JP2022064724A - Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer - Google Patents

Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer Download PDF

Info

Publication number
JP2022064724A
JP2022064724A JP2020173519A JP2020173519A JP2022064724A JP 2022064724 A JP2022064724 A JP 2022064724A JP 2020173519 A JP2020173519 A JP 2020173519A JP 2020173519 A JP2020173519 A JP 2020173519A JP 2022064724 A JP2022064724 A JP 2022064724A
Authority
JP
Japan
Prior art keywords
metal layer
metal
less
period
krypton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020173519A
Other languages
Japanese (ja)
Inventor
望 藤野
Nozomi Fujino
泰介 鴉田
Taisuke Karasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2020173519A priority Critical patent/JP2022064724A/en
Priority to CN202180069697.6A priority patent/CN116326230A/en
Priority to KR1020237010194A priority patent/KR20230086668A/en
Priority to PCT/JP2021/030938 priority patent/WO2022080011A1/en
Priority to TW110132216A priority patent/TW202234426A/en
Publication of JP2022064724A publication Critical patent/JP2022064724A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a metal layer having high thermostability; a touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, and image display apparatus, each of which includes the metal layer; and a method for producing a metal layer having high thermostability.SOLUTION: A metal layer 1 includes, as a main component, a metal belonging to period 3 and/or period 4, and also includes a krypton atom and/or a xenon atom.SELECTED DRAWING: Figure 1

Description

本発明は、金属層、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置および金属層の製造方法に関し、詳しくは、金属層、その金属層を備えるタッチセンサ、その金属層を備える調光素子、その金属層を備える光電変換素子、その金属層を備える熱線制御部材、その金属層を備えるアンテナ、その金属層を備える電磁波シールド部材、その金属層を備える画像表示装置、および、金属層の製造方法に関する。 The present invention relates to a metal layer, a touch sensor, a dimming element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shielding member, an image display device, and a method for manufacturing the metal layer. A touch sensor, a dimming element having the metal layer, a photoelectric conversion element having the metal layer, a heat ray control member having the metal layer, an antenna having the metal layer, an electromagnetic wave shielding member having the metal layer, and the metal layer. The present invention relates to an image display device provided and a method for manufacturing a metal layer.

近年、タッチパネルなどの電極部材として、金属層が用いられることが知られている。 In recent years, it is known that a metal layer is used as an electrode member of a touch panel or the like.

このような金属層として、例えば、アルゴンガス存在下で、スパッタリングにより成膜された導電性金属層が提案されている(例えば、特許文献1参照。)。 As such a metal layer, for example, a conductive metal layer formed by sputtering in the presence of argon gas has been proposed (see, for example, Patent Document 1).

特開2012-234796号公報Japanese Unexamined Patent Publication No. 2012-234996

一方、金属層を電極部材に加工する際に、金属層を加熱する場合がある。このような場合には、加熱前後において、金属層の抵抗値の増加を抑制すること(加熱安定性に優れること)が要求される。 On the other hand, when the metal layer is processed into an electrode member, the metal layer may be heated. In such a case, it is required to suppress an increase in the resistance value of the metal layer (excellent in heating stability) before and after heating.

本発明は、加熱安定性に優れる金属層、その金属層を備えるタッチセンサ、その金属層を備える調光素子、その金属層を備える光電変換素子、その金属層を備える熱線制御部材、その金属層を備えるアンテナ、その金属層を備える電磁波シールド部材、その金属層を備える画像表示装置、および、加熱安定性に優れる金属層の製造方法を提供することにある。 The present invention relates to a metal layer having excellent heating stability, a touch sensor having the metal layer, a dimming element having the metal layer, a photoelectric conversion element having the metal layer, a heat ray control member having the metal layer, and the metal layer. It is an object of the present invention to provide an antenna including the above, an electromagnetic wave shielding member including the metal layer thereof, an image display device including the metal layer thereof, and a method for manufacturing the metal layer having excellent heating stability.

本発明[1]は、主成分として、第3周期および/または第4周期に属する金属を含み、かつ、クリプトン原子および/またはキセノン原子を含む、金属層である。 The present invention [1] is a metal layer containing a metal belonging to the 3rd period and / or the 4th period as a main component, and also containing a krypton atom and / or a xenon atom.

本発明[2]は、導電性を有する、上記[1]に記載の金属層を含んでいる。 The present invention [2] includes the metal layer according to the above [1], which has conductivity.

本発明[3]は、パターン形状を有する、上記[1]または[2]に記載の金属層を含んでいる。 The present invention [3] includes the metal layer according to the above [1] or [2], which has a pattern shape.

本発明[4]は、上記[1]~[3]のいずれか一項に記載の金属層を備える、タッチセンサを含んでいる。 The present invention [4] includes a touch sensor including the metal layer according to any one of the above [1] to [3].

本発明[5]は、上記[1]~[3]のいずれか一項に記載の金属層を備える、調光素子を含んでいる。 The present invention [5] includes a dimming element including the metal layer according to any one of the above [1] to [3].

本発明[6]は、上記[1]~[3]のいずれか一項に記載の金属層を備える、光電変換素子を含んでいる。 The present invention [6] includes a photoelectric conversion element including the metal layer according to any one of the above [1] to [3].

本発明[7]は、上記[1]~[3]のいずれか一項に記載の金属層を備える、熱線制御部材を含んでいる。 The present invention [7] includes a heat ray control member including the metal layer according to any one of the above [1] to [3].

本発明[8]は、上記[1]~[3]のいずれか一項に記載の金属層を備える、アンテナを含んでいる。 The present invention [8] includes an antenna including the metal layer according to any one of the above [1] to [3].

本発明[9]は、上記[1]~[3]のいずれか一項に記載の金属層を備える、電磁波シールド部材を含んでいる。 The present invention [9] includes an electromagnetic wave shielding member including the metal layer according to any one of the above [1] to [3].

本発明[10]は、上記[1]~[3]のいずれか一項に記載の金属層を備える、画像表示装置を含んでいる。 The present invention [10] includes an image display device including the metal layer according to any one of the above [1] to [3].

本発明[11]は、クリプトンおよび/またはキセノン存在下において、第3周期および/または第4周期に属する金属をターゲットとするスパッタリング法によって、金属層を形成する、金属層の製造方法である。 The present invention [11] is a method for producing a metal layer in which a metal layer is formed by a sputtering method targeting a metal belonging to the 3rd period and / or the 4th period in the presence of krypton and / or xenon.

本発明の金属層の製造方法は、クリプトンおよび/またはキセノン存在下において、第3周期および/または第4周期に属する金属をターゲットとするスパッタリング法によって、金属層を形成する。 In the method for producing a metal layer of the present invention, a metal layer is formed by a sputtering method targeting a metal belonging to the 3rd period and / or the 4th period in the presence of krypton and / or xenon.

スパッタリング法によって、金属層を形成する場合には、スパッタリングガスに由来する原子が金属層に取り込まれる。 When the metal layer is formed by the sputtering method, atoms derived from the sputtering gas are incorporated into the metal layer.

この方法では、スパッタリングガスとして、アルゴンに代えて、アルゴンよりも原子量の大きいクリプトンおよび/またはキセノンを用いるため、スパッタリングガスに由来する原子(クリプトン原子および/またはキセノン原子)が金属層に取り込まれることを抑制できる。 In this method, since krypton and / or xenon having a larger atomic weight than argon is used as the sputtering gas instead of argon, atoms derived from the sputtering gas (krypton atom and / or xenon atom) are incorporated into the metal layer. Can be suppressed.

これにより、加熱安定性に優れる金属層を製造できる。 This makes it possible to manufacture a metal layer having excellent heating stability.

そのため、本発明の金属層は、加熱安定性に優れる。 Therefore, the metal layer of the present invention is excellent in heating stability.

また、本発明の金属層、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置は、本発明の金属層を備えるため、加熱安定性に優れる。 Further, since the metal layer, the touch sensor, the dimming element, the photoelectric conversion element, the heat ray control member, the antenna, the electromagnetic wave shielding member, and the image display device of the present invention include the metal layer of the present invention, they are excellent in heating stability.

図1は、本発明の金属層の一実施形態を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the metal layer of the present invention. 図2は、本発明の金属層の製造方法の一実施形態を示す概略図であり、図2Aは、基材を準備する工程を示し、図2Bは、スパッタリングガス(クリプトンおよび/またはキセノン)存在下において、第3周期および/または第4周期に属する金属をターゲットとするスパッタリング法によって、基材の厚み方向一方面に、金属層を形成(配置)する工程を示す。FIG. 2 is a schematic view showing an embodiment of the method for producing a metal layer of the present invention, FIG. 2A shows a step of preparing a base material, and FIG. 2B shows the presence of a sputtering gas (krypton and / or xenon). Below, a step of forming (arranging) a metal layer on one surface in the thickness direction of a base material by a sputtering method targeting a metal belonging to the third cycle and / or the fourth cycle is shown. 図3は、図2Bに示す積層体の金属層をパターン化した態様を示す概略図である。FIG. 3 is a schematic view showing an aspect in which the metal layer of the laminate shown in FIG. 2B is patterned.

金属層1は、図1に示すように、所定の厚みを有するフィルム形状(シート形状を含む)を有し、厚み方向と直交する面方向に延び、平坦な上面および平坦な下面を有する。 As shown in FIG. 1, the metal layer 1 has a film shape (including a sheet shape) having a predetermined thickness, extends in a plane direction orthogonal to the thickness direction, and has a flat upper surface and a flat lower surface.

金属層1は、金属と、微量のスパッタリングガスに由来する原子とを含み、好ましくは、金属と、スパッタリングガスに由来する原子とからなる。具体的には、金属層1は、主成分としての金属と、微量成分としてのスパッタリングガスに由来する原子とを含み、好ましくは、金属とスパッタリングガスに由来する原子とからなる。より具体的には、金属層1では、金属マトリックス中に、微量のスパッタリングガスに由来する原子が存在する。 The metal layer 1 contains a metal and an atom derived from a trace amount of sputtering gas, and preferably comprises a metal and an atom derived from the sputtering gas. Specifically, the metal layer 1 contains a metal as a main component and an atom derived from a sputtering gas as a trace component, and is preferably composed of a metal and an atom derived from the sputtering gas. More specifically, in the metal layer 1, atoms derived from a trace amount of sputtering gas are present in the metal matrix.

金属は、主成分として、第3周期および/または第4周期に属する金属を含む。つまり、金属層1は、主成分として、第3周期および/または第4周期に属する金属を含む。 The metal contains, as a main component, a metal belonging to the 3rd period and / or the 4th period. That is, the metal layer 1 contains a metal belonging to the third period and / or the fourth period as a main component.

第3周期に属する金属としては、例えば、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、リン(P)などが挙げられ、好ましくは、アルミニウム(Al)が挙げられる。 Examples of the metal belonging to the third period include magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P) and the like, and aluminum (Al) is preferable.

第4周期に属する金属としては、例えば、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)などが挙げられ、好ましくは、銅(Cu)が挙げられる。 Examples of the metal belonging to the 4th period include titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn). , Gallium (Ga) and the like, preferably copper (Cu) and the like.

第3周期および/または第4周期に属する金属は、単独使用または2種以上併用することができる。 Metals belonging to the 3rd cycle and / or the 4th cycle can be used alone or in combination of two or more.

金属は、副成分として、他の金属を含むこともできる。 The metal may also contain other metals as subcomponents.

他の金属としては、例えば、第5周期に属する金属、第6周期に属する金属などが挙げられる。 Examples of other metals include metals belonging to the 5th period and metals belonging to the 6th period.

第5周期に属する金属としては、例えば、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、インジウム(In)などが挙げられる。 Examples of the metal belonging to the 5th period include zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), and indium (In). And so on.

第6周期に属する金属としては、例えば、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)などが挙げられる。 Examples of the metal belonging to the 6th period include tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au) and the like.

他の金属は、単独使用または2種以上併用することができる。 Other metals can be used alone or in combination of two or more.

金属は、好ましくは、他の金属を含まず、第3周期および/または第4周期に属する金属からなり、より好ましくは、第3周期に属する金属からなるか、または、第4周期に属する金属からなる。 The metal preferably does not contain other metals and consists of a metal belonging to the 3rd and / or 4th period, more preferably a metal belonging to the 3rd period or a metal belonging to the 4th period. Consists of.

スパッタリングガスに由来する原子は、詳しくは後述するが、スパッタリング法によって、金属層1を形成する場合に、金属層1に取り込まれる原子であり、スパッタリングガスに由来する原子として、具体的には、クリプトン原子および/またはキセノン原子が挙げられる。つまり、金属層1は、クリプトン原子および/またはキセノン原子を含む。 The atom derived from the sputtering gas will be described in detail later, but is an atom incorporated into the metal layer 1 when the metal layer 1 is formed by the sputtering method, and as an atom derived from the sputtering gas, specifically, Examples include krypton and / or xenon atoms. That is, the metal layer 1 contains krypton atoms and / or xenon atoms.

スパッタリングガスに由来する原子として、好ましくは、クリプトン原子またはキセノン原子、より好ましくは、クリプトン原子が挙げられる。 As the atom derived from the sputtering gas, a krypton atom or a xenon atom is preferable, and a krypton atom is more preferable.

金属層1におけるスパッタリングガスに由来する原子の含有量は、例えば、0.5原子%以下であり、好ましくは、0.2原子%以下、より好ましくは、0.1原子%以下、さらに好ましくは、0.05原子%以下、とりわけ好ましくは、0.02原子%以下、特に好ましくは、0.01原子%以下である。スパッタリングガスに由来する原子の含有量は、例えば、蛍光X線分析や、実施例に関して後述するラザフォード後方散乱分析(Rutherford Backscattering Spectrometry、 略称RBS)によって同定される。 The content of atoms derived from the sputtering gas in the metal layer 1 is, for example, 0.5 atomic% or less, preferably 0.2 atomic% or less, more preferably 0.1 atomic% or less, still more preferably. , 0.05 atomic% or less, particularly preferably 0.02 atomic% or less, particularly preferably 0.01 atomic% or less. The content of atoms derived from the sputtering gas is identified, for example, by fluorescent X-ray analysis or Rutherford Backscattering Spectrum (abbreviated as RBS), which will be described later with reference to Examples.

上記含有量の下限は、蛍光X線分析装置またはラザフォード後方散乱分析により、クリプトン原子および/またはキセノン原子の存在を確認できたときに対応する割合であり、少なくとも、0.00001原子%以上である。 The lower limit of the content is the corresponding ratio when the presence of krypton atom and / or xenon atom can be confirmed by a fluorescent X-ray analyzer or Rutherford backscatter analysis, and is at least 0.00001 atom% or more. ..

金属層1の厚みは、例えば、10nm以上、好ましくは、30nm以上であり、また、例えば、5000nm以下、好ましくは、1500nm以下、より好ましくは、500nm以下、さらに好ましくは、300nm以下、とりわけ好ましくは、100nm以下である。 The thickness of the metal layer 1 is, for example, 10 nm or more, preferably 30 nm or more, and for example, 5000 nm or less, preferably 1500 nm or less, more preferably 500 nm or less, still more preferably 300 nm or less, particularly preferably. , 100 nm or less.

金属層1の厚みの測定方法は、後述する実施例において詳述する。 The method for measuring the thickness of the metal layer 1 will be described in detail in Examples described later.

次に、金属層1の製造方法について、図2を参照して、説明する。 Next, a method for manufacturing the metal layer 1 will be described with reference to FIG.

この製造方法では、スパッタリングガス(クリプトンおよび/またはキセノン)存在下において、上記金属(主成分として、第3周期および/または第4周期に属する金属を含む金属)をターゲットとするスパッタリング法によって、金属層1を形成する。 In this production method, in the presence of a sputtering gas (krypton and / or xenon), the metal is subjected to a sputtering method targeting the above-mentioned metal (a metal containing a metal belonging to the 3rd cycle and / or the 4th cycle as a main component). Form layer 1.

スパッタリング法によって、金属層1を形成するには、まず、図2Aに示すように、基材2を準備する。 To form the metal layer 1 by the sputtering method, first, the base material 2 is prepared as shown in FIG. 2A.

基材2は、フィルム形状を有する。 The base material 2 has a film shape.

基材2としては、例えば、可撓性の観点から、高分子フィルムが挙げられる。高分子フィルムの材料としては、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーなどのオレフィン樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂などが挙げられ、好ましくは、ポリエステル樹脂、より好ましくは、ポリエチレンテレフタレート(PET)が挙げられる。 Examples of the base material 2 include a polymer film from the viewpoint of flexibility. Examples of the material of the polymer film include olefin resins such as polyethylene, polypropylene, and cycloolefin polymers, for example, polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, and (meta) such as polymethacrylate. ) Acrylic resin (acrylic resin and / or methacrylic resin), for example, polycarbonate resin, polyether sulphon resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, polystyrene resin and the like, preferably polyester. Resin, more preferably polyethylene terephthalate (PET) can be mentioned.

基材2の厚みは、例えば、1μm以上、好ましくは、10μm以上、好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、100μm以下、さらに好ましくは、60μm以下である。 The thickness of the base material 2 is, for example, 1 μm or more, preferably 10 μm or more, preferably 30 μm or more, and for example, 300 μm or less, preferably 200 μm or less, more preferably 100 μm or less, still more preferably. It is 60 μm or less.

基材2の厚みは、ダイヤルゲージ(PEACOCK社製、「DG-205」)を用いて測定できる。 The thickness of the base material 2 can be measured using a dial gauge (manufactured by PEACOCK, "DG-205").

また、基材2には、必要により、耐擦傷性を付与する観点から、ハードコート処理などの表面処理を施すことができる。 Further, if necessary, the base material 2 can be subjected to a surface treatment such as a hard coat treatment from the viewpoint of imparting scratch resistance.

次いで、図2Bに示すように、スパッタリングガス(クリプトンおよび/またはキセノン)存在下において、上記金属をターゲットとするスパッタリング法によって、基材2の厚み方向一方面に、金属層1を形成(配置)する。 Next, as shown in FIG. 2B, the metal layer 1 is formed (arranged) on one surface in the thickness direction of the base material 2 by a sputtering method targeting the metal in the presence of a sputtering gas (krypton and / or xenon). do.

具体的には、スパッタリング装置において、基材2を成膜ロールの周面に沿って搬送しつつ、上記金属からなるターゲットに、基材2の厚み方向一方面を対向させながら、スパッタリングガス(好ましくは、クリプトンまたはキセノン、より好ましくは、クリプトン)の存在下、スパッタリングする。 Specifically, in the sputtering apparatus, while transporting the base material 2 along the peripheral surface of the film forming roll and facing the target made of the metal with one surface in the thickness direction of the base material 2, the sputtering gas (preferably). Sputters in the presence of krypton or xenon, more preferably krypton).

スパッタリングとしては、例えば、2極スパッタリング法、ECR(電子サイクロトロン共鳴)スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法などが挙げられる。 Examples of the sputtering include a bipolar sputtering method, an ECR (electron cyclotron resonance) sputtering method, a magnetron sputtering method, and an ion beam sputtering method.

また、スパッタリングにおいて、クリプトンおよび/またはキセノン以外に、例えば、酸素などの反応性ガスを存在させることもできる。 Further, in sputtering, in addition to krypton and / or xenon, a reactive gas such as oxygen can be present.

スパッタリング装置内におけるクリプトンおよび/またはキセノンの分圧は、例えば、0.01Pa以上、好ましくは、0.1Pa以上、より好ましくは、0.3Pa以上であり、また、例えば、10Pa以下、好ましくは、5Pa以下、より好ましくは、1Pa以下である。 The partial pressure of krypton and / or xenon in the sputtering apparatus is, for example, 0.01 Pa or more, preferably 0.1 Pa or more, more preferably 0.3 Pa or more, and for example, 10 Pa or less, preferably 10 Pa or more. It is 5 Pa or less, more preferably 1 Pa or less.

スパッタリング装置内における圧力(成膜圧力)は、クリプトンおよび/またはキセノンの分圧、および、反応性ガスの分圧の合計圧力であり、例えば、0.1Pa以上、好ましくは、0.3Pa以上であり、また、例えば、15Pa以下、好ましくは、10Pa以下、より好ましくは、5Pa以下、さらに好ましくは、1Pa以下、とりわけ好ましくは、0.5Pa以下である。 The pressure (deposition pressure) in the sputtering apparatus is the total pressure of the partial pressure of krypton and / or xenon and the partial pressure of the reactive gas, and is, for example, 0.1 Pa or more, preferably 0.3 Pa or more. Also, for example, it is 15 Pa or less, preferably 10 Pa or less, more preferably 5 Pa or less, still more preferably 1 Pa or less, and particularly preferably 0.5 Pa or less.

また、スパッタリングに用いる電源としては、例えば、直流(DC)電源、交流中周波(AC/MF)電源、高周波(RF)電源、直流電源を重畳した高周波電源が挙げられ、好ましくは、直流(DC)電源が挙げられる。 Examples of the power source used for sputtering include a direct current (DC) power source, an alternating current medium frequency (AC / MF) power source, a high frequency (RF) power source, and a high frequency power source on which a direct current power source is superimposed, and a direct current (DC) power source is preferable. ) Power supply is mentioned.

ターゲット表面の水平磁場の強度は、例えば、10mT以上、好ましくは、20mT以上であり、また、例えば、200mT以下、好ましくは、100mT以下である。ターゲット表面の水平磁場の強度を前記範囲に調整することにより、金属層1におけるスパッタリングガスの原子含有量を調整することができる。 The strength of the horizontal magnetic field on the target surface is, for example, 10 mT or more, preferably 20 mT or more, and for example, 200 mT or less, preferably 100 mT or less. By adjusting the strength of the horizontal magnetic field on the target surface to the above range, the atomic content of the sputtering gas in the metal layer 1 can be adjusted.

成膜ロールの温度は、例えば、-30℃以上、好ましくは、-10℃以上であり、また、例えば、180℃以下、好ましくは、90℃以下、より好ましくは、60℃以下、さらに好ましくは、40℃以下、とりわけ好ましくは、10℃未満である。 The temperature of the film forming roll is, for example, −30 ° C. or higher, preferably −10 ° C. or higher, and for example, 180 ° C. or lower, preferably 90 ° C. or lower, more preferably 60 ° C. or lower, still more preferably. , 40 ° C or lower, particularly preferably less than 10 ° C.

上記のスパッタリングにより、金属層1が、基材2の厚み方向一方面に形成(配置)される。これにより、金属層1が得られるとともに、基材2と金属層1とを厚み方向一方側に向かって順に備える積層体3が得られる。 By the above sputtering, the metal layer 1 is formed (arranged) on one surface of the base material 2 in the thickness direction. As a result, the metal layer 1 is obtained, and the laminated body 3 in which the base material 2 and the metal layer 1 are sequentially provided toward one side in the thickness direction is obtained.

そして、このような金属層1は、導電性を有する。 And such a metal layer 1 has conductivity.

金属層1が、導電性を有すると、後述するタッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置などに備えられる電極部材として、好適に用いることができる。 When the metal layer 1 has conductivity, it can be suitably used as an electrode member provided in a touch sensor, a dimming element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shielding member, an image display device, etc., which will be described later. can.

詳しくは、金属層1の表面抵抗値は、金属が銅(Cu)からなる場合には、例えば、5Ω/□以下、好ましくは、0.5Ω/□以下、より好ましくは、0.35Ω/□以下、さらに好ましくは、0.30Ω/□以下、ことさらに好ましくは、0.23Ω/□以下であり、また、通常、0.001Ω/□超過、また、0.01Ω/□以上、好ましくは、0.1Ω/□以上である。 Specifically, the surface resistance value of the metal layer 1 is, for example, 5Ω / □ or less, preferably 0.5Ω / □ or less, more preferably 0.35Ω / □ when the metal is made of copper (Cu). Below, it is more preferably 0.30 Ω / □ or less, more preferably 0.23 Ω / □ or less, and usually 0.001 Ω / □ or more, and 0.01 Ω / □ or more, preferably 0.01 Ω / □ or more. It is 0.1Ω / □ or more.

また、金属層1の表面抵抗値は、金属がアルミニウム(Al)からなる場合には、例えば、10Ω/□以下、好ましくは、5.00Ω/□以下、より好ましくは、2.00Ω/□以下、さらに好ましくは、1.70Ω/□以下であり、また、通常、0.001Ω/□超過、また、0.1Ω/□以上、好ましくは、1.00Ω/□以上である。 When the metal is made of aluminum (Al), the surface resistance value of the metal layer 1 is, for example, 10 Ω / □ or less, preferably 5.00 Ω / □ or less, and more preferably 2.00 Ω / □ or less. It is more preferably 1.70 Ω / □ or less, and usually exceeds 0.001 Ω / □, and is 0.1 Ω / □ or more, preferably 1.00 Ω / □ or more.

なお、表面抵抗値は、JIS K7194に準拠して、4端子法により測定できる。 The surface resistance value can be measured by the 4-terminal method in accordance with JIS K7194.

また、金属層1の比抵抗は、金属が銅(Cu)からなる場合には、例えば、10×10-6Ω・cm以下、好ましくは、2.50×10-6Ω・cm以下、より好ましくは、2.40×10-6Ω・cm以下、さらに好ましくは、2.30×10-6Ω・cm以下、とりわけ好ましくは、2.05×10-6Ω・cm以下であり、また、例えば、0.10×10-6Ω・cm以上である。 When the metal is made of copper (Cu), the resistivity of the metal layer 1 is, for example, 10 × 10 -6 Ω · cm or less, preferably 2.50 × 10 -6 Ω · cm or less. It is preferably 2.40 × 10 -6 Ω · cm or less, more preferably 2.30 × 10 -6 Ω · cm or less, and particularly preferably 2.05 × 10 -6 Ω · cm or less, and also. For example, 0.10 × 10 -6 Ω · cm or more.

また、金属層1の比抵抗は、金属がアルミニウム(Al)からなる場合には、例えば、20×10-6Ω・cm以下、好ましくは、9.0×10-6Ω・cm以下、より好ましくは、7.0×10-6Ω・cm以下であり、また、例えば、0.10×10-6Ω・cm以上、好ましくは、1.0×10-6Ω・cm以上である。 When the metal is made of aluminum (Al), the resistivity of the metal layer 1 is, for example, 20 × 10 -6 Ω · cm or less, preferably 9.0 × 10 -6 Ω · cm or less. It is preferably 7.0 × 10 -6 Ω · cm or less, and is, for example, 0.10 × 10 -6 Ω · cm or more, preferably 1.0 × 10 -6 Ω · cm or more.

なお、比抵抗は、JIS K7194に準拠して、4端子法により求めた表面抵抗値と、金属層1の厚みとを用いて、下記式(1)に基づき、算出できる。 The resistivity can be calculated based on the following equation (1) using the surface resistivity value obtained by the 4-terminal method and the thickness of the metal layer 1 in accordance with JIS K7194.

金属層1の比抵抗=金属層1の厚み×金属層1の表面抵抗値 (1)
また、上記のスパッタリング法によって、金属層1を製造すると、スパッタリングガスに由来する原子が金属層1に取り込まれる。
Specific resistance of metal layer 1 = thickness of metal layer 1 x surface resistance value of metal layer 1 (1)
Further, when the metal layer 1 is manufactured by the above sputtering method, atoms derived from the sputtering gas are incorporated into the metal layer 1.

しかし、この方法では、スパッタリングガスとして、通常用いられるアルゴンに代えて、アルゴンよりも原子量の大きいクリプトンおよび/またはキセノンを用いるため、スパッタリングガスに由来する原子が金属層1に取り込まれることを抑制できる。 However, in this method, since krypton and / or xenon having a larger atomic weight than argon is used as the sputtering gas instead of the commonly used argon, it is possible to suppress the incorporation of atoms derived from the sputtering gas into the metal layer 1. ..

つまり、このような金属層1は、クリプトン原子および/またはキセノン原子を含むものの、上記したように、クリプトン原子および/またはキセノン原子が取り込まれている量は抑制されているため、この金属層1は、加熱前後において、抵抗値の増加を抑制できる(換言すれば、この金属層1は、加熱安定性に優れる。)。 That is, although such a metal layer 1 contains a krypton atom and / or a xenon atom, as described above, the amount of the krypton atom and / or the xenon atom incorporated is suppressed, so that the metal layer 1 is suppressed. Can suppress an increase in the resistance value before and after heating (in other words, this metal layer 1 is excellent in heating stability).

また、このような金属層1は、主成分として、第3周期および/または第4周期に属する金属を含みながら、上記したように、加熱安定性に優れる。つまり、この方法によれば、例えば、金(Au)(第6周期に属する金属)などの高価な金属を主成分としなくても、加熱安定性に優れる金属層1を製造できる。そのため、工業生産性に優れる。 Further, such a metal layer 1 is excellent in heating stability as described above, while containing a metal belonging to the 3rd cycle and / or the 4th cycle as a main component. That is, according to this method, the metal layer 1 having excellent heating stability can be manufactured without using an expensive metal such as gold (Au) (a metal belonging to the 6th period) as a main component. Therefore, it is excellent in industrial productivity.

金属層1は、基材2とは反対の側に、金属層1と隣接する樹脂層(図示しない)を備えていても良い。樹脂層は、例えば、金属層1と他の部材とを貼り合せるための接着層や粘着層であり、また、例えば、金属層1を保護するコート層である。樹脂層の材料に限定はなく、アクリル樹脂などの公知の樹脂を用いることができる。また、樹脂層には、紫外線吸収剤や腐食防止剤を含有していても良い。紫外線吸収剤や腐食防止剤の材料に限定はないが、たとえな、特開2015-022397に開示されるベンゾトリアゾール系化合物などが挙げられる。 The metal layer 1 may be provided with a resin layer (not shown) adjacent to the metal layer 1 on the side opposite to the base material 2. The resin layer is, for example, an adhesive layer or an adhesive layer for adhering the metal layer 1 to another member, and is, for example, a coat layer for protecting the metal layer 1. The material of the resin layer is not limited, and a known resin such as an acrylic resin can be used. Further, the resin layer may contain an ultraviolet absorber or a corrosion inhibitor. The material of the ultraviolet absorber and the corrosion inhibitor is not limited, and examples thereof include benzotriazole compounds disclosed in Japanese Patent Application Laid-Open No. 2015-0222397.

また、図3に示すように、積層体3において、金属層1をパターン化することもできる。つまり、金属層1は、パターン形状を有する。 Further, as shown in FIG. 3, the metal layer 1 can be patterned in the laminated body 3. That is, the metal layer 1 has a pattern shape.

金属層1をパターン化するには、例えば、金属層1を、エッチングする。これによって、積層体3は、金属層1を有するパターン部4と、金属層1を有していない非パターン部5とを有する。積層体3は、パターン部4と非パターン部5の上面に、樹脂層(図示しない)を備えていても良い。樹脂層は、例えば、積層体3と他の部材とを貼り合せるための接着層や粘着層であり、また、例えば、積層体3のパターン部4を保護するコート層である。また、樹脂層には、紫外線吸収剤や腐食防止剤、マイグレーション防止剤を含有していても良く、例えば、特開2015-022397に開示されるベンゾトリアゾール系化合物などを含有することができる。 To pattern the metal layer 1, for example, the metal layer 1 is etched. As a result, the laminated body 3 has a pattern portion 4 having the metal layer 1 and a non-pattern portion 5 having no metal layer 1. The laminated body 3 may be provided with a resin layer (not shown) on the upper surfaces of the pattern portion 4 and the non-pattern portion 5. The resin layer is, for example, an adhesive layer or an adhesive layer for bonding the laminated body 3 and another member, and is, for example, a coat layer that protects the pattern portion 4 of the laminated body 3. Further, the resin layer may contain an ultraviolet absorber, a corrosion inhibitor, and a migration inhibitor, and may contain, for example, a benzotriazole-based compound disclosed in JP-A-2015-0222397.

そして、この金属層1は、種々の用途に用いられ、例えば、タッチセンサ、調光素子(PDLC、PNLCやSPDなどの電圧駆動型調光素子やエレクトロクロミック(EC)などの電流駆動型調光素子)、光電変換素子(有機薄膜太陽電池や色素増感太陽電池に代表される太陽電池素子)、熱線制御部材(近赤外反射および/または吸収部材や遠赤外反射および/または吸収部材)、アンテナ(光透過性アンテナ)、電磁波シールド部材、ヒーター部材、画像表示装置などに備えられる電極部材として好適に用いられる。 The metal layer 1 is used for various purposes, for example, a touch sensor, a dimming element (voltage-driven dimming element such as PDLC, PNLC or SPD, current-driven dimming such as electrochromic (EC)). Elements), photoelectric conversion elements (solar cell elements typified by organic thin-film solar cells and dye-sensitized solar cells), heat ray control members (near-infrared reflection and / or absorption members, far-infrared reflection and / or absorption members) , An antenna (light transmissive antenna), an electromagnetic wave shielding member, a heater member, an electrode member provided in an image display device and the like.

このようなタッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、ヒーター部材、および、画像表示装置は、本発明の金属層1を備えるため、加熱安定性に優れる。 Since such a touch sensor, a dimming element, a photoelectric conversion element, a heat ray control member, an antenna, an electromagnetic wave shielding member, a heater member, and an image display device include the metal layer 1 of the present invention, they are excellent in heating stability.

以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、以下の記載において特に言及がない限り、「部」および「%」は質量基準である。 Specific numerical values such as the compounding ratio (content ratio), physical property values, parameters, etc. used in the following description are the compounding ratios (content ratios) corresponding to those described in the above-mentioned "Mode for carrying out the invention". ), Physical property values, parameters, etc. can be replaced with the upper limit value (value defined as "less than or equal to" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess"). can. In addition, unless otherwise specified in the following description, "part" and "%" are based on mass.

1.金属層の製造
実施例1
PETフィルムロール(東レ社製、厚み50μm)からなる基材の厚み方向一方面に、アクリル樹脂からなる紫外線硬化性樹脂を塗布し、紫外線照射により硬化させた。これにより、厚み2μmのハードコート層を形成し、基材を準備した。
1. 1. Production of metal layer Example 1
An ultraviolet curable resin made of an acrylic resin was applied to one surface in the thickness direction of a base material made of a PET film roll (manufactured by Toray Industries, Inc., thickness 50 μm) and cured by ultraviolet irradiation. As a result, a hard coat layer having a thickness of 2 μm was formed, and a base material was prepared.

この基材を、真空スパッタ装置に設置して、到達真空度が0.9×10-4Paとなるよう十分に真空排気し、基材を脱ガス処理した。その後、基材を成膜ロールに沿うように搬送しながら、クリプトン原子(スパッタリングガス)が存在する低圧環境下において、銅(Cu)をターゲットとするスパッタリング法によって、基材の厚み方向一方面に、厚み70nmの金属層を形成(配置)した。これにより、金属層を製造した。なお、スパッタリングの条件は、以下の通りである。
<スパッタリングの条件>
電源:DC電源
ターゲットの水平磁場強度:90mT
成膜気圧:0.4Pa
成膜ロール温度:-8℃
This base material was placed in a vacuum sputtering apparatus and sufficiently evacuated so that the ultimate vacuum degree was 0.9 × 10 -4 Pa, and the base material was degassed. Then, while transporting the base material along the film forming roll, in a low pressure environment in which krypton atoms (sputtering gas) are present, a sputtering method targeting copper (Cu) is performed on one side of the base material in the thickness direction. , A metal layer having a thickness of 70 nm was formed (arranged). As a result, a metal layer was manufactured. The sputtering conditions are as follows.
<Sputtering conditions>
Power supply: DC power supply Target horizontal magnetic field strength: 90mT
Film formation pressure: 0.4 Pa
Film formation roll temperature: -8 ° C

実施例2
金属層の厚みを87nmに変更した以外は、実施例1と同様にして、金属層を製造した。
Example 2
A metal layer was produced in the same manner as in Example 1 except that the thickness of the metal layer was changed to 87 nm.

実施例3
ターゲットをアルミニウム(Al)に変更し、ターゲットの水平磁場強度を50mTに変更した以外は、実施例1と同様にして、金属層を製造した。
Example 3
A metal layer was produced in the same manner as in Example 1 except that the target was changed to aluminum (Al) and the horizontal magnetic field strength of the target was changed to 50 mT.

比較例1
スパッタリングガスをアルゴンガスに変更した以外は、実施例1と同様にして、金属層を製造した。
Comparative Example 1
A metal layer was produced in the same manner as in Example 1 except that the sputtering gas was changed to argon gas.

比較例2
スパッタリングガスをアルゴンガスに変更した以外は、実施例2と同様にして、金属層を製造した。
Comparative Example 2
A metal layer was produced in the same manner as in Example 2 except that the sputtering gas was changed to argon gas.

比較例3
スパッタリングガスをアルゴンガスに変更した以外は、実施例3と同様にして、金属層を製造した。
Comparative Example 3
A metal layer was produced in the same manner as in Example 3 except that the sputtering gas was changed to argon gas.

2.評価
<金属層の厚み>
各実施例および各比較例の金属層について、FIBマイクロサンプリング法により、FIB装置(Hitachi製、「FB2200」、加速電圧:10kV)を用いて、TEM用断面試料を作製した。次いで、電界放射型透過電子顕微鏡(FE-TEM、JOEL社製、「JEM-2800」、加速電圧:200kV)を用いて断面観察して、金属層の厚みを測定した。その結果を表1に示す。
2. 2. Evaluation <Thickness of metal layer>
For each of the metal layers of each example and each comparative example, a cross-sectional sample for TEM was prepared by a FIB microsampling method using a FIB device (manufactured by Hitachi, "FB2200", acceleration voltage: 10 kV). Next, the thickness of the metal layer was measured by observing the cross section using a field emission transmission electron microscope (FE-TEM, manufactured by JOEL, "JEM-2800", acceleration voltage: 200 kV). The results are shown in Table 1.

<表面抵抗値の測定>
各実施例および各比較例の金属層について、JIS K7194に準拠して、4端子法により、表面抵抗値(以下、表面抵抗値Aと称する。)を測定した。その結果を表1に示す。
<Measurement of surface resistance value>
The surface resistance value (hereinafter referred to as surface resistance value A) of each of the metal layers of each example and each comparative example was measured by a four-terminal method in accordance with JIS K7194. The results are shown in Table 1.

次いで、各実施例および各比較例の金属層を、80℃、3時間加熱し、同様の方法で、表面抵抗値(以下、表面抵抗値Bと称する。)を測定した。その結果を表1に示す。 Next, the metal layers of each Example and each Comparative Example were heated at 80 ° C. for 3 hours, and the surface resistance value (hereinafter referred to as surface resistance value B) was measured by the same method. The results are shown in Table 1.

別途、各実施例および各比較例の金属層を、140℃、1時間加熱し、同様の方法で、表面抵抗値(以下、表面抵抗値Cと称する。)を測定した。その結果を表1に示す。
<加熱安定性>
各実施例および各比較例の金属層について、加熱安定性を評価した。
Separately, the metal layers of each Example and each Comparative Example were heated at 140 ° C. for 1 hour, and the surface resistance value (hereinafter referred to as surface resistance value C) was measured by the same method. The results are shown in Table 1.
<Heating stability>
The heating stability was evaluated for the metal layers of each Example and each Comparative Example.

具体的には、下記式(2)および下記式(3)に基づき、抵抗変化の比(B/A)および抵抗変化の比(C/A)を算出した。 Specifically, the ratio of resistance change (B / A) and the ratio of resistance change (C / A) were calculated based on the following formulas (2) and (3).

抵抗変化の比(B/A)=表面抵抗値B/表面抵抗値A (2)
抵抗変化の比(C/A)=表面抵抗値C/表面抵抗値A (3)
抵抗変化の比(B/A)および抵抗変化の比(C/A)は、加熱前の表面抵抗値に対する加熱後の表面抵抗値の変化を示しており、抵抗変化の比(B/A)および抵抗変化の比(C/A)が小さければ、加熱前後において、金属層の抵抗値の増加を抑制できること(加熱安定性に優れること)を意味する。
Ratio of resistance change (B / A) = surface resistance value B / surface resistance value A (2)
Ratio of resistance change (C / A) = surface resistance value C / surface resistance value A (3)
The resistance change ratio (B / A) and the resistance change ratio (C / A) indicate the change in the surface resistance value after heating with respect to the surface resistance value before heating, and the resistance change ratio (B / A). And if the ratio of resistance change (C / A) is small, it means that the increase in the resistance value of the metal layer can be suppressed before and after heating (excellent in heating stability).

<比抵抗の測定>
各実施例および各比較例の金属層について、下記式(4)に基づき、比抵抗を算出した。
<Measurement of resistivity>
The specific resistance of each of the metal layers of each example and each comparative example was calculated based on the following formula (4).

金属層の比抵抗=金属層の厚み×金属層の表面抵抗値A (4)
<クリプトン原子およびアルゴン原子の同定>
各実施例および各比較例の金属層に含有されるクリプトン原子およびアルゴン原子の存否を、ラザフォード後方散乱分光法(RBS)によって分析した。検出元素である、金属元素(CuもしくはAl)、Ar、Krの3元素に関して、元素比率を求めることにより、金属層におけるクリプトン原子またはアルゴン原子の存否を求めた。評価の結果、実施例1~3の金属層についてはクリプトン原子が、また、比較例1~3の金属層についてはアルゴン原子が、含有されていることを確認した。
<使用装置>
Pelletron 3SDH(National Electrostatics Corporation製)
<測定条件>
入射イオン:4He++
入射エネルギー:2300keV
入射角:0deg
散乱角:160deg
試料電流:5nA
ビーム径:2mmφ
面内回転:無
照射量:75μC
Specific resistance of metal layer = thickness of metal layer x surface resistance value of metal layer A (4)
<Identification of krypton atom and argon atom>
The presence or absence of krypton and argon atoms contained in the metal layers of each example and each comparative example was analyzed by Rutherford Backscattering Spectroscopy (RBS). The presence or absence of a krypton atom or an argon atom in the metal layer was determined by determining the element ratio for the three elements of the detection element, the metal element (Cu or Al), Ar, and Kr. As a result of the evaluation, it was confirmed that the metal layers of Examples 1 to 3 contained krypton atoms, and the metal layers of Comparative Examples 1 to 3 contained argon atoms.
<Device used>
Pelletron 3SDH (manufactured by National Electricals Corporation)
<Measurement conditions>
Incident ion: 4He ++
Incident energy: 2300 keV
Incident angle: 0 deg
Scattering angle: 160deg
Sample current: 5nA
Beam diameter: 2 mmφ
In-plane rotation: No irradiation amount: 75 μC

3.考察
実施例1および比較例1では、スパッタリングガスが異なる以外、同様の手順で、金属層を製造している。
3. 3. Discussion In Example 1 and Comparative Example 1, the metal layer is manufactured by the same procedure except that the sputtering gas is different.

スパッタリングガスとして、クリプトンを用いる実施例1は、アルゴンを用いる比較例1に比べて、抵抗変化の比(B/A)および抵抗変化の比(C/A)が小さい。 Example 1 in which krypton is used as the sputtering gas has a smaller resistance change ratio (B / A) and resistance change ratio (C / A) than Comparative Example 1 in which argon is used.

このことから、スパッタリングガスとして、クリプトンを用いれば、加熱安定性に優れることがわかる。 From this, it can be seen that if krypton is used as the sputtering gas, the heating stability is excellent.

また、このことは、実施例2と比較例2との比較、および、実施例3と比較例3との比較においても同様である。 This also applies to the comparison between Example 2 and Comparative Example 2 and the comparison between Example 3 and Comparative Example 3.

Figure 2022064724000002
Figure 2022064724000002

1 金属層 1 Metal layer

Claims (11)

主成分として、第3周期および/または第4周期に属する金属を含み、かつ、
クリプトン原子および/またはキセノン原子を含むことを特徴とする、金属層。
As a main component, it contains a metal belonging to the 3rd period and / or the 4th period, and
A metal layer comprising a krypton atom and / or a xenon atom.
導電性を有することを特徴とする、請求項1に記載の金属層。 The metal layer according to claim 1, wherein the metal layer has conductivity. パターン形状を有することを特徴とする、請求項1または2に記載の金属層。 The metal layer according to claim 1 or 2, characterized in that it has a pattern shape. 請求項1~3のいずれか一項に記載の金属層を備えることを特徴とする、タッチセンサ。 A touch sensor comprising the metal layer according to any one of claims 1 to 3. 請求項1~3のいずれか一項に記載の金属層を備えることを特徴とする、調光素子。 A dimming element comprising the metal layer according to any one of claims 1 to 3. 請求項1~3のいずれか一項に記載の金属層を備えることを特徴とする、光電変換素子。 A photoelectric conversion element comprising the metal layer according to any one of claims 1 to 3. 請求項1~3のいずれか一項に記載の金属層を備えることを特徴とする、熱線制御部材。 A heat ray control member comprising the metal layer according to any one of claims 1 to 3. 請求項1~3のいずれか一項に記載の金属層を備えることを特徴とする、アンテナ。 An antenna comprising the metal layer according to any one of claims 1 to 3. 請求項1~3のいずれか一項に記載の金属層を備えることを特徴とする、電磁波シールド部材。 An electromagnetic wave shielding member comprising the metal layer according to any one of claims 1 to 3. 請求項1~3のいずれか一項に記載の金属層を備えることを特徴とする、画像表示装置。 An image display device comprising the metal layer according to any one of claims 1 to 3. クリプトンおよび/またはキセノン存在下において、第3周期および/または第4周期に属する金属をターゲットとするスパッタリング法によって、金属層を形成することを特徴とする、金属層の製造方法。 A method for producing a metal layer, which comprises forming a metal layer by a sputtering method targeting a metal belonging to the 3rd period and / or the 4th period in the presence of krypton and / or xenon.
JP2020173519A 2020-10-14 2020-10-14 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer Pending JP2022064724A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020173519A JP2022064724A (en) 2020-10-14 2020-10-14 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer
CN202180069697.6A CN116326230A (en) 2020-10-14 2021-08-24 Metal layer, contact sensor, light control element, photoelectric conversion element, heat ray control member, antenna, electromagnetic wave shielding member, image display device, and method for manufacturing metal layer
KR1020237010194A KR20230086668A (en) 2020-10-14 2021-08-24 Metal layer, touch sensor, light control element, photoelectric conversion element, heat wire control member, antenna, electromagnetic shield member, image display device, and manufacturing method of metal layer
PCT/JP2021/030938 WO2022080011A1 (en) 2020-10-14 2021-08-24 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer
TW110132216A TW202234426A (en) 2020-10-14 2021-08-31 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173519A JP2022064724A (en) 2020-10-14 2020-10-14 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer

Publications (1)

Publication Number Publication Date
JP2022064724A true JP2022064724A (en) 2022-04-26

Family

ID=81208300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173519A Pending JP2022064724A (en) 2020-10-14 2020-10-14 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer

Country Status (5)

Country Link
JP (1) JP2022064724A (en)
KR (1) KR20230086668A (en)
CN (1) CN116326230A (en)
TW (1) TW202234426A (en)
WO (1) WO2022080011A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021918A (en) * 1988-06-10 1990-01-08 Fujitsu Ltd Manufacture of semiconductor device
JP2735677B2 (en) * 1990-06-27 1998-04-02 日本電気ホームエレクトロニクス株式会社 Manufacturing method of aluminum alloy thin film
JPH05263226A (en) * 1992-03-17 1993-10-12 Fujitsu Ltd Thin film forming method
JPH07258827A (en) * 1994-03-25 1995-10-09 Mitsubishi Electric Corp Thin metallic film and its formation and semiconductor device and its production
JPH09306918A (en) * 1996-05-16 1997-11-28 Sony Corp Barrier metal forming method in forming process of solder ball bump
JP4603780B2 (en) * 2003-06-27 2010-12-22 キヤノン株式会社 Method for manufacturing light emitting device
JP4541861B2 (en) * 2004-12-09 2010-09-08 株式会社アルバック Method for forming Heusler alloy film
JP4961786B2 (en) * 2006-03-17 2012-06-27 住友金属鉱山株式会社 Transparent conductive film and transparent conductive film using the same
JP2008149681A (en) * 2006-12-20 2008-07-03 Fujifilm Corp Translucent conductive material
JP5914036B2 (en) 2011-04-20 2016-05-11 日東電工株式会社 Method for producing conductive laminated film
WO2015125558A1 (en) * 2014-02-20 2015-08-27 コニカミノルタ株式会社 Method for manufacturing transparent electroconductive body and electroconductive body

Also Published As

Publication number Publication date
WO2022080011A1 (en) 2022-04-21
TW202234426A (en) 2022-09-01
CN116326230A (en) 2023-06-23
KR20230086668A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
JP6943704B2 (en) Resistor film for λ / 4 type radio wave absorber and λ / 4 type radio wave absorber
KR20240011876A (en) Transparent electroconductive film
JP5364186B2 (en) Conductive film with metal layer, method for producing the same, and touch panel containing the same
WO2022080011A1 (en) Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer
JP6674991B2 (en) Transparent conductive film and method for producing the same
TWI655570B (en) Conductive substrate, laminated conductive substrate, method for producing conductive substrate, and method for producing laminated conductive substrate
JP2001052529A (en) Transparent conductive thin film laminate
JP2024032742A (en) Light-transmissive electroconductive layer and light-transmissive electroconductive film
JP7565936B2 (en) Light-transmitting conductive film and transparent conductive film
JP7488425B2 (en) Transparent conductive film and article
JP7492089B2 (en) Transparent conductive layer and transparent conductive film
JP7377383B2 (en) laminate
JP2004296140A (en) Transparent conductive thin film laminate
JP7556912B2 (en) Method for producing transparent conductive film
WO2024004405A1 (en) Electroconductive film
JP7451505B2 (en) Method for manufacturing transparent conductive film
JP3544878B2 (en) Transparent conductive thin film laminate
EP4040450A1 (en) Transparent electroconductive film, laminate, and method for manufacturing transparent electroconductive film
KR20240019750A (en) transparent conductive film
JP2024098656A (en) Conductive Film
KR101245379B1 (en) Manufacturing method of azo firm for touch panel by ultraviolet irradation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241021