JP2018182343A - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP2018182343A JP2018182343A JP2018148182A JP2018148182A JP2018182343A JP 2018182343 A JP2018182343 A JP 2018182343A JP 2018148182 A JP2018148182 A JP 2018148182A JP 2018148182 A JP2018148182 A JP 2018148182A JP 2018182343 A JP2018182343 A JP 2018182343A
- Authority
- JP
- Japan
- Prior art keywords
- oxide semiconductor
- film
- semiconductor film
- oxide
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 473
- 239000013078 crystal Substances 0.000 claims abstract description 100
- 229910044991 metal oxide Inorganic materials 0.000 claims description 137
- 150000004706 metal oxides Chemical class 0.000 claims description 137
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 79
- 239000011787 zinc oxide Substances 0.000 claims description 40
- 239000011701 zinc Substances 0.000 claims description 29
- 229910052725 zinc Inorganic materials 0.000 claims description 26
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 22
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 12
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 12
- 229910052738 indium Inorganic materials 0.000 claims description 10
- 229910052733 gallium Inorganic materials 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 5
- 230000005855 radiation Effects 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 description 121
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 104
- 229910052760 oxygen Inorganic materials 0.000 description 103
- 239000001301 oxygen Substances 0.000 description 103
- 238000010438 heat treatment Methods 0.000 description 89
- 230000007547 defect Effects 0.000 description 74
- 239000010410 layer Substances 0.000 description 68
- 239000007789 gas Substances 0.000 description 65
- 239000002585 base Substances 0.000 description 59
- 238000000034 method Methods 0.000 description 59
- 230000002829 reductive effect Effects 0.000 description 59
- 230000015572 biosynthetic process Effects 0.000 description 58
- 229910052739 hydrogen Inorganic materials 0.000 description 51
- 239000001257 hydrogen Substances 0.000 description 51
- 238000004544 sputter deposition Methods 0.000 description 47
- 125000004429 atom Chemical group 0.000 description 43
- 230000006798 recombination Effects 0.000 description 38
- 238000005215 recombination Methods 0.000 description 38
- 238000005259 measurement Methods 0.000 description 36
- 229910007541 Zn O Inorganic materials 0.000 description 34
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 239000012298 atmosphere Substances 0.000 description 29
- 238000010894 electron beam technology Methods 0.000 description 29
- 230000006870 function Effects 0.000 description 27
- 238000012545 processing Methods 0.000 description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- 239000012535 impurity Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 24
- 238000003917 TEM image Methods 0.000 description 21
- 239000010453 quartz Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 229910001868 water Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 18
- 229910052719 titanium Inorganic materials 0.000 description 18
- 239000010936 titanium Substances 0.000 description 18
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 238000000151 deposition Methods 0.000 description 16
- 230000008021 deposition Effects 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 14
- 239000011521 glass Substances 0.000 description 14
- 239000004973 liquid crystal related substance Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 229910052783 alkali metal Inorganic materials 0.000 description 13
- 150000001340 alkali metals Chemical class 0.000 description 13
- 230000008859 change Effects 0.000 description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 238000004435 EPR spectroscopy Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 238000005424 photoluminescence Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 125000005843 halogen group Chemical group 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 10
- 229910052721 tungsten Inorganic materials 0.000 description 10
- 239000010937 tungsten Substances 0.000 description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 229910001882 dioxygen Inorganic materials 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 150000004678 hydrides Chemical class 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000002524 electron diffraction data Methods 0.000 description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 5
- 239000002156 adsorbate Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 229910000423 chromium oxide Inorganic materials 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 5
- 230000004298 light response Effects 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000002003 electron diffraction Methods 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000001819 mass spectrum Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 108010083687 Ion Pumps Proteins 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000005516 deep trap Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 238000003775 Density Functional Theory Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000003077 quantum chemistry computational method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- -1 water Chemical compound 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004138 cluster model Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/24—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
- H01L29/247—Amorphous materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
- H01L29/78693—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
- Recrystallisation Techniques (AREA)
- Liquid Crystal (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
置全般を指し、電気光学装置、半導体回路及び電子機器は全て半導体装置である。
ァスシリコン、多結晶シリコンなどによって構成されている。アモルファスシリコンを用
いたトランジスタは、ガラス基板の大面積化に容易に対応することができる。しかし、ア
モルファスシリコンを用いたトランジスタは、電界効果移動度が低いという欠点を有して
いる。また、多結晶シリコンを用いたトランジスタは電界効果移動度が高いが、ガラス基
板の大面積化には適していないという欠点を有している。
てトランジスタを作製し、電子デバイスや光デバイスに応用する技術が注目されている。
例えば酸化物半導体として、In、Zn、Ga、Snなどを含む非晶質酸化物を用いてト
ランジスタを作製する技術が特許文献1で開示されている。また、同様のトランジスタを
作製して表示装置の画素のスイッチング素子などに用いる技術が特許文献2で開示されて
いる。
物に対して鈍感であり、膜中にはかなりの金属不純物が含まれていても問題がなく、ナト
リウムのようなアルカリ金属が多量に含まれる廉価なソーダ石灰ガラスも使える」といっ
たことも述べられている(非特許文献1参照)。
いて、酸化物半導体膜に酸素欠陥に代表されるような欠陥が生じたり、キャリアの供給源
となる水素の混入などが生じると、酸化物半導体膜の電気伝導度が変化する恐れがある。
このような現象は、酸化物半導体膜を用いたトランジスタにとって電気的特性の変動の要
因となり、半導体装置の信頼性を低下させることになる。
度が変化するおそれがある。このような現象も、酸化物半導体膜を用いたトランジスタに
とって電気的特性の変動の要因となり、半導体装置の信頼性を低下させることになる。
題の一とする。また、当該酸化物半導体膜を用いることにより、半導体装置に安定した電
気的特性を付与し、信頼性の高い半導体装置を提供することを課題の一とする。
−b面が膜表面に概略平行であり、c軸が膜表面に概略垂直である結晶よりなる酸化物半
導体膜である。つまり、当該酸化物半導体膜に含まれる結晶性を有する領域は、c軸配向
している。なお、当該酸化物半導体膜は非単結晶である。また、当該酸化物半導体膜全体
が非晶質状態(アモルファス状態)となることはない。
面が膜表面に概略平行であり、c軸が膜表面に概略垂直である結晶よりなり、c軸方向か
ら電子線を照射した電子線回折強度測定において、散乱ベクトルの大きさが3.3nm−
1以上4.1nm−1以下のピークにおける半値全幅と、散乱ベクトルの大きさが5.5
nm−1以上7.1nm−1以下のピークにおける半値全幅が0.2nm−1以上である
酸化物半導体膜である。
クにおける半値全幅が0.4nm−1以上0.7nm−1以下であり、散乱ベクトルの大
きさが5.5nm−1以上7.1nm−1以下のピークにおける半値全幅が0.45nm
−1以上1.4nm−1以下であることが好ましい。また、ESR測定におけるg=1.
93近傍のピークのスピン密度が1.3×1018(spins/cm3)より小さいこ
とが好ましい。また、上記酸化物半導体膜は、結晶性を有する領域を複数含み、結晶のa
軸あるいはb軸の方向は、互いに異なっていてもよい。また、InGaO3(ZnO)m
(mは非自然数)で表される構造を有することが好ましい。
結晶性を有する領域を含む酸化物半導体膜と、酸化物半導体膜と接するように設けられた
ソース電極およびドレイン電極と、酸化物半導体膜上に設けられた第2の絶縁膜と、第2
の絶縁膜上に設けられたゲート電極と、を有し、結晶性を有する領域は、a−b面が膜表
面に概略平行であり、c軸が膜表面に概略垂直である結晶よりなる半導体装置である。
絶縁膜と、第1の絶縁膜上に設けられた、結晶性を有する領域を含む酸化物半導体膜と、
酸化物半導体膜と接するように設けられたソース電極およびドレイン電極と、酸化物半導
体膜上に設けられた第2の絶縁膜と、を有し、結晶性を有する領域は、a−b面が膜表面
に概略平行であり、c軸が膜表面に概略垂直である結晶よりなる半導体装置である。
の金属酸化物膜は、酸化ガリウムと酸化亜鉛とを含み、且つ結晶性を有する領域を含み、
結晶性を有する領域は、a−b面が膜表面に概略平行であり、c軸が膜表面に概略垂直で
ある結晶よりなることが好ましい。また、第1の金属酸化物膜において、酸化亜鉛の物質
量は酸化ガリウムの物質量の25%未満であることが好ましい。また、酸化物半導体膜と
第2の絶縁膜の間に第2の金属酸化物膜を有し、第2の金属酸化物膜は、酸化ガリウムと
酸化亜鉛とを含み、且つ結晶性を有する領域を含み、結晶性を有する領域は、a−b面が
膜表面に概略平行であり、c軸が膜表面に概略垂直である結晶よりなることが好ましい。
また、第2の金属酸化物膜において、酸化亜鉛の物質量は酸化ガリウムの物質量の25%
未満であることが好ましい。
角度が0°以上20°以下の状態を指すものとする。また、本明細書等において、C線が
B面に概略垂直とはC線とB面の法線がなす角度が0°以上20°以下の状態を指すもの
とする。
であり、c軸が膜表面に概略垂直である酸化物半導体膜は、電気伝導度が安定しており、
可視光や紫外光などの照射に対してもより電気的に安定な構造を有する。このような酸化
物半導体膜をトランジスタに用いることによって、安定した電気的特性を有する、信頼性
の高い半導体装置を提供することができる。
は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及
び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以
下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、以
下に説明する本発明の構成において、同一部分または同様な機能を有する部分には同一の
符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されな
い。
めに付したものであり、数的に限定するものではない。そのため、例えば、「第1の」を
「第2の」または「第3の」などと適宜置き換えて説明することができる。
本実施の形態では、本発明に係る一態様として、酸化物半導体膜について、図1乃至図
5を用いて説明する。
る領域は、a−b面が膜表面に概略平行であり、c軸が膜表面に概略垂直である結晶より
なる。つまり、当該酸化物半導体膜に含まれる結晶性を有する領域は、c軸配向している
。当該結晶性を有する領域の断面を観察すると、層状に配列した原子が基板から表面に向
かって積層した構造であり、結晶のc軸が表面に概略垂直となっている。また、このよう
にc軸が配向した結晶性を有する領域を含むので、当該酸化物半導体膜を、C Axis
Aligned Crystalline Oxide Semiconductor
; CAAC−OS膜ともよぶ。
図1に示す。図1中の矢印が示すように、層状に原子が配向した、すなわちc軸が配向し
た結晶性を有する領域21が、酸化物半導体膜中に確かに観察される。
領域21および結晶性を有する領域22は、非晶質構造を有する領域に3次元的に囲まれ
ている。このように当該酸化物半導体膜中には複数の結晶性を有する領域が存在するが、
図1中に結晶粒界は観察されておらず、酸化物半導体膜全体においても結晶粒界は観察さ
れなかった。
の領域を介して隔離されているが、結晶性を有する領域21および結晶性を有する領域2
2の層状に配向した原子が同じくらいの間隔で積層しているように見え、非晶質構造の領
域を越えて連続的に層を形成しているように見える。
nm乃至7nm程度であるが、本実施の形態に示す酸化物半導体膜中に形成される結晶性
を有する領域の大きさは、1nm以上1000nm以下程度とすることができる。例えば
、図31に示すように、酸化物半導体膜の結晶性を有する領域を数十nm以上とすること
もできる。
に原子が配列される構造となることが好ましい。このような構造を取ることで、当該結晶
性を有する領域は、三回対称性を有する六方晶構造を容易に取ることができる。なお、本
明細書においては、六方晶の結晶構造は六晶系(Crystal family)におけ
るものを指し、七晶系(Crystal system)の三方晶と六方晶を含む。
良く、個々の結晶性を有する領域において、結晶のa軸あるいはb軸の方向は互いに異な
っていてもよい。すなわち、本実施の形態に係る酸化物半導体膜は、個々の結晶性を有す
る領域において、c軸に対して結晶化しているが、a−b面に対しては必ずしも配列して
いない。ただし、a軸あるいはb軸の方向が異なる領域どうしが接しないようにすること
で、互いの領域が接する界面に結晶粒界を形成しないようにすることが好ましい。よって
、結晶性を有する領域を三次元的に囲むように非晶質構造の領域を有する酸化物半導体膜
とすることが好ましい。つまり、当該結晶性を有する領域を含む酸化物半導体膜は非単結
晶であり、且つ膜全体が非晶質状態とはならない。
酸化物や、三元系金属酸化物であるIn−Ga−Zn−O系金属酸化物、In−Sn−Z
n−O系金属酸化物、In−Al−Zn−O系金属酸化物、Sn−Ga−Zn−O系金属
酸化物、Al−Ga−Zn−O系金属酸化物、Sn−Al−Zn−O系金属酸化物や、二
元系金属酸化物であるIn−Zn−O系金属酸化物、Sn−Zn−O系金属酸化物などが
用いられる。
ましくは2.5eV以上、より好ましくは3eV以上とエネルギーギャップの広いものが
多く、それらを用いてトランジスタを作製した場合、オフ状態での抵抗が十分に高くオフ
電流を十分に小さくすることが可能である。In−Ga−Zn−O系金属酸化物中の結晶
性を有する領域は、主に六方晶のウルツ鉱型ではない結晶構造を取ることが多く、例えば
、YbFe2O4型構造、Yb2Fe3O7型構造及びその変形型構造などをとりうる(
M. Nakamura, N. Kimizuka, and T. Mohri
、「The Phase Relations in the In2O3−Ga2Zn
O4−ZnO System at 1350℃」、J. Solid State C
hem.、1991、Vol.93, p.298−315)。なお、YbFe2O4型
構造は、Ybを含む層をA層としFeを含む層をB層とすると、ABB|ABB|ABB
|の繰り返し構造を有し、その変形構造としては、例えば、ABBB|ABBB|の繰り
返し構造を挙げることができる。また、Yb2Fe3O7型構造は、ABB|AB|AB
B|AB|の繰り返し構造を有し、その変形構造としては、例えば、ABBB|ABB|
ABBB|ABB|ABBB|ABB|の繰り返し構造を挙げることができる。また、当
該金属酸化物中のZnOの量が多い場合には、ウルツ鉱型結晶構造をとることもある。
>0)で表記されるものがある。ここで、In−Ga−Zn−O系金属酸化物として、例
えば、In2O3:Ga2O3:ZnO=1:1:1[mol数比]の組成比を有する金
属酸化物、In2O3:Ga2O3:ZnO=1:1:2[mol数比]の組成比を有す
る金属酸化物、In2O3:Ga2O3:ZnO=1:1:4[mol数比]の組成比を
有する金属酸化物を挙げることができる。ここで、mは非自然数とするとより好ましい。
なお、上述の組成は結晶構造から導き出されるものであり、あくまでも一例に過ぎないこ
とを付記する。例えば、In−Ga−Zn−O系金属酸化物として、In2O3:Ga2
O3:ZnO=2:1:8[mol数比]の組成比を有する金属酸化物、In2O3:G
a2O3:ZnO=3:1:4[mol数比]の組成比を有する金属酸化物、またはIn
2O3:Ga2O3:ZnO=2:1:6[mol数比]の組成比を有する金属酸化物を
用いてもよい。
として、In2Ga2ZnO7の結晶構造を図2に示す。図2に示すIn2Ga2ZnO
7の結晶構造は、a軸とb軸に平行な平面図と、c軸に平行な断面図を用いて示されてお
り、c軸はa軸とb軸に対して垂直であり、a軸とb軸の間の角度は120°となる。図
2に示すIn2Ga2ZnO7は、平面図にIn原子が取りうるサイト11を示し、断面
図にIn原子12、Ga原子13、GaまたはZn原子14、O原子15を示す。
Ga酸化物層と、In酸化物層の間にある2層の酸化物層でGa酸化物層とZn酸化物層
をそれぞれ1層ずつ含むものが、c軸方向に交互に積層する構造となっている。また、図
2の平面図に示すように、In2Ga2ZnO7は三回対称性を有する六方晶構造をとる
。
を示すものであることが好ましい。また、当該結晶性を有する領域を含む酸化物半導体膜
は、単結晶とは異なる。このように、結晶性を有する領域を含む酸化物半導体膜は、全体
が非晶質構造の酸化物半導体膜と比較して良好な結晶性を有するので、酸素欠陥に代表さ
れるような欠陥や、ダングリングボンドなどに結合する水素などの不純物が低減されてい
る。特に結晶中の金属原子と結合している酸素は、非晶質中の金属原子と結合している酸
素と比較して、結合力が高くなり、水素などの不純物との反応性が低くなるので、欠陥の
生成が低減される。
物半導体膜は、c軸方向から電子線を照射した電子線回折強度測定において、散乱ベクト
ルの大きさが3.3nm−1以上4.1nm−1以下のピークにおける半値全幅と、散乱
ベクトルの大きさが5.5nm−1以上7.1nm−1以下のピークにおける半値全幅が
0.2nm−1以上となるような結晶性を示す。また好ましくは、散乱ベクトルの大きさ
が3.3nm−1以上4.1nm−1以下のピークにおける半値全幅が0.4nm−1以
上0.7nm−1以下であり、散乱ベクトルの大きさが5.5nm−1以上7.1nm−
1以下のピークにおける半値全幅が0.45nm−1以上1.4nm−1以下となるよう
な結晶性を示す。
素欠陥に代表される膜中の欠陥が低減されていることが好ましい。酸素欠陥に代表される
ような欠陥は、酸化物半導体膜中でキャリアの供給源のように機能するため、当該酸化物
半導体膜の電気伝導度が変動する原因となりうる。よって、これらが低減されている、結
晶性を有する領域を含む酸化物半導体膜は、電気伝導度が安定しており、可視光や紫外光
などの照射に対してもより電気的に安定な構造を有する。
n Resonance)測定を行うことにより、当該膜中の孤立電子の量を測定するこ
とができ、それにより酸素欠陥の量を推定することができる。例えば、In−Ga−Zn
−O系金属酸化物からなる結晶性を有する領域を含む酸化物半導体膜は、ESR測定にお
けるg=1.93近傍のピークのスピン密度が1.3×1018(spins/cm3)
より小さく、好ましくは5×1017(spins/cm3)以下、より好ましくは5×
1016(spins/cm3)、さらに好ましくは1×1016(spins/cm3
)とする。
は水素化物等の水素を含む不純物は低減されていることが好ましく、結晶性を有する領域
を含む酸化物半導体膜中の水素の濃度は1×1019atoms/cm3以下とすること
が好ましい。ダングリングボンドなどに結合する水素や、水、水酸基または水素化物等の
水素を含む不純物は、酸化物半導体膜中でキャリアの供給源のように機能するため、当該
酸化物半導体膜の電気伝導度が変動する原因となりうる。また、酸化物半導体膜に含まれ
る水素は、金属原子と結合する酸素と反応して水となると共に、酸素が脱離した格子(あ
るいは酸素が脱離した部分)には欠陥が形成されてしまう。よって、これらが低減されて
いる、結晶性を有する領域を含む酸化物半導体膜は、電気伝導度が安定しており、可視光
や紫外光などの照射に対してもより電気的に安定な構造を有する。
れていることが好ましい。例えば、結晶性を有する領域を含む酸化物半導体膜において、
リチウムの濃度が5×1015cm−3以下、好ましくは1×1015cm−3以下、ナ
トリウムの濃度が5×1016cm−3以下、好ましくは1×1016cm−3以下、さ
らに好ましくは1×1015cm−3以下、カリウムの濃度が5×1015cm−3以下
、好ましくは1×1015cm−3以下とする。
ては悪性の不純物であり、少ないほうがよい。特に、当該酸化物半導体膜をトランジスタ
に用いる場合、アルカリ金属のうちナトリウムは結晶性を有する領域を含む酸化物半導体
膜に接する絶縁膜に拡散し、キャリアを供給しうる。また、結晶性を有する領域を含む酸
化物半導体膜内において、金属と酸素の結合を分断し、あるいは結合中に割り込む。その
結果、トランジスタ特性の劣化(例えば、ノーマリオン化(しきい値の負へのシフト)、
移動度の低下等)をもたらす。加えて、特性のばらつきの原因ともなる。
分に低い場合において顕著となる。したがって、結晶性を有する領域を含む酸化物半導体
膜中の水素の濃度が5×1019cm−3以下、特に5×1018cm−3以下である場
合には、アルカリ金属の濃度を上記の値にすることが強く求められる。よって、結晶性を
有する領域を含む酸化物半導体膜中の不純物を極めて低減し、アルカリ金属の濃度が5×
1016atoms/cm3以下、水素の濃度が5×1019atoms/cm3以下と
することが好ましい。
物半導体膜と比較して良好な結晶性を有するので、酸素欠陥に代表されるような欠陥や、
ダングリングボンドなどに結合する水素などの不純物が低減されている。これらの酸素欠
陥に代表されるような欠陥や、ダングリングボンドなどに結合する水素などは、酸化物半
導体膜中でキャリアの供給源のように機能するため、当該酸化物半導体膜の電気伝導度が
変動する原因となりうる。よって、これらが低減されている、結晶性を有する領域を含む
酸化物半導体膜は、電気伝導度が安定しており、可視光や紫外光などの照射に対してもよ
り電気的に安定な構造を有する。このような結晶性を有する領域を含む酸化物半導体膜を
トランジスタに用いることによって、安定した電気的特性を有する、信頼性の高い半導体
装置を提供することができる。
に影響を与えるか、密度汎関数理論に基づいた第一原理計算を用いて考察した結果につい
て説明する。なお、以下の第一原理計算には、accelrys社製の第一原理計算ソフ
ト「CASTEP」を用いた。また、汎関数はGGA−PBEを、擬ポテンシャルはウル
トラソフト型を用いた。
いて酸素原子を一つ脱離させて当該部位に空孔(酸素欠陥)を残存させたモデルを作成し
て計算を行った。当該モデルの原子数は、Inを12個、Gaを12個、Znを12個、
Oを47個とした。このような構造のInGaZnO4に対して原子配置に関する構造最
適化を行い、電子状態密度を算出した。このとき、カットオフエネルギーは300eVと
した。
ty of State)[states/eV]をとり、横軸にエネルギー[eV]を
とっており、横軸に示すエネルギーの原点は、フェルミエネルギーを示している。図3に
示すように、InGaZnO4の価電子帯上端は−0.74eV、伝導帯下端は0.56
eVとなっている。バンドギャップの値はInGaZnO4の実験値3.15eVと比較
すると非常に小さいが、密度汎関数理論に基づいた第一原理計算ではバンドギャップが実
験値よりも小さくなる事は良く知られており、今回の計算が不適切である事を示している
わけではない。
に深い準位を有することが分かる。つまり、酸素欠陥を有するアモルファス状の酸化物半
導体のバンド構造では、酸素欠陥に起因するトラップ準位が当該バンドギャップ内の深い
準位として表されることが推測される。
グラムを図4に示す。図4は、縦軸にエネルギー、横軸にDOSをとり、価電子帯(VB
:Valence Band)の上端のエネルギー準位Evから伝導帯(CB:Cond
uction Band)の下端のエネルギー準位Ecまでのエネルギーギャップは、実
験値に基づき3.15eVとした。
テールステートを伝導帯下端近傍に表している。さらに、伝導帯下端より約0.1eVの
浅いエネルギー準位に、当該アモルファス状の酸化物半導体内のダングリングボンドなど
に結合する水素に起因する水素ドナー準位を想定している。そして、伝導帯下端より約1
.8eVの深いエネルギー準位に、上述した当該アモルファス状の酸化物半導体内の酸素
欠陥に起因するトラップ準位を表している。なお、酸素欠陥に起因するトラップ準位のエ
ネルギー準位の値については、後述する実施例において詳細を説明する。
欠陥に起因する深いトラップ準位を有するアモルファス状の酸化物半導体の場合における
、バンド構造の電子と正孔の再結合モデルを図5(A)および図5(B)に示す。
十分な数の電子が存在する場合の再結合モデルである。当該アモルファス状の酸化物半導
体膜を光照射環境下に曝して、十分な数の電子正孔対が生成されることにより、当該酸化
物半導体のバンド構造は図5(A)に示すような再結合モデルで表される。当該再結合モ
デルにおいて、正孔は価電子帯の上端だけでなく、酸素欠陥に起因する深いトラップ準位
にも生成される。
ている。一つの再結合過程は、伝導帯の電子が価電子帯の正孔と直接再結合するバンド間
再結合と呼ばれる再結合過程である。そしてもう一つの再結合過程は、伝導帯の電子が酸
素欠陥に起因するトラップ準位の正孔と再結合する再結合過程である。ここで、バンド間
再結合は酸素欠陥に起因するトラップ準位における再結合より頻度が高いので、価電子帯
の正孔の数が十分に少なくなることで、先にバンド間再結合が終了する。これにより図5
(A)に示す再結合モデルは、伝導帯下端の電子が酸素欠陥に起因するトラップ準位の正
孔と再結合する再結合過程だけとなって図5(B)に示す再結合モデルに移行する。
うにするには、当該酸化物半導体に十分な光照射を行えばよく、その後光照射を止めるこ
とにより、図5(A)に示す再結合モデルのように、電子と正孔の再結合が行われる。こ
の時の当該酸化物半導体中を流れる電流(光電流とも呼ばれる。)が減衰するのに要する
時間(緩和時間)は、図5(B)に示す再結合モデルにおける光電流の緩和時間と比較す
ると短くなる。なお、これらの詳細については、後述する実施例を参照されたい。
電子帯の正孔の数が十分に低減された後の再結合モデルである。図5(B)に示す再結合
モデルでは、再結合過程がほとんど酸素欠陥に起因するトラップ準位における再結合だけ
になってしまうので、図5(A)に示す再結合モデルと比較して伝導帯の電子の数は緩や
かに減少する。もちろん当該再結合過程の間、伝導帯に存在する電子は酸化物半導体膜中
の電気伝導に寄与する。これにより、バンド間再結合が主な再結合過程である、図5(A
)に示す再結合モデルと比較して、図5(B)に示す再結合モデルは光電流の緩和時間が
長くなる。なお、これらの詳細については、後述する実施例を参照されたい。
導体は、バンド構造における電子正孔対の再結合モデルを2種類有し、光電流の緩和時間
も2種類に分けることができる。ここで、特に図5(B)に示す再結合モデルにおける光
電流の緩和の遅延は、当該酸化物半導体膜をトランジスタなどに用いて光照射下でゲート
電極に負バイアスをかける際に、当該酸化物半導体膜やその界面に固定電荷を形成する原
因となりうる。このようにして、酸化物半導体膜中の酸素欠陥は当該酸化物半導体膜の電
気伝導度に悪影響を与えることが考察される。
非晶質構造の酸化物半導体膜と比較して良好な結晶性を有するので、酸素欠陥に代表され
るような欠陥が低減されている。よって、本発明の一態様に係る、結晶性を有する領域を
含む酸化物半導体膜は、電気伝導度が安定しており、可視光や紫外光などの照射に対して
もより電気的に安定な構造を有する。このような結晶性を有する領域を含む酸化物半導体
膜をトランジスタに用いることによって、安定した電気的特性を有する、信頼性の高い半
導体装置を提供することができる。
み合わせて用いることができる。
本実施の形態では、実施の形態1に示す、結晶性を有する領域を含む酸化物半導体膜を
用いたトランジスタおよび当該トランジスタの作製方法について図6乃至図10を用いて
説明する。図6は、半導体装置の構成の一形態である、トップゲート構造のトランジスタ
120の作製工程を示す断面図である。
うに、基板51上に下地絶縁膜53を形成することが好ましい。
要となる。基板51としてガラス基板を用いる場合、歪み点が730℃以上のものを用い
ることが好ましい。ガラス基板には、例えば、アルミノシリケートガラス、アルミノホウ
ケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられる。なお、B2O
3よりBaOを多く含むガラス基板を用いることが好ましい。基板51がマザーガラスの
場合、基板の大きさは、第1世代(320mm×400mm)、第2世代(400mm×
500mm)、第3世代(550mm×650mm)、第4世代(680mm×880m
m、または730mm×920mm)、第5世代(1000mm×1200mmまたは1
100mm×1250mm)、第6世代(1500mm×1800mm)、第7世代(1
900mm×2200mm)、第8世代(2160mm×2460mm)、第9世代(2
400mm×2800mm、または2450mm×3050mm)、第10世代(295
0mm×3400mm)等を用いることができる。マザーガラスは、処理温度が高く、処
理時間が長いと大幅に収縮するため、マザーガラスを使用して大量生産を行う場合、作製
工程の加熱処理は、600℃以下、好ましくは450℃以下とすることが望ましい。
絶縁体でなる基板を用いることができる。他にも、結晶化ガラスなどを用いることができ
る。さらには、シリコンウェハ等の半導体基板の表面や金属材料よりなる導電性の基板の
表面に絶縁層を形成したものを用いることもできる。
とが好ましい。加熱により酸素の一部が放出する酸化物絶縁膜としては、化学量論比を満
たす酸素よりも多くの酸素を含む酸化物絶縁膜を用いることが好ましい。加熱により酸素
の一部が放出する酸化物絶縁膜を下地絶縁膜53に用いることで、後の工程で加熱処理を
行う際に酸化物半導体膜に酸素を拡散させることができる。加熱により酸素の一部が放出
する酸化物絶縁膜としては、代表的には、酸化シリコン、酸化窒化シリコン、酸化アルミ
ニウム、酸化窒化アルミニウム、酸化ガリウム、酸化ハフニウム、酸化イットリウム等を
用いることができる。
下地絶縁膜53を厚くすることで、下地絶縁膜53からの酸素放出量を増加させることが
できると共に、その増加によって下地絶縁膜53及び後に形成される酸化物半導体膜との
界面における欠陥を低減することが可能である。
酸素の一部が放出する酸化物絶縁膜は、スパッタリング法を用いることで容易に形成する
ことができる。加熱により酸素の一部が放出する酸化物絶縁膜をスパッタリング法により
形成する場合は、成膜ガス中の酸素量が高いことが好ましく、酸素、または酸素及び希ガ
スの混合ガス等を用いることができる。代表的には、成膜ガス中の酸素濃度を6%以上1
00%以下にすることが好ましい。
いて形成する必要はなく、窒化シリコン、窒化酸化シリコン、窒化アルミニウムなどを用
いて窒化物絶縁膜を形成してもよい。また、下地絶縁膜53は、上記の酸化物絶縁膜と窒
化物絶縁膜の積層構造としてもよく、その場合には窒化物絶縁膜上に酸化物絶縁膜を設け
ることが好ましい。下地絶縁膜53として窒化物絶縁膜を用いることにより、アルカリ金
属などの不純物を含むガラス基板を用いる場合、アルカリ金属などの酸化物半導体膜への
侵入を防止できる。リチウム、ナトリウム、カリウム等のアルカリ金属は、酸化物半導体
に対して悪性の不純物であるために酸化物半導体膜中の含有量を少なくすることが好まし
い。窒化物絶縁膜は、CVD法、スパッタリング法等で形成することができる。
、下地絶縁膜53上に厚さ30nm以上50μm以下の結晶性を有する領域を含む酸化物
半導体膜55を成膜する。
31には、排気手段33及びガス供給手段35が接続される。また、処理室31内には、
基板支持体40及びターゲット41が設けられる。ターゲット41は、電源装置37に接
続される。
−10Pa・m3/秒以下とすることで、スパッタリング法により成膜する膜への不純物
の混入を低減することができる。
。外部リークとは、微小な穴やシール不良などによって真空系の外から気体が流入するこ
とである。内部リークとは、真空系内のバルブなどの仕切りからの漏れや内部の部材から
の放出ガスに起因する。リークレートを1×10−10Pa・m3/秒以下とするために
は、外部リーク及び内部リークの両面から対策をとる必要がある。
メタルガスケットは、フッ化鉄、酸化アルミニウム、または酸化クロムによって被覆され
た金属材料を用いると好ましい。メタルガスケットはOリングと比べ密着性が高く、外部
リークを低減できる。また、フッ化鉄、酸化アルミニウム、酸化クロムなどの不動態によ
って被覆された金属材料を用いることで、メタルガスケットから生じる水素を含む放出ガ
スが抑制され、内部リークも低減することができる。
クロム、チタン、ジルコニウム、ニッケルまたはバナジウムを用いる。また、前述の材料
を鉄、クロム及びニッケルなどを含む合金材料に被覆して用いてもよい。鉄、クロム及び
ニッケルなどを含む合金材料は、剛性があり、熱に強く、また加工に適している。ここで
、表面積を小さくするために部材の表面凹凸を研磨などによって低減しておくと、放出ガ
スを低減できる。あるいは、前述のスパッタリング装置の部材をフッ化鉄、酸化アルミニ
ウム、酸化クロムなどの不動態で被覆してもよい。
ば石英などで構成される覗き窓などを設置する場合も、放出ガスを抑制するために表面を
フッ化鉄、酸化アルミニウム、酸化クロムなどの不動態で薄く被覆するとよい。
ことが好ましい。このとき、精製機から処理室までの配管の長さを5m以下、好ましくは
1m以下とする。配管の長さを5m以下または1m以下とすることで、配管からの放出ガ
スの影響を長さに応じて低減できる。
ルミニウム、酸化クロムなどの不動態で内部が被覆された金属配管を用いることが好まし
い。前述の配管は、例えばSUS316L−EP配管と比べ、水素を含むガスの放出量が
少なく、成膜ガスへの不純物の混入を低減できる。また、配管の継手には、高性能超小型
メタルガスケット継手(UPG継手)を用いるとよい。また、配管の材料を全て金属材料
で構成することで、樹脂等を用いた場合と比べ、生じる放出ガス及び外部リークの影響を
低減できるため好ましい。
ーボ分子ポンプ及びクライオポンプなどの高真空ポンプとを適宜組み合わせて行うとよい
。ターボ分子ポンプは大きいサイズの分子の排気が優れる一方、水素や水の排気能力が低
い。そこで、水の排気能力の高いクライオポンプ及び水素の排気能力の高いスパッタイオ
ンポンプを組み合わせることが有効となる。
しないが、処理室を排気した際のガス放出の原因となる。そのため、リークレートと排気
速度に相関はないが、排気能力の高いポンプを用いて、処理室に存在する吸着物をできる
限り脱離し、予め排気しておくことが重要である。なお、吸着物の脱離を促すために、処
理室をベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大き
くすることができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、
不活性ガスを導入しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水など
の脱離速度をさらに大きくすることができる。
することができる。排気手段33は、吸着型の真空ポンプを用いることが好ましい。例え
ば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが好ま
しい。上記吸着型の真空ポンプを用いることで、酸化物半導体膜に含まれる水素の量を低
減することができる。
は水素化物として含まれる場合もある。
給する手段である。ガス供給手段35は、ガスが充填されたシリンダ、圧力調整弁、スト
ップバルブ、マスフローコントローラ等で構成されている。なお、ガス供給手段35に精
製機を設けることで、処理室31内に導入するガスに含まれる不純物を低下することがで
きる。ターゲットをスパッタリングするガスとしては、ヘリウム、ネオン、アルゴン、キ
セノン、クリプトン等の希ガスを用いる。または、上記希ガスの一と、酸素との混合ガス
を用いることができる。
きる。なお、図示しないがターゲットを支持するターゲット支持体の内部または外側にマ
グネットを設けると、ターゲット周辺に高密度のプラズマを閉じこめることができ、成膜
速度の向上及び基板へのプラズマダメージを低減できる。当該方法は、マグネトロンスパ
ッタリング法とよばれる。更には、マグネトロンスパッタリング法において、マグネット
を回転可能にすると、磁界の偏りを低減できるため、ターゲットの使用効率が高まり、か
つ基板の面内における膜質のばらつきを低減できる。
いる。ヒータとしては、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって、被
処理物を加熱する装置を用いることができる。
ターゲット41の代表例としては、四元系金属酸化物であるIn−Sn−Ga−Zn−O
系金属酸化物や、三元系金属酸化物であるIn−Ga−Zn−O系金属酸化物、In−S
n−Zn−O系金属酸化物、In−Al−Zn−O系金属酸化物、Sn−Ga−Zn−O
系金属酸化物、Al−Ga−Zn−O系金属酸化物、Sn−Al−Zn−O系金属酸化物
や、二元系金属酸化物であるIn−Zn−O系金属酸化物、Sn−Zn−O系金属酸化物
などのターゲットを用いることができる。
In2O3:Ga2O3:ZnO=1:1:1[mol数比]の組成比とする。また、I
n2O3:Ga2O3:ZnO=1:1:2[mol数比]の組成比を有するターゲット
、またはIn2O3:Ga2O3:ZnO=1:1:4[mol数比]の組成比を有する
ターゲット、In2O3:Ga2O3:ZnO=2:1:8[mol数比]の組成比を有
するターゲットを用いることもできる。
優先的に基板51上の下地絶縁膜53に到着することが可能な間隔とすることが好ましい
。
、スパッタリング装置の処理室31内に設置する。次に、ガス供給手段35から処理室3
1にターゲット41をスパッタリングするガスを導入する。ターゲット41の純度は、9
9.9%以上、好ましくは99.99%以上のものを用いる。次に、ターゲット41に接
続される電源装置37に電力を供給する。この結果、ガス供給手段35から処理室31に
導入されたスパッタリングガスのイオン43及び電子が、ターゲット41をスパッタリン
グする。
1上の下地絶縁膜53に到着し堆積することが可能な間隔としておくことにより、図7(
B)に示すように、ターゲット41に含まれる原子において、原子量の小さい原子45が
、原子量の大きい原子47より優先的に基板側へ移動することができる。
亜鉛が優先的に下地絶縁膜53上に堆積する。また、成膜時の雰囲気に酸素を含み、基板
支持体40には、成膜時に基板及び堆積膜を加熱するヒータが設けられるため、下地絶縁
膜53上に堆積した亜鉛が酸化され、六方晶構造の亜鉛を含む結晶を有する種結晶55a
、代表的には六方晶構造の酸化亜鉛を有する種結晶が形成される。なお、ターゲット41
にアルミニウム等の亜鉛より原子量の小さい原子が含まれる場合、亜鉛と共に、アルミニ
ウム等の亜鉛より原子量の小さい原子も優先的に下地絶縁膜53上に堆積する。
面に概略平行であり、c軸が膜表面に概略垂直である六方晶のウルツ鉱構造の亜鉛を含む
結晶を有する。ここで、a−b面において六角形の格子を有する結合を有し、a−b面が
膜表面に概略平行であり、c軸が膜表面に概略垂直である六方晶構造の亜鉛を含む結晶に
ついて、図8を用いて説明する。ここでは、六方晶構造の亜鉛を含む結晶の代表例として
、酸化亜鉛を用いて説明し、黒丸が亜鉛、白丸が酸素を示す。図8(A)は、a−b面に
おける、六方晶構造の酸化亜鉛の模式図であり、図8(B)は、紙面の縦方向をc軸方向
とした、六方晶構造の酸化亜鉛の模式図である。図8(A)に示すように、a−b面にお
ける上平面において、亜鉛及び酸素が六角形をなす結合をしている。また、図8(B)に
示すように、亜鉛及び酸素がなす六角形の格子を有する結合を有する層が積層され、c軸
方向はa−b面に垂直である。種結晶55aは、a−b面において六角形の格子を有する
結合を有する層をc軸方向に1原子層以上有する。
55a上にターゲットに含まれる原子が堆積するが、このとき種結晶55aを核として結
晶成長するため、種結晶55a上に六方晶構造の結晶性を有する領域を含む酸化物半導体
膜55bを形成することができる。なお、基板51は、基板支持体40に設けられるヒー
タによって加熱されるため、種結晶55aを核とし、被表面に堆積する原子が酸化されつ
つ結晶成長する。
量の重い原子、及び種結晶55aの形成の後にスパッタリングされた原子量の軽い原子が
酸化されつつ結晶成長するため、種結晶55aと同様に、a−b面において六角形の格子
を有する結合を有し、a−b面が膜表面に概略平行であり、c軸が膜表面に概略垂直であ
る六方晶構造の結晶性を有する領域を含む。即ち、種結晶55a及び酸化物半導体膜55
bで構成される酸化物半導体膜55は、下地絶縁膜53表面に概略平行なa−b面におい
て六角形の格子を有する結合を有し、c軸が膜表面に概略垂直である六方晶構造の結晶性
を有する領域を含む。つまり、酸化物半導体膜55に含まれる六方晶構造の結晶性を有す
る領域はc軸配向している。なお、図6(B)では、種結晶55aと酸化物半導体膜55
bの界面を点線で示し、酸化物半導体膜の積層と説明しているが、明確な界面が存在して
いるのではなく、あくまで分かりやすく説明するために図示している。
は250℃以上350℃以下とする。200℃より大きく400℃以下、好ましくは25
0℃以上350℃以下に基板を加熱しながら成膜をすることによって、成膜と同時に加熱
処理がなされるので、良好な結晶性を有する領域を含む酸化物半導体膜を成膜することが
できる。なお、スパッタリング時における被成膜面の温度は、250℃以上基板の熱処理
上限温度以下とする。
の混合ガスを適宜用いる。また、スパッタリングガスには、水素、水、水酸基または水素
化物などの不純物が除去された高純度ガスを用いることが好ましい。
ることで、結晶性を有する領域を含む酸化物半導体膜の表面及び膜中への、アルカリ金属
、水素等の不純物の混入を低減することができる。
下とすることで、スパッタリング法による成膜途中における結晶性を有する領域を含む酸
化物半導体膜への、アルカリ金属、水素、水、水酸基または水素化物等の不純物の混入を
低減することができる。また、排気系として吸着型の真空ポンプを用いることで、排気系
からアルカリ金属、水素、水、水酸基または水素化物等の不純物の逆流を低減することが
できる。
を含む酸化物半導体膜に混入するアルカリ金属、水素、水、水酸基または水素化物等を低
減することができる。また、当該ターゲットを用いることで、酸化物半導体膜55におい
て、リチウムの濃度を5×1015cm−3以下、好ましくは1×1015cm−3以下
、ナトリウムの濃度を5×1016cm−3以下、好ましくは1×1016cm−3以下
、さらに好ましくは1×1015cm−3以下、カリウムの濃度を5×1015cm−3
以下、好ましくは1×1015cm−3以下とすることができる。
量の違いを利用し、原子量の小さい亜鉛を優先的に酸化絶縁膜に堆積させ、種結晶を形成
すると共に、種結晶上に原子量の大きいインジウム等を結晶成長させつつ堆積させるため
、複数の工程を経ずとも、結晶性を有する領域を含む酸化物半導体膜を形成することがで
きる。
55aと酸化物半導体膜55bとを一括で成膜しながら結晶化したが、本実施の形態に係
る酸化物半導体膜は必ずしもこのように成膜する必要はない。たとえば、種結晶と酸化物
半導体膜の成膜と結晶化をそれぞれ別々に行っても良い。
方法について説明する。また、以下のように結晶性を有する領域を含む酸化物半導体膜を
成膜する方法を、本明細書中で2step法とよぶ場合がある。なお、図1の断面TEM
像に示した、結晶性を有する領域を含む酸化物半導体膜は、当該2step法をもちいて
形成したものである。
する。第1の酸化物半導体膜の形成は、スパッタリング法を用い、そのスパッタリング法
による成膜時の基板温度は200℃以上400℃以下とすることが好ましい。その他の成
膜条件については、上記の酸化物半導体膜の成膜方法と同様である。
理を行う。第1の加熱処理の温度は、400℃以上750℃以下とする。第1の加熱処理
によって、第1の酸化物半導体膜を結晶化し、種結晶56aを形成する(図9(A)参照
)。
り、膜の表面から内部に向かって結晶成長し、c軸配向した結晶が得られる。第1の加熱
処理によって、亜鉛と酸素が膜表面に多く集まり、上平面が六角形をなす亜鉛と酸素から
なるグラフェンタイプの二次元結晶が最表面に1層または複数層形成され、これが膜厚方
向に成長して重なり積層となる。加熱処理の温度を上げると表面から内部、そして内部か
ら底部と結晶成長が進行する。
とにより、第1の加熱処理によって、下地絶縁膜53中の酸素を種結晶56aとの界面ま
たはその近傍(界面からプラスマイナス5nm)に拡散させて、種結晶56aの酸素欠陥
を低減することができる。
の酸化物半導体膜の形成は、スパッタリング法を用い、その成膜時における基板温度は2
00℃以上400℃以下とする。その他の成膜条件については、上記の酸化物半導体膜の
成膜方法と同様である。
理を行う。第2の加熱処理の温度は、400℃以上750℃以下とする。第2の加熱処理
によって、第2の酸化物半導体膜を結晶化し、酸化物半導体膜56bを形成する(図9(
B)参照)。第2の加熱処理は、窒素雰囲気下、酸素雰囲気下、或いは窒素と酸素の混合
雰囲気下で行うことにより、酸化物半導体膜56bの高密度化及び欠陥数の減少を図る。
第2の加熱処理によって、種結晶56aを核として膜厚方向、即ち底部から内部に結晶成
長が進行して結晶性を有する領域を含む酸化物半導体膜56bが形成される。このように
して、種結晶56aと酸化物半導体膜56bとからなる酸化物半導体膜56が形成される
。図9(B)では、種結晶56aと酸化物半導体膜56bの界面を点線で示し、酸化物半
導体積層と説明しているが、明確な界面が存在しているのではなく、あくまで分かりやす
く説明するために図示している。
続的に行うことが好ましい。下地絶縁膜53の形成から第2の加熱処理までの工程は、水
素及び水分をほとんど含まない雰囲気(不活性雰囲気、減圧雰囲気、乾燥空気雰囲気など
)下に制御することが好ましく、例えば、水分については露点−40℃以下、好ましくは
露点−50℃以下の乾燥窒素雰囲気とすることが好ましい。
と比較して、成膜時の基板温度が低くても、良好な結晶性を有する領域を含む酸化物半導
体膜を形成することができる。なお、上記の2step法を用いて成膜した、酸化物半導
体膜56も、原子量の小さい原子を優先的に酸化絶縁膜に堆積させる成膜方法を用いて成
膜した酸化物半導体膜55と同程度の結晶性を有し、電気伝導度も安定している。よって
、どちらの方法で成膜した酸化物半導体膜を用いても、安定した電気的特性を有する、信
頼性の高い半導体装置を提供することができる。なお、以下の工程においては、酸化物半
導体膜55を用いてトランジスタ120の作製工程を説明するが、もちろん同様に酸化物
半導体膜56も用いることができる。
らなる酸化物半導体膜55を成膜することができる。次に、基板51に加熱処理を施して
、酸化物半導体膜55から水素を放出させると共に、下地絶縁膜53に含まれる酸素の一
部を、酸化物半導体膜55と、下地絶縁膜53と酸化物半導体膜55の界面近傍と、に拡
散させることが好ましい。
含まれる酸素の一部を放出させ、さらには酸化物半導体膜55に拡散させる温度が好まし
く、代表的には、150℃以上基板51の歪み点未満、好ましくは250℃以上450℃
以下とする。なお、加熱処理温度は、結晶性を有する領域を含む酸化物半導体膜の成膜温
度より高くすることで、下地絶縁膜53に含まれる酸素の一部をより多く放出させること
ができる。
雰囲気、酸素と窒素の混合雰囲気などで行うことが好ましい。不活性ガス雰囲気としては
、代表的には、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等の希ガス雰囲気で
行うことが好ましい。また、加熱処理の加熱時間は1分以上24時間以下とする。
3に含まれる酸素の一部を、酸化物半導体膜55と、下地絶縁膜53と酸化物半導体膜5
5の界面近傍と、に拡散させることができる。当該工程により、酸化物半導体膜55中に
含まれる酸素欠陥を低減することができる。この結果、水素濃度及び酸素欠陥が低減され
た結晶性を有する領域を含む酸化物半導体膜を形成することができる。
を用いて酸化物半導体膜55を選択的にエッチングして、酸化物半導体膜59を形成する
。この後、マスクは除去する。
クジェット法、印刷法等を適宜用いて作製することができる。また、酸化物半導体膜55
のエッチングはウエットエッチングまたはドライエッチングを適宜用いることができる。
ドレイン電極61bを形成する。
、チタン、モリブデン、タングステン、マンガン、ジルコニウムから選ばれた金属元素、
または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金など
を用いて形成することができる。また、アルミニウムに、チタン、タンタル、タングステ
ン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた金属元素を単数または複
数組み合わせた合金膜、もしくは窒化膜を用いてもよい。また、ソース電極61aおよび
ドレイン電極61bは、単層構造でも、二層以上の積層構造としてもよい。例えば、シリ
コンを含むアルミニウム膜の単層構造、Cu−Mg−Al合金膜上に銅膜を積層する2層
構造、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積
層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜
上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜
を積層し、さらにその上にチタン膜を形成する三層構造などがある。
グステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化
チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛
酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を適
用することもできる。また、上記透光性を有する導電性材料と、上記金属元素の積層構造
とすることもできる。
等で導電膜を形成した後、該導電膜上にマスクを形成して導電膜をエッチングして形成す
る。導電膜上に形成するマスクは印刷法、インクジェット法、フォトリソグラフィ法を適
宜用いることができる。また、ソース電極61aおよびドレイン電極61bは、印刷法ま
たはインクジェット法により直接形成することもできる。
を所定の形状にエッチングしてソース電極61aおよびドレイン電極61bを形成する。
化物半導体膜55および導電膜のエッチングを行って、酸化物半導体膜59、ソース電極
61aおよびドレイン電極61bを形成しても良い。凹凸状のマスクを形成し、当該マス
クを用いて酸化物半導体膜55および導電膜をエッチングした後、アッシングにより凹凸
状のマスクを分離し、当該分離されたマスクにより導電膜を選択的にエッチングすること
で、酸化物半導体膜59、ソース電極61aおよびドレイン電極61bを形成することが
できる。当該工程により、フォトマスク数およびフォトリソグラフィ工程数を削減するこ
とができる。
ト絶縁膜63を形成する。
コン、酸化アルミニウム、酸化窒化アルミニウム、または酸化ガリウムを単層でまたは積
層して形成することができる。なお、ゲート絶縁膜63は、酸化物半導体膜59と接する
部分が酸素を含むことが好ましく、特に好ましくは下地絶縁膜53と同様に加熱により酸
素を放出する酸化物絶縁膜を用いて形成する。酸素を放出する酸化物絶縁膜として酸化シ
リコン膜を用いることで、後の工程で加熱処理を行う際に酸化物半導体膜59に酸素を拡
散させることができ、トランジスタ120の特性を良好にすることができる。
されたハフニウムシリケート(HfSixOyNz)、窒素が添加されたハフニウムアル
ミネート(HfAlxOyNz)、酸化ハフニウム、酸化イットリウムなどのhigh−
k材料を用いることでゲートリークを低減できる。さらには、high−k材料と、酸化
シリコン、酸化窒化シリコン、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸
化窒化アルミニウム、および酸化ガリウムのいずれか一以上との積層構造とすることがで
きる。ゲート絶縁膜63の厚さは、1nm以上300nm以下、より好ましくは5nm以
上50nm以下とするとよい。ゲート絶縁膜63の厚さを5nm以上とすることで、ゲー
トリーク電流を低減することができる。
、一酸化二窒素等の酸化性ガスのプラズマに曝し、酸化物半導体膜59の表面を酸化し、
酸素欠損を低減してもよい。
65を形成する。
グステン、マンガン、ジルコニウムから選ばれた金属元素、または上述した金属元素を成
分とする合金か、上述した金属元素を組み合わせた合金などを用いて形成することができ
る。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネ
オジム、スカンジウムから選ばれた金属元素を単数または複数組み合わせた合金膜、もし
くは窒化膜を用いてもよい。また、ゲート電極65は、単層構造でも、二層以上の積層構
造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上
にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チ
タン膜上にタングステン膜を積層する二層構造、窒化タンタル膜上にタングステン膜を積
層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上
にチタン膜を形成する三層構造などがある。
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加し
たインジウム錫酸化物などの透光性を有する導電性材料を適用することもできる。また、
In−Ga−Zn−O系金属酸化物をターゲットとし、窒素を含む雰囲気中でスパッタリ
ングすることにより得られる化合物導電体を用いても良い。また、上記透光性を有する導
電性材料と、上記金属元素の積層構造とすることもできる。
照。)。また、ゲート絶縁膜63および絶縁膜69にコンタクトホールを形成した後、ソ
ース電極61aおよびドレイン電極61bに接続する配線を形成してもよい。
また、絶縁膜69としてスパッタリング法で得られる窒化シリコン膜を形成すると、外部
からの水分やアルカリ金属の侵入を防止することが可能であり、酸化物半導体膜59の不
純物の含有量を低減することができる。
もよい。当該加熱処理によって、酸化物半導体膜59から水素を放出させると共に、下地
絶縁膜53、ゲート絶縁膜63または絶縁膜69に含まれる酸素の一部を、酸化物半導体
膜59と、下地絶縁膜53と酸化物半導体膜59の界面近傍と、ゲート絶縁膜63と酸化
物半導体膜59の界面近傍と、に拡散させることができる。当該工程により、酸化物半導
体膜59中に含まれる酸素欠陥を低減することができると共に、酸化物半導体膜59と下
地絶縁膜53、または酸化物半導体膜59とゲート絶縁膜63の界面における欠陥を低減
することができる。この結果、水素濃度及び酸素欠陥が低減された酸化物半導体膜59を
形成することができる。このように高純度化され、i型(真性半導体)またはi型に限り
なく近い酸化物半導体膜を形成することで、極めて優れた特性のトランジスタを実現する
ことができる。
トランジスタ120を作製することができる。図6(E)に示すように、トランジスタ1
20は、基板51上に設けられた下地絶縁膜53と、下地絶縁膜53上に設けられた酸化
物半導体膜59と、酸化物半導体膜59の上面および側面と接するように設けられたソー
ス電極61aおよびドレイン電極61bと、酸化物半導体膜59上に設けられたゲート絶
縁膜63と、酸化物半導体膜59と重畳してゲート絶縁膜63上に設けられたゲート電極
65と、ゲート電極65上に設けられた絶縁膜69とを有する。
体が非晶質構造の酸化物半導体膜と比較して良好な結晶性を有するので、酸素欠陥に代表
されるような欠陥や、ダングリングボンドなどに結合する水素などの不純物が低減されて
いる。これらの酸素欠陥に代表されるような欠陥や、ダングリングボンドなどに結合する
水素などは、酸化物半導体膜中でキャリアの供給源のように機能するため、当該酸化物半
導体膜の電気伝導度が変動する原因となりうる。よって、これらが低減されている、結晶
性を有する領域を含む酸化物半導体膜は、電気伝導度が安定しており、可視光や紫外光な
どの照射に対してもより電気的に安定な構造を有する。このような結晶性を有する領域を
含む酸化物半導体膜をトランジスタに用いることによって、安定した電気的特性を有する
、信頼性の高い半導体装置を提供することができる。
ない。例えば、図10(A)に示すトランジスタ130のような構造としても良い。トラ
ンジスタ130は、基板51上に設けられた下地絶縁膜53と、下地絶縁膜53上に設け
られたソース電極61aおよびドレイン電極61bと、ソース電極61aおよびドレイン
電極61bの上面および側面と接するように設けられた酸化物半導体膜59と、酸化物半
導体膜59上に設けられたゲート絶縁膜63と、酸化物半導体膜59と重畳してゲート絶
縁膜63上に設けられたゲート電極65と、ゲート電極65上に設けられた絶縁膜69と
を有する。つまり、トランジスタ130は、酸化物半導体膜59がソース電極61aおよ
びドレイン電極61bの上面および側面と接するように設けられている点において、トラ
ンジスタ120と異なる。
タ140は、基板51上に設けられた下地絶縁膜53と、下地絶縁膜53上に設けられた
ゲート電極65と、ゲート電極65上に設けられたゲート絶縁膜63と、ゲート絶縁膜6
3上に設けられた酸化物半導体膜59と、酸化物半導体膜59の上面および側面と接する
ように設けられたソース電極61aおよびドレイン電極61bと、酸化物半導体膜59上
に設けられた絶縁膜69とを有する。つまり、トランジスタ140は、ゲート電極65と
ゲート絶縁膜63が酸化物半導体膜59の下に設けられた、ボトムゲート構造である点に
おいて、トランジスタ120と異なる。
タ150は、基板51上に設けられた下地絶縁膜53と、下地絶縁膜53上に設けられた
ゲート電極65と、ゲート電極65上に設けられたゲート絶縁膜63と、ゲート絶縁膜6
3上に設けられたソース電極61aおよびドレイン電極61bと、ソース電極61aおよ
びドレイン電極61bの上面および側面と接するように設けられた酸化物半導体膜59と
、酸化物半導体膜59上に設けられた絶縁膜69とを有する。つまり、トランジスタ15
0は、ゲート電極65とゲート絶縁膜63が酸化物半導体膜59の下に設けられた、ボト
ムゲート構造である点において、トランジスタ130と異なる。
適宜組み合わせて用いることができる。
本実施の形態では、先の実施の形態に示す、結晶性を有する領域を含む酸化物半導体膜
を用いたトランジスタとは異なる構造のトランジスタについて図11および図12を用い
て説明する。
れた下地絶縁膜353と、下地絶縁膜353上に設けられた金属酸化物膜371と、金属
酸化物膜371上に設けられた酸化物半導体膜359と、酸化物半導体膜359の上面お
よび側面と接するように設けられたソース電極361aおよびドレイン電極361bと、
酸化物半導体膜359上に設けられた金属酸化物膜373と、金属酸化物膜373上に設
けられたゲート絶縁膜363と、酸化物半導体膜359と重畳してゲート絶縁膜363上
に設けられたゲート電極365と、ゲート電極365上に設けられた絶縁膜369とを有
する。
属酸化物膜371が設けられ、酸化物半導体膜359とゲート絶縁膜363との間に金属
酸化物膜373が設けられている点において、先の実施の形態に示すトランジスタ120
と異なる。なお、トランジスタ160の他の構成については先の実施の形態に示すトラン
ジスタ120と同様である。つまり、基板351の詳細については基板51の記載を、下
地絶縁膜353の詳細については下地絶縁膜53の記載を、酸化物半導体膜359の詳細
については酸化物半導体膜59の記載を、ソース電極361aおよびドレイン電極361
bの詳細についてはソース電極61aおよびドレイン電極61bの記載を、ゲート絶縁膜
363の詳細についてはゲート絶縁膜63の記載を、ゲート電極365の詳細については
ゲート電極65の記載を参酌することができる。
分でなる金属酸化物を用いるのが望ましい。ここで、「酸化物半導体膜と同種の成分」と
は、酸化物半導体膜の構成金属原子から選択される一または複数の原子を含むことを意味
する。特に、当該酸化物半導体膜359の結晶性を有する領域の結晶構造と同様の結晶構
造を取りうる構成原子とすることが好ましい。このように、酸化物半導体膜359と同種
の成分でなる金属酸化物を用いて金属酸化物膜371および金属酸化物膜373を形成し
、酸化物半導体膜359と同様に結晶性を有する領域を含むようにすることが好ましい。
当該結晶性を有する領域は、a−b面が膜表面に概略平行であり、c軸が膜表面に概略垂
直である結晶よりなることが好ましい。つまり、当該結晶性を有する領域は、c軸配向し
ていることが好ましい。また、当該結晶性を有する領域を膜表面に垂直な方向から観察す
ると、六角形の格子状に原子が配列される構造となることが好ましい。
属酸化物膜371と酸化物半導体膜359との界面およびその近傍に、c軸の配向が連続
した結晶性を有する領域が形成されうる。これにより、金属酸化物膜371と酸化物半導
体膜359との界面およびその近傍において、酸素欠陥に代表されるような欠陥や、ダン
グリングボンドなどに結合する水素などの不純物が低減されうる。また、金属酸化物膜3
73と酸化物半導体膜359との界面およびその近傍についても同様に、c軸の配向が連
続した結晶性を有する領域が形成されうる。
に結合する水素などは、キャリアの供給源のように機能するため、酸化物半導体膜の電気
伝導度が変動する原因となりうる。よって、酸化物半導体膜359は、金属酸化物膜37
1および金属酸化物膜373との界面とその近傍においてもこれらが低減されている。故
に酸化物半導体膜359は、電気伝導度が安定しており、可視光や紫外光などの照射に対
してもより電気的に安定な構造を有する。このような酸化物半導体膜359、金属酸化物
膜371および金属酸化物膜373をトランジスタに用いることによって、安定した電気
的特性を有する、信頼性の高い半導体装置を提供することができる。
9にIn−Ga−Zn−O系の金属酸化物を用いる場合には、酸化ガリウムを含む金属酸
化物、特に、酸化ガリウムに酸化亜鉛を添加したGa−Zn−O系の金属酸化物などを用
いて形成すればよい。Ga−Zn−O系の金属酸化物は、酸化ガリウムに対する酸化亜鉛
の物質量が50%未満となるようにし、より好ましくは25%未満となるようにする。な
お、Ga−Zn−O系の金属酸化物とIn−Ga−Zn−O系の金属酸化物を接触させた
場合のエネルギー障壁は、伝導帯側で約0.5eVとし、価電子帯側で約0.7eVとす
ることができる。
酸化物膜373のエネルギーギャップは、酸化物半導体膜359のエネルギーギャップよ
り大きいことが求められる。また、金属酸化物膜371と酸化物半導体膜359の間、ま
たは、金属酸化物膜373と酸化物半導体膜359の間には、少なくとも室温(20℃)
において、酸化物半導体膜359からキャリアが流出しない程度のエネルギー障壁の形成
が求められる。例えば、金属酸化物膜371や金属酸化物膜373の伝導帯の下端と、酸
化物半導体膜359の伝導帯の下端とのエネルギー差、あるいは、金属酸化物膜371や
金属酸化物膜373の価電子帯の上端と、酸化物半導体膜359の価電子帯の上端とのエ
ネルギー差は0.5eV以上であるのが望ましく、0.7eV以上であるとより望ましい
。また、1.5eV以下であると望ましい。
ップより小さく、金属酸化物膜373のエネルギーギャップはゲート絶縁膜363のエネ
ルギーギャップより小さいことが好ましい。
縁膜363、金属酸化物膜373、酸化物半導体膜359、金属酸化物膜371および下
地絶縁膜353を接合した構造、におけるエネルギーバンド図(模式図)を示す。図12
は、ゲート電極365側からゲート絶縁膜363、金属酸化物膜373、酸化物半導体膜
359、金属酸化物膜371および下地絶縁膜353のいずれもが真性であるという理想
的な状況を仮定し、ゲート絶縁膜363、下地絶縁膜353として酸化シリコン(バンド
ギャップEg8eV〜9eV)を、金属酸化物膜としてGa−Zn−O系の金属酸化物(
バンドギャップEg4.4eV)を、酸化物半導体膜としてIn−Ga−Zn−O系の金
属酸化物(バンドギャップEg3.2eV)を用いた場合について示している。なお、酸
化シリコンの真空準位と伝導帯下端のエネルギー差は0.95eVであり、Ga−Zn−
O系の金属酸化物の真空準位と伝導帯下端のエネルギー差は4.1eVであり、In−G
a−Zn−O系の金属酸化物の真空準位と伝導帯下端のエネルギー差は4.6eVである
。
物半導体膜359と金属酸化物膜373との界面に約0.5eVおよび約0.7eVのエ
ネルギー障壁が存在する。同様に、酸化物半導体膜359のバックチャネル側(ゲート電
極とは反対側)にも、酸化物半導体膜359と金属酸化物膜371との界面に約0.5e
Vおよび約0.7eVのエネルギー障壁が存在する。酸化物半導体と金属酸化物との界面
において、このようなエネルギー障壁が存在することにより、その界面においてキャリア
の移動は妨げられるため、キャリアは酸化物半導体膜359から金属酸化物膜371また
は金属酸化物膜373に移動することなく、酸化物半導体中を移動する。つまり、酸化物
半導体膜359を、酸化物半導体よりもバンドギャップが段階的に大きくなる材料(ここ
では、金属酸化物膜と絶縁膜)で挟むように設けることにより、キャリアは酸化物半導体
膜中を移動する。
プラズマCVD法やスパッタリング法などの成膜方法を用いて金属酸化物膜371および
金属酸化物膜373を作製することができる。なお、水素や水などが混入しにくいという
点では、スパッタリング法などが適当である。一方で、膜の品質を高めるという点では、
プラズマCVD法などが適当である。また、金属酸化物膜371および金属酸化物膜37
3として、Ga−Zn−O系の金属酸化物膜を用いる場合、亜鉛を用いることにより当該
金属酸化物の導電率が向上しているので、DCスパッタリング法を用いて作製することが
できる。
ものではない。例えば、図11(B)に示すトランジスタ170のような構造としても良
い。トランジスタ170は、基板351上に設けられた下地絶縁膜353と、下地絶縁膜
353上に設けられた金属酸化物膜371と、金属酸化物膜371上に設けられた酸化物
半導体膜359と、酸化物半導体膜359の上面および側面と接するように設けられたソ
ース電極361aおよびドレイン電極361bと、酸化物半導体膜359上に設けられた
ゲート絶縁膜363と、酸化物半導体膜359と重畳してゲート絶縁膜363上に設けら
れたゲート電極365と、ゲート電極365上に設けられた絶縁膜369とを有する。つ
まり、トランジスタ170は、酸化物半導体膜359とゲート絶縁膜363との間に金属
酸化物膜373が設けられていない点において、トランジスタ160と異なる。
タ180は、基板351上に設けられた下地絶縁膜353と、下地絶縁膜353上に設け
られた酸化物半導体膜359と、酸化物半導体膜359の上面および側面と接するように
設けられたソース電極361aおよびドレイン電極361bと、酸化物半導体膜359上
に設けられた金属酸化物膜373と、金属酸化物膜373上に設けられたゲート絶縁膜3
63と、酸化物半導体膜359と重畳してゲート絶縁膜363上に設けられたゲート電極
365と、ゲート電極365上に設けられた絶縁膜369とを有する。つまり、トランジ
スタ180は、下地絶縁膜353と酸化物半導体膜359との間に金属酸化物膜371が
設けられていない点において、トランジスタ160と異なる。
、トップゲート構造とし、かつソース電極361aおよびドレイン電極361bが酸化物
半導体膜359の上面および側面と接するような構造としたが、本発明に係る半導体装置
はこれに限られるものではない。先の実施の形態において、図10(A)乃至図10(C
)で示したトランジスタと同様に、ボトムゲート構造としてもよいし、または酸化物半導
体膜359がソース電極361aおよびドレイン電極361bの上面および側面と接する
ように設けられる構造としてもよい。
適宜組み合わせて用いることができる。
本実施の形態では、同一基板上に少なくとも駆動回路の一部と、画素部に配置するトラ
ンジスタを作製する例について以下に説明する。
該トランジスタはnチャネル型とすることが容易なので、駆動回路のうち、nチャネル型
トランジスタで構成することができる駆動回路の一部を画素部のトランジスタと同一基板
上に形成する。このように、画素部や駆動回路に先の実施の形態に示すトランジスタを用
いることにより、信頼性の高い表示装置を提供することができる。
の基板500上には、画素部501、第1の走査線駆動回路502、第2の走査線駆動回
路503、信号線駆動回路504を有する。画素部501には、複数の信号線が信号線駆
動回路504から延伸して配置され、複数の走査線が第1の走査線駆動回路502、及び
走査線駆動回路503から延伸して配置されている。なお走査線と信号線との交差領域に
は、各々、表示素子を有する画素がマトリクス状に設けられている。また、表示装置の基
板500はFPC(Flexible Printed Circuit)等の接続部を
介して、タイミング制御回路(コントローラ、制御ICともいう)に接続されている。
線駆動回路504は、画素部501と同じ基板500上に形成される。そのため、外部に
設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また、基板
500外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の接続数が増
える。同じ基板500上に駆動回路を設けた場合、その配線間の接続数を減らすことがで
き、信頼性の向上、又は歩留まりの向上を図ることができる。
ルの画素構造を示す。
ンジスタが接続されている。各トランジスタは、異なるゲート信号で駆動されるように構
成されている。すなわち、マルチドメイン設計された画素において、個々の画素電極層に
印加する信号を、独立して制御する構成を有している。
は、異なるゲート信号を与えることができるように分離されている。一方、データ線とし
て機能するソース電極層又はドレイン電極層514は、トランジスタ516とトランジス
タ517で共通に用いられている。トランジスタ516とトランジスタ517は先の実施
の形態に示すトランジスタを適宜用いることができる。これにより、信頼性の高い液晶表
示パネルを提供することができる。
気的に接続する第2の画素電極層の形状は異なっており、スリットによって分離されてい
る。V字型に広がる第1の画素電極層の外側を囲むように第2の画素電極層が形成されて
いる。第1の画素電極層と第2の画素電極層に印加する電圧のタイミングを、トランジス
タ516及びトランジスタ517により異ならせることで、液晶の配向を制御している。
トランジスタ516はゲート配線512と接続し、トランジスタ517はゲート配線51
3と接続している。ゲート配線512とゲート配線513は異なるゲート信号を与えるこ
とで、トランジスタ516とトランジスタ517の動作タイミングを異ならせることがで
きる。
たは第2の画素電極層と電気的に接続する容量電極とで保持容量を形成する。
形成されている。また、第2の画素電極層と液晶層と対向電極層が重なり合うことで、第
2の液晶素子519が形成されている。また、一画素に第1の液晶素子518と第2の液
晶素子519が設けられたマルチドメイン構造である。
示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ、センサ、又は論理回路
などを追加してもよい。
た表示パネルの画素構造を示す。
孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキ
ャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形
成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このよ
うな発光素子は、電流励起型の発光素子と呼ばれる。
一例を示す図である。
では酸化物半導体層をチャネル形成領域に用いるnチャネル型のトランジスタを1つの画
素に2つ用いる例を示す。
素子524及び容量素子523を有している。スイッチング用トランジスタ521は、ゲ
ート電極層が走査線526に接続され、第1電極(ソース電極層及びドレイン電極層の一
方)が信号線525に接続され、第2電極(ソース電極層及びドレイン電極層の他方)が
駆動用トランジスタ522のゲート電極層に接続されている。駆動用トランジスタ522
は、ゲート電極層が容量素子523を介して電源線527に接続され、第1電極が電源線
527に接続され、第2電極が発光素子524の第1電極(画素電極)に接続されている
。発光素子524の第2電極は共通電極528に相当する。共通電極528は、同一基板
上に形成される共通電位線と電気的に接続される。
に示すトランジスタを適宜用いることができる。これにより、信頼性の高い有機EL素子
を用いた表示パネルを提供することができる。
。なお、低電源電位とは、電源線527に設定される高電源電位を基準にして低電源電位
<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設定さ
れていても良い。この高電源電位と低電源電位との電位差を発光素子524に印加して、
発光素子524に電流を流して発光素子524を発光させるため、高電源電位と低電源電
位との電位差が発光素子524の順方向しきい値電圧以上となるようにそれぞれの電位を
設定する。
とも可能である。駆動用トランジスタ522のゲート容量については、チャネル形成領域
とゲート電極層との間で容量が形成されていてもよい。
には、駆動用トランジスタ522が十分にオンするか、オフするかの二つの状態となるよ
うなビデオ信号を入力する。つまり、駆動用トランジスタ522は線形領域で動作させる
。駆動用トランジスタ522は線形領域で動作させるため、電源線527の電圧よりも高
い電圧を駆動用トランジスタ522のゲート電極層にかける。なお、信号線525には、
(電源線電圧+駆動用トランジスタ522のVth)以上の電圧をかける。
ならせることで、図29(C)と同じ画素構成を用いることができる。
24の順方向電圧+駆動用トランジスタ522のVth以上の電圧をかける。発光素子5
24の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向し
きい値電圧を含む。なお、駆動用トランジスタ522が飽和領域で動作するようなビデオ
信号を入力することで、発光素子524に電流を流すことができる。駆動用トランジスタ
522を飽和領域で動作させるため、電源線527の電位は、駆動用トランジスタ522
のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子524にビ
デオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
示す画素に新たにスイッチ、抵抗素子、容量素子、センサ、トランジスタ又は論理回路な
どを追加してもよい。
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用するこ
とができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョ
ン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカ
メラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともい
う)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機な
どが挙げられる。上記実施の形態で説明した表示装置を具備する電子機器の例について説
明する。
03a、1003bなどによって構成されている。表示部1003bはタッチパネルとな
っており、表示部1003bに表示されるキーボードボタン1004を触れることで画面
操作や、文字入力を行うことができる。勿論、表示部1003aをタッチパネルとして構
成してもよい。先の実施の形態で示したトランジスタをスイッチング素子として液晶パネ
ルや有機発光パネルを作製して表示部1003a、1003bに適用することにより、信
頼性の高い携帯型の情報端末とすることができる。
ど)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に
表示した情報を操作又は編集する機能、様々なソフトウェア(プログラム)によって処理
を制御する機能、等を有することができる。また、筐体の裏面や側面に、外部接続用端子
(イヤホン端子、USB端子など)、記録媒体挿入部などを備える構成としてもよい。
もよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロー
ドする構成とすることも可能である。
に装着するための固定部1022と、スピーカ、操作ボタン1024、外部メモリスロッ
ト1025等が設けられている。先の実施の形態で示したトランジスタをスイッチング素
子として液晶パネルや有機発光パネルを作製して表示部1023に適用することにより、
より信頼性の高い携帯音楽プレイヤーとすることができる。
持たせ、携帯電話と連携させれば、乗用車などを運転しながらワイヤレスによるハンズフ
リーでの会話も可能である。
されている。筐体1031には、表示パネル1032、スピーカー1033、マイクロフ
ォン1034、ポインティングデバイス1036、カメラ用レンズ1037、外部接続端
子1038などを備えている。また、筐体1030には、携帯電話の充電を行う太陽電池
セル1040、外部メモリスロット1041などを備えている。また、アンテナは筐体1
031内部に内蔵されている。先の実施の形態で示したトランジスタを表示パネル103
2に適用することにより、信頼性の高い携帯電話とすることができる。
れている複数の操作キー1035を点線で示している。なお、太陽電池セル1040で出
力される電圧を各回路に必要な電圧に昇圧するための昇圧回路も実装している。
示したトランジスタの酸化物半導体膜の膜厚を2μm以上50μm以下とすることで形成
することができる。
ル1032と同一面上にカメラ用レンズ1037を備えているため、テレビ電話が可能で
ある。スピーカー1033及びマイクロフォン1034は音声通話に限らず、テレビ電話
、録音、再生などが可能である。さらに、筐体1030と筐体1031は、スライドし、
図30(C)のように展開している状態から重なり合った状態とすることができ、携帯に
適した小型化が可能である。
能であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外
部メモリスロット1041に記録媒体を挿入し、より大量のデータ保存及び移動に対応で
きる。
もよい。
、筐体1051に表示部1053が組み込まれている。表示部1053により、映像を表
示することが可能である。また、ここでは、CPUを内蔵したスタンド1055により筐
体1051を支持した構成を示している。先の実施の形態で示したトランジスタを表示部
1053に適用することにより、信頼性の高いテレビジョン装置1050とすることがで
きる。
モコン操作機により行うことができる。また、リモコン操作機に、当該リモコン操作機か
ら出力する情報を表示する表示部を設ける構成としてもよい。
により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線
による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方
向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である
。
052、外部メモリスロットを備えている。外部接続端子1054は、USBケーブルな
どの各種ケーブルと接続可能であり、パーソナルコンピュータなどとのデータ通信が可能
である。記憶媒体再生録画部1052では、ディスク状の記録媒体を挿入し、記録媒体に
記憶されているデータの読み出し、記録媒体への書き込みが可能である。また、外部メモ
リスロットに差し込まれた外部メモリ1056にデータ保存されている画像や映像などを
表示部1053に映し出すことも可能である。
とにより、消費電力が十分に低減された信頼性の高いテレビジョン装置1050とするこ
とができる。
化物半導体膜を用いた半導体装置について測定を行った結果について説明する。
本項目では、先の実施の形態に従って酸化物半導体膜を作製し、当該酸化物半導体膜を
透過型電子顕微鏡(TEM:transmission electron micro
scope)を用いて観察した結果について説明する。
ルA、サンプルB、サンプルC、サンプルDおよびサンプルEを作製した。サンプルA、
サンプルB、サンプルC、サンプルDおよびサンプルEの成膜時の基板温度は、それぞれ
室温、200℃、250℃、300℃および400℃とした。つまり、サンプルAおよび
サンプルBは実施の形態2に示す成膜方法より成膜時の基板温度を低くし、サンプルC乃
至サンプルEは実施の形態2に示す成膜方法に記載された範囲の基板温度とした。酸化物
半導体膜の成膜ターゲットは、In2O3:Ga2O3:ZnO=1:1:2[mol数
比]の組成比を有するものを用いた。他の成膜条件は、成膜ガス流量をアルゴンガス30
sccmおよび酸素ガス15sccmとし、圧力0.4Pa、基板−ターゲット間距離6
0mm、高周波(RF)電源0.5kWとした。なお、サンプルA、サンプルBおよびサ
ンプルEは膜厚50nmを狙って成膜し、サンプルCおよびサンプルDは膜厚100nm
を狙って成膜した。
行った。加熱処理は、露点−24℃の乾燥雰囲気下において、加熱温度450℃、加熱時
間1時間で行った。このようにして、酸化物半導体膜を石英基板上に成膜した、サンプル
A、サンプルB、サンプルC、サンプルDおよびサンプルEを作製した。
て酸化物半導体膜を成膜したサンプルFを作製した。サンプルFは、まず膜厚5nmの第
1の酸化物半導体膜を成膜し、第1の酸化物半導体膜に第1の加熱処理を行い、第1の酸
化物半導体膜上に膜厚30nmの第2の酸化物半導体膜を成膜し、第1の酸化物半導体膜
と第2の酸化物半導体膜に第2の加熱処理を行って作製した。
=1:1:2[mol数比]の組成比を有するものを用いた。他の成膜条件は、成膜ガス
流量をアルゴンガス30sccmおよび酸素ガス15sccmとし、圧力0.4Pa、基
板−ターゲット間距離60mm、高周波(RF)電源0.5kWとした。また、第1の加
熱処理の条件は、窒素雰囲気下、加熱温度650℃、加熱時間1時間とした。
1:1:2[mol数比]の組成比を有するものを用いた。他の成膜条件は、成膜ガス流
量をアルゴンガス30sccmおよび酸素ガス15sccmとし、圧力0.4Pa、基板
−ターゲット間距離60mm、高周波(RF)電源0.5kWとした。また、第2の加熱
処理の条件は、露点−24℃の乾燥雰囲気下で、加熱温度650℃、加熱時間1時間とし
た。
プルFを作製した。
SZ)基板上にIGZOの単結晶膜を膜厚150nmで成膜した、サンプルGを作製した
。
た基板に対して垂直に、つまり、先の実施の形態におけるc軸方向に平行に電子線を照射
してTEM像および電子線回折パターンの撮影を行った。図13(A)乃至図13(E)
にサンプルA乃至サンプルEの断面TEM像を、それぞれ示す。ここで、図13に示す断
面TEM像は、紙面の上側がサンプルの表面方向となるので、紙面の縦方向がc軸方向と
なる。また、図14(A)乃至図14(E)にサンプルA乃至サンプルEの平面TEM像
を、それぞれ示す。ここで、図14に示す平面TEM像は、紙面の表側がサンプルの表面
方向となるので、紙面の垂直な方向がc軸方向となる。また、図15(A)乃至図15(
E)にサンプルA乃至サンプルEの電子線回折パターンを、それぞれ示す。ここで、図1
5に示す電子線回折パターンは、紙面の表側がサンプルの表面方向となるので、紙面の垂
直な方向がc軸方向となる。また、図16(A)および図16(B)にサンプルFおよび
サンプルGの平面TEM像を、それぞれ示す。図16(C)にサンプルFの電子線回折パ
ターンを示す。図16(D)および図16(E)にサンプルGの電子線回折パターンを示
す。ここで、図16に示す平面TEM像および電子線回折パターンは、紙面の表側がサン
プルの表面方向となるので、紙面の垂直な方向がc軸方向となる。
式会社日立ハイテクノロジーズ製H−9000NARを用い、電子ビームのスポット径を
1nmとし、加速電圧を300kVとして撮影した。
る領域が観察されたが、図13(A)および図13(B)に示す断面TEM像おいては、
c軸が配向した結晶性を有する領域が明瞭には観察されなかった。よって、酸化物半導体
膜の成膜時基板温度を200℃より大きく、好ましくは250℃以上にすることで、c軸
が配向した結晶性を有する領域が酸化物半導体膜中に形成されることが分かる。また、図
13(C)乃至図13(E)の順番にc軸が配向した結晶性を有する領域が明瞭に見られ
るので、酸化物半導体膜の成膜時基板温度が高くなるほど、酸化物半導体膜の結晶性が高
くなることが推測される。
。また、図14(C)および図14(D)に示す平面TEM像においても、六角形の格子
状に配置された原子が淡く観察された。図14(A)および図14(B)に示す平面TE
M像においては、六角形の格子状に配置された原子が明瞭には観察されなかった。また、
図16(A)および図16(B)に示す平面TEM像でも、六角形の格子状に配置された
原子が観察された。このことから、酸化物半導体膜のc軸が配向した結晶性を有する領域
は、図2に示すような、三回対称性を有する六方晶構造を取りやすいことが推測される。
また、2step法を用いて作製されたサンプルFもサンプルC乃至サンプルEと同様に
結晶性を有する領域が酸化物半導体膜中に形成されていることが分かった。また、図13
の断面TEM像の観察結果と同様に、酸化物半導体膜の成膜時基板温度が高くなるほど、
酸化物半導体膜の結晶性が高くなることが推測される。以上の図13および図14の観察
から、サンプルAおよびサンプルBはほとんど結晶性を持たないアモルファス構造の酸化
物半導体膜であり、サンプルC乃至サンプルFはc軸が配向した結晶性を有する領域を含
む酸化物半導体膜であることが分かる。
ぼやけている同心円状のハローパターンとなっており、内側のハローパターンより外側の
ハローパターンの方が電子線回折強度が弱くなっている。さらに、図15(A)乃至図1
5(E)の順番に外側のハローパターンの電子線回折強度が強くなっている傾向が観測さ
れる。また、図16(C)に示す電子線回折パターンも同心円状のハローパターンとなる
が、図15(A)乃至図15(E)と比較すると、ハローパターンの幅が細く、内側のハ
ローパターンと外側のハローパターンの電子線回折強度がほぼ同等になっている。
び図16(C)とは異なり、スポット状の電子線回折パターンが現れる。図16(D)に
示す電子線回折パターンに画像処理を行い、同心円状のパターンにしたものが図16(E
)であるが、図15(A)乃至図15(E)および図16(C)とは異なり、同心円のパ
ターンの幅が狭いのでハロー状にはならない。また、内側の同心円状のパターンより外側
の同心円状のパターンの方が電子線回折強度が強くなっている点においても、図15(A
)乃至図15(E)および図16(C)に示す電子線回折パターンとは異なる。
ラフは、縦軸に電子線回折強度(任意単位)をとり、横軸にサンプルの散乱ベクトルの大
きさ(1/d[1/nm])をとる。なお、散乱ベクトルの大きさ(1/d[1/nm]
)のdは結晶中においては結晶の面間隔に相当する。ここで散乱ベクトルの大きさ(1/
d)は、電子線回折パターンのフィルムにおける、中心の透過波の斑点から回折波の同心
円状のパターンまでの距離rと、TEMにおけるサンプルとフィルム間の距離であるカメ
ラ長Lと、TEMで照射した電子線の波長λを用いて以下の式で表すことができる。
15(E)、図16(C)および図16(E)に示す電子線回折パターンにおける、中心
の透過波の斑点から回折波の同心円状のパターンまでの距離rに比例する量である。
および図16(E)に示す電子線回折パターンにおける内側のハローパターンに対応する
ピークは、3.3nm−1≦1/d≦4.1nm−1における第1ピークであり、外側の
ハローパターンに対応するピークは、5.5nm−1≦1/d≦7.1nm−1における
第2ピークである。
全幅のグラフを示す。図18に示すグラフは、縦軸に第1ピークの半値全幅FWHM(n
m−1)をとり、横軸にサンプルA乃至サンプルEの成膜時基板温度(℃)をとっている
。また、図18のグラフ中の点線はそれぞれ、サンプルFおよびサンプルGの第1ピーク
の半値全幅の値を示している。図19に示すグラフも、図18と同様に第2ピークの半値
全幅を表している。また、図18および図19に示す第1ピークおよび第2ピークのピー
ク位置(nm−1)と半値全幅(nm−1)をまとめた表を表1に示す。
温度が高くなるにつれて、ピークの半値全幅が小さくなり、ピーク位置が小さくなる傾向
が示された。また、第1ピーク、第2ピーク共に、成膜時基板温度が300℃から400
℃にかけてはピークの半値全幅が大きく変わらないことが示された。さらに、第1ピーク
、第2ピーク共に、2step法を用いて形成されたサンプルFの半値全幅およびピーク
位置は、サンプルA乃至サンプルEの半値全幅およびピーク位置より小さく、単結晶であ
るサンプルGの半値全幅およびピーク位置より大きかった。
ルGとは結晶性が異なるので、c軸方向から電子線を照射した電子線回折強度測定におい
て、第1ピークおよび第2ピークにおける半値全幅が0.2nm−1以上であり、好まし
くは第1ピークの半値全幅が0.4nm−1以上、第2ピークの半値全幅が0.45nm
−1以上であると言える。
度が200℃以下の酸化物半導体膜は明瞭な結晶性が見られなかったことを考慮すると、
c軸が配向した結晶性を有する領域を含む酸化物半導体膜は、c軸方向から電子線を照射
した電子線回折強度測定において、第1ピークの半値全幅が0.7nm−1以下、第2ピ
ークの半値全幅が1.4nm−1以下であることが好ましいと言える。
−ray diffraction)測定を行い、上記のTEMによる測定結果を補強す
る測定結果が得られた。
XRDスペクトルを測定した結果を示す。図20は、縦軸にx線回折強度(任意単位)を
とり、横軸に回転角2θ(deg.)をとる。
ンプルAでは2θ=30°近傍にほとんどピークが見られないことが分かる。当該ピーク
はIGZO結晶の(009)面における回折に起因するものである。このことからも、サ
ンプルEはc軸が配向した結晶性を有する領域を含む酸化物半導体膜であり、アモルファ
ス構造であるサンプルAとは明確に異なることが分かる。
ルを測定した結果を示す。同様に図21(B)にサンプルGについてin−plane法
を用いてXRDスペクトルを測定した結果を示す。図21(A)および図21(B)は、
縦軸にx線回折強度(任意単位)をとり、横軸に回転角φ(deg.)をとる。なお、本
実施例で用いたin−plane法においては、サンプルのc軸方向を回転の軸としてサ
ンプルを回転角φで回転させながらXRD測定を行った。
間隔のピークが現れており、サンプルGが6回対称性を有する単結晶膜であることを示し
ている。それに対して、図21(A)に示すサンプルEのXRDスペクトルは規則正しい
ピークを持っておらず、結晶性を有する領域のa−b面方向の配向は見られないことが分
かる。すなわち、サンプルEは、個々の結晶性を有する領域において、c軸に対して結晶
化しているが、a−b面に対しては必ずしも配列していない。このことからも、サンプル
Eはc軸が配向した結晶性を有する領域を含む酸化物半導体膜であるが、単結晶構造であ
るサンプルGとは明確に異なることが分かる。
、アモルファス構造の酸化物半導体膜とも、単結晶構造の酸化物半導体膜とも明確に異な
る結晶性を有すると言うことができる。
非晶質構造の酸化物半導体膜と比較して良好な結晶性を有するので、酸素欠陥に代表され
るような欠陥や、ダングリングボンドなどに結合する水素などの不純物が低減されている
。これらの酸素欠陥に代表されるような欠陥や、ダングリングボンドなどに結合する水素
などは、酸化物半導体膜中でキャリアの供給源のように機能するため、当該酸化物半導体
膜の電気伝導度が変動する原因となりうる。よって、これらが低減されている、結晶性を
有する領域を含む酸化物半導体膜は、電気伝導度が安定しており、可視光や紫外光などの
照射に対してもより電気的に安定な構造を有する。このような結晶性を有する領域を含む
酸化物半導体膜をトランジスタに用いることによって、安定した電気的特性を有する、信
頼性の高い半導体装置を提供することができる。
本項目では、先の実施の形態に従って酸化物半導体膜を作製し、当該酸化物半導体膜を
電子スピン共鳴(ESR:Electron Spin Resonance)法を用い
て評価した結果について説明する。
ルHと、さらに、当該酸化物半導体膜を成膜した石英基板に加熱処理を行ったサンプルI
を作製した。酸化物半導体膜の成膜ターゲットは、In2O3:Ga2O3:ZnO=1
:1:2[mol数比]の組成比を有するものを用いた。他の成膜条件は、成膜ガス流量
をアルゴンガス30sccmおよび酸素ガス15sccmとし、成膜時基板温度400℃
、圧力0.4Pa、基板−ターゲット間距離60mm、高周波(RF)電源0.5kW、
膜厚100nmとした。
た石英基板に加熱処理を行った。加熱処理は、露点−24℃の乾燥雰囲気下において、加
熱温度450℃、加熱時間1時間で行った。このようにして、酸化物半導体膜を石英基板
上に成膜した、サンプルHおよびサンプルIを作製した。
ESR測定はゼーマン効果を利用した物質中の孤立電子の測定方法である。サンプルに特
定の振動数νのマイクロ波を照射しながら、サンプルにかかる磁場Hを掃引することによ
って、特定の磁場Hにおいてサンプル中の孤立電子がマイクロ波を吸収して、磁場に平行
なスピンのエネルギー準位から磁場に反平行なスピンのエネルギー準位に遷移する。この
ときサンプル中の孤立電子に吸収されるマイクロ波の振動数νとサンプルにかかる磁場H
の関係は以下の式で表すことができる。
であり、物質中の孤立電子にかかる局所磁場に応じて変化する、つまり、上式からg値を
求めることにより、ダングリングボンドなどの孤立電子の環境を知ることができる。
定温度を室温とし、マイクロ波周波数9.5GHz、マイクロ波電力0.2mWとした。
フに示す。図22に示すグラフは、縦軸にマイクロ波の吸収強度の一次微分をとり、横軸
にg値をとる。
観測されなかったが、サンプルHではg=1.93近傍においてマイクロ波の吸収に対応
するシグナルが観測された。g=1.93近傍のシグナルの積分値を計算することにより
、当該マイクロ波の吸収に対応する孤立電子のスピン密度1.3×1018(spins
/cm3)が求められる。なお、サンプルIにおいては、マイクロ波の吸収が検出下限以
下ということになるので、サンプルIの孤立電子のスピン密度は1×1016(spin
s/cm3)以下となる。
ナルがどのようなダングリングボンドに帰属するかを調べるために量子化学計算を行った
。具体的な計算手法としては、金属原子が酸素欠陥に対応するダングリングボンドを有す
るようなクラスターモデルを作って構造最適化を行い、構造最適化されたモデルについて
g値の計算を行った。
erdam Density Functional software)を用いた。ま
た、モデルの構造最適化および構造最適化されたモデルのg値の計算共に、汎関数にはG
GA:BPを、基底関数にはTZ2Pを用いた。また、Core Typeとして、モデ
ルの構造最適化にはLargeを、g値の計算にはNoneを用いている。
るダングリングボンドのモデルを図23に示す。図23は、インジウム−酸素結合の酸素
欠陥によるダングリングボンド(g=1.984)と、ガリウム−酸素結合の酸素欠陥に
よるダングリングボンド(g=1.995)と、亜鉛−酸素結合の酸素欠陥によるダング
リングボンド(g=1.996)とを示している。これらのダングリングボンドのg値は
、サンプルHのマイクロ波の吸収に対応するシグナルのg=1.93に比較的近い値とな
っている。つまり、サンプルHにおいて、インジウム、ガリウムまたは亜鉛のいずれか一
または複数と酸素との結合に酸素欠陥が発生した可能性が示唆されている。
ルが現れていない。これは、酸化物半導体膜の成膜後に乾燥雰囲気下で加熱処理を行うこ
とにより、酸素欠陥に酸素が補充されたということを示唆している。上述の実施の形態に
おいて述べたように、酸化物半導体膜中の酸素欠陥は電気伝導度を変化させるキャリアと
して機能しうるので、当該酸素欠陥を低減することにより、酸化物半導体膜を用いたトラ
ンジスタの信頼性を向上させることができる。
体膜は、成膜後に加熱処理を行い、酸素欠陥に酸素を補充することが好ましく、ESR測
定におけるg=1.93近傍のスピン密度が1.3×1018(spins/cm3)よ
り小さいことが好ましく、さらに、スピン密度が1×1016(spins/cm3)以
下となることがより好ましい。
本項目では、先の実施の形態に従って酸化物半導体膜を作製し、当該酸化物半導体膜を
低温フォトルミネッセンス(PL:photoluminescence)測定を用いて
評価した結果について説明する。
化物半導体膜を成膜したサンプルJと、成膜時の基板温度400℃で酸化物半導体膜を成
膜したサンプルKを作製した。つまり、サンプルJはc軸が配向した結晶性を有する領域
を含まない酸化物半導体膜であり、サンプルKはc軸が配向した結晶性を有する領域を含
む酸化物半導体膜である。酸化物半導体膜の成膜ターゲットは、In2O3:Ga2O3
:ZnO=1:1:2[mol数比]の組成比を有するものを用いた。他の成膜条件は、
成膜ガス流量をアルゴンガス30sccmおよび酸素ガス15sccmとし、圧力0.4
Pa、基板−ターゲット間距離60mm、高周波(RF)電源0.5kW、膜厚100n
mとした。
体膜を成膜した石英基板に加熱処理を行った。加熱処理は、露点−24℃の乾燥雰囲気下
において、加熱温度450℃、加熱時間1時間で行った。このようにして、酸化物半導体
膜を石英基板上に成膜した、サンプルJおよびサンプルKを作製した。
。低温PL測定では、極低温雰囲気下で励起光をサンプルに照射してエネルギーを与えて
、サンプル中に電子と正孔を生じさせながら、励起光の照射を止めて、励起光照射により
生じた電子と正孔が再結合することによる発光をCCD(Charge Coupled
Device)などを用いて検出する。
て行った。励起光は、He−Cdガスレーザ発振器を用いて、波長325nmの光を照射
した。また、発光の検出にはCCDを用いた。
4のグラフに示す。図24に示すグラフは、縦軸にPL発光検出カウント(counts
)をとり、横軸に検出した発光のエネルギー(eV)をとる。
ピークを持つが、サンプルJよりサンプルKの方がPL発光検出カウント数が100程度
少ないことが分かる。なお、サンプルJおよびサンプルKの発光エネルギー3.2eV近
傍のピークは、低温PL測定装置の石英窓に由来するものである。
ド構造において伝導帯下端から1.8eV程度の深さにエネルギー準位が存在しているこ
とを示唆している。このバンドギャップ中の深いエネルギー準位は、図3の電子状態密度
計算の結果に示す、酸素欠陥に起因するトラップ準位と符合している。よって、図24の
グラフに示す1.8eV近傍の発光ピークは、図4に示すバンドダイアグラム中の酸素欠
陥に起因するトラップ準位のエネルギー準位を表していると考えることができる。つまり
、サンプルKにおいて1.8eV近傍の発光検出カウント数がサンプルJより少ないとい
うことは、c軸が配向した結晶性を有する領域を含む酸化物半導体膜の方が、酸素欠陥に
起因するトラップ準位の数が低減されている、つまり、酸素欠陥の数が低減されているこ
とが考えられる。
本実施例では、先の実施の形態に従って酸化物半導体膜を用いたトランジスタを作製し
、当該トランジスタに光を照射しながらゲートに負電圧を印加してストレスを与え、スト
レスを与えた時間に応じて変化するトランジスタのしきい値電圧を評価した結果について
説明する。なお、このようなストレスによりトランジスタのしきい値電圧などが変化する
ことを光負バイアス劣化という。
酸化物半導体膜を設けたトランジスタ(サンプルL)と、比較例としてサンプルLと同様
の材料からなるが、c軸が配向した結晶性を有する領域が形成されていない酸化物半導体
膜を設けたトランジスタ(サンプルM)と、を作製した。そしてサンプルLおよびサンプ
ルMに光を照射しながらゲートに負電圧を印加してストレスを与え、ストレスを与えた時
間に応じて変化するサンプルLおよびサンプルMのしきい値電圧Vthを評価した。以下
にサンプルLおよびサンプルMの作製方法について説明する。
よび膜厚150nmの酸化窒化シリコン膜を連続してガラス基板上に成膜し、続いて酸化
窒化シリコン膜上に、スパッタリング法を用いて膜厚100nmのタングステン膜を成膜
した。ここで、タングステン膜を選択的にエッチングすることにより、テーパー形状を有
するゲート電極を形成した。それから、ゲート電極上に、プラズマCVD法を用いてゲー
ト絶縁膜として膜厚100nmの酸化窒化シリコン膜を成膜した。
、サンプルLの酸化物半導体膜は、種結晶として機能する膜厚5nmの酸化物半導体膜上
に膜厚30nmの酸化物半導体膜を積層して、c軸が配向した結晶性を有する領域が形成
されるように加熱処理を行って形成される。サンプルMの酸化物半導体膜は、膜厚25n
mの酸化物半導体膜に加熱処理を行って形成される。
る酸化物半導体膜はスパッタリング法を用いて成膜し、成膜ターゲットとして、In2O
3:Ga2O3:ZnO=1:1:2[mol数比]の組成比を有するものを用いた。他
の成膜条件は、成膜時の基板温度200℃、成膜ガス流量の割合を酸素ガス50%、アル
ゴンガス50%とし、圧力0.6Pa、基板−ターゲット間距離100mm、直流(DC
)電源5kW、膜厚5nmとした。成膜後、窒素雰囲気下で加熱温度450℃、加熱時間
1時間で加熱処理を行い、種結晶として機能する酸化物半導体膜の結晶化を行った。それ
から、種結晶として機能する酸化物半導体膜上に、スパッタリング法を用いて膜厚30n
mの酸化物半導体膜を、種結晶として機能する酸化物半導体膜と同じ成膜条件で成膜し、
オーブンを用いて窒素雰囲気下で加熱温度450℃、加熱時間1時間で加熱処理を行い、
さらに窒素と酸素の混合雰囲気下で加熱温度450℃、加熱時間1時間で加熱処理を行っ
て、c軸が配向した結晶性を有する領域が形成された酸化物半導体膜を成膜した。
トとして、In2O3:Ga2O3:ZnO=1:1:2[mol数比]の組成比を有す
るものを用いた。他の成膜条件は、成膜時の基板温度200℃、成膜ガス流量の割合を酸
素ガス50%、アルゴンガス50%とし、圧力0.6Pa、基板−ターゲット間距離10
0mm、直流(DC)電源5kW、膜厚25nmとした。成膜後、RTA(Rapid
Thermal Annealing)法を用いて窒素雰囲気下で加熱温度650℃、加
熱時間6分間で加熱処理を行い、さらにオーブンを用いて窒素と酸素の混合雰囲気下で加
熱温度450℃、加熱時間1時間で加熱処理を行って、c軸が配向した結晶性を有する領
域が形成されていない酸化物半導体膜を成膜した。
、スパッタリング法を用いて成膜し、当該導電膜を選択的にエッチングしてソース電極お
よびドレイン電極を形成した。それから第1の層間絶縁膜として膜厚400nmの酸化シ
リコン膜を成膜した。さらに、第2の層間絶縁膜として膜厚1.5μmのアクリル樹脂か
らなる絶縁膜を成膜した。最後に窒素雰囲気下で加熱温度250℃、加熱時間1時間で加
熱処理を行って、サンプルLおよびサンプルMを作製した。
してストレスを与え、ストレス時間に応じてサンプルLおよびサンプルMのId−Vg特
性を測定し、ストレスを与える前後のしきい値電圧の変化量を求めた。
0.1V、ソース電圧を0Vとし、照射光の照度を36000(lx)とした。ストレス
時間は、100秒、300秒、600秒、1000秒、1800秒、3600秒、720
0秒、10000秒、18000秒、43200秒(12時間)としてサンプルLおよび
サンプルMのId−Vg特性の測定を行った。Id−Vg特性を測定する際は、ドレイン
電圧を+10Vとして、ゲート電圧を−10Vから+10Vの範囲で掃引し、他の条件は
ストレスを与えているときと同様にした。
に示すグラフは、縦軸にしきい値電圧の変化量ΔVth(V)をとり、横軸にストレス時
間(sec)をとる。
に対して、サンプルMのしきい値電圧の変化量ΔVthの変動は最大で−2V程度もあり
、サンプルLのしきい値電圧の変化量ΔVthはサンプルMの約半分に低減されている。
用いたトランジスタは、光照射やゲート電圧のストレスに対してより安定した電気的特性
を有し、信頼性が向上していることが示された。
本項目では、先の実施の形態に従って酸化物半導体膜を用いたトランジスタを作製し、
当該トランジスタに光応答欠陥評価法を用いて酸化物半導体膜の光照射に対する安定性を
評価した結果について説明する。
よびサンプルOを用いて光応答欠陥評価法を行った。光応答欠陥評価法とは、半導体膜に
光照射を行うことにより流れる電流(光電流)の緩和を測定し、光電流の緩和のグラフを
指数関数の線形結合で表される式でフィッティングして緩和時間τを求め、緩和時間τか
ら当該半導体膜中の欠陥を評価する方法である。
>τ1)を用いて、電流IDを2項の指数関数の線形結合で表すと、以下の式となる。
射し、照射光を止めて3000秒光電流の緩和を測定した。照射光は、波長400nm、
強度3.5mW/cm2とし、サンプルNおよびサンプルOのゲート電極およびソース電
極は0Vに固定し、ドレイン電極に0.1Vの微小電圧を印加して光電流の電流値を測定
した。なお、サンプルNおよびサンプルOのチャネル長Lとチャネル幅Wは、L/W=3
0μm/10000μmとした。
おける光電流の変化のグラフを示す。図26(A)および図26(B)に示すグラフは、
縦軸に光電流IDをとり、横軸に経過時間t(sec)をとる。また、図26(A)およ
び図26(B)に示すグラフを指数関数の線形結合で表される式でフィッティングすると
、以下の式で表される。
物半導体膜を有するサンプルNの方がサンプルOより、光電流の最大値が小さく、緩和時
間τ1と緩和時間τ2も短かった。ここで、サンプルNの光電流の最大値Imaxは6.
2×10−11Aであり、緩和時間τ1は0.3秒、緩和時間τ2は39秒であった。そ
れに対して、サンプルOの光電流の最大値Imaxは8.0×10−9Aであり、緩和時
間τ1は3.9秒、緩和時間τ2は98秒であった。
合により、光電流IDの緩和をフィッティングできることが示された。これは、サンプル
N、サンプルOともに光電流IDの緩和は、2種類以上の緩和過程を有することを示唆し
ている。これは、図5(A)および図5(B)に示す、2種類の再結合モデルによる光電
流の緩和過程と符合する。つまり、先の実施の形態で図5で示したバンド図のように、酸
化物半導体のバンドギャップ中にトラップ準位が存在することが示唆されている。
方が、サンプルOより緩和時間τ1および緩和時間τ2も短くなった。これは、図5(A
)および図5(B)に示す再結合モデルにおいて、酸素欠陥に起因するトラップ準位がサ
ンプルNの方が少なくなったことを示唆している。つまり、c軸が配向した結晶性を有す
る領域が含まれることにより、トラップ準位として機能しうる酸化物半導体膜中の欠陥が
減少されたためであると考えることができる。
より、光照射に対してより安定な構造を取るようになることが分かった。よって、このよ
うな酸化物半導体膜をトランジスタに用いることで安定した電気的特性を有する、信頼性
の高いトランジスタを提供することができる。
本項目では、先の実施の形態に従って酸化物半導体膜を作製し、当該酸化物半導体膜を
TDS(Thermal Desorption Spectroscopy)分析を用
いて評価した結果について説明する。
の基板温度が室温のサンプルP1と、成膜時の基板温度100℃のサンプルP2と、成膜
時の基板温度200℃のサンプルP3と、成膜時の基板温度300℃のサンプルP4と、
成膜時の基板温度400℃のサンプルP5を作製した。ここで、サンプルP1、サンプル
P2およびサンプルP3は、c軸が配向した結晶性を有する領域を含まない酸化物半導体
膜であり、サンプルP4およびサンプルP5は、c軸が配向した結晶性を有する領域を含
む酸化物半導体膜である。酸化物半導体膜の成膜ターゲットは、In2O3:Ga2O3
:ZnO=1:1:2[mol数比]の組成比を有するものを用いた。他の成膜条件は、
成膜ガス流量をアルゴンガス30sccmおよび酸素ガス15sccmとし、圧力0.4
Pa、基板−ターゲット間距離60mm、高周波(RF)電源0.5kW、膜厚50nm
とした。なお、石英基板については、TDS分析時に基板からの脱離ガスの要因を低減す
るために、予め乾燥雰囲気で850℃の熱処理を行った。
全体から発生するガス成分を四重極質量分析計(QMS:Quardrupole Ma
ss Spectrometer)で検出する分析手法である。検出されるガス成分はM
/z(質量/電荷)で区別され、質量スペクトルとして検出される。
測定条件は、SEM電圧1500V、基板表面温度は室温から400℃、真空度1.5×
10−7Pa以下、Dwell Time0.2(sec/U)、昇温レート30(℃/
min)として、H2Oに相当するM/z=18の質量スペクトルを検出した。
示す。図27に示すグラフは、縦軸に脱離水分子量(M/z=18)[molecule
s/cm3](counts)をとり、横軸に成膜時の基板温度(℃)をとる。ここで、
脱離水分子量とは、M/z=18の質量スペクトルの昇温温度300℃近傍の積分値を取
ることで求められる量であり、酸化物半導体膜中から脱離する水分子量である。なお、M
/z=18の質量スペクトルは、昇温温度100℃近傍にもピークが存在するが、これは
酸化物半導体膜の表面に吸着した水分量と考えられるので、脱離水分子量としてカウント
していない。
子量が少なくなることが分かる。よって、成膜時の基板温度を上昇させる、つまり、酸化
物半導体膜中にc軸が配向した結晶性を有する領域を形成することにより、当該酸化物半
導体膜中に含まれる、H2O(水)分子に代表される、H(水素原子)を含む分子やイオ
ンを低減できるということができる。
より、酸化物半導体膜中でキャリアの供給源となりうるH2O(水)分子に代表される、
H(水素原子)を含む分子やイオンなどの不純物を低減することができる。これにより、
酸化物半導体膜の電気伝導度が変化することを防ぎ、当該酸化物半導体膜を用いたトラン
ジスタの信頼性を向上させることができる。
本項目では、先の実施の形態に従って酸化物半導体膜を作製し、当該酸化物半導体膜を
二次イオン質量分析(SIMS:Secondary Ion Mass Spectr
ometry)を用いて評価した結果について説明する。
の基板温度が室温のサンプルQ1乃至サンプルQ7と、成膜時の基板温度400℃のサン
プルR1乃至サンプルR7を作製した。ここで、サンプルQ1乃至サンプルQ7は、c軸
が配向した結晶性を有する領域を含まない酸化物半導体膜であり、サンプルR1乃至サン
プルR7は、c軸が配向した結晶性を有する領域を含む酸化物半導体膜である。酸化物半
導体膜の成膜ターゲットは、In2O3:Ga2O3:ZnO=1:1:2[mol数比
]の組成比を有するものを用いた。他の成膜条件は、成膜ガス流量をアルゴンガス30s
ccmおよび酸素ガス15sccmとし、圧力0.4Pa、基板−ターゲット間距離60
mm、高周波(RF)電源0.5kW、膜厚300nmとした。なお、石英基板について
は、予め窒素雰囲気で1時間、850℃の熱処理を行った。
酸化物半導体膜の成膜後、当該酸化物半導体膜を成膜した石英基板に加熱処理を行った。
加熱処理は、窒素雰囲気で所定の温度まで昇温し、酸素雰囲気に切り替えて所定の温度を
1時間保持し、それから酸素雰囲気で降温した。所定の温度は、サンプルQ2およびサン
プルR2は200℃、サンプルQ3およびサンプルR3は250℃、サンプルQ4および
サンプルR4は350℃、サンプルQ5およびサンプルR5は450℃、サンプルQ6お
よびサンプルR6は550℃、サンプルQ7およびサンプルR7は650℃とする。この
ようにして、酸化物半導体膜を石英基板上に成膜した、サンプルQ1乃至サンプルQ7、
サンプルR1乃至サンプルR7を作製した。
R7について、SIMS分析を行った。サンプルQ1乃至サンプルQ7のSIMS分析を
行った結果を図28(A)に、サンプルR1乃至サンプルR7のSIMS分析を行った結
果を図28(B)のグラフに示す。図28(A)および図28(B)のグラフの縦軸に水
素(H)の濃度(atoms/cm3)をとり、横軸に酸化物半導体膜表面からの酸化物
半導体膜および石英基板の深さ(nm)をとっている。
半導体膜中の水素濃度はほぼ同等であるが、サンプルR2乃至サンプルR7の酸化物半導
体膜中の水素濃度はサンプルQ2乃至サンプルQ7よりも低減されている傾向がある。こ
れは、酸化物半導体成膜時の基板温度が高い方が、後の加熱処理の際の水素の混入が起こ
りにくいことを示している。特に、サンプルQ3乃至サンプルQ5のグラフを見ると、加
熱処理の温度上昇に合わせて、酸化物半導体膜の表面側から水素が侵入し、酸化物半導体
膜の奧まで水素濃度が高い層が広がり、さらに温度を上げると酸化物半導体膜の表面側か
ら水素が脱離している様子が分かる。このように、酸化物半導体膜中にc軸が配向した結
晶性を有する領域を形成されない場合、加熱処理による水素の混入や脱離が起こる。しか
し、酸化物半導体膜中にc軸が配向した結晶性を有する領域を形成した、サンプルR2乃
至サンプルR7ではこのような挙動は見られない。
た結晶性を有する領域を形成することにより、酸化物半導体膜中から水素が結合しやすい
ダングリングボンドなどが低減されているためだと考えることができる。
た結晶性を有する領域を形成することにより、酸化物半導体膜中でキャリアの供給源とな
りうる水素が加熱処理により増大することを防ぐことができる。これにより、酸化物半導
体膜の電気伝導度が変化することを抑制し、当該酸化物半導体膜を用いたトランジスタの
信頼性を向上させることができる。
12 In原子
13 Ga原子
14 Zn原子
15 O原子
31 処理室
33 排気手段
35 ガス供給手段
37 電源装置
40 基板支持体
41 ターゲット
43 イオン
45 原子
47 原子
51 基板
53 下地絶縁膜
55 酸化物半導体膜
56 酸化物半導体膜
59 酸化物半導体膜
63 ゲート絶縁膜
65 ゲート電極
69 絶縁膜
120 トランジスタ
130 トランジスタ
140 トランジスタ
150 トランジスタ
160 トランジスタ
170 トランジスタ
180 トランジスタ
351 基板
353 下地絶縁膜
359 酸化物半導体膜
363 ゲート絶縁膜
365 ゲート電極
369 絶縁膜
371 金属酸化物膜
373 金属酸化物膜
55a 種結晶
55b 酸化物半導体膜
56a 種結晶
56b 酸化物半導体膜
61a ソース電極
61b ドレイン電極
361a ソース電極
361b ドレイン電極
500 基板
501 画素部
502 走査線駆動回路
503 走査線駆動回路
504 信号線駆動回路
510 容量配線
512 ゲート配線
513 ゲート配線
514 ドレイン電極層
516 トランジスタ
517 トランジスタ
518 液晶素子
519 液晶素子
520 画素
521 スイッチング用トランジスタ
522 駆動用トランジスタ
523 容量素子
524 発光素子
525 信号線
526 走査線
527 電源線
528 共通電極
1001 本体
1002 筐体
1004 キーボードボタン
1021 本体
1022 固定部
1023 表示部
1024 操作ボタン
1025 外部メモリスロット
1030 筐体
1031 筐体
1032 表示パネル
1033 スピーカー
1034 マイクロフォン
1035 操作キー
1036 ポインティングデバイス
1037 カメラ用レンズ
1038 外部接続端子
1040 太陽電池セル
1041 外部メモリスロット
1050 テレビジョン装置
1051 筐体
1052 記憶媒体再生録画部
1053 表示部
1054 外部接続端子
1055 スタンド
1056 外部メモリ
1003a 表示部
1003b 表示部
Claims (2)
- 酸化物半導体膜と、
前記酸化物半導体膜上の第2の金属酸化物膜と、
前記第2の金属酸化物膜上のゲート絶縁膜と、
前記ゲート絶縁膜上のゲート電極と、
前記酸化物半導体膜と前記第2の金属酸化物膜との間のソース電極と、
前記酸化物半導体膜と前記第2の金属酸化物膜との間のドレイン電極と、を有し、
前記酸化物半導体膜は、インジウムと、ガリウムと、亜鉛とを有し、
前記酸化物半導体膜は、c軸配向した結晶を有し、
前記ソース電極のチャネル長方向の両端部は、前記第2の金属酸化物膜によって覆われ、
前記ドレイン電極のチャネル長方向の両端部は、前記第2の金属酸化物膜によって覆われ、
前記第2の金属酸化物膜は、ガリウムと亜鉛とを有し、インジウムは有さず、
前記第2の金属酸化物膜は、酸化ガリウムに対する酸化亜鉛の物質量が50%未満であることを特徴とする半導体装置。 - 第1の金属酸化物膜と、
前記第1の金属酸化物膜上の酸化物半導体膜と、
前記酸化物半導体膜上の第2の金属酸化物膜と、
前記第2の金属酸化物膜上のゲート絶縁膜と、
前記ゲート絶縁膜上のゲート電極と、
前記酸化物半導体膜と前記第2の金属酸化物膜との間のソース電極と、
前記酸化物半導体膜と前記第2の金属酸化物膜との間のドレイン電極と、を有し、
前記酸化物半導体膜は、インジウムと、ガリウムと、亜鉛とを有し、
前記酸化物半導体膜は、c軸配向した結晶を有し、
前記ソース電極のチャネル長方向の両端部は、前記第2の金属酸化物膜によって覆われ、
前記ドレイン電極のチャネル長方向の両端部は、前記第2の金属酸化物膜によって覆われ、
前記第2の金属酸化物膜は、ガリウムと、亜鉛とを有し、インジウムは有さず、
前記第2の金属酸化物膜は、酸化ガリウムに対する酸化亜鉛の物質量が50%未満であり、
前記第2の金属酸化物膜は、前記第1の金属酸化物膜と接する領域を有することを特徴とする半導体装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010270557 | 2010-12-03 | ||
JP2010270557 | 2010-12-03 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016207185A Division JP2017050553A (ja) | 2010-12-03 | 2016-10-21 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018182343A true JP2018182343A (ja) | 2018-11-15 |
JP6568631B2 JP6568631B2 (ja) | 2019-08-28 |
Family
ID=46161371
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011260854A Withdrawn JP2012134475A (ja) | 2010-12-03 | 2011-11-29 | 酸化物半導体膜および半導体装置 |
JP2012279118A Withdrawn JP2013102171A (ja) | 2010-12-03 | 2012-12-21 | 半導体装置 |
JP2013042839A Active JP5689490B2 (ja) | 2010-12-03 | 2013-03-05 | 酸化物半導体膜 |
JP2013042847A Active JP5897485B2 (ja) | 2010-12-03 | 2013-03-05 | 酸化物半導体膜の作製方法 |
JP2015014005A Active JP6031537B2 (ja) | 2010-12-03 | 2015-01-28 | 酸化物半導体膜 |
JP2016207185A Withdrawn JP2017050553A (ja) | 2010-12-03 | 2016-10-21 | 半導体装置 |
JP2018111334A Withdrawn JP2018170515A (ja) | 2010-12-03 | 2018-06-11 | トランジスタ |
JP2018114242A Withdrawn JP2018139333A (ja) | 2010-12-03 | 2018-06-15 | トランジスタ |
JP2018148182A Active JP6568631B2 (ja) | 2010-12-03 | 2018-08-07 | 半導体装置 |
JP2019218718A Withdrawn JP2020043363A (ja) | 2010-12-03 | 2019-12-03 | トランジスタ |
JP2022083513A Withdrawn JP2022103433A (ja) | 2010-12-03 | 2022-05-23 | 半導体装置 |
JP2023188558A Pending JP2023181500A (ja) | 2010-12-03 | 2023-11-02 | 半導体装置 |
JP2024018534A Pending JP2024045486A (ja) | 2010-12-03 | 2024-02-09 | 酸化物半導体膜及び酸化物半導体膜の作製方法 |
Family Applications Before (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011260854A Withdrawn JP2012134475A (ja) | 2010-12-03 | 2011-11-29 | 酸化物半導体膜および半導体装置 |
JP2012279118A Withdrawn JP2013102171A (ja) | 2010-12-03 | 2012-12-21 | 半導体装置 |
JP2013042839A Active JP5689490B2 (ja) | 2010-12-03 | 2013-03-05 | 酸化物半導体膜 |
JP2013042847A Active JP5897485B2 (ja) | 2010-12-03 | 2013-03-05 | 酸化物半導体膜の作製方法 |
JP2015014005A Active JP6031537B2 (ja) | 2010-12-03 | 2015-01-28 | 酸化物半導体膜 |
JP2016207185A Withdrawn JP2017050553A (ja) | 2010-12-03 | 2016-10-21 | 半導体装置 |
JP2018111334A Withdrawn JP2018170515A (ja) | 2010-12-03 | 2018-06-11 | トランジスタ |
JP2018114242A Withdrawn JP2018139333A (ja) | 2010-12-03 | 2018-06-15 | トランジスタ |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019218718A Withdrawn JP2020043363A (ja) | 2010-12-03 | 2019-12-03 | トランジスタ |
JP2022083513A Withdrawn JP2022103433A (ja) | 2010-12-03 | 2022-05-23 | 半導体装置 |
JP2023188558A Pending JP2023181500A (ja) | 2010-12-03 | 2023-11-02 | 半導体装置 |
JP2024018534A Pending JP2024045486A (ja) | 2010-12-03 | 2024-02-09 | 酸化物半導体膜及び酸化物半導体膜の作製方法 |
Country Status (7)
Country | Link |
---|---|
US (8) | US8669556B2 (ja) |
JP (13) | JP2012134475A (ja) |
KR (9) | KR101457833B1 (ja) |
CN (3) | CN105336791B (ja) |
DE (1) | DE112011104002B4 (ja) |
TW (11) | TWI834109B (ja) |
WO (1) | WO2012073844A1 (ja) |
Families Citing this family (365)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101457833B1 (ko) * | 2010-12-03 | 2014-11-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR102001577B1 (ko) | 2010-12-17 | 2019-07-18 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물 재료 및 반도체 장치 |
US9331206B2 (en) | 2011-04-22 | 2016-05-03 | Semiconductor Energy Laboratory Co., Ltd. | Oxide material and semiconductor device |
US8969154B2 (en) * | 2011-08-23 | 2015-03-03 | Micron Technology, Inc. | Methods for fabricating semiconductor device structures and arrays of vertical transistor devices |
DE112012004061B4 (de) | 2011-09-29 | 2024-06-20 | Semiconductor Energy Laboratory Co., Ltd. | Halbleitervorrichtung |
KR20130040706A (ko) | 2011-10-14 | 2013-04-24 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
DE112012007290B3 (de) | 2011-10-14 | 2017-06-29 | Semiconductor Energy Laboratory Co., Ltd. | Halbleitervorrichtung |
CN103946742B (zh) | 2011-11-18 | 2016-08-31 | 夏普株式会社 | 半导体装置、显示装置和半导体装置的制造方法 |
JP2013149953A (ja) | 2011-12-20 | 2013-08-01 | Semiconductor Energy Lab Co Ltd | 半導体装置及び半導体装置の作製方法 |
WO2013099697A1 (ja) | 2011-12-28 | 2013-07-04 | シャープ株式会社 | アクティブマトリクス基板 |
KR102103913B1 (ko) * | 2012-01-10 | 2020-04-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
CN104040724B (zh) | 2012-01-11 | 2016-11-09 | 夏普株式会社 | 半导体装置、显示装置和半导体装置的制造方法 |
CN104040416B (zh) | 2012-01-11 | 2017-05-17 | 夏普株式会社 | 半导体装置、显示装置和半导体装置的制造方法 |
US9419146B2 (en) | 2012-01-26 | 2016-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
WO2013115052A1 (ja) | 2012-01-31 | 2013-08-08 | シャープ株式会社 | 半導体装置およびその製造方法 |
SG11201404426YA (en) | 2012-01-31 | 2014-11-27 | Sharp Kk | Semiconductor device and method for producing same |
WO2013115051A1 (ja) | 2012-01-31 | 2013-08-08 | シャープ株式会社 | 半導体装置およびその製造方法 |
US9735280B2 (en) * | 2012-03-02 | 2017-08-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film |
US9368523B2 (en) | 2012-03-27 | 2016-06-14 | Sharp Kabushiki Kaisha | Semiconductor device, method for manufacturing semiconductor device, and display device |
WO2013150876A1 (ja) | 2012-04-04 | 2013-10-10 | シャープ株式会社 | 液晶表示装置 |
CN104205341B (zh) | 2012-04-04 | 2017-04-05 | 夏普株式会社 | 半导体器件及其制造方法 |
WO2013151002A1 (ja) | 2012-04-06 | 2013-10-10 | シャープ株式会社 | 半導体装置およびその製造方法 |
US8901556B2 (en) | 2012-04-06 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Insulating film, method for manufacturing semiconductor device, and semiconductor device |
JP6128906B2 (ja) | 2012-04-13 | 2017-05-17 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP6143423B2 (ja) * | 2012-04-16 | 2017-06-07 | 株式会社半導体エネルギー研究所 | 半導体装置の製造方法 |
WO2013157336A1 (ja) | 2012-04-18 | 2013-10-24 | シャープ株式会社 | アクティブマトリクス基板および液晶表示装置 |
US20130320335A1 (en) * | 2012-06-01 | 2013-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
WO2013183495A1 (ja) * | 2012-06-08 | 2013-12-12 | シャープ株式会社 | 半導体装置およびその製造方法 |
KR20140011945A (ko) * | 2012-07-19 | 2014-01-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 스퍼터링용 타깃, 스퍼터링용 타깃의 사용 방법 및 산화물막의 제작 방법 |
JP6022838B2 (ja) * | 2012-07-20 | 2016-11-09 | 株式会社半導体エネルギー研究所 | 酸化物半導体膜の評価方法 |
KR102141977B1 (ko) | 2012-07-20 | 2020-08-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제조 방법 |
JP2014042004A (ja) * | 2012-07-26 | 2014-03-06 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
JP6224931B2 (ja) * | 2012-07-27 | 2017-11-01 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2014021249A1 (ja) * | 2012-08-02 | 2014-02-06 | シャープ株式会社 | 半導体装置およびその製造方法 |
EP2880690B1 (en) * | 2012-08-03 | 2019-02-27 | Semiconductor Energy Laboratory Co. Ltd. | Semiconductor device with oxide semiconductor stacked film |
WO2014024808A1 (en) * | 2012-08-10 | 2014-02-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US9929276B2 (en) | 2012-08-10 | 2018-03-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9245958B2 (en) * | 2012-08-10 | 2016-01-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP6220597B2 (ja) | 2012-08-10 | 2017-10-25 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN104584229B (zh) * | 2012-08-10 | 2018-05-15 | 株式会社半导体能源研究所 | 半导体装置及其制造方法 |
JP5654648B2 (ja) * | 2012-08-10 | 2015-01-14 | 株式会社半導体エネルギー研究所 | 金属酸化物膜 |
KR20140026257A (ko) * | 2012-08-23 | 2014-03-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 |
WO2014042116A1 (ja) | 2012-09-11 | 2014-03-20 | シャープ株式会社 | 半導体装置および表示装置 |
US9224869B2 (en) | 2012-09-12 | 2015-12-29 | Sharp Kabushiki Kaisha | Semiconductor device and method for manufacturing same |
EP2897124B1 (en) | 2012-09-13 | 2019-02-06 | Sharp Kabushiki Kaisha | Liquid crystal display device |
KR101680500B1 (ko) | 2012-09-13 | 2016-11-28 | 샤프 가부시키가이샤 | 액정 표시 장치 |
TW202422663A (zh) * | 2012-09-14 | 2024-06-01 | 日商半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
TWI709244B (zh) | 2012-09-24 | 2020-11-01 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
KR102227591B1 (ko) | 2012-10-17 | 2021-03-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP5951442B2 (ja) * | 2012-10-17 | 2016-07-13 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP6033045B2 (ja) * | 2012-10-17 | 2016-11-30 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9166021B2 (en) * | 2012-10-17 | 2015-10-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP6246549B2 (ja) * | 2012-10-17 | 2017-12-13 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP6204145B2 (ja) | 2012-10-23 | 2017-09-27 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2014065343A1 (en) * | 2012-10-24 | 2014-05-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR102279459B1 (ko) * | 2012-10-24 | 2021-07-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
WO2014069260A1 (ja) | 2012-10-29 | 2014-05-08 | シャープ株式会社 | アクティブマトリクス基板および液晶表示装置 |
TWI649794B (zh) * | 2012-11-08 | 2019-02-01 | 日商半導體能源研究所股份有限公司 | 金屬氧化物膜及形成金屬氧化物膜的方法 |
US9263531B2 (en) * | 2012-11-28 | 2016-02-16 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor film, film formation method thereof, and semiconductor device |
US9153649B2 (en) * | 2012-11-30 | 2015-10-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for evaluating semiconductor device |
KR102389073B1 (ko) * | 2012-11-30 | 2022-04-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
CN104813386B (zh) * | 2012-11-30 | 2017-05-31 | 夏普株式会社 | Tft基板 |
TWI624949B (zh) | 2012-11-30 | 2018-05-21 | 半導體能源研究所股份有限公司 | 半導體裝置 |
JP6320009B2 (ja) * | 2012-12-03 | 2018-05-09 | 株式会社半導体エネルギー研究所 | 半導体装置及びその作製方法 |
KR102207028B1 (ko) * | 2012-12-03 | 2021-01-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP2014135478A (ja) * | 2012-12-03 | 2014-07-24 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
KR20140072679A (ko) * | 2012-12-05 | 2014-06-13 | 삼성디스플레이 주식회사 | 박막 트랜지스터 |
KR102241249B1 (ko) | 2012-12-25 | 2021-04-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 저항 소자, 표시 장치, 및 전자기기 |
WO2014103901A1 (en) * | 2012-12-25 | 2014-07-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
KR102211596B1 (ko) * | 2012-12-28 | 2021-02-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
WO2014109221A1 (ja) | 2013-01-10 | 2014-07-17 | シャープ株式会社 | アクティブマトリクス基板、表示装置、表示装置の欠陥修正方法および表示装置の製造方法 |
WO2014109259A1 (ja) | 2013-01-11 | 2014-07-17 | シャープ株式会社 | 表示パネル |
US9391096B2 (en) * | 2013-01-18 | 2016-07-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
TWI614813B (zh) | 2013-01-21 | 2018-02-11 | 半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
US8981374B2 (en) * | 2013-01-30 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9190527B2 (en) * | 2013-02-13 | 2015-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of semiconductor device |
JP6329779B2 (ja) * | 2013-02-25 | 2018-05-23 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP6141777B2 (ja) * | 2013-02-28 | 2017-06-07 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP6250883B2 (ja) * | 2013-03-01 | 2017-12-20 | 株式会社半導体エネルギー研究所 | 半導体装置 |
KR102153110B1 (ko) * | 2013-03-06 | 2020-09-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체막 및 반도체 장치 |
JP6298657B2 (ja) * | 2013-03-07 | 2018-03-20 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN105027296B (zh) | 2013-03-07 | 2018-11-06 | 夏普株式会社 | 半导体装置及其制造方法 |
JP6199581B2 (ja) * | 2013-03-08 | 2017-09-20 | 株式会社半導体エネルギー研究所 | 金属酸化物膜、及び半導体装置 |
TWI644433B (zh) | 2013-03-13 | 2018-12-11 | 半導體能源研究所股份有限公司 | 半導體裝置 |
US9577107B2 (en) * | 2013-03-19 | 2017-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor film and method for forming oxide semiconductor film |
US9153650B2 (en) | 2013-03-19 | 2015-10-06 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor |
US9368636B2 (en) * | 2013-04-01 | 2016-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers |
US10304859B2 (en) * | 2013-04-12 | 2019-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having an oxide film on an oxide semiconductor film |
TWI620324B (zh) * | 2013-04-12 | 2018-04-01 | 半導體能源研究所股份有限公司 | 半導體裝置 |
US9953563B2 (en) | 2013-04-23 | 2018-04-24 | Sharp Kabushiki Kaisha | Display device and drive current detection method for same |
JP6198818B2 (ja) * | 2013-04-23 | 2017-09-20 | シャープ株式会社 | 液晶表示装置 |
CN105143971B (zh) | 2013-04-24 | 2018-09-25 | 夏普株式会社 | 光学装置和具有它的显示装置 |
WO2014174902A1 (ja) | 2013-04-25 | 2014-10-30 | シャープ株式会社 | 半導体装置および半導体装置の製造方法 |
CN105144276B (zh) | 2013-04-25 | 2017-12-19 | 夏普株式会社 | 显示装置及其驱动方法 |
KR102222344B1 (ko) * | 2013-05-02 | 2021-03-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
WO2014185122A1 (ja) | 2013-05-15 | 2014-11-20 | シャープ株式会社 | 液晶表示装置 |
US9312392B2 (en) * | 2013-05-16 | 2016-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR102442752B1 (ko) * | 2013-05-20 | 2022-09-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
DE102014019794B4 (de) | 2013-05-20 | 2024-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Halbleitervorrichtung |
KR20160009626A (ko) * | 2013-05-21 | 2016-01-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물 반도체막 및 그 형성 방법 |
US10013921B2 (en) | 2013-05-22 | 2018-07-03 | Sharp Kabushiki Kaisha | Display apparatus and display control circuit |
US9806198B2 (en) * | 2013-06-05 | 2017-10-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP6400336B2 (ja) | 2013-06-05 | 2018-10-03 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2014199677A1 (ja) * | 2013-06-10 | 2014-12-18 | シャープ株式会社 | 表示装置 |
TWI652822B (zh) | 2013-06-19 | 2019-03-01 | 日商半導體能源研究所股份有限公司 | 氧化物半導體膜及其形成方法 |
US9837016B2 (en) | 2013-06-27 | 2017-12-05 | Sharp Kabushiki Kaisha | Display device and drive method therefor |
JP6138254B2 (ja) | 2013-06-27 | 2017-05-31 | シャープ株式会社 | 表示装置およびその駆動方法 |
US20150001533A1 (en) * | 2013-06-28 | 2015-01-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
CN105340021B (zh) | 2013-06-28 | 2019-09-27 | 夏普株式会社 | 单位移位寄存器电路、移位寄存器电路、单位移位寄存器电路的控制方法和显示装置 |
JP6322503B2 (ja) * | 2013-07-16 | 2018-05-09 | 株式会社半導体エネルギー研究所 | 半導体装置 |
TWI608523B (zh) | 2013-07-19 | 2017-12-11 | 半導體能源研究所股份有限公司 | Oxide semiconductor film, method of manufacturing oxide semiconductor film, and semiconductor device |
US9798174B2 (en) | 2013-07-26 | 2017-10-24 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus |
JP6129318B2 (ja) | 2013-07-30 | 2017-05-17 | シャープ株式会社 | 表示装置およびその駆動方法 |
US9496330B2 (en) | 2013-08-02 | 2016-11-15 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor film and semiconductor device |
JP6235021B2 (ja) * | 2013-08-07 | 2017-11-22 | シャープ株式会社 | 半導体装置、表示装置および半導体装置の製造方法 |
US9299855B2 (en) | 2013-08-09 | 2016-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having dual gate insulating layers |
JP2015041388A (ja) * | 2013-08-20 | 2015-03-02 | 株式会社半導体エネルギー研究所 | 記憶装置、及び半導体装置 |
US9443987B2 (en) | 2013-08-23 | 2016-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9911390B2 (en) | 2013-09-05 | 2018-03-06 | Sharp Kabushiki Kaisha | Liquid crystal display device |
TWI646690B (zh) | 2013-09-13 | 2019-01-01 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
JP2015079946A (ja) * | 2013-09-13 | 2015-04-23 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US9397153B2 (en) | 2013-09-23 | 2016-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP6383616B2 (ja) * | 2013-09-25 | 2018-08-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN103489828B (zh) * | 2013-09-30 | 2015-07-01 | 深圳市华星光电技术有限公司 | 薄膜晶体管阵列基板的制造方法 |
JP6101357B2 (ja) | 2013-10-09 | 2017-03-22 | シャープ株式会社 | 半導体装置およびその製造方法 |
TWI741298B (zh) | 2013-10-10 | 2021-10-01 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
WO2015053010A1 (ja) | 2013-10-11 | 2015-04-16 | シャープ株式会社 | 半導体装置 |
US9502133B2 (en) | 2013-10-11 | 2016-11-22 | Sharp Kabushiki Kaisha | Semiconductor device |
CN105659311B (zh) | 2013-10-21 | 2018-01-23 | 夏普株式会社 | 显示装置 |
CN105706158B (zh) | 2013-11-05 | 2018-11-06 | 夏普株式会社 | 显示装置及其驱动方法 |
JP6034980B2 (ja) | 2013-11-18 | 2016-11-30 | シャープ株式会社 | 半導体装置 |
US9859016B2 (en) * | 2013-11-25 | 2018-01-02 | Sharp Kabushiki Kaisha | Semiconductor device and method for writing thereto |
US10269831B2 (en) | 2013-11-26 | 2019-04-23 | Sharp Kabushiki Kaisha | Semiconductor device including a plurality of thin-film transistors with one thin-film transistor including two gate electrodes |
WO2015083639A1 (ja) * | 2013-12-02 | 2015-06-11 | シャープ株式会社 | 液晶パネルおよびそれに用いられるアクティブマトリクス基板 |
CN105814481B (zh) | 2013-12-10 | 2018-09-18 | 夏普株式会社 | 半导体装置及其制造方法 |
TWI642186B (zh) | 2013-12-18 | 2018-11-21 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
TWI666770B (zh) | 2013-12-19 | 2019-07-21 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
JP6169191B2 (ja) | 2013-12-20 | 2017-07-26 | シャープ株式会社 | 表示装置およびその駆動方法 |
US9379192B2 (en) * | 2013-12-20 | 2016-06-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9722049B2 (en) * | 2013-12-23 | 2017-08-01 | Intermolecular, Inc. | Methods for forming crystalline IGZO with a seed layer |
WO2015097586A1 (en) * | 2013-12-25 | 2015-07-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9401432B2 (en) * | 2014-01-16 | 2016-07-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
WO2015114476A1 (en) * | 2014-01-28 | 2015-08-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP6523695B2 (ja) | 2014-02-05 | 2019-06-05 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US10012883B2 (en) | 2014-02-10 | 2018-07-03 | Sharp Kabushiki Kaisha | Semiconductor device including a silicon nitride dielectric layer and method for producing same |
CN105993077B (zh) | 2014-02-14 | 2019-12-06 | 夏普株式会社 | 有源矩阵基板 |
KR102317297B1 (ko) | 2014-02-19 | 2021-10-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물, 반도체 장치, 모듈, 및 전자 장치 |
WO2015125685A1 (ja) * | 2014-02-21 | 2015-08-27 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
WO2015133469A1 (ja) * | 2014-03-05 | 2015-09-11 | シャープ株式会社 | 液晶表示装置 |
WO2015137337A1 (ja) | 2014-03-11 | 2015-09-17 | シャープ株式会社 | 半導体装置およびその製造方法 |
US10193101B2 (en) | 2014-03-26 | 2019-01-29 | Sharp Kabushiki Kaisha | Electronic device |
US10062326B2 (en) | 2014-03-31 | 2018-08-28 | Sharp Kabushiki Kaisha | Display device and method for driving same |
JP6186077B2 (ja) | 2014-04-16 | 2017-08-23 | シャープ株式会社 | 液晶表示パネルおよびその製造方法 |
WO2015163288A1 (ja) * | 2014-04-21 | 2015-10-29 | シャープ株式会社 | 光検出装置 |
US10073306B2 (en) | 2014-04-25 | 2018-09-11 | Sharp Kabushiki Kaisha | LCD device |
JP6537341B2 (ja) * | 2014-05-07 | 2019-07-03 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN103996717B (zh) * | 2014-05-07 | 2015-08-26 | 京东方科技集团股份有限公司 | 薄膜晶体管及其制作方法、显示基板和显示装置 |
CN106415801B (zh) | 2014-06-03 | 2019-12-13 | 夏普株式会社 | 半导体装置及其制造方法 |
WO2015186657A1 (ja) * | 2014-06-06 | 2015-12-10 | シャープ株式会社 | 半導体装置およびその製造方法 |
KR102437450B1 (ko) | 2014-06-13 | 2022-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 및 반도체 장치를 포함하는 전자 기기 |
CN106415701B (zh) | 2014-06-23 | 2018-01-02 | 夏普株式会社 | 显示装置及其驱动方法 |
WO2015198957A1 (ja) | 2014-06-25 | 2015-12-30 | シャープ株式会社 | 表示装置およびその駆動方法 |
US10339866B2 (en) | 2014-07-15 | 2019-07-02 | Sharp Kabushiki Kaisha | Display device and driving method therefor |
WO2016031659A1 (ja) | 2014-08-26 | 2016-03-03 | シャープ株式会社 | 表示装置およびその駆動方法 |
CN106796367B (zh) | 2014-09-05 | 2020-10-09 | 夏普株式会社 | 液晶显示面板 |
CN107078165B (zh) | 2014-09-10 | 2020-10-02 | 夏普株式会社 | 半导体装置、液晶显示装置和半导体装置的制造方法 |
CN106716519B (zh) | 2014-09-17 | 2019-11-01 | 夏普株式会社 | 显示装置及其驱动方法 |
KR20160034200A (ko) | 2014-09-19 | 2016-03-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 제작 방법 |
WO2016056452A1 (ja) | 2014-10-08 | 2016-04-14 | シャープ株式会社 | 半導体装置およびその製造方法 |
US9991393B2 (en) * | 2014-10-16 | 2018-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, module, and electronic device |
TWI652362B (zh) | 2014-10-28 | 2019-03-01 | 日商半導體能源研究所股份有限公司 | 氧化物及其製造方法 |
TWI581317B (zh) * | 2014-11-14 | 2017-05-01 | 群創光電股份有限公司 | 薄膜電晶體基板及具備該薄膜電晶體基板之顯示面板 |
CN105655344B (zh) * | 2014-11-14 | 2019-02-05 | 群创光电股份有限公司 | 薄膜晶体管基板及具备该薄膜晶体管基板的显示面板 |
WO2016084700A1 (ja) | 2014-11-28 | 2016-06-02 | シャープ株式会社 | 半導体装置およびその製造方法 |
WO2016084699A1 (ja) | 2014-11-28 | 2016-06-02 | シャープ株式会社 | 半導体装置およびその製造方法 |
US10164118B2 (en) | 2014-11-28 | 2018-12-25 | Sharp Kabushiki Kaisha | Semiconductor device and method for producing same |
JP6427595B2 (ja) | 2014-11-28 | 2018-11-21 | シャープ株式会社 | 半導体装置およびその製造方法 |
JP6647841B2 (ja) | 2014-12-01 | 2020-02-14 | 株式会社半導体エネルギー研究所 | 酸化物の作製方法 |
US10255865B2 (en) | 2014-12-05 | 2019-04-09 | Sharp Kabushiki Kaisha | Data processing device connected with display device and control method of display device |
WO2016098651A1 (ja) | 2014-12-16 | 2016-06-23 | シャープ株式会社 | 半導体装置、その製造方法、および半導体装置を備えた表示装置 |
WO2016104253A1 (ja) | 2014-12-25 | 2016-06-30 | シャープ株式会社 | 半導体装置 |
US10396210B2 (en) | 2014-12-26 | 2019-08-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with stacked metal oxide and oxide semiconductor layers and display device including the semiconductor device |
CN107111179B (zh) | 2014-12-26 | 2020-10-23 | 夏普株式会社 | 显示装置 |
US9633710B2 (en) | 2015-01-23 | 2017-04-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for operating semiconductor device |
WO2016128854A1 (en) | 2015-02-12 | 2016-08-18 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor film and semiconductor device |
WO2016136528A1 (ja) | 2015-02-23 | 2016-09-01 | シャープ株式会社 | シフトレジスタ回路およびそれを備えた表示装置 |
JP6705663B2 (ja) * | 2015-03-06 | 2020-06-03 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
CN107407838B (zh) | 2015-03-19 | 2020-10-09 | 夏普株式会社 | 液晶显示面板 |
CN107533825B (zh) | 2015-04-02 | 2020-05-01 | 夏普株式会社 | 显示装置 |
US10386692B2 (en) | 2015-04-28 | 2019-08-20 | Sharp Kabushiki Kaisha | Electrophoretic element and display device |
WO2016175127A1 (ja) | 2015-04-28 | 2016-11-03 | シャープ株式会社 | 電気泳動素子および表示装置 |
CN104916703B (zh) * | 2015-05-07 | 2018-07-31 | 京东方科技集团股份有限公司 | 一种氧化物薄膜晶体管、阵列基板和显示装置 |
WO2016190186A1 (ja) | 2015-05-25 | 2016-12-01 | シャープ株式会社 | シフトレジスタ回路 |
JP2016225573A (ja) * | 2015-06-03 | 2016-12-28 | 株式会社東芝 | 基板処理装置および基板処理方法 |
CN107636841B (zh) | 2015-06-05 | 2020-10-09 | 夏普株式会社 | 有源矩阵基板及其制造方法和使用有源矩阵基板的显示装置 |
US10197874B2 (en) | 2015-06-30 | 2019-02-05 | Sharp Kabushiki Kaisha | Liquid crystal display device |
WO2017018241A1 (ja) | 2015-07-24 | 2017-02-02 | シャープ株式会社 | 表示装置およびその駆動方法 |
US10283645B2 (en) | 2015-07-27 | 2019-05-07 | Sharp Kabushiki Kaisha | Semiconductor device and method for manufacturing same |
US20170062192A1 (en) * | 2015-08-28 | 2017-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Film forming apparatus |
WO2017051791A1 (ja) | 2015-09-24 | 2017-03-30 | シャープ株式会社 | 半導体装置およびその製造方法 |
WO2017061526A1 (ja) | 2015-10-09 | 2017-04-13 | シャープ株式会社 | 走査アンテナおよびその駆動方法 |
JP6139043B1 (ja) | 2015-10-09 | 2017-05-31 | シャープ株式会社 | Tft基板、それを用いた走査アンテナ、およびtft基板の製造方法 |
US10297694B2 (en) | 2015-10-14 | 2019-05-21 | Sharp Kabushiki Kaisha | Semiconductor device and method for manufacturing same |
WO2017065097A1 (ja) | 2015-10-15 | 2017-04-20 | シャープ株式会社 | 走査アンテナおよびその製造方法 |
JP6500120B2 (ja) | 2015-10-15 | 2019-04-10 | シャープ株式会社 | 走査アンテナおよびその製造方法 |
US10153550B2 (en) | 2015-10-15 | 2018-12-11 | Sharp Kabushiki Kaisha | Scanning antenna comprising a liquid crystal layer and method for manufacturing the same |
US10657917B2 (en) | 2015-10-19 | 2020-05-19 | Sharp Kabushiki Kaisha | Shift register and display device including same |
CN108140354B (zh) | 2015-10-22 | 2020-09-11 | 夏普株式会社 | 液晶显示面板及其修正方法 |
CN108140353B (zh) | 2015-10-22 | 2020-09-01 | 夏普株式会社 | 液晶显示面板及其驱动方法 |
CN108292685B (zh) | 2015-11-24 | 2020-10-30 | 夏普株式会社 | 半导体装置和半导体装置的制造方法 |
US10976627B2 (en) | 2015-12-01 | 2021-04-13 | Sharp Kabushiki Kaisha | Active matrix substrate and liquid crystal display panel comprising same |
US10497330B2 (en) | 2015-12-02 | 2019-12-03 | Sharp Kabushiki Kaisha | Display device that performs pause driving |
US20180356660A1 (en) * | 2015-12-09 | 2018-12-13 | Sharp Kabushiki Kaisha | Active matrix substrate and liquid crystal display panel provided with same |
WO2017115672A1 (ja) | 2015-12-28 | 2017-07-06 | シャープ株式会社 | 走査アンテナおよびその製造方法 |
KR20180099725A (ko) | 2015-12-29 | 2018-09-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 금속 산화물막 및 반도체 장치 |
WO2017119338A1 (ja) | 2016-01-04 | 2017-07-13 | シャープ株式会社 | 表示装置 |
JP6568957B2 (ja) | 2016-01-20 | 2019-08-28 | シャープ株式会社 | 液晶表示パネルおよびその製造方法 |
WO2017130776A1 (ja) | 2016-01-27 | 2017-08-03 | シャープ株式会社 | 半導体装置およびその製造方法 |
WO2017130475A1 (ja) | 2016-01-29 | 2017-08-03 | シャープ株式会社 | 走査アンテナ |
CN107408759B (zh) | 2016-01-29 | 2018-11-09 | 夏普株式会社 | 扫描天线 |
JP6554224B2 (ja) | 2016-02-16 | 2019-07-31 | シャープ株式会社 | 走査アンテナ |
CN109155460B (zh) | 2016-02-19 | 2021-03-09 | 夏普株式会社 | 扫描天线及其制造方法 |
WO2017146058A1 (ja) | 2016-02-22 | 2017-08-31 | シャープ株式会社 | 半導体装置および半導体装置の製造方法 |
CN108713225B (zh) | 2016-03-02 | 2021-04-13 | 夏普株式会社 | 有源矩阵基板以及具备有源矩阵基板的液晶显示装置 |
JP6658864B2 (ja) * | 2016-03-07 | 2020-03-04 | 株式会社リコー | 素子、セル及び発電装置 |
US11081790B2 (en) | 2016-03-11 | 2021-08-03 | Sharp Kabushiki Kaisha | Scanned antenna and method of inspecting scanned antenna |
US10656483B2 (en) | 2016-03-14 | 2020-05-19 | Sharp Kabushiki Kaisha | Semiconductor apparatus and method for manufacturing semiconductor apparatus |
WO2017159625A1 (ja) | 2016-03-15 | 2017-09-21 | シャープ株式会社 | アクティブマトリクス基板 |
US10637141B2 (en) | 2016-03-29 | 2020-04-28 | Sharp Kabushiki Kaisha | Scanning antenna, method for inspecting scanning antenna, and method for manufacturing scanning antenna |
WO2017170219A1 (ja) | 2016-03-31 | 2017-10-05 | シャープ株式会社 | アクティブマトリクス基板、その製造方法および表示装置 |
US10388738B2 (en) | 2016-04-01 | 2019-08-20 | Semiconductor Energy Laboratory Co., Ltd. | Composite oxide semiconductor and method for manufacturing the same |
JP6668455B2 (ja) | 2016-04-01 | 2020-03-18 | 株式会社半導体エネルギー研究所 | 酸化物半導体膜の作製方法 |
JP6618616B2 (ja) | 2016-05-16 | 2019-12-11 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
CN109196716B (zh) | 2016-05-27 | 2021-01-01 | 夏普株式会社 | 扫描天线及扫描天线的制造方法 |
CN109314316B (zh) | 2016-05-30 | 2020-10-23 | 夏普株式会社 | 扫描天线 |
JP6189484B2 (ja) * | 2016-06-08 | 2017-08-30 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN109314145B (zh) | 2016-06-09 | 2021-07-13 | 夏普株式会社 | Tft基板、具备tft基板的扫描天线、以及tft基板的制造方法 |
CN109314317B (zh) | 2016-06-10 | 2020-10-23 | 夏普株式会社 | 扫描天线 |
US20170373194A1 (en) * | 2016-06-27 | 2017-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Transistor |
US20170373195A1 (en) * | 2016-06-27 | 2017-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and semiconductor device |
CN109564944B (zh) | 2016-07-19 | 2021-12-28 | 夏普株式会社 | Tft基板、具备tft基板的扫描天线、以及tft基板的制造方法 |
CN109478727B (zh) | 2016-07-26 | 2021-03-09 | 夏普株式会社 | 扫描天线及扫描天线的制造方法 |
JP6712320B2 (ja) | 2016-07-27 | 2020-06-17 | シャープ株式会社 | 走査アンテナ |
US10770792B2 (en) | 2016-07-28 | 2020-09-08 | Sharp Kabushiki Kaisha | Scanning antenna |
WO2018021247A1 (ja) | 2016-07-29 | 2018-02-01 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
KR102589754B1 (ko) | 2016-08-05 | 2023-10-18 | 삼성디스플레이 주식회사 | 트랜지스터 및 이를 포함하는 표시 장치 |
US10998629B2 (en) | 2016-08-08 | 2021-05-04 | Sharp Kabushiki Kaisha | Scanned antenna |
CN109643848B (zh) | 2016-08-12 | 2021-04-13 | 夏普株式会社 | 扫描天线 |
WO2018030298A1 (ja) | 2016-08-12 | 2018-02-15 | シャープ株式会社 | アクティブマトリクス基板および表示装置 |
CN109643849B (zh) | 2016-08-26 | 2021-03-09 | 夏普株式会社 | 扫描天线 |
WO2018043424A1 (ja) | 2016-09-01 | 2018-03-08 | シャープ株式会社 | アクティブマトリクス基板および表示装置 |
CN109661729A (zh) | 2016-09-02 | 2019-04-19 | 夏普株式会社 | 有源矩阵基板及其制造方法 |
US10777587B2 (en) | 2016-09-02 | 2020-09-15 | Sharp Kabushiki Kaisha | Active matrix substrate and display device provided with active matrix substrate |
CN109661696B (zh) | 2016-09-05 | 2021-04-13 | 夏普株式会社 | 有源矩阵基板及其制造方法 |
WO2018061969A1 (ja) | 2016-09-27 | 2018-04-05 | シャープ株式会社 | 半導体装置およびその製造方法 |
JP6495878B2 (ja) * | 2016-10-13 | 2019-04-03 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2018074324A1 (ja) | 2016-10-19 | 2018-04-26 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
CN109844912B (zh) | 2016-10-19 | 2021-11-02 | 夏普株式会社 | Tft基板 |
TW202224189A (zh) * | 2016-10-21 | 2022-06-16 | 日商半導體能源研究所股份有限公司 | 複合氧化物及電晶體 |
CN109891598B (zh) | 2016-10-27 | 2021-09-28 | 夏普株式会社 | Tft基板、具备tft基板的扫描天线以及tft基板的制造方法 |
WO2018079411A1 (ja) | 2016-10-28 | 2018-05-03 | シャープ株式会社 | 液晶表示装置 |
US10707350B2 (en) | 2016-11-09 | 2020-07-07 | Sharp Kabushiki Kaisha | TFT substrate, scanning antenna provided with TFT substrate, and method for producing TFT substrate |
WO2018101089A1 (ja) | 2016-11-29 | 2018-06-07 | シャープ株式会社 | 液晶装置、液晶装置の残留dc電圧値を求める方法、液晶装置の駆動方法、および液晶装置の製造方法 |
JP6734934B2 (ja) | 2016-12-08 | 2020-08-05 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
CN110050351B (zh) | 2016-12-09 | 2022-06-10 | 夏普株式会社 | Tft基板、具备tft基板的扫描天线以及tft基板的制造方法 |
US10879064B2 (en) | 2016-12-27 | 2020-12-29 | Sharp Kabushiki Kaisha | Method for manufacturing semiconductor device and film forming apparatus |
CN110121785A (zh) | 2016-12-27 | 2019-08-13 | 夏普株式会社 | 具备氧化物半导体tft的半导体装置 |
WO2018123696A1 (ja) | 2016-12-28 | 2018-07-05 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
US11024960B2 (en) | 2017-01-13 | 2021-06-01 | Sharp Kabushiki Kaisha | Scanned antenna and method of manufacturing scanned antenna |
DE112018000567T5 (de) | 2017-01-27 | 2019-10-17 | Sharp Kabushiki Kaisha | Aktivmatrixsubstrat und anzeigevorrichtung, die dieses verwendet |
WO2018143098A1 (ja) | 2017-02-06 | 2018-08-09 | シャープ株式会社 | アクティブマトリクス基板および液晶表示装置 |
WO2018150962A1 (ja) | 2017-02-15 | 2018-08-23 | シャープ株式会社 | アクティブマトリクス基板 |
CN110312962A (zh) | 2017-02-20 | 2019-10-08 | 夏普株式会社 | 有源矩阵基板和液晶显示装置 |
CN110326114B (zh) | 2017-02-28 | 2022-04-22 | 夏普株式会社 | Tft基板、具备tft基板的扫描天线以及tft基板的制造方法 |
CN110392930B (zh) | 2017-03-03 | 2023-06-30 | 夏普株式会社 | Tft基板和具备tft基板的扫描天线 |
WO2018163997A1 (ja) | 2017-03-09 | 2018-09-13 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
WO2018168639A1 (ja) | 2017-03-14 | 2018-09-20 | シャープ株式会社 | 半導体装置およびその製造方法 |
CN110521003B (zh) | 2017-03-27 | 2023-06-09 | 夏普株式会社 | 有源矩阵基板及其制造方法 |
US11107429B2 (en) | 2017-03-27 | 2021-08-31 | Sharp Kabushiki Kaisha | Active matrix substrate, liquid crystal display device, and organic EL display device |
US10818766B2 (en) | 2017-03-30 | 2020-10-27 | Sharp Kabushiki Kaisha | Active matrix substrate and liquid crystal display panel |
WO2018186281A1 (ja) | 2017-04-06 | 2018-10-11 | シャープ株式会社 | Tft基板およびtft基板を備えた走査アンテナ |
US10937812B2 (en) | 2017-04-07 | 2021-03-02 | Sharp Kabushiki Kaisha | TFT substrate, scanning antenna provided with TFT substrate, and method for producing TFT substrate |
WO2018186311A1 (ja) | 2017-04-07 | 2018-10-11 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
US11145268B2 (en) | 2017-04-10 | 2021-10-12 | Sharp Kabushiki Kaisha | Active matrix substrate including setting thin film transistor and resetting thin film transistor and display device including same |
JP6345842B2 (ja) * | 2017-05-02 | 2018-06-20 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11302718B2 (en) | 2017-05-18 | 2022-04-12 | Sharp Kabushiki Kaisha | Active matrix substrate and production method therefor |
WO2018221294A1 (ja) | 2017-05-31 | 2018-12-06 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
CN110709999A (zh) | 2017-05-31 | 2020-01-17 | 夏普株式会社 | Tft基板和具备tft基板的扫描天线 |
JP6844845B2 (ja) | 2017-05-31 | 2021-03-17 | 三国電子有限会社 | 表示装置 |
WO2018225690A1 (ja) | 2017-06-08 | 2018-12-13 | シャープ株式会社 | アクティブマトリクス基板および表示装置 |
US11112628B2 (en) | 2017-06-16 | 2021-09-07 | Sharp Kabushiki Kaisha | Liquid crystal display device including common electrode control circuit |
JP6392955B2 (ja) * | 2017-08-24 | 2018-09-19 | 株式会社半導体エネルギー研究所 | 金属酸化物膜 |
US11749222B2 (en) | 2017-08-29 | 2023-09-05 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
JP2019049590A (ja) | 2017-09-08 | 2019-03-28 | シャープ株式会社 | アクティブマトリクス基板およびデマルチプレクサ回路 |
JP2019050323A (ja) | 2017-09-12 | 2019-03-28 | シャープ株式会社 | アクティブマトリクス基板およびデマルチプレクサ回路 |
JP2019062090A (ja) | 2017-09-27 | 2019-04-18 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
JP6578334B2 (ja) | 2017-09-27 | 2019-09-18 | シャープ株式会社 | Tft基板およびtft基板を備えた走査アンテナ |
JP2019066505A (ja) | 2017-09-28 | 2019-04-25 | シャープ株式会社 | 液晶表示装置 |
JP6684769B2 (ja) | 2017-09-28 | 2020-04-22 | シャープ株式会社 | アクティブマトリクス基板、液晶表示装置、有機el表示装置およびアクティブマトリクス基板の製造方法 |
US10985247B2 (en) * | 2017-10-18 | 2021-04-20 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Layer, multilevel element, method for fabricating multilevel element, and method for driving multilevel element |
EP3640993A1 (en) | 2017-10-18 | 2020-04-22 | IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) | Layer, multilevel element, method for fabricating multilevel element, and method for driving multilevel element |
JP2019087552A (ja) | 2017-11-01 | 2019-06-06 | シャープ株式会社 | 薄膜トランジスタの製造方法、及び、薄膜トランジスタ |
JP2019091794A (ja) | 2017-11-14 | 2019-06-13 | シャープ株式会社 | 半導体装置 |
JP2019091835A (ja) | 2017-11-16 | 2019-06-13 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
JP2019134032A (ja) | 2018-01-30 | 2019-08-08 | シャープ株式会社 | Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 |
JP2019153656A (ja) | 2018-03-02 | 2019-09-12 | シャープ株式会社 | アクティブマトリクス基板およびデマルチプレクサ回路 |
JP6706638B2 (ja) | 2018-03-07 | 2020-06-10 | シャープ株式会社 | 半導体装置およびその製造方法 |
US10756116B2 (en) | 2018-03-20 | 2020-08-25 | Sharp Kabushiki Kaisha | Active matrix substrate having thin film transistors that each include copper gate electrode and oxide semiconductor layer |
JP6757353B2 (ja) | 2018-03-28 | 2020-09-16 | シャープ株式会社 | アクティブマトリクス基板および表示装置 |
JP6757352B2 (ja) | 2018-03-28 | 2020-09-16 | シャープ株式会社 | アクティブマトリクス基板および表示装置 |
WO2019186895A1 (ja) | 2018-03-29 | 2019-10-03 | シャープ株式会社 | 駆動方法、及び、表示装置 |
JP6753885B2 (ja) | 2018-04-16 | 2020-09-09 | シャープ株式会社 | アクティブマトリクス基板、表示装置およびアクティブマトリクス基板の欠陥修正方法 |
DE102019004521A1 (de) | 2018-07-02 | 2020-01-02 | Sharp Kabushiki Kaisha | Aktivmatrixsubstrat und verfahren zur herstellung eines aktivmatrixsubstrats |
JP7190729B2 (ja) | 2018-08-31 | 2022-12-16 | 三国電子有限会社 | キャリア注入量制御電極を有する有機エレクトロルミネセンス素子 |
JP6868069B2 (ja) | 2018-09-19 | 2021-05-12 | シャープ株式会社 | アクティブマトリクス基板およびアクティブマトリクス基板を用いたタッチセンサ付き液晶表示装置 |
JP6804603B2 (ja) | 2018-09-19 | 2020-12-23 | シャープ株式会社 | アクティブマトリクス基板の製造方法、およびアクティブマトリクス基板を用いたタッチセンサ付き液晶表示装置の製造方法 |
JP6799123B2 (ja) | 2018-09-19 | 2020-12-09 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
JP2020053759A (ja) | 2018-09-25 | 2020-04-02 | シャープ株式会社 | 走査アンテナおよびtft基板 |
JP7246681B2 (ja) * | 2018-09-26 | 2023-03-28 | 三国電子有限会社 | トランジスタ及びトランジスタの製造方法、並びにトランジスタを含む表示装置 |
US11848503B2 (en) | 2018-12-12 | 2023-12-19 | Sharp Kabushiki Kaisha | Scanning antenna and method for manufacturing scanning antenna |
WO2020121876A1 (ja) | 2018-12-12 | 2020-06-18 | シャープ株式会社 | 走査アンテナおよび走査アンテナの製造方法 |
KR102265038B1 (ko) * | 2018-12-12 | 2021-06-16 | 한양대학교 산학협력단 | P형 반도체층, p형 멀티레벨 소자, 및 p형 멀티레벨 소자의 제조방법 |
US11177449B2 (en) | 2018-12-12 | 2021-11-16 | Industry-University Cooperation Foundation Hanyang University | P-type semiconductor layer, P-type multilevel element, and manufacturing method for the element |
JP7027572B2 (ja) | 2018-12-12 | 2022-03-01 | シャープ株式会社 | 走査アンテナおよび走査アンテナの製造方法 |
US10921669B2 (en) | 2019-01-18 | 2021-02-16 | Sharp Kabushiki Kaisha | Display device and active matrix substrate |
JP7190740B2 (ja) | 2019-02-22 | 2022-12-16 | 三国電子有限会社 | エレクトロルミネセンス素子を有する表示装置 |
WO2020177056A1 (zh) * | 2019-03-04 | 2020-09-10 | 京东方科技集团股份有限公司 | 薄膜晶体管及薄膜晶体管的制造方法 |
CN111722446B (zh) | 2019-03-22 | 2023-01-31 | 夏普株式会社 | 有源矩阵基板的制造方法 |
JP7284613B2 (ja) | 2019-03-29 | 2023-05-31 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
US11431106B2 (en) | 2019-06-04 | 2022-08-30 | Sharp Kabushiki Kaisha | TFT substrate, method for manufacturing TFT substrate, and scanned antenna |
US10976626B2 (en) | 2019-06-14 | 2021-04-13 | Sharp Kabushiki Kaisha | Display device |
US11314136B2 (en) | 2019-06-28 | 2022-04-26 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
US11327366B2 (en) | 2019-07-26 | 2022-05-10 | Sharp Kabushiki Kaisha | Method for producing liquid crystal display device and electronic apparatus |
CN112305819B (zh) | 2019-07-26 | 2024-04-02 | 夏普株式会社 | 液晶显示装置 |
US11476282B2 (en) | 2019-08-09 | 2022-10-18 | Sharp Kabushiki Kaisha | Active matrix substrate and method for manufacturing same |
CN110797395A (zh) * | 2019-09-18 | 2020-02-14 | 华南理工大学 | 掺杂型金属氧化物半导体及薄膜晶体管与应用 |
CN110767745A (zh) * | 2019-09-18 | 2020-02-07 | 华南理工大学 | 复合金属氧化物半导体及薄膜晶体管与应用 |
US11682681B2 (en) | 2019-10-17 | 2023-06-20 | Sharp Kabushiki Kaisha | Active matrix substrate and method for manufacturing same |
US11379231B2 (en) | 2019-10-25 | 2022-07-05 | Semiconductor Energy Laboratory Co., Ltd. | Data processing system and operation method of data processing system |
US11079636B2 (en) | 2019-10-25 | 2021-08-03 | Sharp Kabushiki Kaisha | Active matrix substrate, liquid crystal display device with touch sensor using active matrix substrate, and method for manufacturing active matrix substrate |
JP7471075B2 (ja) | 2019-12-17 | 2024-04-19 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
JP7299834B2 (ja) | 2019-12-26 | 2023-06-28 | シャープ株式会社 | アクティブマトリクス基板、アクティブマトリクス基板を備えたインセルタッチパネル型液晶表示装置、およびアクティブマトリクス基板の製造方法 |
JP7372832B2 (ja) | 2019-12-26 | 2023-11-01 | シャープ株式会社 | 液晶表示装置およびその製造方法 |
JP7444436B2 (ja) | 2020-02-05 | 2024-03-06 | 三国電子有限会社 | 液晶表示装置 |
US11637132B2 (en) | 2020-02-07 | 2023-04-25 | Sharp Kabushiki Kaisha | Active matrix substrate and method for manufacturing same |
US11557679B2 (en) | 2020-03-02 | 2023-01-17 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
US11631704B2 (en) | 2020-04-21 | 2023-04-18 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
US11502115B2 (en) | 2020-04-21 | 2022-11-15 | Sharp Kabushiki Kaisha | Active matrix substrate and method for manufacturing same |
JP2021192406A (ja) | 2020-06-05 | 2021-12-16 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
JP2022014108A (ja) | 2020-07-06 | 2022-01-19 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
JP2022014107A (ja) | 2020-07-06 | 2022-01-19 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
US12100711B2 (en) | 2020-12-04 | 2024-09-24 | Sharp Kabushiki Kaisha | Active matrix substrate and method for manufacturing same |
US11581340B2 (en) | 2020-12-15 | 2023-02-14 | Sharp Kabushiki Kaisha | Active matrix substrate |
JP2022100714A (ja) | 2020-12-24 | 2022-07-06 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
CN114883340A (zh) | 2021-02-05 | 2022-08-09 | 夏普株式会社 | 有源矩阵基板 |
US12009432B2 (en) * | 2021-03-05 | 2024-06-11 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and display device |
JP2022158302A (ja) | 2021-04-01 | 2022-10-17 | シャープ株式会社 | 液晶表示装置およびその製造方法 |
JP2022167632A (ja) | 2021-04-23 | 2022-11-04 | シャープディスプレイテクノロジー株式会社 | アクティブマトリクス基板、アクティブマトリクス基板の製造方法、およびアクティブマトリクス基板を用いたタッチセンサ付き液晶表示装置 |
JP2022178523A (ja) | 2021-05-20 | 2022-12-02 | シャープディスプレイテクノロジー株式会社 | アクティブマトリクス基板および液晶表示装置 |
JP2023007092A (ja) | 2021-07-01 | 2023-01-18 | シャープディスプレイテクノロジー株式会社 | アクティブマトリクス基板およびその製造方法 |
JP2023038651A (ja) | 2021-09-07 | 2023-03-17 | シャープディスプレイテクノロジー株式会社 | アクティブマトリクス基板および液晶表示装置 |
JP2023076275A (ja) | 2021-11-22 | 2023-06-01 | シャープディスプレイテクノロジー株式会社 | アクティブマトリクス基板および液晶表示装置 |
US11830454B2 (en) | 2022-02-07 | 2023-11-28 | Sharp Display Technology Corporation | Active matrix substrate and display device |
US12078903B2 (en) | 2022-09-09 | 2024-09-03 | Sharp Display Technology Corporation | Active matrix substrate and liquid crystal display device |
JP2024121052A (ja) | 2023-02-27 | 2024-09-06 | シャープディスプレイテクノロジー株式会社 | アクティブマトリクス基板および液晶表示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060113539A1 (en) * | 2004-11-10 | 2006-06-01 | Canon Kabushiki Kaisha | Field effect transistor |
JP2007073701A (ja) * | 2005-09-06 | 2007-03-22 | Canon Inc | アモルファス酸化物層を用いた薄膜トランジスタ |
JP2007201366A (ja) * | 2006-01-30 | 2007-08-09 | Canon Inc | 電界効果型トランジスタ |
JP2008270259A (ja) * | 2007-04-16 | 2008-11-06 | Matsushita Electric Ind Co Ltd | 半導体記憶装置およびその製造方法 |
US20090152506A1 (en) * | 2007-12-17 | 2009-06-18 | Fujifilm Corporation | Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film |
JP2010016347A (ja) * | 2008-06-30 | 2010-01-21 | Samsung Mobile Display Co Ltd | 薄膜トランジスタ、その製造方法及び薄膜トランジスタを備える平板表示装置 |
Family Cites Families (241)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60198861A (ja) | 1984-03-23 | 1985-10-08 | Fujitsu Ltd | 薄膜トランジスタ |
JPS6379791A (ja) * | 1986-09-22 | 1988-04-09 | Matsushita Electric Ind Co Ltd | 薄膜製造法 |
JPH0244256B2 (ja) | 1987-01-28 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPS63210023A (ja) | 1987-02-24 | 1988-08-31 | Natl Inst For Res In Inorg Mater | InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法 |
JPH0244258B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244260B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244262B2 (ja) | 1987-02-27 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244263B2 (ja) | 1987-04-22 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
CA1340168C (en) * | 1987-07-28 | 1998-12-08 | Rosa Young | Method of aligning grains of a multi-grained superconducting material |
US5597411A (en) * | 1991-02-19 | 1997-01-28 | Energy Conversion Devices, Inc. | Method of forming a single crystal material |
JPH05251705A (ja) | 1992-03-04 | 1993-09-28 | Fuji Xerox Co Ltd | 薄膜トランジスタ |
US6326248B1 (en) * | 1994-06-02 | 2001-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor device |
JP3947575B2 (ja) * | 1994-06-10 | 2007-07-25 | Hoya株式会社 | 導電性酸化物およびそれを用いた電極 |
JP3479375B2 (ja) | 1995-03-27 | 2003-12-15 | 科学技術振興事業団 | 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法 |
JP3325751B2 (ja) * | 1995-07-21 | 2002-09-17 | 日立建機株式会社 | 圧電素子およびその製造方法 |
JPH11505377A (ja) | 1995-08-03 | 1999-05-18 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | 半導体装置 |
JP3625598B2 (ja) | 1995-12-30 | 2005-03-02 | 三星電子株式会社 | 液晶表示装置の製造方法 |
TW335503B (en) * | 1996-02-23 | 1998-07-01 | Semiconductor Energy Lab Kk | Semiconductor thin film and manufacturing method and semiconductor device and its manufacturing method |
JPH09278514A (ja) | 1996-04-04 | 1997-10-28 | Natl Inst For Res In Inorg Mater | ゲルマン酸鉛系セラミック薄膜透光体とその製造方法 |
JPH098340A (ja) * | 1996-06-06 | 1997-01-10 | Canon Inc | 光起電力素子及びその製造方法 |
JP3881407B2 (ja) * | 1996-07-31 | 2007-02-14 | Hoya株式会社 | 導電性酸化物薄膜、この薄膜を有する物品及びその製造方法 |
JP2972678B2 (ja) * | 1997-10-29 | 1999-11-08 | 九州日本電気株式会社 | スパッタリング装置及びリーク検出方法 |
JP2000026119A (ja) | 1998-07-09 | 2000-01-25 | Hoya Corp | 透明導電性酸化物薄膜を有する物品及びその製造方法 |
JP4170454B2 (ja) | 1998-07-24 | 2008-10-22 | Hoya株式会社 | 透明導電性酸化物薄膜を有する物品及びその製造方法 |
JP2000133829A (ja) | 1998-10-27 | 2000-05-12 | Canon Inc | 半導体素子の製造方法 |
JP2000150861A (ja) | 1998-11-16 | 2000-05-30 | Tdk Corp | 酸化物薄膜 |
JP3276930B2 (ja) | 1998-11-17 | 2002-04-22 | 科学技術振興事業団 | トランジスタ及び半導体装置 |
TW460731B (en) | 1999-09-03 | 2001-10-21 | Ind Tech Res Inst | Electrode structure and production method of wide viewing angle LCD |
WO2002016679A1 (fr) | 2000-08-18 | 2002-02-28 | Tohoku Techno Arch Co., Ltd. | Matiere semi-conductrice polycristalline |
JP4089858B2 (ja) | 2000-09-01 | 2008-05-28 | 国立大学法人東北大学 | 半導体デバイス |
KR20020038482A (ko) | 2000-11-15 | 2002-05-23 | 모리시타 요이찌 | 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널 |
JP3997731B2 (ja) | 2001-03-19 | 2007-10-24 | 富士ゼロックス株式会社 | 基材上に結晶性半導体薄膜を形成する方法 |
JP2002356400A (ja) | 2001-03-22 | 2002-12-13 | Canon Inc | 酸化亜鉛の針状構造体の製造方法及びそれを用いた電池、光電変換装置 |
JP2002289859A (ja) | 2001-03-23 | 2002-10-04 | Minolta Co Ltd | 薄膜トランジスタ |
US6888156B2 (en) | 2001-06-29 | 2005-05-03 | National Institute For Materials Science | Thin film device |
JP2004006562A (ja) * | 2001-06-29 | 2004-01-08 | National Institute For Materials Science | 薄膜素子及びその製造方法 |
JP4267266B2 (ja) * | 2001-07-10 | 2009-05-27 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP2003029293A (ja) | 2001-07-13 | 2003-01-29 | Minolta Co Ltd | 積層型表示装置及びその製造方法 |
JP3694737B2 (ja) | 2001-07-27 | 2005-09-14 | 独立行政法人物質・材料研究機構 | 酸化亜鉛基ホモロガス化合物薄膜の製造法 |
JP4090716B2 (ja) | 2001-09-10 | 2008-05-28 | 雅司 川崎 | 薄膜トランジスタおよびマトリクス表示装置 |
JP3925839B2 (ja) | 2001-09-10 | 2007-06-06 | シャープ株式会社 | 半導体記憶装置およびその試験方法 |
JP4298194B2 (ja) * | 2001-11-05 | 2009-07-15 | 独立行政法人科学技術振興機構 | 自然超格子ホモロガス単結晶薄膜の製造方法。 |
US7061014B2 (en) | 2001-11-05 | 2006-06-13 | Japan Science And Technology Agency | Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film |
JP4164562B2 (ja) | 2002-09-11 | 2008-10-15 | 独立行政法人科学技術振興機構 | ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ |
JP4083486B2 (ja) | 2002-02-21 | 2008-04-30 | 独立行政法人科学技術振興機構 | LnCuO(S,Se,Te)単結晶薄膜の製造方法 |
CN1445821A (zh) | 2002-03-15 | 2003-10-01 | 三洋电机株式会社 | ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法 |
JP3933591B2 (ja) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
US7339187B2 (en) | 2002-05-21 | 2008-03-04 | State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University | Transistor structures |
JP2004022625A (ja) * | 2002-06-13 | 2004-01-22 | Murata Mfg Co Ltd | 半導体デバイス及び該半導体デバイスの製造方法 |
US7105868B2 (en) | 2002-06-24 | 2006-09-12 | Cermet, Inc. | High-electron mobility transistor with zinc oxide |
US7067843B2 (en) | 2002-10-11 | 2006-06-27 | E. I. Du Pont De Nemours And Company | Transparent oxide semiconductor thin film transistors |
JP4166105B2 (ja) | 2003-03-06 | 2008-10-15 | シャープ株式会社 | 半導体装置およびその製造方法 |
JP2004273732A (ja) | 2003-03-07 | 2004-09-30 | Sharp Corp | アクティブマトリクス基板およびその製造方法 |
EP1616981A4 (en) | 2003-04-03 | 2009-06-03 | Tokyo Denpa Kk | MONOCRYSTAL ZINC OXIDE |
JP4108633B2 (ja) | 2003-06-20 | 2008-06-25 | シャープ株式会社 | 薄膜トランジスタおよびその製造方法ならびに電子デバイス |
TWI368774B (en) | 2003-07-14 | 2012-07-21 | Semiconductor Energy Lab | Light-emitting device |
US7262463B2 (en) | 2003-07-25 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | Transistor including a deposited channel region having a doped portion |
JP3923458B2 (ja) * | 2003-09-10 | 2007-05-30 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN1906650B (zh) | 2003-11-14 | 2012-05-09 | 株式会社半导体能源研究所 | 显示装置及其制造方法 |
JP4455890B2 (ja) | 2004-01-06 | 2010-04-21 | スタンレー電気株式会社 | 半導体装置の製造方法 |
CN102354658B (zh) | 2004-03-12 | 2015-04-01 | 独立行政法人科学技术振兴机构 | 薄膜晶体管的制造方法 |
US7282782B2 (en) | 2004-03-12 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Combined binary oxide semiconductor device |
US7297977B2 (en) | 2004-03-12 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
US7145174B2 (en) | 2004-03-12 | 2006-12-05 | Hewlett-Packard Development Company, Lp. | Semiconductor device |
JP2005340370A (ja) * | 2004-05-25 | 2005-12-08 | Shin Etsu Handotai Co Ltd | 化合物半導体素子の製造方法 |
US7211825B2 (en) | 2004-06-14 | 2007-05-01 | Yi-Chi Shih | Indium oxide-based thin film transistors and circuits |
JP4660124B2 (ja) * | 2004-06-17 | 2011-03-30 | カシオ計算機株式会社 | 薄膜トランジスタの製造方法 |
JP2006100760A (ja) | 2004-09-02 | 2006-04-13 | Casio Comput Co Ltd | 薄膜トランジスタおよびその製造方法 |
US7285501B2 (en) | 2004-09-17 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Method of forming a solution processed device |
US7298084B2 (en) | 2004-11-02 | 2007-11-20 | 3M Innovative Properties Company | Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes |
EP1810335B1 (en) | 2004-11-10 | 2020-05-27 | Canon Kabushiki Kaisha | Light-emitting device |
JP5126729B2 (ja) | 2004-11-10 | 2013-01-23 | キヤノン株式会社 | 画像表示装置 |
EP1812969B1 (en) | 2004-11-10 | 2015-05-06 | Canon Kabushiki Kaisha | Field effect transistor comprising an amorphous oxide |
US7829444B2 (en) | 2004-11-10 | 2010-11-09 | Canon Kabushiki Kaisha | Field effect transistor manufacturing method |
US7791072B2 (en) * | 2004-11-10 | 2010-09-07 | Canon Kabushiki Kaisha | Display |
US7863611B2 (en) | 2004-11-10 | 2011-01-04 | Canon Kabushiki Kaisha | Integrated circuits utilizing amorphous oxides |
JP5138163B2 (ja) | 2004-11-10 | 2013-02-06 | キヤノン株式会社 | 電界効果型トランジスタ |
US7453065B2 (en) | 2004-11-10 | 2008-11-18 | Canon Kabushiki Kaisha | Sensor and image pickup device |
US7579224B2 (en) | 2005-01-21 | 2009-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a thin film semiconductor device |
TWI505473B (zh) | 2005-01-28 | 2015-10-21 | Semiconductor Energy Lab | 半導體裝置,電子裝置,和半導體裝置的製造方法 |
TWI569441B (zh) | 2005-01-28 | 2017-02-01 | 半導體能源研究所股份有限公司 | 半導體裝置,電子裝置,和半導體裝置的製造方法 |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
US7948171B2 (en) | 2005-02-18 | 2011-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20060197092A1 (en) | 2005-03-03 | 2006-09-07 | Randy Hoffman | System and method for forming conductive material on a substrate |
US8681077B2 (en) | 2005-03-18 | 2014-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and display device, driving method and electronic apparatus thereof |
US7544967B2 (en) | 2005-03-28 | 2009-06-09 | Massachusetts Institute Of Technology | Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications |
US7645478B2 (en) | 2005-03-31 | 2010-01-12 | 3M Innovative Properties Company | Methods of making displays |
US8300031B2 (en) | 2005-04-20 | 2012-10-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element |
JP2006344849A (ja) | 2005-06-10 | 2006-12-21 | Casio Comput Co Ltd | 薄膜トランジスタ |
US7402506B2 (en) | 2005-06-16 | 2008-07-22 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7691666B2 (en) | 2005-06-16 | 2010-04-06 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7507618B2 (en) | 2005-06-27 | 2009-03-24 | 3M Innovative Properties Company | Method for making electronic devices using metal oxide nanoparticles |
KR100711890B1 (ko) | 2005-07-28 | 2007-04-25 | 삼성에스디아이 주식회사 | 유기 발광표시장치 및 그의 제조방법 |
EP1938386B1 (en) | 2005-08-09 | 2019-05-01 | Cambridge Enterprise Limited | Nanorod thin-film transistors |
GB0516401D0 (en) | 2005-08-09 | 2005-09-14 | Univ Cambridge Tech | Nanorod field-effect transistors |
JP2007059128A (ja) | 2005-08-23 | 2007-03-08 | Canon Inc | 有機el表示装置およびその製造方法 |
JP5116225B2 (ja) | 2005-09-06 | 2013-01-09 | キヤノン株式会社 | 酸化物半導体デバイスの製造方法 |
JP4280736B2 (ja) | 2005-09-06 | 2009-06-17 | キヤノン株式会社 | 半導体素子 |
JP4850457B2 (ja) | 2005-09-06 | 2012-01-11 | キヤノン株式会社 | 薄膜トランジスタ及び薄膜ダイオード |
JP2007073705A (ja) | 2005-09-06 | 2007-03-22 | Canon Inc | 酸化物半導体チャネル薄膜トランジスタおよびその製造方法 |
JP4560502B2 (ja) | 2005-09-06 | 2010-10-13 | キヤノン株式会社 | 電界効果型トランジスタ |
KR100729043B1 (ko) | 2005-09-14 | 2007-06-14 | 삼성에스디아이 주식회사 | 투명 박막 트랜지스터 및 그의 제조방법 |
EP1998374A3 (en) | 2005-09-29 | 2012-01-18 | Semiconductor Energy Laboratory Co, Ltd. | Semiconductor device having oxide semiconductor layer and manufacturing method thereof |
JP5078246B2 (ja) | 2005-09-29 | 2012-11-21 | 株式会社半導体エネルギー研究所 | 半導体装置、及び半導体装置の作製方法 |
JP5064747B2 (ja) * | 2005-09-29 | 2012-10-31 | 株式会社半導体エネルギー研究所 | 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法 |
JP2007115735A (ja) * | 2005-10-18 | 2007-05-10 | Toppan Printing Co Ltd | トランジスタ |
JP5037808B2 (ja) | 2005-10-20 | 2012-10-03 | キヤノン株式会社 | アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置 |
JP2007121788A (ja) | 2005-10-31 | 2007-05-17 | Hitachi Displays Ltd | アクティブマトリクス基板およびそれを用いた液晶表示装置 |
US7745798B2 (en) | 2005-11-15 | 2010-06-29 | Fujifilm Corporation | Dual-phosphor flat panel radiation detector |
KR101117948B1 (ko) | 2005-11-15 | 2012-02-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 액정 디스플레이 장치 제조 방법 |
JP5129473B2 (ja) | 2005-11-15 | 2013-01-30 | 富士フイルム株式会社 | 放射線検出器 |
US7998372B2 (en) | 2005-11-18 | 2011-08-16 | Idemitsu Kosan Co., Ltd. | Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel |
JP5376750B2 (ja) | 2005-11-18 | 2013-12-25 | 出光興産株式会社 | 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ、アクティブマトリックス駆動表示パネル |
JP5250930B2 (ja) * | 2005-12-07 | 2013-07-31 | 凸版印刷株式会社 | トランジスタおよびその製造方法 |
KR100732849B1 (ko) | 2005-12-21 | 2007-06-27 | 삼성에스디아이 주식회사 | 유기 발광 표시장치 |
TWI292281B (en) | 2005-12-29 | 2008-01-01 | Ind Tech Res Inst | Pixel structure of active organic light emitting diode and method of fabricating the same |
US7867636B2 (en) | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
JP4977478B2 (ja) | 2006-01-21 | 2012-07-18 | 三星電子株式会社 | ZnOフィルム及びこれを用いたTFTの製造方法 |
US7576394B2 (en) | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
US7977169B2 (en) | 2006-02-15 | 2011-07-12 | Kochi Industrial Promotion Center | Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof |
JP5015473B2 (ja) * | 2006-02-15 | 2012-08-29 | 財団法人高知県産業振興センター | 薄膜トランジスタアレイ及びその製法 |
JP2007250982A (ja) | 2006-03-17 | 2007-09-27 | Canon Inc | 酸化物半導体を用いた薄膜トランジスタ及び表示装置 |
KR20070101595A (ko) | 2006-04-11 | 2007-10-17 | 삼성전자주식회사 | ZnO TFT |
KR100785038B1 (ko) | 2006-04-17 | 2007-12-12 | 삼성전자주식회사 | 비정질 ZnO계 TFT |
US20070252928A1 (en) | 2006-04-28 | 2007-11-01 | Toppan Printing Co., Ltd. | Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof |
KR101014473B1 (ko) * | 2006-06-02 | 2011-02-14 | 가시오게산키 가부시키가이샤 | 산화아연의 산화물 반도체 박막층을 포함하는 반도체 장치및 그 제조방법 |
JP5028033B2 (ja) | 2006-06-13 | 2012-09-19 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
US7906415B2 (en) * | 2006-07-28 | 2011-03-15 | Xerox Corporation | Device having zinc oxide semiconductor and indium/zinc electrode |
JP5328083B2 (ja) | 2006-08-01 | 2013-10-30 | キヤノン株式会社 | 酸化物のエッチング方法 |
JP4999400B2 (ja) | 2006-08-09 | 2012-08-15 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4609797B2 (ja) * | 2006-08-09 | 2011-01-12 | Nec液晶テクノロジー株式会社 | 薄膜デバイス及びその製造方法 |
JP4332545B2 (ja) | 2006-09-15 | 2009-09-16 | キヤノン株式会社 | 電界効果型トランジスタ及びその製造方法 |
JP4274219B2 (ja) | 2006-09-27 | 2009-06-03 | セイコーエプソン株式会社 | 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置 |
JP5164357B2 (ja) | 2006-09-27 | 2013-03-21 | キヤノン株式会社 | 半導体装置及び半導体装置の製造方法 |
US7622371B2 (en) | 2006-10-10 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Fused nanocrystal thin film semiconductor and method |
US7511343B2 (en) * | 2006-10-12 | 2009-03-31 | Xerox Corporation | Thin film transistor |
US7772021B2 (en) | 2006-11-29 | 2010-08-10 | Samsung Electronics Co., Ltd. | Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays |
JP2008140684A (ja) | 2006-12-04 | 2008-06-19 | Toppan Printing Co Ltd | カラーelディスプレイおよびその製造方法 |
KR20080052107A (ko) * | 2006-12-07 | 2008-06-11 | 엘지전자 주식회사 | 산화물 반도체층을 구비한 박막 트랜지스터 |
CN100428502C (zh) * | 2006-12-27 | 2008-10-22 | 电子科技大学 | 一种a-b取向ZnO纳米线阵列的制备方法 |
KR101303578B1 (ko) | 2007-01-05 | 2013-09-09 | 삼성전자주식회사 | 박막 식각 방법 |
KR100877153B1 (ko) | 2007-01-09 | 2009-01-09 | 한국전자통신연구원 | 전자소자용 ZnO 반도체막 형성방법 및 상기 반도체막을포함하는 박막 트랜지스터 |
JP4616359B2 (ja) * | 2007-01-09 | 2011-01-19 | 韓國電子通信研究院 | 電子素子用ZnO半導体膜の形成方法及び前記半導体膜を含む薄膜トランジスタ |
US8207063B2 (en) | 2007-01-26 | 2012-06-26 | Eastman Kodak Company | Process for atomic layer deposition |
TWI478347B (zh) | 2007-02-09 | 2015-03-21 | Idemitsu Kosan Co | A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device |
US7972943B2 (en) * | 2007-03-02 | 2011-07-05 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
KR100851215B1 (ko) | 2007-03-14 | 2008-08-07 | 삼성에스디아이 주식회사 | 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치 |
JP5244331B2 (ja) | 2007-03-26 | 2013-07-24 | 出光興産株式会社 | 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット |
JP2008276212A (ja) | 2007-04-05 | 2008-11-13 | Fujifilm Corp | 有機電界発光表示装置 |
WO2008126879A1 (en) | 2007-04-09 | 2008-10-23 | Canon Kabushiki Kaisha | Light-emitting apparatus and production method thereof |
JP5197058B2 (ja) | 2007-04-09 | 2013-05-15 | キヤノン株式会社 | 発光装置とその作製方法 |
US7795613B2 (en) | 2007-04-17 | 2010-09-14 | Toppan Printing Co., Ltd. | Structure with transistor |
KR101325053B1 (ko) | 2007-04-18 | 2013-11-05 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이의 제조 방법 |
KR20080094300A (ko) | 2007-04-19 | 2008-10-23 | 삼성전자주식회사 | 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이 |
KR101334181B1 (ko) | 2007-04-20 | 2013-11-28 | 삼성전자주식회사 | 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법 |
US8274078B2 (en) | 2007-04-25 | 2012-09-25 | Canon Kabushiki Kaisha | Metal oxynitride semiconductor containing zinc |
JP5043499B2 (ja) * | 2007-05-02 | 2012-10-10 | 財団法人高知県産業振興センター | 電子素子及び電子素子の製造方法 |
KR101345376B1 (ko) | 2007-05-29 | 2013-12-24 | 삼성전자주식회사 | ZnO 계 박막 트랜지스터 및 그 제조방법 |
ATE490560T1 (de) | 2007-05-31 | 2010-12-15 | Canon Kk | Verfahren zur herstellung eines dünnschichttransistors mit einem oxidhalbleiter |
US7935964B2 (en) | 2007-06-19 | 2011-05-03 | Samsung Electronics Co., Ltd. | Oxide semiconductors and thin film transistors comprising the same |
US8354674B2 (en) | 2007-06-29 | 2013-01-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer |
KR20090002841A (ko) | 2007-07-04 | 2009-01-09 | 삼성전자주식회사 | 산화물 반도체, 이를 포함하는 박막 트랜지스터 및 그 제조방법 |
WO2009034953A1 (ja) | 2007-09-10 | 2009-03-19 | Idemitsu Kosan Co., Ltd. | 薄膜トランジスタ |
JP2009135430A (ja) | 2007-10-10 | 2009-06-18 | Semiconductor Energy Lab Co Ltd | 半導体装置の作製方法 |
JP2009099847A (ja) | 2007-10-18 | 2009-05-07 | Canon Inc | 薄膜トランジスタとその製造方法及び表示装置 |
JP5213422B2 (ja) | 2007-12-04 | 2013-06-19 | キヤノン株式会社 | 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置 |
JP5190275B2 (ja) * | 2008-01-09 | 2013-04-24 | パナソニック株式会社 | 半導体メモリセル及びそれを用いた半導体メモリアレイ |
JP5264197B2 (ja) * | 2008-01-23 | 2013-08-14 | キヤノン株式会社 | 薄膜トランジスタ |
JP5540517B2 (ja) | 2008-02-22 | 2014-07-02 | 凸版印刷株式会社 | 画像表示装置 |
JP4555358B2 (ja) | 2008-03-24 | 2010-09-29 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタおよび表示装置 |
KR100941850B1 (ko) | 2008-04-03 | 2010-02-11 | 삼성모바일디스플레이주식회사 | 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치 |
JP2009265271A (ja) | 2008-04-23 | 2009-11-12 | Nippon Shokubai Co Ltd | 電気光学表示装置 |
JP5305730B2 (ja) * | 2008-05-12 | 2013-10-02 | キヤノン株式会社 | 半導体素子の製造方法ならびにその製造装置 |
KR101461127B1 (ko) | 2008-05-13 | 2014-11-14 | 삼성디스플레이 주식회사 | 반도체 장치 및 이의 제조 방법 |
US9041202B2 (en) | 2008-05-16 | 2015-05-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
US8822263B2 (en) | 2008-06-30 | 2014-09-02 | National University Corporation Tokyo University Of Agriculture And Technology | Epitaxial growth method of a zinc oxide based semiconductor layer, epitaxial crystal structure, epitaxial crystal growth apparatus, and semiconductor device |
KR100963027B1 (ko) | 2008-06-30 | 2010-06-10 | 삼성모바일디스플레이주식회사 | 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치 |
JP5392708B2 (ja) * | 2008-06-30 | 2014-01-22 | 国立大学法人東京農工大学 | ヘテロエピタキシャル成長方法 |
EP2146379B1 (en) | 2008-07-14 | 2015-01-28 | Samsung Electronics Co., Ltd. | Transistor comprising ZnO based channel layer |
JP5345349B2 (ja) * | 2008-07-24 | 2013-11-20 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタ |
JP2010040552A (ja) * | 2008-07-31 | 2010-02-18 | Idemitsu Kosan Co Ltd | 薄膜トランジスタ及びその製造方法 |
JP5480554B2 (ja) * | 2008-08-08 | 2014-04-23 | 株式会社半導体エネルギー研究所 | 半導体装置 |
TWI637444B (zh) * | 2008-08-08 | 2018-10-01 | 半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
JP5525778B2 (ja) * | 2008-08-08 | 2014-06-18 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP5345456B2 (ja) | 2008-08-14 | 2013-11-20 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタ |
JP5627071B2 (ja) | 2008-09-01 | 2014-11-19 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US9082857B2 (en) | 2008-09-01 | 2015-07-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising an oxide semiconductor layer |
US7963148B2 (en) * | 2008-09-03 | 2011-06-21 | National Formosa Univeristy | Gas sensor made of field effect transistor based on ZnO nanowires |
JP5339825B2 (ja) | 2008-09-09 | 2013-11-13 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 |
WO2010029865A1 (en) | 2008-09-12 | 2010-03-18 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
KR101657957B1 (ko) | 2008-09-12 | 2016-09-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 |
JP4623179B2 (ja) | 2008-09-18 | 2011-02-02 | ソニー株式会社 | 薄膜トランジスタおよびその製造方法 |
KR101911386B1 (ko) | 2008-09-19 | 2018-12-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시장치 |
KR101563527B1 (ko) | 2008-09-19 | 2015-10-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체장치 |
EP2421030B1 (en) | 2008-09-19 | 2020-10-21 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
WO2010038820A1 (en) | 2008-10-03 | 2010-04-08 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
EP2172977A1 (en) | 2008-10-03 | 2010-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
JP5451280B2 (ja) | 2008-10-09 | 2014-03-26 | キヤノン株式会社 | ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置 |
JP5361651B2 (ja) | 2008-10-22 | 2013-12-04 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP5616012B2 (ja) | 2008-10-24 | 2014-10-29 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
WO2010047288A1 (en) | 2008-10-24 | 2010-04-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductordevice |
US8741702B2 (en) | 2008-10-24 | 2014-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP5442234B2 (ja) * | 2008-10-24 | 2014-03-12 | 株式会社半導体エネルギー研究所 | 半導体装置及び表示装置 |
KR101667909B1 (ko) | 2008-10-24 | 2016-10-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체장치의 제조방법 |
EP2180518B1 (en) | 2008-10-24 | 2018-04-25 | Semiconductor Energy Laboratory Co, Ltd. | Method for manufacturing semiconductor device |
US8222740B2 (en) | 2008-10-28 | 2012-07-17 | Jagdish Narayan | Zinc oxide based composites and methods for their fabrication |
CN103730509B (zh) | 2008-11-07 | 2018-03-30 | 株式会社半导体能源研究所 | 半导体器件 |
TWI656645B (zh) | 2008-11-13 | 2019-04-11 | 日商半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
JP2010153802A (ja) | 2008-11-20 | 2010-07-08 | Semiconductor Energy Lab Co Ltd | 半導体装置及び半導体装置の作製方法 |
JP5538797B2 (ja) | 2008-12-12 | 2014-07-02 | キヤノン株式会社 | 電界効果型トランジスタ及び表示装置 |
KR101648927B1 (ko) | 2009-01-16 | 2016-08-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
JP5606682B2 (ja) | 2009-01-29 | 2014-10-15 | 富士フイルム株式会社 | 薄膜トランジスタ、多結晶酸化物半導体薄膜の製造方法、及び薄膜トランジスタの製造方法 |
US8367486B2 (en) | 2009-02-05 | 2013-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and method for manufacturing the transistor |
US8247276B2 (en) | 2009-02-20 | 2012-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor, method for manufacturing the same, and semiconductor device |
US8704216B2 (en) | 2009-02-27 | 2014-04-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP4936406B2 (ja) | 2009-05-25 | 2012-05-23 | キャタピラージャパン株式会社 | 建設機械におけるキャブの支持構造 |
JP5564331B2 (ja) | 2009-05-29 | 2014-07-30 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP4571221B1 (ja) | 2009-06-22 | 2010-10-27 | 富士フイルム株式会社 | Igzo系酸化物材料及びigzo系酸化物材料の製造方法 |
JP4415062B1 (ja) | 2009-06-22 | 2010-02-17 | 富士フイルム株式会社 | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
JP5528734B2 (ja) * | 2009-07-09 | 2014-06-25 | 富士フイルム株式会社 | 電子素子及びその製造方法、表示装置、並びにセンサー |
TWI596741B (zh) | 2009-08-07 | 2017-08-21 | 半導體能源研究所股份有限公司 | 半導體裝置和其製造方法 |
EP2284891B1 (en) | 2009-08-07 | 2019-07-24 | Semiconductor Energy Laboratory Co, Ltd. | Semiconductor device and manufacturing method thereof |
EP2544237B1 (en) | 2009-09-16 | 2017-05-03 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and display device |
KR102246529B1 (ko) | 2009-09-16 | 2021-04-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR102054650B1 (ko) | 2009-09-24 | 2019-12-11 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물 반도체막 및 반도체 장치 |
KR20120084751A (ko) * | 2009-10-05 | 2012-07-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
KR101991006B1 (ko) | 2009-10-08 | 2019-06-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR101680047B1 (ko) | 2009-10-14 | 2016-11-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
SG188112A1 (en) | 2009-10-30 | 2013-03-28 | Semiconductor Energy Lab | Logic circuit and semiconductor device |
KR101693914B1 (ko) * | 2009-11-20 | 2017-01-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
WO2011065216A1 (en) * | 2009-11-28 | 2011-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device |
KR102450889B1 (ko) * | 2009-12-04 | 2022-10-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR101470303B1 (ko) * | 2009-12-08 | 2014-12-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP2011138934A (ja) | 2009-12-28 | 2011-07-14 | Sony Corp | 薄膜トランジスタ、表示装置および電子機器 |
JP2011187506A (ja) | 2010-03-04 | 2011-09-22 | Sony Corp | 薄膜トランジスタおよびその製造方法、並びに表示装置 |
KR101878206B1 (ko) * | 2010-03-05 | 2018-07-16 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물 반도체막의 제작 방법 및 트랜지스터의 제작 방법 |
WO2011118741A1 (en) | 2010-03-26 | 2011-09-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
TWI539453B (zh) | 2010-09-14 | 2016-06-21 | 半導體能源研究所股份有限公司 | 記憶體裝置和半導體裝置 |
US8816425B2 (en) * | 2010-11-30 | 2014-08-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
KR101457833B1 (ko) * | 2010-12-03 | 2014-11-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP2012160679A (ja) | 2011-02-03 | 2012-08-23 | Sony Corp | 薄膜トランジスタ、表示装置および電子機器 |
-
2011
- 2011-11-21 KR KR1020137018239A patent/KR101457833B1/ko active IP Right Grant
- 2011-11-21 KR KR1020247004791A patent/KR20240025046A/ko active Application Filing
- 2011-11-21 CN CN201510496344.0A patent/CN105336791B/zh active Active
- 2011-11-21 KR KR1020197018131A patent/KR102110496B1/ko active IP Right Grant
- 2011-11-21 CN CN201180066610.6A patent/CN103339715B/zh active Active
- 2011-11-21 DE DE112011104002.4T patent/DE112011104002B4/de active Active
- 2011-11-21 KR KR1020147019793A patent/KR101749387B1/ko active IP Right Grant
- 2011-11-21 KR KR1020157022686A patent/KR101763052B1/ko active IP Right Grant
- 2011-11-21 KR KR1020237006773A patent/KR102637010B1/ko active IP Right Grant
- 2011-11-21 KR KR1020207013143A patent/KR20200052993A/ko active Application Filing
- 2011-11-21 KR KR1020137015848A patent/KR101995082B1/ko active IP Right Grant
- 2011-11-21 CN CN201310376877.6A patent/CN103500712B/zh active Active
- 2011-11-21 WO PCT/JP2011/077292 patent/WO2012073844A1/en active Application Filing
- 2011-11-21 KR KR1020227025885A patent/KR102505248B1/ko active IP Right Grant
- 2011-11-29 JP JP2011260854A patent/JP2012134475A/ja not_active Withdrawn
- 2011-11-30 US US13/307,398 patent/US8669556B2/en active Active
- 2011-12-01 TW TW111102677A patent/TWI834109B/zh active
- 2011-12-01 TW TW108122956A patent/TWI713225B/zh not_active IP Right Cessation
- 2011-12-01 TW TW100144209A patent/TWI562365B/zh active
- 2011-12-01 TW TW112140388A patent/TW202425354A/zh unknown
- 2011-12-01 TW TW109139369A patent/TWI764367B/zh active
- 2011-12-01 TW TW106130006A patent/TWI668871B/zh active
- 2011-12-01 TW TW107128489A patent/TWI692109B/zh active
- 2011-12-01 TW TW105122429A patent/TWI606591B/zh active
- 2011-12-01 TW TW105107574A patent/TWI577025B/zh not_active IP Right Cessation
- 2011-12-01 TW TW102131055A patent/TWI514581B/zh active
- 2011-12-01 TW TW104127326A patent/TWI553873B/zh active
-
2012
- 2012-12-21 JP JP2012279118A patent/JP2013102171A/ja not_active Withdrawn
-
2013
- 2013-03-05 JP JP2013042839A patent/JP5689490B2/ja active Active
- 2013-03-05 JP JP2013042847A patent/JP5897485B2/ja active Active
- 2013-03-15 US US13/832,479 patent/US8680522B2/en active Active
-
2014
- 2014-03-06 US US14/199,257 patent/US8994021B2/en active Active
-
2015
- 2015-01-28 JP JP2015014005A patent/JP6031537B2/ja active Active
- 2015-03-02 US US14/635,199 patent/US9331208B2/en active Active
-
2016
- 2016-04-25 US US15/137,613 patent/US9711655B2/en not_active Expired - Fee Related
- 2016-10-21 JP JP2016207185A patent/JP2017050553A/ja not_active Withdrawn
-
2017
- 2017-07-13 US US15/648,943 patent/US10103277B2/en active Active
-
2018
- 2018-06-11 JP JP2018111334A patent/JP2018170515A/ja not_active Withdrawn
- 2018-06-15 JP JP2018114242A patent/JP2018139333A/ja not_active Withdrawn
- 2018-06-28 US US16/021,490 patent/US10916663B2/en active Active
- 2018-08-07 JP JP2018148182A patent/JP6568631B2/ja active Active
-
2019
- 2019-12-03 JP JP2019218718A patent/JP2020043363A/ja not_active Withdrawn
-
2021
- 2021-02-04 US US17/167,163 patent/US20210159345A1/en active Pending
-
2022
- 2022-05-23 JP JP2022083513A patent/JP2022103433A/ja not_active Withdrawn
-
2023
- 2023-11-02 JP JP2023188558A patent/JP2023181500A/ja active Pending
-
2024
- 2024-02-09 JP JP2024018534A patent/JP2024045486A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060113539A1 (en) * | 2004-11-10 | 2006-06-01 | Canon Kabushiki Kaisha | Field effect transistor |
JP2006173580A (ja) * | 2004-11-10 | 2006-06-29 | Canon Inc | 電界効果型トランジスタ |
JP2007073701A (ja) * | 2005-09-06 | 2007-03-22 | Canon Inc | アモルファス酸化物層を用いた薄膜トランジスタ |
JP2007201366A (ja) * | 2006-01-30 | 2007-08-09 | Canon Inc | 電界効果型トランジスタ |
JP2008270259A (ja) * | 2007-04-16 | 2008-11-06 | Matsushita Electric Ind Co Ltd | 半導体記憶装置およびその製造方法 |
US20090152506A1 (en) * | 2007-12-17 | 2009-06-18 | Fujifilm Corporation | Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film |
JP2009167087A (ja) * | 2007-12-17 | 2009-07-30 | Fujifilm Corp | 無機結晶性配向膜及びその製造方法、半導体デバイス |
JP2010016347A (ja) * | 2008-06-30 | 2010-01-21 | Samsung Mobile Display Co Ltd | 薄膜トランジスタ、その製造方法及び薄膜トランジスタを備える平板表示装置 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6568631B2 (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6568631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |