JPH11118615A - Temperature sensor for object to be measured having stretchability - Google Patents

Temperature sensor for object to be measured having stretchability

Info

Publication number
JPH11118615A
JPH11118615A JP27673997A JP27673997A JPH11118615A JP H11118615 A JPH11118615 A JP H11118615A JP 27673997 A JP27673997 A JP 27673997A JP 27673997 A JP27673997 A JP 27673997A JP H11118615 A JPH11118615 A JP H11118615A
Authority
JP
Japan
Prior art keywords
object
measured
temperature
casing
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27673997A
Other languages
Japanese (ja)
Inventor
Toshio Masaki
Kenjiro Mitsuhayashi
健次郎 三林
敏夫 正木
Original Assignee
Kakunenryo Cycle Kaihatsu Kiko
核燃料サイクル開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kakunenryo Cycle Kaihatsu Kiko, 核燃料サイクル開発機構 filed Critical Kakunenryo Cycle Kaihatsu Kiko
Priority to JP27673997A priority Critical patent/JPH11118615A/en
Publication of JPH11118615A publication Critical patent/JPH11118615A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To ensure temperature detection precision by maintaining the state of contact to be as constant as possible under an environment that relative displacement is generated between an object to be measured and a temperature sensor.
SOLUTION: This temperature sensor 10 comes into contact with an object 11 to be measured which has stretchability and measures its temperature. In this case, a casing 12 is connected with the object 11 to be measured and a temperature measuring element 13 is slidably inserted in the casing 12. An elastic member 14 which elastically presses the temperature measuring element 13 against the object 11 to be measured is interposed between the temperature measuring element 13 and the casing 12.
COPYRIGHT: (C)1999,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、熱や圧力、あるいは、振動等の影響を受けて伸縮する被測定物の温度測定に好適に用いられる温度センサに関する。 The present invention relates to a heat and pressure, or, to a temperature sensor which is suitably used in the temperature measurement of the object to be measured to stretch under the influence of vibration or the like.

【0002】 [0002]

【従来の技術】たとえば、図2に示す放射性廃棄物のガラス固化処理用の溶融ガラスを生成するガラス溶融炉1 BACKGROUND ART For example, a glass melting furnace 1 to generate a molten glass for vitrification of radioactive waste shown in Figure 2
では、ガラスが投入される浴槽2と、この浴槽2内に設置された加熱電極3との間に加熱交流電源4を接続しておき、これらの浴槽2と加熱電極3との間に、前記加熱交流電源4によって溶融電流を印加し、その時に発生するジュール熱を利用して前記ガラスを溶融し、この溶融ガラスGを、前記浴槽2の下部に連設されているノズル5から流下させて、前記浴槽2の下方に搬送されるガラス固化容器(図示略)内に充填するようにしている。 In a tub 2 in which the glass is turned in advance by connecting the heating AC power supply 4 between the heating electrode 3 disposed inside the tub 2, between these tub 2 and the heating electrode 3, the the melting current is applied by heating the AC power source 4, by utilizing the Joule heat generated at that time to melt the glass, the molten glass G, and caused to flow down from a nozzle 5 which is provided continuously at the bottom of the tub 2 , so that to fill in the vitrification container (not shown) which is conveyed to the lower bath 2.

【0003】そして、このようなガラス溶融炉1においては、極めて高い温度に加熱された溶融ガラスG中に挿入されている前記加熱電極3が高温にさらされて、前記熱による損傷を受けることが想定されることから、前記加熱電極3を耐熱合金によって形成するとともに、その温度を常時監視し、この温度情報に基づいて前記加熱電極3を冷却することにより、この加熱電極3を融点以下の温度に保持して、高温環境下における健全性を確保するとともにその長寿命化を図っている。 [0003] In such a glass melting furnace 1, that the heating electrode 3 is inserted into the heated molten glass G to a very high temperature is exposed to high temperatures, damaged by the heat from being assumed, the heating electrode 3 so as to form the heat-resistant alloy, to monitor the temperature at all times, by cooling the heating electrode 3 on the basis of this temperature information, the temperature of the heating electrode 3 below the melting point and held in, thereby achieving the longer life while securing the soundness of a high-temperature environment.

【0004】一方、前述したような加熱電極3の温度測定のために、従来では、前記加熱電極3の内部に、一端部からほぼ先端部に至る孔3aを形成しておき、この孔3a内に温度センサとしての熱電対6を挿入し、この熱電対6の測温部である先端を前記孔3aの先端底部に当接させるとともに、他端部近傍を前記加熱電極3の一端部に固定しておくことにより、この熱電対6の先端部において前記加熱電極3の温度を直接検出するようにしている。 On the other hand, for temperature measurement of the heating electrode 3 as described above, conventionally, the inside of the heating electrode 3, previously formed hole 3a extending substantially distal portion from one end, in the hole 3a insert the thermocouple 6 as a temperature sensor, fixing the tip is temperature measuring unit of the thermocouple 6 is brought into contact to the distal bottom of the hole 3a, the vicinity of the other end portion to one end portion of the heating electrode 3 by previously, and to detect the temperature of the heating electrode 3 directly at the tip of the thermocouple 6.

【0005】 [0005]

【発明が解決しようとする課題】ところで、前述したような加熱電極3の温度測定構造においては、つぎのような改善すべき問題点が残されている。 [SUMMARY OF THE INVENTION Incidentally, in the temperature measuring configuration of the heating electrode 3 as described above, improvement to the following problems remain.

【0006】すなわち、前記ガラス溶融炉1は約120 Namely, the glass melting furnace 1 is about 120
0℃程度の高温で運転されるが、通常、前記加熱電極3 0 is operated at a high temperature of about ℃ but usually the heating electrode 3
と熱電対6の保護管が異種材料によって形成されてそれぞれの熱膨張係数が異なることから、たとえば、前記加熱電極3の熱膨張係数の方が大きい場合には、ガラス溶融炉1の運転時間の経過とともに、加熱電極3と熱電対6の熱膨張量の差が広がり、熱電対6の測温部である先端と前記加熱電極3の底部内面との接触圧が低下し、あるいは、両者間が離間させられてしまい、この結果、前記加熱電極3から熱電対6への熱伝達形態が変化して前記熱電対6の温度検出精度にばらつきが生じてしまう。 A protective tube of the thermocouple 6 are respectively formed by different materials from thermal expansion coefficients are different, for example, the in the case towards the thermal expansion coefficient of the heating electrode 3 is large, the glass melting furnace 1 operating time Over the difference in thermal expansion amount of the heating electrode 3 and the thermocouple 6 is spread, the contact pressure between the thermocouple 6 at the temperature measuring part is distal and the inner bottom surface of the heating electrode 3 is reduced, or therebetween will be moved away, as a result, the heat transfer pattern is a variation in the change to the temperature detection accuracy of the thermocouple 6 occurs from the heating electrode 3 to thermocouple 6.

【0007】また、前記加熱電極3がガラス溶融炉1の運転温度まで加熱された状態において、前記熱電対6の先端と加熱電極3との接触状態が所定の状態となるように両者の取り付け状態を調整することにより、ガラス溶融炉1の運転状態での温度検出精度を確保することができるが、ガラス溶融炉1の運転が停止されてガラス溶融炉1の温度が低下すると、前記加熱電極3の収縮量が熱電対6の収縮量を大きく上回って、前記熱電対6に過度の荷重が作用し、これによって前記熱電対6に損傷を与えてしまうことが想定されるため、有効な手段とはなり得ていない。 Further, in a state in which the heating electrode 3 is heated to the operating temperature of the glass melting furnace 1, both the state of the attachment so that the contact state is a predetermined state between the tip and the heating electrode 3 of the thermocouple 6 by adjusting the, can be ensured the temperature detection accuracy at the operating conditions of the glass melting furnace 1, the operation of the glass melting furnace 1 is stopped temperature of the glass melting furnace 1 is lowered, the heating electrode 3 and the above amount of shrinkage is large contraction amount of the thermocouple 6, the thermocouple 6 to act excessive load, whereby since it is expected to become damaged to the thermocouple 6, and effective means I am not getting it.

【0008】そして、このような不具合は、前述したガラス溶融炉1のように、熱的な影響によって温度センサと被測定物との間に相対変位が生じる場合に限らず、被測定物に、何等かの外力が作用する環境下にあって、この外力によって前記被測定物が伸縮させられる場合や、 [0008] Then, such a problem, as the glass melting furnace 1 described above, not only when the relative displacement between the temperature sensor and the object to be measured is caused by thermal influence, the object to be measured, in the environment in which acts some kind of external force, and when the object to be measured by the external force is allowed to stretch,
振動等によって前記被測定物と温度センサとの間に相対的な変位が生じる場合においても同様に発生する。 Wherein the vibration is also similarly occurs when the relative displacement between the object to be measured and the temperature sensor occurs.

【0009】本発明は、このような従来の問題点に鑑みてなされたもので、被測定物と温度センサとの間に相対変位が生じるような環境下にあっても、これらの接触状態を極力一定に保持して、温度検出精度を確保するようにした伸縮性を有する被測定物用温度センサを提供することを目的とする。 [0009] The present invention has such has been made in view of the conventional problems, even in an environment such as relative displacement occurs between the object to be measured and the temperature sensor, these contact It holds as much as possible constant, and an object thereof is to provide a temperature sensor for the object to be measured having a stretchability which is adapted to secure the temperature detection accuracy.

【0010】 [0010]

【課題を解決するための手段】本発明の請求項1に係わる伸縮性を有する被測定物用温度センサは、前述した目的を達成するために、特に、被測定物に接続されるケーシングと、このケーシング内に摺動可能に嵌挿された測温素子と、この測温素子と前記ケーシングとの間に介装されて、前記測温素子を前記被測定物へ向けて弾性的に押圧する弾発部材とを備えていることを特徴としている。 Temperature sensor measured object having elasticity according to claim 1 of the present invention, in order to solve the problems] In order to achieve the object mentioned above, in particular, a casing connected to the object to be measured, a temperature measuring element inserted slidably fitted in the casing, is interposed between the temperature measuring element and the casing, resiliently pressed toward the temperature measuring element into the object to be measured It is characterized in that it comprises a resilient member.

【0011】また、本発明の請求項2に記載の伸縮性を有する被測定物用温度センサは、請求項1において、前記測温素子とケーシングとの間に、両者間を気密に遮蔽するとともに、両者の相対移動を許容する可撓性密封部材が設けられていることを特徴としている。 Further, the temperature sensor measured object having stretchability of claim 2 of the present invention, in claim 1, between the temperature measuring element and the casing, with shields between them airtight It is characterized in that the flexible sealing members to permit relative movement therebetween is provided.

【0012】 [0012]

【発明の実施の形態】以下、本発明の一実施形態について、図1を参照して説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to FIG.

【0013】本実施形態は、図2と同様に、ガラス溶融炉の加熱電極を被測定物とした例であり、この図1において符号10は、本実施形態に係わる温度センサを示し、この温度センサ10は、伸縮性を有する被測定物としての加熱電極11に接触してその温度を測定する温度センサであって、前記加熱電極11に接続されるケーシング12と、このケーシング12内に摺動可能に嵌挿された測温素子13と、この測温素子13と前記ケーシング12との間に介装されて、前記測温素子13を前記加熱電極11へ向けて弾性的に押圧する弾発部材14とを備えた概略構成となっている。 [0013] The present embodiment, like FIG. 2, the heating electrode of a glass melting furnace is an example of the object to be measured, reference numeral 10 in FIG. 1 shows a temperature sensor according to the present embodiment, the temperature sensor 10 is a temperature sensor to measure the temperature in contact with the heating electrode 11 as a measured object having stretchability, a casing 12 connected to the heating electrode 11, sliding in the casing 12 possible to fit interpolated temperature measuring element 13, this is interposed between the temperature sensing element 13 and the casing 12, resilient for resiliently pressing the temperature measuring element 13 toward the heating electrode 11 It has a general configuration that includes a member 14.

【0014】ついでこれらの詳細について説明すれば、 [0014] Next will describe these details,
前記ケーシング12は、前記加熱電極11の一端部に形成された取り付け孔11aに螺着されて、この取り付け孔11aを気密に閉塞する固定リング15と、この固定リング15に螺着されて、前記加熱電極11の外方へ突出した状態に保持される外筒16とによって構成されており、前記外筒16の内部には、その内部空間を軸方向に沿って2分割する隔壁16aが形成され、この隔壁1 The casing 12, the is screwed into the mounting hole 11a formed in one end portion of the heating electrode 11, and the fixing ring 15 for closing the mounting hole 11a in an airtight, is screwed into the fixing ring 15, the is constituted by an outer tube 16 which is held in a state protruding to the outside of the heating electrodes 11, inside of the outer cylinder 16, the partition wall 16a to 2 divided along the internal space in the axial direction is formed , the partition wall 1
6aおよび前記外筒16の突出側の端面のそれぞれには、軸方向に沿った貫通孔17・18が同軸上に形成されている。 Each of 6a and the end face of the protruding side of the outer cylinder 16, through holes 17, 18 along the axial direction are formed coaxially.

【0015】また、前記固定リング15と外筒16との螺着部には、これらの間を気密に閉塞するためのパッキン19が介装され、前記固定リング15と外筒16との螺着時に弾性変形させられて、これらの固定リング15 Further, the the screwed portion of the fixed ring 15 and the outer cylinder 16, the packing 19 for closing between them airtight is interposed, screwed with the fixing ring 15 and the outer cylinder 16 sometimes being elastically deformed, the fixing ring 15
と外筒16とに気密に圧着させられるようになっている。 It is adapted to be pressure-bonded hermetically to the outer cylinder 16 and.

【0016】前記外筒16の内部には、前記両貫通孔1 [0016] Inside of the outer cylinder 16, the both through-hole 1
7・18に摺動自在に嵌合された内筒20が装着されており、この内筒20は、その一端部(図における上端部)が前記外筒16の貫通孔18を貫通して外部へ突出させられているとともに、長さ方向の略中間部から他端部にかけて大径部20aが形成され、この大径部20a 7, 18 and cylinder 20 within which is slidably fitted is mounted on, the inner cylinder 20, the external one end (upper end in the figure) through the through hole 18 of the outer cylinder 16 together are caused to protrude into the large diameter portion 20a is formed toward the other end from the substantially middle portion in the longitudinal direction, the large-diameter portion 20a
は、前記外筒16の他端部から突出させられるとともに、前記固定リング15に摺動自在に嵌合させられて、 , Together are protruded from the other end of the outer cylinder 16, it is brought slidably fitted to the fixed ring 15,
前記加熱電極11内へ突出させられている。 It is allowed to protrude to the heating electrode 11.

【0017】前記測温素子13は、熱電対21と、この熱電対13を覆って設けられた保護管22とによって構成されており、この保護管22が前記内筒20の他端部に嵌合固定され、また、前記熱電対13に接続されている信号線21aが前記内筒20の一端部から外部へ引き出されているとともに、この内筒20の一端部および略中間部においてエポキシ樹脂等によって気密に固着されている。 [0017] The temperature measuring element 13, the thermocouple 21, is constituted by a protective tube 22 which is provided to cover the thermocouple 13, the protective tube 22 is fitted to the other end of the inner cylinder 20 It is if fixed, also with a signal line 21a connected to the thermocouple 13 is drawn out to the outside from one end of the inner cylinder 20, an epoxy resin or the like at one end and a substantially intermediate portion of the inner tube 20 It is fixed in an air-tight by.

【0018】前記弾発部材14は、本実施形態においては圧縮スプリングが用いられており、前記外筒16の隔壁16aと前記内筒20の大径部20aの端面との間に架装され、前記内筒20を、その他端部が前記固定リング15から突出する方向に弾発するようになされている。 [0018] The resilient member 14, in the present embodiment have been used compression spring, is the bodywork between the end face of the large diameter portion 20a of the partition wall 16a and the inner cylinder 20 of the outer cylinder 16, the inner cylinder 20 are adapted to emit bullet in the direction in which its other end protrudes from the fixed ring 15.

【0019】さらに、本実施形態においては、前記外筒16の内面と内筒20の外面との間に、伸縮自在な可撓性密封部材としてのベローズ23が配設されているとともに、このベローズ23の各端部が、前記外筒16ならびに内筒20へ溶接等によって気密に接続され、このベローズ23により、前記内筒20の外筒16に対する軸方向の相対移動が許容された状態で、前記外筒16と内筒20との間が気密に保持されている。 Furthermore, in this embodiment, between the outer surface of the inner surface and the inner cylinder 20 of the outer cylinder 16, with the bellows 23 as a retractable flexible sealing member is disposed, the bellows each end of the 23 is connected hermetically by welding or the like to the outer cylinder 16 and inner cylinder 20, by the bellows 23, in a state in which relative axial movement is permitted relative to the outer tube 16 of the inner tube 20, between the inner tube 20 and the outer cylinder 16 is kept airtight.

【0020】このように構成された本実施形態に係わる温度センサ10は、まず、前記固定リング15を加熱電極11の取り付け孔11aに螺着しておき、この固定リング15内に前記測温素子13を、その保護管22を先にして挿入するとともに、この保護管22を支持する内筒20の大径部20aを前記固定リング15に挿入し、 [0020] Temperature sensor 10 according to this embodiment thus configured, first, leave screwed the fixing ring 15 into the mounting hole 11a of the heating electrodes 11, the temperature measuring element to the fixed ring 15 13, is inserted with its protective tube 22 previously, insert a large-diameter portion 20a of the inner cylinder 20 for supporting the protective tube 22 to the fixed ring 15,
ついで、前記外筒16を前記固定リング15へ螺着することによって加熱電極11に取り付けられる。 Then, mounted on the heating electrode 11 by screwing the outer cylinder 16 to the fixing ring 15.

【0021】このような外筒16の固着操作に伴い、前記測温素子13の保護管22が漸次加熱電極11の内面底部へ向けて押し込まれて、その先端が加熱電極の底部に当接させられた時点で、前記保護管22の移動が停止させられるが、さらに、前記外筒16の螺着を進めると、この外筒16と内筒20との間に介装されている弾発部材14が圧縮されて、前記内筒20が加熱電極11 [0021] With the fixing operation of such outer cylinder 16, the protective tube 22 of the temperature sensing element 13 is pushed gradually toward the inner surface the bottom of the heating electrode 11, is brought into contact with the bottom of the tip is heated electrodes in was time, wherein at movement of the protective tube 22 is stopped, further, when advancing the screwing of the outer cylinder 16, Tamahatsu member is interposed between the outer cylinder 16 and the inner cylinder 20 14 is compressed, the inner cylinder 20 is heated electrodes 11
の内側へ向けて弾発されるとともに、前記保護管22の先端が、前記加熱電極11の内部底面へ弾性的に接触させられる。 With emitted toward inward bullet tip of the protective tube 22 is elastically contacted to the inner bottom surface of the heating electrode 11.

【0022】そして、前記外筒16を固定リングの所定位置まで螺合させると、前記弾発部材14が所定量圧縮され、これによって、前記保護管22が前記加熱電極1 [0022] Then, when screwing the outer tube 16 to a predetermined position of the fixing ring, the resilient member 14 is compressed a predetermined amount, whereby the protective tube 22 is the heating electrode 1
1へ所定圧力で接触させられるとともに、外筒16と固定リング15との間に装着されているパッキング19 Together are contacted to 1 at a predetermined pressure, packing is mounted between the outer cylinder 16 and the stationary ring 15 19
が、前記外筒16と固定リング15とに圧接させられることにより、両者間が気密に保持される。 But by being brought into pressure contact to the fixing ring 15 and the outer cylinder 16, between them they are kept airtight.

【0023】このようにして取り付けられた温度センサ10は、前記加熱電極11の温度を、この加熱電極11 [0023] In this way the temperature sensor 10 attached to the temperature of the heating electrodes 11, the heating electrode 11
が接触させられている保護管22の先端部を介して熱電対21によって検出し、その検出結果を、前記信号線2 There was detected by the thermocouple 21 via the tip of the protective tube 22 are brought into contact, the detection result, the signal line 2
1aを介して図示しない制御装置等へ送出する。 1a and sends to the control device (not shown) or the like via a.

【0024】一方、ガラス溶融炉の運転や運転停止による炉内温度の変化により、前記加熱電極11の温度も変化し、これに伴って、加熱電極11が熱伸縮してその底部が前記ケーシング12に対して、図1に矢印(イ)で示すように、接近離間する方向に熱伸縮する。 On the other hand, due to changes in furnace temperature by operation or shutdown of the glass melting furnace, temperature changes of the heating electrodes 11, along with this, the its bottom heating electrodes 11 by thermal expansion and contraction casing 12 relative, as indicated by the arrow (b) in FIG. 1, the thermal expansion and contraction in a direction toward and away from.

【0025】そして、前記測温素子13は、ケーシング12に摺動自在に設けられており、かつ、弾発部材14 [0025] Then, the temperature sensing element 13 is provided slidably in the casing 12, and the elastic member 14
によって前記加熱電極11の内部底面に弾性的に接触させられていることから、前述した加熱電極11の熱伸縮に追従して、前記測温素子13が内筒20とともに移動させられ、その結果、前記測温素子13の先端と前記加熱電極11の底部内面との接触状態がほぼ均一に維持される。 Wherein since it is brought into elastic contact with the inner bottom surface of the heating electrode 11, and follow the thermal expansion and contraction of the heating electrodes 11 described above, the temperature measuring element 13 is moved together with the inner cylinder 20, as a result by, contact between the tip and the inner bottom surface of the heating electrode 11 of the temperature measurement element 13 is maintained substantially uniformly.

【0026】したがって、ガラス溶融炉の運転条件に拘わらず、測温素子13が加熱電極11に常時接触状態に保持され、常に安定した温度測定が行なわれ、また、本実施形態においては、前記ケーシング12の外筒16 [0026] Thus, regardless of the operating conditions of the glass melting furnace, held in the temperature measurement element 13 is always contact with the heating electrode 11 is always stable temperature measurement is carried out, also in the present embodiment, the casing 12 of the outer cylinder 16
と、この外筒16に摺動自在に嵌挿された内筒20との間が伸縮自在なベローズ23によって気密に隔離されていることから、前記加熱電極11の内部と外気とが、前記ケーシング12の前記内筒20の摺動部分を介して連通させられることが防止され、前記加熱電極11内に冷却空気を送り込んでこの加熱電極11の過加熱を防止する構成とした場合において、不要な空気漏れが防止されて高効率の冷却が可能となって、前記加熱電極11の熱に対する健全性が確保される。 If, because it is isolated in airtight by telescopic bellows 23 between the tube 20 inner this has the outer cylinder 16 is slidably inserted, the inside and outside air of the heating electrode 11, the casing is prevented from being communicated through the sliding portion of the inner cylinder 20 of the 12, in the case of the configuration to prevent over heating of the heating electrode 11 by feeding cooling air into the heating electrode 11, unwanted air leakage is prevented enables cooling of high efficiency, integrity against heat of the heating electrode 11 is secured.

【0027】このように、本実施形態に係わる温度センサ10においては、伸縮する加熱電極11に対する測温素子13の接触状態が常時均一に保持されていることにより、温度センサ10による高精度の温度検出が確保され、また、加熱電極11内に冷却空気を送り込んでこの加熱電極11を冷却する場合にあっては、空気漏れが防止されて冷却効率が高められる。 [0027] Thus, in the temperature sensor 10 according to this embodiment, by the contact state of the temperature sensing element 13 to the heating electrodes 11 which expands and contracts is constantly kept uniform, high precision by the temperature sensor 10 Temperature detection is ensured, also, by feeding cooling air into the heating electrode 11 in the case of cooling the heating electrode 11, cooling efficiency is enhanced air leakage is prevented.

【0028】なお、前記実施形態において示した各構成部材の諸形状や寸法等は一例であって、設計要求等に基づき種々変更可能である。 [0028] Note that a various shape, size, etc. An example of the components described in the embodiments, and various modifications are possible based on design requirements.

【0029】たとえば、前記実施形態においては、伸縮性を有する被測定物として、ガラス溶融炉の、熱伸縮する加熱電極11を例示したが、外力を受けて伸縮させられる被測定物への適用も可能であり、また、被測定物の内側に測温素子13を接触させるようにした例について示したが、前記被測定物の外面に、その伸縮方向から当接させるようにしてもよいものである。 [0029] For example, in the above embodiment, the object to be measured having stretchability, the glass melting furnace has been described by way of heating electrodes 11 to thermal expansion and contraction, also be applied to the object to be measured is caused to stretch by an external force is possible, also, has been shown an example in which so as to contact the temperature sensing element 13 on the inside of the object to be measured, said the outer surface of the object to be measured, in which may be brought into contact from the stretching direction is there.

【0030】 [0030]

【発明の効果】以上説明したように、本発明の請求項1 As described in the foregoing, the first aspect of the present invention
に記載の伸縮性を有する被測定物用温度センサによれば、測温素子を被測定物に接触させた状態に保持するとともに、前記被測定物の伸縮に追従させて前記測温素子を移動させることができ、これによって、前記被測定物の温度を常時直接測定することができ、この結果、伸縮性を有する被測定物の温度測定を高精度に行なうことができる。 Move according to the temperature sensor for the object to be measured having stretchability according holds the temperature measuring element to be brought into contact with the object to be measured, said temperature measuring element so as to follow the expansion and contraction of the object to be measured it can be, thereby, the can always directly measure the temperature of the object to be measured, as a result, it is possible to perform the temperature measurement of the object to be measured having stretchability with high accuracy.

【0031】また、本発明の請求項2に記載の伸縮性を有する被測定物用温度センサによれば、前記測温素子の摺動部分の内外部の連通を遮断して、たとえば、冷却流体を循環させて被測定物を冷却する必要がある場合等において、測温素子の摺動部分の気密性を確保することにより、前記冷却流体の漏れ等を防止して冷却効率を高めることができる。 Further, according to the temperature sensor for the object to be measured having a stretchability of claim 2 of the present invention, to interrupt the communication of the inner and outer portions of the sliding portion of the temperature measuring element, for example, the cooling fluid can be a cycled in such cases it is necessary to cool the object to be measured, by ensuring the air-tightness of the sliding portion of the temperature measuring element, increasing the cooling efficiency and prevent leakage or the like of the cooling fluid .

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施例を示すもので要部の拡大縦断面図である。 1 is an enlarged longitudinal sectional view of a main part in show one embodiment of the present invention.

【図2】ガラス溶融炉の加熱電極の温度測定に用いられる温度センサの一構造例を示す縦断面図である。 2 is a longitudinal sectional view showing an example of the structure of a temperature sensor used for temperature measurement of the heating electrodes of the glass melting furnace.

【符号の説明】 DESCRIPTION OF SYMBOLS

10 温度センサ 11 加熱電極(熱伸縮性を有する被測定物) 12 ケーシング 13 測温素子 14 弾発部材 23 ベローズ(可撓性密封部材) 10 Temperature sensor 11 heating electrodes (DUT having thermal expansion properties) 12 casing 13 temperature measuring element 14 resiliently member 23 bellows (flexible sealing member)

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 伸縮性を有する被測定物と接触してその温度を測定する温度センサであって、前記被測定物に接続されるケーシングと、このケーシング内に摺動可能に嵌挿された測温素子と、この測温素子と前記ケーシングとの間に介装されて、前記測温素子を前記被測定物へ向けて弾性的に押圧する弾発部材とを備えていることを特徴とする伸縮性を有する被測定物用温度センサ。 1. A temperature sensor for measuring the temperature in contact with the object to be measured having stretchability, a casing connected to the object to be measured was inserted slidably fitted in the casing a temperature measuring element, and characterized in that it is interposed between the temperature measuring element and the casing, and a resilient member for resiliently pressing the temperature measuring element toward the object to be measured temperature sensor measured object having elasticity to be.
  2. 【請求項2】 前記測温素子とケーシングとの間に、両者間を気密に遮蔽するとともに、両者の相対移動を許容する可撓性密封部材が設けられていることを特徴とする請求項1に記載の伸縮性を有する被測定物用温度センサ。 Between wherein said temperature measuring element and the casing, claim with shields between them hermetically, characterized in that the flexible sealing members to permit relative movement therebetween is provided 1 temperature sensor measured object having stretchability described.
JP27673997A 1997-10-09 1997-10-09 Temperature sensor for object to be measured having stretchability Pending JPH11118615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27673997A JPH11118615A (en) 1997-10-09 1997-10-09 Temperature sensor for object to be measured having stretchability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27673997A JPH11118615A (en) 1997-10-09 1997-10-09 Temperature sensor for object to be measured having stretchability

Publications (1)

Publication Number Publication Date
JPH11118615A true JPH11118615A (en) 1999-04-30

Family

ID=17573675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27673997A Pending JPH11118615A (en) 1997-10-09 1997-10-09 Temperature sensor for object to be measured having stretchability

Country Status (1)

Country Link
JP (1) JPH11118615A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029532A3 (en) * 2007-08-24 2009-05-07 Asm Inc Thermocouple
US7874726B2 (en) 2007-05-24 2011-01-25 Asm America, Inc. Thermocouple
US7946762B2 (en) 2008-06-17 2011-05-24 Asm America, Inc. Thermocouple
JP2011179992A (en) * 2010-03-02 2011-09-15 Hitachi-Ge Nuclear Energy Ltd Exhaust gas recombiner and method for measuring temperature of catalyst used for it
USD702188S1 (en) 2013-03-08 2014-04-08 Asm Ip Holding B.V. Thermocouple
US9267850B2 (en) 2009-05-06 2016-02-23 Asm America, Inc. Thermocouple assembly with guarded thermocouple junction
US9297705B2 (en) 2009-05-06 2016-03-29 Asm America, Inc. Smart temperature measuring device
JP2016065554A (en) * 2014-09-22 2016-04-28 株式会社テイエルブイ Sensor fixture
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10480072B2 (en) 2009-04-06 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874726B2 (en) 2007-05-24 2011-01-25 Asm America, Inc. Thermocouple
WO2009029532A3 (en) * 2007-08-24 2009-05-07 Asm Inc Thermocouple
US7946762B2 (en) 2008-06-17 2011-05-24 Asm America, Inc. Thermocouple
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10480072B2 (en) 2009-04-06 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US9267850B2 (en) 2009-05-06 2016-02-23 Asm America, Inc. Thermocouple assembly with guarded thermocouple junction
US9297705B2 (en) 2009-05-06 2016-03-29 Asm America, Inc. Smart temperature measuring device
JP2011179992A (en) * 2010-03-02 2011-09-15 Hitachi-Ge Nuclear Energy Ltd Exhaust gas recombiner and method for measuring temperature of catalyst used for it
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
USD702188S1 (en) 2013-03-08 2014-04-08 Asm Ip Holding B.V. Thermocouple
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
JP2016065554A (en) * 2014-09-22 2016-04-28 株式会社テイエルブイ Sensor fixture
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10468262B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film

Similar Documents

Publication Publication Date Title
US4217463A (en) Fast responsive, high pressure thermocouple
DE4419138B4 (en) High temperature pressure sensor
US5193912A (en) Probe for sensing and measuring temperature
JP5127140B2 (en) Pressure / temperature common transducer
US4040930A (en) Oxygen sensor
EP2138819B1 (en) A piezoresistive pressure-measuring plug for a combustion engine
EP1166067B1 (en) Infrared thermometer with a heatable measuring tip and protective cap
KR100422999B1 (en) Seal for a sensor component of a gas sensor
CN100437042C (en) Flow sensor
EP1096141A2 (en) Glow Plug having a combustion pressure sensor
JP2007527541A (en) Device for detection of combustion chamber pressure in internal combustion engines
US4444990A (en) Heat sensing device
US2838935A (en) Temperature monitoring device
US7555932B2 (en) Combustion pressure sensor
US20070054630A1 (en) Arrangement and method for supplying electrical power to a field device in a process installation without the use of wires
CN1089162C (en) Infrared thermometer
FR2513759A1 (en) Thermocouple instrument
JP2009058156A (en) Glow plug with combustion pressure sensor
TW483087B (en) Plasma processing device, electrode structure thereof, and mounting base structure
EP0618058A1 (en) Injection molding machine pressure transducer
US20090296781A1 (en) High vibration thin film RTD sensor
JP2007507681A (en) Sheath-type glow plug with elastically supported glow tube
JPH03500687A (en)
US8893545B2 (en) Glow plug with combustion pressure sensor
US4070859A (en) Thermal fluid displacement actuator