JP2019163494A - Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate - Google Patents

Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate Download PDF

Info

Publication number
JP2019163494A
JP2019163494A JP2018050676A JP2018050676A JP2019163494A JP 2019163494 A JP2019163494 A JP 2019163494A JP 2018050676 A JP2018050676 A JP 2018050676A JP 2018050676 A JP2018050676 A JP 2018050676A JP 2019163494 A JP2019163494 A JP 2019163494A
Authority
JP
Japan
Prior art keywords
oxide film
less
transparent
film
transparent oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018050676A
Other languages
Japanese (ja)
Inventor
卓矢 下山田
Takuya Shimoyamada
卓矢 下山田
正和 ▲桑▼原
正和 ▲桑▼原
Masakazu Kuwahara
茂生 仁藤
Shigeo Nito
茂生 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018050676A priority Critical patent/JP2019163494A/en
Priority to CN201980018058.XA priority patent/CN111836912A/en
Priority to PCT/JP2019/002362 priority patent/WO2019181191A1/en
Priority to KR1020207026634A priority patent/KR20200132873A/en
Priority to TW108104537A priority patent/TW201945319A/en
Publication of JP2019163494A publication Critical patent/JP2019163494A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3253Substoichiometric niobium or tantalum oxides, e.g. NbO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

To provide a transparent oxide film excellent in transparency, water vapor barrier performance, chemical resistance, and flexibility made available using high volume-producibility DC sputtering, and also to provide a method of manufacturing the transparent oxide film, an oxide sintered body for making the film, and a transparent resin substrate using the transparent oxide film.SOLUTION: The amorphous transparent oxide film containing Zn and Sn is provided that has a number-of-metal-atoms ratio Sn/(Zn+Sn) of the amorphous transparent oxide file of 0.44 or more and 0.90 or less, and a film thickness of 100 nm or less. The method of manufacturing the transparent oxide film is provided that uses a target made of Sn-Zn-O-based oxide sintered body to perform sputtering, wherein the number-of-metal-atoms ratio Sn/(Zn+Sn) of Zn and Sn contained in the oxide sintered body used upon sputtering is 0.44 or more and 0.90 or less and the thickness of a file to be formed is 100 nm or less.SELECTED DRAWING: None

Description

本発明は、透明酸化物膜、透明酸化物膜の製造方法、酸化物焼結体及び透明樹脂基板に関し、一般に液晶素子(LCD)、タッチパネル素子(TP)、電子ペーパー等のエレクトロニクス素子のディスプレイに用いられる透明酸化物膜、透明酸化物膜の製造方法、膜を成膜するための酸化物焼結体及び透明酸化物膜を用いた透明樹脂基板に関するものである。   The present invention relates to a transparent oxide film, a method for producing a transparent oxide film, an oxide sintered body, and a transparent resin substrate, and is generally used for display of electronic elements such as liquid crystal elements (LCD), touch panel elements (TP), and electronic paper. The present invention relates to a transparent oxide film used, a method for producing the transparent oxide film, an oxide sintered body for forming the film, and a transparent resin substrate using the transparent oxide film.

近年、液晶素子(LCD)、タッチパネル素子(TP)、電子ペーパー等のエレクトロニクス素子においては、透明電導層付きガラス基板を用いた素子から、高分子有機材料からなる透明プラスチックフィルム上に透明電導層を成膜したフィルム基板を用いた素子の需要が高まりつつある。その利点は、軽量、屈曲性、耐衝撃性、大面積化が容易であることなどが挙げられる。   In recent years, in an electronic element such as a liquid crystal element (LCD), a touch panel element (TP), and electronic paper, a transparent conductive layer is formed on a transparent plastic film made of a polymer organic material from an element using a glass substrate with a transparent conductive layer. There is an increasing demand for elements using a film substrate. Advantages include lightness, flexibility, impact resistance, and easy area enlargement.

しかしながら、その一方でフィルムは、ガラス基板と比較して水蒸気のバリア性に劣り、表示性能に支障を及ぼす要因となる。この様な水蒸気バリアの劣性を補う方法として、透明プラスチックフィルム上にバリア層を設ける検討がなされている。   However, on the other hand, the film is inferior in the barrier property of water vapor as compared with the glass substrate, and becomes a factor that impedes display performance. As a method for supplementing such inferiority of the water vapor barrier, studies have been made to provide a barrier layer on a transparent plastic film.

このバリア層は、主にケイ素、アルミニウムなどの金属酸化物層が挙げられ、スパッタリング法、イオンプレーティング法、真空蒸着法、フォトCVD法などにより形成される。用途別の必要な水蒸気透過率としては、電子ペーパーなどで0.1g/m/day以下、液晶ディスプレイなどで0.01g/m/day前後といわれている。 Examples of the barrier layer include metal oxide layers such as silicon and aluminum, and are formed by a sputtering method, an ion plating method, a vacuum deposition method, a photo CVD method, or the like. The required water vapor transmission rate for each application is said to be about 0.1 g / m 2 / day or less for electronic paper or the like, and about 0.01 g / m 2 / day for liquid crystal displays or the like.

また、この金属酸化物層を薬品から保護するために、金属酸化物層上に有機化合物からなる耐薬品層を設ける検討もなされている。この薬品とは、例えば透明電極付きバリアフィルムの透明電極をパターン化する際のエッチング工程で用いる、アルカリ性水溶液や酸性水溶液である。一般的なフォトリソ法では、これら薬品があらゆる場合で用いられる。また液晶ディスプレイを形成する上で、接着層の接着材や封止材に含まれる酸性及び塩基性の溶剤によって、部分的に透明バリア層が浸食され、バリア性を損なうことがある。このため、耐薬品性が重要視されている。   In addition, in order to protect the metal oxide layer from chemicals, studies have been made to provide a chemical resistant layer made of an organic compound on the metal oxide layer. This chemical | medical agent is alkaline aqueous solution or acidic aqueous solution used at the etching process at the time of patterning the transparent electrode of a barrier film with a transparent electrode, for example. In general photolithographic methods, these chemicals are used in all cases. In forming a liquid crystal display, the transparent barrier layer may be partially eroded by the acidic and basic solvents contained in the adhesive or sealing material of the adhesive layer, and the barrier property may be impaired. For this reason, chemical resistance is regarded as important.

例えば、特許文献1では、透明フィルム上に、酸化スズ系等の透明導電膜をスパッタリング法にて形成した、水蒸気バリア性透明樹脂基板が記載されており、モコン法による水蒸気透過率が0.01g/m/day未満であり、塩酸溶液やアルカリ溶液の浸漬後に透過率変化がないとの旨が記載されている。 For example, Patent Document 1 describes a water vapor barrier transparent resin substrate in which a transparent conductive film made of tin oxide or the like is formed on a transparent film by a sputtering method, and has a water vapor transmission rate of 0.01 g by a mocon method. It is less than / m 2 / day and describes that there is no change in transmittance after immersion in a hydrochloric acid solution or an alkaline solution.

また、特許文献2では無機膜、有機膜の積層を利用したバリアフィルムの提案がなされている。この時の水蒸気透過率が、0.01g/m/day以下であり、無機膜の厚みが30nm〜1μm、有機層の厚みは10nm〜2μmであることが記載されている。 Patent Document 2 proposes a barrier film using a laminate of an inorganic film and an organic film. It is described that the water vapor transmission rate at this time is 0.01 g / m 2 / day or less, the thickness of the inorganic film is 30 nm to 1 μm, and the thickness of the organic layer is 10 nm to 2 μm.

特開2005−103768号公報JP 2005-103768 A 特許5161470号公報Japanese Patent No. 5161470

近年、電子機器の軽薄短小化により、これらディスプレイに用いる水蒸気バリア性透明樹脂基板は、水蒸気透過率や耐薬品性能を維持した上で、これらのディスプレイはフレキシブル化などへの要求もあり、薄型化の要望も多く挙がっている。具体的には、バリア膜の膜厚としては、100nm以下の要求がある。当然、バリア膜の膜厚としては、100nm以下とすることで膜厚が減少するため、水蒸気透過率や耐薬品性能が悪化する。よって従来より水蒸気透過率や耐薬品性能を向上させる必要がある。   In recent years, as the electronic devices have become lighter, thinner and thinner, the water vapor barrier transparent resin substrates used in these displays maintain their water vapor transmission rate and chemical resistance, and these displays are also required to be flexible and thinner. There are many requests. Specifically, the film thickness of the barrier film is required to be 100 nm or less. Naturally, the film thickness of the barrier film is reduced to 100 nm or less, so that the water vapor transmission rate and the chemical resistance are deteriorated. Therefore, it is necessary to improve the water vapor transmission rate and chemical resistance performance.

これに対し、特許文献1では、水蒸気透過率はモコン法により測定しているが、モコン法の測定では、0.01g/m/day以下を正確に測ることは難しく、実際の膜の水蒸気バリア性には疑問が残る。また、使用しているフィルムが200μm、バリア膜の厚さは100〜200nmと厚いことでフレキシブル性に劣っている。 On the other hand, in Patent Document 1, the water vapor transmission rate is measured by the Mocon method. However, it is difficult to accurately measure 0.01 g / m 2 / day or less by the Mocon method, and the actual water vapor of the membrane is not measured. The question remains about barrier properties. In addition, the film used is 200 μm, and the thickness of the barrier film is as thick as 100 to 200 nm, which is inferior in flexibility.

また、特許文献2では、無機膜、有機膜の積層を利用したバリアフィルムの提案がなされているが、無機膜及び有機膜では成膜プロセスが異なるため、各々他プロセスでの膜付けが必要になり、生産性悪化や異物などによる特性悪化が考えられる。また水蒸気透過率が、0.01g/m/day以下を達成するためには、構成が積層で3層以上であり、有機層が500nm程度必要と記載があり、フレキシブル性に劣っている。 In Patent Document 2, a barrier film using a laminate of an inorganic film and an organic film has been proposed. However, since the film formation process differs between the inorganic film and the organic film, film formation in each other process is necessary. Therefore, it is conceivable that the productivity deteriorates and the characteristics deteriorate due to foreign matters. In addition, in order to achieve a water vapor transmission rate of 0.01 g / m 2 / day or less, there is a description that the structure is three or more layers and the organic layer is required to be about 500 nm, which is inferior in flexibility.

本発明はこのような要請に着目してなされたものであり、量産性の高い直流スパッタリングにて、良好な透明性、水蒸気バリア性能、そして優れた耐薬品性を有し、フレキシブル性にも優れた透明酸化物膜とその製造方法、膜を成膜するための酸化物焼結体、そして透明酸化物膜を用いた透明樹脂基板を提供することにある。   The present invention has been made paying attention to such demands, and has excellent transparency, water vapor barrier performance, excellent chemical resistance, and excellent flexibility by high-productivity direct current sputtering. Another object of the present invention is to provide a transparent oxide film, a manufacturing method thereof, an oxide sintered body for forming a film, and a transparent resin substrate using the transparent oxide film.

本発明者らは、上述した課題に対してZnとSnの金属原子数比や膜厚を調整し、耐薬品性及びフレキシブル性に適した条件について鋭意分析し、その結果、本発明に至った。   The inventors of the present invention have adjusted the metal atom number ratio and film thickness of Zn and Sn with respect to the above-mentioned problems, and conducted intensive analysis on conditions suitable for chemical resistance and flexibility. As a result, the present invention has been achieved. .

すなわち、本発明の一態様は、ZnとSnとを含有する非晶質の透明酸化物膜であって、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下であり、膜厚が100nm以下である。   That is, one embodiment of the present invention is an amorphous transparent oxide film containing Zn and Sn, and has a metal atom number ratio of Sn / (Zn + Sn) of 0.44 to 0.90. The film thickness is 100 nm or less.

本発明の一態様によれば、上記割合でZnとSnとを含有することで、優れた耐薬品性を有し、膜厚を100nm以下とすることでフレキシブル性にも優れた透明酸化物膜とすることができる。   According to one aspect of the present invention, a transparent oxide film having excellent chemical resistance by containing Zn and Sn at the above ratio and having excellent flexibility by having a film thickness of 100 nm or less. It can be.

この時、本発明の一態様では、さらに、Ta及びGeを含有し、Zn、Sn、Ta、及びGeの原子数比において、Ta/(Zn+Sn+Ge+Ta)が0.01以下、Ge/(Zn+Sn+Ge+Ta)が0.04以下であるとしても良い。   At this time, in one embodiment of the present invention, Ta / (Zn + Sn + Ge + Ta) is 0.01 or less and Ge / (Zn + Sn + Ge + Ta) is 0.01 or less in the atomic ratio of Zn, Sn, Ta, and Ge. It may be 0.04 or less.

Ta及びGeは、ターゲット由来の成分であり、これにより、ターゲット自体の電導性が改善されることで成膜速度が向上し、またターゲット密度が向上することで安定して成膜することができるようになる。   Ta and Ge are components derived from the target, which improves the conductivity of the target itself, thereby increasing the deposition rate, and increasing the target density enables stable deposition. It becomes like this.

また、本発明の一態様では、当該透明酸化物膜を、5%濃度の塩酸又は5%濃度の水酸化ナトリウム水溶液に5分間浸漬した前後の色差ΔEab変化値が1.0以下とすることができる。   In one embodiment of the present invention, the color difference ΔEab change value before and after immersing the transparent oxide film in 5% hydrochloric acid or 5% sodium hydroxide aqueous solution for 5 minutes may be 1.0 or less. it can.

上記要件を満たすことにより、耐薬品性に優れた透明酸化物膜であると言える。   By satisfying the above requirements, it can be said that the transparent oxide film has excellent chemical resistance.

また、本発明の一態様では、当該透明酸化物膜を、5%濃度の塩酸又は5%濃度の水酸化ナトリウム水溶液に5分間浸漬した前後の膜厚の変化量が2.0nm以下とすることもできる。   In one embodiment of the present invention, the amount of change in film thickness before and after immersing the transparent oxide film in 5% hydrochloric acid or 5% sodium hydroxide aqueous solution for 5 minutes is 2.0 nm or less. You can also.

上記要件を満たすことにより、耐薬品性に優れた透明酸化物膜であると言える。   By satisfying the above requirements, it can be said that the transparent oxide film has excellent chemical resistance.

また、本発明の一態様では、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率は、当該透明酸化物膜の膜厚が50nm以上〜100nm以下では、0.015g/m/day以下であり、当該透明酸化物膜の膜厚が10nm以上〜50nm未満では、0.08g/m/day以下とすることができる。 In one embodiment of the present invention, the water vapor transmission rate according to the differential pressure method specified in accordance with the JIS standard K7129 method is 0.015 g / m 2 / day when the film thickness of the transparent oxide film is 50 nm to 100 nm. When the film thickness of the transparent oxide film is 10 nm or more and less than 50 nm, it can be 0.08 g / m 2 / day or less.

上記要件を満たすことにより、良好な水蒸気バリア性能を有する透明酸化物膜であると言える。   Satisfying the above requirements can be said to be a transparent oxide film having good water vapor barrier performance.

本発明の他の態様は、上述した透明酸化物膜をスパッタリング法により成膜するために用いられるSn−Zn−O系の酸化物焼結体であって、酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.90以下である。   Another embodiment of the present invention is a Sn—Zn—O-based oxide sintered body used for forming the above-described transparent oxide film by a sputtering method, and includes Zn contained in the oxide sintered body. Sn / (Zn + Sn) of the metal atom number ratio of Sn and Sn is 0.44 or more and 0.90 or less.

このような組成の酸化物焼結体を用いてスパッタリングすることにより、優れた耐薬品性を有する透明酸化物膜を成膜することができる。   By sputtering using an oxide sintered body having such a composition, a transparent oxide film having excellent chemical resistance can be formed.

この時、本発明の他の態様では、さらにTa及びGeを含有し、TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下で、GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であるとしても良い。   At this time, in another aspect of the present invention, Ta and Ge are further contained, and Ta / (Zn + Sn + Ge + Ta) of Ta and Zn, Sn, Ge has a metal atom number ratio of 0.01 or less, and Ge and Zn, Sn, Ge / (Zn + Sn + Ge + Ta) of the Ta metal atom number ratio may be 0.04 or less.

このようにすれば、ターゲット自体の電導性が改善されることで成膜速度が向上し、またターゲット密度が向上することで安定して成膜することができる。   In this way, the film forming speed is improved by improving the conductivity of the target itself, and the film can be stably formed by increasing the target density.

本発明の他の態様は、Sn−Zn−O系の酸化物焼結体からなるターゲットを用いてスパッタリングし、透明酸化物膜を得る透明酸化物膜の製造方法であって、スパッタリング時に用いられる前記酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.90以下であり、成膜する膜厚が100nm以下である。   Another aspect of the present invention is a method for producing a transparent oxide film obtained by sputtering using a target composed of a Sn—Zn—O-based oxide sintered body to obtain a transparent oxide film, which is used during sputtering. Sn / (Zn + Sn) of the metal atom number ratio between Zn and Sn contained in the oxide sintered body is 0.44 or more and 0.90 or less, and the film thickness is 100 nm or less.

本発明の他の態様によれば、上記割合でZnとSnとを含有することで、優れた耐薬品性を有し、膜厚を100nm以下とすることでフレキシブル性にも優れた透明酸化物膜を製膜することができる。   According to another aspect of the present invention, a transparent oxide that has excellent chemical resistance by containing Zn and Sn in the above proportions, and also has excellent flexibility by having a film thickness of 100 nm or less. A membrane can be formed.

本発明の他の態様は、上述した透明酸化物膜が透明な樹脂基材の少なくとも一方の面に形成されている透明樹脂基板である。   Another aspect of the present invention is a transparent resin substrate in which the above-described transparent oxide film is formed on at least one surface of a transparent resin base material.

本発明の他の態様によれば、上述した透明酸化物膜を形成することで優れた水蒸気バリア性と耐薬品性の両方を有し、フレキシブル性にも優れた透明樹脂基板とすることができる。   According to another aspect of the present invention, a transparent resin substrate having both excellent water vapor barrier properties and chemical resistance by forming the above-described transparent oxide film and excellent in flexibility can be obtained. .

本発明により、量産性と汎用性の高い直流スパッタリングにて、良好な透明性、水蒸気バリア性能、そして優れた耐薬品性を有し、フレキシブル性にも優れた透明酸化物膜とその製造方法、膜を成膜するための酸化物焼結体、そして透明酸化物膜を用いた透明樹脂基板を提供することができる。   According to the present invention, a transparent oxide film having good transparency, water vapor barrier performance, and excellent chemical resistance by DC sputtering having high mass productivity and versatility, and a manufacturing method thereof, An oxide sintered body for forming a film and a transparent resin substrate using a transparent oxide film can be provided.

以下、本発明に係る透明酸化物膜、透明酸化物膜の製造方法、酸化物焼結体及び透明樹脂基板について以下の順序で説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。
1.透明酸化物膜
2.酸化物焼結体
3.透明酸化物膜の製造方法
4.透明樹脂基板
Hereinafter, the transparent oxide film, the method for producing the transparent oxide film, the oxide sintered body, and the transparent resin substrate according to the present invention will be described in the following order. In addition, this invention is not limited to the following examples, In the range which does not deviate from the summary of this invention, it can change arbitrarily.
1. Transparent oxide film 2. Oxide sintered body 3. Production method of transparent oxide film Transparent resin substrate

<1.透明酸化物膜>
本発明の一態様は、ZnとSnとを含有する非晶質の透明酸化物膜であって、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下であり、膜厚が100nm以下である。このような割合でZnとSnとを含有することで、優れた耐薬品性を有し、膜厚を100nm以下とすることでフレキシブル性にも優れた透明酸化物膜とすることができる。
<1. Transparent oxide film>
One embodiment of the present invention is an amorphous transparent oxide film containing Zn and Sn, which has a metal atom number ratio of Sn / (Zn + Sn) of 0.44 to 0.90. The thickness is 100 nm or less. By containing Zn and Sn at such a ratio, a transparent oxide film having excellent chemical resistance and having excellent flexibility can be obtained by setting the film thickness to 100 nm or less.

本発明の非晶質の透明酸化物膜は、水蒸気バリア膜としても使用される。プラスチック基板やフィルム基板、例えば液晶表示素子や電子ペーパー等のフレキシブル表示素子の表面にスパッタリング法により金属酸化物膜として覆って水蒸気の遮断などにより変質を防止する目的で利用される。   The amorphous transparent oxide film of the present invention is also used as a water vapor barrier film. The surface of a flexible display element such as a liquid crystal display element or electronic paper such as a liquid crystal display element or electronic paper is covered as a metal oxide film by a sputtering method and used for the purpose of preventing alteration by blocking water vapor.

この透明酸化物膜は、水蒸気を遮断する必要がある。そのために透明酸化物膜は、できるだけ、緻密な膜であり、かつ厚みは薄く均一、そして水分が通る欠陥(隙間)が少ないことが好ましい。このため、透明酸化物膜は、スパッタリング法により形成される。このスパッタリング法で形成された透明酸化物膜は、特許文献1にあるように非晶質であることが好まれる。これは、透明酸化物膜が結晶質膜である場合には、この膜に結晶粒界が存在し、結晶粒界を介して水蒸気が透過するため、水蒸気バリア性能が低下するからである。   This transparent oxide film needs to block water vapor. Therefore, it is preferable that the transparent oxide film is as dense as possible, is thin and uniform, and has few defects (gap) through which moisture passes. For this reason, the transparent oxide film is formed by a sputtering method. The transparent oxide film formed by this sputtering method is preferably amorphous as disclosed in Patent Document 1. This is because when the transparent oxide film is a crystalline film, a crystal grain boundary exists in the film, and water vapor permeates through the crystal grain boundary, so that the water vapor barrier performance is deteriorated.

また、この透明酸化物膜には、この金属酸化物層を薬品から保護するために、耐酸性や耐アルカリ性が必要となる。金属酸化物層を任意の形状にパターン化する際、一般的なフォトリソ法で実施される。この方法は、あらゆる場合でアルカリ性水溶液や酸性水溶液が用いられるため、透明酸化物膜が溶解しないこと、薬品により、膜にダメージを受けないことが前提となる。また液晶ディスプレイを形成する上では、接着層の接着材や封止材に含まれる酸性及びアルカリ性の溶剤の浸透によって、部分的に透明酸化物膜が浸食され、バリア性を損なうため、耐薬品性が重要視されている。   In addition, the transparent oxide film requires acid resistance and alkali resistance in order to protect the metal oxide layer from chemicals. When the metal oxide layer is patterned into an arbitrary shape, it is carried out by a general photolithography method. This method is based on the premise that the transparent oxide film does not dissolve and the film is not damaged by chemicals because an alkaline aqueous solution or an acidic aqueous solution is used in all cases. In addition, when forming a liquid crystal display, the transparent oxide film is partially eroded by the penetration of acidic and alkaline solvents contained in the adhesive and sealant of the adhesive layer, which impairs the barrier properties. Is emphasized.

上記特許文献1では、この透明酸化物膜として酸化スズ系膜を提案しているが、酸化スズ系膜をスパッタリング法により成膜する場合、スパッタリングに用いるスパッタリングターゲットを構成するターゲット材は、膜と同成分である酸化スズ系が用いられる。この酸化スズ系のターゲット材は、一般に耐酸性は高いがターゲット材の相対密度が低く、スパッタリング中にターゲット材が割れる等により安定して成膜ができない等課題が多い。本発明に係る透明酸化物膜では、後述するSn-Zn-O系スパッタリングターゲットを使用することで、上記懸念事項は解消に至った。   In Patent Document 1, a tin oxide-based film is proposed as the transparent oxide film. However, when a tin oxide-based film is formed by a sputtering method, a target material constituting a sputtering target used for sputtering is a film and The same component, tin oxide, is used. Although this tin oxide target material generally has high acid resistance, the relative density of the target material is low, and there are many problems such that the target material cannot be stably formed due to cracking of the target material during sputtering. In the transparent oxide film according to the present invention, the above-mentioned concern has been solved by using a Sn—Zn—O-based sputtering target described later.

すなわち、本発明の一実施形態に係る透明酸化物膜は、ZnとSnとを含有する非晶質の透明酸化物膜であって、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下であることを特徴とする。   That is, the transparent oxide film according to an embodiment of the present invention is an amorphous transparent oxide film containing Zn and Sn, and Sn / (Zn + Sn) is 0.44 in terms of the number of metal atoms. It is characterized by being 0.90 or less.

金属原子数比で、Sn/(Zn+Sn)で0.44以上0.90以下にすることで、良好な水蒸気透過率と耐薬品性を得ることができる。酸化亜鉛(ZnO)系は酸・アルカリ等の薬品に対して容易に溶解し、酸・アルカリ等の薬品に対する耐性に乏しい欠点がある。例えばウェットエッチングによる高精細なパターニング処理は困難である。しかし酸化スズ(SnO)系は耐薬品性の極めて高い特性がある。そこで、ZnとSnとを含有する非晶質の透明酸化物膜の主成分をSnOよりにする事で酸・アルカリ等の薬品耐性を得ることができる。 By setting the metal atom number ratio as Sn / (Zn + Sn) to 0.44 or more and 0.90 or less, good water vapor transmission rate and chemical resistance can be obtained. Zinc oxide (ZnO) is easily dissolved in chemicals such as acids and alkalis, and has a drawback of poor resistance to chemicals such as acids and alkalis. For example, high-definition patterning processing by wet etching is difficult. However, the tin oxide (SnO 2 ) system has extremely high chemical resistance. Therefore, chemical resistance such as acid and alkali can be obtained by using SnO 2 as the main component of the amorphous transparent oxide film containing Zn and Sn.

金属原子数比Sn/(Sn+Zn)が0.44未満の場合は、SnOより酸性やアルカリ性水溶液に溶解しやすいZnOの析出が多くなり、耐薬品性が乏しくなる。 When the metal atom number ratio Sn / (Sn + Zn) is less than 0.44, ZnO is more likely to be dissolved in acidic or alkaline aqueous solution than SnO 2 and chemical resistance is poor.

また、金属原子数比Sn/(Sn+Zn)が0.90を超える場合はSnO比率が多くなくなることで、スパッタリングターゲット材としての相対密度が低く、直流スパッタリング中に焼結体の割れ不具合が発生する可能性が高い。 Further, when the metal atom number ratio Sn / (Sn + Zn) exceeds 0.90, the SnO 2 ratio is not increased so that the relative density as a sputtering target material is low, and cracking defects of the sintered body occur during DC sputtering. There is a high possibility of doing.

本発明の一実施形態に係る透明酸化物膜の膜厚は、100nm以下であることが好ましく、90nm以下であることがより好ましい。このような膜厚とすることにより、フレキシブル性に優れた酸化物膜を提供することができる。また、本発明の一実施形態に係る酸化物膜の膜厚の下限値は10nmである。   The film thickness of the transparent oxide film according to an embodiment of the present invention is preferably 100 nm or less, and more preferably 90 nm or less. By setting it as such a film thickness, the oxide film excellent in flexibility can be provided. The lower limit of the thickness of the oxide film according to one embodiment of the present invention is 10 nm.

本発明の一実施形態に係る透明酸化物膜の膜厚が10nmより薄くなると、膜がうす過ぎる為、フィルム全体の品質保証が難しい膜厚となり、成膜中や薬液による浸透及び溶解による欠陥が生じ、バリア性能に影響を及ぼす。また、膜厚が100nmを超える場合は、膜応力によるフィルム基板のカールの原因、またフレキシブル性の悪化や透過率の低下を招く。そのため、生産性、コストを鑑みると膜厚は100nm以下が好ましく、90nm以下であることがより好ましい。よって10〜100nmにて使用することが、フレキシブル性、軽量化や薄膜化のニーズにマッチし、デバイス組立時や量産時の使用に最適な膜厚である。   When the film thickness of the transparent oxide film according to an embodiment of the present invention is thinner than 10 nm, the film is too thin, and it is difficult to guarantee the quality of the entire film. And affects the barrier performance. Moreover, when a film thickness exceeds 100 nm, the cause of the curl of the film substrate by a film stress, the deterioration of flexibility, and the fall of the transmittance | permeability are caused. Therefore, in view of productivity and cost, the film thickness is preferably 100 nm or less, and more preferably 90 nm or less. Therefore, use at 10 to 100 nm matches the needs for flexibility, weight reduction and thinning, and is the optimum film thickness for use during device assembly and mass production.

本発明の一実施形態に係る透明酸化物膜は、更に、金属原子数比で、Taが、Ta/(Zn+Sn+Ge+Ta)で0.01以下、Geが、Ge/(Zn+Sn+Ge+Ta)で0.04以下の割合で含まれていても良い。TaやGeが含まれても、結晶化温度が600℃以上となるため、非晶質膜構造が得やすい。また、結晶化温度が高いため量産工程プロセス内での熱影響があった場合でも、非結晶状態を容易に維持することが可能である。また、TaやGeを上記比率で添加することは、ZnとSnとの含有するスパッタリングターゲットの特性をより向上させる効果がある。   The transparent oxide film according to an embodiment of the present invention further has a metal atom number ratio of Ta of Ta / (Zn + Sn + Ge + Ta) of 0.01 or less and Ge of Ge / (Zn + Sn + Ge + Ta) of 0.04 or less. It may be included as a percentage. Even if Ta or Ge is contained, the crystallization temperature is 600 ° C. or higher, so that an amorphous film structure is easily obtained. In addition, since the crystallization temperature is high, the amorphous state can be easily maintained even when there is a thermal influence in the mass production process. Further, adding Ta or Ge in the above ratio has an effect of further improving the characteristics of the sputtering target containing Zn and Sn.

以下、添加元素(Ta、Ge)について簡単に説明する。スパッタリングターゲット材は、Sn−Znのみ組成で構成された酸化物焼結体を銅材、ステンレス材等からなるバッキングプレートにインジウム(In)等の接合材等を用いて張合わせる(ボンディング)ことによって得られる。   Hereinafter, the additive elements (Ta, Ge) will be briefly described. The sputtering target material is formed by bonding (bonding) an oxide sintered body composed only of Sn—Zn to a backing plate made of a copper material, a stainless steel material, or the like using a bonding material such as indium (In). can get.

Sn−Znのみ組成で構成されたターゲットは、導電性が不十分であり、ターゲットの比抵抗値が大きい場合がある。これは、スパッタリング時、比抵抗値が大きい程、大きなエネルギーでスパッタリングする必要があり、成膜速度を上げることができない。よって、ターゲットの導電性を大きくする必要がある。ターゲット中でZnSnO、ZnO、SnOは導電性に乏しい物質であることから、配合比を調整して化合物相やZnO、SnOの量を調整したとしても、導電性を大幅に改善することはできない。 A target composed only of Sn—Zn has insufficient conductivity and may have a large specific resistance value. This is because it is necessary to perform sputtering with a larger energy as the specific resistance value is larger at the time of sputtering, and the deposition rate cannot be increased. Therefore, it is necessary to increase the conductivity of the target. Since Zn 2 SnO 4 , ZnO, and SnO 2 are poorly conductive materials in the target, even if the compounding ratio is adjusted to adjust the compound phase and the amount of ZnO and SnO 2 , the conductivity is greatly improved. I can't do it.

そこで、Ta(タンタル)を添加することが好ましい。Taは、ZnO相中のZn、ZnSnO相中のZn又はSn、SnO相中のSnと置換して固溶するため、ウルツ鉱型結晶構造のZnO相、スピネル型結晶構造のZnSnO相、及び、ルチル型結晶構造のSnO相以外の化合物相は形成されない。Taの添加により酸化物焼結体の密度を維持したまま、導電性が改善される。 Therefore, it is preferable to add Ta (tantalum). Since Ta is substituted for Zn in the ZnO phase, Zn in the Zn 2 SnO 4 phase or Sn, and Sn in the SnO 2 phase, it dissolves, so that the ZnO phase of the wurtzite crystal structure, Zn of the spinel crystal structure A compound phase other than the 2 SnO 4 phase and the SnO 2 phase having a rutile crystal structure is not formed. By adding Ta, the conductivity is improved while maintaining the density of the oxide sintered body.

また、Sn−Znのみ組成で構成されたターゲットの焼結密度は90%前後であり十分とは言えない場合がある。ターゲットの密度が低いとスパッタリング中にターゲットが割れる等により安定して成膜ができない等課題がある。   In addition, the sintered density of the target composed only of Sn—Zn is around 90%, which may not be sufficient. When the density of the target is low, there is a problem that the film cannot be stably formed because the target is broken during sputtering.

そこで、Ge(ゲルマニウム)を所定量添加することが好ましい。Geは、ターゲット中で、ZnO相中のZn、ZnSnO相中のZn又はSn、SnO相中のSnと置換して固溶するため、ウルツ鉱型結晶構造のZnO相、スピネル型結晶構造のZnSnO相、及び、ルチル型結晶構造のSnO相以外の化合物相は形成されない。Geの添加によりターゲットを緻密にする作用がある。これにより、ターゲットの焼結密度をより高密度にすることができる。 Therefore, it is preferable to add a predetermined amount of Ge (germanium). In the target, Ge substitutes for Zn in the ZnO phase, Zn or Zn in the Zn 2 SnO 4 phase, or Sn in the SnO 2 phase and dissolves in a solid solution, so that the ZnO phase having a wurtzite crystal structure, spinel type Compound phases other than the Zn 2 SnO 4 phase having a crystal structure and the SnO 2 phase having a rutile crystal structure are not formed. The addition of Ge has the effect of densifying the target. Thereby, the sintered density of the target can be made higher.

従って、上記酸化物焼結体は、さらにTa及びGeを含有し、上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることが好ましい。なお、Ta及びGeの添加による上記効果が得られるおおよその下限値は、Ta、Ge共に、上記金属原子数比で0.0005である。   Accordingly, the oxide sintered body further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is 0.01 or less, and the Ge, Zn, Sn, It is preferable that Ge / (Zn + Sn + Ge + Ta) of the Ta metal atom number ratio is 0.04 or less. Note that the approximate lower limit value for obtaining the above effect by addition of Ta and Ge is 0.0005 in terms of the number of metal atoms for both Ta and Ge.

上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01より大きい場合、別の化合物相、例えばTa、ZnTa等の化合物相を生成するため、導電性を大幅に改善することはできない。また、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04より大きい場合、別の化合物相、例えばZnGe等の化合物相を生成するため、酸化物焼結体の密度が低くなり、スパッタリング中にターゲットが割れ易くなる。 When Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is larger than 0.01, another compound phase, for example, a compound phase such as Ta 2 O 5 or ZnTa 2 O 6 is generated. The conductivity cannot be improved significantly. Further, when Ge / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ge and Zn, Sn, Ta is larger than 0.04, another compound phase, for example, a compound phase such as Zn 2 Ge 3 O 8 is generated. The density of the oxide sintered body is reduced, and the target is easily broken during sputtering.

Ta及びGeを添加したターゲットを使用してスパッタリングをしても、成膜した透明酸化物膜への影響はない。例えば、水蒸気透過率や耐薬品性の影響は確認されない。よって金属原子数比で、Sn/(Zn+Sn)が0.40以上0.90未満であり、Taが、Ta/(Zn+Sn+Ge+Ta)が0.01以下、Geが、Ge/(Zn+Sn+Ge+Ta)が0.04以下の割合で含まれても、水蒸気バリア性能を悪化させることはなく、良好な耐薬品性を持った、非晶質な透明酸化物膜を得ることが可能である。   Sputtering using a target to which Ta and Ge are added does not affect the formed transparent oxide film. For example, the influence of water vapor transmission rate and chemical resistance is not confirmed. Therefore, Sn / (Zn + Sn) is 0.40 or more and less than 0.90 in terms of the number of metal atoms, Ta is Ta / (Zn + Sn + Ge + Ta) is 0.01 or less, Ge is Ge / (Zn + Sn + Ge + Ta) is 0.04. Even if it is contained in the following proportions, it is possible to obtain an amorphous transparent oxide film having good chemical resistance without deteriorating the water vapor barrier performance.

上述したように、本発明の一実施形態に係る透明酸化物膜は、耐薬品性を有する。耐薬品性の評価は、薬液へ浸漬した前後の膜厚変化量と色差ΔEabで評価する。これらの評価において、本発明の一実施形態に係る透明酸化物膜を透明ガラス基板へスパッタリング法にて成膜し、酸性水溶液やアルカリ性水溶液に浸漬した時、薬液へ浸漬した前後の膜厚変化量は、2.0nm以下とし、その浸漬前後の透明酸化物膜の色差は、L*a*b*表色系のΔEabの数値が1.0以下となることが好ましい。   As described above, the transparent oxide film according to one embodiment of the present invention has chemical resistance. The chemical resistance is evaluated by the amount of change in film thickness before and after immersion in the chemical solution and the color difference ΔEab. In these evaluations, when the transparent oxide film according to one embodiment of the present invention is formed on a transparent glass substrate by a sputtering method and immersed in an acidic aqueous solution or an alkaline aqueous solution, the amount of change in film thickness before and after being immersed in a chemical solution Is 2.0 nm or less, and the color difference of the transparent oxide film before and after the immersion is preferably such that the value of ΔEab in the L * a * b * color system is 1.0 or less.

具体的には、耐薬品性は酸、アルカリに対する耐薬品性を確認している。耐酸性は、5%濃度の塩酸とし、耐アルカリ性は5%濃度の水酸化ナトリウムの溶液にそれぞれ5分間浸漬し、その前後の色差ΔEab変化値として評価した。この色差ΔEabが大きいと処理前後で色味が変化しており、薬品により透明酸化物膜が溶出して変色したと推測される。この色差ΔEab変化値が1.0以下であると、薬品により透明酸化物膜の溶出が少なく耐薬品性があると判断できる。色差ΔEab変化値は、より好ましくは、0.5以下である。   Specifically, the chemical resistance has confirmed the chemical resistance with respect to an acid and an alkali. The acid resistance was 5% hydrochloric acid, and the alkali resistance was immersed in a 5% sodium hydroxide solution for 5 minutes, and the color difference ΔEab before and after the evaluation was evaluated. If this color difference ΔEab is large, the color changes before and after the treatment, and it is presumed that the transparent oxide film is eluted and discolored by the chemical. If the color difference ΔEab change value is 1.0 or less, it can be judged that the transparent oxide film is less eluted by chemicals and has chemical resistance. The color difference ΔEab change value is more preferably 0.5 or less.

色差の評価は、L*a*b*表色系(CIE1976)を用いる。L*a*b*表色系とは、L*は明度を、をa*、b*は色相と彩度を示し、色度で表わされ、L*は0〜100まで数値で示され大きい程ほど白色になる。a*は赤から緑への軸であり、+aは赤方向を−aは緑方向を表し、b*は黄から青への軸であり、+bは黄方向を−bは青方向を表し、a*b*ともに0の場合には無彩色となる。色差ΔEabは、CIE1976の色差計算式により算出する。薬品浸漬前後の透明酸化物スパッタ膜において、L*、a*、b*を測定し、その前後の差をΔL*、Δa*、Δb*とし、色差ΔEabは、((ΔL*)+(Δa*)+(Δb*)1/2で求める。 The color difference is evaluated using the L * a * b * color system (CIE 1976). In the L * a * b * color system, L * represents lightness, a *, b * represents hue and saturation, and is represented by chromaticity. L * is represented by a numerical value from 0 to 100. The larger it is, the more white it becomes. a * is the axis from red to green, + a is the red direction, -a is the green direction, b * is the axis from yellow to blue, + b is the yellow direction, -b is the blue direction, When both a * b * are 0, the color is achromatic. The color difference ΔEab is calculated by the CIE 1976 color difference calculation formula. In the transparent oxide sputtered film before and after chemical immersion, L *, a *, b * are measured, and the difference before and after the difference is ΔL *, Δa *, Δb *, and the color difference ΔEab is ((ΔL *) 2 + ( Δa *) 2 + (Δb *) 2 ) 1/2 .

薬液へ浸漬した前後の厚み変化は、耐酸性は、5%濃度の塩酸とし、耐アルカリ性は5%濃度の水酸化ナトリウムの溶液にそれぞれ5分間浸漬し、試料を浸漬させた薬液をICP−AES法(島津製作所製 ICPS―8100)でZnとSnの溶解量を確認し、その結果と成膜面積と膜密度から膜厚の減り量(膜変化量)を試算することができる。耐酸性は、5%濃度の塩酸とし、耐アルカリ性は、5%濃度の水酸化ナトリウムの溶液に5分間浸漬した後の膜厚の減り量(膜変化量)が2.0nm以下であれば耐薬品性があると判断できる。   The thickness change before and after being immersed in the chemical solution was acid resistance of 5% hydrochloric acid, alkali resistance was immersed in a 5% sodium hydroxide solution for 5 minutes each, and the chemical solution in which the sample was immersed was ICP-AES. The amount of dissolution of Zn and Sn can be confirmed by the method (ICPS-8100, manufactured by Shimadzu Corporation), and the amount of film thickness reduction (film change amount) can be estimated from the results, film formation area and film density. The acid resistance is 5% hydrochloric acid, and the alkali resistance is as long as the decrease in film thickness (film change amount) after being immersed in a 5% sodium hydroxide solution for 5 minutes is 2.0 nm or less. It can be judged that there is chemical nature.

前述したように、酸化スズ(SnO)系は耐薬品性の極めて高い特性がある。ZnとSnとを含有する非晶質の透明酸化物膜を、主成分をSnOより、金属原子数比で、Sn/(Zn+Sn)で0.44以上0.9以下にする事で、この色差ΔEab変化値は、1.0以下とすることができ、膜変化量も2.0nm以下にすることができる。 As described above, the tin oxide (SnO 2 ) system has extremely high chemical resistance. By making an amorphous transparent oxide film containing Zn and Sn into Sn / (Zn + Sn) 0.44 or more and 0.9 or less in Sn / (Zn + Sn) as a main component from SnO 2 as a main component. The color difference ΔEab change value can be 1.0 or less, and the film change amount can also be 2.0 nm or less.

本発明の一実施形態に係る透明酸化物膜において、水蒸気透過率は、膜厚の影響を受ける。水蒸気透過率は、膜厚が厚い程、水蒸気透過率が小さくなる。よって、必要な水蒸気透過率を考慮した上で、膜厚を適宜設定する。   In the transparent oxide film according to one embodiment of the present invention, the water vapor transmission rate is affected by the film thickness. As the water vapor transmission rate increases, the water vapor transmission rate decreases as the film thickness increases. Therefore, the film thickness is appropriately set in consideration of the necessary water vapor transmission rate.

また、本発明の一実施形態に係る透明酸化物膜において、透明酸化物膜のJIS規格のK7129法に従って指定された差圧法による水蒸気透過率が、膜厚が50nm以上〜100nm以下では、0.015g/m/day以下となり、10nm以上〜50nm未満では、0.08g/m/day以下であることが好ましい。 In the transparent oxide film according to an embodiment of the present invention, when the water vapor transmission rate by the differential pressure method specified in accordance with the JIS standard K7129 method of the transparent oxide film is 50 nm to 100 nm, 015g / m 2 / day or less and becomes, in less than 10 nm up to 50 nm, preferably not more than 0.08g / m 2 / day.

以上より、本発明の一実施形態に係る透明酸化物膜によれば、量産性の高い直流スパッタリングにて、優れた水蒸気バリア性能と耐薬品性の両方を有し、フレキシブル性にも優れた透明酸化物膜となる。   As mentioned above, according to the transparent oxide film concerning one embodiment of the present invention, it has both excellent water vapor barrier performance and chemical resistance in DC sputtering with high mass productivity, and is transparent with excellent flexibility. It becomes an oxide film.

<2.酸化物焼結体>
次に、本発明の一実施形態に係る透明酸化物膜をスパッタリング法により成膜するために用いられるSn−Zn−O系の酸化物焼結体について説明する。本発明の一実施形態に係る酸化物焼結体は、酸化物スパッタ膜をスパッタリングする時に用いるスパッタリングターゲットに構成されるSn−Zn−O系酸化物焼結体である。
<2. Oxide sintered body>
Next, an Sn—Zn—O-based oxide sintered body used for forming a transparent oxide film according to an embodiment of the present invention by a sputtering method will be described. The oxide sintered body according to one embodiment of the present invention is a Sn—Zn—O-based oxide sintered body configured as a sputtering target used when sputtering an oxide sputtered film.

そして、上記酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.9以下であることを特徴とする。上記の酸化物焼結体の特性が、透明酸化物膜に引き継がれる。   And Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn contained in the said oxide sintered compact is 0.44 or more and 0.9 or less, It is characterized by the above-mentioned. The characteristics of the oxide sintered body are inherited by the transparent oxide film.

また、上記酸化物焼結体は、さらにTa及びGeを含有し、上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることが好ましい。なお、本発明の一実施形態に係る酸化物焼結体の組成範囲の技術的意義は、上述した通りである。   The oxide sintered body further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is 0.01 or less, and the Ge, Zn, Sn, It is preferable that Ge / (Zn + Sn + Ge + Ta) of the Ta metal atom number ratio is 0.04 or less. The technical significance of the composition range of the oxide sintered body according to one embodiment of the present invention is as described above.

本発明の一実施形態に係る酸化物焼結体に関して、以下に限定はされないが、具体的な焼結体の製造方法を挙げる。まず、Znの酸化物粉末、Snの酸化物粉末とTa及びGeの添加元素を含有する酸化物粉末を、上記に説明した好ましい金属原子数比となるように調整し混合する。そして、上記の造粒粉末を純水又は超純水、有機バインダー、分散剤、消泡剤を入れて混合する。   The oxide sintered body according to one embodiment of the present invention is not limited to the following, but a specific method for manufacturing the sintered body is given. First, an oxide powder of Zn, an oxide powder of Sn, and an oxide powder containing additive elements of Ta and Ge are adjusted and mixed so as to have the preferable metal atom number ratio described above. Then, the granulated powder is mixed with pure water or ultrapure water, an organic binder, a dispersant, and an antifoaming agent.

次いで、硬質ZrOボールが投入されたビーズミル装置等を用いて、原料粉末を湿式粉砕した後、混合撹拌してスラリーを得る。得られたスラリーをスプレードライヤー装置等にて噴霧及び乾燥することで造粒粉末を得ることができる。 Next, the raw material powder is wet pulverized using a bead mill apparatus or the like into which hard ZrO 2 balls are charged, and then mixed and stirred to obtain a slurry. A granulated powder can be obtained by spraying and drying the obtained slurry with a spray dryer or the like.

次に、上記の造粒粉末を加圧成形して成形体を得る。造粒粉末の粒子間の空孔を除去するために、例えば294MPa(3.0ton/cm)程度の圧力で加圧成形を行う。加圧成形の方法については特に限定されないが、例えば、上記造粒粉末をゴム型へ充填し、高圧力を加えることが可能な冷間静水圧プレス(CIP:Cold Isostatic Press)を用いることが好ましい。 Next, the granulated powder is pressure-molded to obtain a molded body. In order to remove voids between the particles of the granulated powder, pressure molding is performed at a pressure of about 294 MPa (3.0 ton / cm 2 ), for example. The method of pressure molding is not particularly limited, but for example, it is preferable to use a cold isostatic press (CIP) capable of filling the granulated powder into a rubber mold and applying a high pressure. .

次に、上記の成形体を焼成して酸化物焼結体を得る。焼成炉内の所定の昇温速度において、所定の温度でかつ所定の時間の条件において、上記の成形体を焼成して酸化物焼結体を得る。焼成は、例えば、大気中の焼成炉内雰囲気において焼成する。この焼結炉内における700℃から所定の焼結温度までの昇温速度は、0.3〜1.0℃/minの速度で成形体を焼成することが好ましい。これは、ZnO、SnOやZnSnO化合物の拡散を促進させ、焼結性を向上させると共に導電性を向上させる効果があるためである。また、このような昇温速度とすることで、高温域では、ZnOやZnSnOの揮発を抑制する効果もある。 Next, the molded body is fired to obtain an oxide sintered body. The above-mentioned compact is fired at a predetermined temperature rise rate in the firing furnace at a predetermined temperature and for a predetermined time to obtain an oxide sintered body. For example, the firing is performed in an atmosphere in a firing furnace in the air. The molded body is preferably fired at a rate of temperature increase from 700 ° C. to a predetermined sintering temperature in the sintering furnace at a rate of 0.3 to 1.0 ° C./min. This is because there is an effect of promoting diffusion of ZnO, SnO 2 and Zn 2 SnO 4 compound, improving sinterability and improving conductivity. Further, by such a heating rate in the high temperature region, there is also the effect of suppressing the volatilization of the ZnO and Zn 2 SnO 4.

焼結炉内における昇温速度が0.3℃/min未満の場合においては、化合物の拡散が低下する。一方、1.0℃/minを超える場合は、昇温速度が速いため、化合物の形成が不完全となり、緻密な酸化物焼結体を作製することができない。   When the rate of temperature increase in the sintering furnace is less than 0.3 ° C./min, the diffusion of the compound decreases. On the other hand, when the temperature exceeds 1.0 ° C./min, the rate of temperature rise is high, so that the formation of the compound is incomplete and a dense oxide sintered body cannot be produced.

昇温後の焼結温度は、1300℃以上1400℃以下とすることが好ましい。焼結温度が1300℃未満の場合、温度が低過ぎて、ZnO、SnO、ZnSnO化合物における焼結の粒界拡散が進まない。一方、1400℃を超える場合でも、粒界拡散が促進されて焼結は進むが、Zn成分の揮発を抑制することができず、酸化物焼結体の内部に空孔を大きく残してしまうことになる。 The sintering temperature after the temperature rise is preferably 1300 ° C. or higher and 1400 ° C. or lower. When the sintering temperature is less than 1300 ° C., the temperature is too low and the grain boundary diffusion of sintering in the ZnO, SnO 2 , Zn 2 SnO 4 compound does not proceed. On the other hand, even when the temperature exceeds 1400 ° C., grain boundary diffusion is promoted and sintering proceeds, but volatilization of the Zn component cannot be suppressed, leaving large voids inside the oxide sintered body. become.

昇温後の保持時間は、15時間以上25時間以下とすることが好ましい。保持時間が15時間未満の場合には、焼結が不完全なため、歪や反りの大きい焼結体になると共に、粒界拡散が進まず、焼結が進まない。この結果、緻密な焼結体を作製することができない。一方、25時間を超える場合、ZnOやZnSnOの揮発が多くなり、酸化物焼結体の密度の低下や作業効率の悪化、及びコスト高の結果を招く。 The holding time after the temperature rise is preferably 15 hours or more and 25 hours or less. When the holding time is less than 15 hours, sintering is incomplete, resulting in a sintered body with large distortion and warpage, and grain boundary diffusion does not proceed and sintering does not proceed. As a result, a dense sintered body cannot be produced. On the other hand, when it exceeds 25 hours, the volatilization of ZnO and Zn 2 SnO 4 increases, resulting in a decrease in the density of the oxide sintered body, a deterioration in work efficiency, and a high cost.

以上より、本発明の一実施形態に係る酸化物焼結体によれば、量産性の高い直流スパッタリングにて、優れた水蒸気バリア性能と耐薬品性の両方を有し、フレキシブル性にも優れた透明酸化物膜を得ることができる。   From the above, according to the oxide sintered body according to one embodiment of the present invention, both high water vapor barrier performance and chemical resistance are obtained by high-productivity direct current sputtering, and the flexibility is also excellent. A transparent oxide film can be obtained.

なお、酸化物焼結体から構成されるスパッタリングターゲットは、以下により作製する。まず、上述した酸化物焼結体を機械研削加工し所望のサイズにすることで、加工体(ターゲット材)が得られる。得られた加工体を銅材、ステンレス材等からなるバッキングプレートにインジウム(In)等の接合材等を用いて張合わせる(ボンディング)ことによって、スパッタリングターゲットが得られる。スパッタリングターゲットは、酸化物焼結体が複数枚貼り合わされたものであっても構わない。   In addition, the sputtering target comprised from oxide sintered compact is produced by the following. First, a processed body (target material) is obtained by mechanically grinding the above-described oxide sintered body to obtain a desired size. A sputtering target is obtained by bonding the obtained processed body to a backing plate made of a copper material, a stainless material, or the like using a bonding material such as indium (In). The sputtering target may be a laminate of a plurality of oxide sintered bodies.

<3.透明酸化物膜の製造方法>
次に、本発明の一実施形態に係る透明酸化物膜の製造方法について説明する。本発明の一実施形態に係る透明酸化物膜の製造方法は、Sn−Zn−O系の酸化物焼結体を用いてスパッタリングし、非晶質の透明酸化物膜を得るものである。
<3. Manufacturing method of transparent oxide film>
Next, the manufacturing method of the transparent oxide film which concerns on one Embodiment of this invention is demonstrated. The method for producing a transparent oxide film according to an embodiment of the present invention includes sputtering using a Sn—Zn—O-based oxide sintered body to obtain an amorphous transparent oxide film.

そして、透明酸化物膜のスパッタ時に用いられる上述した酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.9以下の焼結体で、構成されたターゲット用意する。なお、上記の範囲の技術的意義は、上述した通りである。   And the sintered body of Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn contained in the above-mentioned oxide sintered body used at the time of sputtering of the transparent oxide film is 0.44 or more and 0.9 or less, Prepare a configured target. The technical significance of the above range is as described above.

また、上記透明酸化物膜の膜厚は、100nm以下、好ましくは90nm以下となるように成膜することを特徴とする。このような膜厚にすれば、良好な水蒸気バリア性能と優れた耐薬品性を有し、かつよりフレキシブル性に優れた透明酸化物膜を提供することができる。   The transparent oxide film is formed to have a thickness of 100 nm or less, preferably 90 nm or less. With such a film thickness, it is possible to provide a transparent oxide film having good water vapor barrier performance and excellent chemical resistance and more excellent flexibility.

スパッタリングとしては、上述した酸化物焼結体から構成されたスパッタリングターゲットを用いてスパッタリングを行えばよい。スパッタリング装置は、特に限定はないが、直流マグネトロンスパッタ装置等を用いることができる。   Sputtering may be performed using a sputtering target composed of the above-described oxide sintered body. The sputtering apparatus is not particularly limited, and a direct current magnetron sputtering apparatus or the like can be used.

スパッタリングの条件としては、チャンバー内の真空度を1×10−4Pa以下に調整する。チャンバー内の雰囲気は、不活性ガスを導入する。不活性ガスは、アルゴンガス等であり、純度99.999質量%以上が好ましい。また、不活性ガスには全ガス流量に対して酸素を4〜10容量%含有させる。酸素濃度は、膜の表面抵抗値に影響を及ぼすため、所定の抵抗値になるように酸素濃度を設定する。その後、所定の直流電源を用い、スパッタリングターゲット−基材間に投入して、直流パルシングによるプラズマを発生させ、スパッタリングを行い成膜する。なお、膜厚は、成膜時間で制御する。 As sputtering conditions, the degree of vacuum in the chamber is adjusted to 1 × 10 −4 Pa or less. An inert gas is introduced into the atmosphere in the chamber. The inert gas is argon gas or the like, and preferably has a purity of 99.999% by mass or more. The inert gas contains 4 to 10% by volume of oxygen with respect to the total gas flow rate. Since the oxygen concentration affects the surface resistance value of the film, the oxygen concentration is set to a predetermined resistance value. Thereafter, a predetermined direct current power source is used to put between the sputtering target and the base material, plasma is generated by direct current pulsing, and sputtering is performed to form a film. Note that the film thickness is controlled by the film formation time.

以上より、本発明の一実施形態に係る透明酸化物膜の製造方法によれば、量産性の高い直流スパッタリングにて、良好な透明性、水蒸気バリア性能、そして優れた耐薬品性を有し、フレキシブル性にも優れた透明酸化物膜を得ることができる。   As mentioned above, according to the manufacturing method of the transparent oxide film concerning one embodiment of the present invention, it has good transparency, water vapor barrier performance, and excellent chemical resistance by DC sputtering with high mass productivity. A transparent oxide film having excellent flexibility can be obtained.

<4.透明樹脂基板>
本発明の一実施形態に係る透明樹脂基板は、ZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.9以下である透明酸化物膜が上記基材の少なくとも一方の面に成膜されたものである。そして、上記透明酸化物膜の膜厚は、100nm以下、好ましくは90nm以下であることを特徴とする。
<4. Transparent resin substrate>
In the transparent resin substrate according to an embodiment of the present invention, a transparent oxide film having a Zn / Sn metal atom number ratio of Sn / (Zn + Sn) of 0.44 or more and 0.9 or less is at least one of the base materials. The film is formed on the surface. The film thickness of the transparent oxide film is 100 nm or less, preferably 90 nm or less.

透明な基材としては、ポリエチレンテレフタレート、ポリエチレン、ナフタレート、ポリカーボネイト、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、シクロオレフィンポリマー、フッ素樹脂、ポリプロピレン、ポリイミド樹脂、エポキシ樹脂、などが使用できる。また、透明樹脂基材の厚みは特に制限はないが、フレキシブル性、コストやデバイスのニーズを鑑みると50〜150μmであることが好ましい。   As the transparent substrate, polyethylene terephthalate, polyethylene, naphthalate, polycarbonate, polysulfone, polyethersulfone, polyarylate, cycloolefin polymer, fluororesin, polypropylene, polyimide resin, epoxy resin, and the like can be used. The thickness of the transparent resin substrate is not particularly limited, but is preferably 50 to 150 μm in view of flexibility, cost, and device needs.

透明樹脂基板へのスパッタリング方法は、透明酸化物膜の製造方法で説明したようにスパッタリングすれば良い。なお、上記ZnとSnの好適な金属原子数比や膜厚等の技術的意義は、上述した通りである。   The sputtering method for the transparent resin substrate may be performed as described in the method for producing the transparent oxide film. The technical significance such as the preferred metal atom number ratio and film thickness of Zn and Sn is as described above.

また、本発明の一実施形態に係る透明樹脂基板は、上記基材の少なくとも一方の面にZnとSnとを含有する非晶質の透明酸化物のスパッタ膜が形成されたものであるが、他の膜を介して積層してもよい。例えば、上記基材上に、酸化珪素膜や、窒化酸化珪素膜、樹脂膜、ウェットコート膜、金属膜、酸化物膜などが形成され、その後、耐薬品層として、上記の透明酸化物膜を少なくとも一方に形成してもよい。   Moreover, the transparent resin substrate according to an embodiment of the present invention is a substrate in which a sputtered film of an amorphous transparent oxide containing Zn and Sn is formed on at least one surface of the base material. You may laminate | stack through another film | membrane. For example, a silicon oxide film, a silicon nitride oxide film, a resin film, a wet coat film, a metal film, an oxide film, or the like is formed on the substrate, and then the transparent oxide film is used as a chemical resistant layer. You may form in at least one.

このように、本発明の一実施形態に係る透明樹脂基板を用いて、例えばフレキシブル表示素子の一つである液晶素子(LCD)、タッチパネル素子(TP)、電子ペーパー等を形成することが可能である。   As described above, for example, a liquid crystal element (LCD), a touch panel element (TP), electronic paper, or the like, which is one of flexible display elements, can be formed using the transparent resin substrate according to an embodiment of the present invention. is there.

以上より、本発明の一実施形態に係る透明樹脂基板によれば、量産性の高い直流スパッタリングにて、優れた水蒸気バリア性能と耐薬品性の両方を有し、フレキシブル性にも優れた透明樹脂基板となる。   As mentioned above, according to the transparent resin substrate which concerns on one Embodiment of this invention, it has both the outstanding water vapor | steam barrier performance and chemical-resistance in DC sputtering with high mass-productivity, and is also excellent in flexibility. It becomes a substrate.

以下、本発明の実施例について比較例も挙げて具体的に説明するが、本発明に係る技術的範囲が下記実施例の記載内容に限定されることはなく、本発明に適合する範囲で変更を加えて実施することも当然のことながら可能である。   Hereinafter, examples of the present invention will be specifically described with reference to comparative examples. However, the technical scope of the present invention is not limited to the description of the following examples, and changes are made within the scope suitable for the present invention. Of course, it is also possible to carry out by adding.

以下の実施例では、SnO粉と、ZnO粉とを使用した。また、添加元素を加える場合には、添加元素TaとしてTa粉と、添加元素GeとしてGeO粉とをそれぞれ使用した。 In the following examples, SnO 2 powder and ZnO powder were used. In addition, when adding an additive element, Ta 2 O 5 powder was used as the additive element Ta and GeO 2 powder was used as the additive element Ge.

(実施例1)
実施例1では、酸化スズを金属原子数比Sn/(Sn+Zn)として0.49となるように製造された焼結体を用いてスパッタリングターゲット(住友金属鉱山製)を作製し、このスパッタリングターゲットを用いてスパッタリング装置によりスパッタリングして成膜した。このスパッタリング装置は、直流マグネトロンスパッタ装置(アルバック社製、SH−550型)を使用した。樹脂フィルム基材には、PENフィルム(帝人製Q65 厚さ50μm)を用いた。
(Example 1)
In Example 1, a sputtering target (manufactured by Sumitomo Metal Mining Co., Ltd.) was prepared using a sintered body manufactured so that tin oxide had a metal atomic ratio Sn / (Sn + Zn) of 0.49. The film was formed by sputtering using a sputtering apparatus. As this sputtering apparatus, a direct current magnetron sputtering apparatus (manufactured by ULVAC, SH-550 type) was used. A PEN film (Teijin's Q65 thickness 50 μm) was used as the resin film substrate.

酸化物膜の成膜は以下の条件で行った。樹脂フィルム基材をカソード直上に配置し、ターゲットと樹脂フィルム基板との距離を80mmとした。チャンバー内の真空度が2×10−4Pa以下に達した時点で、純度99.9999質量%のアルゴンガスをチャンバー内に導入してガス圧0.6Paとし、酸素を5%含有させたアルゴンガス中で、直流電源としてDC電源装置(DELTA社製、MDX)を用い、20kHzの直流パルシングを採用した直流電力1500Wを、スパッタリングターゲット−フィルム基材間に投入して、直流パルシングによるプラズマを発生させ、フィルム基材上に膜厚100nmの透明酸化物膜をスパッタリングにより成膜した。 The oxide film was formed under the following conditions. The resin film base material was disposed immediately above the cathode, and the distance between the target and the resin film substrate was 80 mm. When the degree of vacuum in the chamber reaches 2 × 10 −4 Pa or less, argon gas having a purity of 99.9999% by mass is introduced into the chamber to a gas pressure of 0.6 Pa and argon containing 5% oxygen. In a gas, DC power source (MDX, manufactured by DELTA) is used as a DC power source, DC power 1500W adopting 20kHz DC pulsing is input between the sputtering target and the film substrate, and plasma is generated by DC pulsing. Then, a transparent oxide film having a thickness of 100 nm was formed on the film substrate by sputtering.

成膜中、取り付けた樹脂フィルムは、静止した状態とした。作成した透明酸化物膜の水蒸気透過率は、差圧法(Technolox社製DELTAPERM-UH)にて測定を実施した。   During the film formation, the attached resin film was kept stationary. The water vapor permeability of the prepared transparent oxide film was measured by a differential pressure method (DELTATAPRM-UH manufactured by Technolox).

次に基材をガラス基板(コーニング製EAGLE XG 厚さ0.70mm)とし、上記と同じ条件で同じ膜厚の透明酸化物膜を得た。   Next, the base material was a glass substrate (Corning EAGLE XG thickness 0.70 mm), and a transparent oxide film having the same film thickness was obtained under the same conditions as described above.

成膜した透明酸化物膜の結晶性は、X線回折測定し、回折ピークの観察を実施した。水蒸気透過率は差圧法(Technolox社製DELTAPERM-UH)にて測定を実施した。また、透過率を、波長550nmにおける可視光平均透過率とし、分光光度計(日本分光(株) V-670)で測定した。   The crystallinity of the formed transparent oxide film was measured by X-ray diffraction, and the diffraction peak was observed. The water vapor transmission rate was measured by a differential pressure method (DELTATAPRM-UH manufactured by Technolox). Moreover, the transmittance | permeability was made into the visible light average transmittance | permeability in wavelength 550nm, and it measured with the spectrophotometer (JASCO Corporation V-670).

また、耐薬品性は、以下の方法で評価した。200mlテフロンビーカーに5%HCl水溶液と5%NaOH水溶液をそれぞれ準備し、透明酸化物膜付きのガラス基板を5%HCl水溶液又は5%NaOH水溶液に浸漬させた。この時の5%HCl水溶液又は5%NaOH水溶液は撹拌されていない静止状態で、温度は、23℃とした。浸漬時間は、5分後ガラス基板を取り出し測定した。   The chemical resistance was evaluated by the following method. A 5% HCl aqueous solution and a 5% NaOH aqueous solution were respectively prepared in a 200 ml Teflon beaker, and a glass substrate with a transparent oxide film was immersed in the 5% HCl aqueous solution or the 5% NaOH aqueous solution. At this time, the 5% HCl aqueous solution or 5% NaOH aqueous solution was in a stationary state without stirring, and the temperature was 23 ° C. The immersion time was measured after taking out the glass substrate after 5 minutes.

膜厚変化量は、浸漬した薬液をICP−AES法(島津製作所製 ICPS―8100)より、膜の溶解量(ZnとSnの溶解量)を測定し、その結果と成膜面積と膜密度から膜厚変化量を算出した。また、色差ΔEabは、L*a*b*表色系を、分光測色計(コニカミノルタ株式会社 型式:CM-5)を用いて浸漬前後で測定し、色差ΔEabを算出した。なお、耐薬品性評価においては、基材が溶解しないようガラス基板に透明酸化物膜を成膜したものを用いた。結果を表1に示す。   The amount of change in film thickness is determined by measuring the amount of film dissolved (the amount of Zn and Sn dissolved) by ICP-AES method (ICPS-8100, manufactured by Shimadzu Corp.), and the results, film formation area and film density. The amount of change in film thickness was calculated. In addition, the color difference ΔEab was measured before and after immersion in the L * a * b * color system using a spectrocolorimeter (Konica Minolta Co., Ltd. model: CM-5) to calculate the color difference ΔEab. In the chemical resistance evaluation, a glass substrate with a transparent oxide film formed so as not to dissolve the base material was used. The results are shown in Table 1.

(実施例2)
実施例2では、スパッタリングにより膜厚が90nmとなるように成膜した以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Example 2)
In Example 2, a transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film thickness was 90 nm by sputtering. The results are shown in Table 1.

(実施例3)
実施例3では、スパッタリングにより膜厚が50nmとなるように成膜した以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Example 3)
In Example 3, a transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film thickness was 50 nm by sputtering. The results are shown in Table 1.

(実施例4)
実施例4では、スパッタリングにより膜厚が30nmとなるように成膜した以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
Example 4
In Example 4, a transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film thickness was 30 nm by sputtering. The results are shown in Table 1.

(実施例5)
実施例5では、スパッタリングにより膜厚が10nmとなるように成膜した以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Example 5)
In Example 5, a transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film thickness was 10 nm by sputtering. The results are shown in Table 1.

(実施例6)
実施例6では、金属原子数比Sn/(Zn+Sn)として0.68となる透明酸化物膜をスパッタリングにより膜厚50nmで成膜したこと以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Example 6)
In Example 6, a transparent oxide film was obtained in the same manner as in Example 1 except that a transparent oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.68 was formed by sputtering to a film thickness of 50 nm. The measurement was carried out. The results are shown in Table 1.

(実施例7)
実施例7では、金属原子数比Sn/(Zn+Sn)が0.49、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる透明酸化物膜をスパッタリングにより膜厚10nmで成膜したこと以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Example 7)
In Example 7, a transparent oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.49, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed by sputtering to a thickness of 10 nm. A transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film was formed. The results are shown in Table 1.

(実施例8)
実施例8では、金属原子数比Sn/(Zn+Sn)が0.90、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる透明酸化物膜をスパッタリングにより膜厚10nmで成膜したこと以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Example 8)
In Example 8, a transparent oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.90, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed by sputtering to a thickness of 10 nm. A transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film was formed. The results are shown in Table 1.

(実施例9)
実施例9では、金属原子数比Sn/(Zn+Sn)が0.90、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる透明酸化物膜をスパッタリングにより膜厚100nmで成膜したこと以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
Example 9
In Example 9, a transparent oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.90, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed by sputtering to a film thickness of 100 nm. A transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film was formed. The results are shown in Table 1.

(比較例1)
比較例1では、金属原子数比Sn/(Zn+Sn)として0.18となる透明酸化物膜をスパッタリングにより成膜したこと以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Comparative Example 1)
In Comparative Example 1, a transparent oxide film was obtained in the same manner as in Example 1 except that a transparent oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.18 was formed by sputtering, and measurement was performed. Carried out. The results are shown in Table 1.

(比較例2)
比較例2では、金属原子数比Sn/(Zn+Sn)として0.30となる透明酸化物膜をスパッタリングにより成膜したこと以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Comparative Example 2)
In Comparative Example 2, a transparent oxide film was obtained in the same manner as in Example 1 except that a transparent oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.30 was formed by sputtering, and measurement was performed. Carried out. The results are shown in Table 1.

(比較例3)
比較例3では、金属原子数比Sn/(Zn+Sn)が0.33、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる透明酸化物膜をスパッタリングにより膜厚10nmで成膜したこと以外は実施例1と同様にして透明酸化物膜を得て、測定を実施した。結果を表1に示す。
(Comparative Example 3)
In Comparative Example 3, a transparent oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.33, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed by sputtering to a film thickness of 10 nm. A transparent oxide film was obtained and measured in the same manner as in Example 1 except that the film was formed. The results are shown in Table 1.

Figure 2019163494
Figure 2019163494

表1より、本発明に含まれる実施例1〜9では、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が膜厚50〜100nm(実施例1、2、3、6、9)では、0.015g/m/day以下となり、膜厚50nm未満(実施例4、5、7、8)では、0.08g/m/day以下となり、良好な水蒸気バリア性能を有していることが分かる。さらに、耐薬品性評価における色差ΔEabが1.0以下であり、膜変化量が2.0nm以下となり、良好な耐薬品性を有することが分かった。また、 波長が550nmで測定した透過率も、80%以上あり透明性を有していることが分かった。なお、結晶性は、X線回折測定した結果、実施例1〜9の全てにおいて非晶質であった。 From Table 1, in Examples 1 to 9 included in the present invention, the water vapor transmission rate by the differential pressure method specified in accordance with the JIS standard K7129 method is a film thickness of 50 to 100 nm (Examples 1, 2, 3, 6, and 9). Then, it becomes 0.015 g / m 2 / day or less, and when the film thickness is less than 50 nm (Examples 4, 5, 7, and 8), it becomes 0.08 g / m 2 / day or less and has a good water vapor barrier performance I understand that. Furthermore, it was found that the color difference ΔEab in the chemical resistance evaluation was 1.0 or less, and the film change amount was 2.0 nm or less, thus having good chemical resistance. Further, the transmittance measured at a wavelength of 550 nm was 80% or more, and it was found to have transparency. The crystallinity was amorphous in all of Examples 1 to 9 as a result of X-ray diffraction measurement.

一方、透明酸化物膜のSn/(Zn+Sn)が0.19である比較例1では、耐薬品性評価において、透明酸化物膜が酸又はアルカリに対して溶解してしまった。   On the other hand, in Comparative Example 1 where Sn / (Zn + Sn) of the transparent oxide film was 0.19, the transparent oxide film was dissolved in acid or alkali in the chemical resistance evaluation.

また、透明酸化物膜のSn/(Zn+Sn)が0.30である比較例2や、透明酸化物膜のSn/(Zn+Sn)が0.33である比較例3では、耐薬品性評価の耐アルカリ性評価において、ΔEabの値が1.0を超え、また膜減り量も2.0nmを超えていた。従って、比較例2や比較例3の透明酸化物膜は耐薬品性に劣ることが分かった。   In Comparative Example 2 where Sn / (Zn + Sn) of the transparent oxide film is 0.30 and Comparative Example 3 where Sn / (Zn + Sn) of the transparent oxide film is 0.33, the resistance to chemical resistance evaluation In the alkalinity evaluation, the value of ΔEab exceeded 1.0, and the amount of film loss exceeded 2.0 nm. Therefore, it was found that the transparent oxide films of Comparative Example 2 and Comparative Example 3 were inferior in chemical resistance.

以上より、本発明によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能をもち、耐薬品性を備えた透明酸化物膜を得ることができた。   As described above, according to the present invention, a transparent oxide film having excellent transparency, good water vapor barrier performance, and chemical resistance can be obtained by DC sputtering with high mass productivity.

なお、上記のように本発明の一実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although one embodiment and each example of the present invention have been described in detail as described above, it will be understood by those skilled in the art that many modifications that do not substantially depart from the novel matters and effects of the present invention are possible. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、透明酸化物膜、透明酸化物膜の製造方法、酸化物焼結体及び透明樹脂基板の構成も本発明の一実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the transparent oxide film, the method for producing the transparent oxide film, the oxide sintered body, and the transparent resin substrate are not limited to those described in one embodiment and each example of the present invention, and various modifications are made. Is possible.

本発明に係る透明酸化物膜を利用して、水蒸気バリア性透明樹脂基板を形成することが可能となり、該水蒸気バリア性透明樹脂基板を利用することで、形状の自由度、局面表示などを有する、液晶表示素子や電子ペーパーなどを作製することが可能となる。従って、本発明は、工業的に極めて価値が高い。   By using the transparent oxide film according to the present invention, it becomes possible to form a water vapor barrier transparent resin substrate, and by using the water vapor barrier transparent resin substrate, it has a degree of freedom in shape, an aspect display, and the like. In addition, a liquid crystal display element, electronic paper, and the like can be manufactured. Therefore, the present invention is extremely valuable industrially.

Claims (9)

ZnとSnとを含有する非晶質の透明酸化物膜であって、
金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下であり、
膜厚が100nm以下である透明酸化物膜。
An amorphous transparent oxide film containing Zn and Sn,
In the metal atom number ratio, Sn / (Zn + Sn) is 0.44 or more and 0.90 or less,
A transparent oxide film having a thickness of 100 nm or less.
さらに、Ta及びGeを含有し、
前記Zn、Sn、Ta、及びGeの原子数比において、
Ta/(Zn+Sn+Ge+Ta)が0.01以下、Ge/(Zn+Sn+Ge+Ta)が0.04以下である請求項1に記載の透明酸化物膜。
Furthermore, it contains Ta and Ge,
In the atomic ratio of Zn, Sn, Ta, and Ge,
The transparent oxide film according to claim 1, wherein Ta / (Zn + Sn + Ge + Ta) is 0.01 or less and Ge / (Zn + Sn + Ge + Ta) is 0.04 or less.
当該透明酸化物膜を、5%濃度の塩酸又は5%濃度の水酸化ナトリウム水溶液に5分間浸漬した前後の色差ΔEab変化値が1.0以下である請求項1又は請求項2に記載の透明酸化物膜。   3. The transparent according to claim 1, wherein the transparent oxide film has a color difference ΔEab change value of 1.0 or less before and after immersing the transparent oxide film in 5% concentration hydrochloric acid or 5% concentration sodium hydroxide aqueous solution for 5 minutes. Oxide film. 当該透明酸化物膜を、5%濃度の塩酸又は5%濃度の水酸化ナトリウム水溶液に5分間浸漬した前後の膜厚の変化量が2.0nm以下である請求項1乃至請求項3のいずれか1項に記載の透明酸化物膜。   The amount of change in film thickness before and after immersing the transparent oxide film in 5% concentration hydrochloric acid or 5% concentration sodium hydroxide aqueous solution for 5 minutes is 2.0 nm or less. 2. The transparent oxide film according to item 1. JIS規格のK7129法に従って指定された差圧法による水蒸気透過率は、当該透明酸化物膜の膜厚が50nm以上〜100nm以下では、0.015g/m/day以下であり、
当該透明酸化物膜の膜厚が10nm以上〜50nm未満では、0.08g/m/day以下である請求項1乃至請求項4のいずれか1項に記載の透明酸化物膜。
The water vapor transmission rate by the differential pressure method specified in accordance with the JIS standard K7129 method is 0.015 g / m 2 / day or less when the film thickness of the transparent oxide film is 50 nm to 100 nm.
5. The transparent oxide film according to claim 1, wherein the transparent oxide film has a thickness of 0.08 g / m 2 / day or less when the film thickness is 10 nm to less than 50 nm.
請求項1乃至請求項5のいずれか1項に記載の透明酸化物膜をスパッタリング法により成膜するために用いられるSn−Zn−O系の酸化物焼結体であって、
前記酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.90以下であることを特徴とする酸化物焼結体。
An Sn-Zn-O-based oxide sintered body used for forming the transparent oxide film according to any one of claims 1 to 5 by a sputtering method,
An oxide sintered body characterized in that Sn / (Zn + Sn) in the metal atom number ratio of Zn and Sn contained in the oxide sintered body is 0.44 or more and 0.90 or less.
さらにTa及びGeを含有し、
前記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下で、
前記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることを特徴とする請求項6に記載の酸化物焼結体。
Furthermore, it contains Ta and Ge,
Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is 0.01 or less,
7. The oxide sintered body according to claim 6, wherein Ge / (Zn + Sn + Ge + Ta) in the metal atom number ratio of Ge to Zn, Sn, and Ta is 0.04 or less.
Sn−Zn−O系の酸化物焼結体からなるターゲットを用いてスパッタリングし、透明酸化物膜を得る透明酸化物膜の製造方法であって、
前記スパッタリング時に用いられる前記酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.90以下であり、
成膜する膜厚が100nm以下である透明酸化物膜の製造方法。
Sputtering using a target made of a Sn—Zn—O-based oxide sintered body to obtain a transparent oxide film,
Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn contained in the oxide sintered body used at the time of sputtering is 0.44 or more and 0.90 or less,
The manufacturing method of the transparent oxide film whose film thickness to form into a film is 100 nm or less.
請求項1乃至請求項5のいずれか1項に記載の透明酸化物膜が透明な樹脂基材の少なくとも一方の面に形成されている透明樹脂基板。   The transparent resin substrate in which the transparent oxide film of any one of Claim 1 thru | or 5 is formed in the at least one surface of the transparent resin base material.
JP2018050676A 2018-03-19 2018-03-19 Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate Pending JP2019163494A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018050676A JP2019163494A (en) 2018-03-19 2018-03-19 Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate
CN201980018058.XA CN111836912A (en) 2018-03-19 2019-01-24 Transparent oxide film, method for producing transparent oxide film, oxide sintered body, and transparent resin substrate
PCT/JP2019/002362 WO2019181191A1 (en) 2018-03-19 2019-01-24 Transparent oxide film, method for producing transparent oxide film, oxide sintered compact and transparent resin substrate
KR1020207026634A KR20200132873A (en) 2018-03-19 2019-01-24 Transparent oxide film, method for producing transparent oxide film, oxide sintered body and transparent resin substrate
TW108104537A TW201945319A (en) 2018-03-19 2019-02-12 Transparent oxide film, method for producing transparent oxide film, oxide sintered compact and transparent resin substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050676A JP2019163494A (en) 2018-03-19 2018-03-19 Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate

Publications (1)

Publication Number Publication Date
JP2019163494A true JP2019163494A (en) 2019-09-26

Family

ID=67986416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050676A Pending JP2019163494A (en) 2018-03-19 2018-03-19 Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate

Country Status (5)

Country Link
JP (1) JP2019163494A (en)
KR (1) KR20200132873A (en)
CN (1) CN111836912A (en)
TW (1) TW201945319A (en)
WO (1) WO2019181191A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250430A (en) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd Transparent conductive thin film and transparent conductive film using same
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate
JP2017145185A (en) * 2015-11-20 2017-08-24 住友金属鉱山株式会社 Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME
JP2017160105A (en) * 2016-03-04 2017-09-14 住友金属鉱山株式会社 Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889195B2 (en) 2003-09-26 2012-03-07 住友金属鉱山株式会社 Gas barrier transparent resin substrate, flexible display element using gas barrier transparent resin substrate, and method for producing gas barrier transparent resin substrate
JP4826066B2 (en) * 2004-04-27 2011-11-30 住友金属鉱山株式会社 Amorphous transparent conductive thin film and method for producing the same, and sputtering target for obtaining the amorphous transparent conductive thin film and method for producing the same
JP4552950B2 (en) * 2006-03-15 2010-09-29 住友金属鉱山株式会社 Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
JP5161470B2 (en) 2006-03-29 2013-03-13 富士フイルム株式会社 GAS BARRIER LAMINATED FILM, PROCESS FOR PRODUCING THE SAME, AND IMAGE DISPLAY ELEMENT
JP5593612B2 (en) * 2006-06-08 2014-09-24 住友金属鉱山株式会社 Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
JP5580972B2 (en) * 2008-06-06 2014-08-27 デクセリアルズ株式会社 Sputtering composite target
JP5735190B1 (en) * 2015-01-22 2015-06-17 Jx日鉱日石金属株式会社 Oxide sintered body, sputtering target, and oxide thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250430A (en) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd Transparent conductive thin film and transparent conductive film using same
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate
JP2017145185A (en) * 2015-11-20 2017-08-24 住友金属鉱山株式会社 Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME
JP2017160105A (en) * 2016-03-04 2017-09-14 住友金属鉱山株式会社 Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
KR20200132873A (en) 2020-11-25
WO2019181191A1 (en) 2019-09-26
CN111836912A (en) 2020-10-27
TW201945319A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
KR101321554B1 (en) An oxide sintered body and an oxide film obtained by using it, and a transparent base material containing it
JP5288142B2 (en) Sputtering target for oxide thin film and manufacturing method thereof
KR101313327B1 (en) Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base
KR101301662B1 (en) Oxide Sintered Body, Manufacturing Method therefor, Manufacturing Method for Transparent Conductive Film Using the Same, and Resultant Transparent Conductive Film
TWI400346B (en) Sputtering target, transparent conductive film and touch panel with transparent electrode
JP4816137B2 (en) Transparent conductive film and transparent conductive substrate
KR101184353B1 (en) Transparent conductive film, sintered body target for transparent conductive film fabrication, and transparent conductive base material and display device using the same
KR20100029780A (en) Oxide sinter, process for producing the same, target, and transparent conductive film and transparent conductive substrate both obtained from the target
KR20160133429A (en) Sintered oxide and transparent conductive oxide film
TWI720188B (en) Oxide sintered body, sputtering target and oxide semiconductor film
JP2014194066A (en) Complex oxide sintered body and oxide transparent conductive film
TWI669283B (en) Oxide sintered body and sputtering target material and their manufacturing method
JP2019163494A (en) Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate
JP2007113026A (en) Transparent electrically conductive film and transparent electrically conductive base material comprising the same
JP5327282B2 (en) Sintered body target for transparent conductive film production
WO2011102425A1 (en) Oxide sintered body, oxide mixture, manufacturing methods for same, and targets using same
WO2019150821A1 (en) Oxide sputtered film, method for manufacturing oxide sputtered film, oxide sintered compact, and transparent resin substrate
TW201805459A (en) Oxide sintered body and transparent conductive oxide film
WO2019202819A1 (en) Transparent oxide laminate film, method for producing transparent oxide laminate film, sputtering target, and transparent resin substrate
JP2012140673A (en) Zinc oxide based transparent conductive film forming material, method for producing the material, target using the material, and method for forming zinc oxide based transparent conductive film
JP2017149594A (en) Oxide sintered body and oxide transparent conductive film
TW201522689A (en) Sputtering target and method for producing same
TW201938372A (en) Transparent oxide-laminated film, method for producing transparent oxide-laminated film, and transparent resin substrate
TW201339332A (en) In-Ga-Zn-O based oxide sintered body, manufacturing method thereof, sputtering target and oxide semiconductor film
JP2012140276A (en) Zinc oxide-based transparent conductive film forming material, target using the same, method for forming zinc oxide-based transparent conductive film, and transparent conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628