発明は、透明導電体の製造方法に関する。より詳しくは、透明金属層材料の硫化による光透過率の低下を抑制する透明導電体の製造方法に関する。 The present invention relates to a method for producing a transparent conductor. More specifically, the present invention relates to a method for manufacturing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.
 近年、タッチパネル材料、液晶ディスプレイやプラズマディスプレイ、無機及び有機エレクトロルミネッセンス(electroluminescence:EL)ディスプレイ等の表示装置、太陽電池等の各種装置に、低抵抗な透明導電膜が求められている。 In recent years, low resistance transparent conductive films have been required for various devices such as touch panel materials, liquid crystal displays, plasma displays, inorganic and organic electroluminescence (EL) displays, and solar cells.
 このような透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
 ここで、タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電膜等からなる配線が配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 Here, in a touch panel type display device or the like, a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
 一方で、静電容量方式のタッチパネル表示装置が開発され、透明導電膜の表面電気抵抗を更に低く、具体的には、50Ω/□以下の抵抗値が強く求められている。しかし、従来、広く用いられているITO膜では、抵抗値としては150Ω/□程度にとどまっており、上記の要望に対しては不十分な特性であった。
 このような背景から、ITOに代わる次世代の透明導電膜の開発が盛んになされてきた。
On the other hand, a capacitive touch panel display device has been developed, and the surface electrical resistance of the transparent conductive film is further reduced, and specifically, a resistance value of 50Ω / □ or less is strongly demanded. However, the ITO film that has been widely used conventionally has a resistance value of only about 150Ω / □, which is insufficient for the above demand.
Against this background, development of next-generation transparent conductive films to replace ITO has been actively conducted.
 上記問題に対し、例えば、特開2011-138628号公報、特開2011-171292号公報等には、銀メッシュを適用する導電性要素の製造方法が開示されている。しかしながら、これら銀メッシュを用いた方法では、メッシュの径が20μm程度であるため、人間の目で視認できてしまい、タッチパネル表示装置等への適用は難しいのが現状である。また、一部メーカーより市販されている銀ナノワイヤーでは、肉眼で視認されない程度の微小サイズを有し、膜内での導電性を発現するものの、面抵抗値としては60Ω/□程度であり、現在のタッチパネル表示装置等で要求されている品質に対しては不十分であった。 In response to the above problem, for example, Japanese Patent Application Laid-Open No. 2011-138628, Japanese Patent Application Laid-Open No. 2011-171292, etc. disclose a method for manufacturing a conductive element to which a silver mesh is applied. However, in the method using these silver meshes, since the mesh diameter is about 20 μm, it can be visually recognized by human eyes, and it is difficult to apply to a touch panel display device or the like. In addition, silver nanowires that are commercially available from some manufacturers have a minute size that is invisible to the naked eye and expresses electrical conductivity in the film, but the sheet resistance is about 60Ω / □, The quality required for current touch panel display devices was insufficient.
 そのほかにも、酸化亜鉛等を用いることにより低抵抗化する試みがなされているが、このような方法では、導電膜の膜厚としては、200nm程度まで積層する必要があり、製造過程で形成した導電膜に応力が掛かった際、膜内にクラック等が発生しやすくなるため歩留まりが低下し、生産効率の点で問題がある。また、このような特性を抱えた導電膜は、近い将来に実用化が予測されているフレキシブルタッチパネルや曲面部材への適用が難しい。 In addition, attempts have been made to reduce the resistance by using zinc oxide or the like, but in such a method, the film thickness of the conductive film needs to be laminated to about 200 nm, and it was formed in the manufacturing process. When stress is applied to the conductive film, cracks and the like are likely to occur in the film, resulting in a decrease in yield and a problem in terms of production efficiency. Moreover, it is difficult to apply the conductive film having such characteristics to a flexible touch panel and a curved member that are expected to be put to practical use in the near future.
 上記問題を踏まえ、銀の蒸着膜を透明導電膜として適用する方法が盛んに検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、銀薄膜を、スパッタ法により形成した屈折率の高い金属膜(例えば、酸化ニオブ(Nb)、IZO(酸化インジウム・酸化亜鉛)、ICO(インジウムセリウムオキサイド)、a-GIO(ガリウム、インジウム及び酸素からなる非晶質酸化物等の膜))で挟持する構成の透明導電膜も提案されている(例えば、特許文献2~4、非特許文献1参照。)。さらに、銀薄膜を硫化亜鉛膜で挟み込む方法も提案されている(例えば、非特許文献2及び3参照。)。 Based on the above problems, a method of applying a silver vapor-deposited film as a transparent conductive film has been actively studied (for example, see Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver thin film is formed by sputtering, a metal film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium zinc oxide), ICO A transparent conductive film having a structure sandwiched between (indium cerium oxide) and a-GIO (a film of an amorphous oxide made of gallium, indium and oxygen) is also proposed (for example, Patent Documents 2 to 4, Non-Patent Documents (See Patent Document 1). Furthermore, a method of sandwiching a silver thin film with a zinc sulfide film has also been proposed (see, for example, Non-Patent Documents 2 and 3).
 しかしながら、例えば、硫化亜鉛/銀薄膜/硫化亜鉛というような構成を、スパッタ法により作製した透明導電体では、透明導電体の耐湿性は十分高いものの、銀薄膜層の形成時、若しくは硫化亜鉛層の形成時に、銀が硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性の低下や、硫化により不要な吸収が増加するといった問題があった。 However, for example, in a transparent conductor produced by sputtering with a structure such as zinc sulfide / silver thin film / zinc sulfide, the moisture resistance of the transparent conductor is sufficiently high, but when forming a silver thin film layer or a zinc sulfide layer During the formation of silver, silver is easily sulfided to form silver sulfide. As a result, there are problems such as a decrease in light transmittance of the transparent conductor and an increase in unnecessary absorption due to sulfurization.
 そこで、透明金属層材料である銀の硫化を防止することを目的として、透明金属層と硫化亜鉛層との間に、金属酸化物等からなる硫化防止層を設けることが考えられる。しかし、従来のスパッタ法を用いた成膜方法では、透明金属層と硫化防止層との成膜距離が離れているため、透明基板上に硫化防止層が成膜される前に、硫化亜鉛層の硫黄成分が透明金属層材料の銀を硫化してしまい、十分な光透過率を有する透明導電体を得ることが困難であった。 Therefore, it is conceivable to provide a sulfidation prevention layer made of a metal oxide or the like between the transparent metal layer and the zinc sulfide layer for the purpose of preventing sulfidation of silver which is a transparent metal layer material. However, in the film formation method using the conventional sputtering method, since the film formation distance between the transparent metal layer and the sulfidation prevention layer is long, the zinc sulfide layer is formed before the sulfidation prevention layer is formed on the transparent substrate. This sulfur component sulfides the silver of the transparent metal layer material, making it difficult to obtain a transparent conductor having sufficient light transmittance.
 ところで、真空成膜法により、フィルムなどの長尺基板上に透明導電膜を効率よく、高い生産性を確保して成膜するには、連続的に成膜することが好ましい。このような成膜を実現する方法として、長尺な基板がロール状に巻回された送出しロールと、成膜済みの基板がロール状に巻取られる巻取りロールとを用いた、いわゆるロール to ロール(roll to roll)成膜方式が知られている。
 このロール to ロール方式を使って多層膜を形成する場合、隣接する成膜室での成膜に影響を与えないように、隔壁や差圧室を設ける装置も提案されているが(例えば、特許文献5参照。)、当該装置では、上記したように、透明金属層と硫化防止層との成膜距離が離れているため、透明金属層材料の銀の硫化を防止するのに十分とはいえない。
By the way, it is preferable to continuously form a transparent conductive film on a long substrate such as a film by a vacuum film forming method in order to efficiently form a film with high productivity. As a method for realizing such film formation, a so-called roll using a feed roll in which a long substrate is wound in a roll shape and a take-up roll in which a film-formed substrate is wound in a roll shape. A to-roll film forming method is known.
In the case of forming a multilayer film using this roll-to-roll method, there has also been proposed an apparatus in which a partition wall and a differential pressure chamber are provided so as not to affect the film formation in the adjacent film formation chambers (for example, patents). (Refer to Document 5.) In this apparatus, as described above, since the film forming distance between the transparent metal layer and the sulfidation preventing layer is long, it is sufficient to prevent silver sulfidation of the transparent metal layer material. Absent.
 また、大型スパッタ装置において、ターゲットサイズが大型になること、バッキングプレート(ターゲットを固定するための支持体)とターゲット(金属材料)との熱膨張差による割れを防止するために、ターゲットを分割する技術が知られているが(例えば、特許文献6参照。)、分割ターゲット材料として、例えば、金属酸化物等を用いた成膜については何ら検討されていない。 Further, in a large sputtering apparatus, the target is divided in order to prevent the target size from becoming large and cracking due to a difference in thermal expansion between the backing plate (support for fixing the target) and the target (metal material). Although the technology is known (for example, refer to Patent Document 6), no consideration has been given to film formation using, for example, a metal oxide as a split target material.
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-015623号公報JP 2002-015623 A 特開2008-226581号公報JP 2008-226581 A 特開2011-042848号公報JP 2011-042848 A 特開2008-050696号公報JP 2008-050696 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、透明金属層材料の硫化による光透過率の低下を抑制する透明導電体の製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and a solution to that problem is to provide a method for producing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、透明基板上に、複数の蒸発源により、薄膜層を形成する複数の成膜工程を有し、少なくとも一つの蒸発源の有するターゲットが、異なる材料で構成される分割ターゲットである透明導電体の製造方法により、透明金属層材料の硫化による光透過率の低下を抑制できることを見出し、本発明に至った。 In order to solve the above problems, the present inventor has a plurality of film forming steps for forming a thin film layer on a transparent substrate by a plurality of evaporation sources in the process of examining the cause of the above problems. It has been found that the reduction of the light transmittance due to the sulfidation of the transparent metal layer material can be suppressed by the method for producing a transparent conductor, which is a split target composed of different materials, of the targets possessed by the two evaporation sources.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.連続的に搬送される透明基板上に、第1高屈折率層と、透明金属層と、第2高屈折率層とを順次積層し、更に前記第1高屈折率層及び前記第2高屈折率層の少なくとも1層と前記透明金属層との間に硫化防止層を積層する透明導電体の製造方法であって、
 前記透明基板上に、複数の蒸発源により、薄膜層を形成する複数の成膜工程を有し、
 少なくとも一つの前記蒸発源の有するターゲットが、異なる材料からなる少なくとも二つの分割ターゲットから構成されていることを特徴とする透明導電体の製造方法。
1. A first high-refractive index layer, a transparent metal layer, and a second high-refractive index layer are sequentially laminated on a transparent substrate that is continuously transported, and further, the first high-refractive index layer and the second high-refractive index layer. A method for producing a transparent conductor, in which an anti-sulfurization layer is laminated between at least one rate layer and the transparent metal layer,
A plurality of film forming steps for forming a thin film layer on the transparent substrate by a plurality of evaporation sources;
A method for producing a transparent conductor, wherein the target of at least one of the evaporation sources is composed of at least two divided targets made of different materials.
 2.前記少なくとも二つの分割ターゲットが、前記硫化防止層の材料である分割ターゲットと、前記透明金属層の材料である分割ターゲットとを含むことを特徴とする第1項に記載の透明導電体の製造方法。 2. 2. The method of manufacturing a transparent conductor according to claim 1, wherein the at least two divided targets include a divided target that is a material of the anti-sulfurization layer and a divided target that is a material of the transparent metal layer. .
 3.前記透明金属層の材料である分割ターゲットが、銀又は銀を含む合金であることを特徴とする第2項に記載の透明導電体の製造方法。 3. The method for producing a transparent conductor according to item 2, wherein the split target that is a material of the transparent metal layer is silver or an alloy containing silver.
 4.前記硫化防止層の材料である分割ターゲットが、Zn若しくはZnを含む金属酸化物、又はGaを含む金属酸化物であることを特徴とする第2項又は第3項に記載の透明導電体の製造方法。 4. 4. The transparent conductor according to claim 2 or 3, wherein the splitting target, which is a material of the antisulfurization layer, is Zn, a metal oxide containing Zn, or a metal oxide containing Ga. Method.
 本発明の上記手段により、透明金属層材料の硫化による光透過率の低下を抑制する透明導電体の製造方法を提供することができる。 The above-mentioned means of the present invention can provide a method for producing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 連続した成膜工程で透明導電体を形成する場合、第1高屈折率層及び第2高屈折率層の少なくとも1層の形成雰囲気に含まれる硫黄成分が、透明金属層の形成雰囲気内に残存する。硫化防止層と透明金属層との成膜距離が遠いと、透明金属層の表面と、形成雰囲気中の硫黄成分とが接触し、透明金属層表面に金属硫化物が生成したり、雰囲気中に残存する硫黄成分とスパッタされた透明金属層材料とが結合することにより、金属硫化物が生成したりする。 When a transparent conductor is formed in a continuous film forming process, sulfur components contained in the formation atmosphere of at least one of the first high refractive index layer and the second high refractive index layer remain in the formation atmosphere of the transparent metal layer. To do. If the film formation distance between the anti-sulfurization layer and the transparent metal layer is long, the surface of the transparent metal layer comes into contact with the sulfur component in the forming atmosphere, and metal sulfide is generated on the surface of the transparent metal layer. When the remaining sulfur component is combined with the sputtered transparent metal layer material, a metal sulfide is generated.
 これに対し、本発明においては、硫化防止層と透明金属層との成膜距離を近くする、すなわち、硫化防止層を構成するターゲットと透明金属層を構成するターゲットとを、一つの蒸発源に設ける、いわゆる分割ターゲットとすることにより、銀の硫化を防止し、光透過率の低下を抑制することができるものと考えられる。 On the other hand, in the present invention, the deposition distance between the sulfidation prevention layer and the transparent metal layer is reduced, that is, the target constituting the sulfidation prevention layer and the target constituting the transparent metal layer are used as one evaporation source. By providing a so-called divided target, it is considered that silver sulfidation can be prevented and a decrease in light transmittance can be suppressed.
本発明に係る透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of a layer structure of a transparent conductor according to the present invention 本発明に係る透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of a layer structure of a transparent conductor according to the present invention 本発明に係る透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of a layer structure of a transparent conductor according to the present invention 蒸発源に投入する電力に対する各ターゲットの成膜速度を示すグラフGraph showing the deposition rate of each target with respect to the electric power supplied to the evaporation source 透明導電体の製造装置の一例を示す模式図Schematic diagram showing an example of transparent conductor manufacturing equipment 透明導電体の製造装置における分割ターゲットの模式図Schematic diagram of split targets in transparent conductor manufacturing equipment 透明導電体の製造装置における分割ターゲットの模式図Schematic diagram of split targets in transparent conductor manufacturing equipment 透明導電体の製造装置における分割ターゲットの模式図Schematic diagram of split targets in transparent conductor manufacturing equipment 透明導電体の製造装置の一例を示す模式図Schematic diagram showing an example of transparent conductor manufacturing equipment 透明導電体の製造装置の一例を示す模式図Schematic diagram showing an example of transparent conductor manufacturing equipment 従来の透明導電体の製造装置を示す模式図Schematic diagram showing a conventional transparent conductor manufacturing device
 本発明の透明導電体の製造方法は、連続的に搬送される透明基板上に、第1高屈折率層と、透明金属層と、第2高屈折率層とを順次積層し、更に第1高屈折率層及び第2高屈折率層の少なくとも1層と透明金属層との間に硫化防止層を積層する透明導電体の製造方法であって、透明基板上に、複数の蒸発源により、薄膜層を形成する複数の成膜工程を有し、少なくとも一つの蒸発源の有するターゲットが、異なる材料からなる少なくとも二つの分割ターゲットから構成されていることを特徴とする。この特徴は、請求項1から請求項4までの請求項に係る発明に共通する技術的特徴である。 In the method for producing a transparent conductor of the present invention, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are sequentially laminated on a transparent substrate that is continuously conveyed, A method of manufacturing a transparent conductor in which a sulfidation prevention layer is laminated between at least one of a high refractive index layer and a second high refractive index layer and a transparent metal layer, and a plurality of evaporation sources on a transparent substrate, It has a plurality of film forming steps for forming a thin film layer, and the target of at least one evaporation source is composed of at least two divided targets made of different materials. This feature is a technical feature common to the inventions according to claims 1 to 4.
 本発明の実施態様としては、透明金属層材料である金属の硫化を防止する観点から、少なくとも二つの分割ターゲットが、硫化防止層の材料である分割ターゲットと、透明金属層の材料である分割ターゲットとを含むことが好ましい。 As an embodiment of the present invention, from the viewpoint of preventing sulfidation of a metal that is a transparent metal layer material, at least two division targets are a division target that is a material for an antisulfation layer and a division target that is a material for a transparent metal layer. Are preferably included.
 また、表面電気抵抗を低減させる観点から、透明金属層の材料である分割ターゲットが、銀又は銀を含む合金であることが好ましい。 Further, from the viewpoint of reducing the surface electrical resistance, it is preferable that the divided target that is the material of the transparent metal layer is silver or an alloy containing silver.
 また、透明金属層材料である金属の硫化を防止する観点から、硫化防止層の材料である分割ターゲットが、Zn若しくはZnを含む金属酸化物、又はGaを含む金属酸化物であることが好ましい。 In addition, from the viewpoint of preventing the sulfidation of the metal that is the transparent metal layer material, it is preferable that the split target that is the material of the sulfidation prevention layer is a metal oxide containing Zn or Zn, or a metal oxide containing Ga.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
≪透明導電体の層構成≫
 図1A~Cは、本発明に係る透明導電体の層構成の一例を示す概略断面図である。
 図1Aに示すように、本発明に係る透明導電体1は、透明基板2上に、透明基板2側から、第1高屈折率層3a、硫化防止層4a(第1硫化防止層ともいう。)、透明金属層5、第2高屈折率層3bが順次積層され構成されている。
 第1高屈折率層3a又は第2高屈折率層3bには、少なくとも硫化亜鉛(ZnS)が含有されている。
≪Layer structure of transparent conductor≫
1A to 1C are schematic cross-sectional views showing an example of a layer structure of a transparent conductor according to the present invention.
As shown in FIG. 1A, a transparent conductor 1 according to the present invention is formed on a transparent substrate 2 from the transparent substrate 2 side, a first high refractive index layer 3a, an antisulfurization layer 4a (also referred to as a first antisulfurization layer). ), A transparent metal layer 5 and a second high refractive index layer 3b are sequentially laminated.
The first high refractive index layer 3a or the second high refractive index layer 3b contains at least zinc sulfide (ZnS).
 本発明に係る透明導電体1においては、図1Bに示すように、第2高屈折率層3bと透明金属層5との間に、硫化防止層3b(第2硫化防止層ともいう。)が形成された構成としてもよいし、図1Cに示すように、第1高屈折率層3aと透明金属層5との間に第1硫化防止層4a、及び第2高屈折率層3bと透明金属層5との間に、第2硫化防止層4bが形成された構成としてもよい。 In the transparent conductor 1 according to the present invention, as shown in FIG. 1B, an antisulfurization layer 3 b (also referred to as a second antisulfurization layer) is provided between the second high refractive index layer 3 b and the transparent metal layer 5. It is good also as a formed structure, and as shown to FIG. 1C, between the 1st high refractive index layer 3a and the transparent metal layer 5, the 1st antisulfurization layer 4a, the 2nd high refractive index layer 3b, and a transparent metal The second sulfidation preventing layer 4b may be formed between the layer 5 and the layer 5.
 このように、少なくとも第1高屈折率層3a又は第2高屈折率層3bと透明金属層5との間に、硫化防止層4a又は4bを設けることにより、第1高屈折率層3a又は第2高屈折率層3bが含有する硫化亜鉛を構成する硫黄原子の透明金属層5への移動や混入を防止することができ、好ましい態様である。 As described above, by providing the antisulfurization layer 4a or 4b between at least the first high refractive index layer 3a or the second high refractive index layer 3b and the transparent metal layer 5, the first high refractive index layer 3a or the first high refractive index layer 3a or 2 It is possible to prevent movement and mixing of sulfur atoms constituting the zinc sulfide contained in the high refractive index layer 3b to the transparent metal layer 5, which is a preferable mode.
 すなわち、透明金属層5(例えば、銀層)と、少なくともZnS等の金属硫化物を含む第1高屈折率層3a又は第2高屈折率層3bとが隣接して形成されると、金属硫化物(例えば、硫化銀)が生成されやすく、透明導電体1の光透過性が低下しやすいという問題があった。 That is, when the transparent metal layer 5 (for example, silver layer) and the first high refractive index layer 3a or the second high refractive index layer 3b containing at least a metal sulfide such as ZnS are formed adjacent to each other, the metal sulfide There is a problem that an object (for example, silver sulfide) is easily generated, and the light transmittance of the transparent conductor 1 is likely to be lowered.
 透明金属層5において、金属硫化物は、以下の状況により生成されると推察される。 In the transparent metal layer 5, the metal sulfide is presumed to be generated under the following conditions.
 少なくとも硫化亜鉛を含有する第1高屈折率層3a上に、透明金属層5を形成する場合、硫化亜鉛を含有する第1高屈折率層3a中の未反応の硫黄成分が、透明金属層5の材料(例えば、銀)によって形成雰囲気中に弾き出される。そして、弾き出された硫黄成分と金属、例えば、銀とが反応し、金属硫化物(硫化銀)が硫化亜鉛を含有する第1高屈折率層3a上に堆積する。
 また、連続した成膜工程で硫化亜鉛を含有する第1高屈折率層3a上に、透明金属層5を形成する場合、硫化亜鉛を含有する第1高屈折率層3aの形成雰囲気に含まれる硫黄成分が透明金属層5雰囲気内に残存する。そして、この硫黄成分と金属とが反応し、金属硫化物(硫化銀)が硫化亜鉛を含有する第1高屈折率層3a上に堆積する。又は、第1高屈折率層3aの最表面に、Znと未結合の硫黄がいくつか存在し、次に、透明金属層5を積層させたときに、未結合の活性硫黄成分が、透明金属層5の構成原子、例えば、銀と結合する。
When the transparent metal layer 5 is formed on the first high refractive index layer 3a containing at least zinc sulfide, the unreacted sulfur component in the first high refractive index layer 3a containing zinc sulfide is converted into the transparent metal layer 5 The material (for example, silver) is repelled into the forming atmosphere. Then, the ejected sulfur component reacts with a metal, for example, silver, and metal sulfide (silver sulfide) is deposited on the first high refractive index layer 3a containing zinc sulfide.
Moreover, when forming the transparent metal layer 5 on the 1st high refractive index layer 3a containing zinc sulfide by the continuous film-forming process, it is contained in the formation atmosphere of the 1st high refractive index layer 3a containing zinc sulfide. The sulfur component remains in the atmosphere of the transparent metal layer 5. And this sulfur component and a metal react, and metal sulfide (silver sulfide) deposits on the 1st high refractive index layer 3a containing a zinc sulfide. Alternatively, there are some Zn and unbonded sulfur on the outermost surface of the first high refractive index layer 3a, and then when the transparent metal layer 5 is laminated, the unbonded active sulfur component becomes transparent metal. Bonds with constituent atoms of layer 5, for example silver.
 一方、透明金属層5上に、少なくとも硫化亜鉛を含有する第2高屈折率層3bを形成する場合、透明金属層5中の金属が、硫化亜鉛を含有する第2高屈折率層3bの材料によって、形成雰囲気中に弾き出される。そして、弾き出された金属と硫黄成分とが反応し、金属硫化物が透明金属層5の表面に堆積する。さらに、透明金属層5の表面と、形成雰囲気中の硫黄成分とが接触することによっても、透明金属層5の表面に金属硫化物が生成する。又は、第2高屈折率層3bを構成する硫化亜鉛を堆積させる際、一部、亜鉛と硫黄とが遊離した状態で雰囲気中に存在することになり、遊離した硫黄が、透明金属層5の構成原子、例えば、銀と結合する。 On the other hand, when the second high refractive index layer 3b containing at least zinc sulfide is formed on the transparent metal layer 5, the metal in the transparent metal layer 5 is a material of the second high refractive index layer 3b containing zinc sulfide. Is played in the forming atmosphere. The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer 5. Furthermore, a metal sulfide is also generated on the surface of the transparent metal layer 5 when the surface of the transparent metal layer 5 comes into contact with the sulfur component in the forming atmosphere. Alternatively, when depositing the zinc sulfide constituting the second high refractive index layer 3b, the zinc and sulfur are partly present in the atmosphere in a free state, and the free sulfur is present in the transparent metal layer 5 Bonds to a constituent atom, such as silver.
 これに対し、本発明に係る透明導電体1では、例えば、図1Aに示されるように、第1高屈折率層3a上に、硫化防止層4aが形成されている。このような構成とすることにより、第1高屈折率層3aが硫化防止層4aで保護されるため、透明金属層5の形成時に第1高屈折率層3a中の硫黄成分が弾き出されにくい。また、第1高屈折率層3aと透明金属層5とを連続的に形成したとしても、第1高屈折率層3aの形成雰囲気に含まれる硫黄成分が、硫化防止層4aの構成成分と反応、あるいは硫化防止層4aの構成成分に吸着されることにより、透明金属層5の形成雰囲気には硫黄が含まれにくくなり、金属硫化物の生成が抑制される。 On the other hand, in the transparent conductor 1 according to the present invention, for example, as shown in FIG. 1A, an antisulfurization layer 4a is formed on the first high refractive index layer 3a. By adopting such a configuration, the first high refractive index layer 3a is protected by the sulfidation preventing layer 4a, so that the sulfur component in the first high refractive index layer 3a is not easily ejected when the transparent metal layer 5 is formed. Even if the first high refractive index layer 3a and the transparent metal layer 5 are continuously formed, the sulfur component contained in the atmosphere in which the first high refractive index layer 3a is formed reacts with the constituent components of the sulfurization preventing layer 4a. Alternatively, by being adsorbed by the constituent components of the sulfidation prevention layer 4a, the atmosphere in which the transparent metal layer 5 is formed is less likely to contain sulfur, and the formation of metal sulfide is suppressed.
 また、本発明に係る透明導電体1では、図1Bで示すように、透明金属層5上に硫化防止層4bが積層される。このような構成では、透明金属層5が硫化防止層4bで保護されるため、第2高屈折率層3bの形成時に透明金属層5中の金属が弾き出されにくい。また、第2高屈折率層3bの形成雰囲気中の硫黄成分が、透明金属層5の表面と接触しにくくなる。その結果、透明金属層5表面に金属硫化物が生成しにくい。 Further, in the transparent conductor 1 according to the present invention, as shown in FIG. 1B, the sulfidation preventing layer 4b is laminated on the transparent metal layer 5. In such a configuration, since the transparent metal layer 5 is protected by the antisulfurization layer 4b, the metal in the transparent metal layer 5 is not easily ejected when the second high refractive index layer 3b is formed. Further, the sulfur component in the atmosphere in which the second high refractive index layer 3 b is formed is less likely to come into contact with the surface of the transparent metal layer 5. As a result, metal sulfides are hardly generated on the surface of the transparent metal layer 5.
 また、本発明に係る透明導電体1には、透明基板2、高屈折率層3a及び3b、硫化防止層4a及び4b、並びに透明金属層5の他に、必要に応じて公知の機能層を設けてもよい。例えば、透明金属層5の形成時に成長核になり得る下地層が、透明金属層5と第1高屈折率層3aとの間に形成されていてもよい。 In addition to the transparent substrate 2, the high refractive index layers 3a and 3b, the antisulfurization layers 4a and 4b, and the transparent metal layer 5, the transparent conductor 1 according to the present invention includes a known functional layer as necessary. It may be provided. For example, an underlayer that can be a growth nucleus when the transparent metal layer 5 is formed may be formed between the transparent metal layer 5 and the first high refractive index layer 3a.
≪透明導電体の製造方法≫
 本発明の透明導電体の製造方法は、連続的に搬送される透明基板上に、第1高屈折率層と、透明金属層と、第2高屈折率層とを順次積層し、更に第1高屈折率層及び第2高屈折率層の少なくとも1層と透明金属層との間に硫化防止層を積層する透明導電体の製造方法であって、透明基板上に、複数の蒸発源により、薄膜層を形成する複数の成膜工程を有し、少なくとも一つの蒸発源の有するターゲットが、異なる材料からなる少なくとも二つの分割ターゲットから構成されていることを特徴とする。
 ここで、「分割ターゲット」とは、一つのターゲットが化学組成の異なる少なくとも二つの部分に分割されたそれぞれのターゲットをいう(図4A~C参照。)。
≪Method for producing transparent conductor≫
In the method for producing a transparent conductor of the present invention, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are sequentially laminated on a transparent substrate that is continuously conveyed, A method of manufacturing a transparent conductor in which a sulfidation prevention layer is laminated between at least one of a high refractive index layer and a second high refractive index layer and a transparent metal layer, and a plurality of evaporation sources on a transparent substrate, It has a plurality of film forming steps for forming a thin film layer, and the target of at least one evaporation source is composed of at least two divided targets made of different materials.
Here, the “divided target” means each target obtained by dividing one target into at least two parts having different chemical compositions (see FIGS. 4A to 4C).
 高屈折率層、硫化防止層及び透明金属層の成膜方法としては、スパッタ法が挙げられる。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、RFスパッタ法、対向スパッタ法等を用いることができる。中でも、透明金属層は、RFスパッタ法又は対向スパッタ法で形成された層であることが好ましく、対向スパッタ法で形成された層であることがより好ましい。透明金属層が、RFスパッタ法又は対向スパッタ法で形成された層であると、透明金属層が緻密になり、表面平滑性が高まりやすい。その結果、透明金属層の表面電気抵抗をより低減させることができ、光透過率も向上させることができる。 As a method for forming the high refractive index layer, the sulfurization preventing layer and the transparent metal layer, a sputtering method may be mentioned. The type of the sputtering method is not particularly limited, and ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, bias sputtering, RF sputtering, counter sputtering, and the like can be used. Among these, the transparent metal layer is preferably a layer formed by an RF sputtering method or a counter sputtering method, and more preferably a layer formed by a counter sputtering method. When the transparent metal layer is a layer formed by an RF sputtering method or a counter sputtering method, the transparent metal layer becomes dense and surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal layer can be further reduced, and the light transmittance can be improved.
 また、本発明においては、少なくとも二つの分割ターゲットが、硫化防止層の材料である分割ターゲットと、透明金属層の材料である分割ターゲットとを含むことが好ましい。これにより、透明金属層と硫化防止層との成膜距離が近くなり、硫黄成分による透明金属層材料の硫化を防止することができる。 Further, in the present invention, it is preferable that at least two split targets include a split target that is a material for an antisulfurization layer and a split target that is a material for a transparent metal layer. Thereby, the film-forming distance between the transparent metal layer and the sulfidation prevention layer is reduced, and sulfidation of the transparent metal layer material due to the sulfur component can be prevented.
 また、硫化防止層を極薄膜として形成するには、金属酸化物ターゲットに対する投入電力を小さくしてスパッタ速度を遅くすることが必要となるが、投入電力を小さくするとプラズマが立ちにくく、安定して成膜することができない。本発明においては、硫化防止層材料(例えば、金属酸化物)ターゲットを、金属(例えば、銀)ターゲットに隣接して配置する、分割ターゲットとすることにより、蒸発源に対する投入電力を小さくすることなく、金属酸化物ターゲットへの投入電力を小さくするのと同様の効果を得ることができるため、安定して硫化防止層を成膜することができる。 In addition, in order to form the sulfidation prevention layer as an extremely thin film, it is necessary to reduce the input power to the metal oxide target and slow down the sputtering rate. The film cannot be formed. In the present invention, the sulfide prevention layer material (for example, metal oxide) target is a divided target that is disposed adjacent to the metal (for example, silver) target, so that the input power to the evaporation source is not reduced. Since the same effect as reducing the input power to the metal oxide target can be obtained, the antisulfurization layer can be stably formed.
 ところで、透明基板を搬送させることなく静止させた状態で、ターゲットへの投入電力とターゲット直上の成膜速度とをグラフ上にプロットすると、図2に示されるような関係を得た。 By the way, when the input power to the target and the film forming speed just above the target are plotted on the graph in a state where the transparent substrate is not transported, the relationship shown in FIG. 2 is obtained.
 図2中の曲線Aに示されるように、銀は投入電力が小さい状態でも高速で成膜することができた。これに対し、図2中の曲線Bで示されるように、高屈折率層材料でもあるZnS-SiOは、銀の約1/5程度の成膜速度しか得られなかった。ZnS-SiOへの投入電力を上げるにしたがって、成膜速度を上昇させることができるが、13W/cm以上の投入電力では放電が不安定になり、成膜を継続することができなかった。よって、ZnS-SiOを安定的に高速で成膜するためには、10W/cm程度の電力を投入することが好ましい。これは、図2中、曲線Cで示されるZnSについても同様である。
 本発明においては、極薄膜である透明金属層材料と硫化防止層材料とを1つの蒸発源上に分割ターゲットとして設けるため、高屈折率層のターゲット数を増設することできる。そのため、搬送速度を早くしても、10W/cmの投入電力で十分な層厚を有する高屈折率層を形成することが可能となる。
As shown by the curve A in FIG. 2, silver could be deposited at high speed even when the input power was small. On the other hand, as shown by the curve B in FIG. 2, ZnS—SiO 2 which is also a high refractive index layer material can only obtain a film formation rate of about 1/5 of silver. As the input power to ZnS—SiO 2 is increased, the film formation rate can be increased. However, when the input power is 13 W / cm 2 or more, the discharge becomes unstable and the film formation cannot be continued. . Therefore, in order to deposit ZnS—SiO 2 stably at a high speed, it is preferable to apply a power of about 10 W / cm 2 . The same applies to ZnS indicated by curve C in FIG.
In the present invention, since the transparent metal layer material and the antisulfurization layer material, which are ultrathin films, are provided as a split target on one evaporation source, the number of targets of the high refractive index layer can be increased. Therefore, even if the conveyance speed is increased, a high refractive index layer having a sufficient layer thickness can be formed with an input power of 10 W / cm 2 .
 なお、高屈折率層のターゲットの長さを長くし、具体的には複数枚のターゲットを配置することでもAgの成膜速度を維持したまま成膜することが可能であるが、装置が大型化し設備費用が高くなることから、好ましくない。 In addition, it is possible to form a film while maintaining the film formation speed of Ag by increasing the length of the target of the high refractive index layer, and more specifically, by arranging a plurality of targets. This is not preferable because the equipment cost becomes high.
 また、図2中の曲線Dで示されるように、硫化防止層材料である金属酸化物のターゲット(ITO、IZO、GZO、ZnO、IGZO)は、4W/cm以上の投入電力では安定してスパッタすることができなかった。しかし、本発明においては、硫化防止層材料ターゲットを分割ターゲットとしているため、当該分割ターゲットへの投入電力を小さくするのと同様の効果を得ることができ、安定してスパッタすることができる。 In addition, as shown by the curve D in FIG. 2, the metal oxide target (ITO, IZO, GZO, ZnO, IGZO), which is an antisulfurization layer material, is stable at an input power of 4 W / cm 2 or more. Sputtering failed. However, in the present invention, since the anti-sulfurization layer material target is a split target, the same effect as reducing the input power to the split target can be obtained, and stable sputtering can be achieved.
 以下、本発明の透明導電体の製造方法に好適に用いられる製造装置について説明し、続けて当該製造装置を用いた透明導電体の製造方法について説明する。 Hereinafter, a manufacturing apparatus suitably used in the method for manufacturing a transparent conductor of the present invention will be described, and then a method for manufacturing a transparent conductor using the manufacturing apparatus will be described.
≪透明導電体の製造装置及びそれを用いた製造方法≫
 以下、本発明に係る透明導電体1を製造する製造装置及びそれを用いた製造方法について説明する。
 なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
≪Transparent conductor manufacturing apparatus and manufacturing method using the same >>
Hereinafter, the manufacturing apparatus which manufactures the transparent conductor 1 which concerns on this invention, and the manufacturing method using the same are demonstrated.
In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.
<製造装置>
 図3は、本発明に係る透明導電体の製造装置の一例を示す模式図である。
 図3に示すとおり、製造装置100は、主に、真空チャンバー110内に、各種機能層形成前の透明基板2を送り出す送出しローラー180、透明基板2を案内するガイドローラー181及び183、透明基板2を搬送するメインローラー182、各種機能層が形成された透明基板2を巻き取る巻取りローラー184、第1高屈折率層を形成する蒸発源131、硫化防止層及び透明金属層を形成する蒸発源151、第2高屈折率層を形成する蒸発源171、及び真空チャンバー110内の空間を仕切る隔壁190~195を備えて構成されている。
<Manufacturing equipment>
FIG. 3 is a schematic view showing an example of a transparent conductor manufacturing apparatus according to the present invention.
As shown in FIG. 3, the manufacturing apparatus 100 mainly includes a feed roller 180 that sends out the transparent substrate 2 before forming various functional layers into the vacuum chamber 110, guide rollers 181 and 183 that guide the transparent substrate 2, and a transparent substrate. 2, a main roller 182 that transports 2, a winding roller 184 that winds up the transparent substrate 2 on which various functional layers are formed, an evaporation source 131 that forms a first high refractive index layer, an evaporation that forms a sulfidation prevention layer and a transparent metal layer. It comprises a source 151, an evaporation source 171 that forms the second high refractive index layer, and partition walls 190 to 195 that partition the space in the vacuum chamber 110.
 真空チャンバー110内は、メインローラー182及び隔壁190~195により仕切られ、メインローラー182を中心にその周囲に、巻出し室120、第1成膜室130、第1差圧室140、第2成膜室150、第2差圧室160及び第3成膜室170が形成されている。 The inside of the vacuum chamber 110 is partitioned by a main roller 182 and partition walls 190 to 195. Around the main roller 182, there are an unwind chamber 120, a first film formation chamber 130, a first differential pressure chamber 140, a second formation chamber. A film chamber 150, a second differential pressure chamber 160, and a third film formation chamber 170 are formed.
 巻出し室120は、真空チャンバー110の内壁面と、メインローラー182の周面と、真空チャンバー110の内壁面からメインローラー182の周面の近傍まで延在する隔壁190及び195とによって構成されている。
 ここで、隔壁190及び195の先端は、メインローラー182に張架される透明基板2に接触しない位置まで延在し、メインローラー182の周面に近接して、巻出し室120と、第1成膜室130及び第3成膜室170とを、略気密に分離している。
 他の隔壁191~194も同様に構成され、第1成膜室130と第1差圧室140とが隔壁191で仕切られ、第1差圧室140と第2成膜室150とが隔壁192で仕切られ、第2成膜室150と第2差圧室160とが隔壁193で仕切られ、第2差圧室160と第3成膜室170とが隔壁194で仕切られている。各室が隔壁190~195で仕切られていることで、各成膜室のターゲットが他の成膜室に侵入することを抑制することができる。特に、例えば、第1高屈折率層又は第2高屈折率層の材料に含有されている硫黄成分が第2成膜室150に侵入することを抑制し、銀を含む透明金属層の腐食を抑制することができる。
The unwinding chamber 120 includes an inner wall surface of the vacuum chamber 110, a peripheral surface of the main roller 182 and partition walls 190 and 195 extending from the inner wall surface of the vacuum chamber 110 to the vicinity of the peripheral surface of the main roller 182. Yes.
Here, the ends of the partition walls 190 and 195 extend to a position where they do not contact the transparent substrate 2 stretched around the main roller 182, close to the peripheral surface of the main roller 182, and the unwind chamber 120 and the first The film formation chamber 130 and the third film formation chamber 170 are separated in a substantially airtight manner.
The other partition walls 191 to 194 are similarly configured, and the first film formation chamber 130 and the first differential pressure chamber 140 are partitioned by the partition wall 191, and the first differential pressure chamber 140 and the second film formation chamber 150 are formed by the partition wall 192. The second film forming chamber 150 and the second differential pressure chamber 160 are partitioned by a partition wall 193, and the second differential pressure chamber 160 and the third film forming chamber 170 are partitioned by a partition wall 194. Since each chamber is partitioned by the partition walls 190 to 195, it is possible to suppress the target of each film formation chamber from entering another film formation chamber. In particular, for example, the sulfur component contained in the material of the first high refractive index layer or the second high refractive index layer is prevented from entering the second film forming chamber 150, and corrosion of the transparent metal layer containing silver is prevented. Can be suppressed.
 巻出し室120、第1成膜室130、第1差圧室140、第2成膜室150、第2差圧室160及び第3成膜室170には、それぞれ真空排気手段(図示略)や不活性ガス供給手段(図示略)等が設けられており、各室の真空度を調整することが可能となっている。
 真空排気手段としては、特に制限はなく、例えば、ターボポンプ、メカニカルブースターポンプ、ロータリーポンプ、ドライポンプなどの真空ポンプ、更には、クライオコイル等の補助手段、到達真空度や排気量の調整手段等を利用する、真空成膜装置に用いられている公知の(真空)排気手段等を利用可能である。
The unwinding chamber 120, the first film forming chamber 130, the first differential pressure chamber 140, the second film forming chamber 150, the second differential pressure chamber 160, and the third film forming chamber 170 are respectively evacuated (not shown). And an inert gas supply means (not shown) and the like are provided, and the degree of vacuum in each chamber can be adjusted.
The vacuum exhaust means is not particularly limited. For example, a vacuum pump such as a turbo pump, a mechanical booster pump, a rotary pump, or a dry pump, an auxiliary means such as a cryocoil, an ultimate vacuum degree or exhaust amount adjusting means, etc. A known (vacuum) evacuation means or the like used in a vacuum film forming apparatus can be used.
 このように、各室間には隔壁190~195が設けられ略気密に分離されているが、各室内を搬送される透明基板2が通過するため完全な気密状態を構成することはできない。そこで、第1成膜室130と第2成膜室150との間に第1差圧室140、第2成膜室150と第3成膜室170との間に第2差圧室160を設け、第1差圧室140及び第2差圧室160の真空度を調整することにより、各成膜室のターゲットが他の成膜室内に侵入することを抑制する。
 具体的には、第1差圧室140及び第2差圧室160内の真空度を、第1~第3成膜室130、150及び170よりも低真空とする、すなわち、圧力が高い状態とすることで、各成膜室内のターゲットが他の成膜室へ侵入することを抑制することができる。
 特に、例えば、第1高屈折率層又は第2高屈折率層が含有する硫黄成分が、第2成膜室150に侵入することを抑制し、銀を含む透明金属層の腐食を抑制することができる。
As described above, the partition walls 190 to 195 are provided between the chambers and are separated from each other in a substantially hermetic manner. However, since the transparent substrate 2 transported through the chambers passes, a completely hermetic state cannot be formed. Therefore, the first differential pressure chamber 140 is provided between the first film formation chamber 130 and the second film formation chamber 150, and the second differential pressure chamber 160 is provided between the second film formation chamber 150 and the third film formation chamber 170. By providing and adjusting the degree of vacuum of the first differential pressure chamber 140 and the second differential pressure chamber 160, the target of each film formation chamber is prevented from entering another film formation chamber.
Specifically, the degree of vacuum in the first differential pressure chamber 140 and the second differential pressure chamber 160 is lower than that in the first to third film formation chambers 130, 150, and 170, that is, the pressure is high. By doing so, it is possible to suppress the target in each film formation chamber from entering another film formation chamber.
In particular, for example, the sulfur component contained in the first high-refractive index layer or the second high-refractive index layer is prevented from entering the second film forming chamber 150 and the corrosion of the transparent metal layer containing silver is suppressed. Can do.
 また、透明金属層の腐食を抑制する観点から、第2成膜室150の真空度を、第1成膜室130及び第3成膜室170よりも低真空とする、すなわち、圧力が高い状態とすることが好ましい。これにより、第1成膜室130及び第3成膜室170内の硫黄成分が第2成膜室150に侵入することを抑制でき、銀を含む透明金属層の腐食を抑制することができる。 Further, from the viewpoint of suppressing the corrosion of the transparent metal layer, the degree of vacuum of the second film formation chamber 150 is lower than that of the first film formation chamber 130 and the third film formation chamber 170, that is, the pressure is high. It is preferable that Thereby, it can suppress that the sulfur component in the 1st film-forming chamber 130 and the 3rd film-forming chamber 170 penetrate | invades into the 2nd film-forming chamber 150, and can suppress corrosion of the transparent metal layer containing silver.
 製造装置100で用いられる透明基板2は、長尺に形成され、巻出し室120内において、送出しローラー180から巻き出され、巻取りローラー184により巻き取られる。送出しローラー180から巻き出された透明基板2は、ガイドローラー181を介してメインローラー182に搬送され、第1成膜室130、第2成膜室150及び第3成膜室170にて順次薄膜層が形成され、更にガイドローラー183を介して巻取りローラー184に巻き取られる。 The transparent substrate 2 used in the manufacturing apparatus 100 is formed in a long length, is unwound from the feed roller 180 in the unwind chamber 120, and is taken up by the take-up roller 184. The transparent substrate 2 unwound from the delivery roller 180 is conveyed to the main roller 182 via the guide roller 181, and sequentially in the first film formation chamber 130, the second film formation chamber 150, and the third film formation chamber 170. A thin film layer is formed, and is further wound around a winding roller 184 via a guide roller 183.
 ここで、真空排気や加熱処理等が行われることによって透明基板2から水分が生じると、スパッタリングにより形成される各層の組成が変化してしまうため、層形成前に透明基板2から水分を除去することが好ましい。具体的には、透明基板2に対して予備加熱やクライオポンプによる真空排気等を行うことが好ましく、製造装置100はそれらを行うための構成を備えていてもよい。 Here, when moisture is generated from the transparent substrate 2 by performing vacuum evacuation, heat treatment, or the like, the composition of each layer formed by sputtering changes, so the moisture is removed from the transparent substrate 2 before forming the layer. It is preferable. Specifically, it is preferable to perform preliminary heating, evacuation by a cryopump, or the like on the transparent substrate 2, and the manufacturing apparatus 100 may have a configuration for performing them.
 また、透明基板2と当該透明基板2に隣接して形成される層との密着性を向上させるため、層形成前に透明基板2に対して表面洗浄処理を行うことが好ましい。具体的には、透明基板2に対してイオンボンバード処理やプラズマ処理等を行うことが好ましく、製造装置100はそれらを行うための構成を備えていてもよい。 Further, in order to improve the adhesion between the transparent substrate 2 and a layer formed adjacent to the transparent substrate 2, it is preferable to perform a surface cleaning process on the transparent substrate 2 before forming the layer. Specifically, it is preferable to perform an ion bombardment process, a plasma process, etc. with respect to the transparent substrate 2, and the manufacturing apparatus 100 may be equipped with the structure for performing them.
 送出しローラー180は、長尺な透明基板2を供給し、搬送方向Xの下流側に送り出す。また、巻取りローラー184は、層形成済みの透明基板2を巻き取る。送出しローラー180及び巻取りローラー184は、巻出し室120に設けられている。
 製造装置100の制御部(図示略)は、送出しローラー180による透明基板2の送出しと、巻取りローラー184による層形成済みの透明基板2の巻取りとを同期して行い、長尺な透明基板2を所定の搬送経路で長手方向に搬送しつつ、第1成膜室130、第2成膜室150及び第3成膜室170で順次層形成を行う。したがって、巻出し室120は、製造装置100内において、透明基板2の搬送方向Xの最上流の室であるとともに、最下流の室でもある。
The feed roller 180 supplies the long transparent substrate 2 and sends it to the downstream side in the transport direction X. Further, the winding roller 184 winds the layer-formed transparent substrate 2. The feed roller 180 and the take-up roller 184 are provided in the unwind chamber 120.
The control unit (not shown) of the manufacturing apparatus 100 synchronizes the feeding of the transparent substrate 2 by the feeding roller 180 and the winding of the transparent substrate 2 on which the layer has been formed by the winding roller 184, so Layers are sequentially formed in the first film formation chamber 130, the second film formation chamber 150, and the third film formation chamber 170 while the transparent substrate 2 is conveyed in the longitudinal direction along a predetermined conveyance path. Therefore, the unwinding chamber 120 is the most upstream chamber in the transport direction X of the transparent substrate 2 and the most downstream chamber in the manufacturing apparatus 100.
 ガイドローラー181及び183は、それぞれ巻出し室120に設けられ、透明基板2を所定の搬送経路で案内する通常のガイドローラーである。 The guide rollers 181 and 183 are normal guide rollers that are provided in the unwind chamber 120 and guide the transparent substrate 2 along a predetermined transport path.
 メインローラー182は、図3中の矢印方向に回転する円筒状の部材である。
 メインローラー182は、ガイドローラー181によって所定の経路で搬送される透明基板2を、周面の所定領域に掛け回して、所定位置に保持しつつ長手方向に搬送し、第1成膜室130、第1差圧室140、第2成膜室150、第2差圧室160及び第3成膜室170の順に透明基板2を通過させ、巻出し室120のガイドローラー183に送る。
The main roller 182 is a cylindrical member that rotates in the direction of the arrow in FIG.
The main roller 182 wraps the transparent substrate 2 conveyed by the guide roller 181 in a predetermined path around a predetermined area of the peripheral surface and conveys the transparent substrate 2 in the longitudinal direction while holding it at a predetermined position. The transparent substrate 2 is passed through the first differential pressure chamber 140, the second film formation chamber 150, the second differential pressure chamber 160, and the third film formation chamber 170 in this order, and is sent to the guide roller 183 in the unwind chamber 120.
 メインローラー182は、第1成膜室130の蒸発源131、第2成膜室150の蒸発源151及び第3成膜室170の蒸発源171の対向電極としても作用する。 The main roller 182 also functions as a counter electrode for the evaporation source 131 of the first film formation chamber 130, the evaporation source 151 of the second film formation chamber 150, and the evaporation source 171 of the third film formation chamber 170.
 また、メインローラー182は、透明基板2を冷却する冷却手段を内蔵していてもよい。メインローラー182の冷却手段としては、特に制限はなく、冷媒等を循環する冷却手段であってもよいし、ピエゾ素子等を用いる冷却手段であってもよい。冷却手段は、例えば、透明基板2の温度を-20~65℃程度まで冷却できるように構成されている。 Further, the main roller 182 may incorporate a cooling means for cooling the transparent substrate 2. The cooling means for the main roller 182 is not particularly limited, and may be a cooling means for circulating a refrigerant or the like, or a cooling means using a piezo element or the like. The cooling means is configured to cool the temperature of the transparent substrate 2 to about −20 to 65 ° C., for example.
 蒸発源131は、第1成膜室130内に設けられ、スパッタリングカソード132に第1高屈折率層の原料であるターゲット133が取り付けられている。蒸発源131は、電力が投入されることで、メインローラー182により搬送される透明基板2上に、投入電力量に応じた層厚の第1高屈折率層を形成する。 The evaporation source 131 is provided in the first film forming chamber 130, and a target 133 that is a raw material for the first high refractive index layer is attached to the sputtering cathode 132. The evaporation source 131 forms a first high refractive index layer having a layer thickness corresponding to the input power amount on the transparent substrate 2 conveyed by the main roller 182 when power is input.
 蒸発源151は、第2成膜室150内に設けられ、スパッタリングカソード152に硫化防止層及び透明金属層の原料である分割ターゲット153a及び153bが取り付けられている。具体的には、図4Aに示されるように、透明基板2の搬送方向X上流側に硫化防止層(第1硫化防止層)の分割ターゲット153a、透明基板2の搬送方向X下流側に透明金属層の分割ターゲット153bが設けられる。スパッタリングカソード152に設けられる分割ターゲットは、図4Bに示されるように、透明基板2の搬送方向X上流側に透明金属層の分割ターゲット153bを設け、透明基板2の搬送方向X下流側に硫化防止層(第2硫化防止層)の分割ターゲット153cを設けてもよいし、図4Cに示されるように、透明基板2の搬送方向X上流側から下流側に向かって、第1硫化防止層の分割ターゲット153a、透明金属層の分割ターゲット153b、第2硫化防止層の分割ターゲット153cを設けてもよい。
 蒸発源151は、電力が投入されることで、メインローラー182により搬送される透明基板2上に、投入電力量に応じた層厚の硫化防止層及び透明金属層を形成する。
The evaporation source 151 is provided in the second film formation chamber 150, and the split targets 153 a and 153 b that are raw materials for the sulfurization prevention layer and the transparent metal layer are attached to the sputtering cathode 152. Specifically, as shown in FIG. 4A, the split target 153a of the sulfidation prevention layer (first sulfidation prevention layer) is upstream in the transport direction X upstream of the transparent substrate 2, and the transparent metal is downstream in the transport direction X of the transparent substrate 2. A layer split target 153b is provided. As shown in FIG. 4B, the split target provided on the sputtering cathode 152 is provided with a transparent metal layer split target 153 b on the upstream side in the transport direction X of the transparent substrate 2, and prevents sulfurization on the downstream side in the transport direction X of the transparent substrate 2. A split target 153c for the layer (second anti-sulfur layer) may be provided, and as shown in FIG. 4C, the first anti-sulfur layer is divided from the upstream side toward the downstream side in the transport direction X of the transparent substrate 2. You may provide the target 153a, the division | segmentation target 153b of a transparent metal layer, and the division | segmentation target 153c of a 2nd sulfurization prevention layer.
The evaporation source 151 forms an anti-sulfurization layer and a transparent metal layer having a layer thickness corresponding to the input power amount on the transparent substrate 2 conveyed by the main roller 182 when power is input.
 また、第2成膜室150内においては、各分割ターゲットが混合しないように、図5で示すように、分割ターゲット153a及び153bの境界の延長線上に、仕切り板196を設けてもよい。仕切り板196は、隔壁192及び193の向かい合う壁面の間に略水平に延在する保持軸197によって保持されている。
 仕切り板196の両端は、メインローラー182及び分割ターゲット153a及び153bに接触しないように配設されているが、各分割ターゲットが混合しないように、極力近くまで延在して設けられていることが好ましい。
 仕切り板196は、分割ターゲット面の垂直方向に対し、直線状に設けてもよいし、分割ターゲット153a及び153bのいずれかに湾曲した曲線状に設けてもよい。
 なお、仕切り板196は、分割ターゲット数に応じて(図4A~C参照。)、適宜その境界の延長線上に設けられる。
Further, in the second film forming chamber 150, as shown in FIG. 5, a partition plate 196 may be provided on the extended line of the boundary between the divided targets 153a and 153b so that the divided targets are not mixed. The partition plate 196 is held by a holding shaft 197 extending substantially horizontally between the opposing wall surfaces of the partition walls 192 and 193.
Both ends of the partition plate 196 are disposed so as not to contact the main roller 182 and the divided targets 153a and 153b, but may be provided to extend as close as possible so that the divided targets do not mix. preferable.
The partition plate 196 may be provided in a straight line with respect to the direction perpendicular to the divided target surface, or may be provided in a curved shape in one of the divided targets 153a and 153b.
Note that the partition plate 196 is appropriately provided on the extended line of the boundary according to the number of division targets (see FIGS. 4A to 4C).
 また、第2成膜室150内において、メインローラー182に搬送される透明基板2と蒸発源151との間に、開口制限マスク(図示略)を設けてもよい。開口制限マスクは、第1成膜室130及び第3成膜室170には設けられていない。開口制限マスクを設けることにより、蒸発源151の透明基板2に対向する領域の、基板搬送方向における幅を実質的に小さくすることができる。開口制限マスクと透明基板2との距離は、5mm以内であることが好ましい。 In the second film forming chamber 150, an opening limiting mask (not shown) may be provided between the transparent substrate 2 transported to the main roller 182 and the evaporation source 151. The opening limiting mask is not provided in the first film formation chamber 130 and the third film formation chamber 170. By providing the aperture limiting mask, the width of the region of the evaporation source 151 facing the transparent substrate 2 in the substrate transport direction can be substantially reduced. The distance between the opening limiting mask and the transparent substrate 2 is preferably within 5 mm.
 一般に、層厚の薄い層を形成するには、蒸発源に投入される投入電力量等を減少させることによって行われる。しかし、蒸発源に投入される電力量を減少させて透明金属層を形成すると、形成された透明金属層の光の平均吸収率が高くなってしまい、光の平均透過率が低くなってしまう。
 これに対し、銀を含む材料を用いて層厚の薄い透明金属層を形成する場合に、開口制限マスクを用いることで、分割ターゲット153bにおいて透明基板2に対向する領域の基板搬送方向における幅を低減し、機能を低下させることなく層厚が薄い透明金属層を形成することができる。
 なお、蒸発源151そのものの基板搬送方向における幅を小さくすることで、透明基板2に対向する領域の基板搬送方向における幅を小さくすることも考えられるが、既存の装置構成やターゲットを用いることができなくなるため、コストが増大し、好ましくない。
In general, a thin layer is formed by reducing the amount of input power input to the evaporation source. However, when the transparent metal layer is formed by reducing the amount of electric power input to the evaporation source, the average light absorptance of the formed transparent metal layer increases and the average light transmittance decreases.
On the other hand, when forming a thin transparent metal layer using a material containing silver, by using an aperture limiting mask, the width in the substrate transport direction of the region facing the transparent substrate 2 in the divided target 153b can be increased. A transparent metal layer having a thin layer thickness can be formed without reducing the function.
Although it is conceivable to reduce the width of the region facing the transparent substrate 2 in the substrate transport direction by reducing the width of the evaporation source 151 itself in the substrate transport direction, an existing apparatus configuration or target may be used. Since it becomes impossible, cost increases and it is not preferable.
 蒸発源171は、第3成膜室170内に設けられ、スパッタリングカソード172に第2高屈折率層の原料であるターゲット173が取り付けられている。蒸発源171は、電力が投入されることで、メインローラー182により搬送される透明基板2上に、投入電力量に応じた層厚の第2高屈折率層を形成する。 The evaporation source 171 is provided in the third film formation chamber 170, and a target 173, which is a raw material for the second high refractive index layer, is attached to the sputtering cathode 172. The evaporation source 171 forms a second high refractive index layer having a layer thickness corresponding to the input power amount on the transparent substrate 2 conveyed by the main roller 182 when power is input.
 スパッタリングカソード132、152及び172としては、内部にマグネットを配し磁場によりプラズマを閉じ込めスパッタリング効率を上げる、いわゆるマグネトロンカソード方式のものが好ましい。このようなスパッタリングカソード132、152及び172としては、平板カソード、ロータリーカソードのどちらでも構わないが、ターゲット使用効率が高いこと、形成される層の層厚分布が均一に取りやすいことからロータリーカソードであることがより好ましい。
 マグネットの磁束密度は、300~1000G(3×10-2~10×10-2T)の範囲内であることが好ましい。
As the sputtering cathodes 132, 152, and 172, those of the so-called magnetron cathode type in which a magnet is disposed inside and the plasma is confined by a magnetic field to increase the sputtering efficiency are preferable. As such sputtering cathodes 132, 152 and 172, either a flat cathode or a rotary cathode may be used. However, since the use efficiency of the target is high and the layer thickness distribution of the formed layer can be easily obtained, the rotary cathode is used. More preferably.
The magnetic flux density of the magnet is preferably in the range of 300 to 1000 G (3 × 10 −2 to 10 × 10 −2 T).
 各成膜室130、150及び170におけるスパッタの条件としては、Ar、Kr、Xe等の不活性ガスのガス流量5~40sccm(Standard Cubic Centimeter per Minute)、圧力0.1~1.0Paが例示され、このような条件に設定することで、形成される各層の表面が荒れることを抑制できる。各成膜室130、150及び170において形成される各層の層厚は、水晶振動子、干渉計等の層厚モニターにより監視することが好ましい。 Examples of sputtering conditions in each of the film forming chambers 130, 150, and 170 include an inert gas flow rate of 5 to 40 sccm (Standard Cubic Centimeter per Minute), a pressure of 0.1 to 1.0 Pa, such as Ar, Kr, and Xe. And by setting to such conditions, it can suppress that the surface of each layer formed becomes rough. The layer thickness of each layer formed in each of the film formation chambers 130, 150, and 170 is preferably monitored by a layer thickness monitor such as a crystal resonator or an interferometer.
 なお、上記した製造装置100において、第1成膜室130と第2成膜室150との間に第1差圧室140が設けられ、第2成膜室150と第3成膜室170との間に第2差圧室160が設けられているものとしたが、第1差圧室140及び第2差圧室160が設けられていなくてもよい。 In the manufacturing apparatus 100 described above, the first differential pressure chamber 140 is provided between the first film formation chamber 130 and the second film formation chamber 150, and the second film formation chamber 150, the third film formation chamber 170, However, the first differential pressure chamber 140 and the second differential pressure chamber 160 may not be provided.
 また、上記した製造装置100において、第1成膜室130、第2成膜室150及び第3成膜室170が設けられているものとしたが、第1差圧室140及び第2差圧室160に代えて、透明導電体を構成する別の機能層を形成する成膜室が設けられているものとしてもよい。
 すなわち、図6に示すように、製造装置200は、第1高屈折率層を形成する第1成膜室230及び第2成膜室240、硫化防止層及び透明金属層を形成する第3成膜室250、並びに第2高屈折率層を形成する第4成膜室260及び第5成膜室270を備える構成としてもよい。
In the manufacturing apparatus 100 described above, the first film formation chamber 130, the second film formation chamber 150, and the third film formation chamber 170 are provided. However, the first differential pressure chamber 140 and the second differential pressure are provided. Instead of the chamber 160, a film forming chamber for forming another functional layer constituting the transparent conductor may be provided.
That is, as shown in FIG. 6, the manufacturing apparatus 200 includes a first film formation chamber 230 and a second film formation chamber 240 that form the first high refractive index layer, a third formation layer that forms the sulfidation prevention layer and the transparent metal layer. The film chamber 250 and the fourth film forming chamber 260 and the fifth film forming chamber 270 for forming the second high refractive index layer may be provided.
<製造装置の使用方法>
 本発明に係る透明導電体は、上記製造装置100を用いて行うことが好ましい。以下、上記製造装置100を用いる場合について説明する。
<How to use manufacturing equipment>
The transparent conductor according to the present invention is preferably performed using the manufacturing apparatus 100. Hereinafter, the case where the said manufacturing apparatus 100 is used is demonstrated.
 まず、送出しローラー180から送り出され、メインローラー182により搬送される透明基板2に対し、蒸発源131により第1高屈折率層の成膜工程を行う。
 続いて、メインローラー182により搬送される透明基板2に対し、蒸発源151により硫化防止層及び透明金属層の成膜工程を行う。この際、透明基板2に対向する領域の基板搬送方向Xにおける幅を制限する開口制限マスクを介して、硫化防止層及び透明金属層の成膜工程を行ってもよい。当該開口制限マスクを介して硫化防止層及び透明金属層を形成することで、機能を低下させることなく、第1及び第2高屈折率層よりも層厚の薄い硫化防止層及び透明金属層を形成することができる。
 続いて、メインローラー182により搬送される透明基板2に対し、蒸発源171により第2高屈折率層の成膜工程を行う。
 このように、第1高屈折率層、硫化防止層、透明金属層及び第2高屈折率層が形成された透明基板2を、巻取りローラー184により巻き取る。
 以上のようにして、所望の透明導電体を製造することができる。
First, a film forming process of the first high refractive index layer is performed by the evaporation source 131 on the transparent substrate 2 that is fed from the feed roller 180 and conveyed by the main roller 182.
Subsequently, a film forming step of an antisulfurization layer and a transparent metal layer is performed on the transparent substrate 2 conveyed by the main roller 182 by the evaporation source 151. Under the present circumstances, you may perform the film-forming process of a sulfide prevention layer and a transparent metal layer through the opening restriction | limiting mask which restrict | limits the width | variety in the board | substrate conveyance direction X of the area | region facing the transparent substrate 2. FIG. By forming the sulfidation prevention layer and the transparent metal layer through the opening limiting mask, the sulfidation prevention layer and the transparent metal layer having a thinner thickness than the first and second high refractive index layers can be formed without reducing the function. Can be formed.
Subsequently, a film forming process of the second high refractive index layer is performed by the evaporation source 171 on the transparent substrate 2 conveyed by the main roller 182.
Thus, the transparent substrate 2 on which the first high refractive index layer, the sulfidation preventing layer, the transparent metal layer, and the second high refractive index layer are formed is wound up by the winding roller 184.
As described above, a desired transparent conductor can be manufactured.
≪透明導電体の層構成の詳細≫
 以下、本発明に係る透明導電体1を構成する各層及びその材料等について、その詳細を説明する。
≪Details of layer structure of transparent conductor≫
Hereinafter, the details of each layer and the material constituting the transparent conductor 1 according to the present invention will be described.
<透明基板>
 透明基板2としては、透明な基板であればよく、従来公知の各種表示デバイスの透明基板と同様のものを用いることができる。
 ここで、本発明において、透明とは、波長550nmでの光透過率が50%以上であることをいう。
<Transparent substrate>
The transparent substrate 2 may be a transparent substrate and may be the same as the transparent substrate of various conventionally known display devices.
Here, in the present invention, transparent means that the light transmittance at a wavelength of 550 nm is 50% or more.
 透明基板2としては、例えば、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えば、パンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えば、ゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えば、ポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN))、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルム等が挙げられる。透明基板2が透明樹脂フィルムである場合、当該透明樹脂フィルムには2種以上の樹脂が含まれていてもよい。 As the transparent substrate 2, for example, a glass substrate, a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetyl propionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Ltd.)), cyclo Olefin resins (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (Sumitomo) Chemical)), polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate (PEN)), polyethersulfone, ABS AS resin, MBS resin, polystyrene, methacrylic resins, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resins), such as a transparent resin film comprising a styrene block copolymer resins. When the transparent substrate 2 is a transparent resin film, the transparent resin film may contain two or more kinds of resins.
 透明性の観点から、透明基板2の材料としては、例えば、ガラス基板や、セルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムであることが好ましい。 From the viewpoint of transparency, examples of the material of the transparent substrate 2 include a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, and polyphenylene. A transparent resin film made of ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, or the like is preferable. .
 透明基板2は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、より好ましくは80%以上、更に好ましくは85%以上である。透明基板2の光の平均透過率が70%以上であると、透明導電体1の光透過性が高まりやすい。また、透明基板2の波長450~800nmにおける光の平均吸収率は、10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは3%以下である。
 ここで、平均透過率は、透明基板2の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板2の平均反射率を測定し、「平均吸収率=100-(平均透過率+平均反射率)」として算出する。平均透過率及び平均反射率は、分光光度計で測定される。
The transparent substrate 2 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more. is there. When the average light transmittance of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to increase. The average absorption rate of light at a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and still more preferably 3% or less.
Here, the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2. On the other hand, the average absorptance is measured by measuring the average reflectance of the transparent substrate 2 by making light incident from the same angle as that of the average transmittance, and obtaining “average absorptance = 100− (average transmittance + average reflectance)”. calculate. The average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板2の波長570nmにおける光の屈折率は、25℃において1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、更に好ましくは1.45~1.70である。透明基板2の屈折率は、通常、透明基板2の材質によって定まる。透明基板2の屈折率は、エリプソメーターで測定される。 The refractive index of light at a wavelength of 570 nm of the transparent substrate 2 is preferably 1.40 to 1.95 at 25 ° C., more preferably 1.45 to 1.75, still more preferably 1.45 to 1. .70. The refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2. The refractive index of the transparent substrate 2 is measured with an ellipsometer.
 透明基板2のヘイズ値は、0.01~2.5の範囲内であることが好ましく、より好ましくは0.1~1.2の範囲内である。透明基板2のヘイズ値が2.5以下であると、透明導電体1のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5, more preferably in the range of 0.1 to 1.2. The haze value of the transparent conductor 1 is suppressed as the haze value of the transparent substrate 2 is 2.5 or less. The haze value is measured with a haze meter.
 透明基板2の厚さは、1μm~20mmの範囲内であることが好ましく、より好ましくは10μm~2mmの範囲内である。透明基板2の厚さが1μm以上であると、透明基板2の強度が高まり、第1高屈折率層3aの形成時に割れたり裂けたりすることを抑制できる。一方、透明基板2の厚さが20mm以下であれば、透明導電体1のフレキシブル性が十分となる。さらに、透明導電体1を用いた機器の厚さを薄くすることができる。また、透明導電体1を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 2 is preferably in the range of 1 μm to 20 mm, more preferably in the range of 10 μm to 2 mm. When the thickness of the transparent substrate 2 is 1 μm or more, the strength of the transparent substrate 2 is increased, and it is possible to suppress cracking or tearing when the first high refractive index layer 3a is formed. On the other hand, if the thickness of the transparent substrate 2 is 20 mm or less, the flexibility of the transparent conductor 1 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 1 can be reduced. Moreover, the apparatus using the transparent conductor 1 can also be reduced in weight.
 透明基板2としては、上述したように、ガラス基板や樹脂フィルム等が用いられるが、その表面上には、例えば、平滑層(クリアハードコート層:CHC層)、保護層、密着層、反射層、反射防止層等の各種の機能を発現するための層(膜)が形成されていてもよい。平滑層が形成されている場合、その平均表面粗さRaは3nm以下であることが好ましい。 As described above, a glass substrate, a resin film, or the like is used as the transparent substrate 2. On the surface, for example, a smooth layer (clear hard coat layer: CHC layer), a protective layer, an adhesion layer, a reflective layer is used. Further, a layer (film) for expressing various functions such as an antireflection layer may be formed. When the smooth layer is formed, the average surface roughness Ra is preferably 3 nm or less.
<第1高屈折率層>
 第1高屈折率層3aは、透明金属層5の光透過性(光学アドミッタンス)を調整する層である。
<First high refractive index layer>
The first high refractive index layer 3 a is a layer that adjusts the light transmittance (optical admittance) of the transparent metal layer 5.
 第1高屈折率層3aには、前述の透明基板2の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれている。
 第1高屈折率層3aに含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料としては、金属酸化物を用いることができる。金属酸化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム亜鉛)、AZO(酸化アルミニウム亜鉛)、GZO(酸化ガリウム亜鉛)、ATO(酸化アンチモンスズ)、ICO(酸化インジウムセリウム)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が挙げられる。第1高屈折率層3aには、当該金属酸化物が1種のみ含まれていてもよく、2種以上が含まれていてもよい。
The first high refractive index layer 3a includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 2 described above.
The dielectric material or the oxide semiconductor material included in the first high refractive index layer 3a may be an insulating material or a conductive material. A metal oxide can be used as the dielectric material or the oxide semiconductor material. Examples of metal oxides, TiO 2, ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2, La 2 Ti 2 O 7, IZO ( indium zinc oxide), AZO (aluminum oxide zinc), GZO (gallium oxide, zinc), ATO (antimony tin oxide), ICO (indium cerium oxide), Bi 2 Examples include O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (amorphous oxide composed of gallium, indium, and oxygen). The first high refractive index layer 3a may contain only one kind of the metal oxide or two or more kinds.
 また、第1高屈折率層3aに含まれる誘電性材料又は酸化物半導体材料としては、上記したとおり、硫化亜鉛を用いることができる。第1高屈折率層3aに硫化亜鉛が含有されていると、透明金属層5への水分の透過を抑制し、透明金属層5の腐食を抑制することができる。第1高屈折率層3aには、硫化亜鉛のみが含有されていてもよいし、硫化亜鉛とともに他の材料が含有されていてもよい。硫化亜鉛とともに含有される材料は、上記誘電性材料又は酸化物半導体材料として用いることができる金属酸化物やSiO等であり、後述するように、特に好ましくはSiOである。硫化亜鉛とともにSiOが含有されていると、第1高屈折率層3aが非晶質になりやすく、透明導電体1のフレキシブル性が高まりやすい。 Further, as described above, zinc sulfide can be used as the dielectric material or the oxide semiconductor material included in the first high refractive index layer 3a. When zinc sulfide is contained in the first high refractive index layer 3 a, moisture permeation to the transparent metal layer 5 can be suppressed and corrosion of the transparent metal layer 5 can be suppressed. The first high refractive index layer 3a may contain only zinc sulfide, or may contain other materials together with zinc sulfide. Material contained together with zinc sulphide, a metal oxide or SiO 2 or the like which can be used as the dielectric material or an oxide semiconductor material, as will be described later, particularly preferably SiO 2. When SiO 2 is contained together with zinc sulfide, the first high refractive index layer 3a is likely to be amorphous, and the flexibility of the transparent conductor 1 is likely to be enhanced.
 第1高屈折率層3aに硫化亜鉛とともに他の材料が含有されている場合、硫化亜鉛の含有量は、第1高屈折率層3aを構成する全材料の総モル数に対して、0.1~95質量%の範囲内であることが好ましく、より好ましくは50~90質量%の範囲内、更に好ましくは60~85質量%の範囲内である。硫化亜鉛の含有量が大きいとスパッタ速度が速くなり、第1高屈折率層3aの形成速度が速くなる。一方、硫化亜鉛以外の成分が多く含有されていると、第1高屈折率層3aの非晶質性が高まり、第1高屈折率層3aの割れが抑制される。 When the first high refractive index layer 3a contains other materials together with zinc sulfide, the content of zinc sulfide is 0. 0 relative to the total number of moles of all the materials constituting the first high refractive index layer 3a. It is preferably in the range of 1 to 95% by mass, more preferably in the range of 50 to 90% by mass, and still more preferably in the range of 60 to 85% by mass. When the content of zinc sulfide is large, the sputtering rate is increased and the formation rate of the first high refractive index layer 3a is increased. On the other hand, when many components other than zinc sulfide are contained, the amorphousness of the first high refractive index layer 3a is increased, and cracking of the first high refractive index layer 3a is suppressed.
 上記誘電性材料又は酸化物半導体材料の波長570nmにおける光の屈折率は、透明基板2の波長570nmにおける光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。
 一方、第1高屈折率層3aに含まれる誘電性材料又は酸化物半導体材料の波長570nmにおける光の具体的な屈折率は、25℃において1.5より大きいことが好ましく、1.7~2.5の範囲内であることがより好ましく、更に好ましくは1.8~2.5の範囲内である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層3aによって、透明導電体1の光学アドミッタンスが十分に調整される。なお、第1高屈折率層3aの屈折率は、第1高屈折率層3aに含まれる材料の屈折率や、第1高屈折率層3aに含まれる材料の密度で調整される。
The refractive index of light at a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light at a wavelength of 570 nm of the transparent substrate 2, and is preferably 0.4 to 1.0. Larger is more preferable.
On the other hand, the specific refractive index of light at a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 3a is preferably greater than 1.5 at 25 ° C. More preferably, it is within the range of .5, and even more preferably within the range of 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3a. The refractive index of the first high refractive index layer 3a is adjusted by the refractive index of the material included in the first high refractive index layer 3a and the density of the material included in the first high refractive index layer 3a.
 第1高屈折率層3aの層厚は、15~150nmの範囲内であることが好ましく、より好ましくは20~80nmの範囲内である。第1高屈折率層3aの層厚が15nm以上であると、第1高屈折率層3aによって、透明導電体1の光学アドミッタンスが十分に調整される。一方、第1高屈折率層3aの層厚が150nm以下であれば、第1高屈折率層3aが形成されている領域の光透過性が低下しにくい。第1高屈折率層3aの層厚は、エリプソメーターで測定される。 The layer thickness of the first high refractive index layer 3a is preferably in the range of 15 to 150 nm, more preferably in the range of 20 to 80 nm. When the thickness of the first high refractive index layer 3a is 15 nm or more, the optical admittance of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3a. On the other hand, if the thickness of the first high refractive index layer 3a is 150 nm or less, the light transmittance of the region where the first high refractive index layer 3a is formed is unlikely to decrease. The layer thickness of the first high refractive index layer 3a is measured with an ellipsometer.
(アモルファス化金属材料)
 第1高屈折率層3aには、硫化亜鉛を含有させることが好ましいが、アモルファス化硫化亜鉛を含有させることがより好ましい。第1高屈折率層3aにアモルファス化した硫化亜鉛が含有されていることで、透明導電体1に発生する応力を低減することができ、透明導電体1に反りが発生することを抑制できるとともに、透明導電体1を折り曲げた際にクラックが発生することを抑制できる。さらに、第1高屈折率層3aにアモルファス化硫化亜鉛が含有されていることで、第1高屈折率層3aの光透過性を向上させることができる。
(Amorphized metal material)
The first high refractive index layer 3a preferably contains zinc sulfide, but more preferably contains amorphous zinc sulfide. Since the amorphous zinc sulfide is contained in the first high refractive index layer 3a, the stress generated in the transparent conductor 1 can be reduced, and the occurrence of warpage in the transparent conductor 1 can be suppressed. It is possible to suppress the generation of cracks when the transparent conductor 1 is bent. Furthermore, the light transmittance of the first high refractive index layer 3a can be improved by containing amorphous zinc sulfide in the first high refractive index layer 3a.
 第1高屈折率層3aに硫化亜鉛とともにアモルファス化金属材料を含有させることで、硫化亜鉛をアモルファス化することができる。アモルファス化金属材料の含有量は、適宜変更可能であり、これにより、光の屈折率が変更可能である。そのため、光透過率を所望のものにすることができる。具体的には、第1高屈折率層3aに、例えば、硫化亜鉛よりも屈折率の高い透明材料であるTiOやNbをアモルファス化金属材料として含有させることで、アモルファス化していない、すなわち結晶性の硫化亜鉛単体からなる第1高屈折率層と比べて、反射帯域を拡げることができる。これにより、透明導電体1の光学特性の調整が容易になる。 By making the first high refractive index layer 3a contain an amorphous metal material together with zinc sulfide, the zinc sulfide can be made amorphous. The content of the amorphized metal material can be appropriately changed, whereby the refractive index of light can be changed. Therefore, the light transmittance can be made desired. Specifically, the first high refractive index layer 3a is not amorphized by containing, for example, TiO 2 or Nb 2 O 5 which is a transparent material having a higher refractive index than zinc sulfide as an amorphized metal material. That is, the reflection band can be expanded as compared with the first high refractive index layer made of crystalline zinc sulfide alone. Thereby, adjustment of the optical characteristic of the transparent conductor 1 becomes easy.
 また、アモルファス化金属材料を用いてアモルファス化した硫化亜鉛は、より良好な耐久性を有する。そのため、透明金属層5の保護をより確実に行うことができる。したがって、例えば、第1高屈折率層3aに硫化亜鉛とともにアモルファス化金属材料としてSiやAl等を含有させることで、透明導電体1の擦傷性を改善させることが可能になる。 In addition, zinc sulfide that has been amorphized using an amorphized metal material has better durability. Therefore, the transparent metal layer 5 can be protected more reliably. Therefore, for example, by containing Si 3 N 4 or Al 2 O 3 as an amorphized metal material together with zinc sulfide in the first high refractive index layer 3a, it is possible to improve the scratch resistance of the transparent conductor 1. Become.
 アモルファス化金属材料としては、例えば、金属酸化物、金属フッ化物、金属窒化物等を用いることができる。 As the amorphized metal material, for example, a metal oxide, a metal fluoride, a metal nitride, or the like can be used.
 アモルファス化金属材料として用いられる金属酸化物としては、例えば、TiO、In、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、ITO(InSnO)、IGZO(InGaZnO)、IZO(InZnO)、AZO(AlZnO)、GZO(GaZnO)、ATO(AlSnO)、ICO(InCeO)、Bi、a-GIO(GaInO)、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO等が挙げられる。
 なお、本発明において、金属酸化物はSiOも含む意味で用いることとする。
Examples of the metal oxide used as the amorphized metal material include TiO 2 , In 2 O 5 , ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7. , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , ITO (InSnO), IGZO (InGaZnO), IZO (InZnO), AZO (AlZnO), GZO (GaZnO), ATO (AlSnO), ICO ( InCeO), Bi 2 O 3 , a-GIO (GaInO), Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 and the like.
In the present invention, the metal oxide is used to include SiO 2 .
 これらの中でも、SiO及びTiOが好ましい。SiOを用いる場合、その含有量が少量でも、硫化亜鉛のアモルファス化が可能である。そのため、SiOを含有させることで、硫化亜鉛のアモルファス化後に、高い密着性(耐剥離性)や高い耐久性(例えば、耐湿性等)を特に良好に奏させることができる。また、TiOは透明材料の中でも特に高屈折率を示すため、TiOを用いることで、反射帯域を広く取れ、透明導電体1の光学特性の調整が容易になる。 Among these, SiO 2 and TiO 2 are preferable. When SiO 2 is used, zinc sulfide can be made amorphous even if its content is small. Therefore, by incorporating the SiO 2, after amorphization of zinc sulfide, high adhesion (peeling resistance) and high durability (e.g., moisture resistance, etc.) it can be particularly well achieved a. In addition, since TiO 2 exhibits a particularly high refractive index among transparent materials, by using TiO 2 , a wide reflection band can be obtained and the optical characteristics of the transparent conductor 1 can be easily adjusted.
 また、アモルファス化金属材料として用いられる金属フッ化物としては、例えば、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、CeF、NdF、YF等が挙げられる。 Examples of the metal fluoride used as the amorphized metal material include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , CeF 3 , NdF 3 , YF 3 etc. are mentioned.
 さらに、アモルファス化金属材料として用いられる金属窒化物としては、例えば、Si、AlN等が挙げられる。これらの中でも、Siが好ましい。Siは硬度が高いため、Siを用いることで、第1高屈折率層3aの耐擦傷性を向上させることができる。
 なお、本発明において、金属窒化物はSiも含む意味で用いることとする。
Furthermore, examples of the metal nitride used as the amorphized metal material include Si 3 N 4 and AlN. Among these, Si 3 N 4 is preferable. Since Si 3 N 4 has a high hardness, it is possible to improve the scratch resistance of the first high refractive index layer 3a by using Si 3 N 4 .
In the present invention, the metal nitride is used in the meaning including Si 3 N 4 .
 なお、これらのアモルファス化金属材料は単独で用いられてもよいし、2種以上が任意の比率及び組み合わせで用いられてもよい。 In addition, these amorphized metal materials may be used independently, and 2 or more types may be used in arbitrary ratios and combinations.
 アモルファス化硫化亜鉛を得るために、結晶性の硫化亜鉛に対して含有させるアモルファス化金属材料の量に特に制限はない。例えば、アモルファス化金属材料の種類によっても異なるため一概にはいえないものの、アモルファス化金属材料としてSiOを用いる場合、結晶性の硫化亜鉛に対して、通常1質量%以上、より好ましくは5質量%以上であって、通常99質量%以下、より好ましくは95質量%以下のSiOを含有させることで、アモルファス化硫化亜鉛とすることができる。 In order to obtain the amorphized zinc sulfide, there is no particular limitation on the amount of the amorphized metal material contained with respect to the crystalline zinc sulfide. For example, although it cannot be generally described because it varies depending on the type of amorphized metal material, when SiO 2 is used as the amorphized metal material, it is usually 1% by mass or more, more preferably 5% by mass with respect to crystalline zinc sulfide. % Or more and usually 99% by mass or less, and more preferably 95% by mass or less of SiO 2 can be used to make amorphous zinc sulfide.
<第1硫化防止層>
 第1高屈折率層3aが硫化亜鉛を含有する場合、図1A又はCに示すように、第1高屈折率層3aと透明金属層5との間に第1硫化防止層4aが設けられる。
<First sulfurization prevention layer>
When the first high refractive index layer 3a contains zinc sulfide, as shown in FIG. 1A or C, the first antisulfuric layer 4a is provided between the first high refractive index layer 3a and the transparent metal layer 5.
 第1硫化防止層4aの材料としては、例えば、金属酸化物、金属窒化物、金属フッ化物等又はZnを用いることができる。中でも、Zn若しくはZnを含む金属酸化物、又はGaを含む金属酸化物であることが好ましい。第1硫化防止層4aには、これらが一種のみ含まれていてもよいし、二種以上含まれていてもよい。ただし、第1高屈折率層3aと、第1硫化防止層4aと、透明金属層5とが連続的に形成される場合には、第1硫化防止層4aは、硫黄と反応可能な化合物や、硫黄を吸着可能な化合物を含有していることが好ましい。第1硫化防止層4aに含有されている材料が、硫黄と反応する化合物である場合、当該硫黄との反応生成物は可視光透過率が高いことが好ましい。 As a material of the first sulfidation preventing layer 4a, for example, metal oxide, metal nitride, metal fluoride, or Zn can be used. Among these, Zn, a metal oxide containing Zn, or a metal oxide containing Ga is preferable. Only 1 type may be contained in the 1st sulfurization prevention layer 4a, and 2 or more types may be contained. However, when the first high refractive index layer 3a, the first antisulfurization layer 4a, and the transparent metal layer 5 are continuously formed, the first antisulfurization layer 4a is composed of a compound capable of reacting with sulfur, It is preferable to contain a compound capable of adsorbing sulfur. When the material contained in the first sulfurization prevention layer 4a is a compound that reacts with sulfur, the reaction product with the sulfur preferably has a high visible light transmittance.
 金属酸化物としては、例えば、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、IGZO、M3(登録商標、メルクジャパン社製、酸化アルミニウムと酸化ランタンとの混合物)、In等を挙げることができる。
 金属フッ化物としては、例えば、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、CeF、NdF、YF等を挙げることができる。
 金属窒化物としては、例えば、Si、AlN等を挙げることができる。
Examples of the metal oxide include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , IGZO, M3 (registered trademark, manufactured by Merck Japan, a mixture of aluminum oxide and lanthanum oxide), In 2 O 5 and the like can be mentioned.
Examples of the metal fluoride include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , CeF 3 , NdF 3 , YF 3 and the like.
Examples of the metal nitride include Si 3 N 4 and AlN.
 中でも、第1硫化防止層4aを構成する材料としては、金属酸化物が好ましく、特に、ZnO、ITO、IGZO、Ga、Nb、SnO、Y及びM3(登録商標)が好ましい。これにより、第1高屈折率層3a又は第2高屈折率層3bに含まれる硫化亜鉛との密着性を高めることができ、耐久性をより向上させることができる。 Among them, as the material constituting the first anti-sulfuration layer 4a, preferably a metal oxide, in particular, ZnO, ITO, IGZO, Ga 2 O 3, Nb 2 O 5, SnO 2, Y 2 O 3 and M3 (registered Trademark) is preferred. Thereby, adhesiveness with the zinc sulfide contained in the 1st high refractive index layer 3a or the 2nd high refractive index layer 3b can be improved, and durability can be improved more.
 ここで、第1硫化防止層4aの層厚は、後述する透明金属層5の形成時の衝撃から、第1高屈折率層3aの表面を保護可能な層厚であることが好ましい。一方で、第1高屈折率層4aに含有され得る硫化亜鉛は、透明金属層5に含有される金属との親和性が高い。そのため、第1硫化防止層4aの層厚が非常に薄く、第1高屈折率層3aの一部が僅かに露出していると、当該露出部分を中心に透明金属層5が成長し、透明金属層5が緻密になりやすい。つまり、第1硫化防止層4aは比較的薄いことが好ましく、0.1~10nmの範囲内であることが好ましく、より好ましくは0.5~5nmの範囲内であり、更に好ましくは1~3nmの範囲内である。第1硫化防止層4aの層厚は、エリプソメーターで測定される。 Here, the layer thickness of the first sulfidation preventing layer 4a is preferably a layer thickness capable of protecting the surface of the first high refractive index layer 3a from an impact when forming the transparent metal layer 5 described later. On the other hand, zinc sulfide that can be contained in the first high refractive index layer 4 a has high affinity with the metal contained in the transparent metal layer 5. Therefore, if the thickness of the first anti-sulfurization layer 4a is very thin and a part of the first high refractive index layer 3a is slightly exposed, the transparent metal layer 5 grows around the exposed part and is transparent. The metal layer 5 tends to be dense. That is, the first antisulfurization layer 4a is preferably relatively thin, preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably 1 to 3 nm. Is within the range. The layer thickness of the first sulfidation preventing layer 4a is measured with an ellipsometer.
≪透明金属層≫
 透明金属層5は、透明導電体1において電気を導通させるための層である。
≪Transparent metal layer≫
The transparent metal layer 5 is a layer for conducting electricity in the transparent conductor 1.
 透明金属層5には、銀が含有されていることが好ましい。高い導電性を得る観点から、透明金属層5は、銀又は銀が90at%以上含まれる合金からなることが好ましい。
 銀と組み合わされる金属としては、例えば、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン、ニッケル、鉄、コバルト、タングステン、タンタル、クロム、インジウム、チタン等を用いることができる。中でも、銅、パラジウム又はビスマスが好ましい。透明金属層5には、銀の単体又は化合物と、銅、パラジウム又はビスマスの単体又は化合物とが併存していてもよいし、銀とこれらの金属のうち少なくとも一つとの合金の形態で含まれていてもよいが、合金の形態で含まれていることが好ましい。また、透明金属層5を構成する材料の全てが、銀とこれらの金属のうち少なくとも一つとの合金であることが好ましい。透明金属層5にこれらの金属のうち少なくとも一つが含まれることで、透明導電体1の耐久性や耐剥離性等をより向上させることができる。
 また、例えば、透明金属層5が銀と亜鉛との合金を含有する場合、透明金属層5の耐硫化性を向上させることができる。また、例えば、透明金属層5が銀と金との合金を含有する場合、透明金属層5の耐塩(NaCl)性を向上させることができる。さらに、例えば、透明金属層5が銀と銅との合金を含有する場合、透明金属層5の耐酸化性を向上させることができる。
The transparent metal layer 5 preferably contains silver. From the viewpoint of obtaining high conductivity, the transparent metal layer 5 is preferably made of silver or an alloy containing 90 at% or more of silver.
As a metal combined with silver, for example, zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, nickel, iron, cobalt, tungsten, tantalum, chromium, indium, titanium, or the like can be used. Among these, copper, palladium, or bismuth is preferable. The transparent metal layer 5 may contain a simple substance or compound of silver and a simple substance or compound of copper, palladium, or bismuth, or is included in the form of an alloy of silver and at least one of these metals. However, it is preferably contained in the form of an alloy. Moreover, it is preferable that all of the materials constituting the transparent metal layer 5 are an alloy of silver and at least one of these metals. By including at least one of these metals in the transparent metal layer 5, it is possible to further improve the durability, peel resistance, and the like of the transparent conductor 1.
Further, for example, when the transparent metal layer 5 contains an alloy of silver and zinc, the sulfidation resistance of the transparent metal layer 5 can be improved. For example, when the transparent metal layer 5 contains an alloy of silver and gold, the salt resistance (NaCl) resistance of the transparent metal layer 5 can be improved. Furthermore, for example, when the transparent metal layer 5 contains an alloy of silver and copper, the oxidation resistance of the transparent metal layer 5 can be improved.
 透明金属層5のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることが更に好ましい。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体1の透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal layer 5 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the transparent conductor 1 is easily colored.
 透明金属層5の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。 The plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 5 is measured by the following procedure.
(i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm形成する。白金パラジウムの平均厚さは、スパッタ装置のメーカー公称値の形成速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を厚さ20nmで形成する。
(ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の光透過率及び光反射率を測定する。そして、各波長における光透過率及び光反射率から、吸収率(=100-(光透過率+光反射率))を算出し、これをリファレンスデータとする。光透過率及び光反射率は、分光光度計で測定する。
(iii)続いて、測定対象の透明金属層を同様のガラス基板上に形成する。そして、当該透明金属層について、同様に光透過率及び光反射率を測定する。得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。
(I) Platinum palladium is formed to 0.1 nm on a glass substrate by a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of metal is formed with a thickness of 20 nm on the substrate to which platinum palladium is adhered by sputtering.
(Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the light transmittance and light reflectance of the metal film are measured. Then, an absorptance (= 100− (light transmittance + light reflectance)) is calculated from the light transmittance and light reflectance at each wavelength, and this is used as reference data. The light transmittance and light reflectance are measured with a spectrophotometer.
(Iii) Subsequently, a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, light transmittance and light reflectance are measured similarly. The reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属層5の層厚は、10nm以下であることが好ましく、より好ましくは3~9nmの範囲内であり、更に好ましくは5~8nmの範囲内である。透明金属層5の層厚が10nm以下であると、第1高屈折率層3a及び第2高屈折率層3bによって、透明導電体1の光学アドミッタンスが調整されやすく、表面での光の反射が抑制されやすい。透明金属層5の層厚は、エリプソメーターで測定される。 The layer thickness of the transparent metal layer 5 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm. When the thickness of the transparent metal layer 5 is 10 nm or less, the optical admittance of the transparent conductor 1 is easily adjusted by the first high-refractive index layer 3a and the second high-refractive index layer 3b, and light reflection on the surface is prevented. It is easy to be suppressed. The layer thickness of the transparent metal layer 5 is measured with an ellipsometer.
 透明金属層5は、いずれの成膜方法で形成されたものであってもよいが、透明金属層5の平均透過率を高める観点から、スパッタ法で形成された層であることが好ましく、また、透明金属層5の形成時に成長核になり得る下地層上に形成された層であることが好ましい。透明金属層5が下地層上に形成された層である場合、透明金属層5の形成時に下地層が成長核となるため、透明金属層5が平滑な層になりやすい。その結果、透明金属層5が薄くとも、プラズモン吸収が生じにくくなる。 The transparent metal layer 5 may be formed by any film formation method, but from the viewpoint of increasing the average transmittance of the transparent metal layer 5, it is preferably a layer formed by a sputtering method. It is preferable that the transparent metal layer 5 be a layer formed on an underlayer that can become a growth nucleus when forming the transparent metal layer 5. When the transparent metal layer 5 is a layer formed on the underlayer, the underlayer becomes a growth nucleus when the transparent metal layer 5 is formed, so that the transparent metal layer 5 tends to be a smooth layer. As a result, even if the transparent metal layer 5 is thin, plasmon absorption is less likely to occur.
 スパッタ法では、層形成時に材料が被成膜体に高速で衝突するため、緻密かつ平滑な膜が得られやすく、透明金属層5の光透過性を向上させることができる。また、透明金属層5がスパッタ法により形成された層であると、透明金属層5が高温かつ低湿度な環境においても腐食しにくくなる。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、RFスパッタ法、対向スパッタ法等を用いることができる。中でも、透明金属層5は、RFスパッタ法又は対向スパッタ法で形成された層であることが好ましい。透明金属層5が、RFスパッタ法又は対向スパッタ法で形成された層であると、透明金属層5が緻密になり、表面平滑性が高まりやすい。その結果、透明金属層5の表面電気抵抗をより低減させることができ、光透過率も向上させることができる。 In the sputtering method, when the layer is formed, the material collides with the deposition target at high speed, so that a dense and smooth film can be easily obtained and the light transmittance of the transparent metal layer 5 can be improved. Further, when the transparent metal layer 5 is a layer formed by sputtering, the transparent metal layer 5 is hardly corroded even in a high temperature and low humidity environment. The type of the sputtering method is not particularly limited, and ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, bias sputtering, RF sputtering, counter sputtering, and the like can be used. Among these, the transparent metal layer 5 is preferably a layer formed by RF sputtering or counter sputtering. When the transparent metal layer 5 is a layer formed by the RF sputtering method or the counter sputtering method, the transparent metal layer 5 becomes dense and the surface smoothness is likely to be increased. As a result, the surface electrical resistance of the transparent metal layer 5 can be further reduced, and the light transmittance can be improved.
<第2硫化防止層>
 第2高屈折率層3bが硫化亜鉛を含有する場合、図1B又はCに示すように、透明金属層5と第2高屈折率層3bとの間に第2硫化防止層4bが設けられることが好ましい。
 第2硫化防止層4bは、上記第1硫化防止層4aと同様に構成されているため、共通する点について説明を省略し、第1硫化防止層4aと異なっている点についてのみ以下に説明する。
<Second sulfurization prevention layer>
When the second high refractive index layer 3b contains zinc sulfide, as shown in FIG. 1B or C, a second antisulfurization layer 4b is provided between the transparent metal layer 5 and the second high refractive index layer 3b. Is preferred.
Since the second sulfidation preventing layer 4b is configured in the same manner as the first sulfidation preventing layer 4a, description of common points is omitted, and only points different from the first sulfidation preventing layer 4a are described below. .
 第2硫化防止層4bの層厚は、第2高屈折率層3bの形成時の衝撃から、透明金属層5の表面を保護可能な層厚であることが好ましい。透明金属層5に含有される金属と、第2高屈折率層3bに含有され得る硫化亜鉛は、親和性が高い。そのため、第2硫化防止層4bの層厚が非常に薄く、透明金属層5の一部が僅かに露出していると、透明金属層5や第2硫化防止層4bと第2高屈折率層3bとの密着性が高まりやすい。
 したがって、第2硫化防止層4bの具体的な層厚は、0.1~10nmの範囲内であることが好ましく、より好ましくは0.5~5nmの範囲内であり、更に好ましくは1~3nmの範囲内である。第2硫化防止層4bの層厚は、エリプソメーターで測定される。
The layer thickness of the second antisulfurization layer 4b is preferably a layer thickness that can protect the surface of the transparent metal layer 5 from an impact during the formation of the second high refractive index layer 3b. The metal contained in the transparent metal layer 5 and zinc sulfide that can be contained in the second high refractive index layer 3b have high affinity. Therefore, if the thickness of the second antisulfurization layer 4b is very thin and a part of the transparent metal layer 5 is slightly exposed, the transparent metal layer 5, the second antisulfurization layer 4b, and the second high refractive index layer. Adhesion with 3b tends to increase.
Therefore, the specific layer thickness of the second antisulfurization layer 4b is preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably 1 to 3 nm. Is within the range. The layer thickness of the second sulfurization preventing layer 4b is measured with an ellipsometer.
<第2高屈折率層>
 第2高屈折率層3bは、透明金属層5が形成されている領域の光透過性(光学アドミッタンス)を調整するための層である。
 第2高屈折率層3bは、上記第1高屈折率層3aと同様に構成されているため、共通する点について説明を省略し、第1高屈折率層3aと異なっている点についてのみ以下に説明する。
<Second high refractive index layer>
The second high refractive index layer 3b is a layer for adjusting the light transmittance (optical admittance) of the region where the transparent metal layer 5 is formed.
The second high-refractive index layer 3b is configured in the same manner as the first high-refractive index layer 3a. Therefore, description of common points is omitted, and only differences from the first high-refractive index layer 3a are described below. Explained.
 上記したとおり、第2高屈折率層3bには硫化亜鉛が含有されていてもよく、第2高屈折率層3bに硫化亜鉛が含有されていると、透明金属層5への水分の透過を抑制し、透明金属層5の腐食を抑制することができる。 As described above, the second high-refractive index layer 3b may contain zinc sulfide. If the second high-refractive index layer 3b contains zinc sulfide, the second metal layer 5b transmits moisture to the transparent metal layer 5. It is possible to suppress the corrosion of the transparent metal layer 5.
≪透明導電体の物性≫
 本発明に係る透明導電体の波長450~800nmにおける光の平均透過率は、94%以上であることが好ましい。上記波長範囲における平均透過率が94%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。
≪Physical properties of transparent conductor≫
The average transmittance of light at a wavelength of 450 to 800 nm of the transparent conductor according to the present invention is preferably 94% or more. When the average transmittance in the above wavelength range is 94% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400~1000nmにおける光の平均透過率は、85%以上であることが好ましく、より好ましくは88%以上、更に好ましくは90%以上である。波長400~1000nmにおける光の平均透過率が85%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば、太陽電池用の透明導電膜等にも本発明に係る透明導電体を適用することができる。 On the other hand, the average transmittance of light at a wavelength of 400 to 1000 nm of the transparent conductor is preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more. When the average transmittance of light at a wavelength of 400 to 1000 nm is 85% or more, the present invention also relates to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. A transparent conductor can be applied.
 一方、透明導電体の波長400~800nmにおける光の平均吸収率は、10%以下であることが好ましく、より好ましくは8%以下、更に好ましくは7%以下である。
 また、透明導電体の波長450~800nmにおける光の吸収率の最大値は、15%以下であることが好ましく、より好ましくは10%以下、更に好ましくは9%以下である。
 一方、透明導電体の波長500~700nmにおける光の平均反射率は、20%以下であることが好ましく、より好ましくは15%以下、更に好ましくは10%以下である。
 透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。
On the other hand, the average absorptance of light at a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably 7% or less.
Further, the maximum value of the light absorptance at a wavelength of 450 to 800 nm of the transparent conductor is preferably 15% or less, more preferably 10% or less, and further preferably 9% or less.
On the other hand, the average reflectance of light at a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and still more preferably 10% or less.
The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率及び平均反射率は、透明導電体の使用環境下での平均透過率及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わされて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均透過率及び平均反射率を測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。平均透過率及び平均反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定することができる。平均吸収率は、100-(平均透過率+平均反射率)の計算式より算出される。 The average transmittance and the average reflectance are preferably the average transmittance and the average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The average transmittance and average reflectance can be measured with a spectrophotometer by making measurement light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent conductor. The average absorptance is calculated from a calculation formula of 100− (average transmittance + average reflectance).
 また、透明導電体の視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下、更に好ましくは1%以下である。視感反射率は、分光光度計(U4100:日立ハイテクノロジーズ社製)で測定されるY値である。 The luminous reflectance of the transparent conductor is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100: manufactured by Hitachi High-Technologies Corporation).
 また、透明導電体のL表色系におけるa値及びb値は、それぞれ±30以内であることが好ましく、±5.0以内であることがより好ましく、±3.0以内であることが更に好ましく、±2.0以内であることが特に好ましい。L表色系におけるa値及びb値が±30以内であれば、無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 Further, the a * value and b * value in the L * a * b * color system of the transparent conductor are each preferably within ± 30, more preferably within ± 5.0, and ± 3. It is further preferably within 0, and particularly preferably within ± 2.0. When the a * value and b * value in the L * a * b * color system are within ± 30, the color is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の表面電気抵抗値は、50Ω/□以下であることが好ましく、30Ω/□以下であることがより好ましい。透明導電体の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。透明導電体の表面電気抵抗値は、透明金属層の層厚等によって調整される。透明導電体の表面電気抵抗値は、例えば、JIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance value of the transparent conductor is preferably 50Ω / □ or less, and more preferably 30Ω / □ or less. A transparent conductor having a surface electrical resistance value of 50 Ω / □ or less can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the transparent conductor is adjusted by the thickness of the transparent metal layer and the like. The surface electrical resistance value of the transparent conductor is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
≪透明導電体の用途≫
 本発明に係る透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
≪Use of transparent conductor≫
The transparent conductor according to the present invention includes various types of optoelectronics such as liquid crystal, plasma, organic electroluminescence, field emission, various types of displays, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence dimming elements, etc. It can be preferably used for a substrate of a device.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
[実施例1]
 透明基板としての日本ゼオン製シクロオレフィンフィルム「ゼオノアZ14」(厚さ50μm)上に、図7に示される製造装置300を用いて、下記のようにして第1高屈折率層、第1硫化防止層、透明金属層、第2硫化防止層及び第2高屈折率層を形成し、透明導電体101~104を作製し、図6に示される製造装置200(ターゲットとしてはを用いて、下記のようにして第1高屈折率層、第1硫化防止層、透明金属層、第2硫化防止層及び第2高屈折率層を形成し、透明導電体105~108を作製した。なお、製造装置200のターゲットとしては、図4Cに示される分割ターゲットを用いた。
[Example 1]
On the cycloolefin film “ZEONOR Z14” (thickness: 50 μm) made by Nippon Zeon as a transparent substrate, the first high refractive index layer and the first sulfurization prevention are produced as follows using the production apparatus 300 shown in FIG. A transparent metal layer 101, a transparent metal layer, a second anti-sulfurization layer, and a second high-refractive index layer to produce transparent conductors 101 to 104, and the manufacturing apparatus 200 shown in FIG. In this way, the first high refractive index layer, the first antisulfurization layer, the transparent metal layer, the second antisulfurization layer, and the second high refractive index layer were formed, and the transparent conductors 105 to 108 were produced. As the target of 200, the split target shown in FIG. 4C was used.
≪透明導電体の作製≫
(1)透明導電体101の作製
 製造装置300における蒸発源331のターゲット333としてZnS-SiOを用い、蒸発源341のターゲット343としてZnOを用い、蒸発源351のターゲット353としてAgを用い、蒸発源361のターゲット363としてZnOを用い、蒸発源371のターゲット373としてZnS-SiOを用いた。
 透明基板の搬送速度は0.20m/minに設定した。
≪Preparation of transparent conductor≫
(1) Production of Transparent Conductor 101 In the manufacturing apparatus 300, ZnS—SiO 2 is used as the target 333 of the evaporation source 331, ZnO is used as the target 343 of the evaporation source 341, Ag is used as the target 353 of the evaporation source 351, and evaporation is performed. ZnO was used as the target 363 of the source 361, and ZnS—SiO 2 was used as the target 373 of the evaporation source 371.
The conveyance speed of the transparent substrate was set to 0.20 m / min.
(1.1)第1高屈折率層の形成
 透明基盤としての日本ゼオン製シクロオレフィンフィルム「ゼオノアZ14」(厚さ50μm)上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、蒸発源331への投入電力量を10W/cmでZnS-SiOをスパッタして、層厚40.0nmの第1高屈折率層を形成した。
 蒸発源331の透明基板に対向する領域の、基板搬送方向における幅(ターゲット長)は0.20mとした。
(1.1) Formation of First High Refractive Index Layer On a Nippon Zeon cycloolefin film “Zeonor Z14” (thickness 50 μm) as a transparent substrate, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.) Then, ZnS—SiO 2 was sputtered at an electric power input to the evaporation source 331 of 10 W / cm 2 to form a first high refractive index layer having a layer thickness of 40.0 nm.
The width | variety (target length) in the board | substrate conveyance direction of the area | region facing the transparent substrate of the evaporation source 331 was 0.20 m.
(1.2)第1硫化防止層の形成
 第1高屈折率層上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、蒸発源341への投入電力量を1.2W/cmでZnOをスパッタして、層厚2.4nmの第1硫化防止層を形成した。
 蒸発源341のターゲット長は0.20mとした。
(1.2) Formation of first sulfidation prevention layer On the first high refractive index layer, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.), the electric power input to the evaporation source 341 is 1.2 W. ZnO was sputtered at / cm 2 to form a first sulfidation preventive layer having a layer thickness of 2.4 nm.
The target length of the evaporation source 341 was 0.20 m.
(1.3)透明金属層の形成
 第1硫化防止層上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、蒸発源351への投入電力量を0.4W/cmでAgをスパッタして、層厚9.0nmの透明金属層を形成した。
 蒸発源351のターゲット長は0.10mとした。
 なお、透明金属層のターゲット長は、開口制限マスクを用いて制御した。ここでは、開口制限マスクの幅をターゲット長とする。
(1.3) Formation of transparent metal layer On the first antisulfurization layer, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.), the electric power input to the evaporation source 351 is 0.4 W / cm 2. Then, a transparent metal layer having a layer thickness of 9.0 nm was formed by sputtering Ag.
The target length of the evaporation source 351 was 0.10 m.
Note that the target length of the transparent metal layer was controlled using an aperture limiting mask. Here, the width of the aperture limiting mask is the target length.
(1.4)第2硫化防止層、第2高屈折率層の形成
 透明金属層上に、第1硫化防止層、第1高屈折率層と同様にして、蒸発源361及び371により、順次第2硫化防止層、第2高屈折率層を形成し、透明導電体101を作製した。
(1.4) Formation of second anti-sulfurization layer and second high-refractive index layer In the same manner as the first anti-sulfurization layer and the first high-refractive index layer, the evaporation sources 361 and 371 sequentially form the transparent metal layer. The second sulfidation prevention layer and the second high refractive index layer were formed, and the transparent conductor 101 was produced.
(2)透明導電体102の作製
 蒸発源331のターゲット333としてZnSを用い、蒸発源341のターゲット343としてZnOを用い、蒸発源351のターゲット353としてAgを用い、蒸発源361のターゲット363としてZnOを用い、蒸発源371のターゲット373としてZnSを用いた。
 透明基板の搬送速度は0.36m/minに設定した。
(2) Production of Transparent Conductor 102 ZnS is used as the target 333 of the evaporation source 331, ZnO is used as the target 343 of the evaporation source 341, Ag is used as the target 353 of the evaporation source 351, and ZnO is used as the target 363 of the evaporation source 361. ZnS was used as the target 373 of the evaporation source 371.
The conveyance speed of the transparent substrate was set to 0.36 m / min.
(2.1)第1高屈折率層の形成
 透明基盤としての日本ゼオン製シクロオレフィンフィルム「ゼオノアZ14」(厚さ50μm)上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、蒸発源331への投入電力量を10W/cmでZnSをスパッタして、層厚40.0nmの第1高屈折率層を形成した。
 蒸発源331のターゲット長は0.20mとした。
(2.1) Formation of First High Refractive Index Layer On a Nippon Zeon cycloolefin film “Zeonor Z14” (thickness 50 μm) as a transparent substrate, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.) Below, ZnS was sputtered at an electric power input to the evaporation source 331 of 10 W / cm 2 to form a first high refractive index layer having a layer thickness of 40.0 nm.
The target length of the evaporation source 331 was 0.20 m.
(2.2)第1硫化防止層の形成
 第1高屈折率層上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、蒸発源341への投入電力量を1.9W/cmでZnOをスパッタして、層厚2.1nmの第1硫化防止層を形成した。
 蒸発源341のターゲット長は0.20mとした。
(2.2) Formation of first sulfidation prevention layer On the first high refractive index layer, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.), the amount of power supplied to the evaporation source 341 is 1.9 W. ZnO was sputtered at / cm 2 to form a first sulfidation preventing layer having a layer thickness of 2.1 nm.
The target length of the evaporation source 341 was 0.20 m.
(2.3)透明金属層の形成
 第1硫化防止層上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、蒸発源351への投入電力量を0.4W/cmでAgをスパッタして、層厚10.0nmの透明金属層を形成した。
 蒸発源351のターゲット長は0.20mとした。
 なお、透明金属層のターゲット長は、開口制限マスクを用いて制御した。ここでは、開口制限マスクの幅をターゲット長とする。
(2.3) Formation of Transparent Metal Layer On the first antisulfurization layer, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.), the electric power input to the evaporation source 351 is 0.4 W / cm 2. Then, Ag was sputtered to form a transparent metal layer having a layer thickness of 10.0 nm.
The target length of the evaporation source 351 was 0.20 m.
Note that the target length of the transparent metal layer was controlled using an aperture limiting mask. Here, the width of the aperture limiting mask is the target length.
(2.4)第2硫化防止層、第2高屈折率層の形成
 透明金属層上に、第1硫化防止層、第1高屈折率層と同様にして、蒸発源361及び371により、順次第2硫化防止層、第2高屈折率層を形成し、透明導電体102を作製した。
(2.4) Formation of second antisulfurization layer and second high refractive index layer In the same manner as the first antisulfurization layer and the first high refractive index layer, the evaporation sources 361 and 371 sequentially form the transparent metal layer. The second sulfidation prevention layer and the second high refractive index layer were formed, and the transparent conductor 102 was produced.
(3)透明導電体103の作製
 透明導電体101の作製において、第1及び第2硫化防止層形成時における投入電力量、並びに透明金属層形成時における投入電力量及びターゲット長を変更した以外は同様にして、透明導電体103を作製した。
(3) Production of transparent conductor 103 In production of the transparent conductor 101, except that the input power amount at the time of forming the first and second antisulfurization layers, the input power amount at the time of forming the transparent metal layer, and the target length were changed. Similarly, a transparent conductor 103 was produced.
(4)透明導電体104の作製
 透明導電体103の作製において、第1及び第2硫化防止層形成時におけるターゲット長を変更した以外は同様にして、透明導電体104を作製した。
(4) Production of transparent conductor 104 Transparent conductor 104 was produced in the same manner as in production of transparent conductor 103, except that the target length was changed when forming the first and second sulfidation prevention layers.
(5)透明導電体105の作製
 図6で示される製造装置200において、各蒸発源131のターゲット133としてZnS-SiOを用い、蒸発源151の分割ターゲット153aとしてZnO、分割ターゲット153bとしてAg、分割ターゲット153cとしてZnOを用い、各蒸発源171のターゲット173としてZnS-SiOを用いた。
 透明基板の搬送速度は0.40m/minに設定した。
(5) Production of Transparent Conductor 105 In the manufacturing apparatus 200 shown in FIG. 6, ZnS—SiO 2 is used as the target 133 of each evaporation source 131, ZnO is used as the split target 153a of the evaporation source 151, Ag is used as the split target 153b. ZnO was used as the split target 153c, and ZnS—SiO 2 was used as the target 173 of each evaporation source 171.
The conveyance speed of the transparent substrate was set to 0.40 m / min.
(5.1)第1高屈折率層の形成
 透明基盤としての日本ゼオン製シクロオレフィンフィルム「ゼオノアZ14」(厚さ50μm)上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、各蒸発源131への投入電力量を10W/cmでZnS-SiOをスパッタして、層厚40.0nmの第1高屈折率層を形成した。
 蒸発源131のターゲット長は、それぞれ0.40mとした。
(5.1) Formation of First High Refractive Index Layer On a ZEON cycloolefin film “ZEONOR Z14” (thickness 50 μm) as a transparent substrate, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.) Then, ZnS—SiO 2 was sputtered at an electric power input to each evaporation source 131 at 10 W / cm 2 to form a first high refractive index layer having a layer thickness of 40.0 nm.
The target length of the evaporation source 131 was 0.40 m.
(5.2)第1硫化防止層、透明金属層及び第2硫化防止層の形成
 第1高屈折率層上に、Ar40.0sccm、スパッタ圧0.1Pa、室温(25℃)下、蒸発源151への投入電力量を1.9W/cmでAgをスパッタして、層厚0.7nmの第1硫化防止層、層厚8.4nmの透明金属層、及び層厚0.7nmの第2硫化防止層を形成した。
 蒸発源151の第1硫化防止層、透明金属層及び第2硫化防止層に対応した分割ターゲット長は、それぞれ、0.08m、0.04m、0.08mとした。
 なお、第1硫化防止層、透明金属層及び第2硫化防止層のターゲット長は、開口制限マスクを用いて制御した。ここでは、開口制限マスクの幅をターゲット長とする。
(5.2) Formation of first anti-sulfuration layer, transparent metal layer and second anti-sulfur layer On the first high-refractive index layer, Ar 40.0 sccm, sputtering pressure 0.1 Pa, room temperature (25 ° C.), evaporation source 151 is sputtered at an input power amount of 1.9 W / cm 2 to form a first antisulfurization layer having a thickness of 0.7 nm, a transparent metal layer having a thickness of 8.4 nm, and a first metal having a thickness of 0.7 nm. A disulfide prevention layer was formed.
The division target lengths corresponding to the first sulfidation prevention layer, the transparent metal layer, and the second sulfidation prevention layer of the evaporation source 151 were 0.08 m, 0.04 m, and 0.08 m, respectively.
Note that the target lengths of the first anti-sulfuration layer, the transparent metal layer, and the second anti-sulfur layer were controlled using an opening limiting mask. Here, the width of the aperture limiting mask is the target length.
(5.3)第2高屈折率層の形成
 第2硫化防止層上に、第1高屈折率層と同様にして、各蒸発源171により、第2高屈折率層を形成し、透明導電体105を作製した。
(5.3) Formation of Second High Refractive Index Layer A second high refractive index layer is formed on each second antisulfurization layer by the respective evaporation sources 171 in the same manner as the first high refractive index layer. A body 105 was produced.
(6)透明導電体106の作製
 透明導電体105の作製において、蒸発源151への投入電力量を表2に記載のとおりに変更した以外は同様にして、透明導電体106を作製した。
(6) Production of transparent conductor 106 Transparent conductor 106 was produced in the same manner as in production of transparent conductor 105, except that the amount of electric power applied to evaporation source 151 was changed as shown in Table 2.
(7)透明導電体107の作製
 透明導電体106の作製において、蒸発源151の分割ターゲット153a及び153c、並びに第1硫化防止層、透明金属層及び第2硫化防止層に対応したターゲット長を表1及び2に記載のとおりに変更した以外は同様にして、透明導電体107を作製した。
(7) Production of transparent conductor 107 In production of the transparent conductor 106, the target lengths corresponding to the split targets 153a and 153c of the evaporation source 151, the first sulfidation prevention layer, the transparent metal layer, and the second sulfidation prevention layer are shown. A transparent conductor 107 was produced in the same manner except that the changes were made as described in 1 and 2.
(8)透明導電体108の作製
 透明導電体105の作製において、透明基板の搬送速度、並びに蒸発源151の第1硫化防止層、透明金属層及び第2硫化防止層に対応したターゲット長を表1及び2に記載のとおりに変更した以外は同様にして、透明導電体108を作製した。
(8) Production of transparent conductor 108 In production of the transparent conductor 105, the transport speed of the transparent substrate and the target length corresponding to the first sulfidation prevention layer, the transparent metal layer and the second sulfidation prevention layer of the evaporation source 151 are indicated. A transparent conductor 108 was produced in the same manner except that the changes were made as described in 1 and 2.
 なお、透明導電体101~108における各層の層厚は、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。 In addition, the layer thickness of each layer in the transparent conductors 101 to 108 is J.P. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 また、各層形成時における静的形成速度を算出した。
 ここで、静的成膜速度(nm/min)とは、透明基板が成膜源の透明基板に対向する領域上を通過した後に、実際に当該透明基板に成膜された層の層厚をt(nm)とし、透明基板の搬送速度(一定速度)をR(m/min)とし、成膜源の透明基板に対向する領域の基板搬送方向における幅をw(m)としたとき、(t×R)/wで算出される値をいう。なお、成膜用マスクが設けられている場合にあっては、当該成膜用マスクの開口部の基板搬送方向における幅をw(m)とするものとする。また、基板搬送方向とは、成膜源の透明基板に対向する領域面に略平行な方向であって、当該成膜源上を透明基板が搬送される方向に沿った方向である。
Moreover, the static formation speed at the time of forming each layer was calculated.
Here, the static deposition rate (nm / min) is the thickness of the layer actually deposited on the transparent substrate after the transparent substrate passes over the region facing the transparent substrate of the deposition source. When t (nm), the transport speed (constant speed) of the transparent substrate is R (m / min), and the width in the substrate transport direction of the region facing the transparent substrate of the film forming source is w (m), It is a value calculated by t × R) / w. Note that in the case where a film formation mask is provided, the width of the opening of the film formation mask in the substrate transport direction is w (m). The substrate transport direction is a direction substantially parallel to the surface of the film forming source facing the transparent substrate, and is a direction along the direction in which the transparent substrate is transported on the film forming source.
≪透明導電体の評価≫
(1)光の透過率及び吸収率(吸収損失量)の測定
 作製した各透明導電体について、以下のようにして、光の平均透過率、平均反射率及び平均吸収率を測定した。
≪Evaluation of transparent conductor≫
(1) Measurement of light transmittance and absorptance (absorption loss) About each produced transparent conductor, the average transmittance | permeability, average reflectance, and average absorptance of light were measured as follows.
 各透明導電体の第2高屈折率層側の表面に、マッチングオイル(ニコン社製 25℃における屈折率=1.515)を塗布し、透明導電体とコーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))とを貼り合わせた後、無アルカリガラス基板側から、透明導電体の透過率及び反射率を測定した。このとき、無アルカリガラス基板の表面の法線に対して、5°傾けた角度から測定光(波長450~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率(%)及び反射率(%)を測定した。
 平均吸収率は、100-(平均透過率+平均反射率)の計算式より算出した。
 測定結果を表2に示す。
Matching oil (refractive index at 25 ° C. at 25 ° C. = 1.515) manufactured by Nikon Corporation is applied to the surface of each transparent conductor on the second high refractive index layer side, and the transparent conductor and a non-alkali glass substrate (EAGLE XG manufactured by Corning) (Thickness 7 mm × length 30 mm × width 30 mm)), and the transmittance and reflectance of the transparent conductor were measured from the non-alkali glass substrate side. At this time, measurement light (light having a wavelength of 450 to 800 nm) is incident from an angle inclined by 5 ° with respect to the normal line of the surface of the alkali-free glass substrate, and the spectrophotometer U4100 manufactured by Hitachi, Ltd. The transmittance (%) and the reflectance (%) were measured.
The average absorptance was calculated from a calculation formula of 100− (average transmittance + average reflectance).
The measurement results are shown in Table 2.
 なお、透明導電体の平均反射率は、反射率の測定値から、無アルカリガラス基板と大気との界面での反射(4%)、及び透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値とした。
 また、透明導電体の透過率についても、無アルカリガラス基板と大気との界面での反射、及び透明導電体の透明基板と大気との界面での反射を考慮し、透過率の測定値に8%足した値とした。
In addition, the average reflectance of the transparent conductor is the reflection at the interface between the non-alkali glass substrate and the atmosphere (4%), and the reflection at the interface between the transparent substrate of the transparent conductor and the atmosphere. A value obtained by subtracting (4%) was used.
Further, the transmittance of the transparent conductor is 8 in the measured value of the transmittance considering the reflection at the interface between the alkali-free glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere of the transparent conductor. % Was added.
(2)抵抗値の測定
 作製した各透明導電体について、三菱化学アナリテック製のロレスタEP MCP-T360を接触させて、表面電気抵抗値(Ω/□)を測定した。
 測定結果を表2に示す。
(2) Measurement of resistance value About each produced transparent conductor, Loresta EP MCP-T360 made from Mitsubishi Chemical Analytech was contacted, and the surface electrical resistance value (Ω / □) was measured.
The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(3)まとめ
 表2から明らかなように、比較例の透明導電体101は、吸収損失量が多く、光の平均透過率が低くなることがわかった。第1及び第2高屈折率層の材料を変更した比較例の透明導電体102、透明金属層の層厚、第1及び第2硫化防止層の層厚を変更した比較例の透明導電体103及び104においても状況は変わらなかった。
 これに対し、分割ターゲットを用いた本発明の透明導電体105~108では、光の平均透過率、吸収損失量、抵抗値に改善が見られた。
(3) Summary As is clear from Table 2, it was found that the transparent conductor 101 of the comparative example has a large amount of absorption loss and a low average light transmittance. The transparent conductor 102 of the comparative example which changed the material of the 1st and 2nd high refractive index layer, the transparent conductor 103 of the comparative example which changed the layer thickness of the transparent metal layer, and the layer thickness of the 1st and 2nd antisulfation layer And in 104, the situation was unchanged.
On the other hand, in the transparent conductors 105 to 108 of the present invention using the divided target, improvements were observed in the average light transmittance, the amount of absorption loss, and the resistance value.
 以上から、透明基板上に、複数の蒸発源により、薄膜層を形成する複数の成膜工程を有し、少なくとも一つの蒸発源の有するターゲットが、異なる材料からなる少なくとも二つの分割ターゲットから構成されている透明導電体の製造方法が、透明金属層材料の硫化による光透過率の低下を抑制することに有用であることが確認できた。 From the above, it has a plurality of film forming steps for forming a thin film layer on a transparent substrate with a plurality of evaporation sources, and the target of at least one evaporation source is composed of at least two divided targets made of different materials. It was confirmed that the transparent conductor manufacturing method is useful for suppressing a decrease in light transmittance due to sulfidation of the transparent metal layer material.
 本発明は、透明金属層材料の硫化による光透過率の低下を抑制する透明導電体の製造方法を提供することに、特に好適に利用することができる。 The present invention can be particularly suitably used for providing a method for producing a transparent conductor that suppresses a decrease in light transmittance due to sulfidation of a transparent metal layer material.
1 透明導電体
2 透明基板
3a 第1高屈折率層
3b 第2高屈折率層
4a 硫化防止層(第1硫化防止層)
4b 硫化防止層(第2硫化防止層)
5 透明金属層
100 製造装置
110 真空チャンバー
120 巻出し室
130 第1成膜室
131 蒸発源
132 スパッタリングカソード
133 ターゲット
140 第1差圧室
150 第2成膜室
151 蒸発源
152 スパッタリングカソード
153a,153b,153c 分割ターゲット
160 第2差圧室
170 第3成膜室
171 蒸発源
172 スパッタリングカソード
173 ターゲット
180 送出しローラー
181,183 ガイドローラー
182 メインローラー
184 巻取りローラー
190~195 隔壁
196 仕切り板
197 保持軸
200 製造装置
230 第1成膜室
240 第2成膜室
250 第3成膜室
260 第4成膜室
270 第5成膜室
300 製造装置
331,341,351,361,371 蒸発源
333,343,353,363,373 ターゲット
A,B,C,D 曲線
X 搬送方向
DESCRIPTION OF SYMBOLS 1 Transparent conductor 2 Transparent substrate 3a 1st high refractive index layer 3b 2nd high refractive index layer 4a Sulfidation prevention layer (1st sulfurization prevention layer)
4b Anti-sulfur layer (second anti-sulfur layer)
5 transparent metal layer 100 manufacturing apparatus 110 vacuum chamber 120 unwinding chamber 130 first film forming chamber 131 evaporation source 132 sputtering cathode 133 target 140 first differential pressure chamber 150 second film forming chamber 151 evaporation source 152 sputtering cathodes 153a, 153b, 153c Division target 160 Second differential pressure chamber 170 Third film formation chamber 171 Evaporation source 172 Sputtering cathode 173 Target 180 Delivery roller 181, 183 Guide roller 182 Main roller 184 Take-up rollers 190 to 195 Partition 196 Partition plate 197 Holding shaft 200 Manufacturing apparatus 230 First film forming chamber 240 Second film forming chamber 250 Third film forming chamber 260 Fourth film forming chamber 270 Fifth film forming chamber 300 Manufacturing apparatuses 331, 341, 351, 361, 371 Evaporation sources 333, 343 353,3 3,373 targets A, B, C, D curve X conveying direction

Claims (4)

  1.  連続的に搬送される透明基板上に、第1高屈折率層と、透明金属層と、第2高屈折率層とを順次積層し、更に前記第1高屈折率層及び前記第2高屈折率層の少なくとも1層と前記透明金属層との間に硫化防止層を積層する透明導電体の製造方法であって、
     前記透明基板上に、複数の蒸発源により、薄膜層を形成する複数の成膜工程を有し、
     少なくとも一つの前記蒸発源の有するターゲットが、異なる材料からなる少なくとも二つの分割ターゲットから構成されていることを特徴とする透明導電体の製造方法。
    A first high-refractive index layer, a transparent metal layer, and a second high-refractive index layer are sequentially laminated on a transparent substrate that is continuously transported, and further, the first high-refractive index layer and the second high-refractive index layer. A method for producing a transparent conductor, in which an anti-sulfurization layer is laminated between at least one rate layer and the transparent metal layer,
    A plurality of film forming steps for forming a thin film layer on the transparent substrate by a plurality of evaporation sources;
    A method for producing a transparent conductor, wherein the target of at least one of the evaporation sources is composed of at least two divided targets made of different materials.
  2.  前記少なくとも二つの分割ターゲットが、前記硫化防止層の材料である分割ターゲットと、前記透明金属層の材料である分割ターゲットとを含むことを特徴とする請求項1に記載の透明導電体の製造方法。 2. The method of manufacturing a transparent conductor according to claim 1, wherein the at least two divided targets include a divided target that is a material of the anti-sulfurization layer and a divided target that is a material of the transparent metal layer. .
  3.  前記透明金属層の材料である分割ターゲットが、銀又は銀を含む合金であることを特徴とする請求項2に記載の透明導電体の製造方法。 3. The method for producing a transparent conductor according to claim 2, wherein the divided target which is a material of the transparent metal layer is silver or an alloy containing silver.
  4.  前記硫化防止層の材料である分割ターゲットが、Zn若しくはZnを含む金属酸化物、又はGaを含む金属酸化物であることを特徴とする請求項2又は請求項3に記載の透明導電体の製造方法。 4. The transparent conductor according to claim 2, wherein the split target that is a material of the sulfidation prevention layer is Zn, a metal oxide containing Zn, or a metal oxide containing Ga. 5. Method.
PCT/JP2014/079789 2014-03-07 2014-11-11 Method for producing transparent conductor WO2015133007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506078A JPWO2015133007A1 (en) 2014-03-07 2014-11-11 Method for producing transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-044818 2014-03-07
JP2014044818 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133007A1 true WO2015133007A1 (en) 2015-09-11

Family

ID=54054831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079789 WO2015133007A1 (en) 2014-03-07 2014-11-11 Method for producing transparent conductor

Country Status (2)

Country Link
JP (1) JPWO2015133007A1 (en)
WO (1) WO2015133007A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004899A (en) * 2003-06-12 2005-01-06 Fuji Photo Film Co Ltd Magnetic recording medium and its manufacturing method
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004899A (en) * 2003-06-12 2005-01-06 Fuji Photo Film Co Ltd Magnetic recording medium and its manufacturing method
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article

Also Published As

Publication number Publication date
JPWO2015133007A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP2010034577A (en) Electromagnetic wave shielding laminate display employing the same
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
WO2015125512A1 (en) Transparent conductor manufacturing method and transparent conductor manufacturing apparatus
JP6536575B2 (en) Transparent conductor and touch panel
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
WO2015133007A1 (en) Method for producing transparent conductor
WO2015087895A1 (en) Transparent conductive body
JP2016146052A (en) Transparent conductor, and touch panel including the same
WO2014196460A1 (en) Transparent conductor and method for producing same
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member
JP4820738B2 (en) Electromagnetic wave shielding laminate and display device using the same
US11862361B2 (en) Conductive laminate, optical device using same, and production method for conductive laminate
WO2015025525A1 (en) Transparent conductive body
WO2015053371A1 (en) Transparent conductor
WO2015011928A1 (en) Method for producing transparent conductive body
US20230119906A1 (en) Conductive laminate, optical device using same, and method for producing conductive laminate
JP2016044356A (en) Production method of transparent conductive body
JP2016144884A (en) Transparent conductor and touch panel including the same
WO2015111327A1 (en) Transparent conductor
WO2014181538A1 (en) Transparent conductor and method for producing same
JP2016177940A (en) Method for producing transparent conductive body
JPWO2015125677A1 (en) Transparent conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885017

Country of ref document: EP

Kind code of ref document: A1