JP3589954B2 - Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector - Google Patents

Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector Download PDF

Info

Publication number
JP3589954B2
JP3589954B2 JP2000202789A JP2000202789A JP3589954B2 JP 3589954 B2 JP3589954 B2 JP 3589954B2 JP 2000202789 A JP2000202789 A JP 2000202789A JP 2000202789 A JP2000202789 A JP 2000202789A JP 3589954 B2 JP3589954 B2 JP 3589954B2
Authority
JP
Japan
Prior art keywords
charge
electrode
electromagnetic wave
semiconductor film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000202789A
Other languages
Japanese (ja)
Other versions
JP2002026300A (en
Inventor
良弘 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000202789A priority Critical patent/JP3589954B2/en
Publication of JP2002026300A publication Critical patent/JP2002026300A/en
Application granted granted Critical
Publication of JP3589954B2 publication Critical patent/JP3589954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線等の放射線、可視光、赤外線等の電磁波による画像を検出できる電磁波検出器及び画像検出器に係り、半導体膜の局所的な構造変化や電荷阻止特性の不良の発生が少ない電磁波検出器及び画像検出器に関するものである。
【0002】
【従来の技術】
従来より、電磁波検出器の一種として、例えば、X線等の電磁波を感知して電荷(電子−正孔対)を発生する半導体膜、すなわち電磁波導電性を有する半導体膜と、画素電極等からなる半導体センサとを行方向及び列方向の二次元状に配置するとともに、各画素電極毎にスイッチング素子を設けて、各行毎にスイッチング素子を順次オンにして各列毎に上記電荷を読み出す二次元画像検出器が知られている。
【0003】
上記二次元画像検出器は、例えば、特開平4−212458号公報(対応米国特許第5132541号)、文献「 D. L. Lee, et al., ” A New Digital Detector for Projection Radiography ” ,SPIE,2432,pp.237−249,1995 」等にその構造や原理が記載されている。
【0004】
上記文献” A New Digital Detector for Projection Radiography ” に記載の従来の二次元画像検出器の構成と原理とについて以下に簡単に説明する。図3は、該文献に記載の二次元画像検出器の構成を示す断面図である。
【0005】
二次元画像検出器は、例えばSeからなり、電磁波導電性を示す半導体膜31を備え、この上層に単一のバイアス電極32が、下層に複数の電荷収集電極33…が形成されている。各電荷収集電極33は、それぞれ電荷蓄積容量(C)34及びスイッチング素子35に接続されている。また、半導体膜31とバイアス電極32との間には電荷阻止層として誘電体層36が設けられている。また、半導体膜31と電荷収集電極33との間には、電荷阻止層として電子阻止層37が設けられている。
【0006】
このような二次元画像検出器にX線等の電磁波が入射すると、半導体膜31内で電荷(電子−正孔対)が発生する。半導体膜31で発生した電子は+電極側に、正孔は−電極側に移動し、その結果、電荷蓄積容量34に電荷が蓄積される仕組みになっている。電荷蓄積容量34に蓄積された電荷は、スイッチング素子35をオンにすることで外部に取り出される。このような電荷収集電極33、電荷蓄積容量34、スイッチング素子35を二次元状に配置し、線順次に電荷を読み出していくことで、検出対象である電磁波の二次元情報を得ることが可能となる。
【0007】
一般に、電磁波導電性を有する半導体膜としては、Se、CdTe、CdZnTe、PbI、HgI、SiGe、Si等が使用されるが、上記文献においては、暗抵抗が高く、X線照射に対して良好な電磁波導電性を示し、真空蒸着法により低温で大面積成膜が可能な非晶質(アモルファス)材料が好まれ、アモルファスSe(a−Se)膜が広く用いられている。
【0008】
また、電荷収集電極としては、各種の金属膜や導電酸化膜が使用されているが、下記の理由により、ITO(Indium−Tin−Oxide)等の透明導電酸化膜が用いられることが多い。
【0009】
(1)二次元画像検出器において入射X線量が多い場合、不要な電荷が半導体膜中(あるいは半導体膜と隣接する層との界面付近)に捕獲されることがある。このような残留電荷は、長時間メモリーされたり、時間をかけつつ移動したりするので、以降の画像検出時にX線検出特性が劣化したり、残像(虚像)が現れたりして問題になる。そこで、特開平9−9153号公報(対応米国特許第5563421号)には、半導体膜に残留電荷が発生した場合に、半導体膜の外側から光を照射することで、残留電荷を励起させて取り除く方法が開示されている。この場合、半導体膜の下側(電荷収集電極側)から効率よく光を照射するためには、電荷収集電極が照射光に対して透明である必要がある。
【0010】
(2)電荷収集電極の面積充填率(フィルファクター)を大きくするためや、また、スイッチング素子をシールドする目的で、スイッチング素子を覆うように電荷収集電極を形成することが望まれるが、電荷収集電極が不透明であると、電荷収集電極の形成後にスイッチング素子を観察することができない。例えば、電荷収集電極を形成後、スイッチング素子の特性検査を行う場合、スイッチング素子が不透明な電荷収集電極で覆われていると、スイッチング素子の特性不良が見つかった際、その原因を解明するために光学顕微鏡等で観察することができない。従って、電荷収集電極の形成後もスイッチング素子を容易に観察することができるように、電荷収集電極は透明であることが望ましい。
【0011】
【発明が解決しようとする課題】
しかしながら、電荷収集電極としてITO等の透明導電酸化膜を用い、その上に直接、または電荷阻止層を介して、a−Se膜を成膜すると以下のような問題が発生しやすい。
【0012】
ITO膜は、比較的低温で成膜できる点や、大面積成膜にも向いている点で、上記用途の場合、スパッタリング法で成膜される。しかし、スパッタリング法で得られたITO膜は通常、多結晶膜となるため、得られる膜の表面はランダムに並んだ結晶の影響により、微細な凹凸や局所的な突起が存在する。
【0013】
このような凹凸や突起が存在するITO膜表面に半導体膜としてa−Se膜を直接、あるいは電荷阻止層を介して成膜すると、凹凸の激しい領域や突起の部分で、a−Se膜の構造が局所的に変化(例えば、結晶化)したり、その部分の電荷阻止特性が悪くなり、暗電流が局所的に増加したりする現象が起きることがある。特に、a−Se膜を半導体膜として使用する検出器の場合、10V/μm程度の強い電界で動作させる必要があるため上記不良が発生しやすい。
【0014】
本発明は上記問題点に鑑みてなされたものであり、その目的は、半導体膜の局所的な構造変化や電荷阻止特性の不良の発生が少ない電磁波検出器及び画像検出器を提供することにある。
【0015】
【課題を解決するための手段】
本発明の電磁波検出器は、上記の課題を解決するために、検出対象の電磁波に感応して電荷を生成する半導体膜と、半導体膜で生成された電荷を取り出す電荷収集電極とを備えた電磁波検出器において、電荷収集電極が非晶質透明導電酸化膜からなることを特徴としている。
【0016】
上記の構成によれば、電荷収集電極が非晶質透明導電酸化膜からなるので、非晶質透明導電酸化膜の表面のモフォロジーの滑らかさにより、電荷収集電極表面の凹凸や局所的な突起を少なくすることができる。従って、電荷収集電極上に成膜される半導体膜の局所的な変化や電荷阻止特性の不良の発生の少ない電磁波検出器を提供することができる。
【0017】
上記の発明における電磁波検出器は、電荷収集電極が、非晶質のインジウムと錫との酸化物からなることが好ましい。
【0018】
上記の構成によれば、例えば、電荷収集電極の抵抗値や透明性が劣化するといったトレードオフを防止することができる。
【0019】
上記の発明における電磁波検出器は、電荷収集電極が、インジウムと、亜鉛またはゲルマニウムとを含有することにより、より一層容易に非晶質の透明導電膜を成膜することができる。
【0020】
上記の発明における電磁波検出器は、上記電荷収集電極が、スパッタリング法により水素および/または水が混入されたスパッタガス中にて成膜されたものであることがより好ましい。
【0021】
上記の構成によれば、電荷収集電極が、スパッタリング法により水素および/または水が混入されたスパッタガス中にて成膜されたものであるので、非晶質の透明導電膜である電荷収集電極を安定して成膜する事ができる。
【0022】
上記の発明における電磁波検出器は、半導体膜と電荷収集電極との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されていることが好ましい。
【0023】
上記の構成によれば、半導体膜と電荷収集電極との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されていることにより、電荷が電荷収集電極から半導体膜に注入されるのを防止し、暗電流の増加を防止することができる。
【0024】
上記の発明における電磁波検出器は、半導体膜を介して電荷収集電極と対向するようにバイアス電極が設けられ、該バイアス電極と、半導体膜との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されていることが好ましい。
【0025】
上記の構成によれば、半導体膜を介して電荷収集電極と対向するようにバイアス電極が設けられ、該バイアス電極と、半導体膜との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されていることにより、暗電流の増加を防止することができる。
【0026】
上記の発明における電磁波検出器は、半導体膜がセレンを主成分とする非晶質の膜からなることが好ましい。
上記の構成によれば、半導体膜がセレンを主成分とする非晶質の膜からなるので、暗抵抗が高く、X線照射に対して良好な電磁波導電特性を示し、真空蒸着法により低温で大面積成膜が可能な半導体膜を形成することができる。
【0027】
上記の発明における電磁波検出器は、電荷収集電極の表面の凹凸が、5nm以下であることが好ましい。
上記の構成によれば、電荷収集電極の表面の凹凸や局所的な突起に起因する特性不良の発生を抑制することができる。
【0028】
本発明の画像検出器は、上記の課題を解決するために、電磁波検出器を複数備えた画像検出器であって、上記電荷収集電極が1次元または2次元に複数配列されると共に、上記電荷収集電極に個別に接続された電荷蓄積容量と、該電荷蓄積容量に個別に接続されたスイッチング素子とを複数備えていることを特徴としている。
【0029】
上記の構成によれば、電荷収集電極が、1次元または2次元に複数配列されると共に、上記電荷収集電極に個別に接続された電荷蓄積容量と、該電荷蓄積容量に個別に接続されたスイッチング素子とを複数備えているので、1次元または2次元の電磁波情報を一旦電荷蓄積容量に蓄積し、スイッチング素子を順次走査していくことで、1次元または2次元の電荷情報を簡単に読み出すことができる。また、電荷収集電極を分割パターニングすることができる。従って、電荷収集電極上に成膜される半導体膜の局所的な変化や電荷阻止特性の不良の発生の少ない画像検出器を提供することができる。
【0030】
【発明の実施の形態】
本発明の実施の一形態について図1および図2に基づいて説明すれば、以下の通りである。
【0031】
以下の説明においては、電磁波検出器を複数備えており、それを2次元に配列されたものを二次元画像検出器とする。
【0032】
図1は、本発明の実施の一形態における電磁波検出器としての二次元画像検出器の1画素単位の構造を示す断面図、図2はその平面図である。図1、図2に示す1画素のサイズは、0.1mm×0.1mm〜0.3mm×0.3mm程度であり、二次元画像検出器全体としてはこの画素(電磁波検出器)がXYマトリクス状に500×500〜3000×3000画素程度配列されたものが一般的である。
【0033】
図1に示すように、二次元画像検出器は、アクティブマトリックス基板10上に、電磁波導電性を有する半導体膜6、及び、図示しない高圧電源に接続されたバイアス電極(共通電極)7が順次形成されている。半導体膜6は、X線などの電磁波が照射されることにより、内部に電荷(電子−正孔)を発生するものである。つまり、半導体膜6は電磁波導電性を有し、X線による画像情報を電荷情報に変換するためのものである。また、半導体膜6は、例えば、セレンを主成分とする非晶質のa−Se(アモルファスセレン)からなる。ここで、主成分とは、50%以上の含有率を有するということである。
【0034】
以下に、アクティブマトリックス基板10について詳しく説明する。
【0035】
アクティブマトリックス基板10は、ガラス基板1、ゲート電極2、電荷蓄積容量電極(以下、C電極と称する)14、ゲート絶縁膜15、接続電極13、チャネル層8、コンタクト層9、データ電極3、絶縁保護膜17、層間絶縁膜12、電荷収集電極11とを有している。
【0036】
また、ゲート電極2やゲート絶縁膜15、データ電極3、接続電極13、チャネル層8、コンタクト層9等で以て薄膜トランジスタ(TFT:Thin Film Transistor)4が構成されており、C電極14やゲート絶縁膜15、接続電極13等で以て電荷蓄積容量(C)5が構成されている。
【0037】
ガラス基板1は支持基板であり、ガラス基板1としては、例えば、無アルカリガラス基板(例えば、コーニング社製#1737等)を用いることができる。ゲート電極(走査線)2及びデータ電極3は、格子状に配列された電極配線であり、その交点には薄膜トランジスタ(以下、TFTと称する)4が形成されている。TFT4はスイッチング素子であり、そのソース・ドレインは、各々データ電極3と接続電極13とに接続されている。データ電極3はそのソース電極、接続電極13はそのドレイン電極である。つまり、データ電極3は、信号線としての直線部分と、TFT4を構成するための延長部分とを備えており、接続電極13は、TFT4と電荷蓄積容量5とをつなぐように設けられている。
【0038】
ゲート絶縁膜15は、SiNや、SiO等からなっている。ゲート絶縁膜15は、ゲート電極2及びC電極14を覆うように設けられており、ゲート電極2上に位置する部位がTFT4におけるゲート絶縁膜として作用し、C電極14上に位置する部位は電荷蓄積容量5における誘電体層として作用する。つまり、電荷蓄積容量5は、ゲート電極2と同一層に形成されたC電極14と接続電極13との重畳領域によって形成されている。なお、ゲート絶縁膜15としては、SiNやSiOに限らず、ゲート電極2及びC電極14を陽極酸化した陽極酸化膜を併用することもできる。
【0039】
また、チャネル層(i層)8はTFT4のチャネル部であり、データ電極3と接続電極13とを結ぶ電流の通路である。コンタクト層(n層)9はデータ電極3と接続電極13とのコンタクトを図る。
【0040】
絶縁保護膜17は、データ電極3及び接続電極13上、つまり、ガラス基板1上に、ほぼ全面(ほぼ全領域)にわたって形成されている。これにより、接続電極13とデータ電極3とを保護すると共に、電気的な絶縁分離を図っている。また、絶縁保護膜17は、その所定位置、つまり、接続電極13において電荷蓄積容量5を介してC電極14と対向している部分上に位置する部位に、コンタクトホール16を有している。
【0041】
電荷収集電極11は、非晶質透明導電酸化膜からなっている。電荷収集電極11は、コンタクトホール16を埋めるようにして形成されており、データ電極3上及び接続電極13上に積層されている。電荷収集電極11と半導体膜6とは電気的に導通しており、半導体膜6で発生した電荷を電荷収集電極11で収集できるようになっている。
【0042】
層間絶縁膜12は、感光性を有するアクリル樹脂からなり、TFT4の電気的な絶縁分離を図っている。層間絶縁膜12には、コンタクトホール16が貫通しており、電荷収集電極11は接続電極13に接続されている。
【0043】
ガラス基板1上には、ゲート電極2及びC電極14が設けられている。ゲート電極2の上方には、ゲート絶縁膜15を介して、チャネル層(i層)8、及び、コンタクト層(n層)9がこの順に形成されている。コンタクト層9上には、データ電極3と接続電極13とが形成されている。接続電極13は、電荷蓄積容量5を構成する層の上方に積層されている。また、接続電極13とデータ電極3の上方には絶縁保護膜17が配されている。
【0044】
絶縁保護膜17の上方には、TFT4の層間絶縁膜12が設けられている。層間絶縁膜12の上層、すなわちアクティブマトリックス基板10の最上層には電荷収集電極11が設けられている。電荷収集電極11とTFT4とは接続電極13を介して接続されている。
【0045】
また、C電極14の上方にはゲート絶縁膜15が配されており、その上方には接続電極13が配されている。電荷収集電極11と接続電極13とは、層間絶縁膜12を貫通するコンタクトホール16によって接続されている。
【0046】
バイアス電極7とC電極14との間には、図示しない高圧電源が接続されている。この高圧電源により、バイアス電極7とC電極14との間に電圧が印加される。これにより、電荷蓄積容量5を介してバイアス電極7と電荷収集電極11との間に電界を発生させることができる。このとき、半導体膜6と電荷蓄積容量5とは、電気的に直列に接続された構造になっているので、バイアス電極7にバイアス電圧を印加しておくと、半導体膜6内で電荷(電子−正孔対)が発生する。半導体膜6で発生した電子は+電極側に、正孔は−電極側に移動し、その結果、電荷蓄積容量5に電荷が蓄積される。
【0047】
二次元画像検出器全体としては、電荷収集電極11は1次元または2次元に複数配列されると共に、電荷収集電極11に個別に接続された電荷蓄積容量5と、電荷蓄積容量5に個別に接続されたTFT4とを複数備えている。これにより、1次元または2次元の電磁波情報を一旦電荷蓄積容量5に蓄積し、TFT4を順次走査していくことで、1次元または2次元の電荷情報を簡単に読み出すことができる。
【0048】
以下に、二次元画像検出器の製造工程の一例について説明する。
【0049】
まず、ガラス基板1上に、TaやAl等の金属膜をスパッタ蒸着により厚さ約300nmに成膜した後、所望の形状にパターニングすることにより、ゲート電極2及びC電極14を形成する。
【0050】
そして、このゲート電極2及びC電極14を覆うようにして、ガラス基板1の略全面にSiNや、SiO等からなるゲート絶縁膜15をCVD(Chemical Vapor Deposition )法により厚さ約350nmに成膜する。なお、ゲート絶縁膜15としては、SiNやSiOに限らず、ゲート電極2及びC電極14を陽極酸化した陽極酸化膜を併用することもできる。
【0051】
また、ゲート絶縁膜15を介して、ゲート電極2の上方にチャネル層8が配されるように、CVD法により、アモルファスシリコン(以下、a−Siと称する)を、厚さ約100nmに成膜した後、所望の形状にパターニングすることにより、チャネル層8を形成する。
【0052】
チャネル層8の上層にコンタクト層9が配されるように、CVD法によりa−Siを厚さ約40nmに成膜した後、所望の形状にパターニングすることにより、コンタクト層9を形成する。
【0053】
さらに、コンタクト層9上に、TaやAl等の金属膜をスパッタ蒸着により厚さ約300nmに成膜した後、所望の形状にパターニングすることにより、データ電極3及び接続電極13を形成する。
【0054】
このようにしてTFT4及び電荷蓄積容量5等を形成したガラス基板1の略全面を覆うようにSiNをCVD法で厚さ約300nmに成膜することにより、絶縁保護膜17を形成する。その後、コンタクトホール16となる接続電極13上の所定の部分に形成された、SiN膜を除去しておく。
【0055】
上記絶縁保護膜17上の略全面を覆うように、感光性を有するアクリル樹脂等を厚さ約3μmに成膜し、層間絶縁膜12を形成する。そして、フォトリソグラフィ技術によるパターニングを行い、絶縁保護膜17におけるコンタクトホール16となる部分と位置合わせをしてコンタクトホール16を形成する。
【0056】
層間絶縁膜12上に、ITO(Indium−Tin−Oxide)等の非晶質透明導電酸化膜をスパッタ蒸着法にて厚さ約200nmに成膜し、所望の形状にパターニングして電荷収集電極11を形成する。この時、絶縁保護膜17及び層間絶縁膜12に設けたコンタクトホール16を介して、電荷収集電極11と接続電極13とを電気的に導通させる(短絡させる)。
【0057】
なお、本実施の形態では上述したように、アクティブマトリックス基板10として電荷収集電極11がTFT4の上方にオーバーラップする、いわゆる屋根型構造(マッシュルーム電極構造)を採用しているが、非屋根型構造を採用してもかまわない。また、スイッチング素子としてa−Siを用いたTFT4を用いたが、これに限らず、p−Si(ポリシリコン)を用いてもよい。また、データ電極3及び接続電極13がゲート絶縁膜15を介してゲート電極2より上方にある逆スタガ構造を採用したが、スタガ構造にしてもよい。
【0058】
上記のように形成されたアクティブマトリックス基板10の画素配列領域をすべて覆うように、a−Se(アモルファスセレン)からなり電磁波導電性を有する半導体膜6を真空蒸着法により膜厚が約0.5mm〜1.5mmになるように成膜する。
【0059】
最後に、半導体膜6の略全面にAu、Alなどからなるバイアス電極7を真空蒸着法により約200nmの厚さで形成する。
【0060】
なお、半導体膜6と電荷収集電極11との界面に、電子又は正孔の半導体膜6への注入を阻止する電荷注入阻止層や、半導体膜6と電荷収集電極11との密着性を向上させるバッファー層を形成してもよい。また同様に、半導体膜6とバイアス電極7の界面にも電荷注入阻止層やバッファー層を形成してもよい。電荷注入阻止層やバッファー層としてはa−AsSeや、アルカリ元素イオンやハロゲン元素イオンが添加されたa−Se等を用いることが可能である。
【0061】
次に、上記構造の二次元画像検出器の動作原理について説明する。バイアス電極7とC電極14との間に電圧を印加した状態で、半導体膜6にX線が照射されると、半導体膜6内に電荷(電子−正孔対)が発生する。そして、半導体膜6と電荷蓄積容量5とは電気的に直列に接続された構造となっているので、半導体膜6内に発生した電子は+電極側に、正孔は−電極側に移動し、その結果、電荷蓄積容量5に電荷が蓄積される。
【0062】
電荷蓄積容量5に蓄積された電荷は、ゲート電極2への入力信号によってTFT4をオン状態にすることによりデータ電極3を介して外部に取り出すことが可能となる。
【0063】
そして、ゲート電極2とデータ電極3とからなる電極配線、TFT4及び電荷蓄積容量5は、すべてXYマトリクス状に設けられているため、ゲート電極に入力する信号を順次走査し、データ電極3からの信号をデータ電極3毎に検知することにより、二次元的にX線の画像情報を得ることが可能となる。
【0064】
続いて、電荷収集電極11について詳細に説明する。本発明で用いる電荷収集電極11は、非晶質透明導電酸化膜によって構成されている。非晶質透明導電酸化膜材料としては、インジウムと錫との酸化物(ITO)や、インジウムと亜鉛との酸化物(IZO:Indium−Zinc−Oxid)、インジウムとゲルマニウムとの酸化物(IGO:Indium−Germanium−Oxide)等を基本組成とするものを使用することができる。
【0065】
非晶質透明導電酸化膜は、スパッタリング法で成膜する際に、低温で成膜したり、スパッタリング中のガス圧をある一定以上に設定するなどの方法でも簡単に成膜することができるが、この場合、非晶質透明導電酸化膜の抵抗値や透明性が劣化するといったトレードオフが見られる。これに対し、上記のトレードオフが無く(又は小さく)、かつ安定して非晶質透明導電酸化膜を得るためには、以下の方法が有効である。
【0066】
(1)アルゴン等の不活性ガス中に、必要に応じて酸素を混入し、さらに、水素または水を混入させたスパッタガスを用いてITOをスパッタ成膜することで、非晶質のITO膜を形成する。なお、スパッタガスには、水素及び水を混入してもかまわない。
【0067】
(2)酸化インジウムと酸化亜鉛との組成物からなる焼結体ターゲットを用いてスパッタリング法で成膜することで、非晶質のIZO膜を形成する。
【0068】
(3)酸化インジウムと酸化ゲルマニウムとの組成物からなる焼結体ターゲットを用いて、スパッタリング法で成膜することで、非晶質のIGO膜を形成する。
【0069】
上記のような非晶質状態の透明導電酸化膜は、通常の多結晶性透明導電酸化膜に比べて表面のモフォロジーが滑らかである。例えば、多結晶ITO膜の場合、表面に最大10nm程度の凹凸が存在するが、非晶質ITO膜の場合、表面の凹凸は5nm以下に抑えることが可能である。
【0070】
微小な凹凸や突起が存在する多結晶のITO膜表面にa−Se膜を直接、又は電荷阻止層を介して成膜した場合、ITO膜の凹凸の激しい領域や突起が突発的に存在する部分において、a−Se膜の構造が局所的に変化(例えば、結晶化)したり、その部分の電荷阻止特性が悪くなり、暗電流が局所的に増加する現象が現れることがある。この不良の発生率として、a−Seからなる半導体膜6に10V/μm程度の強い電界を印加して動作させた場合、不良画素発生率(上述の不良が発生した画素数/全画素数)は0.001%〜0.008%であった。これに対し上述の(2)の方法で電荷収集電極11表面を非晶質透明導電酸化膜で形成することにより、不良発生率を0.0002%〜0.0005%に減少させることが可能となる。また、上述の(1)、(3)の方法で形成された非晶質透明導電酸化膜を電荷収集電極11として用いても、効果に大小の差は見られるものの、不良画素発生率の低減効果が確認される。
【0071】
このように、非晶質の透明導電酸化膜を電荷収集電極11として使用すれば、その上にa−Seに代表される非晶質状態の半導体膜6を形成しても、電荷収集電極11表面の凹凸や局所的な突起に起因する特性不良の発生を抑制することができる。
【0072】
また、上記の二次元画像検出器は、電荷収集電極11を画素単位に複数に分離することで、1次元又は2次元の電磁波情報を検出できるようになる。電荷収集電極11をエッチングにより複数の電荷収集電極11にパターニングする際、結晶性が高い膜では結晶粒の影響によりパターンエッジのシャープネスが悪くなるが、非晶質膜では結晶粒の影響を受けないため、シャープネスの優れたパターンエッジが得られる。このように、電荷収集電極11が非晶質膜からなることによって、微細でかつパターン精度が優れた電荷収集電極11を形成することができる。従って、画素ピッチが小さく高精細な二次元画像検出器や、電荷収集電極11のフィルファクターが大きな二次元画像検出器を容易に実現することができる。
【0073】
なお、本発明における二次元画像検出器は、半導体膜がa−Seからなるので、高電界印加時のアバランシェ効果を利用した二次元画像検出器などにも有効である。
【0074】
【発明の効果】
以上のように、本発明の電磁波検出器は、電荷収集電極が非晶質透明導電酸化膜からなる構成である。
【0075】
これにより、電荷収集電極が表面のモフォロジーの滑らかな非晶質透明導電酸化膜からなるので、電荷収集電極表面の凹凸や局所的な突起を少なくすることができる。従って、電荷収集電極上に半導体膜を形成しても、電荷収集電極表面の凹凸や局所的な突起に起因する、半導体膜の局所的な変化や電荷阻止特性の不良の発生の少ない電磁波検出器を提供することができるといった効果を奏する。
【0076】
上記の電磁波検出器は、電荷収集電極が、非晶質のインジウムと錫との酸化物からなる透明導電膜である構成である。
【0077】
これにより、例えば、電荷収集電極の抵抗値や透明性が劣化するといったトレードオフを防止することができる。これにより、例えば、高感度な電磁波検出器を提供できるといった効果を奏する。
【0078】
上記の電磁波検出器は、電荷収集電極が、インジウムと、亜鉛またはゲルマニウムとを含有する構成であるので、容易に非晶質の透明導電膜を成膜することができる。これにより、例えば、高感度な電磁波検出器を提供できるといった効果を奏する。
【0079】
上記の電磁波検出器は、電荷収集電極が、スパッタリング法により水素および/または水が混入されたスパッタガス中にて成膜される構成である。
【0080】
これにより、非晶質の透明導電膜である電荷収集電極を安定して、かつ、容易に成膜することができるといった効果を奏する。
【0081】
上記の電磁波検出器は、半導体膜と電荷収集電極との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されている構成である。
【0082】
これにより、電荷が電荷収集電極から半導体膜に注入されるのを防止し、暗電流の増加を防止することができる。従って、例えば、高感度な電磁波検出器を提供できるといった効果を奏する。
【0083】
上記の電磁波検出器は、半導体膜を介して電荷収集電極と対向するようにバイアス電極が設けられ、該バイアス電極と、半導体膜との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されている構成である。
【0084】
これにより、半導体膜に電荷が注入されるのを防止し、暗電流の増加を防止することができる。従って、例えば、高感度な電磁波検出器を提供できるといった効果を奏する。
【0085】
上記の電磁波検出器は、半導体膜がセレンを主成分とする非晶質の膜からなる構成である。
これにより、暗抵抗が高く、X線照射に対して良好な電磁波導電特性を示し、真空蒸着法により低温で大面積成膜が可能な半導体膜を形成することができ、例えば、上記半導体膜を用いて、高感度な電磁波検出器を提供できるといった効果を奏する。
【0086】
上記の電磁波検出器は、電荷収集電極の表面の凹凸が、5nm以下である構成である。
これにより、電荷収集電極の表面の凹凸や局所的な突起に起因する特性不良の発生を抑制することができるといった効果を奏する。
【0087】
本発明の画像検出器は、上記電磁波検出器を複数備えた画像検出器であって、上記電荷収集電極が、1次元または2次元に複数配列されると共に、上記電荷収集電極に個別に接続された電荷蓄積容量と、該電荷蓄積容量に個別に接続されたスイッチング素子とを複数備えている構成である。
【0088】
これにより、1次元または2次元の電磁波情報を一旦電荷蓄積容量に蓄積し、それらを順次走査していくことで、1次元または2次元の電荷情報を簡単に読み出すことができ、また、電荷収集電極を分割パターニングすることができる。従って、例えば、電荷収集電極が上記非晶質の導電膜からなっていると、エッチング時のパターン精度が向上するため、電荷収集電極を高精細に分割パターニングすることができ、このため、画素ピッチが小さく高精細な画像検出器を提供できるといった効果を奏する。また、電荷収集電極上に成膜される半導体膜の局所的な変化や電荷阻止特性の不良の発生の少ない画像検出器を提供することができるといった効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係る電磁波検出器としての二次元画像検出器の1画素単位の構造を示す断面図である。
【図2】上記二次元画像検出器の平面図である。
【図3】従来の二次元画像検出器の構造を示す断面図である。
【符号の説明】
1 ガラス基板
2 ゲート電極
3 データ電極
4 TFT
5 電荷蓄積容量(C
6 半導体膜
7 バイアス電極
8 チャネル層
9 コンタクト層
10 アクティブマトリックス基板
11 電荷収集電極
12 層間絶縁膜
13 接続電極
14 C電極
15 ゲート絶縁膜
16 コンタクトホール
17 絶縁保護膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic wave detector and an image detector capable of detecting an image by electromagnetic waves such as radiation such as X-rays, visible light, and infrared rays, and has less occurrence of a local structural change of a semiconductor film and a defect of a charge blocking property. The present invention relates to an electromagnetic wave detector and an image detector.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as one type of electromagnetic wave detector, for example, a semiconductor film that senses electromagnetic waves such as X-rays and generates charges (electron-hole pairs), that is, a semiconductor film having electromagnetic wave conductivity, a pixel electrode, and the like is provided. A two-dimensional image in which semiconductor sensors are arranged two-dimensionally in a row direction and a column direction, switching elements are provided for each pixel electrode, and the switching elements are sequentially turned on for each row to read the electric charges for each column. Detectors are known.
[0003]
The two-dimensional image detector is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 4-212458 (corresponding to U.S. Pat. No. 5,132,541); 2432, pp. 237-249, 1995 ”and the like describe the structure and principle.
[0004]
The configuration and principle of the conventional two-dimensional image detector described in the above-mentioned document “A New Digital Detector for Projection Radiography” will be briefly described below. FIG. 3 is a cross-sectional view illustrating a configuration of the two-dimensional image detector described in the document.
[0005]
The two-dimensional image detector includes, for example, a semiconductor film 31 made of Se and exhibiting electromagnetic wave conductivity. A single bias electrode 32 is formed in an upper layer, and a plurality of charge collecting electrodes 33 are formed in a lower layer. Each charge collecting electrode 33 has a charge storage capacitance (Cs) 34 and the switching element 35. In addition, a dielectric layer 36 is provided between the semiconductor film 31 and the bias electrode 32 as a charge blocking layer. An electron blocking layer 37 is provided between the semiconductor film 31 and the charge collecting electrode 33 as a charge blocking layer.
[0006]
When electromagnetic waves such as X-rays enter such a two-dimensional image detector, charges (electron-hole pairs) are generated in the semiconductor film 31. Electrons generated in the semiconductor film 31 move to the positive electrode side, and holes move to the negative electrode side. As a result, electric charges are accumulated in the electric charge storage capacitor 34. The charge stored in the charge storage capacitor 34 is taken out by turning on the switching element 35. By arranging such charge collecting electrodes 33, charge storage capacitors 34, and switching elements 35 two-dimensionally and reading out the charges line-sequentially, two-dimensional information of the electromagnetic wave to be detected can be obtained. Become.
[0007]
Generally, semiconductor films having electromagnetic wave conductivity include Se, CdTe, CdZnTe, PbI2, HgI2, SiGe, Si, etc. are used. However, in the above-mentioned literature, amorphous resistance is high, which shows good electromagnetic wave conductivity to X-ray irradiation, and is capable of forming a large-area film at a low temperature by a vacuum deposition method. Quality (amorphous) materials are preferred, and amorphous Se (a-Se) films are widely used.
[0008]
Various metal films and conductive oxide films are used as the charge collecting electrodes. For the following reasons, a transparent conductive oxide film such as ITO (Indium-Tin-Oxide) is often used.
[0009]
(1) When the incident X-ray amount is large in the two-dimensional image detector, unnecessary charges may be captured in the semiconductor film (or near the interface between the semiconductor film and an adjacent layer). Such a residual charge is stored in a memory for a long time or moves while taking a long time, so that the X-ray detection characteristics are degraded at the time of subsequent image detection, and an afterimage (virtual image) appears, which causes a problem. Japanese Unexamined Patent Publication No. 9-9153 (corresponding to US Pat. No. 5,563,421) discloses that when a residual charge is generated in a semiconductor film, the residual charge is excited and removed by irradiating light from outside the semiconductor film. A method is disclosed. In this case, in order to efficiently irradiate light from below the semiconductor film (on the side of the charge collection electrode), the charge collection electrode needs to be transparent to the irradiation light.
[0010]
(2) In order to increase the area filling rate (fill factor) of the charge collecting electrode and to shield the switching element, it is desirable to form the charge collecting electrode so as to cover the switching element. If the electrodes are opaque, the switching elements cannot be observed after the formation of the charge collection electrodes. For example, when performing a characteristic inspection of a switching element after forming a charge collecting electrode, if the switching element is covered with an opaque charge collecting electrode, when a characteristic defect of the switching element is found, it is necessary to clarify the cause. Cannot be observed with an optical microscope or the like. Therefore, it is desirable that the charge collecting electrode is transparent so that the switching element can be easily observed even after the formation of the charge collecting electrode.
[0011]
[Problems to be solved by the invention]
However, when a transparent conductive oxide film such as ITO is used as the charge collection electrode and an a-Se film is formed thereon directly or via a charge blocking layer, the following problems tend to occur.
[0012]
The ITO film is formed by a sputtering method in the above-mentioned application because the ITO film can be formed at a relatively low temperature and is suitable for large-area film formation. However, since an ITO film obtained by a sputtering method is usually a polycrystalline film, the surface of the obtained film has fine irregularities and local protrusions due to the influence of randomly arranged crystals.
[0013]
When an a-Se film is formed as a semiconductor film directly or via a charge blocking layer on the surface of the ITO film having such irregularities and protrusions, the structure of the a-Se film is increased in the region of the irregularities and protrusions. May locally change (for example, crystallize), or the charge blocking characteristics of the portion may be deteriorated, and a dark current may locally increase. In particular, in the case of a detector using an a-Se film as a semiconductor film, it is necessary to operate the device in a strong electric field of about 10 V / μm, and thus the above-described defect is likely to occur.
[0014]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electromagnetic wave detector and an image detector which are less likely to cause a local structural change of a semiconductor film and a defect in charge blocking characteristics. .
[0015]
[Means for Solving the Problems]
In order to solve the above-described problems, an electromagnetic wave detector according to the present invention includes an electromagnetic wave including: a semiconductor film that generates electric charges in response to an electromagnetic wave to be detected; and a charge collection electrode that extracts electric charges generated by the semiconductor film. In the detector, the charge collection electrode is made of an amorphous transparent conductive oxide film.
[0016]
According to the above configuration, since the charge collection electrode is formed of the amorphous transparent conductive oxide film, unevenness and local protrusions on the surface of the charge collection electrode are reduced by the smooth morphology of the surface of the amorphous transparent conductive oxide film. Can be reduced. Therefore, it is possible to provide an electromagnetic wave detector in which local change of the semiconductor film formed on the charge collecting electrode and occurrence of a defect in charge blocking characteristics are small.
[0017]
In the electromagnetic wave detector according to the above invention, it is preferable that the charge collection electrode is made of an oxide of amorphous indium and tin.
[0018]
According to the above configuration, for example, it is possible to prevent a trade-off in which the resistance value and the transparency of the charge collection electrode are deteriorated.
[0019]
In the electromagnetic wave detector according to the present invention, the charge collection electrode contains indium, zinc, or germanium, so that the amorphous transparent conductive film can be more easily formed.
[0020]
In the electromagnetic wave detector according to the above invention, it is more preferable that the charge collection electrode is formed by sputtering in a sputtering gas mixed with hydrogen and / or water.
[0021]
According to the above configuration, since the charge collecting electrode is formed by sputtering in a sputtering gas mixed with hydrogen and / or water, the charge collecting electrode is an amorphous transparent conductive film. Can be formed stably.
[0022]
In the electromagnetic wave detector according to the above invention, it is preferable that a charge injection blocking layer for preventing charge injection into the semiconductor film is formed between the semiconductor film and the charge collection electrode.
[0023]
According to the above configuration, the charge is injected from the charge collection electrode into the semiconductor film by forming the charge injection blocking layer between the semiconductor film and the charge collection electrode for preventing charge injection into the semiconductor film. And increase of dark current can be prevented.
[0024]
In the electromagnetic wave detector according to the above invention, a bias electrode is provided so as to face the charge collection electrode via the semiconductor film, and between the bias electrode and the semiconductor film, injection of charge into the semiconductor film is prevented. Preferably, a charge injection blocking layer is formed.
[0025]
According to the above configuration, the bias electrode is provided so as to face the charge collecting electrode via the semiconductor film, and the charge injection for preventing charge injection into the semiconductor film is provided between the bias electrode and the semiconductor film. The formation of the blocking layer can prevent an increase in dark current.
[0026]
In the electromagnetic wave detector according to the above invention, it is preferable that the semiconductor film is formed of an amorphous film containing selenium as a main component.
According to the above configuration, since the semiconductor film is formed of an amorphous film containing selenium as a main component, the semiconductor film has a high dark resistance, exhibits good electromagnetic wave conductivity to X-ray irradiation, and has a low temperature by a vacuum deposition method. A semiconductor film that can be formed over a large area can be formed.
[0027]
In the electromagnetic wave detector according to the above invention, it is preferable that the unevenness of the surface of the charge collecting electrode is 5 nm or less.
According to the above configuration, it is possible to suppress the occurrence of the characteristic failure caused by the unevenness or the local protrusion on the surface of the charge collecting electrode.
[0028]
An image detector according to an aspect of the present invention is an image detector including a plurality of electromagnetic wave detectors, wherein the plurality of charge collection electrodes are arranged one-dimensionally or two-dimensionally. It is characterized by comprising a plurality of charge storage capacitors individually connected to the collection electrodes and a plurality of switching elements individually connected to the charge storage capacitors.
[0029]
According to the above configuration, a plurality of charge collecting electrodes are arranged one-dimensionally or two-dimensionally, and the charge storage capacitors individually connected to the charge collection electrodes, and the switching devices individually connected to the charge storage capacitors. Since a plurality of elements are provided, one-dimensional or two-dimensional charge information can be easily read out by temporarily storing one-dimensional or two-dimensional electromagnetic wave information in a charge storage capacitor and sequentially scanning the switching elements. Can be. Further, the charge collecting electrode can be divided and patterned. Therefore, it is possible to provide an image detector in which local change of the semiconductor film formed on the charge collection electrode and occurrence of defects in the charge blocking characteristics are small.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
[0031]
In the following description, a plurality of electromagnetic wave detectors are provided, and a two-dimensionally arranged one is referred to as a two-dimensional image detector.
[0032]
FIG. 1 is a sectional view showing the structure of one pixel unit of a two-dimensional image detector as an electromagnetic wave detector according to an embodiment of the present invention, and FIG. 2 is a plan view thereof. The size of one pixel shown in FIGS. 1 and 2 is approximately 0.1 mm × 0.1 mm to 0.3 mm × 0.3 mm, and this pixel (electromagnetic wave detector) is an XY matrix as a whole two-dimensional image detector. In general, pixels arranged in a shape of about 500 × 500 to 3000 × 3000 pixels are used.
[0033]
As shown in FIG. 1, in the two-dimensional image detector, a semiconductor film 6 having electromagnetic wave conductivity and a bias electrode (common electrode) 7 connected to a high-voltage power supply (not shown) are sequentially formed on an active matrix substrate 10. Have been. The semiconductor film 6 generates charges (electrons-holes) internally when irradiated with electromagnetic waves such as X-rays. That is, the semiconductor film 6 has electromagnetic wave conductivity and converts image information by X-rays into charge information. The semiconductor film 6 is made of, for example, amorphous a-Se (amorphous selenium) containing selenium as a main component. Here, the main component means having a content of 50% or more.
[0034]
Hereinafter, the active matrix substrate 10 will be described in detail.
[0035]
The active matrix substrate 10 includes a glass substrate 1, a gate electrode 2, a charge storage capacitor electrode (hereinafter, Cs(Referred to as an electrode) 14, a gate insulating film 15, a connection electrode 13, a channel layer 8, a contact layer 9, a data electrode 3, an insulating protective film 17, an interlayer insulating film 12, and a charge collecting electrode 11.
[0036]
Further, a thin film transistor (TFT: Thin Film Transistor) 4 is constituted by the gate electrode 2, the gate insulating film 15, the data electrode 3, the connection electrode 13, the channel layer 8, the contact layer 9, and the like.sThe electrode 14, the gate insulating film 15, the connection electrode 13, and the like make the charge storage capacitance (Cs5) is constituted.
[0037]
The glass substrate 1 is a support substrate. As the glass substrate 1, for example, a non-alkali glass substrate (for example, # 1737 manufactured by Corning Incorporated) can be used. The gate electrode (scanning line) 2 and the data electrode 3 are electrode wirings arranged in a lattice, and a thin film transistor (hereinafter, referred to as TFT) 4 is formed at the intersection. The TFT 4 is a switching element, and its source and drain are connected to the data electrode 3 and the connection electrode 13, respectively. The data electrode 3 is its source electrode, and the connection electrode 13 is its drain electrode. That is, the data electrode 3 includes a linear portion as a signal line and an extended portion for forming the TFT 4, and the connection electrode 13 is provided so as to connect the TFT 4 and the charge storage capacitor 5.
[0038]
The gate insulating film 15 is made of SiNXOr SiOXEtc. The gate insulating film 15 includes the gate electrode 2 and CsIt is provided so as to cover the electrode 14, and a portion located on the gate electrode 2 acts as a gate insulating film in the TFT 4,sThe portion located on the electrode 14 functions as a dielectric layer in the charge storage capacitor 5. That is, the charge storage capacitor 5 is formed by the C layer formed in the same layer as the gate electrode 2.sIt is formed by an overlapping region of the electrode 14 and the connection electrode 13. The gate insulating film 15 is made of SiNXAnd SiOXThe gate electrode 2 and CsAn anodized film obtained by anodizing the electrode 14 may be used in combination.
[0039]
The channel layer (i-layer) 8 is a channel portion of the TFT 4 and is a current path connecting the data electrode 3 and the connection electrode 13. Contact layer (n+The layer 9 makes contact between the data electrode 3 and the connection electrode 13.
[0040]
The insulating protective film 17 is formed over substantially the entire surface (substantially the entire region) on the data electrode 3 and the connection electrode 13, that is, on the glass substrate 1. As a result, the connection electrodes 13 and the data electrodes 3 are protected, and electrical isolation is achieved. The insulating protective film 17 is located at a predetermined position, that is, at the connection electrode 13 via the charge storage capacitor 5.sA contact hole 16 is provided at a portion located on a portion facing the electrode 14.
[0041]
The charge collecting electrode 11 is made of an amorphous transparent conductive oxide film. The charge collection electrodes 11 are formed so as to fill the contact holes 16, and are stacked on the data electrodes 3 and the connection electrodes 13. The charge collection electrode 11 and the semiconductor film 6 are electrically connected, and the charge generated in the semiconductor film 6 can be collected by the charge collection electrode 11.
[0042]
The interlayer insulating film 12 is made of an acrylic resin having photosensitivity, and electrically isolates the TFT 4. A contact hole 16 penetrates through the interlayer insulating film 12, and the charge collection electrode 11 is connected to the connection electrode 13.
[0043]
On a glass substrate 1, a gate electrode 2 and CsAn electrode 14 is provided. Above the gate electrode 2, a channel layer (i-layer) 8 and a contact layer (n+A layer 9 is formed in this order. The data electrode 3 and the connection electrode 13 are formed on the contact layer 9. The connection electrode 13 is stacked above a layer constituting the charge storage capacitor 5. An insulating protective film 17 is provided above the connection electrodes 13 and the data electrodes 3.
[0044]
The interlayer insulating film 12 of the TFT 4 is provided above the insulating protection film 17. The charge collection electrode 11 is provided on the interlayer insulating film 12, that is, on the uppermost layer of the active matrix substrate 10. The charge collection electrode 11 and the TFT 4 are connected via the connection electrode 13.
[0045]
Also, CsA gate insulating film 15 is provided above the electrode 14, and a connection electrode 13 is provided above the gate insulating film 15. The charge collection electrode 11 and the connection electrode 13 are connected by a contact hole 16 penetrating the interlayer insulating film 12.
[0046]
Bias electrode 7 and CsA high-voltage power supply (not shown) is connected between the electrodes 14. The bias electrode 7 and CsA voltage is applied between the electrode 14. Thereby, an electric field can be generated between the bias electrode 7 and the charge collection electrode 11 via the charge storage capacitor 5. At this time, since the semiconductor film 6 and the charge storage capacitor 5 are electrically connected in series, if a bias voltage is applied to the bias electrode 7, the charge (electrons) in the semiconductor film 6 will be increased. -Hole pairs) are generated. The electrons generated in the semiconductor film 6 move to the positive electrode side, and the holes move to the negative electrode side.
[0047]
In the whole two-dimensional image detector, the charge collecting electrodes 11 are arranged one-dimensionally or two-dimensionally, and the charge storage capacitors 5 individually connected to the charge collection electrodes 11 and the charge storage electrodes 5 individually connected to the charge storage capacitors 5. And a plurality of TFTs 4. Thus, the one-dimensional or two-dimensional charge information can be easily read out by temporarily storing the one-dimensional or two-dimensional electromagnetic wave information in the charge storage capacitor 5 and sequentially scanning the TFT 4.
[0048]
Hereinafter, an example of a manufacturing process of the two-dimensional image detector will be described.
[0049]
First, a metal film such as Ta or Al is formed to a thickness of about 300 nm on a glass substrate 1 by sputter deposition, and then patterned into a desired shape to form a gate electrode 2 and a C electrode.sAn electrode 14 is formed.
[0050]
The gate electrode 2 and CsSiN is formed on substantially the entire surface of the glass substrate 1 so as to cover the electrode 14.XOr SiOXThe gate insulating film 15 is formed to a thickness of about 350 nm by a CVD (Chemical Vapor Deposition) method. The gate insulating film 15 is made of SiNXAnd SiOXThe gate electrode 2 and CsAn anodized film obtained by anodizing the electrode 14 may be used in combination.
[0051]
Amorphous silicon (hereinafter referred to as a-Si) is formed to have a thickness of about 100 nm by the CVD method so that the channel layer 8 is disposed above the gate electrode 2 via the gate insulating film 15. After that, the channel layer 8 is formed by patterning into a desired shape.
[0052]
The contact layer 9 is formed by depositing a-Si to a thickness of about 40 nm by the CVD method so that the contact layer 9 is disposed on the channel layer 8 and then patterning it into a desired shape.
[0053]
Further, a data film 3 and a connection electrode 13 are formed on the contact layer 9 by forming a metal film such as Ta or Al to a thickness of about 300 nm by sputter deposition and then patterning it into a desired shape.
[0054]
SiN is formed so as to cover substantially the entire surface of the glass substrate 1 on which the TFTs 4 and the charge storage capacitors 5 are formed.XIs formed to a thickness of about 300 nm by a CVD method to form an insulating protective film 17. Thereafter, the SiN formed at a predetermined portion on the connection electrode 13 to be the contact hole 16 is formed.XRemove the film.
[0055]
An acrylic resin or the like having photosensitivity is formed to a thickness of about 3 μm so as to cover substantially the entire surface of the insulating protective film 17, and the interlayer insulating film 12 is formed. Then, patterning is performed by a photolithography technique, and the contact hole 16 is formed in alignment with a portion to be the contact hole 16 in the insulating protective film 17.
[0056]
An amorphous transparent conductive oxide film such as ITO (Indium-Tin-Oxide) is formed to a thickness of about 200 nm on the interlayer insulating film 12 by a sputter deposition method, and is patterned into a desired shape to form the charge collecting electrode 11. To form At this time, the charge collection electrode 11 and the connection electrode 13 are electrically connected (short-circuited) via the contact hole 16 provided in the insulating protective film 17 and the interlayer insulating film 12.
[0057]
In the present embodiment, as described above, a so-called roof-type structure (mushroom electrode structure) in which the charge collecting electrodes 11 overlap above the TFT 4 is adopted as the active matrix substrate 10, but a non-roof-type structure is used. May be adopted. Further, although the TFT 4 using a-Si is used as the switching element, the present invention is not limited to this, and p-Si (polysilicon) may be used. Further, although the inverted staggered structure in which the data electrode 3 and the connection electrode 13 are located above the gate electrode 2 via the gate insulating film 15 is employed, a staggered structure may be employed.
[0058]
A semiconductor film 6 made of a-Se (amorphous selenium) and having electromagnetic conductivity is formed to a thickness of about 0.5 mm by vacuum evaporation so as to cover the entire pixel array region of the active matrix substrate 10 formed as described above. The film is formed to have a thickness of 1.5 mm.
[0059]
Finally, a bias electrode 7 made of Au, Al, or the like is formed on substantially the entire surface of the semiconductor film 6 to a thickness of about 200 nm by a vacuum deposition method.
[0060]
At the interface between the semiconductor film 6 and the charge collecting electrode 11, a charge injection blocking layer for preventing injection of electrons or holes into the semiconductor film 6, or the adhesion between the semiconductor film 6 and the charge collecting electrode 11 is improved. A buffer layer may be formed. Similarly, a charge injection blocking layer or a buffer layer may be formed at the interface between the semiconductor film 6 and the bias electrode 7. A-As for the charge injection blocking layer and the buffer layer2Se3Alternatively, a-Se or the like to which an alkali element ion or a halogen element ion is added can be used.
[0061]
Next, the operation principle of the two-dimensional image detector having the above structure will be described. Bias electrode 7 and CsWhen the semiconductor film 6 is irradiated with X-rays in a state where a voltage is applied between the electrode 14 and the electrodes 14, charges (electron-hole pairs) are generated in the semiconductor film 6. Since the semiconductor film 6 and the charge storage capacitor 5 are electrically connected in series, the electrons generated in the semiconductor film 6 move to the positive electrode side, and the holes move to the negative electrode side. As a result, charges are stored in the charge storage capacitor 5.
[0062]
The charge stored in the charge storage capacitor 5 can be taken out through the data electrode 3 by turning on the TFT 4 by an input signal to the gate electrode 2.
[0063]
Since the electrode wiring including the gate electrode 2 and the data electrode 3, the TFT 4, and the charge storage capacitor 5 are all provided in an XY matrix, the signals input to the gate electrode are sequentially scanned, and By detecting a signal for each data electrode 3, it is possible to obtain two-dimensional X-ray image information.
[0064]
Subsequently, the charge collecting electrode 11 will be described in detail. The charge collecting electrode 11 used in the present invention is made of an amorphous transparent conductive oxide film. As the amorphous transparent conductive oxide film material, oxides of indium and tin (ITO), oxides of indium and zinc (IZO: Indium-Zinc-Oxid), oxides of indium and germanium (IGO: Indium-Germanium-Oxide) or the like having a basic composition can be used.
[0065]
The amorphous transparent conductive oxide film can be easily formed by a method such as forming a film at a low temperature or setting a gas pressure during sputtering to a certain value or more when forming a film by a sputtering method. In this case, there is a trade-off in that the resistance value and the transparency of the amorphous transparent conductive oxide film are deteriorated. On the other hand, the following method is effective to stably obtain an amorphous transparent conductive oxide film without the above trade-off (or small).
[0066]
(1) An amorphous ITO film is formed by sputter-depositing ITO with an inert gas such as argon by mixing oxygen as necessary and further using a sputtering gas mixed with hydrogen or water. To form Note that hydrogen and water may be mixed in the sputtering gas.
[0067]
(2) An amorphous IZO film is formed by sputtering using a sintered body target composed of a composition of indium oxide and zinc oxide.
[0068]
(3) An amorphous IGO film is formed by forming a film by a sputtering method using a sintered target made of a composition of indium oxide and germanium oxide.
[0069]
The transparent conductive oxide film in the amorphous state as described above has a smoother surface morphology than a normal polycrystalline transparent conductive oxide film. For example, in the case of a polycrystalline ITO film, the surface has irregularities of about 10 nm at the maximum, but in the case of an amorphous ITO film, the surface irregularities can be suppressed to 5 nm or less.
[0070]
When an a-Se film is formed directly or via a charge blocking layer on the surface of a polycrystalline ITO film having minute irregularities or projections, a region where the ITO film has severe irregularities or a portion where projections suddenly exist. In some cases, the phenomenon that the structure of the a-Se film is locally changed (for example, crystallization), the charge blocking property of the portion is deteriorated, and the dark current is locally increased. When the semiconductor film 6 made of a-Se is operated by applying a strong electric field of about 10 V / μm as a defect occurrence rate, the defective pixel occurrence rate (the number of pixels in which the above-described defect has occurred / the total number of pixels) Was 0.001% to 0.008%. On the other hand, by forming the surface of the charge collecting electrode 11 with an amorphous transparent conductive oxide film by the method (2) described above, the defect occurrence rate can be reduced to 0.0002% to 0.0005%. Become. Further, even when the amorphous transparent conductive oxide film formed by the above-described methods (1) and (3) is used as the charge collection electrode 11, although the effect is slightly different, the defective pixel occurrence rate is reduced. The effect is confirmed.
[0071]
As described above, when the amorphous transparent conductive oxide film is used as the charge collection electrode 11, even if the amorphous semiconductor film 6 represented by a-Se is formed thereon, the charge collection electrode 11 It is possible to suppress the occurrence of characteristic failure due to surface irregularities and local protrusions.
[0072]
The two-dimensional image detector can detect one-dimensional or two-dimensional electromagnetic wave information by dividing the charge collecting electrode 11 into a plurality of pixels. When patterning the charge collecting electrodes 11 into a plurality of charge collecting electrodes 11 by etching, the sharpness of the pattern edge is deteriorated by the influence of crystal grains in a film having high crystallinity, but is not affected by the crystal grains in an amorphous film. Therefore, a pattern edge having excellent sharpness can be obtained. Since the charge collection electrode 11 is made of an amorphous film in this way, the charge collection electrode 11 that is fine and has excellent pattern accuracy can be formed. Accordingly, it is possible to easily realize a high-definition two-dimensional image detector having a small pixel pitch and a high fill factor of the charge collecting electrode 11.
[0073]
Note that the two-dimensional image detector of the present invention is also effective for a two-dimensional image detector utilizing the avalanche effect when a high electric field is applied, since the semiconductor film is made of a-Se.
[0074]
【The invention's effect】
As described above, the electromagnetic wave detector of the present invention has a configuration in which the charge collection electrode is formed of the amorphous transparent conductive oxide film.
[0075]
Thus, since the charge collecting electrode is formed of an amorphous transparent conductive oxide film having a smooth surface morphology, it is possible to reduce irregularities and local protrusions on the surface of the charge collecting electrode. Therefore, even if a semiconductor film is formed on the charge collecting electrode, an electromagnetic wave detector with less occurrence of local changes in the semiconductor film and poor charge blocking characteristics due to unevenness and local protrusions on the surface of the charge collecting electrode. Is provided.
[0076]
The above-mentioned electromagnetic wave detector has a configuration in which the charge collection electrode is a transparent conductive film made of an oxide of amorphous indium and tin.
[0077]
This can prevent, for example, a trade-off in which the resistance value and the transparency of the charge collection electrode deteriorate. Thereby, for example, there is an effect that a highly sensitive electromagnetic wave detector can be provided.
[0078]
In the above-described electromagnetic wave detector, since the charge collection electrode has a structure containing indium, zinc, or germanium, an amorphous transparent conductive film can be easily formed. Thereby, for example, there is an effect that a highly sensitive electromagnetic wave detector can be provided.
[0079]
The above-described electromagnetic wave detector has a configuration in which the charge collecting electrode is formed by sputtering in a sputtering gas mixed with hydrogen and / or water.
[0080]
Thereby, there is an effect that the charge collection electrode, which is an amorphous transparent conductive film, can be formed stably and easily.
[0081]
The above-described electromagnetic wave detector has a configuration in which a charge injection blocking layer that blocks charge injection into the semiconductor film is formed between the semiconductor film and the charge collection electrode.
[0082]
This can prevent charges from being injected from the charge collecting electrode into the semiconductor film and prevent an increase in dark current. Therefore, for example, there is an effect that a highly sensitive electromagnetic wave detector can be provided.
[0083]
In the above-described electromagnetic wave detector, a bias electrode is provided so as to face a charge collection electrode via a semiconductor film, and charge injection for preventing charge injection into the semiconductor film is provided between the bias electrode and the semiconductor film. This is a configuration in which a blocking layer is formed.
[0084]
Thus, charge injection into the semiconductor film can be prevented, and an increase in dark current can be prevented. Therefore, for example, there is an effect that a highly sensitive electromagnetic wave detector can be provided.
[0085]
The above-described electromagnetic wave detector has a configuration in which the semiconductor film is an amorphous film containing selenium as a main component.
This makes it possible to form a semiconductor film having high dark resistance, exhibiting good electromagnetic wave conductivity to X-ray irradiation, and capable of forming a large-area film at a low temperature by a vacuum deposition method. When used, an effect is provided that a highly sensitive electromagnetic wave detector can be provided.
[0086]
The above-mentioned electromagnetic wave detector has a configuration in which unevenness on the surface of the charge collecting electrode is 5 nm or less.
Thereby, there is an effect that it is possible to suppress the occurrence of characteristic failure due to unevenness or local protrusion on the surface of the charge collecting electrode.
[0087]
An image detector according to the present invention is an image detector including a plurality of the electromagnetic wave detectors, wherein the plurality of charge collection electrodes are arranged one-dimensionally or two-dimensionally, and individually connected to the charge collection electrodes. And a plurality of switching elements individually connected to the charge storage capacitor.
[0088]
As a result, one-dimensional or two-dimensional electromagnetic wave information is temporarily stored in a charge storage capacitor, and the one-dimensional or two-dimensional charge information can be easily read out by sequentially scanning them. The electrodes can be divided and patterned. Therefore, for example, when the charge collection electrode is made of the amorphous conductive film, the pattern accuracy at the time of etching is improved, so that the charge collection electrode can be divided and patterned with high precision. This provides an effect that a high-definition image detector having a small size can be provided. Further, there is an effect that it is possible to provide an image detector in which a local change of a semiconductor film formed on the charge collection electrode and a failure in charge blocking characteristics are less likely to occur.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of one pixel unit of a two-dimensional image detector as an electromagnetic wave detector according to one embodiment of the present invention.
FIG. 2 is a plan view of the two-dimensional image detector.
FIG. 3 is a cross-sectional view illustrating a structure of a conventional two-dimensional image detector.
[Explanation of symbols]
1 Glass substrate
2 Gate electrode
3 Data electrode
4 TFT
5 Charge storage capacity (Cs)
6 Semiconductor film
7 bias electrode
8 Channel layer
9 Contact layer
10 Active matrix substrate
11 Charge collection electrode
12 interlayer insulating film
13 Connection electrode
14 Cselectrode
15 Gate insulating film
16 Contact hole
17 Insulation protective film

Claims (9)

検出対象の電磁波に感応して電荷を生成する半導体膜と、
上記半導体膜で生成された電荷を取り出す電荷収集電極とを備えた電磁波検出器において、
上記半導体膜はセレンを主成分とする非晶質の膜であり、
上記電荷収集電極上に上記半導体膜が形成され、
上記電荷収集電極が非晶質透明導電酸化膜からなり、上記電荷収集電極の表面の凸凹が、5nm以下であることを特徴とする電磁波検出器。
A semiconductor film that generates an electric charge in response to an electromagnetic wave to be detected;
An electromagnetic wave detector comprising: a charge collection electrode for extracting a charge generated by the semiconductor film;
The semiconductor film is an amorphous film containing selenium as a main component,
The semiconductor film is formed on the charge collection electrode,
An electromagnetic wave detector, wherein the charge collection electrode is made of an amorphous transparent conductive oxide film, and the surface of the charge collection electrode has a roughness of 5 nm or less.
上記電荷収集電極が非晶質のインジウムと錫との酸化物からなることを特徴とする請求項1に記載の電磁波検出器。2. The electromagnetic wave detector according to claim 1, wherein the charge collection electrode is made of an oxide of amorphous indium and tin. 上記電荷収集電極が、インジウムと、亜鉛またはゲルマニウムとを含有することを特徴とする請求項1に記載の電磁波検出器。The electromagnetic wave detector according to claim 1, wherein the charge collection electrode contains indium and zinc or germanium. 上記電荷収集電極が、スパッタリング法により、水素および/または水が混入されたスパッタガス中にて成膜されたものであることを特徴とする請求項1ないし3のいずれか一項に記載の電磁波検出器。4. The electromagnetic wave according to claim 1, wherein the charge collecting electrode is formed by sputtering in a sputtering gas mixed with hydrogen and / or water. 5. Detector. 上記半導体膜と上記電荷収集電極との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されていることを特徴とする請求項1ないし4のいずれか一項に記載の電磁波検出器。The charge injection blocking layer for preventing charge injection into the semiconductor film is formed between the semiconductor film and the charge collection electrode, according to any one of claims 1 to 4, wherein: Electromagnetic wave detector. 上記半導体膜を介して上記電荷収集電極と対向するようにバイアス電極が設けられ、該バイアス電極と、上記半導体膜との間に、半導体膜への電荷の注入を阻止する電荷注入阻止層が形成されていることを特徴とする請求項1ないし5のいずれか一項に記載の電磁波検出器。A bias electrode is provided so as to face the charge collection electrode via the semiconductor film, and a charge injection blocking layer for preventing charge injection into the semiconductor film is formed between the bias electrode and the semiconductor film. The electromagnetic wave detector according to claim 1, wherein: 上記半導体膜の膜厚は、0.5mm〜1.5mmであることを特徴とする請求項1ないし6のいずれか一項に記載の電磁波検出器。The electromagnetic wave detector according to any one of claims 1 to 6, wherein the semiconductor film has a thickness of 0.5 mm to 1.5 mm. 請求項1ないし7のいずれか一項に記載の電磁波検出器を複数備えた画像検出器であって、An image detector comprising a plurality of the electromagnetic wave detectors according to any one of claims 1 to 7,
上記電荷収集電極が、1次元または2次元に複数配列されると共に、上記電荷収集電極に個別に接続された電荷蓄積容量と、該電荷蓄積容量に個別に接続されたスイッチング素子とを複数備えていることを特徴とする画像検出器。  A plurality of the charge collection electrodes are arranged one-dimensionally or two-dimensionally, a plurality of charge storage capacitors individually connected to the charge collection electrodes, and a plurality of switching elements individually connected to the charge storage capacitors. An image detector.
検出対象の電磁波に感応して電荷を生成する半導体膜と、A semiconductor film that generates electric charges in response to an electromagnetic wave to be detected,
上記半導体膜で生成された電荷を取り出す電荷収集電極とを備えた電磁波検出器の製造方法において、  In a method for manufacturing an electromagnetic wave detector including a charge collection electrode for extracting a charge generated in the semiconductor film,
上記半導体膜として、セレンを主成分とする非晶質の膜を用い、  As the semiconductor film, an amorphous film containing selenium as a main component is used,
上記電荷収集電極として非晶質透明導電酸化膜を用い、  Using an amorphous transparent conductive oxide film as the charge collection electrode,
上記非晶質透明導電酸化膜を、スパッタリング法により、水素および/または水が混入されたスパッタガス中にて形成して、上記電荷収集電極の表面の凸凹を5nm以下に形成することを特徴とする電磁波検出器の製造方法。  The amorphous transparent conductive oxide film is formed by a sputtering method in a sputtering gas mixed with hydrogen and / or water to form irregularities on the surface of the charge collecting electrode to 5 nm or less. Of manufacturing an electromagnetic wave detector.
JP2000202789A 2000-07-04 2000-07-04 Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector Expired - Fee Related JP3589954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202789A JP3589954B2 (en) 2000-07-04 2000-07-04 Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202789A JP3589954B2 (en) 2000-07-04 2000-07-04 Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector

Publications (2)

Publication Number Publication Date
JP2002026300A JP2002026300A (en) 2002-01-25
JP3589954B2 true JP3589954B2 (en) 2004-11-17

Family

ID=18700264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202789A Expired - Fee Related JP3589954B2 (en) 2000-07-04 2000-07-04 Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector

Country Status (1)

Country Link
JP (1) JP3589954B2 (en)

Cited By (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US12040184B2 (en) 2017-10-30 2024-07-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US12125700B2 (en) 2021-01-13 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265932A (en) * 2003-02-14 2004-09-24 Canon Inc Radiation imaging device
US7541617B2 (en) 2003-02-14 2009-06-02 Canon Kabushiki Kaisha Radiation image pickup device
JP4836456B2 (en) * 2003-02-27 2011-12-14 株式会社東芝 X-ray detector and X-ray inspection apparatus using the same
JP2005327817A (en) * 2004-05-12 2005-11-24 Toshiba Corp Radiation detector
JP2008098390A (en) * 2006-10-12 2008-04-24 Fujifilm Corp Radiation image detector and its driving method
JP2008244411A (en) 2007-03-29 2008-10-09 Fujifilm Corp Image detector and its fabrication process
JP5602390B2 (en) * 2008-08-19 2014-10-08 富士フイルム株式会社 Thin film transistor, active matrix substrate, and imaging device
JP5388275B2 (en) * 2009-01-16 2014-01-15 富士フイルム株式会社 Radiation solid state detector
CN102859691B (en) * 2010-04-07 2015-06-10 株式会社岛津制作所 Radiation Detector And Method For Producing Same
JP5796908B2 (en) 2010-10-29 2015-10-21 富士フイルム株式会社 Radiation phase imaging device
JP5475737B2 (en) 2011-10-04 2014-04-16 富士フイルム株式会社 Radiation imaging apparatus and image processing method
US9093347B2 (en) * 2013-05-15 2015-07-28 Canon Kabushiki Kaisha Detecting apparatus and detecting system
US9165957B2 (en) 2013-05-15 2015-10-20 Canon Kabushiki Kaisha Detecting device, detecting system, and manufacturing method of detecting device
EP3809121A4 (en) 2018-06-12 2022-03-09 University of Tsukuba Phase image capturing method and phase image capturing device using same

Cited By (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US12106965B2 (en) 2017-02-15 2024-10-01 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US12033861B2 (en) 2017-10-05 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US12040184B2 (en) 2017-10-30 2024-07-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US12119228B2 (en) 2018-01-19 2024-10-15 Asm Ip Holding B.V. Deposition method
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US12107000B2 (en) 2019-07-10 2024-10-01 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US12040229B2 (en) 2019-08-22 2024-07-16 Asm Ip Holding B.V. Method for forming a structure with a hole
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US12033849B2 (en) 2019-08-23 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12119220B2 (en) 2019-12-19 2024-10-15 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US12055863B2 (en) 2020-07-17 2024-08-06 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US12125700B2 (en) 2021-01-13 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features

Also Published As

Publication number Publication date
JP2002026300A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
JP3589954B2 (en) Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector
CN102593140B (en) Indirect commutation image detector
EP1145322B1 (en) Imager with reduced fet photoresponse and high integrity contact via
US5420452A (en) Solid state radiation detector
US5930591A (en) High resolution, low voltage flat-panel radiation imaging sensors
EP1933381B1 (en) Image signal readout method and apparatus, and image signal readout system
US8039809B2 (en) Sensor panel and image detecting device
JP3597392B2 (en) 2D image detector
CN108550601B (en) Radiographic imaging array fabrication process for metal oxide thin film transistors with reduced mask count
JP2001068656A (en) Radiation detector
JP3594122B2 (en) 2D image detector
JP2005101193A (en) Radiation detector
US20010035911A1 (en) Radiation detector
JP4026377B2 (en) Radiation detector
JP2001077341A (en) Two-dimensional arrayed detection device
JP2007324470A (en) Radiation image detector
KR101322331B1 (en) A thin film transistor array panel for X-ray detectorand a method for manufacturing the thin film transistor
CN111081715B (en) Thin film transistor array substrate and digital X-ray detector including the same
EP1936694B1 (en) Image detector and radiation detecting system
JPH11297977A (en) Two-dimensional image detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Ref document number: 3589954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees