WO2015133469A1 - 液晶表示装置 - Google Patents
液晶表示装置 Download PDFInfo
- Publication number
- WO2015133469A1 WO2015133469A1 PCT/JP2015/056203 JP2015056203W WO2015133469A1 WO 2015133469 A1 WO2015133469 A1 WO 2015133469A1 JP 2015056203 W JP2015056203 W JP 2015056203W WO 2015133469 A1 WO2015133469 A1 WO 2015133469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- region
- electrode
- pixel
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133784—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
- G02F2201/122—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/02—Composition of display devices
- G09G2300/023—Display panel composed of stacked panels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/0426—Layout of electrodes and connections
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0443—Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
- G09G2300/0447—Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0247—Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
Definitions
- the present invention relates to a liquid crystal display device, and more particularly to a horizontal electric field mode liquid crystal display device.
- a TFT-type liquid crystal display device controls the amount of light transmitted through each pixel by controlling the voltage applied to the liquid crystal layer (electrically called “liquid crystal capacitance”) of each pixel via the TFT. , Display.
- the polarity of the voltage applied to the liquid crystal layer of each pixel is inverted every certain period.
- Such a driving method of the liquid crystal display device is called an AC driving method, and a DC voltage is not applied to the liquid crystal layer for a long time. This is because, when a DC voltage is applied to the liquid crystal layer for a long time, uneven distribution of ions (interface polarization) existing in the liquid crystal material and deterioration of the liquid crystal material occur, and the display quality deteriorates.
- a voltage applied to the liquid crystal layer (liquid crystal capacitance) of each pixel is referred to as a pixel voltage.
- the pixel voltage is a voltage applied between the pixel electrode of the pixel and the counter electrode, and is represented by the potential of the pixel electrode with respect to the potential of the counter electrode.
- the polarity of the pixel voltage when the potential of the pixel electrode is higher than the potential of the counter electrode is positive, and the polarity of the pixel voltage when the potential of the pixel electrode is lower than the potential of the counter electrode is negative.
- the pixel electrode is connected to the drain electrode of the TFT, and the display signal voltage supplied from the source bus line connected to the source of the TFT is supplied.
- the difference between the display signal voltage supplied to the pixel electrode and the counter voltage supplied to the counter electrode corresponds to the pixel voltage.
- the polarity of the pixel voltage is typically inverted every frame period.
- the frame period in the TFT type liquid crystal display device is a period necessary for supplying a pixel voltage to all the pixels, and a certain gate bus line (scanning wiring) is selected, and then the gate bus line. Means a period until the selection is made, and is sometimes referred to as a vertical scanning period.
- the pixels are arranged in a matrix having rows and columns.
- the gate bus lines correspond to the pixel rows
- the source bus lines correspond to the pixel columns
- a pixel voltage is sequentially supplied to each row by a scanning signal (gate signal).
- the frame period of a conventional general TFT type liquid crystal display device is 1/60 seconds (frame frequency is 60 Hz).
- the input video signal is, for example, an NTSC signal
- the NTSC signal is an interlace drive signal
- one frame is 30 Hz
- the pixel voltage is supplied to all the pixels corresponding to each field of the NTSC signal, so the frame period of the TFT type liquid crystal display device is 1/60 seconds (the frame frequency is 60 Hz).
- TFT-type liquid crystal display devices with double-speed driving with a frame frequency of 120 Hz and quadruple-speed driving with 240 Hz are commercially available.
- the TFT type liquid crystal display device has a driving circuit configured to determine a frame period (frame frequency) according to an input video signal and supply a pixel voltage to all pixels in each frame period. I have.
- liquid crystal display device in a horizontal electric field mode typified by an In Plane Switching (IPS) mode and a Fringe Field Switching (FFS) mode
- IPS In Plane Switching
- FFS Fringe Field Switching
- the liquid crystal display device in the horizontal electric field mode has a problem that flicker associated with the polarity inversion of the pixel voltage is easily seen as compared with the liquid crystal display device in the vertical electric field mode such as the Vertical Alignment (VA) mode.
- VA Vertical Alignment
- Patent Document 1 discloses a liquid crystal display device in which the occurrence of flicker due to flexo polarization is suppressed by setting the flexographic coefficients e11 and e33 and the elastic constants K11 and K33 of the liquid crystal material within a predetermined range.
- a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
- pause driving sometimes called low-frequency driving
- This pause drive is sometimes called 1 Hz drive because an image is written only once per second.
- the pause drive refers to a drive method having a pause period longer than a period for writing an image or a low frequency drive with a frame frequency of less than 60 Hz.
- ⁇ ⁇ The visibility of flicker depends on the frequency. For example, a change in luminance that is not noticeable at 60 Hz is likely to be visually recognized as flicker when the frequency is lower than 60 Hz, particularly when the frequency is 30 Hz or less. In particular, it is known that flicker is very worrisome when the luminance changes at a frequency near 10 Hz.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a horizontal electric field mode liquid crystal display device in which flicker is hardly visible even when driven at a frequency of less than 60 Hz.
- a liquid crystal display device includes a first substrate and a second substrate provided to face each other, and a liquid crystal layer provided between the first substrate and the second substrate, A liquid crystal display device having a plurality of pixels arranged in a matrix, wherein the first substrate is in contact with the liquid crystal layer and a first electrode and a second electrode capable of generating a lateral electric field in the liquid crystal layer.
- An alignment film that defines an alignment axis direction of liquid crystal molecules when no voltage is applied, and the first electrode has a plurality of elongated electrode portions and / or at least one slit extending substantially parallel to each other.
- Each of the plurality of pixels includes a first region in which a direction in which the elongated electrode portion or the slit extends and the alignment axis direction defined by the alignment film form a first angle, and the elongated electrode portion or And a second region forming a second angle said the orientation axis direction is smaller than the first angle defined by the direction and the alignment layer of extension of the slit.
- the area of the first region and the area of the second region are different from each other.
- the liquid crystal layer includes a nematic liquid crystal material having a positive dielectric anisotropy, and the area of the second region is larger than the area of the first region.
- an area ratio of the second region in each of the plurality of pixels is 0.7 or more.
- the area ratio of the second region in each of the plurality of pixels is 0.9 or more.
- the first angle is not less than 4 ° and not more than 15 °
- the second angle is not less than 3 ° and not more than 14 °.
- the liquid crystal layer includes a nematic liquid crystal material having negative dielectric anisotropy, and the area of the first region is larger than the area of the second region.
- the area ratio of the first region in each of the plurality of pixels is 0.7 or more.
- the area ratio of the first region in each of the plurality of pixels is 0.9 or more.
- the first angle is not less than 76 ° and not more than 87 °
- the second angle is not less than 75 ° and not more than 86 °.
- the liquid crystal molecules in the first region and the liquid crystal molecules in the second region rotate in the same direction.
- the liquid crystal molecules in the first region and the second region in any one of the plurality of pixels.
- the direction in which the liquid crystal molecules in the first region and the second region rotate in the second pixel adjacent to the first pixel in the row direction or the column direction is opposite to each other.
- the extending direction of the elongated electrode portion or the slit of the first electrode in the first pixel is different from the extending direction of the elongated electrode portion or the slit of the first electrode in the second pixel.
- the first electrode of the first pixel and the first electrode of the second pixel are substantially line symmetric with respect to a boundary between the first pixel and the second pixel. It has such a shape.
- the first electrode is provided on the second electrode via a dielectric layer, and the first substrate includes the alignment film, the first electrode, the dielectric layer, and the first layer. Two electrodes are provided in this order from the liquid crystal layer side.
- the liquid crystal display device has a signal supply period in which a display signal voltage is supplied to each of the plurality of pixels and a pause period in which a display signal voltage is not supplied to each of the plurality of pixels. Pause driving provided in the frame can be performed.
- the first substrate includes a thin film transistor provided in each of the plurality of pixels, and the thin film transistor includes a semiconductor layer including an oxide semiconductor.
- the oxide semiconductor includes an In—Ga—Zn—O-based semiconductor.
- the In—Ga—Zn—O-based semiconductor includes a crystalline portion.
- a horizontal electric field mode liquid crystal display device in which flicker is hardly visually recognized even when driven at a frequency of less than 60 Hz.
- FIG. 4 is a diagram showing a direction in which liquid crystal molecules rotate when a voltage is applied in the liquid crystal display device 100. It is a graph which shows the time change of the normalization brightness
- (A) is sectional drawing which shows the electric force line
- (A) is a cross-sectional view showing the lines of electric force and the alignment state of liquid crystal molecules immediately after the polarity of the pixel voltage is reversed (at 106 msec), and (b) is a graph showing the luminance profile at that time.
- (A) is sectional drawing which shows the electric force line
- FIGS. 5A and 5B are graphs respectively showing an azimuth angle profile and a polar angle profile of liquid crystal molecules when a positive pixel voltage is applied (at 100 msec), and FIG. It is a graph which shows the result of having isolate
- FIGS. 6A and 6B are graphs respectively showing an azimuth angle profile and a polar angle profile of liquid crystal molecules immediately after the polarity of the pixel voltage is reversed (at the time of 106 msec), and FIG. It is a graph which shows the result of having isolate
- FIG. 7A and 7B are graphs respectively showing an azimuth angle profile and a polar angle profile of liquid crystal molecules when a negative pixel voltage is applied (at 200 msec), and FIG. It is a graph which shows the result of having isolate
- a positive pixel voltage is applied (at 100 msec)
- immediately after the polarity of the pixel voltage is reversed at 106 msec
- FIG. 11C is a graph showing the luminance profile shown in FIG. It is a graph which shows the result isolate
- (A), (b), (c) and (d) are plan views schematically showing liquid crystal display devices 100A, 100B, 100C and 100D of Examples 1, 2, 3 and 4, respectively.
- FIG. 1 (A), (b), and (c) are the top views which show typically liquid crystal display device 900A, 900B, and 900C of the comparative examples 1, 2, and 3, (d) is liquid crystal display device 900A, 900B. It is a figure which shows the direction which a liquid crystal molecule rotates at the time of voltage application in 900C.
- 6 is a graph showing normalized VT characteristics (relationship between pixel voltage and normalized luminance) when the angle formed between the extending direction of the elongated electrode portion and the orientation axis direction is 3 °, 7 °, 11 °, and 15 °. is there.
- FIG. 6 is a graph showing the results of calculating the flicker rate by simulation for Examples 5 to 8 and Comparative Examples 1 to 3 when pause driving at 20 Hz, 10 Hz, and 1 Hz is performed.
- Normalized VT characteristics (relationship between pixel voltage and normalized luminance) when the angle formed between the extending direction of the elongated electrode portion and the orientation axis direction is 3 °, 7 °, 11 °, 15 °, and 19 °. It is a graph to show. Plane schematically showing regions corresponding to arbitrary two pixels (first pixel and second pixel) Px1 and Px2 adjacent to each other in the row direction among the plurality of pixels of the liquid crystal display device 100B of Example 2.
- FIG. (A) is a graph showing VT characteristics in the front direction (polar angle 0 °, azimuth angle 0 °) and oblique direction (polar angle 75 °, azimuth angle 45 °) for the liquid crystal display device 100B of Example 2.
- (B) shows the VT characteristics in the front direction (polar angle 0 °, azimuth angle 0 °) and oblique direction (polar angle 75 °, azimuth angle 45 °) for the liquid crystal display device 100E of Example 9. It is a graph which shows.
- FIG. 10 A plane schematically showing regions corresponding to arbitrary two pixels (first pixel and second pixel) Px1 and Px2 adjacent to each other along the column direction among the plurality of pixels of the liquid crystal display device 100F of Example 10.
- FIG. It is a figure for demonstrating the photo-alignment process with respect to the alignment films 18 and 28.
- FIG. (A) And (b) is a figure for demonstrating the rubbing process with respect to the alignment films 18 and 28.
- FIG. (A) And (b) is sectional drawing which shows typically the other structure of the liquid crystal display device 100 by embodiment of this invention.
- (A) And (b) is a figure which shows the relationship between the liquid crystal molecule of a positive type liquid crystal material, and a dipole moment
- (c) is a pixel of positive polarity in the liquid crystal layer comprised from positive type liquid crystal material. It is a figure which shows the relationship between the electric force line when the voltage is applied, and the orientation state of a liquid crystal molecule.
- (A) is a figure which shows the relationship between the liquid crystal molecule of a negative type liquid crystal material, and a dipole moment
- (b) is a pixel voltage of positive polarity applied to the liquid crystal layer comprised from a negative type liquid crystal material. It is a figure which shows the relationship between the electric lines of force and the orientation state of a liquid crystal molecule when moving.
- (A) is a figure which shows the relationship between the liquid crystal molecule of a negative type liquid crystal material, and a dipole moment
- (b) is a pixel voltage of positive polarity applied to the liquid crystal layer comprised from a negative type liquid crystal material. It is a figure which shows the relationship between the electric lines of force and the orientation state of a liquid crystal molecule when moving. Flicker due to flexopolarization occurs (including negative liquid crystal materials in which the dipole moment is tilted with respect to the long axis of the liquid crystal molecule)
- a positive DC voltage or negative DC voltage is applied 5 is a graph showing an example of the VT characteristic.
- FIG. 4 is a diagram illustrating a direction in which liquid crystal molecules rotate when a voltage is applied in the liquid crystal display device 200.
- (A), (b), (c) and (d) are plan views schematically showing the liquid crystal display devices 200A, 200B, 200C and 200D of Examples 11, 12, 13 and 14, respectively.
- (A) is a top view which shows typically liquid crystal display device 900D of the comparative example 4
- (b) is a figure which shows the direction which a liquid crystal molecule rotates at the time of a voltage application in liquid crystal display device 900D.
- FIG. 6 is a graph showing normalized VT characteristics (relationship between pixel voltage and normalized luminance) when the angle formed between the extending direction of the elongated electrode portion and the orientation axis direction is 87 °, 83 °, 79 °, and 75 °. is there. It is a graph which shows the result of having calculated the time change of the normalization brightness
- FIG. 10 is a graph showing the results of calculating the flicker rate by simulation for Examples 11 to 14 and Comparative Example 4 when 2 Hz pause driving is performed.
- 10 is a graph showing the results of calculating the flicker rate by simulation for Examples 11, 15 to 19 and Comparative Example 4 when 2 Hz pause driving is performed.
- FIG. 10 is a graph showing the results of calculating the flicker rate by simulation for Examples 11 to 19 and Comparative Example 4 when 6.7 Hz pause driving is performed.
- FIG. 10 is a graph showing the results of calculating the flicker rate by simulation for Examples 11 to 19 and Comparative Example 4 when 2 Hz pause driving is performed.
- (A) is a perspective view for explaining “alignment axis azimuth”, “alignment azimuth” and “alignment direction”, and
- (b) is a polar angle ⁇ and an azimuth defined with respect to the alignment film main surface. It is a perspective view for demonstrating angle
- the terms “alignment axis direction”, “alignment direction” and “alignment direction” in this specification will be described with reference to FIGS. 45 (a) and (b).
- the liquid crystal molecules LC are typically aligned so as to have a predetermined pretilt angle ⁇ with respect to the alignment film main surface (XY plane).
- a vector directed to an end portion (end portion indicated by a white circle in FIG. 45A) far from an end portion closer to the XY plane of the liquid crystal molecules LC is considered.
- the direction of this vector indicated by the component in the XY plane is called “orientation direction”.
- the “orientation direction” can be expressed in the range of 0 ° to 360 ° using the azimuth angle ⁇ shown in FIG. Further, the direction of a straight line defined by this “alignment azimuth” and an orientation azimuth that is 180 ° different from the orientation azimuth (reverse direction) is referred to as “alignment axis azimuth”.
- the orientation axis directions are the same”, it may mean a relationship in which the orientation directions are the same, or may mean a relationship in which the orientation directions differ by 180 °.
- the “alignment direction” means a three-dimensional direction (a major axis direction of liquid crystal molecules and a direction that also includes the polar angle ⁇ shown in FIG. 45B).
- an FFS mode liquid crystal display device is exemplified, but the embodiment of the present invention is not limited to the FFS mode liquid crystal display device, and can also be applied to an IPS mode liquid crystal display device.
- FIGS. 1A and 1B are a plan view and a cross-sectional view schematically showing the liquid crystal display device 100, respectively.
- 1A shows a region corresponding to one pixel Px of the liquid crystal display device 100
- FIG. 1B shows a cross section taken along line 1B-1B ′ in FIG. 1A. ing.
- the liquid crystal display device 100 includes an active matrix substrate (first substrate) 10 and a counter substrate (second substrate) 20 provided so as to face each other, and a liquid crystal layer provided between the active matrix substrate 10 and the counter substrate 20. 30.
- the liquid crystal display device 100 includes a plurality of pixels Px arranged in a matrix.
- the liquid crystal display device 100 includes a pair of polarizing plates.
- the pair of polarizing plates is provided so as to be opposed to each other with at least the liquid crystal layer 30 (typically, on the side opposite to the liquid crystal layer 30 of the active matrix substrate 10 and the counter substrate 20). Placed in.
- one absorption axis a1 of the pair of polarizing plates is parallel to the horizontal direction of the display surface, and the other absorption axis a2 is parallel to the vertical direction of the display surface.
- the active matrix substrate 10 includes a first electrode 11 and a second electrode 12 that can generate a lateral electric field in the liquid crystal layer 30, and an alignment film 18 provided in contact with the liquid crystal layer 30.
- One of the first electrode 11 and the second electrode 12 is a pixel electrode, and the other is a common electrode.
- a configuration in which the first electrode 11 is a pixel electrode and the second electrode 12 is a common electrode is illustrated.
- the first electrode 11 is electrically connected to a drain electrode of a thin film transistor (TFT) provided for each pixel Px, and is supplied with a display signal voltage via the TFT.
- TFT thin film transistor
- the first electrode 11 is made of a transparent conductive material (for example, ITO).
- the first electrode 11 has a plurality of elongated electrode portions (branches) 11a extending substantially parallel to each other.
- a plurality (three in the example shown in FIG. 1) of elongated electrode portions 11a are formed by providing at least one (two in the example shown in FIG. 1) slits 11b in the conductive film constituting the first electrode 11. Can be done.
- the plurality of elongated electrode portions 11a are electrically connected to each other by a connecting portion (stem portion) 11c.
- the connecting portion 11c may be omitted.
- the number of the elongated electrode portions 11a (and the number of the slits 11b) is not limited to those illustrated. Further, there is no particular limitation on the width of each elongated electrode portion 11a and the interval between the elongated electrode portions 11a (that is, the width of the slit 11b).
- the first electrode 11 is provided on the second electrode 12 via the dielectric layer 13. That is, the active matrix substrate 10 includes the alignment film 18, the first electrode 11, the dielectric layer 13, and the second electrode 12 in this order from the liquid crystal layer 30 side.
- the dielectric layer 13 is made of, for example, an inorganic insulating material.
- the second electrode 12 is supplied with a common voltage.
- the second electrode 12 is typically a solid electrode (an electrode not provided with a slit or the like).
- the second electrode 12 is made of a transparent conductive material (for example, ITO).
- the alignment film 18 defines the alignment axis direction D1 of the liquid crystal molecules LC when no voltage is applied.
- the orientation axis direction D1 is parallel to the vertical direction of the display surface.
- the alignment film 18 is a photo-alignment film and functions as a horizontal alignment film that mainly defines the alignment direction of the liquid crystal molecules LC.
- the pretilt angle of the liquid crystal molecules LC defined by the alignment film 18 is typically set to 1 ° or less. Note that the pretilt angle of the liquid crystal molecules LC is preferably 0.1 ° or more and 1.0 ° or less.
- the “photo-alignment film” means an alignment film to which an alignment regulating force is imparted by irradiation with light (for example, polarized ultraviolet rays).
- International Publication No. 2009/157207 describes a liquid crystal display device having a photo-alignment film, for example, a polymer having a main chain of polyimide and a side chain containing a cinnamate group as a photoreactive functional group.
- a technique for forming a photo-alignment film by irradiating light to the alignment film made of is described.
- the entire disclosure of the above-mentioned International Publication No. 2009/157207 is incorporated herein by reference.
- the components of the active matrix substrate 10 are supported by a transparent substrate (for example, a glass substrate) 10a having insulating properties.
- a gate metal layer is provided on the substrate 10a.
- the gate metal layer includes a gate electrode of the TFT and a scanning wiring (gate bus line) electrically connected to the gate electrode (all not shown).
- the scanning wiring supplies a scanning signal voltage to the TFT.
- a gate insulating layer 14 is provided so as to cover the gate metal layer.
- An oxide semiconductor layer (not shown) is provided on the gate insulating layer 14 as an active layer of the TFT.
- the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor (hereinafter, abbreviated as “In—Ga—Zn—O-based semiconductor”).
- a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). It is suitably used as a drive TFT and a pixel TFT.
- a TFT having an In—Ga—Zn—O-based semiconductor layer is used, the power consumption of the liquid crystal display device 100 can be significantly reduced.
- the In—Ga—Zn—O-based semiconductor may be amorphous, may include a crystalline portion, and may have crystallinity.
- a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
- Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed in, for example, Japanese Patent Laid-Open No. 2012-134475. For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
- the oxide semiconductor layer may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
- Zn—O based semiconductor ZnO
- In—Zn—O based semiconductor IZO (registered trademark)
- Zn—Ti—O based semiconductor ZTO
- Cd—Ge—O based semiconductor Cd—Pb—O based
- CdO cadmium oxide
- Mg—Zn—O based semiconductors In—Sn—Zn—O based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO), In—Ga—Sn—O based semiconductors, etc. You may go out.
- a source metal layer is provided on the oxide semiconductor layer.
- the source metal layer includes a source electrode, a drain electrode (not shown) of the TFT, and a signal wiring (source bus line) 15 electrically connected to the source electrode.
- the signal wiring 15 supplies a display signal voltage to the TFT.
- a protective layer 16 is provided so as to cover the source metal layer.
- the protective layer 16 is made of, for example, an inorganic insulating material.
- An organic interlayer insulating layer 17 is provided on the protective layer 16.
- the organic interlayer insulating layer 17 is formed from, for example, a photosensitive resin material.
- the second electrode 12 On the organic interlayer insulating layer 17, the second electrode 12, the dielectric layer 13, the first electrode 11, and the alignment film 18 are laminated in this order.
- the counter substrate 20 includes a light shielding layer 21 and a color filter layer 22, and an alignment film 28 provided in contact with the liquid crystal layer 30.
- the light shielding layer (also referred to as “black matrix”) 21 is made of, for example, a black resin material having photosensitivity.
- the color filter layer 22 includes a red color filter 22R, a green color filter 22G, and a blue color filter 22B.
- the red color filter 22R, the green color filter 22G, and the blue color filter 22B are made of a colored resin material having photosensitivity, for example.
- the alignment direction of the liquid crystal molecules LC defined by the alignment film 28 is parallel or antiparallel to the alignment direction of the liquid crystal molecules LC defined by the alignment film 18.
- the alignment film 28 is a photo-alignment film and functions as a horizontal alignment film that mainly defines the alignment direction of the liquid crystal molecules LC.
- the pretilt angle of the liquid crystal molecules LC defined by the alignment film 28 is also typically set to 1 ° or less.
- the pretilt angle of the liquid crystal molecules LC defined by the alignment film 28 is also preferably 0.1 ° or more and 1.0 ° or less.
- an organic flattening layer 23 is provided so as to cover the light shielding layer 21 and the color filter layer 22, and an alignment film 28 is provided on the organic flattening layer 23.
- the organic planarization layer 23 is made of, for example, a photosensitive resin material.
- the components of the counter substrate 20 are supported by a transparent substrate (for example, a glass substrate) 20a having an insulating property.
- a transparent conductive layer 26 for preventing charging is provided on the surface of the substrate 20a opposite to the liquid crystal layer 30. For example, a potential of 0 V is applied to the transparent conductive layer 26.
- the liquid crystal layer 30 includes a nematic liquid crystal material having positive dielectric anisotropy, and the liquid crystal molecules LC in the liquid crystal layer 30 are aligned substantially horizontally by the alignment regulating force of the alignment films 18 and 28.
- each of the plurality of pixels Px includes a first region R1 and a second region R2, as shown in FIG.
- the extending direction of the elongated electrode portion 11a (or the slit 11b) and the alignment axis direction D1 defined by the alignment film 18 form a first angle ⁇ 1.
- the extending direction of the elongated electrode portion 11a is inclined by the first angle ⁇ 1 counterclockwise with respect to the orientation axis direction D1.
- the extending direction of the elongated electrode portion 11a (or the slit 11b) and the alignment axis direction D1 defined by the alignment film 18 are a second angle ⁇ 2 smaller than the first angle ⁇ 1.
- the extending direction of the elongated electrode portion 11a is inclined by the second angle ⁇ 2 counterclockwise with respect to the orientation axis direction D1.
- each pixel Px has two types of regions (first region R1 and second region R2) in which the elongated electrode portions 11a (or slits 11b) of the first electrode 11 extend in different directions.
- first region R1 and second region R2 the elongated electrode portions 11a (or slits 11b) of the first electrode 11 extend in different directions.
- the second angle ⁇ 2 only needs to be smaller than the first angle ⁇ 1 (that is, the first angle ⁇ 1 only needs to be larger than the second angle ⁇ 2), and the first angle ⁇ 1 and the second angle ⁇ 2 are sufficient. There is no limit to the size of the. However, for the reasons described later, it is preferable that the first angle ⁇ 1 is 4 ° to 15 ° and the second angle ⁇ 2 is 3 ° to 14 °.
- the area of the first region R1 and the area of the second region R2 are different from each other. More specifically, the area of the second region R2 is larger than the area of the first region R1.
- the liquid crystal display device 100 can perform pause driving. Power consumption can be significantly reduced by performing pause driving (for example, rewriting image data at a frequency of 1 to several Hz) when displaying a still image.
- pause driving for example, rewriting image data at a frequency of 1 to several Hz
- a display signal voltage is supplied to a pixel every one vertical scanning period (about 1/60 second). That is, in 60 Hz driving, a display signal is applied to the pixels 60 times per second.
- the display signal voltage is supplied to the pixel in a predetermined vertical scanning period, and the display signal voltage is not supplied in one or more vertical scanning periods thereafter. That is, in the pause drive, a signal supply period in which the display signal voltage is supplied to each pixel and a pause period in which the display signal voltage is not supplied to each pixel are provided in one frame.
- a display signal voltage is supplied to the pixels in one vertical scanning period (one vertical scanning period of 60 Hz driving: 1/60 seconds), and then 59 vertical scanning periods following the vertical scanning period. It may be executed by pausing without supplying a display signal to the pixel at (59/60 seconds).
- a voltage may be supplied over a plurality of vertical scanning periods in order to apply a desired display signal voltage to the pixel.
- the display signal voltage may be supplied to the pixels in the first three vertical scanning periods, and the subsequent 57 vertical scanning periods may be set as a pause period.
- a period allocated to supply a certain display signal to the pixels is called one frame.
- one frame includes 60 vertical scanning periods, of which a signal supply period and a pause period are appropriately set.
- one frame corresponds to one vertical scanning period.
- driving frequency in this specification corresponds to the reciprocal of one frame period (second). For example, when the driving frequency is set to 10 Hz by pause driving, one frame period is 0.1 second.
- the pixels Px of the liquid crystal display device 100 of the present embodiment have different angles between the extending direction of the elongated electrode portion 11a (or the slit 11b) and the alignment axis direction D1 defined by the alignment film 18. It has 1st area
- Patent Document 1 in an FFS mode liquid crystal display device, due to flexo polarization, a difference in transmittance occurs between when a positive voltage is applied to the liquid crystal layer and when a negative voltage is applied. It is described. According to Patent Document 1, this flexopolarization is a competition between the alignment regulating force caused by the electric field generated in the liquid crystal layer (represented by arched lines of electric force) and the alignment regulating force caused by the alignment film on the active matrix substrate side. This is caused by the splay alignment (in the vicinity of the interface between the alignment film on the active matrix substrate side and the liquid crystal layer) caused by splay.
- Patent Document 1 describes that the flicker can be suppressed by setting the flexural coefficients e11 and e33 and the elastic coefficients K11 and K33 of the liquid crystal material within a predetermined range.
- FIG. 3 shows the time variation of the normalized luminance when the transverse drive is performed in the horizontal electric field mode liquid crystal display device.
- FIG. 3 also shows the waveform of the display signal voltage.
- the driving frequency is 2 Hz (that is, one frame period is 500 msec) by pause driving, and the polarity of the display signal voltage is inverted every 500 msec.
- a voltage applied to the liquid crystal layer (liquid crystal capacitance) of each pixel is referred to as a pixel voltage.
- the pixel voltage is a voltage applied between the pixel electrode and the common electrode of each pixel, and is represented by the potential of the pixel electrode with respect to the potential of the common electrode.
- the polarity of the pixel voltage when the potential of the pixel electrode is higher than the potential of the counter electrode is “positive”, and the polarity of the pixel voltage when the potential of the pixel electrode is lower than the potential of the counter electrode is “negative”.
- FIG. 4 shows the relationship between the transmittance (relative transmittance) and time when 10 Hz pause driving (one frame period is 100 msec) is performed.
- a positive pixel voltage is applied to the first frame (0 to 100 msec)
- a negative pixel voltage is applied to the second frame (100 msec to 200 msec).
- a decrease in luminance occurs at the time of polarity reversal.
- FIG. 5A is a cross-sectional view showing the lines of electric force EF and the alignment state of the liquid crystal molecules LC when a positive pixel voltage is applied (at 100 msec)
- FIG. 6 is a graph showing a luminance profile (relationship between relative transmittance and distance in the horizontal direction (left-right direction in FIG. 5A)).
- FIG. 6A is a cross-sectional view showing the electric lines of force EF and the alignment state of the liquid crystal molecules LC immediately after the polarity of the pixel voltage is reversed (at 106 msec).
- FIG. It is a graph which shows the brightness
- FIG. 7A is a cross-sectional view showing the electric lines of force EF and the alignment state of the liquid crystal molecules LC when a negative pixel voltage is applied (at 200 msec), and FIG. It is a graph which shows the brightness
- the arrows FP shown in FIGS. 5A, 6A, and 7A indicate the direction of flexopolarization.
- the luminance profiles shown in FIGS. 5B, 6B, and 7B are obtained by simulation.
- LCD MASTER from Shintec Co., Ltd. was used.
- the cell thickness was 3.0 ⁇ m, and the dielectric layer thickness was 0.3 ⁇ m.
- the width and interval of the elongated electrode portion of the first electrode (pixel electrode) were 5.0 ⁇ m and 3.0 ⁇ m, respectively.
- the physical property values of the positive liquid crystal material constituting the liquid crystal layer are as shown in Table 1.
- the flexopolarization direction FP differs depending on whether the polarity of the pixel voltage is positive or negative. That is, as the polarity of the pixel voltage is reversed, the flexopolarization direction FP is also reversed. Further, as shown in FIG. 6A, the flexopolarization relaxes (disappears) immediately after the polarity of the pixel voltage is reversed.
- FIGS. 8A and 8B are graphs respectively showing an azimuth angle profile and a polar angle profile of the liquid crystal molecules LC when a positive pixel voltage is applied (at 100 msec), and FIG. These are graphs showing the result of separating the luminance profile shown in FIG. 5B into an azimuth angle component and a polar angle component.
- FIGS. 9A and 9B are graphs respectively showing the azimuth angle profile and polar angle profile of the liquid crystal molecules LC immediately after the polarity of the pixel voltage is reversed (at 106 msec), and FIG. FIG. 7 is a graph showing a result of separating the luminance profile shown in FIG. 6B into an azimuth angle component and a polar angle component.
- FIGS. 8A and 8B are graphs respectively showing an azimuth angle profile and a polar angle profile of the liquid crystal molecules LC when a positive pixel voltage is applied (at 100 msec), and FIG. These are graphs showing the result of separating the luminance profile shown in
- FIG. 10A and 10B are graphs respectively showing an azimuth angle profile and a polar angle profile of the liquid crystal molecules LC when a negative pixel voltage is applied (at 200 msec), and FIG. These are graphs showing the result of separating the luminance profile shown in FIG. 7B into an azimuth angle component and a polar angle component.
- the azimuth angle profile differs between when the polarity of the pixel voltage is positive and when it is negative. As shown in FIG. 8A, when the polarity of the pixel voltage is positive, the azimuth angle is large on the slit 911b and the azimuth angle is small on the elongated electrode portion 911a.
- the azimuth angle profile differs between when the polarity of the pixel voltage is positive and when it is negative. As shown in FIG.
- the azimuth profile immediately after the reversal of the polarity of the pixel voltage is the azimuth profile when the polarity of the pixel voltage is positive, and the azimuth profile when the polarity of the pixel voltage is negative. It is intermediate to the azimuth profile.
- the polar angle is large on the boundary between the right end of the elongated electrode portion 911a and the left end of the slit 911b, and the right end of the slit 911b and the elongated electrode.
- the polar angle is small on the boundary with the left end of the portion 911a.
- the polarity of the pixel voltage is negative, the polar angle is large on the boundary between the right end of the slit 911b and the left end of the elongated electrode portion 911a, and the elongated electrode portion 911a The polar angle is small on the boundary between the right end and the left end of the slit 911b.
- the polar angle profile is different between when the polarity of the pixel voltage is positive and when it is negative.
- the polar angle profile immediately after the reversal of the polarity of the pixel voltage is the polar angle profile when the polarity of the pixel voltage is positive, and the polar angle profile when the polarity of the pixel voltage is negative. It is intermediate to the polar angle profile.
- FIGS. 11, 12A and 12B show the case where the polarity of the pixel voltage is reversed (106 msec) when a positive polarity pixel voltage is applied (at 100 msec) when flexopolarization is not generated.
- 3 is a graph showing a luminance profile, an azimuth angle profile, and a polar angle profile when a negative pixel voltage is applied (at 200 msec).
- FIG. 12C is a graph showing a result of separating the luminance profile shown in FIG. 11 into an azimuth angle component and a polar angle component.
- each pixel Px has the first region R1 and the second region R2, so that flicker caused by flexopolarization is difficult to be seen even when driven at a frequency of less than 60 Hz. Can do.
- the result of verifying this by simulation will be described.
- Table 2 shows the liquid crystal display devices 100A, 100B, 100C, and 100D of Examples 1, 2, 3, and 4, in which the elongated electrode portion 11a extends and the alignment axis direction D1 in each of the first region R1 and the second region R2. (Ie, the first angle ⁇ 1 and the second angle ⁇ 2) and the area ratio of the first region R1 and the second region R2.
- the first angle ⁇ 1 is 7 ° and the second angle ⁇ 2 is 3 °. It is.
- the area ratio between the first region R1 and the second region R2 is 1: 9 in Example 1, 3: 7 in Example 2, 5: 5 in Example 3, and 7: 3 in Example 4. That is, in Examples 1 and 2, the area of the second region R2 is larger than the area of the first region R1. In Example 3, the area of the first region R1 and the area of the second region R2 are the same. In Example 4, the area of the first region R1 is larger than the area of the second region R2.
- Each pixel Px of the liquid crystal display devices 900A, 900B, and 900C of Comparative Examples 1, 2, and 3 has a first electrode (pixel electrode) 911 having a plurality of elongated electrode portions 911a and a dielectric layer (not shown). And a second electrode (common electrode) 912 formed below the first electrode 911.
- Each pixel Px has two regions, an upper region RU and a lower region RL.
- the extending direction of the elongated electrode portion 911a differs between the upper region RU and the lower region RL.
- the angle formed between the extending direction of the elongated electrode portion 911a and the alignment axis azimuth D1 in the upper region RU and the angle formed between the extending direction of the elongated electrode portion 911a and the alignment axis azimuth D1 in the lower region RL are the same angle. ⁇ .
- the extending direction of the elongated electrode portion 911a is inclined by an angle ⁇ in the clockwise direction with respect to the alignment axis direction D1 in the upper region RU, and the angle ⁇ in the counterclockwise direction with respect to the alignment axis direction D1 in the lower region RL. Inclined.
- the liquid crystal molecules LC in the upper region RU and the liquid crystal molecules LC in the lower region RL are in opposite directions. Rotate to. Specifically, the liquid crystal molecules LC in the upper region RU rotate counterclockwise, while the liquid crystal molecules LC in the lower region RL rotate clockwise.
- Table 3 shows the angle ⁇ formed between the extending direction of the elongated electrode portion 11a and the alignment axis direction D1 in each of the upper region RU and the lower region RL for the liquid crystal display devices 900A, 900B, and 900C of Comparative Examples 1, 2, and 3. And the area ratio of the upper region RU and the lower region RL.
- the angle ⁇ (the angle common to the upper region RU and the lower region RL) is 7 °, 11 ° and 15 °.
- the area ratio of the upper region RU and the lower region RL is 5: 5 in any of Comparative Examples 1, 2, and 3. That is, in Comparative Examples 1, 2, and 3, the area of the upper region RU and the area of the lower region RL are the same.
- FIG. 15 shows normalized VT characteristics (relationship between pixel voltage and normalized luminance) when the angle between the extending direction of the elongated electrode portion and the orientation axis direction is 3 °, 7 °, 11 °, and 15 °. Indicates.
- Table 4 shows voltages corresponding to 64-gradation display when the angle between the extending direction of the elongated electrode portion and the orientation axis direction is 3 °, 7 °, 11 °, and 15 °.
- FIG. 16 shows the result of calculation of the change in normalized luminance over time in Example 2 and Comparative Example 1 when 10 Hz drive is paused.
- FIG. 17 shows the result of calculating the temporal change of the normalized luminance by simulation for Example 1 in addition to Example 2 and Comparative Example 1 when 10 Hz driving is paused.
- FIG. 16 also shows the waveform of the pixel voltage.
- FIG. 18 and Table 5 show the results of calculating the flicker rate by simulation for Examples 1 to 4 and Comparative Examples 1 to 3 when pause driving is performed at 20 Hz, 10 Hz, and 1 Hz.
- the flicker rate is lower than in Comparative Examples 1 to 3. Further, the flicker rate is low in the order of Examples 1, 2, 3, and 4.
- Table 6 shows the angles (ie, the first angle ⁇ 1 and the second angle) formed between the extending direction of the elongated electrode portion 11a and the orientation axis direction D1 in each of the first region R1 and the second region R2 in Examples 5 to 8.
- Angle ⁇ 2 and the area ratio of the first region R1 and the second region R2 are shown.
- the first angle ⁇ 1 is 11 ° and the second angle ⁇ 2 is 3 °.
- the area ratio between the first region R1 and the second region R2 is 1: 9 in Example 5, 3: 7 in Example 6, 5: 5 in Example 7, and 7: 3 in Example 8. That is, in Examples 5 and 6, the area of the second region R2 is larger than the area of the first region R1. In Example 7, the area of the first region R1 and the area of the second region R2 are the same. In Example 8, the area of the first region R1 is larger than the area of the second region R2.
- FIG. 19 and Table 7 show the results of calculating the flicker rate by simulation for Examples 5 to 8 and Comparative Examples 1 to 3 when pause driving is performed at 20 Hz, 10 Hz, and 1 Hz.
- the flicker rate is lower than in Comparative Examples 1 to 3. Further, the flicker rate is lower in the order of Examples 5, 6, 7 and 8.
- each pixel Px has the first region R1 and the second region R2 in which the angle formed between the extending direction of the elongated electrode portion 11a (or the slit 11b) and the orientation axis direction D1 is different from each other. Even when driven at a frequency of less than 60 Hz, flicker caused by flexopolarization can be made difficult to be visually recognized.
- the mechanism by which the flicker rate is reduced by mixing the first region R1 and the second region R2 is not clear, but the angle formed between the extending direction of the elongated electrode portion 11a and the orientation axis direction D1 is relatively small.
- the elastic force of the liquid crystal molecules LC is increased by increasing the return rotation angle of the liquid crystal molecules LC at the time of relaxation of flexopolarization. As a result, the return time can be shortened to suppress the luminance drop (lower angle response) it is conceivable that.
- the area of the second region R2 is preferably larger than the area of the first region R1 (that is, the area ratio of the second region R2 in each pixel Px may exceed 0.5).
- the area ratio of the second region R2 in each pixel Px is more preferably 0.7 or more, and the area ratio of the second region R2 in each pixel Px is more preferably 0.9 or more.
- the ratio of the area of the second region R2 to the area of the first region R1 is preferably greater than 1, more preferably 7/3 or more, and even more preferably 9 or more.
- the first angle ⁇ 1 is preferably 4 ° to 15 °
- the second angle ⁇ 2 is preferably 3 ° to 14 °.
- the lower limit values of the first angle ⁇ 1 and the second angle ⁇ 2 are preferably about 3 ° to 4 °. I can say that.
- FIG. 20 shows the normalized VT characteristics (pixel voltage and normalized luminance) when the angle between the extending direction of the elongated electrode portion and the orientation axis direction is 3 °, 7 °, 11 °, 15 °, and 19 °. Relationship).
- the smaller the angle the higher the maximum transmittance, and the maximum transmittance is obtained at a lower voltage.
- the maximum transmittance is about 8% lower than that in the case of 3 °, and the voltage for taking the maximum transmittance is about 0.6V higher.
- the upper limit values of the first angle ⁇ 1 and the second angle ⁇ 2 are preferably about 14 ° to 15 ° from the viewpoint of reducing power consumption.
- the decrease in the maximum transmittance is about 8% compared to the case of 3 °, and the increase in the voltage that takes the maximum transmittance is about 0.3 V, and the adverse effect on the low power consumption is relatively Minor.
- the first angle ⁇ 1 is preferably 4 ° to 15 °
- the second angle ⁇ 2 is preferably 3 ° to 14 °.
- FIG. 21 schematically illustrates a region corresponding to any two pixels (first pixel and second pixel) Px1 and Px2 adjacent to each other in the row direction among the plurality of pixels of the liquid crystal display device 100B according to the second embodiment.
- FIG. 21 schematically illustrates a region corresponding to any two pixels (first pixel and second pixel) Px1 and Px2 adjacent to each other in the row direction among the plurality of pixels of the liquid crystal display device 100B according to the second embodiment.
- the direction in which is extended is the same. Therefore, when a voltage is applied between the first electrode 11 and the second electrode 12, the direction in which the liquid crystal molecules LC in the first region R1 and the second region R2 rotate in the first pixel Px1, and the second pixel Px2 The direction in which the liquid crystal molecules LC in the first region R1 and the second region R2 rotate is the same.
- FIG. 22 is a plan view schematically showing a liquid crystal display device 100E of the ninth embodiment different from the above-described first to eighth embodiments. Among a plurality of pixels of the liquid crystal display device 100E, adjacent to each other along the row direction. The region corresponding to two arbitrary pixels (first pixel and second pixel) Px1 and Px2 is shown.
- the first electrode 11 of the first pixel Px1 and the first electrode 11 of the second pixel Px2 are the first pixel Px1 and the second pixel Px2. They have shapes that are substantially line symmetrical with respect to the boundary.
- the direction in which the elongated electrode portion 11a of the first electrode 11 extends (which is also the direction in which the slit extends)
- the direction in which the elongated electrode portion 11a of the first electrode 11 extends (the extension of the slit). Is also the direction).
- the first pixel Px1 has the first electrode.
- the direction in which the liquid crystal molecules LC in the region R1 and the second region R2 rotate is opposite to the direction in which the liquid crystal molecules LC in the first region R1 and the second region R2 rotate in the second pixel Px2. Specifically, the liquid crystal molecules LC rotate clockwise in the first pixel Px1, while the liquid crystal molecules LC rotate counterclockwise in the second pixel Px2.
- FIG. 23A shows the VT characteristics in the front direction (polar angle 0 °, azimuth angle 0 °) and oblique direction (polar angle 75 °, azimuth angle 45 °) for the liquid crystal display device 100B of Example 2. It is a graph which shows the relationship between a voltage and a relative transmittance
- FIG. 23B shows the VT characteristics in the front direction (polar angle 0 °, azimuth angle 0 °) and oblique direction (polar angle 75 °, azimuth angle 45 °) for the liquid crystal display device 100E of Example 9. It is a graph which shows the relationship between a voltage and a relative transmittance
- the first electrode 11 of the first pixel Px1 and the first electrode 11 of the second pixel Px2 are connected to the first pixel Px1 and the first pixel Px1.
- the viewing angle characteristics can be further improved.
- the viewing angle characteristics can be further improved by adopting a configuration such as the liquid crystal display device 100F of the tenth embodiment shown in FIG. FIG. 24 shows regions corresponding to arbitrary two pixels (first pixel and second pixel) Px1 and Px2 adjacent to each other in the column direction among the plurality of pixels of the liquid crystal display device 100F.
- the first electrode 11 of the first pixel Px1 and the first electrode 11 of the second pixel Px2 are the first pixel Px1 and the second pixel Px2. They have shapes that are substantially line symmetrical with respect to the boundary.
- the direction in which the elongated electrode portion 11a of the first electrode 11 extends (which is also the direction in which the slit extends)
- the direction in which the elongated electrode portion 11a of the first electrode 11 extends (the extension of the slit). Is also the direction).
- the first pixel Px1 when a voltage is applied between the first electrode 11 and the second electrode 12, the first pixel Px1 includes the first electrode.
- the direction in which the liquid crystal molecules LC in the region R1 and the second region R2 rotate is opposite to the direction in which the liquid crystal molecules LC in the first region R1 and the second region R2 rotate in the second pixel Px2.
- the liquid crystal molecules LC rotate clockwise in the first pixel Px1, while the liquid crystal molecules LC rotate counterclockwise in the second pixel Px2.
- liquid crystal display device 100F of Example 10 having the above-described configuration, occurrence of coloring and gradation inversion when halftone display is observed from an oblique direction is suppressed, and higher viewing angle characteristics can be obtained.
- the active matrix substrate 10 can be manufactured by various known methods.
- Each of the gate metal layer (including the TFT gate electrode and the scanning wiring) and the source metal layer (including the TFT source electrode, drain electrode, and signal wiring) is, for example, a 0.4 ⁇ m thick TiN / Al / TiN laminated film.
- the gate insulating layer 14 and the dielectric layer 13 are each formed of a SiNx film having a thickness of 0.2 ⁇ m to 0.5 ⁇ m, for example.
- the protective layer 16 is formed from, for example, a 0.4 ⁇ m thick SiNx film.
- the organic interlayer insulating layer 17 is made of, for example, an acrylic resin material having a thickness of 2.5 ⁇ m.
- the first electrode (pixel electrode) 11 and the counter electrode (common electrode) 12 are formed of, for example, an ITO film having a thickness of 0.1 ⁇ m.
- the width of the elongated electrode portion 11a of the first electrode 11 is, for example, 2.5 ⁇ m.
- the interval between the elongated electrode portions 11a (the width of the slit 11b) is, for example, 4.0 ⁇ m.
- the angle formed between the elongated electrode portion 11 a and the orientation axis direction D ⁇ b> 1 by the first region R ⁇ b> 1 and the second region R ⁇ b> 2 is obtained by using a resist mask having an appropriate shape. Different first electrodes 11 can be formed.
- the counter substrate 20 can also be produced by various known methods.
- the light shielding layer 21 is formed of, for example, a black resin material, and the thickness thereof is, for example, 1.6 ⁇ m.
- Each of the red color filter 22R, the green color filter 22G, and the blue color filter 22B is made of, for example, a colored resin material, and has a thickness of, for example, 1.5 ⁇ m.
- the organic planarization layer 23 is made of, for example, an acrylic resin material and has a thickness of, for example, 2.0 ⁇ m.
- the transparent conductive layer 26 is formed from, for example, an ITO film having a thickness of 20 nm.
- the transparent conductive layer 26 is formed by, for example, a sputtering method after the liquid crystal injection process.
- the alignment films 18 and 28 that are photo-alignment films can be formed as follows, for example. First, an alignment film 18/28 having a thickness of, for example, 0.06 ⁇ m to 0.08 ⁇ m is formed by applying a photo-alignment film material on the surface of the active matrix substrate 10 / opposing substrate 20 by spin coating or the like and baking it. .
- PVCi polyvinylcinnamate
- ⁇ -butyrolactone a polyvinylcinnamate
- the resulting solution was placed in a spin coater.
- Application is performed on the active matrix substrate 10 / opposing substrate 20 by adjusting the rotation speed of the spin coater (for example, 1500 rpm to 2500 rpm) so that the thickness becomes 60 nm to 80 nm.
- a baking process is performed in which the substrate is pre-baked (for example, at 80 ° C. for 1 minute) and post-baked (for example, at 180 ° C. for 1 hour) on a hot plate.
- linearly polarized ultraviolet light (polarized UV) having a polarization direction L1 is passed through a mask (wire grid slit mask) 48 having a plurality of slits 48S extending in a predetermined direction with respect to the alignment film 18/28.
- a mask 48 having a slit 48s having a width of about 7 ⁇ m is disposed between the UV light source LS and the alignment film 18/28, and the irradiation energy is set to 1.5 J / cm 2 to irradiate polarized UV.
- the optical alignment process can be performed on the entire resin film.
- a photo-alignment film material that expresses an alignment regulating force (represented by an alignment axis direction D1) in a direction perpendicular to the polarization direction L1 of the polarized UV is used.
- the alignment films 18 and 28 which are photo-alignment films can be formed.
- the alignment films 18 and 28 need not be photo-alignment films.
- the alignment films 18 and 28 may be rubbed as an alignment process.
- the alignment films 18 and 28 subjected to the rubbing treatment can be formed as follows, for example.
- a polyamic acid-based alignment film material is mixed in ⁇ -butyrolactone so that the solid content concentration is about 3.0 wt%, and the obtained solution is mixed on the active matrix substrate 10 / counter substrate 20 installed in a spin coater. Further, the spin coater is adjusted so that the thickness is 60 nm to 80 nm (for example, 1500 rpm to 2500 rpm). Subsequently, a baking process is performed in which the substrate is pre-baked (for example, at 80 ° C. for 1 minute) and post-baked (for example, at 180 ° C. for 1 hour) on a hot plate.
- the alignment film 18/28 is rubbed using a rubbing roller 43 around which a rubbing cloth 42 is wound.
- a rubbing roller 43 around which a rubbing cloth 42 is wound.
- YA18R manufactured by Yoshikawa Kako material is rayon
- the rubbing process is performed under the conditions that the rotation speed of the rubbing roller 43 is 300 rpm, the moving speed of the stage is 25 mm / min, and the amount per hair is 0.6 ⁇ m.
- the relationship between the rotation direction D3 of the rubbing roller 43, the rubbing direction D4 and the moving direction D5 of the stage is as shown in FIG. As shown in FIG.
- the bristles 42a of the rubbing cloth 42 are inclined, and so-called regular rubbing is performed in the example shown in FIG.
- the anchoring characteristics of the alignment films 18 and 28 are relatively strong. For example, by reducing the moving speed of the stage, the rubbing density can be increased and the anchoring characteristic can be enhanced.
- a liquid crystal panel including the liquid crystal layer 30 is obtained by sealing a liquid crystal material between these substrates. This step can also be performed by various known methods. Specific examples will be described below.
- a sealant is applied to a peripheral portion of a region corresponding to one panel in the counter substrate 20 using a dispenser.
- the sealing material for example, a thermosetting resin can be used.
- a pre-bake process for example, at 80 ° C. for 5 minutes
- spherical spacers having a desired diameter for example, 3.3 ⁇ m
- a desired diameter for example, 3.3 ⁇ m
- each liquid crystal panel a gap is maintained between the substrates so that the interval is maintained by the spacer, which is an empty cell state.
- a liquid crystal material is injected into this empty cell.
- the liquid crystal injection step is performed by putting an appropriate amount of liquid crystal material into an injection pan, setting it together with an empty cell in a vacuum chamber, and evacuating (for example, 60 minutes) and then dip-injecting (for example, 60 minutes). After the cell into which the liquid crystal material is injected is taken out of the vacuum chamber, the liquid crystal material attached to the injection port is cleaned. Also, a UV curable resin is applied to the injection port, and this is cured by UV irradiation to seal the injection port, thereby completing the liquid crystal panel.
- the second electrode (common electrode) 12 may be provided in the same layer as the source metal layer (including the signal wiring 15 and the source electrode and drain electrode of the TFT).
- the protective layer 16 functions as a dielectric layer of an auxiliary capacitor (that is, located between the pixel electrode 11 and the common electrode 12).
- the second electrode (common electrode) 12 may be provided in the same layer as the gate metal layer (including the scanning wiring and the gate electrode of the TFT).
- the gate insulating layer 14 and the protective layer 16 function as a dielectric layer of an auxiliary capacitor (that is, located between the pixel electrode 11 and the common electrode 12).
- the transmission axis and the absorption axis of the pair of polarizing plates may be substituted for each other.
- the “polarization axis” may refer to either the absorption axis or the transmission axis
- the orientation axis direction D1 is preferably the polarization axis (that is, the absorption axis) of the back side (or front side) polarizing plate. It is arranged substantially parallel to either the axis or the transmission axis.
- the FFS mode liquid crystal display device is exemplified, but the liquid crystal display device according to the embodiment of the present invention may be an IPS mode liquid crystal display device.
- the liquid crystal layer 30 is made of a positive liquid crystal material (nematic liquid crystal material having a positive dielectric anisotropy) is exemplified.
- the liquid crystal layer 30 is a negative liquid crystal material (dielectric anisotropic).
- FIG. 28 (a) and 28 (b) are diagrams showing the relationship between the liquid crystal molecules LC contained in the positive liquid crystal material and the dipole moment DM.
- FIG. 28C shows the relationship between the electric lines of force EF and the alignment state of the liquid crystal molecules LC when a positive pixel voltage is applied to the liquid crystal layer made of the positive liquid crystal material. It is.
- the dipole moment DM of the liquid crystal molecules LC of the positive liquid crystal material is parallel to the long axis of the liquid crystal molecules LC as shown in FIG. 28 (a), or the liquid crystal molecules LC as shown in FIG. 28 (b). It is inclined with respect to the major axis. In either case, as shown in FIG. 28C, the liquid crystal molecules LC are aligned along the gradient of the electric field when the pixel voltage is applied, so that splay deformation occurs.
- FIGS. 29A and 30A are diagrams showing the relationship between the liquid crystal molecule LC ′ contained in the negative liquid crystal material and its dipole moment DM.
- FIGS. 29B and 30B show the alignment of the electric lines of force EF and the liquid crystal molecules LC ′ when a positive pixel voltage is applied to the liquid crystal layer composed of the negative liquid crystal material. It is a figure which shows the relationship with a state.
- the dipole moment DM of the liquid crystal molecule LC ′ is inclined with respect to the major axis of the liquid crystal molecule LC ′ as shown in FIG.
- the dipole moment DM tends to tilt.
- FIG. 30B since the liquid crystal molecules LC ′ are aligned along the gradient of the electric field when the pixel voltage is applied, splay deformation occurs. As a result, flicker is generated due to flexopolarization, and the luminance is reduced when the polarity is reversed.
- FIG. 31 shows a flicker caused by flexo polarization (that is, including a negative liquid crystal material in which the dipole moment DM is inclined with respect to the long axis of the liquid crystal molecule LC ′) when a positive DC voltage is applied.
- a flicker caused by flexo polarization that is, including a negative liquid crystal material in which the dipole moment DM is inclined with respect to the long axis of the liquid crystal molecule LC ′
- FIG. 31 shows a flicker caused by flexo polarization (that is, including a negative liquid crystal material in which the dipole moment DM is inclined with respect to the long axis of the liquid crystal molecule LC ′) when a positive DC voltage is applied.
- FIG. 31 shows a flicker caused by flexo polarization (that is, including a negative liquid crystal material in which the dipole moment DM is inclined with respect to the long axis of the liquid crystal molecule LC ′) when a positive DC voltage is applied.
- FIGS. 32A and 32B are a plan view and a cross-sectional view schematically showing the liquid crystal display device 200, respectively.
- FIG. 32A shows a region corresponding to one pixel Px of the liquid crystal display device 200
- FIG. 32B shows a cross section taken along line 32B-32B ′ in FIG. ing.
- the liquid crystal display device 200 differs from the liquid crystal display device 100 shown in FIG. 1 in that the liquid crystal layer 30 is composed of a negative liquid crystal material (that is, it includes a nematic liquid crystal material having a negative dielectric anisotropy). Yes.
- the liquid crystal display device 200 also has the liquid crystal shown in FIG. 1 in that the alignment axis direction D1 of the liquid crystal molecules LC ′ defined by the alignment film 18 on the active matrix substrate 10 side is parallel to the horizontal direction of the display surface. Different from the display device 100.
- the orientation direction of the liquid crystal molecules LC ′ defined by the alignment film 28 on the counter substrate 28 side is parallel or antiparallel to the orientation direction of the liquid crystal molecules LC defined by the alignment film 18.
- each of the plurality of pixels Px includes a first region R1 and a second region R2, as shown in FIG.
- the extending direction of the elongated electrode portion 11a (or the slit 11b) and the alignment axis direction D1 defined by the alignment film 18 form a first angle ⁇ 1.
- the extending direction of the elongated electrode portion 11a is inclined by the first angle ⁇ 1 clockwise with respect to the alignment axis direction D1.
- the extending direction of the elongated electrode portion 11a (or the slit 11b) and the alignment axis direction D1 defined by the alignment film 18 are a second angle ⁇ 2 smaller than the first angle ⁇ 1.
- the extending direction of the elongated electrode portion 11a is inclined by the second angle ⁇ 2 clockwise with respect to the orientation axis direction D1.
- each pixel Px has two types of regions (first region R1 and second region R2) in which the elongated electrode portions 11a (or slits 11b) of the first electrode 11 extend in different directions.
- first region R1 and second region R2 the elongated electrode portions 11a (or slits 11b) of the first electrode 11 extend in different directions.
- the second angle ⁇ 2 only needs to be smaller than the first angle ⁇ 1 (that is, the first angle ⁇ 1 only needs to be larger than the second angle ⁇ 2), and the first angle ⁇ 1 and the second angle ⁇ 2 are sufficient. There is no limit to the size of the. However, for the reasons described later, it is preferable that the first angle ⁇ 1 is not less than 76 ° and not more than 87 °, and the second angle ⁇ 2 is not less than 75 ° and not more than 86 °.
- the area of the first region R1 and the area of the second region R2 are different from each other. More specifically, the area of the first region R1 is larger than the area of the second region R2.
- each pixel Px of the liquid crystal display device 200 includes the first region R1 in which the angle between the extending direction of the elongated electrode portion 11a (or the slit 11b) and the alignment axis direction D1 defined by the alignment film 18 is different from each other. And has a second region R2.
- Table 8 shows the liquid crystal display devices 200A, 200B, 200C, and 200D of Examples 11, 12, 13, and 14 in the first region R1 and the second region R2 in the extending direction of the elongated electrode portion 11a and the alignment axis direction D1. (Ie, the first angle ⁇ 1 and the second angle ⁇ 2) and the area ratio of the first region R1 and the second region R2.
- the first angle ⁇ 1 is 87 ° and the second angle ⁇ 2 is 83 °. It is.
- the area ratio between the first region R1 and the second region R2 is 9: 1 in Example 11, 7: 3 in Example 12, 5: 5 in Example 13, and 3: 7 in Example 14. That is, in Examples 11 and 12, the area of the first region R1 is larger than the area of the second region R2. In Example 13, the area of the first region R1 and the area of the second region R2 are the same. In Example 14, the area of the second region R2 is larger than the area of the first region R1.
- Each pixel Px of the liquid crystal display device 900D of Comparative Example 4 has a first electrode (pixel electrode) 911 having a plurality of elongated electrode portions 911a and a first electrode 911 via a dielectric layer (not shown).
- a formed second electrode (common electrode) 912 is provided.
- Each pixel Px has two regions, an upper region RU and a lower region RL.
- the extending direction of the elongated electrode portion 911a differs between the upper region RU and the lower region RL.
- the angle formed between the extending direction of the elongated electrode portion 911a and the alignment axis azimuth D1 in the upper region RU and the angle formed between the extending direction of the elongated electrode portion 911a and the alignment axis azimuth D1 in the lower region RL are the same angle. ⁇ .
- the extending direction of the elongated electrode portion 911a is inclined by an angle ⁇ counterclockwise with respect to the alignment axis azimuth D1 in the upper region RU, and angle ⁇ is rotated clockwise with respect to the alignment axis azimuth D1 in the lower region RL. Inclined.
- the liquid crystal molecules LC ′ in the upper region RU and the liquid crystal molecules LC ′ in the lower region RL are Rotate in the opposite direction. Specifically, the liquid crystal molecules LC ′ in the upper region RU rotate counterclockwise, while the liquid crystal molecules LC ′ in the lower region RL rotate clockwise.
- Table 9 shows the angle ⁇ between the extending direction of the elongated electrode portion 11a and the orientation axis direction D1 in each of the upper region RU and the lower region RL, the upper region RU, and the lower side in the liquid crystal display device 900D of Comparative Example 4.
- the area ratio of the region RL is shown.
- each angle ⁇ (which is a common angle in the upper region RU and the lower region RL) is 15 °.
- the area ratio of the upper region RU and the lower region RL is 5: 5. That is, in Comparative Example 4, the area of the upper region RU and the area of the lower region RL are the same.
- LCD MASTER from Shintec Co., Ltd. was used.
- the cell thickness was 3.0 ⁇ m, and the dielectric layer thickness was 0.3 ⁇ m.
- the width and interval of the elongated electrode portion of the first electrode (pixel electrode) were 5.0 ⁇ m and 3.0 ⁇ m, respectively.
- the physical property values of the negative liquid crystal material constituting the liquid crystal layer were as shown in Table 10.
- FIG. 36 shows normalized VT characteristics (relationship between pixel voltage and normalized luminance) when the angle formed between the extending direction of the elongated electrode portion and the orientation axis direction is 87 °, 83 °, 79 °, and 75 °. Indicates.
- Table 11 shows voltages corresponding to 64-gradation display when the angle formed between the extending direction of the elongated electrode portion and the orientation axis direction is 87 °, 83 °, 79 °, and 75 °.
- FIG. 37 shows the result of calculating the time variation of the normalized luminance by simulation for Example 11 and Comparative Example 4 when 6.7 Hz driving is paused.
- FIG. 38 shows the result of calculating the time change of the normalized luminance by simulation for Example 11 and Comparative Example 4 when 2 Hz driving is paused. 37 and 38 also show the waveform of the pixel voltage.
- Example 11 a decrease in luminance at the time of polarity reversal of the pixel voltage is suppressed as compared with Comparative Example 4.
- FIG. 39 shows the result of calculating the flicker rate by simulation for Example 11 and Comparative Example 4 when 6.7 Hz pause driving is performed.
- FIG. 40 shows the result of calculating the flicker rate by simulation for Example 11 and Comparative Example 4 when 2 Hz pause driving is performed.
- Each of FIG. 39 and FIG. 40 shows the flicker rate when the polarity of the pixel voltage is inverted from positive to negative and when the polarity of the pixel voltage is inverted from negative to positive.
- Example 11 the flicker rate is lower than that in Comparative Example 4 in both cases of 6.7 Hz driving and 2 Hz driving.
- each pixel Px has the first region R1 and the second region R2 in which the angle formed between the extending direction of the elongated electrode portion 11a (or the slit 11b) and the orientation axis direction D1 is different from each other. Even when driven at a frequency of less than 60 Hz, flicker caused by flexopolarization can be made difficult to be visually recognized.
- FIG. 41 shows the flicker rates when Examples 2 to 14 and Comparative Example 4 are subjected to a pause drive of 2 Hz.
- the flicker rate is lower in each of Examples 11 to 14 than in Comparative Example 14.
- the flicker rate is lower in the order of Examples 11, 12, 13 and 14. That is, the larger the area of the first region R1, the higher the effect of reducing the flicker rate.
- the area of the first region R1 is preferably larger than the area of the second region R2 (that is, the area ratio of the first region R1 in each pixel Px may exceed 0.5).
- the area ratio of the first region R1 in each pixel Px is more preferably 0.7 or more, and the area ratio of the first region R1 in each pixel Px is more preferably 0.9 or more.
- the ratio of the area of the first region R1 to the area of the second region R2 is preferably greater than 1, more preferably 7/3 or more, and even more preferably 9 or more.
- Table 12 shows the angles (ie, the first angle ⁇ 1 and the second angle) between the extending direction of the elongated electrode portion 11a and the orientation axis direction D1 in each of the first region R1 and the second region R2 for Examples 15 to 19.
- Angle ⁇ 2 the angle between the extending direction of the elongated electrode portion 11a and the orientation axis direction D1 in each of the first region R1 and the second region R2 for Examples 15 to 19.
- Angle ⁇ 2 the area ratio of the first region R1 and the second region R2 are shown.
- the first angle ⁇ 1 is 87 ° in Examples 15 and 16, 83 ° in Examples 17 and 18, and 79 ° in Example 19.
- the second angle ⁇ 2 is 79 ° in Examples 15 and 17, and 75 ° in Examples 16, 18 and 19.
- the area ratio of the first region R1 and the second region R2 is 9: 1 in any of Examples 15 to 19.
- FIG. 42 shows flicker rates when Examples 1 and 15 to 19 and Comparative Example 4 are subjected to pause driving at 2 Hz.
- the flicker rate is lower in each of Examples 11 and 15 to 19 than in Comparative Example 14.
- the flicker rate is low in the order of Examples 11, 15, 16, 17, 18, and 19. That is, the larger the first angle ⁇ 1 and the second angle ⁇ 2, the higher the effect of reducing the flicker rate.
- the first angle ⁇ 1 is not less than 76 ° and not more than 87 °
- the second angle ⁇ 2 is not less than 75 ° and not more than 86 °.
- the first angle ⁇ 1 is preferably 4 ° or more and 15 ° or less
- the second angle ⁇ 2 is 3
- the angle is preferably not less than 14 ° and not more than 14 ° (that is, the upper limit is preferably about 86 ° to 87 ° in consideration of the axial accuracy of the polarizing plate and the manufacturing process accuracy, and the transmittance is From the viewpoint of increasing the power consumption and reducing the power consumption, the lower limit is preferably about 75 ° to 76 °).
- FIG. 43 and Table 13 show flicker rates in Examples 11 to 19 and Comparative Example 4 when 6.7 Hz pause driving is performed.
- Table 13 also shows the average flicker rate and the improvement rate with respect to the flicker rate of Comparative Example 4 in addition to the flicker rate when the polarity of the pixel voltage is inverted from positive to negative and from negative to positive. ing.
- Table 14 show the flicker rates when Examples 1 to 19 and Comparative Example 4 are subjected to pause driving at 2 Hz.
- Table 14 also shows the average flicker rate and the improvement rate with respect to the flicker rate of Comparative Example 4 in addition to the flicker rate when the polarity of the pixel voltage is inverted from positive to negative and from negative to positive. ing.
- each pixel Px is defined by the extending direction of the elongated electrode portion 11a (or the slit 11b) and the alignment film 18.
- the embodiment of the present invention is widely applied to a horizontal electric field mode liquid crystal display device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Liquid Crystal (AREA)
- Mathematical Physics (AREA)
- Geometry (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
液晶表示装置(100)は、第1基板(10)、第2基板(20)および液晶層(30)を備え、複数の画素(Px)を有する。第1基板は、液晶層に横電界を生成し得る第1電極(11)および第2電極(12)と、電圧無印加時における液晶分子(LC)の配向軸方位(D1)を規定する配向膜(18)とを有する。第1電極は、互いに略平行に延びる複数の細長電極部分(11a)および/または少なくとも1つのスリット(11b)を有する。各画素は、細長電極部分またはスリットの延びる方向と配向軸方位とが第1の角度(θ1)をなす第1領域(R1)と、細長電極部分またはスリットの延びる方向と配向軸方位とが第1の角度よりも小さい第2の角度(θ2)をなす第2領域(R2)とを有する。
Description
本発明は、液晶表示装置に関し、特に、横電界モードの液晶表示装置に関する。
TFT型液晶表示装置は、TFTを介して各画素の液晶層(電気的には「液晶容量」と呼ばれる。)に印加する電圧を制御することによって、各画素を透過する光の量を調節し、表示を行う。各画素の液晶層に印加される電圧は、ある期間毎に極性が反転される。このような液晶表示装置の駆動方法は、交流駆動法と呼ばれ、液晶層に長時間にわたって直流電圧が印加されないようにしている。液晶層に長時間にわたって直流電圧が印加されると、液晶材料中に存在するイオンの偏在(界面分極)や液晶材料の劣化が起こり、表示品位が低下するからである。
本明細書において、各画素の液晶層(液晶容量)に印加される電圧を画素電圧と呼ぶことにする。画素電圧は、画素の画素電極と対向電極との間に印加される電圧であり、対向電極の電位に対する画素電極の電位で表される。対向電極の電位よりも画素電極の電位が高いときの画素電圧の極性を正とし、対向電極の電位よりも画素電極の電位が低いときの画素電圧の極性を負とする。
TFT型液晶表示装置においては、画素電極はTFTのドレイン電極に接続されており、TFTのソースに接続されているソースバスラインから供給される表示信号電圧が供給される。画素電極に供給される表示信号電圧と、対向電極に供給される対向電圧との差が、画素電圧に相当することになる。
TFT型液晶表示装置において、画素電圧の極性は、典型的にはフレーム期間毎に反転する。ここで、TFT型液晶表示装置におけるフレーム期間とは、全ての画素に画素電圧を供給するために必要な期間であって、あるゲートバスライン(走査配線)が選択され、次にそのゲートバスラインが選択されるまでの期間を意味し、垂直走査期間と言われることもある。画素は、行および列を有するマトリクス状に配列されており、典型的には、ゲートバスラインは画素の行に対応し、ソースバスラインは画素の列に対応し、ゲートバスラインに供給される走査信号(ゲート信号)によって、行ごとに順次、画素電圧が供給される。
従来の一般的なTFT型液晶表示装置のフレーム期間は1/60秒(フレーム周波数は60Hz)である。入力映像信号が例えばNTSC信号の場合、NTSC信号は、インターレース駆動用の信号であり、1フレーム(フレーム周波数は30Hz)が、奇数フィールドおよび偶数フィールドの2つのフィールド(フィールド周波数は60Hz)で構成されているが、TFT型液晶表示装置では、NTSC信号の各フィールドに対応して、全ての画素に画素電圧を供給するので、TFT型液晶表示装置のフレーム期間は1/60秒(フレーム周波数は60Hz)となる。なお、最近は、動画表示特性の向上や3D表示を行うために、フレーム周波数を120Hzにした倍速駆動や、240Hzの4倍速駆動のTFT型液晶表示装置が市販されている。このように、TFT型液晶表示装置は、入力される映像信号に応じてフレーム期間(フレーム周波数)を決定し、各フレーム期間に全ての画素に画素電圧を供給するように構成された駆動回路を備えている。
近年、In Plane Switching(IPS)モードやFringe Field Switching(FFS)モードに代表される横電界モードの液晶表示装置の利用が広がっている。横電界モードの液晶表示装置は、Vertical Alignment(VA)モードなどの縦電界モードの液晶表示装置に比べ、画素電圧の極性反転に伴うフリッカが見えやすいという問題がある。これは、液晶層の液晶分子の配向が、ベンド変形やスプレイ変形を伴う変化をすると、液晶分子の配向の非対称に起因した配向分極(「フレクソ分極」と呼ばれる。)が生じるためと考えられている。
特許文献1は、液晶材料のフレクソ係数e11、e33や弾性定数K11、K33を所定の範囲内とすることにより、フレクソ分極に起因したフリッカの発生が抑制された液晶表示装置を開示している。
また、最近、本願出願人は、酸化物半導体層(例えば、In-Ga-Zn-O系の半導体層)を備えたTFTを用いた低消費電力の液晶表示装置を製造販売している。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有している。画素TFTとして、In-Ga-Zn-O系半導体層を有するTFTを用いると、リーク電流が小さいので、休止駆動(低周波駆動とよばれることもある)を適用することによって、消費電力を低減することができる。
休止駆動法は、例えば、特許文献2に記載されている。参考のために、特許文献2の開示内容の全てを本明細書に援用する。休止駆動は、通常の60Hz駆動(1フレーム期間=1/60秒間)において、1フレーム期間(1/60秒間)で画像を書き込んだ後、続く59フレーム期間(59/60秒間)では画像を書き込まないというサイクルを繰り返す。この休止駆動は、1秒間に1回だけ画像を書き込むので、1Hz駆動と呼ばれることもある。ここでは、休止駆動は、画像を書き込む期間よりも長い休止期間を有する駆動方法、または、フレーム周波数が60Hz未満の低周波駆動を指すことにする。
フリッカの視認されやすさは、周波数に依存する。例えば、60Hzでは気にならない輝度の変化も、周波数が60Hzより小さくなると、特に30Hz以下になるとフリッカとして視認されやすくなる。特に、10Hz付近の周波数で輝度が変化すると、フリッカが非常に気になることが知られている。
本願発明者が、横電界モードの液晶表示装置に上記の休止駆動を適用したところ、特許文献1に開示されている技術では対策されていないフリッカが発生することを見出した。
本発明は、上記問題に鑑みてなされたものであり、その目的は、60Hz未満の周波数で駆動してもフリッカが視認され難い、横電界モードの液晶表示装置を提供することにある。
本発明の実施形態による液晶表示装置は、互いに対向するように設けられた第1基板および第2基板と、前記第1基板および前記第2基板の間に設けられた液晶層と、を備え、マトリクス状に配列された複数の画素を有する液晶表示装置であって、前記第1基板は、前記液晶層に横電界を生成し得る第1電極および第2電極と、前記液晶層に接するように設けられ、電圧無印加時における液晶分子の配向軸方位を規定する配向膜とを有し、前記第1電極は、互いに略平行に延びる複数の細長電極部分および/または少なくとも1つのスリットを有し、前記複数の画素のそれぞれは、前記細長電極部分または前記スリットの延びる方向と前記配向膜によって規定される前記配向軸方位とが第1の角度をなす第1領域と、前記細長電極部分または前記スリットの延びる方向と前記配向膜によって規定される前記配向軸方位とが前記第1の角度よりも小さい第2の角度をなす第2領域とを有する。
ある実施形態において、前記第1領域の面積と前記第2領域の面積とは互いに異なる。
ある実施形態において、前記液晶層は、誘電異方性が正のネマチック液晶材料を含み、前記第2領域の面積は、前記第1領域の面積よりも大きい。
ある実施形態において、前記複数の画素のそれぞれにおける前記第2領域の面積比は0.7以上である。
ある実施形態において、前記複数の画素のそれぞれにおける前記第2領域の面積比は0.9以上である。
ある実施形態において、前記第1の角度は4°以上15°以下であり、前記第2の角度は3°以上14°以下である。
ある実施形態において、前記液晶層は、誘電異方性が負のネマチック液晶材料を含み、前記第1領域の面積は、前記第2領域の面積よりも大きい。
ある実施形態において、前記複数の画素のそれぞれにおける前記第1領域の面積比は0.7以上である。
ある実施形態において、前記複数の画素のそれぞれにおける前記第1領域の面積比は0.9以上である。
ある実施形態において、前記第1の角度は76°以上87°以下であり、前記第2の角度は75°以上86°以下である。
ある実施形態において、前記第1電極と前記第2電極との間に電圧が印加されたとき、前記第1領域の液晶分子と前記第2領域の液晶分子とは同じ方向に回転する。
ある実施形態において、前記第1電極と前記第2電極との間に電圧が印加されたとき、前記複数の画素のうちの任意の第1画素において前記第1領域および前記第2領域の液晶分子が回転する方向と、前記第1画素に行方向または列方向に沿って隣接する第2画素において前記第1領域および前記第2領域の液晶分子が回転する方向とは互いに反対である。
ある実施形態において、前記第1画素において前記第1電極の前記細長電極部分または前記スリットの延びる方向と、前記第2画素において前記第1電極の前記細長電極部分または前記スリットの延びる方向とは異なる。
ある実施形態において、前記第1画素の前記第1電極と、前記第2画素の前記第1電極とは、前記第1画素および前記第2画素の境界を軸として互いに実質的に線対称となるような形状を有する。
ある実施形態において、前記第1電極は、誘電体層を介して前記第2電極上に設けられており、前記第1基板は、前記配向膜、前記第1電極、前記誘電体層および前記第2電極を前記液晶層側からこの順に有する。
ある実施形態において、本発明による液晶表示装置は、前記複数の画素のそれぞれに表示信号電圧が供給される信号供給期間と、前記複数の画素のそれぞれに表示信号電圧が供給されない休止期間とが1フレーム中に設けられる休止駆動を行い得る。
ある実施形態において、前記第1基板は、前記複数の画素のそれぞれに設けられた薄膜トランジスタを有し、前記薄膜トランジスタは、酸化物半導体を含む半導体層を有する。
ある実施形態において、前記酸化物半導体は、In-Ga-Zn-O系の半導体を含む。
ある実施形態において、前記In-Ga-Zn-O系の半導体は、結晶質部分を含む。
本発明の実施形態によると、60Hz未満の周波数で駆動してもフリッカが視認され難い、横電界モードの液晶表示装置が提供される。
以下、図面を参照しながら本発明の実施形態を説明する。以下の説明においては、液晶分子の配向方向を正確に記述する必要があるので、「配向方向」を表現するための用語を定義する。一般に「方向」は、3次元空間内のベクトルで表されるが、表示面内(2次元面内)における方向や、正方向と負方向と(互いに180°異なる2つの方向)を区別する必要がない場合があるからである。
まず、図45(a)および(b)を参照しながら、本明細書における「配向軸方位」、「配向方位」および「配向方向」という用語について説明する。図45(a)に示すように、液晶分子LCは、典型的には、配向膜主面(XY面)に対して所定のプレチルト角βを有するように配向する。このとき、液晶分子LCのうちのXY面から近い方の端部から遠い方の端部(図45(a)において白丸で示す端部)に向かうベクトルを考える。このベクトルの、XY面内での成分(XY面内への投射影)が示す向きを「配向方位」と呼ぶ。「配向方位」は、図45(b)に示す方位角φを用いて、0°~360°の範囲で表わすことができる。また、この「配向方位」と、当該配向方位に対して180°異なる配向方位(逆向き)とで規定される直線の方向を「配向軸方位」と呼ぶ。「配向軸方位が同じである」という場合、配向方位が同じである関係を意味していてもよく、また、配向方位が180°異なる関係を意味していても良い。なお、「配向方向」は、3次元的な方向(液晶分子の長軸方向であり、図45(b)に示す極角θも加味した方向)を意味するものとする。
以下、図面を参照しながら本発明の実施形態を説明する。なお、以下ではFFSモードの液晶表示装置を例示するが、本発明の実施形態は、FFSモードの液晶表示装置に限定されず、IPSモードの液晶表示装置にも適用することができる。
図1(a)および(b)に、本発明の実施形態による液晶表示装置100を示す。図1(a)および(b)は、それぞれ液晶表示装置100を模式的に示す平面図および断面図である。図1(a)は、液晶表示装置100の1つの画素Pxに対応した領域を示しており、図1(b)は、図1(a)中の1B-1B’線に沿った断面を示している。
液晶表示装置100は、互いに対向するように設けられたアクティブマトリクス基板(第1基板)10および対向基板(第2基板)20と、アクティブマトリクス基板10および対向基板20の間に設けられた液晶層30とを備える。また、液晶表示装置100は、マトリクス状に配列された複数の画素Pxを有する。
さらに、ここでは図示していないが、液晶表示装置100は、一対の偏光板を備える。一対の偏光板は、少なくとも液晶層30を介して互いに対向するように(典型的にはアクティブマトリクス基板10および対向基板20のそれぞれの液晶層30とは反対側に)設けられており、クロスニコルに配置される。図1(a)に示すように、一対の偏光板の一方の吸収軸a1は、表示面の水平方向に平行であり、他方の吸収軸a2は、表示面の垂直方向に平行である。
アクティブマトリクス基板10は、液晶層30に横電界を生成し得る第1電極11および第2電極12と、液晶層30に接するように設けられた配向膜18とを有する。第1電極11および第2電極12は、その一方が画素電極であり、他方が共通電極である。ここでは、第1電極11が画素電極であり、第2電極12が共通電極である構成を例示する。
第1電極11は、画素Pxごとに設けられた薄膜トランジスタ(TFT)のドレイン電極に電気的に接続されており、TFTを介して表示信号電圧を供給される。第1電極11は、透明な導電材料(例えばITO)から形成されている。
第1電極11は、互いに略平行に延びる複数の細長電極部分(枝部)11aを有する。複数(図1に示す例では3つ)の細長電極部分11aは、第1電極11を構成する導電膜に、少なくとも1つ(図1に示す例では2つ)のスリット11bを設けることによって形成され得る。複数の細長電極部分11aは、図1(a)に例示している構成では、接続部(幹部)11cによって相互に電気的に接続されている。なお、以降の図面では、接続部11cを省略していることがある。細長電極部分11aの数(およびスリット11bの数)は、例示したものに限定されない。また、各細長電極部分11aの幅や、細長電極部分11aの間隔(つまりスリット11bの幅)にも特に制限はない。
第1電極11は、誘電体層13を介して第2電極12上に設けられている。つまり、アクティブマトリクス基板10は、配向膜18、第1電極11、誘電体層13および第2電極12を液晶層30側からこの順に有する。誘電体層13は、例えば無機絶縁材料から形成されている。
第2電極12は、共通電圧を供給される。第2電極12は、典型的には、べた電極(スリットなどが設けられていない電極)である。第2電極12は、透明な導電材料(例えばITO)から形成されている。
配向膜18は、電圧無印加時における液晶分子LCの配向軸方位D1を規定する。図1(a)に示す例では、配向軸方位D1は、表示面の垂直方向に平行である。本実施形態では、配向膜18は、光配向膜であり、主として液晶分子LCの配向方位を規定する水平配向膜として機能する。配向膜18によって規定される液晶分子LCのプレチルト角は、典型的には1°以下に設定されている。なお、液晶分子LCのプレチルト角は、0.1°以上1.0°以下であることが好ましい。
本明細書において、「光配向膜」とは、光(例えば偏光紫外線)の照射によって配向規制力が付与される配向膜を意味する。国際公開第2009/157207号には、光配向膜を備える液晶表示装置が記載されており、例えば、ポリイミドの主鎖と、光反応性官能基としてのシンナメート基を含む側鎖とを有する高分子からなる配向膜に光を照射することによって、光配向膜を形成する技術が記載されている。参考のため、上記国際公開第2009/157207号の開示内容の全てを本明細書に援用する。
アクティブマトリクス基板10の構成要素は、絶縁性を有する透明な基板(例えばガラス基板)10aに支持されている。基板10a上には、ゲートメタル層が設けられている。ゲートメタル層は、TFTのゲート電極、および、ゲート電極に電気的に接続された走査配線(ゲートバスライン)を含む(いずれも不図示)。走査配線は、TFTに走査信号電圧を供給する。
ゲートメタル層を覆うように、ゲート絶縁層14が設けられている。ゲート絶縁層14上に、TFTの活性層として酸化物半導体層(不図示)が設けられている。酸化物半導体から形成された半導体層を用いることにより、低周波駆動を実現するために適切な素子特性(オフ特性)が得られる。
酸化物半導体層は、例えばIn-Ga-Zn-O系の半導体(以下、「In-Ga-Zn-O系半導体」と略する。)を含んでいる。ここで、In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。本実施形態では、酸化物半導体層は、In、Ga、Znを、例えばIn:Ga:Zn=1:1:1の割合で含むIn-Ga-Zn-O系半導体層であってもよい。
In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFTおよび画素TFTとして好適に用いられる。In-Ga-Zn-O系半導体層を有するTFTを用いれば、液晶表示装置100の消費電力を大幅に削減することが可能になる。
In-Ga-Zn-O系半導体は、アモルファスでもよいし、結晶質部分を含み、結晶性を有していてもよい。結晶質In-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系半導体が好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば、特開2012-134475号公報に開示されている。参考のために、特開2012-134475号公報の開示内容の全てを本明細書に援用する。
酸化物半導体層は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO(登録商標))、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In―Sn―Zn―O系半導体(例えばIn2O3-SnO2-ZnO)、In-Ga-Sn-O系半導体などを含んでいてもよい。
酸化物半導体層上に、ソースメタル層が設けられている。ソースメタル層は、TFTのソース電極、ドレイン電極(いずれも不図示)、および、ソース電極に電気的に接続された信号配線(ソースバスライン)15を含む。信号配線15は、TFTに表示信号電圧を供給する。
ソースメタル層を覆うように、保護層16が設けられている。保護層16は、例えば無機絶縁材料から形成されている。保護層16上に、有機層間絶縁層17が設けられている。有機層間絶縁層17は、例えば、感光性を有する樹脂材料から形成されている。
有機層間絶縁層17上に、第2電極12、誘電体層13、第1電極11および配向膜18がこの順で積層されている。
対向基板20は、遮光層21およびカラーフィルタ層22と、液晶層30に接するように設けられた配向膜28とを有する。
遮光層(「ブラックマトリクス」とも呼ばれる。)21は、例えば、感光性を有する黒色樹脂材料から形成される。
カラーフィルタ層22は、赤カラーフィルタ22R、緑カラーフィルタ22Gおよび青カラーフィルタ22Bを含む。赤カラーフィルタ22R、緑カラーフィルタ22Gおよび青カラーフィルタ22Bは、例えば、感光性を有する着色樹脂材料から形成される。
配向膜28によって規定される液晶分子LCの配向方位は、配向膜18によって規定される液晶分子LCの配向方位と平行または反平行である。本実施形態では、配向膜28は、光配向膜であり、主として液晶分子LCの配向方位を規定する水平配向膜として機能する。配向膜28によって規定される液晶分子LCのプレチルト角も、典型的には1°以下に設定されている。また、配向膜28によって規定される液晶分子LCのプレチルト角も、0.1°以上1.0°以下であることが好ましい。
本実施形態では、遮光層21およびカラーフィルタ層22を覆うように有機平坦化層23が設けられており、この有機平坦化層23上に配向膜28が設けられている。有機平坦化層23は、例えば、感光性を有する樹脂材料から形成されている。
対向基板20の構成要素は、絶縁性を有する透明な基板(例えばガラス基板)20aに支持されている。基板20aの液晶層30とは反対側の表面には、帯電を防止するための透明導電層26が設けられている。透明導電層26には、例えば0Vの電位が与えられる。
液晶層30は、誘電異方性が正のネマチック液晶材料を含み、液晶層30中の液晶分子LCは、配向膜18および28の配向規制力によって略水平に配向している。
本実施形態の液晶表示装置100では、複数の画素Pxのそれぞれは、図1(a)に示すように、第1領域R1と、第2領域R2とを有する。
第1領域R1では、細長電極部分11a(またはスリット11b)の延びる方向と配向膜18によって規定される配向軸方位D1とは、第1の角度θ1をなす。図1(a)に示す例では、細長電極部分11aの延びる方向は、配向軸方位D1に対して反時計回りに第1の角度θ1傾斜している。
これに対し、第2領域R2では、細長電極部分11a(またはスリット11b)の延びる方向と配向膜18によって規定される配向軸方位D1とは、第1の角度θ1よりも小さい第2の角度θ2をなす。図1(a)に示す例では、細長電極部分11aの延びる方向は、配向軸方位D1に対して反時計回りに第2の角度θ2傾斜している。
このように、各画素Pxは、第1電極11の細長電極部分11a(またはスリット11b)の延びる方向が互いに異なる2種類の領域(第1領域R1および第2領域R2)を有する。第1電極11と第2電極12との間に電圧が印加されたとき、図2に示すように、第1領域R1の液晶分子LCと第2領域R2の液晶分子LCとは同じ方向(ここでは時計回り)に回転する。
第2の角度θ2は、第1の角度θ1よりも小さければよく(つまり、第1の角度θ1は、第2の角度θ2よりも大きければよく)、第1の角度θ1および第2の角度θ2の大きさに制限はない。ただし、後述する理由から、第1の角度θ1は4°以上15°以下で、第2の角度θ2は3°以上14°以下であることが好ましい。
図1(a)に例示している構成では、第1領域R1の面積と第2領域R2の面積とが互いに異なっている。より具体的には、第2領域R2の面積は、第1領域R1の面積よりも大きい。
液晶表示装置100は、休止駆動を行うことができる。静止画表示時などに、休止駆動(例えば1~数Hzの頻度で画像データを書き換える)を行うことにより、消費電力を大幅に削減することが可能である。
一般的な60Hz駆動の液晶表示装置では、1垂直走査期間(約1/60秒間)ごとに画素に表示信号電圧が供給される。すなわち、60Hz駆動では、1秒間に60回、画素に表示信号が印加される。
これに対し、休止駆動では、所定の垂直走査期間において画素に表示信号電圧を供給し、その後の単数または複数の垂直走査期間においては表示信号電圧を供給しない。つまり、休止駆動では、各画素に表示信号電圧が供給される信号供給期間と、各画素に表示信号電圧が供給されない休止期間とが1フレーム中に設けられる。
例えば、駆動周波数が1Hzの休止駆動は、1垂直走査期間(60Hz駆動の1垂直走査期間:1/60秒)において表示信号電圧を画素に供給した後、その垂直走査期間に続く59垂直走査期間(59/60秒)において表示信号を画素に供給することなく休止することで実行されてよい。なお、休止駆動において、所望の表示信号電圧を画素に印加するために、複数の垂直走査期間にわたって電圧を供給してもよい。例えば、最初の3垂直走査期間において表示信号電圧を画素に供給し、その後の57垂直走査期間を休止期間としてもよい。
以上の説明からもわかるように、本願明細書では、ある表示信号を画素に供給するために割り当てられた期間を1フレームと呼んでいる。1Hzの休止駆動では、1フレームは、60の垂直走査期間を含み、このうちに信号供給期間と休止期間とが適宜設定される。なお、上記の60Hz駆動の場合には、1フレームが1垂直走査期間に対応する。また、上記説明から理解されるように、本明細書において「駆動周波数」の語は、1フレーム期間(秒)の逆数に対応する。例えば、休止駆動によって駆動周波数が10Hzに設定されている場合、1フレーム期間は0.1秒である。
上述したように、本実施形態の液晶表示装置100の各画素Pxは、細長電極部分11a(またはスリット11b)の延びる方向と配向膜18によって規定される配向軸方位D1とのなす角度が互いに異なる第1領域R1および第2領域R2を有する。このことにより、60Hz未満の周波数で駆動したとしても、フレクソ分極に起因するフリッカを視認され難くすることができる。以下、この理由を説明するが、それに先立ち、フレクソ分極およびそれに起因するフリッカを説明する。
ネマチック液晶では、個々の液晶分子は永久双極子モーメントを持ち分極しているものの、分子配列の対称性から、平衡状態では巨視的な分極は発生しない。しかし、電界分布の急激な変化によって液晶分子がその配向方向を揃えようと並ぶときに局所的なスプレイ配向あるいはベンド配向となり(つまり分子配列の対称性が崩れ)、巨視的な分極が発生する。この分極(フレクソエレクトリック効果による分極)が、フレクソ分極である。
特許文献1には、FFSモードの液晶表示装置において、フレクソ分極により、液晶層に正極性の電圧が印加されているときと負極性の電圧が印加されているときとで透過率の差異が生じることが記載されている。特許文献1によれば、このフレクソ分極は、液晶層に生成される電界(アーチ状の電気力線で表わされる)による配向規制力と、アクティブマトリクス基板側の配向膜による配向規制力との競合によって生じる局所的な(アクティブマトリクス基板側の配向膜と液晶層との界面近傍における)スプレイ配向に起因するとされている。フレクソ分極の向きは、液晶層に印加されている極性の反転とともに反転するので、画素内の暗線(フレクソ分極によって発生する)がそれに伴って移動し、フリッカが視認される。特許文献1には、液晶材料のフレクソ係数e11、e33や弾性係数K11、K33を所定の範囲内とすることにより、上記のフリッカを抑制し得ることが記載されている。
しかしながら、本願発明者が横電界モードの液晶表示装置に上記の休止駆動を適用したところ、特許文献1に開示されている技術では対策されていないフリッカが発生することがわかった。図3に、横電界モードの液晶表示装置で休止駆動を行ったときの規格化輝度の時間変化を示す。なお、図3には、表示信号電圧の波形も併せて示している。また、図3に示す例では、休止駆動によって駆動周波数は2Hz(つまり1フレーム期間は500msec)となっており、500msecごとに表示信号電圧の極性が反転している。
図3から、極性反転時に輝度の低下が発生することがわかる。この輝度低下が、フリッカとして視認される。なお、極性反転時に輝度が下向きの角(つの)のように低下することから、以下では、この現象を「下角応答」とも呼ぶ。
本願発明者がシミュレーションを行ったところ、液晶材料のフレクソ係数e11、e33や弾性係数K11、K33を特許文献1に開示されている範囲内に設定しても、上記のフリッカ(下角応答)を改善することはできなかった。
以下、下角応答が発生する理由を説明する。なお、以下の説明では、各画素の液晶層(液晶容量)に印加される電圧を画素電圧と呼ぶ。画素電圧は、各画素の画素電極と共通電極との間に印加される電圧であり、共通電極の電位に対する画素電極の電位で表わされる。画素電極の電位が対向電極の電位よりも高いときの画素電圧の極性を「正」とし、画素電極の電位が対向電極の電位よりも低いときの画素電圧の極性を「負」とする。
フレクソ分極は電位差を伴うため、電界印加時の液晶分子の回転量は、印加電界による回転量に、フレクソ分極による電位差相当分の回転量が重畳したものとなる。このため、画素内で液晶分子の回転量に大小差が発生し、明暗差となる。
図4に、10Hzの休止駆動(1フレーム期間は100msec)を行ったときの透過率(相対透過率)と時間との関係を示す。この例では、第1フレーム(0~100msec)に正極性の画素電圧が印加され、第2フレーム(100msec~200msec)に負極性の画素電圧が印加される。図4からわかるように、この例においても、極性反転時に輝度の低下が発生している。以下、この場合を例として、さらに図5~図10を参照しながら、より具体的な説明を行う。
図5(a)は、正極性の画素電圧が印加されているとき(100msec時点)の電気力線EFと液晶分子LCの配向状態とを示す断面図であり、図5(b)は、そのときの輝度プロファイル(相対透過率と横方向(図5(a)の左右方向)の距離との関係)を示すグラフである。また、図6(a)は、画素電圧の極性が反転した直後(106msec時点)の電気力線EFと液晶分子LCの配向状態とを示す断面図であり、図6(b)は、そのときの輝度プロファイルを示すグラフである。図7(a)は、負極性の画素電圧が印加されているとき(200msec時点)の電気力線EFと液晶分子LCの配向状態とを示す断面図であり、図7(b)は、そのときの輝度プロファイルを示すグラフである。
図5(a)、図6(a)および図7(a)中に示す矢印FPは、フレクソ分極の方向を表している。また、図5(b)、図6(b)および図7(b)に示す輝度プロファイルは、シミュレーションにより得られたものである。
シミュレーションソフトとしては、シンテック株式会社製LCD MASTERを用いた。セル厚(液晶層の厚さ)は3.0μmとし、誘電体層の厚さは0.3μmとした。また、第1電極(画素電極)の細長電極部分の幅および間隔は、それぞれ5.0μmおよび3.0μmとした。液晶層を構成するポジ型液晶材料の物性値は、表1に示す通りとした。
図5(a)および図7(a)に示すように、画素電極911と共通電極912との間に所定の電圧が印加されたとき、つまり、正極性の画素電圧印加時および負極性の画素電圧印加時のいずれにおいても、アクティブマトリクス基板910近傍において液晶分子LCがスプレイ配向をとり、それによってフレクソ分極が発生する。このフレクソ分極は、液晶層に生成される電界(電気力線EFで表わされる)による配向規制力と、アクティブマトリクス基板910側の配向膜による配向規制力との競合によって生じる。ただし、図5(a)と図7(a)との比較からわかるように、画素電圧の極性が正であるときと負であるときとで、フレクソ分極の方向FPが異なる。つまり、画素電圧の極性の反転に伴って、フレクソ分極の方向FPも反転する。また、図6(a)に示すように、画素電圧の極性が反転した直後には、フレクソ分極が緩和(消失)する。
図5(b)に示すように、画素電圧の極性が正であるときには、画素電極911のスリット911b上(図5(b)中の領域S)が明るく、細長電極部分911a上(図5(b)中の領域E)が暗くなる。また、図7(b)に示すように、画素電圧の極性が負であるときには、画素電極911の細長電極部分911a上が明るく、スリット911b上が暗くなる。さらに、図6(b)に示すように、画素電圧の極性の反転直後には、画素電極911の細長電極部分911aとスリット911bとの境界上が明るくなる。このように、正極性の画素電圧印加時と、負極性の画素電圧印加時とで、画素内における明暗の位置が異なる。
図8(a)および(b)は、正極性の画素電圧が印加されているとき(100msec時点)の液晶分子LCの方位角プロファイルおよび極角プロファイルをそれぞれ示すグラフであり、図8(c)は、図5(b)に示した輝度プロファイルを方位角成分と極角成分とに分離した結果を示すグラフである。また、図9(a)および(b)は、画素電圧の極性が反転した直後(106msec時点)の液晶分子LCの方位角プロファイルおよび極角プロファイルをそれぞれ示すグラフであり、図9(c)は、図6(b)に示した輝度プロファイルを方位角成分と極角成分とに分離した結果を示すグラフである。図10(a)および(b)は、負極性の画素電圧が印加されているとき(200msec時点)の液晶分子LCの方位角プロファイルおよび極角プロファイルをそれぞれ示すグラフであり、図10(c)は、図7(b)に示した輝度プロファイルを方位角成分と極角成分とに分離した結果を示すグラフである。
図8(a)に示すように、画素電圧の極性が正であるときには、スリット911b上で方位角が大きく、細長電極部分911a上で方位角が小さい。これに対し、図10(a)に示すように、画素電圧の極性が負であるときには、細長電極部分911a上で方位角が大きく、スリット911b上で方位角が小さい。このように、画素電圧の極性が正であるときと負であるときとで、方位角プロファイルが異なっている。なお、図9(a)に示すように、画素電圧の極性の反転直後の方位角プロファイルは、画素電圧の極性が正であるときの方位角プロファイルと、画素電圧の極性が負であるときの方位角プロファイルとの中間的なものである。
また、図8(b)に示すように、画素電圧の極性が正であるときには、細長電極部分911aの右端とスリット911bの左端との境界上において極角が大きく、スリット911bの右端と細長電極部分911aの左端との境界上において極角が小さい。これに対し、図10(b)に示すように、画素電圧の極性が負であるときには、スリット911bの右端と細長電極部分911aの左端との境界上において極角が大きく、細長電極部分911aの右端とスリット911bの左端との境界上において極角が小さい。このように、画素電圧の極性が正であるときと負であるときとで、極角プロファイルも異なっている。なお、図9(b)に示すように、画素電圧の極性の反転直後の極角プロファイルは、画素電圧の極性が正であるときの極角プロファイルと、画素電圧の極性が負であるときの極角プロファイルとの中間的なものである。
また、図8(c)に示すように、画素電圧の極性が正であるときには、スリット911b上で方位角成分の割合が高い。これに対し、図10(c)に示すように、画素電圧の極性が負であるときには、細長電極部分911a上で方位角成分の割合が高い。なお、図9(c)に示すように、画素電圧の極性の反転直後では、画素電極911の細長電極部分911aとスリット911bとの境界上で方位角成分の割合が高い。
上述したことから、正極性の画素電圧が印加されたときには、もっぱらスリット911b上の液晶分子LCの方位角方向の回転量に対して、フレクソ分極による回転量が重畳されていることがわかる。また、負極性の画素電圧が印加されたときには、もっぱら細長電極部分911a上の液晶分子の方位角方向の回転量に対して、フレクソ分極による回転量が重畳されていることがわかる。これらの理由により、正極性の画素電圧印加時には、スリット911b上が明るく、細長電極部分911a上が暗くなり、負極性の画素電圧印加時には、細長電極部分911a上が明るく、スリット911b上が暗くなる。
また、画素電圧の極性反転時には、フレクソ分極が緩和し、その後反転するが、液晶分子LCの配向変化に数msec(ここで挙げた例では6msec)要し、そのことが輝度低下の原因となり、フリッカが視認され得る。そして、休止駆動を行うと、このようなフリッカが顕在化する。
ここで、比較のため、フレクソ分極が発生しないと仮定したときのシミュレーション結果を図11および図12を参照しながら説明する。
図11、図12(a)および(b)は、フレクソ分極が発生しないとした場合において、正極性の画素電圧が印加されているとき(100msec時点)、画素電圧の極性が反転した直後(106msec時点)および負極性の画素電圧が印加されているとき(200msec時点)の輝度プロファイル、方位角プロファイルおよび極角プロファイルをそれぞれ示すグラフである。また、図12(c)は、図11に示した輝度プロファイルを方位角成分と極角成分とに分離した結果を示すグラフである。
図11および図12(a)~(c)からわかるように、フレクソ分極を考慮しない場合には、画素電圧の極性が反転しても輝度プロファイル、方位角プロファイルおよび極角プロファイルは変化しない。つまり、フレクソ分極が発生しないと仮定した場合には、下角応答は発生しない。
上述した理由により、フレクソ分極に起因した下角応答(フリッカ)が発生する。本実施形態の液晶表示装置100では、各画素Pxが第1領域R1および第2領域R2を有することにより、60Hz未満の周波数で駆動したとしても、フレクソ分極に起因するフリッカを視認され難くすることができる。以下、このことをシミュレーションにより検証した結果を説明する。
シミュレーションは、図13(a)、(b)、(c)および(d)にそれぞれ示す実施例1、2、3および4の液晶表示装置100A、100B、100Cおよび100Dについて行った。
表2に、実施例1、2、3および4の液晶表示装置100A、100B、100Cおよび100Dについて、第1領域R1および第2領域R2のそれぞれにおいて細長電極部分11aの延びる方向と配向軸方位D1とのなす角度(つまり第1の角度θ1および第2の角度θ2)と、第1領域R1および第2領域R2の面積比を示す。
図13(a)~(d)および表2からわかるように、実施例1、2、3および4のいずれにおいても、第1の角度θ1は7°であり、第2の角度θ2は3°である。また、第1領域R1および第2領域R2の面積比は、実施例1では1:9、実施例2では3:7、実施例3では5:5、実施例4では7:3である。つまり、実施例1および2では、第2領域R2の面積が第1領域R1の面積よりも大きい。また、実施例3では、第1領域R1の面積と第2領域R2の面積とが同じであり、実施例4では、第1領域R1の面積が第2領域R2の面積よりも大きい。
また、シミュレーションは、図14(a)、(b)および(c)に示す比較例1、2および3の液晶表示装置900A、900Bおよび900Cについても行った。比較例1、2および3の液晶表示装置900A、900Bおよび900Cの各画素Pxには、複数の細長電極部分911aを有する第1電極(画素電極)911と、誘電体層(不図示)を介して第1電極911の下に形成された第2電極(共通電極)912とが設けられている。
また、各画素Pxは、上側領域RUおよび下側領域RLの2つの領域を有する。上側領域RUと下側領域RLとでは、細長電極部分911aの延びる方向が異なる。ただし、上側領域RUにおいて細長電極部分911aの延びる方向と配向軸方位D1とがなす角度と、下側領域RLにおいて細長電極部分911aの延びる方向と配向軸方位D1とがなす角度とは、同じ角度θである。
細長電極部分911aの延びる方向は、上側領域RUでは、配向軸方位D1に対して時計回りに角度θ傾斜しており、下側領域RLでは、配向軸方位D1に対して反時計回りに角度θ傾斜している。第1電極11と第2電極12との間に電圧が印加されたとき、図14(d)に示すように、上側領域RUの液晶分子LCと下側領域RLの液晶分子LCとは反対方向に回転する。具体的には、上側領域RUの液晶分子LCは、反時計回りに回転するのに対し、下側領域RLの液晶分子LCは、時計回りに回転する。
表3に、比較例1、2および3の液晶表示装置900A、900Bおよび900Cについて、上側領域RUおよび下側領域RLのそれぞれにおいて細長電極部分11aの延びる方向と配向軸方位D1とのなす角度θと、上側領域RUおよび下側領域RLの面積比を示す。
図14(a)~(c)および表3からわかるように、比較例1、2および3では、角度θ(上側領域RUおよび下側領域RLで共通の角度である)はそれぞれ7°、11°および15°である。また、上側領域RUおよび下側領域RLの面積比は、比較例1、2および3のいずれにおいても5:5である。つまり、比較例1、2および3では、上側領域RUの面積と下側領域RLの面積とが同じである。
シミュレーションの条件としては、既に説明した条件(輝度プロファイルの計算に用いた条件)を用いた。また、フレクソ分極に起因したフリッカは、低階調(例えば256階調表示の液晶表示装置における64階調:規格化透過率5%に対応)表示を行う場合に視認されやすいので、シミュレーションの際の画素電圧は、64階調表示に対応する電圧とした。図15に、細長電極部分の延びる方向と配向軸方位とのなす角度が3°、7°、11°および15°である場合について、規格化VT特性(画素電圧と規格化輝度との関係)を示す。また、表4に、細長電極部分の延びる方向と配向軸方位とのなす角度が3°、7°、11°および15°である場合について、64階調表示に対応する電圧を示す。
図16に、実施例2および比較例1について、10Hz駆動の休止駆動を行った場合の規格化輝度の時間変化をシミュレーションにより計算した結果を示す。また、図17に、実施例2および比較例1に加えて実施例1についても、10Hz駆動の休止駆動を行った場合の規格化輝度の時間変化をシミュレーションにより計算した結果を示す。なお、図16には、画素電圧の波形も併せて示している。
図16および図17からわかるように、実施例1および2では、画素電圧の極性反転時の輝度の低下が比較例1よりも抑制されている。
図18および表5に、実施例1~4および比較例1~3について、20Hz、10Hzおよび1Hzの休止駆動を行った場合のフリッカ率をシミュレーションにより計算した結果を示す。なお、フリッカ率は、透過率(規格化透過率)の最大値Tmaxと最小値Tminとの差ΔT(=Tmax-Tmin)を、累積平均透過率Taveで除算したものである。
図18および表5からわかるように、実施例1~4では、比較例1~3よりもフリッカ率が低い。また、実施例1、2、3および4の順に、フリッカ率が低い。
同様のシミュレーションを、実施例5~8の液晶表示装置について行った。表6に、実施例5~8について、第1領域R1および第2領域R2のそれぞれにおいて細長電極部分11aの延びる方向と配向軸方位D1とのなす角度(つまり第1の角度θ1および第2の角度θ2)と、第1領域R1および第2領域R2の面積比を示す。
表6からわかるように、実施例5~8のいずれにおいても、第1の角度θ1は11°であり、第2の角度θ2は3°である。また、第1領域R1および第2領域R2の面積比は、実施例5では1:9、実施例6では3:7、実施例7では5:5、実施例8では7:3である。つまり、実施例5および6では、第2領域R2の面積が第1領域R1の面積よりも大きい。また、実施例7では、第1領域R1の面積と第2領域R2の面積とが同じであり、実施例8では、第1領域R1の面積が第2領域R2の面積よりも大きい。
図19および表7に、実施例5~8および比較例1~3について、20Hz、10Hzおよび1Hzの休止駆動を行った場合のフリッカ率をシミュレーションにより計算した結果を示す。
図19および表7からわかるように、実施例5~8では、比較例1~3よりもフリッカ率が低い。また、実施例5、6、7および8の順に、フリッカ率が低い。
上述した結果からわかるように、各画素Pxが、細長電極部分11a(またはスリット11b)の延びる方向と配向軸方位D1とのなす角度が互いに異なる第1領域R1および第2領域R2を有することにより、60Hz未満の周波数で駆動したとしても、フレクソ分極に起因するフリッカを視認され難くすることができる。
第1領域R1と第2領域R2とが混在することによりフリッカ率が低減されるメカニズムは明らかではないが、細長電極部分11aの延びる方向と配向軸方位D1とのなす角度が相対的に小さい第2領域R2において、フレクソ分極の緩和時に液晶分子LCの戻り回転角度が大きくなることによって液晶分子LCの弾性力が大きくなり、その結果、戻り時間が短縮して輝度低下(下角応答)を抑制できると考えられる。
また、上述した結果から、第2領域R2の面積が大きいほど、フリッカ率を低減する効果が高いこともわかる。フリッカ率をいっそう低減する観点からは、第2領域R2の面積が第1領域R1の面積よりも大きいことが好ましく(つまり各画素Pxにおける第2領域R2の面積比が0.5を超えることが好ましく)、各画素Pxにおける第2領域R2の面積比が0.7以上であることがより好ましく、各画素Pxにおける第2領域R2の面積比が0.9以上であることがさらに好ましい。言い換えると、第1領域R1の面積に対する第2領域R2の面積の比が1を超えることが好ましく、7/3以上であることがより好ましく、9以上であることがさらに好ましい。
また、既に説明したように、第1の角度θ1は4°以上15°以下であることが好ましく、第2の角度θ2は3°以上14°以下であることが好ましい。以下、この理由を説明する。
まず、偏光板の軸精度や製造プロセス精度として±1°程度が想定されることから、第1の角度θ1および第2の角度θ2の下限値は3°~4°程度であることが好ましいといえる。
図20に、細長電極部分の延びる方向と配向軸方位とのなす角度が3°、7°、11°、15°および19°である場合について、規格化VT特性(画素電圧と規格化輝度との関係)を示す。図20からわかるように、角度が小さいほど、最大透過率が高く、また、より低電圧で最大透過率をとることがわかる。例えば19°の場合、3°の場合に比べて、最大透過率が約8%低くなり、最大透過率をとる電圧が約0.6V高くなってしまう。そのため、低消費電力化の観点から、第1の角度θ1および第2の角度θ2の上限値は、14°~15°程度であることが好ましいといえる。15°の場合、3°の場合と比較したときの最大透過率の低下は約8%、最大透過率をとる電圧の上昇は約0.3Vであり、低消費電力性への悪影響は比較的軽微である。
上述した理由から、第1の角度θ1は4°以上15°以下で、第2の角度θ2は3°以上14°以下であることが好ましい。
続いて、図21および図22を参照しながら、本発明の実施形態による液晶表示装置の好ましい構成を説明する。
図21は、実施例2の液晶表示装置100Bの複数の画素のうち、行方向に沿って互いに隣接する任意の2つの画素(第1画素および第2画素)Px1およびPx2に対応した領域を模式的に示す平面図である。
実施例2の液晶表示装置100Bでは、図21に示すように、第1画素Px1において第1電極11の細長電極部分11aの延びる方向と、第2画素Px2において第1電極11の細長電極部分11aの延びる方向とが同じである。そのため、第1電極11と第2電極12との間に電圧が印加されたとき、第1画素Px1において第1領域R1および第2領域R2の液晶分子LCが回転する方向と、第2画素Px2において第1領域R1および第2領域R2の液晶分子LCが回転する方向とが同じである。
図22は、上述した実施例1~8とは異なる実施例9の液晶表示装置100Eを模式的に示す平面図であり、液晶表示装置100Eの複数の画素のうち、行方向に沿って互いに隣接する任意の2つの画素(第1画素および第2画素)Px1およびPx2に対応した領域を示している。
実施例9の液晶表示装置100Eでは、図22に示すように、第1画素Px1の第1電極11と、第2画素Px2の第1電極11とは、第1画素Px1および第2画素Px2の境界を軸として互いに実質的に線対称となるような形状を有する。
従って、第1画素Px1において第1電極11の細長電極部分11aの延びる方向(スリットの延びる方向でもある)と、第2画素Px2において第1電極11の細長電極部分11aの延びる方向(スリットの延びる方向でもある)とが異なる。具体的には、第1画素Px1の第1領域R1では、細長電極部分11aの延びる方向と配向軸方位D1とは、反時計回りに第1の角度θ1(=7°)をなし、第1画素Pxの第2領域R2では、細長電極部分11aの延びる方向と配向軸方位D1とは、反時計回りに第2の角度θ2(=3°)をなす。これに対し、第2画素Px1の第1領域R1では、細長電極部分11aの延びる方向と配向軸方位D1とは、時計回りに第1の角度θ1(=7°)をなし、第2画素Pxの第2領域R2では、細長電極部分11aの延びる方向と配向軸方位D1とは、時計回りに第2の角度θ2(=3°)をなす。
上述したような電極構造が採用されているので、実施例9の液晶表示装置100Eでは、第1電極11と第2電極12との間に電圧が印加されたとき、第1画素Px1において第1領域R1および第2領域R2の液晶分子LCが回転する方向と、第2画素Px2において第1領域R1および第2領域R2の液晶分子LCが回転する方向とが互いに反対である。具体的には、第1画素Px1においては液晶分子LCが時計回りに回転するのに対し、第2画素Px2においては液晶分子LCが反時計回りに回転する。
実施例2の液晶表示装置100Bでは、中間調表示を斜め方向から観察したときに色付きが発生することがある。これに対し、実施例9の液晶表示装置100Eでは、そのような色付きの発生が抑制され、いっそう高い視野角特性が得られる。以下、図23(a)および(b)を参照しながら、このことをシミュレーションにより検証した結果を説明する。
図23(a)は、実施例2の液晶表示装置100Bについて、正面方向(極角0°、方位角0°)および斜め方向(極角75°、方位角45°)におけるV-T特性(電圧と相対透過率との関係)を示すグラフである。図23(a)からわかるように、実施例2の液晶表示装置100Bでは、斜め方向のV-T特性において階調反転(輝度低下)が発生している。
図23(b)は、実施例9の液晶表示装置100Eについて、正面方向(極角0°、方位角0°)および斜め方向(極角75°、方位角45°)におけるV-T特性(電圧と相対透過率との関係)を示すグラフである。図23(b)からわかるように、実施例9の液晶表示装置100Eでは、斜め方向のV-T特性において階調反転(輝度低下)が発生していない。
上述した検証結果からわかるように、実施例9の液晶表示装置100Eのように、第1画素Px1の第1電極11と、第2画素Px2の第1電極11とが、第1画素Px1および第2画素Px2の境界を軸として互いに実質的に線対称となるような形状を有することにより、視野角特性をいっそう向上させることができる。
なお、図24に示す実施例10の液晶表示装置100Fのような構成を採用することによっても、視野角特性のいっそうの向上を図ることができる。図24は、液晶表示装置100Fの複数の画素のうち、列方向に沿って互いに隣接する任意の2つの画素(第1画素および第2画素)Px1およびPx2に対応した領域を示している。
実施例10の液晶表示装置100Fでは、図24に示すように、第1画素Px1の第1電極11と、第2画素Px2の第1電極11とは、第1画素Px1および第2画素Px2の境界を軸として互いに実質的に線対称となるような形状を有する。
従って、第1画素Px1において第1電極11の細長電極部分11aの延びる方向(スリットの延びる方向でもある)と、第2画素Px2において第1電極11の細長電極部分11aの延びる方向(スリットの延びる方向でもある)とが異なる。具体的には、第1画素Px1の第1領域R1では、細長電極部分11aの延びる方向と配向軸方位D1とは、反時計回りに第1の角度θ1(=7°)をなし、第1画素Px1の第2領域R2では、細長電極部分11aの延びる方向と配向軸方位D1とは、反時計回りに第2の角度θ2(=3°)をなす。これに対し、第2画素Px2の第1領域R1では、細長電極部分11aの延びる方向と配向軸方位D1とは、時計回りに第1の角度θ1(=7°)をなし、第2画素Px2の第2領域R2では、細長電極部分11aの延びる方向と配向軸方位D1とは、時計回りに第2の角度θ2(=3°)をなす。
上述したような電極構造が採用されているので、実施例10の液晶表示装置100Fでは、第1電極11と第2電極12との間に電圧が印加されたとき、第1画素Px1において第1領域R1および第2領域R2の液晶分子LCが回転する方向と、第2画素Px2において第1領域R1および第2領域R2の液晶分子LCが回転する方向とが互いに反対である。具体的には、第1画素Px1においては液晶分子LCが時計回りに回転するのに対し、第2画素Px2においては液晶分子LCが反時計回りに回転する。
上述した構成を有する実施例10の液晶表示装置100Fにおいても、中間調表示を斜め方向から観察したときの色付きや階調反転の発生が抑制され、いっそう高い視野角特性が得られる。
次に、本発明の実施形態による液晶表示装置100の製造方法を説明する。
アクティブマトリクス基板10は、公知の種々の方法で作製することができる。ゲートメタル層(TFTのゲート電極および走査配線を含む)およびソースメタル層(TFTのソース電極、ドレイン電極および信号配線を含む)は、それぞれ、例えば厚さ0.4μmのTiN/Al/TiN積層膜から形成される。ゲート絶縁層14および誘電体層13は、それぞれ、例えば厚さ0.2μm~0.5μmのSiNx膜から形成される。保護層16は、例えば厚さ0.4μmのSiNx膜から形成される。有機層間絶縁層17は、例えば厚さ2.5μmのアクリル系樹脂材料から形成される。第1電極(画素電極)11および対向電極(共通電極)12は、例えば厚さ0.1μmのITO膜から形成される。
第1電極11の細長電極部分11aの幅は、例えば、2.5μmである。また、細長電極部分11aの間隔(スリット11bの幅)は、例えば4.0μmである。第1電極11となるITO膜をパターニングする工程において、適切な形状のレジストマスクを用いることにより、第1領域R1と第2領域R2とで細長電極部分11aと配向軸方位D1とのなす角度が異なる第1電極11を形成することができる。
対向基板20も、公知の種々の方法で作製することができる。遮光層21は、例えば黒色樹脂材料から形成され、その厚さは、例えば1.6μmである。赤カラーフィルタ22R、緑カラーフィルタ22Gおよび青カラーフィルタ22Bは、それぞれ、例えば着色樹脂材料から形成され、その厚さは、例えば1.5μmである。有機平坦化層23は、例えばアクリル系樹脂材料から形成されており、その厚さは、例えば2.0μmである。透明導電層26は、例えば厚さ20nmのITO膜から形成される。透明導電層26は、例えば、液晶注入工程後にスパッタ法によって形成される。
光配向膜である配向膜18および28は、例えば、以下のようにして形成することができる。まず、光配向膜材料をスピンコート法などによってアクティブマトリクス基板10/対向基板20の表面に塗布し、焼成することで、例えば厚さ0.06μm~0.08μmの配向膜18/28を形成する。
より具体的には、PVCi(ポリビニルシンナメート)系の光配向膜材料を、γブチロラクトン中に固形分濃度がおよそ3.0wt%となるように混ぜ、得られた溶液を、スピンコータに設置されたアクティブマトリクス基板10/対向基板20上に、厚さが60nm~80nmになるようにスピンコータの回転数を調節して(例えば、1500rpm~2500rpm)塗布する。続いて、ホットプレート上で基板をプリベーク(例えば80℃で1分間)およびポストベーク(例えば180℃で1時間)する焼成処理を行う。
その後、図25に示すように、配向膜18/28に対し、所定の方向に延びる複数のスリット48Sを有するマスク(ワイヤーグリッドスリットマスク)48を介して、偏光方向L1の直線偏光紫外線(偏光UV)を照射することによって、光配向膜18/28が得られる。例えば、UV光源LSと配向膜18/28との間に、幅約7μmのスリット48sを有するマスク48を配置し、照射エネルギーを1.5J/cm2に設定して偏光UVを照射する。このとき、例えば、35μm/secの速度で基板を所定の方向D2に沿ってスキャンすることで、光配向処理を樹脂膜全体に対して行うことができる。なお、ここでは、偏光UVの偏光方向L1に対して垂直な方向の配向規制力(配向軸方位D1で表わされる)を発現する光配向膜材料を用いている。
このようにして、光配向膜である配向膜18および28を形成することができる。なお、配向膜18および28は、光配向膜でなくてもよい。例えば、配向膜18および28は、配向処理としてラビング処理が施されてもよい。ラビング処理が施された配向膜18および28は、例えば、以下のようにして形成することができる。
まず、ポリアミック酸系の配向膜材料を、γブチロラクトン中に固形分濃度がおよそ3.0wt%となるように混ぜ、得られた溶液を、スピンコータに設置されたアクティブマトリクス基板10/対向基板20上に、厚さが60nm~80nmになるようにスピンコータの回転数を調節して(例えば、1500rpm~2500rpm)塗布する。続いて、ホットプレート上で基板をプリベーク(例えば80℃で1分間)およびポストベーク(例えば180℃で1時間)する焼成処理を行う。
その後、図26(a)に示すように、配向膜18/28に対し、ラビング布42が巻き付けられたラビングローラ43を用いてラビング処理を行う。例えば、ラビング布42として吉川化工製YA18R(材質はレーヨン)を用い、ラビングローラ43の回転数が300rpm、ステージの移動速度が25mm/min、毛当たり量が0.6μmの条件でラビング処理を行う。ラビングローラ43の回転方向D3、ラビング方向D4およびステージの移動方向D5の関係は、図26(a)中に示す通りである。図26(b)に示すように、ラビング布42の毛42aは傾斜しており、図26(a)に示す例では、いわゆる順目ラビングが行われる。なお、横電界モードの場合、配向膜18および28のアンカリング特性が比較的強いことが好ましい。例えばステージの移動速度を遅くすることにより、ラビング密度を高くしてアンカリング特性を強くすることができる。
上述したようにしてアクティブマトリクス基板10および対向基板20を作製した後、液晶材料をこれら基板間に封止することによって、液晶層30を含む液晶パネルが得られる。この工程も、公知の種々の方法で行うことができる。以下、具体例を説明する。まず、対向基板20において1つのパネルに対応する領域の周辺部に、ディスペンサを用いてシール材を塗布する。シール材としては、例えば熱硬化性樹脂を用いることができる。
次に、プリベーク工程(例えば80℃で5分間)を行う。また、アクティブマトリクス基板10上に所望径(例えば3.3μm)の球状スペーサを乾式散布する。その後、アクティブマトリクス基板10と対向基板20とを貼り合わせ、真空プレス工程または剛体プレス工程を行った後にポストベーク工程(例えば180℃で60分間)を行う。
なお、一般的には、大型のマザーガラスを用いて複数の液晶パネルが同時に形成されるため、アクティブマトリクス基板10と対向基板20とを貼り合わせた後、各液晶パネルに分断する工程が行われる。
各液晶パネルでは、スペーサによって間隔が維持される空隙が基板間に形成されており、空セルの状態となっている。この空セルに対して液晶材料を注入する。液晶注入工程は、液晶材料を注入皿に適量入れ、真空チャンバ内に空セルと一緒にセッティングし、真空引き(例えば60分間)の後、ディップ注入(例えば60分間)することで行われる。液晶材料が注入されたセルを真空チャンバから取り出した後、注入口に付着した液晶材料を清掃する。また、注入口にUV硬化樹脂を塗布し、UV照射によりこれを硬化することで注入口を封止し、液晶パネルが完成する。
以上、本発明の実施形態を説明したが、その他の種々の改変が可能なことは言うまでもない。例えば、図27(a)に示すように、第2電極(共通電極)12を、ソースメタル層(信号配線15およびTFTのソース電極、ドレイン電極を含む)と同層に設けてもよい。この構成においては、保護層16が、補助容量の(つまり画素電極11および共通電極12の間に位置する)誘電体層として機能する。
あるいは、図27(b)に示すように、第2電極(共通電極)12を、ゲートメタル層(走査配線およびTFTのゲート電極を含む)と同層に設けてもよい。この構成においては、ゲート絶縁層14および保護層16が、補助容量の(つまり画素電極11および共通電極12の間に位置する)誘電体層として機能する。
なお、一対の偏光板のそれぞれの透過軸および吸収軸は、互いに置換されてもよい。本明細書において、「偏光軸」は、吸収軸または透過軸のいずれを指していてもよく、配向軸方位D1は、好適には、裏側(または表側)の偏光板の偏光軸(すなわち、吸収軸または透過軸のいずれか)に対して略平行に配置されている。
また、上記の説明ではFFSモードの液晶表示装置を例示したが、本発明の実施形態の液晶表示装置は、IPSモードの液晶表示装置であってもよい。
なお、上記の説明では、液晶層30がポジ型液晶材料(誘電異方性が正のネマチック液晶材料)から構成されている場合を例示したが、液晶層30がネガ型液晶材料(誘電異方性が負のネマチック液晶材料)から構成されていてもよい。本願発明者の検討によれば、ネガ型液晶材料を用いた場合でも、ポジ型液晶材料を用いた場合と同様に、フレクソ分極に起因したフリッカが発生し得ることがわかった。具体的には、ネガ型液晶材料に含まれる液晶分子の双極子モーメントが液晶分子の長軸に対して傾斜している場合に、極性反転時に輝度の低下(下角応答)が発生することがわかった。以下、図28、図29および図30を参照しながら、ネガ型液晶材料を用いた場合においてフレクソ分極が発生するメカニズムを説明する。
図28(a)および(b)は、ポジ型液晶材料に含まれる液晶分子LCとその双極子モーメントDMとの関係を示す図である。また、図28(c)は、ポジ型液晶材料から構成されている液晶層に正極性の画素電圧が印加されているときの電気力線EFと液晶分子LCの配向状態との関係を示す図である。
ポジ型液晶材料の液晶分子LCの双極子モーメントDMは、図28(a)に示すように液晶分子LCの長軸に平行であるか、または、図28(b)に示すように液晶分子LCの長軸に対して傾斜している。いずれの場合についても、図28(c)に示すように、画素電圧の印加時に電界の傾斜に沿って液晶分子LCが並ぶので、スプレイ変形が発生する。
図29(a)および図30(a)は、ネガ型液晶材料に含まれる液晶分子LC’とその双極子モーメントDMとの関係を示す図である。また、図29(b)および図30(b)は、ネガ型液晶材料から構成されている液晶層に正極性の画素電圧が印加されているときの電気力線EFと液晶分子LC’の配向状態との関係を示す図である。
ネガ型液晶材料の液晶分子LC’の双極子モーメントDMが、図29(a)に示すように液晶分子LC’の長軸に直交している場合、図29(b)に示すように、画素電圧の印加時に電界の傾斜の影響なく液晶分子LC’が並ぶので、スプレイ変形は発生しない。
これに対し、ネガ型液晶材料の組成によっては、液晶分子LC’の双極子モーメントDMが、図30(a)に示すように液晶分子LC’の長軸に対して傾斜している。例えば、ネガ型液晶材料の液晶分子LC’がくの字に屈曲するような中間基を有していると、双極子モーメントDMが傾斜する傾向がある。この場合、図30(b)に示すように、画素電圧の印加時に電界の傾斜に沿って液晶分子LC’が並ぶので、スプレイ変形が発生する。そのため、フレクソ分極に起因したフリッカが発生し、極性反転時に輝度の低下が発生する。
図31に、フレクソ分極に起因したフリッカが発生する(つまり双極子モーメントDMが液晶分子LC’の長軸に対して傾斜するネガ型液晶材料を含む)液晶パネルにおける、正極性の直流電圧印加時および負極性の直流電圧印加時のV-T特性の例を示す。図31に示すように、正極性の直流電圧印加時のV-T特性と、負極性の直流電圧印加時のV-T特性とが異なっている。これは、双極子モーメントDMが液晶分子LC’の長軸に対して傾斜していると、V-T特性が、見掛け上、フレクソ係数が大きくなる(フレクソ分極が大きくなる)ことと同様の傾向を示すからである。従って、正極性の直流電圧印加時および負極性の直流電圧印加時のV-T特性を測定することにより、フレクソ分極に起因したフリッカが発生し得る液晶パネル(液晶材料)かどうかを判別することができるといえる。
図32(a)および(b)に、本発明の実施形態による他の液晶表示装置200を示す。図32(a)および(b)は、それぞれ液晶表示装置200を模式的に示す平面図および断面図である。図32(a)は、液晶表示装置200の1つの画素Pxに対応した領域を示しており、図32(b)は、図32(a)中の32B-32B’線に沿った断面を示している。
液晶表示装置200は、液晶層30がネガ型の液晶材料から構成されている(つまり誘電異方性が負のネマチック液晶材料を含む)点において、図1に示した液晶表示装置100と異なっている。また、液晶表示装置200は、アクティブマトリクス基板10側の配向膜18によって規定される液晶分子LC’の配向軸方位D1が表示面の水平方向に平行である点においても、図1に示した液晶表示装置100と異なっている。なお、対向基板28側の配向膜28によって規定される液晶分子LC’の配向方位は、配向膜18によって規定される液晶分子LCの配向方位と平行または反平行である。
液晶表示装置200においても、複数の画素Pxのそれぞれは、図32(a)に示すように、第1領域R1と、第2領域R2とを有する。
第1領域R1では、細長電極部分11a(またはスリット11b)の延びる方向と配向膜18によって規定される配向軸方位D1とは、第1の角度θ1をなす。図32(a)に示す例では、細長電極部分11aの延びる方向は、配向軸方位D1に対して時計回りに第1の角度θ1傾斜している。
これに対し、第2領域R2では、細長電極部分11a(またはスリット11b)の延びる方向と配向膜18によって規定される配向軸方位D1とは、第1の角度θ1よりも小さい第2の角度θ2をなす。図32(a)に示す例では、細長電極部分11aの延びる方向は、配向軸方位D1に対して時計回りに第2の角度θ2傾斜している。
このように、各画素Pxは、第1電極11の細長電極部分11a(またはスリット11b)の延びる方向が互いに異なる2種類の領域(第1領域R1および第2領域R2)を有する。第1電極11と第2電極12との間に電圧が印加されたとき、図33に示すように、第1領域R1の液晶分子LC’と第2領域R2の液晶分子LC’とは同じ方向(ここでは時計回り)に回転する。
第2の角度θ2は、第1の角度θ1よりも小さければよく(つまり、第1の角度θ1は、第2の角度θ2よりも大きければよく)、第1の角度θ1および第2の角度θ2の大きさに制限はない。ただし、後述する理由から、第1の角度θ1は76°以上87°以下で、第2の角度θ2は75°以上86°以下であることが好ましい。
図32(a)に例示している構成では、第1領域R1の面積と第2領域R2の面積とが互いに異なっている。より具体的には、第1領域R1の面積は、第2領域R2の面積よりも大きい。
上述したように、液晶表示装置200の各画素Pxは、細長電極部分11a(またはスリット11b)の延びる方向と配向膜18によって規定される配向軸方位D1とのなす角度が互いに異なる第1領域R1および第2領域R2を有する。これにより、60Hz未満の周波数で駆動したとしても、フレクソ分極に起因するフリッカを視認され難くすることができる。以下、このことをシミュレーションにより検証した結果を説明する。
シミュレーションは、図34(a)、(b)、(c)および(d)にそれぞれ示す実施例11、12、13および14の液晶表示装置200A、200B、200Cおよび200Dについて行った。
表8に、実施例11、12、13および14の液晶表示装置200A、200B、200Cおよび200Dについて、第1領域R1および第2領域R2のそれぞれにおいて細長電極部分11aの延びる方向と配向軸方位D1とのなす角度(つまり第1の角度θ1および第2の角度θ2)と、第1領域R1および第2領域R2の面積比を示す。
図34(a)~(d)および表8からわかるように、実施例11、12、13および14のいずれにおいても、第1の角度θ1は87°であり、第2の角度θ2は83°である。また、第1領域R1および第2領域R2の面積比は、実施例11では9:1、実施例12では7:3、実施例13では5:5、実施例14では3:7である。つまり、実施例11および12では、第1領域R1の面積が第2領域R2の面積よりも大きい。また、実施例13では、第1領域R1の面積と第2領域R2の面積とが同じであり、実施例14では、第2領域R2の面積が第1領域R1の面積よりも大きい。
また、シミュレーションを、図35(a)に示す比較例4の液晶表示装置900Dについても行った。比較例4の液晶表示装置900Dの各画素Pxには、複数の細長電極部分911aを有する第1電極(画素電極)911と、誘電体層(不図示)を介して第1電極911の下に形成された第2電極(共通電極)912とが設けられている。
また、各画素Pxは、上側領域RUおよび下側領域RLの2つの領域を有する。上側領域RUと下側領域RLとでは、細長電極部分911aの延びる方向が異なる。ただし、上側領域RUにおいて細長電極部分911aの延びる方向と配向軸方位D1とがなす角度と、下側領域RLにおいて細長電極部分911aの延びる方向と配向軸方位D1とがなす角度とは、同じ角度θである。
細長電極部分911aの延びる方向は、上側領域RUでは、配向軸方位D1に対して反時計回りに角度θ傾斜しており、下側領域RLでは、配向軸方位D1に対して時計回りに角度θ傾斜している。第1電極11と第2電極12との間に電圧が印加されたとき、図14(b)に示すように、上側領域RUの液晶分子LC’と下側領域RLの液晶分子LC’とは反対方向に回転する。具体的には、上側領域RUの液晶分子LC’は、反時計回りに回転するのに対し、下側領域RLの液晶分子LC’は、時計回りに回転する。
表9に、比較例4の液晶表示装置900Dについて、上側領域RUおよび下側領域RLのそれぞれにおいて細長電極部分11aの延びる方向と配向軸方位D1とのなす角度θと、上側領域RUおよび下側領域RLの面積比を示す。
図35(a)および表9からわかるように、比較例4では、角度θ(上側領域RUおよび下側領域RLで共通の角度である)はそれぞれ15°である。また、上側領域RUおよび下側領域RLの面積比は、5:5である。つまり、比較例4では、上側領域RUの面積と下側領域RLの面積とが同じである。
シミュレーションソフトとしては、シンテック株式会社製LCD MASTERを用いた。セル厚(液晶層の厚さ)は3.0μmとし、誘電体層の厚さは0.3μmとした。また、第1電極(画素電極)の細長電極部分の幅および間隔は、それぞれ5.0μmおよび3.0μmとした。液晶層を構成するネガ型液晶材料の物性値は、表10に示す通りとした。
また、フレクソ分極に起因したフリッカは、低階調(例えば256階調表示の液晶表示装置における64階調:規格化透過率5%に対応)表示を行う場合に視認されやすいので、シミュレーションの際の画素電圧は、64階調表示に対応する電圧とした。図36に、細長電極部分の延びる方向と配向軸方位とのなす角度が87°、83°、79°および75°である場合について、規格化VT特性(画素電圧と規格化輝度との関係)を示す。また、表11に、細長電極部分の延びる方向と配向軸方位とのなす角度が87°、83°、79°および75°である場合について、64階調表示に対応する電圧を示す。
図37に、実施例11および比較例4について、6.7Hz駆動の休止駆動を行った場合の規格化輝度の時間変化をシミュレーションにより計算した結果を示す。また、図38に、実施例11および比較例4について、2Hz駆動の休止駆動を行った場合の規格化輝度の時間変化をシミュレーションにより計算した結果を示す。なお、図37および図38には、画素電圧の波形も併せて示している。
図37および図38からわかるように、実施例11では、画素電圧の極性反転時の輝度の低下が比較例4よりも抑制されている。
図39に、実施例11および比較例4について、6.7Hzの休止駆動を行った場合のフリッカ率をシミュレーションにより計算した結果を示す。また、図40に、実施例11および比較例4について、2Hzの休止駆動を行った場合のフリッカ率をシミュレーションにより計算した結果を示す。図39および図40のそれぞれには、画素電圧の極性が正から負に反転するとき、および、負から正に反転するときの両方のフリッカ率が示されている。
図39および図40からわかるように、実施例11では、6.7Hz駆動および2Hz駆動のいずれの場合についても、比較例4よりもフリッカ率が低い。
上述した結果からわかるように、各画素Pxが、細長電極部分11a(またはスリット11b)の延びる方向と配向軸方位D1とのなす角度が互いに異なる第1領域R1および第2領域R2を有することにより、60Hz未満の周波数で駆動したとしても、フレクソ分極に起因するフリッカを視認され難くすることができる。
図41に、実施例11~14および比較例4について、2Hzの休止駆動を行った場合のフリッカ率を示す。図41からわかるように、実施例11~14のいずれについても、比較例14よりもフリッカ率が低い。また、実施例11、12、13および14の順に、フリッカ率が低い。つまり、第1領域R1の面積が大きいほど、フリッカ率を低減する効果が高い。フリッカ率をいっそう低減する観点からは、第1領域R1の面積が第2領域R2の面積よりも大きいことが好ましく(つまり各画素Pxにおける第1領域R1の面積比が0.5を超えることが好ましく)、各画素Pxにおける第1領域R1の面積比が0.7以上であることがより好ましく、各画素Pxにおける第1領域R1の面積比が0.9以上であることがさらに好ましい。言い換えると、第2領域R2の面積に対する第1領域R1の面積の比が1を超えることが好ましく、7/3以上であることがより好ましく、9以上であることがさらに好ましい。
同様のシミュレーションを、実施例15~19の液晶表示装置について行った。表12に、実施例15~19について、第1領域R1および第2領域R2のそれぞれにおいて細長電極部分11aの延びる方向と配向軸方位D1とのなす角度(つまり第1の角度θ1および第2の角度θ2)と、第1領域R1および第2領域R2の面積比を示す。
表12からわかるように、第1の角度θ1は、実施例15および16では87°、実施例17および18では83°、実施例19では79°である。また、第2の角度θ2は、実施例15および17では79°、実施例16、18および19では75°である。また、第1領域R1および第2領域R2の面積比は、実施例15~19のいずれについても9:1である。
図42に、実施例11、15~19および比較例4について、2Hzの休止駆動を行った場合のフリッカ率を示す。図42からわかるように、実施例11および15~19のいずれについても、比較例14よりもフリッカ率が低い。また、実施例11、15、16、17、18および19の順に、フリッカ率が低い。つまり、第1の角度θ1および第2の角度θ2が大きいほど、フリッカ率を低減する効果が高い。既に説明したように、第1の角度θ1は76°以上87°以下で、第2の角度θ2は75°以上86°以下であることが好ましい。これらの角度範囲が好ましい理由は、液晶層30がポジ型液晶材料から形成されている場合に、第1の角度θ1が4°以上15°以下であることが好ましく、第2の角度θ2が3°以上14°以下であることが好ましいのと同様の理由からである(つまり偏光板の軸精度や製造プロセス精度を考慮すると上限値は86°~87°程度であることが好ましく、透過率を高くして低消費電力化を図る観点から下限値は、75°~76°程度であることが好ましい)。
図43および表13に、実施例11~19および比較例4について、6.7Hzの休止駆動を行った場合のフリッカ率を示す。表13には、画素電圧の極性が正から負に反転するとき、および、負から正に反転するときのフリッカ率に加え、平均のフリッカ率および比較例4のフリッカ率に対する改善率も示されている。
図43および表13からも、第1領域R1の面積が大きいほど、フリッカ率を低減する効果が高く、第1の角度θ1および第2の角度θ2が大きいほど、フリッカ率を低減する効果が高いという傾向がわかる。
図44および表14に、実施例11~19および比較例4について、2Hzの休止駆動を行った場合のフリッカ率を示す。表14には、画素電圧の極性が正から負に反転するとき、および、負から正に反転するときのフリッカ率に加え、平均のフリッカ率および比較例4のフリッカ率に対する改善率も示されている。
図44および表14からも、第1領域R1の面積が大きいほど、フリッカ率を低減する効果が高く、第1の角度θ1および第2の角度θ2が大きいほど、フリッカ率を低減する効果が高いという傾向がわかる。
上述したように、ネガ型液晶材料から構成された液晶層30を備えた液晶表示装置についても、各画素Pxが、細長電極部分11a(またはスリット11b)の延びる方向と配向膜18によって規定される配向軸方位D1とのなす角度が互いに異なる第1領域R1および第2領域R2を有することにより、60Hz未満の周波数で駆動したとしても、フレクソ分極に起因するフリッカを視認され難くすることができる。
本発明の実施形態は、横電界モードの液晶表示装置に広く適用される。
10 第1基板(アクティブマトリクス基板)
11 第1電極(画素電極)
11a 細長電極部分
11b スリット
11c 接続部
12 第2電極(共通電極)
13 誘電体層
14 ゲート絶縁層
15 信号配線(ソースバスライン)
16 保護層
17 有機層間絶縁層
18 配向膜
20 第2基板(対向基板)
21 遮光層(ブラックマトリクス)
22 カラーフィルタ層
22R 赤カラーフィルタ
22G 緑カラーフィルタ
22B 青カラーフィルタ
23 有機平坦化層
26 透明導電層
28 配向膜
30 液晶層
100、100A、100B、100C 液晶表示装置
100D、100E、100F 液晶表示装置
200、200A、200B、200C、200D 液晶表示装置
D1 配向軸方位
LC、LC’ 液晶分子
Px 画素
Px1 第1画素
Px2 第2画素
R1 第1領域
R2 第2領域
θ1 第1の角度
θ2 第2の角度
11 第1電極(画素電極)
11a 細長電極部分
11b スリット
11c 接続部
12 第2電極(共通電極)
13 誘電体層
14 ゲート絶縁層
15 信号配線(ソースバスライン)
16 保護層
17 有機層間絶縁層
18 配向膜
20 第2基板(対向基板)
21 遮光層(ブラックマトリクス)
22 カラーフィルタ層
22R 赤カラーフィルタ
22G 緑カラーフィルタ
22B 青カラーフィルタ
23 有機平坦化層
26 透明導電層
28 配向膜
30 液晶層
100、100A、100B、100C 液晶表示装置
100D、100E、100F 液晶表示装置
200、200A、200B、200C、200D 液晶表示装置
D1 配向軸方位
LC、LC’ 液晶分子
Px 画素
Px1 第1画素
Px2 第2画素
R1 第1領域
R2 第2領域
θ1 第1の角度
θ2 第2の角度
Claims (19)
- 互いに対向するように設けられた第1基板および第2基板と、
前記第1基板および前記第2基板の間に設けられた液晶層と、を備え、
マトリクス状に配列された複数の画素を有する液晶表示装置であって、
前記第1基板は、前記液晶層に横電界を生成し得る第1電極および第2電極と、前記液晶層に接するように設けられ、電圧無印加時における液晶分子の配向軸方位を規定する配向膜とを有し、
前記第1電極は、互いに略平行に延びる複数の細長電極部分および/または少なくとも1つのスリットを有し、
前記複数の画素のそれぞれは、前記細長電極部分または前記スリットの延びる方向と前記配向膜によって規定される前記配向軸方位とが第1の角度をなす第1領域と、前記細長電極部分または前記スリットの延びる方向と前記配向膜によって規定される前記配向軸方位とが前記第1の角度よりも小さい第2の角度をなす第2領域とを有する液晶表示装置。 - 前記第1領域の面積と前記第2領域の面積とが互いに異なる請求項1に記載の液晶表示装置。
- 前記液晶層は、誘電異方性が正のネマチック液晶材料を含み、
前記第2領域の面積は、前記第1領域の面積よりも大きい請求項2に記載の液晶表示装置。 - 前記複数の画素のそれぞれにおける前記第2領域の面積比は0.7以上である請求項3に記載の液晶表示装置。
- 前記複数の画素のそれぞれにおける前記第2領域の面積比は0.9以上である請求項3に記載の液晶表示装置。
- 前記第1の角度は4°以上15°以下であり、前記第2の角度は3°以上14°以下である請求項3から5のいずれかに記載の液晶表示装置。
- 前記液晶層は、誘電異方性が負のネマチック液晶材料を含み、
前記第1領域の面積は、前記第2領域の面積よりも大きい請求項2に記載の液晶表示装置。 - 前記複数の画素のそれぞれにおける前記第1領域の面積比は0.7以上である請求項7に記載の液晶表示装置。
- 前記複数の画素のそれぞれにおける前記第1領域の面積比は0.9以上である請求項7に記載の液晶表示装置。
- 前記第1の角度は76°以上87°以下であり、前記第2の角度は75°以上86°以下である請求項7から9のいずれかに記載の液晶表示装置。
- 前記第1電極と前記第2電極との間に電圧が印加されたとき、前記第1領域の液晶分子と前記第2領域の液晶分子とが同じ方向に回転する請求項1から10のいずれかに記載の液晶表示装置。
- 前記第1電極と前記第2電極との間に電圧が印加されたとき、前記複数の画素のうちの任意の第1画素において前記第1領域および前記第2領域の液晶分子が回転する方向と、
前記第1画素に行方向または列方向に沿って隣接する第2画素において前記第1領域および前記第2領域の液晶分子が回転する方向とが互いに反対である請求項11に記載の液晶表示装置。 - 前記第1画素において前記第1電極の前記細長電極部分または前記スリットの延びる方向と、前記第2画素において前記第1電極の前記細長電極部分または前記スリットの延びる方向とが異なる請求項11または12に記載の液晶表示装置。
- 前記第1画素の前記第1電極と、前記第2画素の前記第1電極とは、前記第1画素および前記第2画素の境界を軸として互いに実質的に線対称となるような形状を有する請求項11から13のいずれかに記載の液晶表示装置。
- 前記第1電極は、誘電体層を介して前記第2電極上に設けられており、
前記第1基板は、前記配向膜、前記第1電極、前記誘電体層および前記第2電極を前記液晶層側からこの順に有する請求項1から14のいずれかに記載の液晶表示装置。 - 前記複数の画素のそれぞれに表示信号電圧が供給される信号供給期間と、前記複数の画素のそれぞれに表示信号電圧が供給されない休止期間とが1フレーム中に設けられる休止駆動を行い得る請求項1から15のいずれかに記載の液晶表示装置。
- 前記第1基板は、前記複数の画素のそれぞれに設けられた薄膜トランジスタを有し、
前記薄膜トランジスタは、酸化物半導体を含む半導体層を有する請求項1から16のいずれかに記載の液晶表示装置。 - 前記酸化物半導体は、In-Ga-Zn-O系の半導体を含む請求項17に記載の液晶表示装置。
- 前記In-Ga-Zn-O系の半導体は、結晶質部分を含む請求項18に記載の液晶表示装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014042690 | 2014-03-05 | ||
JP2014-042690 | 2014-03-05 | ||
JP2015026595 | 2015-02-13 | ||
JP2015-026595 | 2015-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015133469A1 true WO2015133469A1 (ja) | 2015-09-11 |
Family
ID=54055275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/056203 WO2015133469A1 (ja) | 2014-03-05 | 2015-03-03 | 液晶表示装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015133469A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017057496A1 (ja) * | 2015-09-30 | 2017-04-06 | 日産化学工業株式会社 | 液晶表示素子 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008039998A (ja) * | 2006-08-03 | 2008-02-21 | Hitachi Displays Ltd | 半透過型液晶表示装置 |
JP2009015204A (ja) * | 2007-07-09 | 2009-01-22 | Sony Corp | 表示装置 |
JP2011022492A (ja) * | 2009-07-17 | 2011-02-03 | Toshiba Mobile Display Co Ltd | 液晶表示装置 |
JP2011102816A (ja) * | 2009-11-10 | 2011-05-26 | Hitachi Displays Ltd | 液晶表示装置 |
JP2012134475A (ja) * | 2010-12-03 | 2012-07-12 | Semiconductor Energy Lab Co Ltd | 酸化物半導体膜および半導体装置 |
WO2013008668A1 (ja) * | 2011-07-08 | 2013-01-17 | シャープ株式会社 | 液晶表示装置およびその駆動方法 |
-
2015
- 2015-03-03 WO PCT/JP2015/056203 patent/WO2015133469A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008039998A (ja) * | 2006-08-03 | 2008-02-21 | Hitachi Displays Ltd | 半透過型液晶表示装置 |
JP2009015204A (ja) * | 2007-07-09 | 2009-01-22 | Sony Corp | 表示装置 |
JP2011022492A (ja) * | 2009-07-17 | 2011-02-03 | Toshiba Mobile Display Co Ltd | 液晶表示装置 |
JP2011102816A (ja) * | 2009-11-10 | 2011-05-26 | Hitachi Displays Ltd | 液晶表示装置 |
JP2012134475A (ja) * | 2010-12-03 | 2012-07-12 | Semiconductor Energy Lab Co Ltd | 酸化物半導体膜および半導体装置 |
WO2013008668A1 (ja) * | 2011-07-08 | 2013-01-17 | シャープ株式会社 | 液晶表示装置およびその駆動方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017057496A1 (ja) * | 2015-09-30 | 2017-04-06 | 日産化学工業株式会社 | 液晶表示素子 |
KR20180059839A (ko) * | 2015-09-30 | 2018-06-05 | 닛산 가가쿠 고교 가부시키 가이샤 | 액정 표시 소자 |
CN108139632A (zh) * | 2015-09-30 | 2018-06-08 | 日产化学工业株式会社 | 液晶表示元件 |
US11112654B2 (en) | 2015-09-30 | 2021-09-07 | Nissan Chemical Industries, Ltd. | Liquid crystal display device |
CN108139632B (zh) * | 2015-09-30 | 2023-12-05 | 日产化学工业株式会社 | 液晶表示元件 |
KR102708809B1 (ko) * | 2015-09-30 | 2024-09-23 | 닛산 가가쿠 가부시키가이샤 | 액정 표시 소자 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10073306B2 (en) | LCD device | |
JP5719439B2 (ja) | 液晶駆動装置及び液晶表示装置 | |
JP6185998B2 (ja) | 液晶表示装置 | |
JP5898307B2 (ja) | 液晶駆動方法及び液晶表示装置 | |
US9891483B2 (en) | Liquid crystal display device | |
WO2016067948A1 (ja) | 液晶表示装置 | |
JP5588961B2 (ja) | 液晶表示装置 | |
JP5100822B2 (ja) | 液晶表示装置 | |
US9753338B2 (en) | Fringe field switching liquid crystal display device | |
US20150015817A1 (en) | Liquid crystal display device | |
JP5878978B2 (ja) | 液晶駆動方法及び液晶表示装置 | |
JP2014066874A (ja) | 液晶表示装置及びその駆動方法 | |
JP2013117700A (ja) | 液晶表示装置 | |
WO2015133469A1 (ja) | 液晶表示装置 | |
JP2019184638A (ja) | 液晶表示装置および電子機器 | |
JP2009092873A (ja) | 液晶表示装置 | |
JP5450741B2 (ja) | 液晶表示装置 | |
KR102062651B1 (ko) | 초고화질 수직배향 액정표시장치 | |
WO2014208122A1 (ja) | 液晶表示装置 | |
JP5926314B2 (ja) | 液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15757762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15757762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |