WO2013157336A1 - アクティブマトリクス基板および液晶表示装置 - Google Patents

アクティブマトリクス基板および液晶表示装置 Download PDF

Info

Publication number
WO2013157336A1
WO2013157336A1 PCT/JP2013/057356 JP2013057356W WO2013157336A1 WO 2013157336 A1 WO2013157336 A1 WO 2013157336A1 JP 2013057356 W JP2013057356 W JP 2013057356W WO 2013157336 A1 WO2013157336 A1 WO 2013157336A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
crystal display
auxiliary capacitance
display device
Prior art date
Application number
PCT/JP2013/057356
Other languages
English (en)
French (fr)
Inventor
古川 智朗
訓子 前野
森永 潤一
冨永 真克
小川 勝也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/394,852 priority Critical patent/US9726953B2/en
Publication of WO2013157336A1 publication Critical patent/WO2013157336A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer

Definitions

  • the present invention relates to an active matrix substrate, and more particularly, to an active matrix substrate including a thin film transistor and a pixel electrode electrically connected to the thin film transistor.
  • the present invention also relates to a liquid crystal display device including such an active matrix substrate.
  • the liquid crystal display device has a feature that it is thin and has low power consumption, and is widely used in various fields.
  • active matrix liquid crystal display devices have high contrast ratios, excellent response characteristics, and high performance, so they are used in televisions, monitors, and notebook computers. In recent years, the market scale has expanded. .
  • An active matrix liquid crystal display device generally includes an active matrix substrate (sometimes referred to as a “TFT substrate”) in which a thin film transistor (TFT) is formed as a switching element for each pixel, and a counter substrate on which a color filter or the like is formed. (Sometimes referred to as a “color filter substrate”) and a liquid crystal layer provided between the active matrix substrate and the counter substrate.
  • TFT substrate active matrix substrate
  • color filter substrate a liquid crystal layer provided between the active matrix substrate and the counter substrate.
  • an auxiliary capacitor electrically connected to the liquid crystal capacitor is provided for each pixel.
  • a liquid crystal display device in a TN (Twisted / Nematic) mode or a VA (Vertical / Alignment) mode at least one of a pair of electrodes constituting an auxiliary capacitor is generally formed of a light-shielding material.
  • the electrode included in the auxiliary capacitance may be an electrode extending from the auxiliary capacitance wiring (or a part of the auxiliary capacitance wiring) or an electrode extending from the drain electrode of the TFT.
  • the auxiliary capacitance is also a factor of decreasing the aperture ratio.
  • the auxiliary capacity does not cause a decrease in the aperture ratio.
  • FFS Flexible Field Switching
  • a common electrode is provided on an interlayer insulating layer covering a TFT, and a plurality of A pixel electrode in which a slit is formed is provided on a dielectric layer covering the common electrode.
  • the common electrode and the pixel electrode are both made of a transparent conductive material, and are assisted by the common electrode, the pixel electrode that overlaps the common electrode through the dielectric layer, and the dielectric layer positioned therebetween. Capacity is configured. Therefore, in the FFS mode, the auxiliary capacitor does not decrease the aperture ratio.
  • a pixel electrode is provided on an interlayer insulating layer covering a TFT, and a common electrode having a plurality of slits is formed on a dielectric layer covering the pixel electrode.
  • the structure provided in is also known. Even in this configuration, the auxiliary capacitor does not decrease the aperture ratio.
  • a transparent auxiliary capacitance electrode is provided on the active matrix substrate, and the transparent auxiliary capacitance electrode, the pixel electrode, and a position between them are arranged. It is conceivable to form a transparent auxiliary capacitor with the dielectric layer (interlayer insulating layer).
  • the higher the definition the greater the wiring resistance and panel load, and the greater the signal delay of the wiring.
  • the wiring In order to reduce the signal delay, it is necessary to reduce the wiring resistance.
  • the wiring In order to reduce the wiring resistance, the wiring should be thickened or the wiring width should be increased.
  • the step formed in the upper layer becomes larger, so that another wiring provided above the thickened wiring is easily disconnected by the step. Therefore, since it is not preferable to increase the thickness of the wiring, it is necessary to increase the wiring width even at the expense of the aperture ratio.
  • the alignment of liquid crystal molecules is disturbed by a step, and the disturbance causes light leakage. Therefore, it is necessary to secure a certain area for the light shielding region in the vicinity of the contact hole regardless of the definition. For these reasons, it is difficult to ensure a sufficiently high aperture ratio in a high-definition liquid crystal display device.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device capable of realizing a sufficiently high aperture ratio even if the definition is high, and an active suitable for use in such a liquid crystal display device. It is to provide a matrix substrate.
  • An active matrix substrate includes a substrate, a thin film transistor supported by the substrate, having a semiconductor layer, a gate electrode, a source electrode, and a drain electrode, and a scan electrically connected to the gate electrode of the thin film transistor.
  • the insulating layer has a contact hole for electrically connecting the pixel electrode to the drain electrode.
  • the scan lines has a first region which is branched into two branch lines, the contact hole is disposed between the two branch lines.
  • the scanning wiring alternately has the first region and a second region that is not branched into the two branch wirings along the extending direction, and the thin film transistor includes at least the thin film transistor. A portion is arranged so as to overlap the second region of the scanning wiring.
  • the transparent auxiliary capacitance electrode is provided on the first interlayer insulating layer
  • the active matrix substrate further includes a second interlayer insulating layer provided so as to cover the transparent auxiliary capacitance electrode.
  • the pixel electrode is provided on the second interlayer insulating layer, and the contact hole is formed over both the first interlayer insulating layer and the second interlayer insulating layer.
  • an auxiliary capacitance is constituted by the pixel electrode, the transparent auxiliary capacitance electrode, and the second interlayer insulating layer located between the pixel electrode and the transparent auxiliary capacitance electrode.
  • the semiconductor device further includes a gate insulating layer provided so as to cover the gate electrode, the transparent auxiliary capacitance electrode is provided under the gate insulating layer, and the pixel electrode is provided in the first interlayer layer. It is provided on the insulating layer.
  • an auxiliary capacitance is configured by the pixel electrode, the transparent auxiliary capacitance electrode, and the gate insulating layer and the first interlayer insulating layer located between the pixel electrode and the transparent auxiliary capacitance electrode.
  • the pixel electrode is provided on the first interlayer insulating layer
  • the active matrix substrate further includes a second interlayer insulating layer provided to cover the pixel electrode, and the transparent
  • the auxiliary capacitance electrode is provided on the second interlayer insulating layer.
  • an auxiliary capacitance is constituted by the pixel electrode, the transparent auxiliary capacitance electrode, and the second interlayer insulating layer located between the pixel electrode and the transparent auxiliary capacitance electrode.
  • a liquid crystal display device is provided between the active matrix substrate having the above-described configuration, a counter substrate arranged to face the active matrix substrate, and the active matrix substrate and the counter substrate.
  • a liquid crystal layer is provided between the active matrix substrate having the above-described configuration, a counter substrate arranged to face the active matrix substrate, and the active matrix substrate and the counter substrate.
  • a liquid crystal display device is provided between the active matrix substrate having the above-described configuration, a counter substrate arranged to face the active matrix substrate, and the active matrix substrate and the counter substrate.
  • a liquid crystal layer and performs display in a transverse electric field mode.
  • the transparent auxiliary capacitance electrode functions as a common electrode, and the pixel electrode or the transparent auxiliary capacitance electrode has a plurality of slits.
  • a liquid crystal display device is provided between the active matrix substrate having the above-described configuration, a counter substrate arranged to face the active matrix substrate, and the active matrix substrate and the counter substrate.
  • a liquid crystal layer and performs display in a vertical alignment mode.
  • the counter substrate has a light shielding layer that overlaps at least the contact hole.
  • a liquid crystal display device capable of realizing a sufficiently high aperture ratio even when the definition is high and an active matrix substrate suitably used for such a liquid crystal display device are provided.
  • FIG. 1 is a diagram schematically illustrating a liquid crystal display device 100 according to Embodiment 1 of the present invention, and is a plan view illustrating a region corresponding to one pixel of the liquid crystal display device 100.
  • FIG. FIG. 2 is a diagram schematically showing a liquid crystal display device 100 according to Embodiment 1 of the present invention, and is a cross-sectional view taken along line 2A-2A ′ in FIG. 1.
  • FIG. 2 is a diagram schematically showing a liquid crystal display device 100 according to Embodiment 1 of the present invention, and is a cross-sectional view taken along line 3A-3A ′ in FIG. 1.
  • FIG. It is a figure which shows typically the liquid crystal display device 500 of the comparative example 1, and is a top view which shows the area
  • (A), (b), and (c) are the figures which show the area
  • FIG. It is a figure which shows typically other liquid crystal display devices 100A in Embodiment 1 of this invention, and is sectional drawing corresponding to FIG.
  • FIG. 10 is a diagram schematically showing a liquid crystal display device 200 according to Embodiment 2 of the present invention, and is a cross-sectional view taken along line 10A-10A ′ in FIG. 9.
  • FIG. 10 is a diagram schematically showing a liquid crystal display device 200 according to Embodiment 2 of the present invention, and is a cross-sectional view taken along the line 11A-11A ′ in FIG. 9.
  • FIG. (A) And (b) is a figure which shows the area
  • FIG. 2 shows typically other liquid crystal display devices 200A in Embodiment 2 of this invention, and is sectional drawing corresponding to FIG.
  • FIG. 6 is a diagram schematically showing a liquid crystal display device 300 according to Embodiment 3 of the present invention, and is a plan view showing a region corresponding to one pixel of the liquid crystal display device 300.
  • FIG. 17 is a diagram schematically showing a liquid crystal display device 300 according to Embodiment 3 of the present invention, and is a cross-sectional view taken along line 17A-17A ′ in FIG.
  • FIG. 17 is a diagram schematically showing a liquid crystal display device 300 according to Embodiment 3 of the present invention, and is a cross-sectional view taken along line 18A-18A ′ in FIG.
  • FIG. 10 is a diagram schematically showing a liquid crystal display device 800 of Comparative Example 4, and is a plan view showing a region corresponding to one pixel of the liquid crystal display device 800.
  • (A) And (b) is a figure which shows the area
  • FIG. FIG. 18 is a diagram schematically showing another liquid crystal display device 300A according to Embodiment 3 of the present invention, and is a cross-sectional view of the liquid crystal display device 300 corresponding to FIG. FIG.
  • FIG. 18 is a diagram schematically illustrating another liquid crystal display device 300A according to Embodiment 3 of the present invention, and is a cross-sectional view of the liquid crystal display device 300 corresponding to FIG.
  • FIG. 18 is a diagram schematically showing still another liquid crystal display device 300B according to Embodiment 3 of the present invention, and is a cross-sectional view of the liquid crystal display device 300 corresponding to FIG.
  • FIG. 19 is a diagram schematically showing still another liquid crystal display device 300B according to Embodiment 3 of the present invention, and is a cross-sectional view of the liquid crystal display device 300 corresponding to FIG.
  • FIG. 1 is a plan view schematically showing a region corresponding to one pixel of the liquid crystal display device 100.
  • 2 is a cross-sectional view taken along line 2A-2A ′ in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line 3A-3A ′ in FIG.
  • the liquid crystal display device 100 performs display in the vertical alignment (VA) mode. More specifically, the liquid crystal display device 100 performs display in a CPA (Continuous Pinwheel Alignment) mode, which is a type of VA mode. As shown in FIGS. 2 and 3, the liquid crystal display device 100 includes an active matrix substrate (hereinafter referred to as “TFT substrate”) 10 and a counter substrate (“color filter substrate” disposed so as to face the TFT substrate 10. 20) and a liquid crystal layer 30 provided between the TFT substrate 10 and the counter substrate 20.
  • TFT substrate active matrix substrate
  • counter substrate color filter substrate
  • the TFT substrate 10 includes a substrate 10a, a thin film transistor (TFT) 11, a scanning wiring 12, and a signal wiring 13, as shown in FIGS.
  • TFT thin film transistor
  • the substrate 10a is transparent and has an insulating property.
  • the substrate 10a is typically a glass substrate.
  • the TFT 11 is supported by the substrate 10a.
  • the TFT 11 includes a semiconductor layer 11a, a gate electrode 11g, a source electrode 11s, and a drain electrode 11d.
  • the TFT 11 in this embodiment is a so-called bottom gate type TFT, but may be a top gate type TFT.
  • the scanning wiring (sometimes referred to as “gate bus line”) 12 extends substantially parallel to the row direction (horizontal direction).
  • the scanning wiring 12 is electrically connected to the gate electrode 11 g of the TFT 11 and supplies a scanning signal to the TFT 11.
  • Signal wiring (sometimes referred to as “source bus line”) 13 extends substantially parallel to the column direction (vertical direction).
  • the signal wiring 13 is electrically connected to the source electrode 11 s of the TFT 11 and supplies a display signal to the TFT 11.
  • the scanning wiring 12 and the gate electrode 11g of the TFT 11 described above are provided on the surface of the substrate 10a on the liquid crystal layer 30 side.
  • a part of the scanning wiring 12 functions as the gate electrode 11g.
  • a gate insulating layer 14 is provided so as to cover the scanning wiring 12 and the gate electrode 11g.
  • a semiconductor layer 11a that functions as a channel region, a source region, and a drain region of the TFT 11 is provided.
  • various known semiconductor materials can be used. For example, amorphous silicon, polycrystalline silicon, continuous grain boundary crystal silicon (CGS), or the like can be used.
  • the semiconductor layer 11a may be an oxide semiconductor layer.
  • the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed in, for example, Japanese Patent Laid-Open No. 2012-134475.
  • Japanese Patent Laid-Open No. 2012-134475 the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the oxide semiconductor layer is not limited to the In—Ga—Zn—O-based semiconductor layer.
  • the oxide semiconductor layer includes, for example, a Zn—O based semiconductor (ZnO), an In—Zn—O based semiconductor (IZO), a Zn—Ti—O based semiconductor (ZTO), a Cd—Ge—O based semiconductor, a Cd—Pb—
  • ZnO Zn—O based semiconductor
  • IZO In—Zn—O based semiconductor
  • ZTO Zn—Ti—O based semiconductor
  • Cd—Ge—O based semiconductor a Cd—Pb—
  • An O-based semiconductor, an In—Sn—Zn—O-based semiconductor (eg, In 2 O 3 —SnO 2 —ZnO), an In—Ga—Sn—O-based semiconductor, or the like may be included.
  • a source electrode 11s and a drain electrode 11d are provided in contact with the source region and the drain region of the semiconductor layer 11a.
  • a signal wiring 13 is also provided on the gate insulating layer 14.
  • the TFT substrate 10 further includes a first interlayer insulating layer 15 provided so as to cover the TFT 11, a pixel electrode 16 electrically connected to the drain electrode 11d of the TFT 11, and a transparent auxiliary material formed from a transparent conductive material. And a capacitor electrode 17.
  • the first interlayer insulating layer 15 may be a single layer or may have a stacked structure including a plurality of insulating films (for example, a stacked structure including an inorganic insulating film and an organic insulating film).
  • the transparent auxiliary capacitance electrode 17 in the present embodiment is provided on the first interlayer insulating layer 15.
  • the transparent auxiliary capacitance electrode 17 is provided so as to overlap at least a part (here, almost the whole) of the pixel electrode 16 when viewed from the normal direction of the substrate 10a.
  • the transparent auxiliary capacitance electrode 17 is made of, for example, ITO.
  • a second interlayer insulating layer (dielectric layer) 18 is provided so as to cover the transparent auxiliary capacitance electrode 17.
  • the pixel electrode 16 is provided on the second interlayer insulating layer 18.
  • the pixel electrode 16 is also formed from a transparent conductive material (for example, ITO).
  • the auxiliary capacitance is constituted by the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the second interlayer insulating layer 18 located between the pixel electrode 16 and the transparent auxiliary capacitance electrode 17.
  • An auxiliary capacitance voltage (Cs voltage) different from the voltage applied to the pixel electrode 16 is supplied to the transparent auxiliary capacitance electrode 17.
  • the Cs voltage for example, the same voltage as that applied to the counter electrode 22 described later is supplied.
  • a contact hole CH for electrically connecting the pixel electrode 16 to the drain electrode 11 d of the TFT 11 is formed.
  • the contact hole CH is not only in the first interlayer insulating layer 15 but also in the second interlayer insulating layer 18 (that is, the first interlayer insulating layer). Over both insulating layer 15 and second interlayer insulating layer 18).
  • the pixel electrode 16 is connected to the drain electrode 11d.
  • the transparent auxiliary capacitance electrode 17 is formed so as to be continuous over all the pixels, but is not formed in the vicinity of the contact hole CH.
  • the counter substrate 20 includes a substrate 20 a, a color filter layer 21, and a counter electrode 22.
  • the substrate 20a is transparent and has an insulating property.
  • the substrate 20a is typically a glass substrate.
  • the color filter layer 21 includes a color filter (for example, a red color filter, a green color filter, and a blue color filter) corresponding to a color to be displayed in each pixel, and a light shielding layer (black matrix).
  • the light shielding layer is disposed so as to overlap the TFT 11, the scanning wiring 12, and the signal wiring 13. Further, the light shielding layer is disposed so as to overlap the contact hole CH.
  • the counter electrode 22 is provided to face the pixel electrode 16.
  • the counter electrode 22 is a common electrode common to the pixels in the entire display region. Note that a planarization layer may be provided between the color filter layer 21 and the counter electrode 22 as necessary.
  • the counter substrate 20 has a protrusion 23 provided in a region corresponding to substantially the center of each pixel (approximately the center of the pixel electrode 16).
  • the protrusion (sometimes referred to as “rivet”) 23 is made of, for example, a photosensitive resin.
  • the liquid crystal layer 30 is a vertical alignment type liquid crystal layer.
  • the liquid crystal molecules of the liquid crystal layer 30 have a negative dielectric anisotropy, and form an angle of approximately perpendicular to the substrate surface (typically 85 ° or more when no voltage is applied to the liquid crystal layer 30). Orientation).
  • a pair of vertical alignment films are provided on the surface of the TFT substrate 10 and the counter substrate 20 on the liquid crystal layer 30 side.
  • the liquid crystal of the axially symmetric orientation is applied to each pixel by the alignment regulating force of the oblique electric field generated near the outer edge (edge portion) of the pixel electrode 16 and the alignment regulating force of the protrusion 23.
  • One domain is formed.
  • the liquid crystal domain the liquid crystal molecules are radially inclined with the protrusion 23 as the center.
  • the protrusion 23 is illustrated, but instead of the protrusion 23, a columnar spacer for defining a cell gap may be used for alignment regulation.
  • an opening may be provided in the counter electrode 22 instead of the protrusion 23.
  • the light shielding layer is disposed so as to overlap the columnar spacer.
  • the transparent auxiliary capacitance electrode 17 is provided on the TFT substrate 10, and the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the second located between them.
  • An auxiliary capacitor is constituted by the interlayer insulating layer 18. Therefore, this auxiliary capacity is transparent and does not lower the aperture ratio.
  • liquid crystal display device 100 has the following configuration, so that the aperture ratio can be further improved while suppressing signal delay.
  • the scanning wiring 12 includes a first region R1 branched into two branch wirings 12a and a second region R2 that is not branched in that direction in the extending direction. Have alternating along.
  • the contact hole CH is disposed between the two branch wirings 12a.
  • the TFT 11 is arranged so that at least a part thereof overlaps the second region R ⁇ b> 2 of the scanning wiring 12. That is, the TFT 11 is formed at the branching source of the scanning wiring 12.
  • the scanning wiring 12 since the scanning wiring 12 has the first region R1 branched into the two branch wirings 12a, the wiring resistance of the scanning wiring 12 is reduced, Signal delay can be suppressed. Further, a contact hole CH for electrically connecting the pixel electrode 16 to the drain electrode 11 d is disposed between the two branch wirings 12 a of the scanning wiring 12. For this reason, the vicinity of the contact hole CH can also be shielded by the region of the light shielding layer for shielding the scanning wiring 12. In other words, it is possible to secure a region that shields the region where the orientation is disturbed in the vicinity of the contact hole CH up to the side end of the branch wiring 12a. For this reason, the ratio of regions that do not contribute to display in each pixel can be reduced (that is, regions that do not contribute to display can be intensively arranged), so that the aperture ratio can be further improved.
  • the width of the scanning wiring is branched in the liquid crystal display device 100 of the present embodiment. It is necessary to double the width of the wiring 12a, and it is necessary to form the contact hole separately from the region where the scanning wiring extends, and the light shielding layer is a region for shielding the vicinity of the contact hole, It is necessary to separately include a region for shielding the scanning wiring. Therefore, compared with the liquid crystal display device 100 of this embodiment, since the ratio of the area
  • the aperture ratio can be sufficiently increased while suppressing signal delay due to an increase in wiring resistance.
  • the conventional liquid crystal display device it was difficult to obtain a sufficient aperture ratio when trying to reduce the signal delay accompanying the increase in size and definition, but by adopting the configuration as in this embodiment, the liquid crystal display A sufficiently high aperture ratio can be realized even if the apparatus is increased in size and definition.
  • the superiority of the liquid crystal display device 100 in the present embodiment will be described more specifically while comparing with the liquid crystal display device of the comparative example.
  • FIGS. 4 and 5 show the liquid crystal display devices 500 and 600 of Comparative Examples 1 and 2, respectively.
  • the liquid crystal display devices 500 and 600 of Comparative Examples 1 and 2 shown in FIGS. 4 and 5 differ from the liquid crystal display device 100 in the present embodiment in that the scanning wiring 12 is not branched.
  • the liquid crystal display device 500 of Comparative Example 1 also has a point that the connection electrode 11d ′ extending from the drain electrode 11d extends to almost the center of the pixel, and the contact hole CH is provided at substantially the center of the pixel. This is different from the liquid crystal display device 100.
  • FIG. 6A, 6B, and 6C show regions SR shielded by the light shielding layer for the liquid crystal display device 100 of the present embodiment and the liquid crystal display devices 500 and 600 of Comparative Examples 1 and 2.
  • FIG. 6A, 6B, and 6C show regions SR shielded by the light shielding layer for the liquid crystal display device 100 of the present embodiment and the liquid crystal display devices 500 and 600 of Comparative Examples 1 and 2.
  • FIG. 6A, 6B, and 6C show regions SR shielded by the light shielding layer for the liquid crystal display device 100 of the present embodiment and the liquid crystal display devices 500 and 600 of Comparative Examples 1 and 2.
  • the liquid crystal display device 100 of the present embodiment is more light-shielded than the liquid crystal display devices 500 and 600 of Comparative Examples 1 and 2.
  • the ratio of SR is small and a high aperture ratio is realized.
  • Table 1 below shows the liquid crystal display device 100 of the present embodiment (Embodiment 1), the liquid crystal display device 600 of Comparative Example 2, and a conventional liquid crystal display device having an opaque auxiliary capacitor when the pixel sizes are substantially the same. An example of the aperture ratio is shown.
  • the transparent auxiliary capacitance electrode 17 formed of a transparent conductive material is provided as the auxiliary capacitance electrode, whereas the conventional liquid crystal display.
  • an opaque auxiliary capacitance electrode made of a metal material is provided as the auxiliary capacitance electrode.
  • the aperture ratio of the liquid crystal display device 100 of the present embodiment is 1.00
  • the aperture ratio of the liquid crystal display device 600 of Comparative Example 2 is 0.93, which is the aperture of the conventional liquid crystal display device.
  • the rate is 0.70. Therefore, in the liquid crystal display device 100 of the present embodiment, the aperture ratio is improved by 7.5% compared to the liquid crystal display device 600 of Comparative Example 2, and the aperture ratio is 42.4% compared to the conventional liquid crystal display device. It has improved.
  • the degree of improvement in aperture ratio varies depending on the pixel size. As the definition of the liquid crystal display device 100 increases, that is, as the pixel size decreases, the degree of improvement in the aperture ratio increases. That is, the effect by adopting the configuration as in the present embodiment becomes remarkable.
  • the transparent auxiliary capacitance electrode 17 is provided on the first interlayer insulating layer 15 and is located between the pixel electrode 16, the transparent auxiliary capacitance electrode 17, the pixel electrode 16, and the transparent auxiliary capacitance electrode 17.
  • the auxiliary capacitance is configured by the second interlayer insulating layer 18
  • the arrangement of the transparent auxiliary capacitance electrode 17 and the configuration of the auxiliary capacitance are not limited to this.
  • FIG. 7 and 8 show another liquid crystal display device 100A in the present embodiment.
  • 7 and 8 are cross-sectional views schematically showing the liquid crystal display device 100A, and are views corresponding to FIGS. 2 and 3 for the liquid crystal display device 100.
  • FIG. 7 and 8 are cross-sectional views schematically showing the liquid crystal display device 100A, and are views corresponding to FIGS. 2 and 3 for the liquid crystal display device 100.
  • FIG. 7 and 8 are cross-sectional views schematically showing the liquid crystal display device 100A, and are views corresponding to FIGS. 2 and 3 for the liquid crystal display device 100.
  • the transparent auxiliary capacitance electrode 17 is provided below the gate insulating layer 14, and the pixel electrode 16 is provided on the first interlayer insulating layer 15.
  • an auxiliary capacitance is configured by the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the gate insulating layer 14 and the first interlayer insulating layer 15 located between the pixel electrode 16 and the transparent auxiliary capacitance electrode 17. Yes.
  • the transparent auxiliary capacitance electrode 17 is electrically connected to the auxiliary capacitance wiring 19 and is supplied with a Cs voltage from the auxiliary capacitance wiring 19.
  • the auxiliary capacitance line 19 is formed from the same conductive film as the scanning line 12.
  • the transparent auxiliary capacitance electrode 17 is electrically connected to the auxiliary capacitance wiring 19 when the transparent auxiliary capacitance electrode 17 is provided under the gate insulating layer 14 so that the transparent auxiliary capacitance electrode 17 is not continuous between pixels. This is because they are patterned.
  • the transparent auxiliary capacitance electrode 17 is positioned between the scanning wiring 12 and the signal wiring 13 and the pixel electrode 16. Therefore, the electric field formed by the voltage supplied to the scanning wiring 12 and the signal wiring 13 can be shielded (electrically shielded) by the transparent auxiliary capacitance electrode 17. Therefore, an effect is obtained that the potential of the scanning wiring 12 and the signal wiring 13 can be prevented from adversely affecting the display.
  • the number of liquid crystal domains is not limited to one.
  • a plurality of liquid crystal domains may be formed in each pixel when a voltage is applied.
  • at least one opening and / or notch is formed in the pixel electrode 16, and the pixel electrode 16 has a plurality of sub-electrodes ( Each of which corresponds to one liquid crystal domain).
  • the effect of improving the aperture ratio by adopting the configuration of the present embodiment is more remarkable when the pixel size is relatively small so that only one liquid crystal domain can be stably formed in the pixel. It is done.
  • FIG. 9 is a plan view schematically showing a region corresponding to one pixel of the liquid crystal display device 200.
  • 10 is a cross-sectional view taken along line 10A-10A ′ in FIG. 9, and
  • FIG. 11 is a cross-sectional view taken along line 11A-11A ′ in FIG.
  • the liquid crystal display device 100 according to the first embodiment performs display in the CPA mode
  • the liquid crystal display device 200 according to the present embodiment performs display in the TN mode (or ECB mode). Therefore, the protrusions 23 are not provided on the counter substrate 20 of the liquid crystal display device 200.
  • an alignment film corresponding to a display mode is provided on the surface of the liquid crystal display device 200 on the TFT substrate 10 and the counter substrate 20 on the liquid crystal layer 30 side. The orientation direction is defined.
  • the transparent auxiliary capacitance electrode 17 is provided on the TFT substrate 10, and the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the second interlayer insulating layer 18 positioned therebetween.
  • Auxiliary capacity is constituted by these. Therefore, this auxiliary capacity is transparent and does not lower the aperture ratio.
  • the scanning wiring 12 has a first region R1 branched into two branch wirings 12a, and a contact hole CH for electrically connecting the pixel electrode 16 to the drain electrode 11d is formed on the scanning wiring 12. Since it is disposed between the two branch wirings 12a, it is possible to further improve the aperture ratio while suppressing signal delay.
  • the superiority of the liquid crystal display device 200 in the present embodiment will be described more specifically while comparing with the liquid crystal display device of the comparative example.
  • FIG. 12 shows a liquid crystal display device 700 of Comparative Example 3.
  • a liquid crystal display device 700 of Comparative Example 3 shown in FIG. 12 is different from the liquid crystal display device 200 of the present embodiment in that the scanning wiring 12 is not branched.
  • FIGS. 13A and 13B show regions SR shielded by a light shielding layer for the liquid crystal display device 200 of the present embodiment and the liquid crystal display device 700 of Comparative Example 3.
  • FIG. 13A shows regions SR shielded by a light shielding layer for the liquid crystal display device 200 of the present embodiment and the liquid crystal display device 700 of Comparative Example 3.
  • the liquid crystal display device 200 of the present embodiment has a smaller proportion of the light-blocked region SR and a higher aperture ratio than the liquid crystal display device 700 of Comparative Example 3. Is realized.
  • Table 2 below shows the liquid crystal display device 200 of this embodiment (Embodiment 2), the liquid crystal display device 700 of Comparative Example 3, and a conventional liquid crystal display device having an opaque auxiliary capacitor when the pixel sizes are substantially the same.
  • An example of the aperture ratio is shown.
  • the transparent auxiliary capacitance electrode 17 formed of a transparent conductive material is provided as the auxiliary capacitance electrode, whereas the conventional liquid crystal display.
  • an opaque auxiliary capacitance electrode made of a metal material is provided as the auxiliary capacitance electrode.
  • the aperture ratio of the liquid crystal display device 200 of the present embodiment is 1.00
  • the aperture ratio of the liquid crystal display device 700 of Comparative Example 3 is 0.93, which is the aperture of the conventional liquid crystal display device.
  • the rate is 0.70. Therefore, in the liquid crystal display device 200 of the present embodiment, the aperture ratio is improved by 7.5% compared to the liquid crystal display device 700 of Comparative Example 3, and the aperture ratio is 42.4% compared to the conventional liquid crystal display device. It has improved.
  • the transparent auxiliary capacitance electrode 17 is provided on the first interlayer insulating layer 15 and is located between the pixel electrode 16, the transparent auxiliary capacitance electrode 17, the pixel electrode 16, and the transparent auxiliary capacitance electrode 17.
  • the auxiliary capacitance is configured by the second interlayer insulating layer 18
  • the arrangement of the transparent auxiliary capacitance electrode 17 and the configuration of the auxiliary capacitance are not limited to this.
  • 14 and 15 show another liquid crystal display device 200A in the present embodiment. 14 and 15 are cross-sectional views schematically showing the liquid crystal display device 200A, and are views corresponding to FIGS. 10 and 11 for the liquid crystal display device 200. FIG.
  • the transparent auxiliary capacitance electrode 17 is provided below the gate insulating layer 14, and the pixel electrode 16 is provided on the first interlayer insulating layer 15.
  • an auxiliary capacitance is configured by the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the gate insulating layer 14 and the first interlayer insulating layer 15 located between the pixel electrode 16 and the transparent auxiliary capacitance electrode 17. Yes.
  • the transparent auxiliary capacitance electrode 17 is electrically connected to the auxiliary capacitance wiring 19 and is supplied with a Cs voltage from the auxiliary capacitance wiring 19.
  • the auxiliary capacitance line 19 is formed from the same conductive film as the scanning line 12.
  • the transparent auxiliary capacitance electrode 17 is electrically connected to the auxiliary capacitance wiring 19 when the transparent auxiliary capacitance electrode 17 is provided under the gate insulating layer 14 so that the transparent auxiliary capacitance electrode 17 is not continuous between pixels. This is because they are patterned.
  • the liquid crystal display device 200A shown in FIGS. 14 and 15 can also obtain an effect of sufficiently increasing the aperture ratio while suppressing a signal delay due to an increase in wiring resistance.
  • the transparent auxiliary capacitance electrode 17 is located between the scanning wiring 12 and the signal wiring 13 and the pixel electrode 16. Therefore, the electric field formed by the voltage supplied to the scanning wiring 12 and the signal wiring 13 can be shielded (electrically shielded) by the transparent auxiliary capacitance electrode 17. Therefore, an effect is obtained that the potential of the scanning wiring 12 and the signal wiring 13 can be prevented from adversely affecting the display.
  • FIG. 16 is a plan view schematically showing a region corresponding to one pixel of the liquid crystal display device 300.
  • 17 is a cross-sectional view taken along the line 17A-17A ′ in FIG. 16
  • FIG. 18 is a cross-sectional view taken along the line 18A-18A ′ in FIG.
  • the liquid crystal display device 300 according to the present embodiment performs display in the horizontal electric field mode. More specifically, the liquid crystal display device 300 of the present embodiment performs display in the FSS mode. Therefore, the counter electrode 22 and the protrusions 23 are not provided on the counter substrate 20 of the liquid crystal display device 300. Further, a horizontal alignment film is provided on the surfaces of the TFT substrate 10 and the counter substrate 20 of the liquid crystal display device 300 on the liquid crystal layer 30 side. Further, the pixel electrode 16 of the liquid crystal display device 300 has a plurality of slits 16a.
  • the transparent auxiliary capacitance electrode 17 also functions as a common electrode, and a horizontal electric field is formed in the liquid crystal layer 30 according to the potential difference between the pixel electrode 16 and the transparent auxiliary capacitance electrode 17, and the alignment direction of the liquid crystal molecules is generated by this horizontal electric field. Is regulated.
  • the number of slits 16a and the inclination angle (angle formed with respect to the row direction) are not limited to those illustrated in FIG.
  • the transparent auxiliary capacitance electrode 17 is provided on the TFT substrate 10, and the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the second interlayer insulating layer 18 positioned therebetween.
  • Auxiliary capacity is constituted by these. Therefore, this auxiliary capacity is transparent and does not lower the aperture ratio.
  • the scanning wiring 12 has a first region R1 branched into two branch wirings 12a, and a contact hole CH for electrically connecting the pixel electrode 16 to the drain electrode 11d is formed on the scanning wiring 12. Since it is disposed between the two branch wirings 12a, it is possible to further improve the aperture ratio while suppressing signal delay.
  • the superiority of the liquid crystal display device 300 in the present embodiment will be described more specifically while comparing with the liquid crystal display device of the comparative example.
  • FIG. 19 shows a liquid crystal display device 800 of Comparative Example 4.
  • a liquid crystal display device 800 of Comparative Example 4 shown in FIG. 19 is different from the liquid crystal display device 300 in this embodiment in that the scanning wiring 12 is not branched.
  • FIG. 20A and 20B show regions SR shielded by the light shielding layer for the liquid crystal display device 300 of the present embodiment and the liquid crystal display device 800 of Comparative Example 4.
  • FIG. 20A and 20B show regions SR shielded by the light shielding layer for the liquid crystal display device 300 of the present embodiment and the liquid crystal display device 800 of Comparative Example 4.
  • FIG. 20B shows regions SR shielded by the light shielding layer for the liquid crystal display device 300 of the present embodiment and the liquid crystal display device 800 of Comparative Example 4.
  • the liquid crystal display device 300 of the present embodiment has a lower ratio of the light-shielded region SR and a higher aperture ratio than the liquid crystal display device 800 of the comparative example 4. Is realized.
  • Table 3 below shows an example of the aperture ratio when the pixel sizes are made substantially the same for the liquid crystal display device 300 of the present embodiment (embodiment 3) and the liquid crystal display device 800 of the comparative example 4.
  • a transparent auxiliary capacitance electrode 17 formed of a transparent conductive material is provided as an auxiliary capacitance electrode.
  • the aperture ratio of the liquid crystal display device 300 of the present embodiment is 1.00
  • the aperture ratio of the liquid crystal display device 800 of Comparative Example 4 is 0.93. Therefore, in the liquid crystal display device 300 of the present embodiment, the aperture ratio is improved by 7.5% compared to the liquid crystal display device 800 of Comparative Example 4.
  • the transparent auxiliary capacitance electrode 17 is provided on the first interlayer insulating layer 15 and is located between the pixel electrode 16, the transparent auxiliary capacitance electrode 17, the pixel electrode 16, and the transparent auxiliary capacitance electrode 17.
  • the auxiliary capacitance is configured by the second interlayer insulating layer 18
  • the arrangement of the transparent auxiliary capacitance electrode 17 and the configuration of the auxiliary capacitance are not limited to this.
  • 21 and 22 show another liquid crystal display device 300A in the present embodiment.
  • 21 and 22 are cross-sectional views schematically showing the liquid crystal display device 300A, and are views corresponding to FIGS. 17 and 18 for the liquid crystal display device 300.
  • FIG. 21 and 22 are cross-sectional views schematically showing the liquid crystal display device 300A, and are views corresponding to FIGS. 17 and 18 for the liquid crystal display device 300.
  • FIG. 21 and 22 are cross-sectional views schematically showing the liquid crystal display device 300A, and are views corresponding to FIGS. 17 and 18 for the liquid crystal display device 300.
  • the transparent auxiliary capacitance electrode 17 is provided under the gate insulating layer 14, and the pixel electrode 16 is provided on the first interlayer insulating layer 15.
  • an auxiliary capacitance is configured by the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the gate insulating layer 14 and the first interlayer insulating layer 15 located between the pixel electrode 16 and the transparent auxiliary capacitance electrode 17. Yes.
  • the transparent auxiliary capacitance electrode 17 is electrically connected to the auxiliary capacitance wiring 19 and is supplied with a Cs voltage from the auxiliary capacitance wiring 19.
  • the auxiliary capacitance line 19 is formed from the same conductive film as the scanning line 12.
  • the transparent auxiliary capacitance electrode 17 is electrically connected to the auxiliary capacitance wiring 19 when the transparent auxiliary capacitance electrode 17 is provided under the gate insulating layer 14 so that the transparent auxiliary capacitance electrode 17 is not continuous between pixels. This is because they are patterned.
  • 21 and 22 can also provide an effect of sufficiently increasing the aperture ratio while suppressing signal delay due to an increase in wiring resistance.
  • 23 and 24 show still another liquid crystal display device 300B in the present embodiment.
  • 23 and 24 are cross-sectional views schematically showing the liquid crystal display device 300B, and correspond to FIGS. 17 and 18 for the liquid crystal display device 300.
  • FIG. 1 is a diagrammatic representation of the liquid crystal display device 300B in the present embodiment.
  • the pixel electrode 16 is provided on the first interlayer insulating layer 15, and the transparent auxiliary capacitance electrode 17 is a second electrode provided so as to cover the pixel electrode 16. It is provided on the interlayer insulating layer 18.
  • the auxiliary capacitance is constituted by the pixel electrode 16, the transparent auxiliary capacitance electrode 17, and the second interlayer insulating layer 18 located between the pixel electrode 16 and the transparent auxiliary capacitance electrode 17.
  • the pixel electrode 16 does not have a plurality of slits 16a
  • the transparent auxiliary capacitance electrode 17 has a plurality of slits 17a.
  • the liquid crystal display device 300B shown in FIGS. 23 and 24 can also obtain an effect of sufficiently increasing the aperture ratio while suppressing signal delay due to an increase in wiring resistance.
  • the transparent auxiliary capacitance electrode 17 is located between the scanning wiring 12 and the signal wiring 13 and the pixel electrode 16. Therefore, the electric field formed by the voltage supplied to the scanning wiring 12 and the signal wiring 13 can be shielded (electrically shielded) by the transparent auxiliary capacitance electrode 17. Therefore, an effect is obtained that the potential of the scanning wiring 12 and the signal wiring 13 can be prevented from adversely affecting the display.
  • a liquid crystal display device capable of realizing a sufficiently high aperture ratio even when the definition is high and an active matrix substrate suitably used for such a liquid crystal display device are provided.
  • the liquid crystal display device according to the embodiment of the present invention is suitably used as a liquid crystal display device in various display modes such as VA mode, lateral electric field mode, TN mode, and ECB mode.
  • TFT substrate 10 Active matrix substrate (TFT substrate) 10a Substrate 11 Thin film transistor (TFT) 11a Semiconductor layer 11g Gate electrode 11s Source electrode 11d Drain electrode 11d 'Connection electrode 12 Scanning wiring (source bus line) 13 Signal wiring (gate bus line) DESCRIPTION OF SYMBOLS 14 Gate insulating layer 15 1st interlayer insulating layer 16 Pixel electrode 16a Slit 17 Transparent auxiliary capacity electrode 17a Slit 18 2nd interlayer insulating layer 19 Auxiliary capacity wiring 20 Counter substrate (color filter substrate) 20a substrate 21 color filter layer 22 counter electrode 23 protrusion 30 liquid crystal layer 100, 100A, 200, 200A, 300, 300A, 300B liquid crystal display device CH contact hole

Abstract

 TFT基板(10)は、基板(10a)と、基板に支持されたTFT(11)と、走査配線(12)と、信号配線(13)と、TFTを覆うように設けられた第1層間絶縁層(15)と、TFTのドレイン電極(11d)に電気的に接続された画素電極(16)と、画素電極の少なくとも一部に重なるように設けられた透明補助容量電極(17)とを備える。少なくとも第1層間絶縁層には、ドレイン電極に画素電極を電気的に接続するためのコンタクトホール(CH)が形成されている。走査配線は、2本の分岐配線(12a)に分岐した第1領域(R1)を有する。コンタクトホールは、2本の分岐配線の間に配置されている。

Description

アクティブマトリクス基板および液晶表示装置
 本発明は、アクティブマトリクス基板に関し、特に、薄膜トランジスタと、薄膜トランジスタに電気的に接続された画素電極とを備えるアクティブマトリクス基板に関する。また、本発明は、そのようなアクティブマトリクス基板を備える液晶表示装置にも関する。
 液晶表示装置は、薄型で低消費電力であるという特徴を有し、様々な分野に広く用いられている。特に、アクティブマトリクス型の液晶表示装置は、高いコントラスト比および優れた応答特性を有し、高性能であるので、テレビやモニタ、ノートパソコンに用いられており、近年その市場規模が拡大している。
 アクティブマトリクス型の液晶表示装置は、一般に、画素ごとにスイッチング素子として薄膜トランジスタ(TFT)が形成されたアクティブマトリクス基板(「TFT基板」と呼ばれることもある)と、カラーフィルタなどが形成された対向基板(「カラーフィルタ基板」と呼ばれることもある)と、アクティブマトリクス基板および対向基板の間に設けられた液晶層とを備えている。TFTに電気的に接続された画素電極と、共通電極との電位差に応じた電界が液晶層に印加され、この電界によって液晶層中の液晶分子の配向状態が変化することにより、各画素の光透過率を制御して表示を行うことができる。
 最近では、液晶表示装置の高精細化が進んでいるが、高精細な液晶表示装置においては、高いパネル開口率を得ることが困難である。精細度が高くなるほど、配線やTFT、コンタクトホール近傍の遮光領域など、表示に寄与しない領域(つまり開口率を低下させる領域)が増加するためである。
 また、液晶表示装置では、画素ごとに、液晶容量に電気的に並列に接続された補助容量が設けられる。TN(Twisted Nematic)モードやVA(Vertical Alignment)モードの液晶表示装置では、補助容量を構成する一対の電極の少なくとも一方が遮光性の材料から形成されていることが一般的である。例えば、補助容量に含まれる電極は、補助容量配線から延設された電極(あるいは補助容量配線の一部)であったり、TFTのドレイン電極から延設された電極であったりする。そのため、TNモードやVAモードの液晶表示装置では、補助容量も開口率を低下させる要因となる。
 これに対し、一部の表示モードでは、補助容量が開口率の低下の要因とならない。例えば、横電界モードの一種であるFFS(Fringe Field Switching)モードでは、一般的には、特許文献1に開示されているように、TFTを覆う層間絶縁層上に共通電極が設けられ、複数のスリットが形成された画素電極が、共通電極を覆う誘電体層上に設けられる。共通電極および画素電極は、いずれも透明な導電材料から形成されており、共通電極と、誘電体層を介して共通電極に重なる画素電極と、これらの間に位置する誘電体層とによって、補助容量が構成される。そのため、FFSモードでは、補助容量は開口率を低下させない。なお、特許文献2に開示されているように、FFSモードにおいて、TFTを覆う層間絶縁層上に画素電極が設けられ、複数のスリットが形成された共通電極が、画素電極を覆う誘電体層上に設けられる構成も知られている。この構成においても、補助容量は開口率を低下させない。
 そこで、他の表示モードにおいても、特許文献3および4に開示されているように、アクティブマトリクス基板に透明な補助容量電極を設け、透明な補助容量電極と、画素電極と、これらの間に位置する誘電体層(層間絶縁層)とによって透明な補助容量を構成することが考えられる。
特開2002-182230号公報 特開2011-53443号公報 特開2001-33818号公報 特開2010-91904号公報
 しかしながら、精細度のさらなる向上が要求されている現在、以下の理由から、補助容量を透明にするだけでは十分に高い開口率を得ることが困難になってきている。
 一般に、精細度が高くなるほど、配線抵抗やパネル負荷が大きくなるので、配線の信号遅延が大きくなる。信号遅延を小さくするためには、配線抵抗を小さくする必要がある。配線抵抗を小さくするためには、配線を厚膜化するか、あるいは、配線幅を大きくすればよい。しかしながら、配線を厚膜化すると、その上層に形成される段差が大きくなるので、厚膜化された配線の上方に設けられる別の配線が段差によって断線しやすくなる。そのため、配線を厚膜化することは好ましくないので、開口率を犠牲にしてでも配線幅を大きくせざるを得ない。また、コンタクトホール近傍では、液晶分子の配向が段差によって乱され、その乱れが光漏れの原因となる。そのため、コンタクトホール近傍の遮光領域は、精細度に関わらず一定の面積を確保する必要がある。これらの理由から、高精細な液晶表示装置において、十分に高い開口率を確保することは困難である。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、精細度が高くても十分に高い開口率を実現し得る液晶表示装置およびそのような液晶表示装置に好適に用いられるアクティブマトリクス基板を提供することにある。
 本発明による実施形態のアクティブマトリクス基板は、基板と、前記基板に支持され、半導体層、ゲート電極、ソース電極およびドレイン電極を有する薄膜トランジスタと、前記薄膜トランジスタの前記ゲート電極に電気的に接続された走査配線と、前記薄膜トランジスタの前記ソース電極に電気的に接続された信号配線と、前記薄膜トランジスタを覆うように設けられた第1層間絶縁層と、前記薄膜トランジスタの前記ドレイン電極に電気的に接続された画素電極と、透明な導電材料から形成され、前記基板の法線方向から見たときに前記画素電極の少なくとも一部に重なるように設けられた透明補助容量電極と、を備え、少なくとも前記第1層間絶縁層には、前記ドレイン電極に前記画素電極を電気的に接続するためのコンタクトホールが形成されており、前記走査配線は、2本の分岐配線に分岐した第1領域を有し、前記コンタクトホールは、前記2本の分岐配線の間に配置されている。
 ある実施形態において、前記走査配線は、その延びる方向に沿って、前記第1領域と、前記2本の分岐配線に分岐していない第2領域とを交互に有し、前記薄膜トランジスタは、その少なくとも一部が前記走査配線の前記第2領域に重なるように配置されている。
 ある実施形態において、前記透明補助容量電極は、前記第1層間絶縁層上に設けられており、前記アクティブマトリクス基板は、前記透明補助容量電極を覆うように設けられた第2層間絶縁層をさらに備え、前記画素電極は、前記第2層間絶縁層上に設けられており、前記コンタクトホールは、前記第1層間絶縁層および前記第2層間絶縁層の両方にわたって形成されている。
 ある実施形態において、前記画素電極と、前記透明補助容量電極と、前記画素電極および前記透明補助容量電極の間に位置する前記第2層間絶縁層とによって補助容量が構成されている。
 ある実施形態において、前記ゲート電極を覆うように設けられたゲート絶縁層をさらに備え、前記透明補助容量電極は、前記ゲート絶縁層の下に設けられており、前記画素電極は、前記第1層間絶縁層上に設けられている。
 ある実施形態において、前記画素電極と、前記透明補助容量電極と、前記画素電極および前記透明補助容量電極の間に位置する前記ゲート絶縁層および前記第1層間絶縁層とによって補助容量が構成されている。
 ある実施形態において、前記画素電極は、前記第1層間絶縁層上に設けられており、前記アクティブマトリクス基板は、前記画素電極を覆うように設けられた第2層間絶縁層をさらに備え、前記透明補助容量電極は、前記第2層間絶縁層上に設けられている。
 ある実施形態において、前記画素電極と、前記透明補助容量電極と、前記画素電極および前記透明補助容量電極の間に位置する前記第2層間絶縁層とによって補助容量が構成されている。
 本発明による実施形態の液晶表示装置は、上記構成を有するアクティブマトリクス基板と、前記アクティブマトリクス基板に対向するように配置された対向基板と、前記アクティブマトリクス基板および前記対向基板の間に設けられた液晶層と、を備える。
 本発明による実施形態の液晶表示装置は、上記構成を有するアクティブマトリクス基板と、前記アクティブマトリクス基板に対向するように配置された対向基板と、前記アクティブマトリクス基板および前記対向基板の間に設けられた液晶層と、を備え、横電界モードで表示を行う。
 ある実施形態において、前記透明補助容量電極は、共通電極として機能し、前記画素電極または前記透明補助容量電極は、複数のスリットを有する。
 本発明による実施形態の液晶表示装置は、上記構成を有するアクティブマトリクス基板と、前記アクティブマトリクス基板に対向するように配置された対向基板と、前記アクティブマトリクス基板および前記対向基板の間に設けられた液晶層と、を備え、垂直配向モードで表示を行う。
 ある実施形態において、前記対向基板は、少なくとも前記コンタクトホールに重なる遮光層を有する。
 本発明の実施形態によると、精細度が高くても十分に高い開口率を実現し得る液晶表示装置およびそのような液晶表示装置に好適に用いられるアクティブマトリクス基板が提供される。
本発明の実施形態1における液晶表示装置100を模式的に示す図であり、液晶表示装置100の1つの画素に対応した領域を示す平面図である。 本発明の実施形態1における液晶表示装置100を模式的に示す図であり、図1中の2A-2A’線に沿った断面図である。 本発明の実施形態1における液晶表示装置100を模式的に示す図であり、図1中の3A-3A’線に沿った断面図である。 比較例1の液晶表示装置500を模式的に示す図であり、液晶表示装置500の1つの画素に対応した領域を示す平面図である。 比較例2の液晶表示装置600を模式的に示す図であり、液晶表示装置600の1つの画素に対応した領域を示す平面図である。 (a)、(b)および(c)は、実施形態1の液晶表示装置100と、比較例1および2の液晶表示装置500および600について、遮光層によって遮光される領域SRを示す図である。 本発明の実施形態1における他の液晶表示装置100Aを模式的に示す図であり、液晶表示装置100についての図2に対応する断面図である。 本発明の実施形態1における他の液晶表示装置100Aを模式的に示す図であり、液晶表示装置100についての図3に対応する断面図である。 本発明の実施形態2における液晶表示装置200を模式的に示す図であり、液晶表示装置200の1つの画素に対応した領域を示す平面図である。 本発明の実施形態2における液晶表示装置200を模式的に示す図であり、図9中の10A-10A’線に沿った断面図である。 本発明の実施形態2における液晶表示装置200を模式的に示す図であり、図9中の11A-11A’線に沿った断面図である。 比較例3の液晶表示装置700を模式的に示す図であり、液晶表示装置700の1つの画素に対応した領域を示す平面図である。 (a)および(b)は、実施形態2の液晶表示装置200と、比較例3の液晶表示装置700について、遮光層によって遮光される領域SRを示す図である。 本発明の実施形態2における他の液晶表示装置200Aを模式的に示す図であり、液晶表示装置200についての図10に対応する断面図である。 本発明の実施形態2における他の液晶表示装置200Aを模式的に示す図であり、液晶表示装置200についての図11に対応する断面図である。 本発明の実施形態3における液晶表示装置300を模式的に示す図であり、液晶表示装置300の1つの画素に対応した領域を示す平面図である。 本発明の実施形態3における液晶表示装置300を模式的に示す図であり、図16中の17A-17A’線に沿った断面図である。 本発明の実施形態3における液晶表示装置300を模式的に示す図であり、図16中の18A-18A’線に沿った断面図である。 比較例4の液晶表示装置800を模式的に示す図であり、液晶表示装置800の1つの画素に対応した領域を示す平面図である。 (a)および(b)は、実施形態3の液晶表示装置300と、比較例4の液晶表示装置800について、遮光層によって遮光される領域SRを示す図である。 本発明の実施形態3における他の液晶表示装置300Aを模式的に示す図であり、液晶表示装置300についての図17に対応する断面図である。 本発明の実施形態3における他の液晶表示装置300Aを模式的に示す図であり、液晶表示装置300についての図18に対応する断面図である。 本発明の実施形態3におけるさらに他の液晶表示装置300Bを模式的に示す図であり、液晶表示装置300についての図17に対応する断面図である。 本発明の実施形態3におけるさらに他の液晶表示装置300Bを模式的に示す図であり、液晶表示装置300についての図18に対応する断面図である。
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
 (実施形態1)
 図1、図2および図3に、本実施形態における液晶表示装置100を示す。液晶表示装置100は、複数の行および複数の列を含むマトリクス状に配列された複数の画素を有している。図1は、液晶表示装置100の1つの画素に対応した領域を模式的に示す平面図である。図2は、図1中の2A-2A’線に沿った断面図であり、図3は、図1中の3A-3A’線に沿った断面図である。
 液晶表示装置100は、垂直配向(VA)モードで表示を行う。より具体的には、液晶表示装置100は、VAモードの一種であるCPA(Continuous Pinwheel Alignment)モードで表示を行う。液晶表示装置100は、図2および図3に示すように、アクティブマトリクス基板(以下では「TFT基板」と呼ぶ)10と、TFT基板10に対向するように配置された対向基板(「カラーフィルタ基板」と呼ばれることもある)20と、TFT基板10および対向基板20の間に設けられた液晶層30とを備える。
 TFT基板10は、図1、図2および図3に示すように、基板10aと、薄膜トランジスタ(TFT)11と、走査配線12と、信号配線13とを有する。
 基板10aは、透明で絶縁性を有する。基板10aは、典型的には、ガラス基板である。
 TFT11は、基板10aに支持されている。TFT11は、半導体層11a、ゲート電極11g、ソース電極11sおよびドレイン電極11dを有する。なお、本実施形態におけるTFT11は、いわゆるボトムゲート型のTFTであるが、トップゲート型のTFTであってもよい。
 走査配線(「ゲートバスライン」と呼ばれることもある)12は、行方向(水平方向)に略平行に延びている。走査配線12は、TFT11のゲート電極11gに電気的に接続されており、TFT11に走査信号を供給する。
 信号配線(「ソースバスライン」と呼ばれることもある)13は、列方向(垂直方向)に略平行に延びている。信号配線13は、TFT11のソース電極11sに電気的に接続されており、TFT11に表示信号を供給する。
 上述した走査配線12およびTFT11のゲート電極11gは、基板10aの液晶層30側の表面に設けられている。本実施形態では、走査配線12の一部が、ゲート電極11gとして機能する。走査配線12やゲート電極11gを覆うように、ゲート絶縁層14が設けられている。
 ゲート絶縁層14上に、TFT11のチャネル領域、ソース領域およびドレイン領域として機能する半導体層11aが設けられている。半導体層11aの材料としては、公知の種々の半導体材料を用いることができ、例えば、アモルファスシリコン、多結晶シリコン、連続粒界結晶シリコン(CGS:Continuous Grain Silicon)などを用いることができる。
 また、半導体層11aは、酸化物半導体層であってもよい。酸化物半導体層は、例えばIn-Ga-Zn-O系の半導体を含む。ここで、In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。In-Ga-Zn-O系半導体は、アモルファスでもよいし、結晶質でもよい。結晶質のIn-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向したものが好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば、特開2012-134475号公報に開示されている。参考のために、特開2012-134475号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有している。
 なお、酸化物半導体層は、In-Ga-Zn-O系半導体層に限定されない。酸化物半導体層は、例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO)、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、In―Sn―Zn―O系半導体(例えばIn23-SnO2-ZnO)、In-Ga-Sn-O系半導体などを含んでいてもよい。
 半導体層11aのソース領域およびドレイン領域に接するように、ソース電極11sおよびドレイン電極11dが設けられている。また、ゲート絶縁層14上には、信号配線13も設けられている。
 TFT基板10は、さらに、TFT11を覆うように設けられた第1層間絶縁層15と、TFT11のドレイン電極11dに電気的に接続された画素電極16と、透明な導電材料から形成された透明補助容量電極17とを有する。
 第1層間絶縁層15は、単層であってもよいし、複数の絶縁膜を含む積層構造(例えば無機絶縁膜と有機絶縁膜とを含む積層構造)を有していてもよい。
 本実施形態における透明補助容量電極17は、第1層間絶縁層15上に設けられている。透明補助容量電極17は、基板10aの法線方向から見たときに画素電極16の少なくとも一部(ここではほぼ全体)に重なるように設けられている。透明補助容量電極17は、例えばITOから形成されている。
 透明補助容量電極17を覆うように、第2層間絶縁層(誘電体層)18が設けられている。画素電極16は、この第2層間絶縁層18上に設けられている。画素電極16も、透明な導電材料(例えばITO)から形成されている。画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置する第2層間絶縁層18とによって補助容量が構成されている。透明補助容量電極17には、画素電極16に印加される電圧とは異なる、補助容量電圧(Cs電圧)が供給される。Cs電圧としては、例えば、後述する対向電極22に印加される電圧と同じ電圧が供給される。
 第1層間絶縁層15には、TFT11のドレイン電極11dに画素電極16を電気的に接続するためのコンタクトホールCHが形成されている。本実施形態では、画素電極16は第2層間絶縁層18上に設けられているので、コンタクトホールCHは、第1層間絶縁層15だけでなく第2層間絶縁層18にも(つまり第1層間絶縁層15および第2層間絶縁層18の両方にわたって)形成されている。コンタクトホールCH内で、ドレイン電極11dに画素電極16が接続されている。なお、透明補助容量電極17は、すべての画素にわたって連続するように形成されているが、コンタクトホールCH近傍には形成されていない。
 対向基板20は、基板20aと、カラーフィルタ層21と、対向電極22とを有する。
 基板20aは、透明で絶縁性を有する。基板20aは、典型的には、ガラス基板である。
 カラーフィルタ層21は、各画素で表示すべき色に応じたカラーフィルタ(例えば赤カラーフィルタ、緑カラーフィルタ、青カラーフィルタ)と、遮光層(ブラックマトリクス)とを含んでいる。遮光層は、TFT11、走査配線12、信号配線13に重なるように配置されている。また、遮光層は、コンタクトホールCHにも重なるように配置されている。
 対向電極22は、画素電極16に対向するように設けられている。典型的には、対向電極22は、表示領域全体の画素に共通する共通電極である。なお、必要に応じて、カラーフィルタ層21と対向電極22との間に平坦化層が設けられていてもよい。
 また、対向基板20は、各画素のほぼ中心(画素電極16のほぼ中心)に対応する領域に設けられた突起23を有する。突起(「リベット」と呼ばれることもある)23は、例えば、感光性樹脂から形成されている。
 液晶層30は、垂直配向型の液晶層である。液晶層30の液晶分子は、負の誘電異方性を有し、液晶層30に電圧が印加されていないとき、基板面に対して略垂直に(典型的には85°以上の角をなすように)配向している。TFT基板10および対向基板20の液晶層30側の表面には、一対の垂直配向膜が設けられている。
 液晶層30に電圧が印加されると、画素電極16の外縁(エッジ部)近傍に生成される斜め電界の配向規制力と、突起23の配向規制力とにより、各画素に軸対称配向の液晶ドメインが1つ形成される。液晶ドメイン内において、液晶分子は、突起23を中心として放射状に傾斜配向している。なお、本実施形態では突起23を例示しているが、突起23に代えて、セルギャップを規定するための柱状スペーサを、配向規制に用いてもよい。あるいは、突起23に代えて、対向電極22に開口部を設けてもよい。なお、柱状スペーサを配向規制に用いる場合には、柱状スペーサ近傍の液晶分子が光漏れの原因となることがあるので、遮光層が柱状スペーサにも重なるように配置されていることが好ましい。
 上述したように、本実施形態における液晶表示装置100では、TFT基板10に透明補助容量電極17が設けられており、画素電極16と、透明補助容量電極17と、これらの間に位置する第2層間絶縁層18とによって補助容量が構成されている。従って、この補助容量は透明であり、開口率を低下させない。
 また、本実施形態における液晶表示装置100は、以下の構成を有していることにより、信号遅延を抑制しつつ、開口率のいっそうの向上を図ることができる。
 本実施形態では、走査配線12は、図1に示すように、2本の分岐配線12aに分岐した第1領域R1と、そのように分岐していない第2領域R2とを、その延びる方向に沿って交互に有する。そして、コンタクトホールCHは、2本の分岐配線12aの間に配置されている。また、TFT11は、その少なくとも一部が走査配線12の第2領域R2に重なるように配置されている。つまり、TFT11は、走査配線12の分岐元に形成されている。
 上述したように、本実施形態の液晶表示装置100では、走査配線12が、2本の分岐配線12aに分岐した第1領域R1を有しているので、走査配線12の配線抵抗を小さくし、信号遅延を抑制することができる。また、画素電極16をドレイン電極11dに電気的に接続するためのコンタクトホールCHが、走査配線12の2本の分岐配線12a間に配置されている。そのため、遮光層の、走査配線12を遮光するための領域によって、コンタクトホールCH近傍も遮光することができる。言い換えると、コンタクトホールCH近傍における配向が乱れている領域を遮光する領域を、分岐配線12aの側端まで確保することができる。そのため、各画素において表示に寄与しない領域の割合を低くすることができる(つまり表示に寄与しない領域を集約的に配置することができる)ので、開口率のいっそうの向上を図ることができる。
 これに対し、従来の液晶表示装置では、走査配線における信号遅延を本実施形態の液晶表示装置100と同等にまで小さくするためには、走査配線の幅を本実施形態の液晶表示装置100における分岐配線12aの幅の2倍とする必要があり、また、コンタクトホールを走査配線が延びている領域とは別途に形成する必要があり、遮光層は、コンタクトホール近傍を遮光するための領域を、走査配線を遮光するための領域とは別途に含む必要がある。そのため、本実施形態の液晶表示装置100と比較すると、表示に寄与しない領域の割合が高くなるので、十分に高い開口率を実現することができない。
 このように、本実施形態の液晶表示装置100では、配線抵抗の増大による信号遅延を抑制しつつ、開口率を十分に高くすることができる。従来の液晶表示装置では、大型化、高精細化に伴う信号遅延を小さくしようとすると、十分な開口率を得ることが難しかったが、本実施形態のような構成を採用することにより、液晶表示装置が大型化、高精細化しても十分に高い開口率を実現することができる。
 ここで、比較例の液晶表示装置と比較しながら、本実施形態における液晶表示装置100の優位性をより具体的に説明する。
 図4および図5に、比較例1および2の液晶表示装置500および600をそれぞれ示す。図4および図5に示す比較例1および2の液晶表示装置500および600は、走査配線12が分岐していない点において、本実施形態における液晶表示装置100と異なる。また、比較例1の液晶表示装置500は、ドレイン電極11dから延設された接続電極11d’が画素のほぼ中央まで延びており、コンタクトホールCHが画素のほぼ中央に設けられている点においても、液晶表示装置100と異なっている。
 図6(a)、(b)および(c)に、本実施形態の液晶表示装置100と、比較例1および2の液晶表示装置500および600について、遮光層によって遮光される領域SRを示す。
 図6(a)、(b)および(c)の比較からわかるように、本実施形態の液晶表示装置100では、比較例1および2の液晶表示装置500および600においてよりも、遮光される領域SRの割合が少なく、高い開口率が実現されている。
 下記表1に、本実施形態(実施形態1)の液晶表示装置100、比較例2の液晶表示装置600および不透明な補助容量を備える従来の液晶表示装置について、画素サイズをほぼ同じにしたときの開口率の例を示す。本実施形態の液晶表示装置100および比較例2の液晶表示装置600では、補助容量電極として、透明な導電材料から形成された透明補助容量電極17が設けられているのに対し、従来の液晶表示装置では、補助容量電極として、金属材料から形成された不透明な補助容量電極が設けられている。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、本実施形態の液晶表示装置100の開口率を1.00とすると、比較例2の液晶表示装置600の開口率は0.93であり、従来の液晶表示装置の開口率は0.70である。従って、本実施形態の液晶表示装置100では、比較例2の液晶表示装置600と比べて開口率が7.5%向上しており、従来の液晶表示装置と比べて開口率が42.4%向上している。
 なお、開口率の向上度合は、画素サイズによって異なる。液晶表示装置100の精細度が高くなるほど、つまり、画素サイズが小さくなるほど、開口率の向上度合は高くなる。つまり、本実施形態のような構成を採用することによる効果が顕著となる。
 なお、ここでは、透明補助容量電極17が第1層間絶縁層15上に設けられており、画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置する第2層間絶縁層18とによって補助容量が構成される場合を例示したが、透明補助容量電極17の配置および補助容量の構成は、これに限定されるものではない。
 図7および図8に、本実施形態における他の液晶表示装置100Aを示す。図7および図8は、液晶表示装置100Aを模式的に示す断面図であり、液晶表示装置100についての図2および図3に対応する図である。
 図7および図8に示す液晶表示装置100Aでは、透明補助容量電極17は、ゲート絶縁層14の下に設けられており、画素電極16は、第1層間絶縁層15上に設けられている。この構成においては、画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置するゲート絶縁層14および第1層間絶縁層15とによって補助容量が構成されている。
 また、透明補助容量電極17は、補助容量配線19に電気的に接続されており、補助容量配線19からCs電圧を供給される。補助容量配線19は、走査配線12と同じ導電膜から形成されている。透明補助容量電極17が補助容量配線19に電気的に接続されているのは、透明補助容量電極17をゲート絶縁層14の下に設ける場合、透明補助容量電極17は、画素間で連続しないようにパターニングされているためである。
 図7および図8に示した液晶表示装置100Aでも、配線抵抗の増大による信号遅延を抑制しつつ、開口率を十分に高くする効果を得ることができる。
 なお、図2および図3に示した液晶表示装置100のような構成を採用すると、走査配線12や信号配線13と、画素電極16との間に、透明補助容量電極17が位置することになるので、走査配線12や信号配線13に供給される電圧によって形成される電界を、透明補助容量電極17によってシールド(電気的に遮蔽)することができる。そのため、走査配線12や信号配線13の電位が表示に悪影響を及ぼすことを防止し得るという効果が得られる。
 また、本実施形態では、電圧印加時に各画素に1つの液晶ドメインが形成される構成を例示したが、液晶ドメインの個数は1つに限定されるものではない。電圧印加時に、各画素に複数の液晶ドメインが形成されてもよい。複数の液晶ドメインが形成される場合、画素電極16には、少なくとも1つの開口部および/または切欠き部が形成されており、画素電極16は、開口部や切欠き部によって複数のサブ電極(それぞれが1つの液晶ドメインに対応する)に分割されている。ただし、本実施形態のような構成を採用することによる開口率向上の効果は、画素内に安定にただ1つの液晶ドメインが形成され得るような、画素サイズが比較的小さい場合においてより顕著に得られる。
 (実施形態2)
 図9、図10および図11に、本実施形態における液晶表示装置200を示す。図9は、液晶表示装置200の1つの画素に対応した領域を模式的に示す平面図である。図10は、図9中の10A-10A’線に沿った断面図であり、図11は、図9中の11A-11A’線に沿った断面図である。
 実施形態1における液晶表示装置100が、CPAモードで表示を行うのに対し、本実施形態における液晶表示装置200は、TNモード(あるいはECBモード)で表示を行う。そのため、液晶表示装置200の対向基板20には、突起23は設けられていない。また、液晶表示装置200のTFT基板10および対向基板20の液晶層30側の表面には、表示モードに応じた配向膜が設けられており、例えば配向膜にラビング処理を施すことにより、液晶分子の配向方向が規定されている。
 本実施形態の液晶表示装置200においても、TFT基板10に透明補助容量電極17が設けられており、画素電極16と、透明補助容量電極17と、これらの間に位置する第2層間絶縁層18とによって補助容量が構成されている。従って、この補助容量は透明であり、開口率を低下させない。
 また、走査配線12が、2本の分岐配線12aに分岐した第1領域R1を有しており、画素電極16をドレイン電極11dに電気的に接続するためのコンタクトホールCHが、走査配線12の2本の分岐配線12a間に配置されているので、信号遅延を抑制しつつ、開口率のいっそうの向上を図ることができる。
 ここで、比較例の液晶表示装置と比較しながら、本実施形態における液晶表示装置200の優位性をより具体的に説明する。
 図12に、比較例3の液晶表示装置700を示す。図12に示す比較例3の液晶表示装置700は、走査配線12が分岐していない点において、本実施形態における液晶表示装置200と異なる。
 図13(a)および(b)に、本実施形態の液晶表示装置200と、比較例3の液晶表示装置700について、遮光層によって遮光される領域SRを示す。
 図13(a)および(b)の比較からわかるように、本実施形態の液晶表示装置200では、比較例3の液晶表示装置700よりも、遮光される領域SRの割合が少なく、高い開口率が実現されている。
 下記表2に、本実施形態(実施形態2)の液晶表示装置200、比較例3の液晶表示装置700および不透明な補助容量を備える従来の液晶表示装置について、画素サイズをほぼ同じにしたときの開口率の例を示す。本実施形態の液晶表示装置200および比較例3の液晶表示装置700では、補助容量電極として、透明な導電材料から形成された透明補助容量電極17が設けられているのに対し、従来の液晶表示装置では、補助容量電極として、金属材料から形成された不透明な補助容量電極が設けられている。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、本実施形態の液晶表示装置200の開口率を1.00とすると、比較例3の液晶表示装置700の開口率は0.93であり、従来の液晶表示装置の開口率は0.70である。従って、本実施形態の液晶表示装置200では、比較例3の液晶表示装置700と比べて開口率が7.5%向上しており、従来の液晶表示装置と比べて開口率が42.4%向上している。
 なお、ここでは、透明補助容量電極17が第1層間絶縁層15上に設けられており、画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置する第2層間絶縁層18とによって補助容量が構成される場合を例示したが、透明補助容量電極17の配置および補助容量の構成は、これに限定されるものではない。
 図14および図15に、本実施形態における他の液晶表示装置200Aを示す。図14および図15は、液晶表示装置200Aを模式的に示す断面図であり、液晶表示装置200についての図10および図11に対応する図である。
 図14および図15に示す液晶表示装置200Aでは、透明補助容量電極17は、ゲート絶縁層14の下に設けられており、画素電極16は、第1層間絶縁層15上に設けられている。この構成においては、画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置するゲート絶縁層14および第1層間絶縁層15とによって補助容量が構成されている。
 また、透明補助容量電極17は、補助容量配線19に電気的に接続されており、補助容量配線19からCs電圧を供給される。補助容量配線19は、走査配線12と同じ導電膜から形成されている。透明補助容量電極17が補助容量配線19に電気的に接続されているのは、透明補助容量電極17をゲート絶縁層14の下に設ける場合、透明補助容量電極17は、画素間で連続しないようにパターニングされているためである。
 図14および図15に示した液晶表示装置200Aでも、配線抵抗の増大による信号遅延を抑制しつつ、開口率を十分に高くする効果を得ることができる。
 なお、図10および図11に示した液晶表示装置200のような構成を採用すると、走査配線12や信号配線13と、画素電極16との間に、透明補助容量電極17が位置することになるので、走査配線12や信号配線13に供給される電圧によって形成される電界を、透明補助容量電極17によってシールド(電気的に遮蔽)することができる。そのため、走査配線12や信号配線13の電位が表示に悪影響を及ぼすことを防止し得るという効果が得られる。
 (実施形態3)
 図16、図17および図18に、本実施形態における液晶表示装置300を示す。図16は、液晶表示装置300の1つの画素に対応した領域を模式的に示す平面図である。図17は、図16中の17A-17A’線に沿った断面図であり、図18は、図16中の18A-18A’線に沿った断面図である。
 実施形態1における液晶表示装置100が、CPAモードで表示を行うのに対し、本実施形態における液晶表示装置300は、横電界モードで表示を行う。より具体的には、本実施形態の液晶表示装置300は、FSSモードで表示を行う。そのため、液晶表示装置300の対向基板20には、対向電極22や突起23は設けられていない。また、液晶表示装置300のTFT基板10および対向基板20の液晶層30側の表面には、水平配向膜が設けられている。さらに、液晶表示装置300の画素電極16は、複数のスリット16aを有している。透明補助容量電極17は、共通電極としても機能し、画素電極16と透明補助容量電極17との電位差に応じて、液晶層30には横電界が形成され、この横電界によって液晶分子の配向方向が規制される。なお、複数のスリット16aの個数や傾斜角(行方向に対してなす角)は、図16に例示しているものに限定されない。
 本実施形態の液晶表示装置300においても、TFT基板10に透明補助容量電極17が設けられており、画素電極16と、透明補助容量電極17と、これらの間に位置する第2層間絶縁層18とによって補助容量が構成されている。従って、この補助容量は透明であり、開口率を低下させない。
 また、走査配線12が、2本の分岐配線12aに分岐した第1領域R1を有しており、画素電極16をドレイン電極11dに電気的に接続するためのコンタクトホールCHが、走査配線12の2本の分岐配線12a間に配置されているので、信号遅延を抑制しつつ、開口率のいっそうの向上を図ることができる。
 ここで、比較例の液晶表示装置と比較しながら、本実施形態における液晶表示装置300の優位性をより具体的に説明する。
 図19に、比較例4の液晶表示装置800を示す。図19に示す比較例4の液晶表示装置800は、走査配線12が分岐していない点において、本実施形態における液晶表示装置300と異なる。
 図20(a)および(b)に、本実施形態の液晶表示装置300と、比較例4の液晶表示装置800について、遮光層によって遮光される領域SRを示す。
 図20(a)および(b)の比較からわかるように、本実施形態の液晶表示装置300では、比較例4の液晶表示装置800よりも、遮光される領域SRの割合が少なく、高い開口率が実現されている。
 下記表3に、本実施形態(実施形態3)の液晶表示装置300および比較例4の液晶表示装置800について、画素サイズをほぼ同じにしたときの開口率の例を示す。本実施形態の液晶表示装置300および比較例4の液晶表示装置800では、補助容量電極として、透明な導電材料から形成された透明補助容量電極17が設けられている。
Figure JPOXMLDOC01-appb-T000003
 表3からわかるように、本実施形態の液晶表示装置300の開口率を1.00とすると、比較例4の液晶表示装置800の開口率は0.93である。従って、本実施形態の液晶表示装置300では、比較例4の液晶表示装置800と比べて開口率が7.5%向上している。
 なお、ここでは、透明補助容量電極17が第1層間絶縁層15上に設けられており、画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置する第2層間絶縁層18とによって補助容量が構成される場合を例示したが、透明補助容量電極17の配置および補助容量の構成は、これに限定されるものではない。
 図21および図22に、本実施形態における他の液晶表示装置300Aを示す。図21および図22は、液晶表示装置300Aを模式的に示す断面図であり、液晶表示装置300についての図17および図18に対応する図である。
 図21および図22に示す液晶表示装置300Aでは、透明補助容量電極17は、ゲート絶縁層14の下に設けられており、画素電極16は、第1層間絶縁層15上に設けられている。この構成においては、画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置するゲート絶縁層14および第1層間絶縁層15とによって補助容量が構成されている。
 また、透明補助容量電極17は、補助容量配線19に電気的に接続されており、補助容量配線19からCs電圧を供給される。補助容量配線19は、走査配線12と同じ導電膜から形成されている。透明補助容量電極17が補助容量配線19に電気的に接続されているのは、透明補助容量電極17をゲート絶縁層14の下に設ける場合、透明補助容量電極17は、画素間で連続しないようにパターニングされているためである。
 図21および図22に示した液晶表示装置300Aでも、配線抵抗の増大による信号遅延を抑制しつつ、開口率を十分に高くする効果を得ることができる。
 図23および図24に、本実施形態におけるさらに他の液晶表示装置300Bを示す。図23および図24は、液晶表示装置300Bを模式的に示す断面図であり、液晶表示装置300についての図17および図18に対応する図である。
 図23および図24に示す液晶表示装置300Bでは、画素電極16は、第1層間絶縁層15上に設けられており、透明補助容量電極17は、画素電極16を覆うように設けられた第2層間絶縁層18上に設けられている。
 この構成においては、画素電極16と、透明補助容量電極17と、画素電極16および透明補助容量電極17の間に位置する第2層間絶縁層18とによって補助容量が構成されている。また、この構成においては、画素電極16は複数のスリット16aを有しておらず、透明補助容量電極17が複数のスリット17aを有する。
 図23および図24に示した液晶表示装置300Bでも、配線抵抗の増大による信号遅延を抑制しつつ、開口率を十分に高くする効果を得ることができる。
 なお、図17および図18に示した液晶表示装置300のような構成を採用すると、走査配線12や信号配線13と、画素電極16との間に、透明補助容量電極17が位置することになるので、走査配線12や信号配線13に供給される電圧によって形成される電界を、透明補助容量電極17によってシールド(電気的に遮蔽)することができる。そのため、走査配線12や信号配線13の電位が表示に悪影響を及ぼすことを防止し得るという効果が得られる。
 本発明の実施形態によると、精細度が高くても十分に高い開口率を実現し得る液晶表示装置およびそのような液晶表示装置に好適に用いられるアクティブマトリクス基板が提供される。本発明による実施形態の液晶表示装置は、VAモード、横電界モード、TNモード、ECBモード等の各種の表示モードの液晶表示装置として好適に用いられる。
 10  アクティブマトリクス基板(TFT基板)
 10a  基板
 11  薄膜トランジスタ(TFT)
 11a  半導体層
 11g  ゲート電極
 11s  ソース電極
 11d  ドレイン電極
 11d’  接続電極
 12  走査配線(ソースバスライン)
 13  信号配線(ゲートバスライン)
 14  ゲート絶縁層
 15  第1層間絶縁層
 16  画素電極
 16a  スリット
 17  透明補助容量電極
 17a  スリット
 18  第2層間絶縁層
 19  補助容量配線
 20  対向基板(カラーフィルタ基板)
 20a  基板
 21  カラーフィルタ層
 22  対向電極
 23  突起
 30  液晶層
 100、100A、200、200A、300、300A、300B  液晶表示装置
 CH  コンタクトホール

Claims (13)

  1.  基板と、
     前記基板に支持され、半導体層、ゲート電極、ソース電極およびドレイン電極を有する薄膜トランジスタと、
     前記薄膜トランジスタの前記ゲート電極に電気的に接続された走査配線と、
     前記薄膜トランジスタの前記ソース電極に電気的に接続された信号配線と、
     前記薄膜トランジスタを覆うように設けられた第1層間絶縁層と、
     前記薄膜トランジスタの前記ドレイン電極に電気的に接続された画素電極と、
     透明な導電材料から形成され、前記基板の法線方向から見たときに前記画素電極の少なくとも一部に重なるように設けられた透明補助容量電極と、
    を備え、
     少なくとも前記第1層間絶縁層には、前記ドレイン電極に前記画素電極を電気的に接続するためのコンタクトホールが形成されており、
     前記走査配線は、2本の分岐配線に分岐した第1領域を有し、
     前記コンタクトホールは、前記2本の分岐配線の間に配置されているアクティブマトリクス基板。
  2.  前記走査配線は、その延びる方向に沿って、前記第1領域と、前記2本の分岐配線に分岐していない第2領域とを交互に有し、
     前記薄膜トランジスタは、その少なくとも一部が前記走査配線の前記第2領域に重なるように配置されている請求項1に記載のアクティブマトリクス基板。
  3.  前記透明補助容量電極は、前記第1層間絶縁層上に設けられており、
     前記アクティブマトリクス基板は、前記透明補助容量電極を覆うように設けられた第2層間絶縁層をさらに備え、
     前記画素電極は、前記第2層間絶縁層上に設けられており、
     前記コンタクトホールは、前記第1層間絶縁層および前記第2層間絶縁層の両方にわたって形成されている請求項1または2に記載のアクティブマトリクス基板。
  4.  前記画素電極と、前記透明補助容量電極と、前記画素電極および前記透明補助容量電極の間に位置する前記第2層間絶縁層とによって補助容量が構成されている請求項3に記載のアクティブマトリクス基板。
  5.  前記ゲート電極を覆うように設けられたゲート絶縁層をさらに備え、
     前記透明補助容量電極は、前記ゲート絶縁層の下に設けられており、
     前記画素電極は、前記第1層間絶縁層上に設けられている請求項1または2に記載のアクティブマトリクス基板。
  6.  前記画素電極と、前記透明補助容量電極と、前記画素電極および前記透明補助容量電極の間に位置する前記ゲート絶縁層および前記第1層間絶縁層とによって補助容量が構成されている請求項5に記載のアクティブマトリクス基板。
  7.  前記画素電極は、前記第1層間絶縁層上に設けられており、
     前記アクティブマトリクス基板は、前記画素電極を覆うように設けられた第2層間絶縁層をさらに備え、
     前記透明補助容量電極は、前記第2層間絶縁層上に設けられている請求項1または2に記載のアクティブマトリクス基板。
  8.  前記画素電極と、前記透明補助容量電極と、前記画素電極および前記透明補助容量電極の間に位置する前記第2層間絶縁層とによって補助容量が構成されている請求項7に記載のアクティブマトリクス基板。
  9.  請求項1から8のいずれかに記載のアクティブマトリクス基板と、
     前記アクティブマトリクス基板に対向するように配置された対向基板と、
     前記アクティブマトリクス基板および前記対向基板の間に設けられた液晶層と、
    を備える液晶表示装置。
  10.  請求項1から8のいずれかに記載のアクティブマトリクス基板と、
     前記アクティブマトリクス基板に対向するように配置された対向基板と、
     前記アクティブマトリクス基板および前記対向基板の間に設けられた液晶層と、
    を備え、
     横電界モードで表示を行う液晶表示装置。
  11.  前記透明補助容量電極は、共通電極として機能し、
     前記画素電極または前記透明補助容量電極は、複数のスリットを有する請求項10に記載の液晶表示装置。
  12.  請求項1から6のいずれかに記載のアクティブマトリクス基板と、
     前記アクティブマトリクス基板に対向するように配置された対向基板と、
     前記アクティブマトリクス基板および前記対向基板の間に設けられた液晶層と、
    を備え、
     垂直配向モードで表示を行う液晶表示装置。
  13.  前記対向基板は、少なくとも前記コンタクトホールに重なる遮光層を有する請求項9から12のいずれかに記載の液晶表示装置。
PCT/JP2013/057356 2012-04-18 2013-03-15 アクティブマトリクス基板および液晶表示装置 WO2013157336A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/394,852 US9726953B2 (en) 2012-04-18 2013-03-15 Active matrix substrate and liquid-crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-094328 2012-04-18
JP2012094328 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013157336A1 true WO2013157336A1 (ja) 2013-10-24

Family

ID=49383304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057356 WO2013157336A1 (ja) 2012-04-18 2013-03-15 アクティブマトリクス基板および液晶表示装置

Country Status (2)

Country Link
US (1) US9726953B2 (ja)
WO (1) WO2013157336A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204166255U (zh) * 2014-10-16 2015-02-18 京东方科技集团股份有限公司 一种显示面板及显示装置
CN112419954A (zh) * 2019-08-21 2021-02-26 群创光电股份有限公司 电子装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288006A (ja) * 1998-04-06 1999-10-19 Hitachi Ltd 液晶表示装置
JP2009134233A (ja) * 2007-11-01 2009-06-18 Sony Corp アクティブマトリックス型表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208131A (ja) 1993-01-11 1994-07-26 Hitachi Ltd 液晶表示装置
JP3796070B2 (ja) 1999-07-21 2006-07-12 シャープ株式会社 液晶表示装置
JP2002055360A (ja) * 2000-08-11 2002-02-20 Nec Corp 液晶表示装置及びその製造方法
KR100482468B1 (ko) 2000-10-10 2005-04-14 비오이 하이디스 테크놀로지 주식회사 프린지 필드 구동 액정 표시 장치
JP4627148B2 (ja) * 2004-04-09 2011-02-09 株式会社 日立ディスプレイズ 表示装置
WO2006064789A1 (ja) 2004-12-14 2006-06-22 Sharp Kabushiki Kaisha 液晶表示装置および液晶表示装置の欠陥修正方法
JP4717533B2 (ja) * 2005-07-06 2011-07-06 株式会社 日立ディスプレイズ 表示装置
CN101082746B (zh) * 2006-05-31 2013-03-20 株式会社日立显示器 显示装置
JP2010091904A (ja) 2008-10-10 2010-04-22 Epson Imaging Devices Corp 液晶表示装置
JP5500712B2 (ja) 2009-09-02 2014-05-21 株式会社ジャパンディスプレイ 液晶表示パネル
KR102637010B1 (ko) 2010-12-03 2024-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
TWI469360B (zh) * 2012-09-06 2015-01-11 Innocom Tech Shenzhen Co Ltd 顯示面板及顯示裝置
JP6091197B2 (ja) * 2012-12-10 2017-03-08 三菱電機株式会社 アレイ基板及び表示装置
KR102206377B1 (ko) * 2014-01-24 2021-01-22 삼성디스플레이 주식회사 액정 표시 장치
KR102182428B1 (ko) * 2014-02-18 2020-11-25 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
WO2015132819A1 (ja) * 2014-03-05 2015-09-11 パナソニック液晶ディスプレイ株式会社 液晶表示装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288006A (ja) * 1998-04-06 1999-10-19 Hitachi Ltd 液晶表示装置
JP2009134233A (ja) * 2007-11-01 2009-06-18 Sony Corp アクティブマトリックス型表示装置

Also Published As

Publication number Publication date
US9726953B2 (en) 2017-08-08
US20150062523A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
US10852612B2 (en) Liquid crystal display device
US8724061B2 (en) Pixel structure
CN110931505B (zh) 显示装置
US10978529B2 (en) Active matrix substrate and method for manufacturing the same
US9164341B2 (en) Active matrix substrate, liquid crystal display device and method for manufacturing active matrix substrate
US9261746B2 (en) Liquid crystal display device and manufacturing method of liquid crystal display device
US10902805B2 (en) Pixel structure
US9766525B2 (en) Active-matrix substrate and display device
US9726954B2 (en) Active matrix substrate with thin film transistor and aperture portions, liquid crystal display device, and method for manufacturing active matrix substrate
US10877327B2 (en) Pixel structure
WO2014084130A1 (ja) Tft基板
US9632380B2 (en) Liquid crystal display device
US9570469B2 (en) Active-matrix substrate and liquid-crystal display device
US20150206907A1 (en) Thin film transistor substrate, display panel and display device
US10928694B2 (en) Active matrix substrate and liquid crystal display device
US8477278B1 (en) Liquid crystal display panel
US9910332B2 (en) Display device
WO2013157336A1 (ja) アクティブマトリクス基板および液晶表示装置
WO2015132819A1 (ja) 液晶表示装置及びその製造方法
CN110268316B (zh) 有源矩阵基板和液晶显示装置
KR20130064279A (ko) 박막트랜지스터 및 이를 구비한 액정표시장치용 어레이 기판
US20200004073A1 (en) Liquid crystal display device
KR20170082688A (ko) 표시 기판 및 이를 포함하는 액정 표시 장치
JP2012234212A (ja) アクティブマトリクス基板及び液晶パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14394852

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP