JP5388275B2 - Radiation solid state detector - Google Patents

Radiation solid state detector Download PDF

Info

Publication number
JP5388275B2
JP5388275B2 JP2009007604A JP2009007604A JP5388275B2 JP 5388275 B2 JP5388275 B2 JP 5388275B2 JP 2009007604 A JP2009007604 A JP 2009007604A JP 2009007604 A JP2009007604 A JP 2009007604A JP 5388275 B2 JP5388275 B2 JP 5388275B2
Authority
JP
Japan
Prior art keywords
electrode layer
layer
state detector
radiation solid
solid state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009007604A
Other languages
Japanese (ja)
Other versions
JP2010165905A (en
Inventor
和宏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009007604A priority Critical patent/JP5388275B2/en
Publication of JP2010165905A publication Critical patent/JP2010165905A/en
Application granted granted Critical
Publication of JP5388275B2 publication Critical patent/JP5388275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、電磁波の照射を受けて直接電荷を発生する光導電層を備えた放射線固体検出器に関し、より詳細には耐久性の向上に関するものである。   The present invention relates to a radiation solid state detector provided with a photoconductive layer that directly generates an electric charge when irradiated with electromagnetic waves, and more particularly to improvement of durability.

従来、医療分野等において、被写体を透過した放射線の照射を受けて被写体に関する放射線画像を記録し、その記録された放射線画像に応じた電気信号を出力する放射線固体検出器が各種提案、実用化されている。   Conventionally, in the medical field and the like, various radiation solid state detectors that record radiation images related to a subject by receiving radiation transmitted through the subject and output an electrical signal corresponding to the recorded radiation image have been proposed and put into practical use. ing.

放射線固体検出器の方式としては、放射線を直接電荷に変換し電荷を蓄積する直接変換方式と、放射線を一度CsI:Tl、GOS(GdS:Tb)等のシンチレータで光に変換し、その光を光導電層で電荷に変換し蓄積する間接変換方式がある。また、読取方式としては、読取光を用いる光読取方式と、TFT(thin film transistor)、CCD(charge coupled device)、CMOS(complementary metal oxide semiconductor)センサ等を用いる電気読取方式に大別される。 As a radiation solid-state detector system, a direct conversion system that directly converts radiation into electric charge and accumulates the charge, and radiation is once converted into light by a scintillator such as CsI: Tl or GOS (Gd 2 O 2 S: Tb). There is an indirect conversion method in which the light is converted into charges by the photoconductive layer and stored. The reading method is roughly divided into an optical reading method using reading light and an electric reading method using a TFT (thin film transistor), a CCD (charge coupled device), a CMOS (complementary metal oxide semiconductor) sensor, and the like.

光読取方式の放射線固体検出器としては例えば、放射線の照射により記録用光導電層に発生した電荷を蓄積するとともにこの蓄積電荷と逆極性の電荷を線状電極に帯電させ、読取光の照射により読取用光導電層に発生した電荷対の各電荷を蓄積電荷と帯電させた電荷にそれぞれ結合させることにより、蓄積電荷を読み取るものが知られている。   As an optical solid-state detector of the optical reading system, for example, the charge generated in the photoconductive layer for recording due to the irradiation of radiation is accumulated and the charge having the opposite polarity to the accumulated charge is charged to the linear electrode. It is known to read the accumulated charge by combining each charge of the charge pair generated in the reading photoconductive layer with the accumulated charge and the charged charge.

電気読取方式の放射線固体検出器としては例えば、放射線の照射により発生した電荷を画素ごとの画素電極で収集し、該画素電極と接続された蓄積容量に蓄積し、その蓄積電荷をTFT等の電気的スイッチを1行ずつON・OFFすることにより読み取るものが知られている。   As an electrical reading type radiation solid state detector, for example, charges generated by irradiation of radiation are collected by a pixel electrode for each pixel, stored in a storage capacitor connected to the pixel electrode, and the stored charge is stored in an electrical device such as a TFT. It is known to read by turning on and off the target switch one line at a time.

上記の直接変換方式の放射線固体検出器において光導電層には、CdTe、HgIなどの様々な物質が用いられるが、最も一般的には、X線等の放射線に対して高感度に感応するアモルファスセレン(a−Se)が用いられている。a−Seは外界の温度、湿度の影響を受けやすく、保護膜なしの状態で長期に使用すると、感度低下、画像の質の低下などの悪化が進行するという問題がある。またa−SeはX線吸収率が低い為に比較的厚い膜厚が必要で、結果として光伝導層として機能させるために高いバイアス電圧の印加が必要とされる。こうした高い電場の印加では、a−Seに発生した微細な欠陥が大きな画像欠陥の発生に繋がることがある。このため、特許文献1に記載のように、通常、放射線固体検出器に保護フィルムを接着剤、粘着剤で貼り付けて光導電層を保護することが行われている。 In the direct conversion radiation solid-state detector, various materials such as CdTe and HgI 2 are used for the photoconductive layer, but most commonly, it is highly sensitive to radiation such as X-rays. Amorphous selenium (a-Se) is used. a-Se is easily affected by the temperature and humidity of the outside world, and when used for a long time without a protective film, there is a problem that deterioration such as a decrease in sensitivity and a decrease in image quality proceeds. Moreover, since a-Se has a low X-ray absorptivity, a relatively thick film thickness is required. As a result, a high bias voltage needs to be applied in order to function as a photoconductive layer. When such a high electric field is applied, a fine defect generated in a-Se may lead to a large image defect. For this reason, as described in Patent Document 1, a photoconductive layer is usually protected by attaching a protective film to a radiation solid detector with an adhesive or a pressure-sensitive adhesive.

特開2008−251999号公報JP 2008-251999 A 特開2003−315466号公報JP 2003-315466 A

ここで、上記のような放射線固体検出器の構造について図4を用いて説明する。図4は従来の放射線固体検出器の断面図である。   Here, the structure of the radiation solid detector as described above will be described with reference to FIG. FIG. 4 is a cross-sectional view of a conventional radiation solid state detector.

従来の放射線固体検出器100は、平板状の第1の電極層111(バイアス電極)、X線の照射を受けることにより直接電荷を発生して導電性を呈する光導電層112、TFTからなる読み取り回路と画素電極とからなる第2の電極層113がガラス基板114上に積層され、さらに第1の電極層111および光導電層112は、化学蒸着で製膜したポリマー120により封止され、さらにその上から保護フィルム121が貼付されている。また、第1の電極層111と光導電層112との間には、第1の電極層111から光導電層112への不要な電荷の注入を阻止して、検出器で検出される画像の画質の低下を防止するための電荷注入阻止層115が設けられている。   The conventional radiation solid state detector 100 includes a flat plate-like first electrode layer 111 (bias electrode), a photoconductive layer 112 that generates electric charge directly upon receiving X-ray irradiation, and has a reading function. A second electrode layer 113 composed of a circuit and a pixel electrode is laminated on a glass substrate 114, and the first electrode layer 111 and the photoconductive layer 112 are sealed with a polymer 120 formed by chemical vapor deposition, and A protective film 121 is attached from above. Further, between the first electrode layer 111 and the photoconductive layer 112, injection of unnecessary charges from the first electrode layer 111 to the photoconductive layer 112 is prevented, and an image detected by the detector is not detected. A charge injection blocking layer 115 is provided to prevent a deterioration in image quality.

この放射線固体検出器110では、第1の電極層111と第2の電極層113との間に高電界を印加して放射線画像の記録を行なうが、この場合に平板状の第1の電極層111の端縁部(図4中A矢指部)は電界が集中して中心部位よりも強い電界が形成されることになる。そして、上記のように第1の電極層111と光導電層112との間に電荷注入阻止層115を配しておくと、第1の電極層111の端縁部付近では過剰に電荷が蓄積されてしまい、対極する第2の電極層113からの電荷注入を誘発して、電荷注入阻止層115下のa−Se(光導電層112)が結晶化するという問題がある。   In this radiation solid state detector 110, a radio field image is recorded by applying a high electric field between the first electrode layer 111 and the second electrode layer 113. In this case, a flat plate-like first electrode layer is used. At the end edge portion 111 (A arrow portion in FIG. 4), the electric field concentrates to form a stronger electric field than the central portion. If the charge injection blocking layer 115 is disposed between the first electrode layer 111 and the photoconductive layer 112 as described above, excessive charge is accumulated near the edge of the first electrode layer 111. Therefore, there is a problem that a-Se (photoconductive layer 112) under the charge injection blocking layer 115 is crystallized by inducing charge injection from the second electrode layer 113 as a counter electrode.

このような問題を解消するために、電荷注入阻止層115を第1の電極層111の端縁にかからないように内側に配することで、第1の電極層111の端縁部付近での過剰な電荷の蓄積を抑制することができる。しかしながら、電荷注入阻止層115の端縁は、アーティファクトの発生等を無くすために、検出器の画像検出領域外としなければならないため、例えば乳房撮影用の放射線固体検出器のように、検出領域をできるだけ検出器の端縁部まで確保したいような場合には、電荷注入阻止層115を第1の電極層111の端縁から十分に内側にすることができないという問題がある。   In order to solve such a problem, the charge injection blocking layer 115 is disposed on the inner side so as not to reach the edge of the first electrode layer 111, so that the excess in the vicinity of the edge of the first electrode layer 111 is obtained. Accumulation of charge can be suppressed. However, since the edge of the charge injection blocking layer 115 must be outside the image detection area of the detector in order to eliminate the generation of artifacts and the like, the detection area is made to be, for example, a radiation solid state detector for mammography. In the case where it is desired to secure the edge of the detector as much as possible, there is a problem that the charge injection blocking layer 115 cannot be sufficiently inward from the edge of the first electrode layer 111.

従って、上記以外の方法でバイアス電極の端縁部における光導電層の劣化を抑制しようとする場合、特許文献2に記載のように、バイアス電極の端縁部に近接する光導電層において、光導電層の劣化原因となる電荷対を発生させないようにするために、放射線固体検出器の有効検出領域外(バイアス電極端縁部)に照射されるX線を遮蔽するコリメーターを放射線固体検出器上方に配することが考えられるが、この場合には、コリメーターと放射線固体検出器との間に距離があるために周囲で散乱したX線の入り込みが防げず、バイアス電極端縁部に対して精度良くX線を遮蔽することができず、光導電層の劣化を十分に抑制することができないという問題がある。   Therefore, when the degradation of the photoconductive layer at the edge of the bias electrode is to be suppressed by a method other than the above, as described in Patent Document 2, in the photoconductive layer adjacent to the edge of the bias electrode, In order to prevent generation of charge pairs that cause deterioration of the conductive layer, the radiation solid state detector is provided with a collimator that shields X-rays that are irradiated outside the effective detection region (the edge of the bias electrode) of the radiation solid state detector. However, in this case, since there is a distance between the collimator and the radiation solid state detector, the X-rays scattered around cannot be prevented from entering and the edge of the bias electrode cannot be prevented. Therefore, there is a problem that X-rays cannot be shielded with high accuracy and deterioration of the photoconductive layer cannot be sufficiently suppressed.

本発明は、上記事情に鑑み、電磁波の照射を受けて直接電荷を発生する光導電層を備えた放射線固体検出器において、バイアス電極の端縁部における光導電層の劣化を抑制した放射線固体検出器を提供することを目的とするものである。   In view of the above circumstances, the present invention provides a solid-state radiation detector that includes a photoconductive layer that directly generates an electric charge when irradiated with electromagnetic waves, and that detects radiation solid state that suppresses deterioration of the photoconductive layer at the edge of the bias electrode. The purpose is to provide a vessel.

本発明の放射線固体検出器は、第1の電極層と、電磁波の照射を受けて電荷を発生する光導電層と、複数の分割電極を備えた第2の電極層とを、第2の電極層から順に基板上に積層してなり、少なくとも第1の電極層および光導電層を保護するように、保護フィルムが設けられてなる放射線固体検出器であって、第1の電極層の端縁部の少なくとも一部の上方において、電磁波を遮蔽する電磁波遮蔽部材が保護フィルム上に直接設けられたことを特徴とするものである。   The radiation solid-state detector of the present invention includes a first electrode layer, a photoconductive layer that generates charges when irradiated with electromagnetic waves, and a second electrode layer that includes a plurality of divided electrodes. A radiation solid-state detector comprising a protective film provided so as to protect at least the first electrode layer and the photoconductive layer, wherein the edge of the first electrode layer is laminated on the substrate in order from the layer. An electromagnetic wave shielding member that shields electromagnetic waves is provided directly on the protective film above at least a part of the portion.

ここで、「保護フィルム」とは、放射線固体検出器の表面に密着して、少なくとも第1の電極層および光導電層を覆っているものを意味しており、その機能について限定するものではない。   Here, the “protective film” means a film that is in close contact with the surface of the radiation solid detector and covers at least the first electrode layer and the photoconductive layer, and is not limited in its function. .

また、「電磁波遮蔽部材」とは、電磁波を吸収および/または反射することにより、電磁波の透過を阻害するものを意味する。   The “electromagnetic wave shielding member” means a member that inhibits transmission of electromagnetic waves by absorbing and / or reflecting electromagnetic waves.

この電磁波遮蔽部材は、絶縁性を有するものとすることが好ましい。   This electromagnetic wave shielding member preferably has insulating properties.

さらに、「電磁波遮蔽部材が保護フィルム上に直接設けられた」とは、保護フィルム上に電磁波遮蔽部材が空間を介在させることなく設けられていることを意味しており、保護フィルムと電磁波遮蔽部材との間に上記保護フィルムとは異なる薄膜フィルム等の介在物を介したものも含むものである。   Furthermore, “the electromagnetic wave shielding member is provided directly on the protective film” means that the electromagnetic wave shielding member is provided on the protective film without interposing a space, and the protective film and the electromagnetic wave shielding member. In addition, those including inclusions such as a thin film different from the protective film are also included.

上記における「放射線固体検出器」とは、被写体の画像情報を担持する放射線を検出して被写体に関する放射線画像を表す画像信号を出力する検出器であって、入射した放射線を直接電荷に変換し、この電荷を一旦蓄電部に蓄積し、その後、この電荷を外部に出力させることにより、被写体に関する放射線画像を表す画像信号を得ることができるものである。   The “radiation solid state detector” in the above is a detector that detects radiation carrying image information of a subject and outputs an image signal representing a radiation image related to the subject, and converts incident radiation directly into electric charges. By storing this charge once in the power storage unit and then outputting this charge to the outside, an image signal representing a radiographic image related to the subject can be obtained.

本発明の放射線固体検出器によれば、第1の電極層と、電磁波の照射を受けて電荷を発生する光導電層と、複数の分割電極を備えた第2の電極層とを、第2の電極層から順に基板上に積層してなり、少なくとも第1の電極層および光導電層を保護するように、保護フィルムが設けられてなる放射線固体検出器について、第1の電極層の端縁部の少なくとも一部の上方において、電磁波を遮蔽する電磁波遮蔽部材を保護フィルム上に直接設け、第1の電極層の端縁部に近接する光導電層中で、光導電層の劣化原因となる電荷対を発生させないようにしたので、第1の電極層の端縁部における光導電層の劣化を抑制することが可能となる。   According to the radiation solid-state detector of the present invention, the first electrode layer, the photoconductive layer that generates an electric charge when irradiated with electromagnetic waves, and the second electrode layer that includes a plurality of divided electrodes are provided as the second electrode layer. An edge of the first electrode layer of a radiation solid detector comprising a protective film so as to protect at least the first electrode layer and the photoconductive layer. An electromagnetic wave shielding member that shields electromagnetic waves is provided directly on the protective film above at least a part of the part, and causes deterioration of the photoconductive layer in the photoconductive layer adjacent to the edge of the first electrode layer. Since the charge pair is not generated, it is possible to suppress the deterioration of the photoconductive layer at the edge portion of the first electrode layer.

本発明の一実施の形態による放射線固体検出器の上面図The top view of the radiation solid detector by one embodiment of the present invention 図1中のII−II線断面図II-II line sectional view in FIG. 上記放射線固体検出器について複数回記録動作を行なったときの出力信号の強度の変化を示すグラフThe graph which shows the change of the intensity | strength of an output signal when recording operation is performed in multiple times about the said radiation solid state detector 従来の放射線固体検出器の断面図Cross section of conventional radiation solid state detector

以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は本発明の一実施の形態による放射線固体検出器の上面図、図2は図1中のII−II線断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a top view of a radiation solid state detector according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line II-II in FIG.

放射線固体検出器10は、第1の電極層11、X線の照射を受けることにより直接電荷を発生して導電性を呈する光導電層12、TFTからなる読み取り回路と画素電極とからなる第2の電極層13がガラス基板14上に積層され、さらに第1の電極層11および光導電層12は、化学蒸着で製膜したポリマー20により封止され、さらにその上から保護フィルム21が貼付されている。また、第1の電極層11と光導電層12との間には、第1の電極層11から光導電層12への不要な電荷の注入を阻止して、検出器で検出される画像の画質の低下を防止するための電荷注入阻止層15が設けられている。   The radiation solid state detector 10 includes a first electrode layer 11, a photoconductive layer 12 that generates electric charge directly by being irradiated with X-rays, and exhibits conductivity, a reading circuit including a TFT, and a second electrode including a pixel electrode. The electrode layer 13 is laminated on the glass substrate 14, and the first electrode layer 11 and the photoconductive layer 12 are sealed with a polymer 20 formed by chemical vapor deposition, and a protective film 21 is further applied thereon. ing. Also, between the first electrode layer 11 and the photoconductive layer 12, injection of unnecessary charges from the first electrode layer 11 to the photoconductive layer 12 is prevented, and the image detected by the detector A charge injection blocking layer 15 is provided to prevent the image quality from deteriorating.

また、図1、2に示すように、第1の電極層11の端縁部(図2中A矢指部)の上方において、電磁波を遮蔽する電磁波遮蔽部材22が保護フィルム21上に設けられている。   In addition, as shown in FIGS. 1 and 2, an electromagnetic wave shielding member 22 that shields electromagnetic waves is provided on the protective film 21 above the edge portion (A arrow portion in FIG. 2) of the first electrode layer 11. Yes.

第1の電極層11は、X線に対して透過性を有するものであればよく、例えば金薄膜等を用いることができる。本実施の形態においては厚さ100nmの金膜としている。   The first electrode layer 11 only needs to be transparent to X-rays, and for example, a gold thin film can be used. In the present embodiment, a gold film having a thickness of 100 nm is used.

光導電層12は、量子効率が高く、暗電流の少ないa−Seから構成されている。本実施の形態においてこの光導電層12の厚さは200μmとしている。   The photoconductive layer 12 is made of a-Se having high quantum efficiency and low dark current. In the present embodiment, the thickness of the photoconductive layer 12 is 200 μm.

第2の電極層13は、各画素毎に対応してTFTが形成されており、各TFTの出力ラインは不図示の信号検出手段に接続される。また各TFTの制御ラインは不図示のTFT制御用手段に接続されている。   The second electrode layer 13 is provided with a TFT corresponding to each pixel, and the output line of each TFT is connected to a signal detection means (not shown). The control line of each TFT is connected to a TFT control means (not shown).

電荷注入阻止層15は、硫化アンチモン等を用いることができる。図2に示すように、電荷注入阻止層15の端縁は、第1の電極層11の端縁にかからないように内側に配されており、これにより第1の電極層11の端縁部付近での過剰な電荷の蓄積を抑制することができる。   The charge injection blocking layer 15 can use antimony sulfide or the like. As shown in FIG. 2, the edge of the charge injection blocking layer 15 is arranged on the inner side so as not to reach the edge of the first electrode layer 11, thereby the vicinity of the edge of the first electrode layer 11. It is possible to suppress the accumulation of excessive charges in the.

第1の電極層11および光導電層12を封止するポリマー20は、透湿性が低く、かつa−Seを変質させないものであれば種々のものが使用可能であり、例えばポリ−パラキシリレン類が挙げられる。   As the polymer 20 that seals the first electrode layer 11 and the photoconductive layer 12, various types can be used as long as they have low moisture permeability and do not alter a-Se. For example, poly-paraxylylenes can be used. Can be mentioned.

化学蒸着で製膜したポリマー20の厚さは1〜100μmとすることが好ましく、10〜50μmとすればより好ましい。本実施の形態においては、ポリマー20として、ポリ−パラキシリレンを15μmの厚さでCVD法により堆積させている。   The thickness of the polymer 20 formed by chemical vapor deposition is preferably 1 to 100 μm, and more preferably 10 to 50 μm. In the present embodiment, poly-paraxylylene is deposited as the polymer 20 with a thickness of 15 μm by a CVD method.

これにより放射線固体検出器10に対して隙間を生じることなく封止できるとともに、接着剤を用いないため接着剤をa−Seを主成分とする光導電層12に浸透させることがないため、画像斑や放電破壊等の問題を生じることなく光導電層12を保護することが可能である。   As a result, the radiation solid state detector 10 can be sealed without generating a gap, and since no adhesive is used, the adhesive does not penetrate into the photoconductive layer 12 containing a-Se as a main component. It is possible to protect the photoconductive layer 12 without causing problems such as spots or discharge breakdown.

また、ポリマー20上から接着剤付きの保護フィルム21を貼付している。この保護フィルム21は、放射線固体検出器10に対する印加電位を上回る絶縁破壊強度を有することが必要であり、更に放射線固体検出器10の機能上、放射線透過を妨げない部材であることが必要である。また、絶縁性を長期にわたり確保する上でデバイスに対する密着耐久性を確保する必要もある。このような機能を満たす材質としてはPETフィルム、あるいはアルミ表面にPET、ナイロン等樹脂膜を形成したアルミラミネートフィルム等があるが、フィルムへのアース処理が不要な点からPETフィルムの採用が望ましい。   Further, a protective film 21 with an adhesive is stuck on the polymer 20. The protective film 21 needs to have a dielectric breakdown strength that exceeds the potential applied to the radiation solid detector 10, and further needs to be a member that does not interfere with radiation transmission due to the function of the radiation solid detector 10. . In addition, in order to ensure insulation over a long period of time, it is necessary to ensure adhesion durability to the device. As a material satisfying such a function, there is a PET film, or an aluminum laminated film in which a resin film such as PET or nylon is formed on an aluminum surface. However, it is desirable to use a PET film because grounding treatment for the film is unnecessary.

放射線固体検出器10に印加する電圧は、光導電層の厚みに応じて2kV〜10kV程度の範囲で用いられるが、高湿環境下などにおいてもマージンを持って絶縁性を確保するため保護フィルム21の絶縁破壊強度は10kV以上であることが望ましい。この10kV以上の絶縁破壊強度をマージンをもって得るためにはPETフィルム厚さが50μm以上であることが望ましい。なお、PETフィルムの接着にはアクリル系粘着剤、あるいはエポキシ系接着剤が適用可能であるが、硬化時間が必要無い粘着剤の使用が望ましい。   The voltage applied to the radiation solid state detector 10 is used in the range of about 2 kV to 10 kV depending on the thickness of the photoconductive layer. However, the protective film 21 is used to ensure insulation with a margin even in a high humidity environment. The dielectric breakdown strength of is desirably 10 kV or more. In order to obtain the dielectric breakdown strength of 10 kV or more with a margin, the PET film thickness is desirably 50 μm or more. An acrylic pressure-sensitive adhesive or an epoxy-based adhesive can be applied to the PET film, but it is desirable to use a pressure-sensitive adhesive that does not require a curing time.

電磁波遮蔽部材22は、記録用に照射する電磁波の照射波長により最適な材料が異なり、本実施の形態のようにX線を照射する場合には、ビスマスまたはビスマス化合物、鉛または鉛化合物、タングステンまたはタングステン化合物、タンタルまたはタンタル化合物、バリウム化合物、セシウム化合物、ガドリニウム化合物等を用いることができ、好ましくはBiF、Bi、PbO、BaSO、CsBr、CsI、Gdである。 The electromagnetic shielding member 22 has a different optimum material depending on the irradiation wavelength of the electromagnetic wave to be irradiated for recording. A tungsten compound, a tantalum or a tantalum compound, a barium compound, a cesium compound, a gadolinium compound, or the like can be used, and BiF 3 , Bi 2 O 3 , PbO, BaSO 4 , CsBr, CsI, and Gd 2 O 3 are preferable.

上記X線吸収材料をウレタン樹脂等を含有する揮発性溶媒と混合させ、上部第1の電極層11の端縁部に沿って保護フィルム21上部に塗布することが好ましい。無論、予め保護フィルム21上に上記X線吸収材料を塗布した後に、この保護フィルム21をポリマー20上に貼り付けても構わない。   It is preferable that the X-ray absorbing material is mixed with a volatile solvent containing urethane resin or the like and applied to the upper portion of the protective film 21 along the edge portion of the upper first electrode layer 11. Of course, the protective film 21 may be pasted on the polymer 20 after the X-ray absorbing material is applied on the protective film 21 in advance.

なお、記録用に照射する電磁波に可視光もしくは赤外光を用いる場合には、黒色の遮光材料が好ましく、例えば黒色粘着PETフィルム等が好ましい。   When visible light or infrared light is used as the electromagnetic wave irradiated for recording, a black light-shielding material is preferable, for example, a black adhesive PET film.

上記のように形成された放射線固体検出器10の劣化評価を行なっており、この評価について下記で説明する。本評価は加速して行うために照射波長をX線(28keV)ではなく、X線1R照射時の発生電荷量と同等の電荷を発生するよう強度を調整した530nmの緑色光とし、この緑色光を放射線固体検出器10の全面に照射した。また、これに伴い緑色光を吸収する絶縁性黒色遮蔽テープを保護フィルム21上に設置した。この劣化評価には、放射線固体検出器10の最も端部に位置する電極(図2中の有効検出領域外)の信号強度の変化を用いた。なお、この信号強度劣化とa−Se(光導電層12)の劣化には相関があることが分かっている。   Degradation evaluation of the radiation solid detector 10 formed as described above is performed, and this evaluation will be described below. Since this evaluation is accelerated, the irradiation wavelength is not X-rays (28 keV), but 530 nm green light whose intensity is adjusted so as to generate charges equivalent to the generated charge amount at the time of X-ray 1R irradiation. Was irradiated on the entire surface of the radiation solid state detector 10. Moreover, the insulating black shielding tape which absorbs green light in connection with this was installed on the protective film 21. FIG. For this deterioration evaluation, the change in signal intensity of the electrode (outside the effective detection region in FIG. 2) located at the end of the radiation solid detector 10 was used. It has been found that there is a correlation between the deterioration of the signal intensity and the deterioration of a-Se (photoconductive layer 12).

評価の結果を図3に示す。図3は複数回記録動作を行なったときの出力信号の強度の変化を示すグラフである。なお、このグラフの横軸は動作回数(万回)、縦軸は信号強度(初期値を1に規格化)を示している。   The evaluation results are shown in FIG. FIG. 3 is a graph showing changes in the intensity of the output signal when the recording operation is performed a plurality of times. In this graph, the horizontal axis represents the number of operations (10,000 times), and the vertical axis represents the signal intensity (normalized to an initial value of 1).

このグラフに示すとおり、黒色遮蔽テープを設けた場合には、30万回記録動作を行なっても信号値は初期値の60%程度を確保しているのに対し、黒色遮蔽テープを設けない場合には、10万回程度までで急峻に信号値が低下し、20万回で信号が出力されなくなってしまう。このように、電磁波遮蔽部材を設けることによって、a−Seの劣化に対して有意に効果があることが判明した。   As shown in this graph, when the black shielding tape is provided, the signal value is secured about 60% of the initial value even if the recording operation is performed 300,000 times, whereas the black shielding tape is not provided. In this case, the signal value sharply decreases up to about 100,000 times, and no signal is output after 200,000 times. Thus, it has been found that the provision of the electromagnetic wave shielding member has a significant effect on the deterioration of a-Se.

上記のように形成された放射線固体検出器10は、第1の電極層11と第2の電極層13との間に電界を形成している際に、光導電層12にX線が照射されると、光導電層12内に電荷対が発生し、この電荷対の量に応じた潜像電荷が第2の電極層13内に蓄積されるものである。蓄積された潜像電荷を読み取る際には、第2の電極層13のTFTを順次駆動して、各画素に対応した潜像電荷に基づく画像信号を出力ラインから出力させて、この画像信号を信号検出手段により検出することにより、潜像電荷が担持する静電潜像を読み取ることができる。   The radiation solid detector 10 formed as described above irradiates the photoconductive layer 12 with X-rays when an electric field is formed between the first electrode layer 11 and the second electrode layer 13. Then, charge pairs are generated in the photoconductive layer 12 and latent image charges corresponding to the amount of the charge pairs are accumulated in the second electrode layer 13. When reading the accumulated latent image charge, the TFTs of the second electrode layer 13 are sequentially driven to output an image signal based on the latent image charge corresponding to each pixel from the output line. By detecting by the signal detecting means, the electrostatic latent image carried by the latent image charge can be read.

以上、本発明の好ましい実施の形態について説明したが、本発明は上記の電気読取方式の放射線固体検出器に限定されるものではなく、電磁波の照射を受けて直接電荷を発生する光導電層を備えた放射線固体検出器であればどのようなものにも応用可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described electric solid-state radiation solid-state detector, and a photoconductive layer that directly generates a charge when irradiated with electromagnetic waves is provided. The present invention can be applied to any radiation solid state detector provided.

10 放射線固体検出器
11 第1の電極層
12 光導電層
13 第2の電極層
14 ガラス基板
15 電荷注入阻止層
20 ポリマー
21 保護フィルム
22 電磁波遮蔽部材
DESCRIPTION OF SYMBOLS 10 Radiation solid state detector 11 1st electrode layer 12 Photoconductive layer 13 2nd electrode layer 14 Glass substrate 15 Charge injection block layer 20 Polymer 21 Protective film 22 Electromagnetic wave shielding member

Claims (3)

第1の電極層と、
電磁波の照射を受けて電荷を発生する光導電層と、
2次元状に配列され、画素検出領域を形成する複数の分割電極を備えた第2の電極層とを、該第2の電極層から順に基板上に積層してなり、
少なくとも前記第1の電極層および前記光導電層を保護するように、保護フィルムが設けられてなる放射線固体検出器であって、
前記第1の電極層と前記光導電層との間に、前記第1の電極層から前記光導電層への電荷の注入を阻止する電荷注入阻止層を備え、
該電荷注入阻止層が、前記第1の電極層の内側で、かつ前記画素検出領域の端部まで覆う様に配され、
前記第1の電極層の端縁部の少なくとも一部の上方で、かつ前記画素検出領域の外のみに、前記電磁波を遮蔽する電磁波遮蔽部材が前記保護フィルム上に直接設けられたことを特徴とする放射線固体検出器。
A first electrode layer;
A photoconductive layer that generates electric charges when irradiated with electromagnetic waves;
A second electrode layer that is two-dimensionally arranged and includes a plurality of divided electrodes that form a pixel detection region, and is laminated on the substrate in order from the second electrode layer;
A radiation solid state detector provided with a protective film so as to protect at least the first electrode layer and the photoconductive layer,
A charge injection blocking layer for blocking charge injection from the first electrode layer to the photoconductive layer between the first electrode layer and the photoconductive layer;
The charge injection blocking layer is disposed so as to cover the inner side of the first electrode layer and the end of the pixel detection region;
An electromagnetic wave shielding member that shields the electromagnetic wave is provided directly on the protective film above at least a part of the edge of the first electrode layer and only outside the pixel detection region. A radiation solid state detector.
前記電磁波遮蔽部材が、絶縁性を有するものであることを特徴とする請求項記載の放射線固体検出器。 The electromagnetic wave shielding member, the radiation solid-state detector according to claim 1, wherein a has an insulating property. 前記電磁波遮蔽部材が、ビスマスまたはビスマス化合物、鉛または鉛化合物、タングステンまたはタングステン化合物、タンタルまたはタンタル化合物、バリウム化合物、セシウム化合物、ガドリニウム化合物のうち少なくとも1つを含むことを特徴とする請求項1または2記載の放射線固体検出器。 The electromagnetic wave shielding member, bismuth or bismuth compound, lead or lead compounds, tungsten or tungsten compounds, tantalum or tantalum compound, a barium compound, a cesium compound, or claim 1, characterized in that it comprises at least one of gadolinium compound The radiation solid state detector according to 2 .
JP2009007604A 2009-01-16 2009-01-16 Radiation solid state detector Expired - Fee Related JP5388275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007604A JP5388275B2 (en) 2009-01-16 2009-01-16 Radiation solid state detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007604A JP5388275B2 (en) 2009-01-16 2009-01-16 Radiation solid state detector

Publications (2)

Publication Number Publication Date
JP2010165905A JP2010165905A (en) 2010-07-29
JP5388275B2 true JP5388275B2 (en) 2014-01-15

Family

ID=42581843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007604A Expired - Fee Related JP5388275B2 (en) 2009-01-16 2009-01-16 Radiation solid state detector

Country Status (1)

Country Link
JP (1) JP5388275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330618B2 (en) * 2014-10-22 2018-05-30 株式会社島津製作所 Radiation detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310699A (en) * 1993-04-22 1994-11-04 Olympus Optical Co Ltd Multilayer solid-state image pickup device
JPH08204165A (en) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> Multilayered solid-state image sensing device
JP3594122B2 (en) * 2000-03-09 2004-11-24 シャープ株式会社 2D image detector
JP3589954B2 (en) * 2000-07-04 2004-11-17 シャープ株式会社 Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector
JP4631534B2 (en) * 2005-05-17 2011-02-16 株式会社島津製作所 Flat panel radiation detector
JP2007147596A (en) * 2005-11-01 2007-06-14 Fujifilm Corp Radiation solid-state detector
JP4908283B2 (en) * 2007-03-28 2012-04-04 富士フイルム株式会社 Radiation image capturing apparatus and pixel defect information acquisition method

Also Published As

Publication number Publication date
JP2010165905A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
US20110198505A1 (en) Radiation detector and radiation detection system
US7709804B2 (en) Radiation detector
US8280000B2 (en) Radiation phase contrast imaging apparatus
JP5781717B2 (en) Amorphous selenium flat panel X-ray imager for tomosynthesis and static imaging
JP5507202B2 (en) Radiation imaging apparatus and radiation imaging system using the same
JP5566569B2 (en) Amorphous selenium flat panel X-ray imager for tomosynthesis and static imaging
JP5566566B2 (en) Amorphous selenium flat panel X-ray imager for tomosynthesis and static imaging
US20100051820A1 (en) X-ray detecting element
US7786446B2 (en) Radiation detector
JP2010210590A (en) Radiation detector
US6455867B2 (en) Image detector having photoconductive layer, linear electrodes transparent to reading light, and signal-readout electrodes shaded from reading light
US7547885B2 (en) Radiation detector
JP2011242261A (en) Radiation detector
KR20110110583A (en) X-ray detector with double photoconductor
JP2010011158A (en) Detection element
JP2008177387A (en) Radiation image detector
JP5388275B2 (en) Radiation solid state detector
US7294847B2 (en) Radiographic image detector
JP2009158510A (en) Radiographic image detecting device
JP5235119B2 (en) Radiation image detector
JP2009088086A (en) Radiation image detector
JP5705934B2 (en) Radiation imaging apparatus and radiation imaging system using the same
JP5509228B2 (en) Radiation image recording / reading apparatus
JP5137331B2 (en) Radiation image recording / reading apparatus
JP2008008899A (en) Radiographic image detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5388275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees