WO2017051791A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2017051791A1
WO2017051791A1 PCT/JP2016/077638 JP2016077638W WO2017051791A1 WO 2017051791 A1 WO2017051791 A1 WO 2017051791A1 JP 2016077638 W JP2016077638 W JP 2016077638W WO 2017051791 A1 WO2017051791 A1 WO 2017051791A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
oxide semiconductor
layer
gate insulating
gate
Prior art date
Application number
PCT/JP2016/077638
Other languages
English (en)
French (fr)
Inventor
義仁 原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017541550A priority Critical patent/JP6526215B2/ja
Priority to US15/762,572 priority patent/US10340392B2/en
Priority to CN201680054850.7A priority patent/CN108028202B/zh
Publication of WO2017051791A1 publication Critical patent/WO2017051791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate

Definitions

  • the present invention relates to a semiconductor device formed using an oxide semiconductor and a manufacturing method thereof.
  • An active matrix substrate used for a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • TFT thin film transistor
  • amorphous silicon TFT a TFT having an amorphous silicon film as an active layer
  • polycrystalline silicon TFT a TFT having a polycrystalline silicon film as an active layer
  • the active matrix substrate generally has a display area including a plurality of pixels and an area (peripheral area) other than the display area.
  • Each pixel in the display region is provided with a source wiring extending along the pixel column direction, a gate wiring extending along the pixel row direction, a pixel electrode, and a TFT.
  • the peripheral region a plurality of terminal portions for connecting the gate wiring or the source wiring to the external wiring are provided.
  • the gate wiring extends from the display region to the peripheral region, and is connected to the gate driver via a terminal portion (gate terminal).
  • the source wiring is electrically connected to, for example, a gate connection wiring formed from the same film as the gate wiring. This connection portion is referred to as a “source / gate connection portion”.
  • the gate connection wiring is connected to the source driver via the terminal portion (source terminal) in the peripheral region.
  • the wiring such as the gate wiring, the source wiring, and the gate connection wiring is, for example, a metal wiring.
  • a structure for connecting wirings such as a gate terminal portion, a source terminal portion, and a source / gate connection portion is collectively referred to as a “wiring connection portion”.
  • oxide semiconductor TFT in place of amorphous silicon or polycrystalline silicon as a material for the active layer of a TFT.
  • a TFT is referred to as an “oxide semiconductor TFT”.
  • An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, the oxide semiconductor film can be applied to a device that requires a large area.
  • the oxide semiconductor TFT for example, a structure having a bottom gate structure and a protective layer (etch stop layer) provided so as to cover the channel region of the oxide semiconductor layer has been proposed.
  • a structure is referred to as a “channel protection type (or etch stop type)”.
  • etch stop type or etch stop type
  • the protective layer functions as an etch stop when performing etching (source / drain separation) for forming the source / drain electrodes, damage to the channel region due to etching can be reduced.
  • metal wiring such as gate wiring, source wiring, and gate connection wiring in the wiring connection portion. Details will be described later.
  • An embodiment of the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel wiring connection structure capable of suppressing corrosion of wiring in a semiconductor device including an oxide semiconductor TFT. is there.
  • a semiconductor device is a semiconductor device including a substrate, a thin film transistor supported by the substrate, an interlayer insulating layer covering the thin film transistor, and a wiring connection portion, and the thin film transistor includes the substrate A gate electrode formed thereon, a gate insulating layer covering the gate electrode, an oxide semiconductor layer formed on the gate insulating layer, a protective layer covering at least a channel region of the oxide semiconductor layer, Each has a source electrode and a drain electrode formed so as to be in contact with the oxide semiconductor layer, and the wiring connection portion includes a lower conductive portion formed of the same conductive film as the gate electrode, and the lower conductive portion.
  • An insulating layer having a contact hole formed on the portion and exposing at least a portion of the lower conductive portion; and at least a portion of the contact layer.
  • the wiring connection portion further includes an oxide semiconductor connection portion that is located between the protective layer and the gate insulating layer and is formed of the same semiconductor film as the oxide semiconductor layer.
  • the side surface of the oxide semiconductor connection portion is between the side surface of the protective layer and the side surface of the lower step portion of the gate insulating layer in the side wall of the contact hole.
  • the upper conductive portion is further in contact with the side surface of the upper step portion of the gate insulating layer and the side surface and upper surface of the oxide semiconductor connection portion in the contact hole.
  • a side surface of the upper step portion of the gate insulating layer is aligned with a side surface of the protective layer on the side wall of the contact hole.
  • a side surface of the upper step portion of the gate insulating layer is aligned with a side surface of the oxide semiconductor connection portion.
  • the upper conductive portion extends from the bottom surface of the contact hole to the interlayer insulating layer through the side wall.
  • the upper conductive portion has an end portion on an upper surface of the lower step portion of the gate insulating layer.
  • the upper conductive portion has an end portion on an upper surface of the oxide semiconductor connection portion.
  • the wiring connection portion further includes a source connection portion that is located between the protective layer and the interlayer insulating layer and is formed of the same conductive film as the source electrode, When viewed from the normal direction, in the side wall of the contact hole, a side surface of the source connection portion is located inside a side surface of the lower step portion of the gate insulating layer, and the upper conductive portion is Within the contact hole, the side surface of the upper step portion of the gate insulating layer, the side surface of the protective layer, and the side surface and the upper surface of the source connection portion are further in contact.
  • a side surface of the source connection portion is aligned with a side surface of the protective layer and a side surface of the upper step portion of the gate insulating layer.
  • the mark portion is formed from the same conductive film as the gate electrode, the island-shaped insulating film covering the mark portion, the semiconductor film that is the same as the oxide semiconductor layer, and the An oxide semiconductor cover portion disposed so as to at least partially overlap the mark portion via an insulating film; and an upper conductor cover portion covering the oxide semiconductor cover portion;
  • the insulating film has another upper step and another lower step located on the substrate side of the other upper step, and when viewed from the normal direction of the substrate, the other lower step
  • the side surface is located outside the side surface of the other upper step portion, the side surface of the other upper step portion is aligned with the side surface of the oxide semiconductor cover portion, and the upper conductor cover portion is Side and top surface of other lower step, said other Side of the stepped portion, and are arranged in contact with the side surface and upper surface of the oxide semiconductor cover portion.
  • a distance D between the side surface of the upper step portion and the side surface of the lower step portion of the gate insulating layer is 1 ⁇ m or more and 10 ⁇ m or less on the side wall of the contact hole. is there.
  • the distance d1 between the side surface of the protective layer and the side surface of the oxide semiconductor connection portion on the side wall of the contact hole is equal to the side surface of the upper step portion. It is larger than the distance D with the side surface of the said lower step part.
  • the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
  • the oxide semiconductor layer includes a crystalline part.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device including a thin film transistor and a wiring connection portion, and (A) forming a conductive film for a gate on a substrate and patterning the same.
  • a gate electrode of the thin film transistor in a TFT formation region for forming the thin film transistor, and forming a lower conductive portion of the wiring connection portion in the wiring connection portion formation region for forming a wiring connection portion; and (B) the gate Forming a gate insulating layer covering the electrode and the lower conductive portion; and (C) forming an oxide semiconductor film on the gate insulating layer and patterning the oxide semiconductor film to form an oxide semiconductor layer of the thin film transistor And (D) at least a channel region of the oxide semiconductor layer on the oxide semiconductor layer and the gate insulating layer.
  • G A contour that exposes a part of the lower conductive portion in the wiring connection portion formation region by etching the interlayer insulating layer, the protective layer, and the gate insulating layer.
  • the etching is performed by removing an end of the protective layer and an upper portion of a portion of the gate insulating layer located below the end of the protective layer, and removing the gate.
  • the insulating layer is formed under a condition that a lower portion of a portion located below the end portion of the protective layer remains, whereby the gate insulating layer is formed on the side wall of the contact hole with the upper step portion and the upper step portion.
  • a lower step portion located on the substrate side of the portion, and the lower step portion has a step structure located outside the upper step portion when viewed from the normal direction of the substrate, and (H) Forming the upper conductive portion in contact with the part of the lower conductive portion and the side surface and the upper surface of the lower step portion of the gate insulating layer in the contact hole, thereby obtaining the wiring connection portion; and The Include.
  • the step (C) includes a step of forming an island-shaped oxide semiconductor connection portion in the wiring connection portion formation region by patterning the oxide semiconductor film.
  • the protective layer is formed so as to cover a side surface and an upper surface of the oxide semiconductor connection portion, and in the step (E), the oxide semiconductor connection portion functions as an etch stop for patterning of the source conductive film.
  • the side surface of the oxide semiconductor connection portion is the side surface of the protective layer and the side surface of the lower step portion of the gate insulating layer when viewed from the normal direction of the substrate. Is located between.
  • the interlayer insulating layer includes a first insulating layer that is an inorganic insulating layer, and a second insulating layer that is an organic insulating layer formed on the first insulating layer;
  • the step (G) includes a step of patterning the second insulating layer, and the first insulating layer, the protective layer, and the gate insulating layer in a lump using the patterned second insulating layer as a mask. Etching.
  • a novel wiring connection structure capable of suppressing wiring corrosion in a semiconductor device including an oxide semiconductor TFT.
  • FIG. 1 is a schematic plan view illustrating a part of a semiconductor device 1000 according to a first embodiment
  • 2 is a cross-sectional view of a TFT 101 and an auxiliary capacitor 105 in the semiconductor device of the first embodiment.
  • FIG. (A) And (b) is the top view and sectional drawing which illustrate the terminal part 201 in the semiconductor device of 1st Embodiment, respectively.
  • 4 is a cross-sectional view illustrating a source / gate connection section 203 in the semiconductor device of the first embodiment;
  • FIG. (A) And (b) is sectional drawing and the top view which show an example of the mark part 205 in the semiconductor device of 1st Embodiment, respectively.
  • FIGS. 4A to 4D are schematic process cross-sectional views for explaining a method for manufacturing the semiconductor device 1000.
  • FIG. FIGS. 4A to 4C are schematic process cross-sectional views for explaining a method for manufacturing the semiconductor device 1000.
  • FIG. 5 is a diagram illustrating a photomask pattern in a terminal portion formation region 34.
  • FIG. It is sectional drawing which illustrates the level
  • (A) And (b) is the top view and sectional drawing of the terminal part 201A in the semiconductor device of 2nd Embodiment, respectively.
  • FIGS. 7A to 7C are schematic process cross-sectional views for explaining the method for manufacturing the semiconductor device of the second embodiment.
  • FIG. 1 A) And (b) is the top view and sectional drawing of the terminal part 201B in the semiconductor device of 3rd Embodiment, respectively.
  • A) And (b) is the top view and sectional drawing of other terminal part 201C in the semiconductor device of 3rd Embodiment, respectively.
  • A) And (b) is the top view and sectional drawing of further another terminal part 201D in the semiconductor device of 3rd Embodiment, respectively.
  • It is an expanded sectional view for demonstrating the level
  • Patent Document 1 The structure of a wiring connection portion of an active matrix substrate provided with an etch stop type oxide semiconductor TFT is disclosed in Patent Document 1, for example.
  • the gate wiring and the upper wiring formed from the same film as the pixel electrode are interleaved from the same film (source conductive film) as the source wiring. Connected through layers.
  • the source conductive film may not be used for the connection between the gate wiring and the upper wiring.
  • the upper wiring is arranged so as to be in direct contact with the gate wiring in the contact hole.
  • the inventor of the present application uses a protective layer (etch stop layer) of the oxide semiconductor TFT, thereby reducing the corrosion of the wiring without increasing the number of photomasks to be used.
  • the inventors have found that it can be formed and have arrived at the present invention.
  • the semiconductor device of this embodiment includes an oxide semiconductor TFT and a wiring connection portion. Note that the semiconductor device of this embodiment includes an active matrix substrate, various display devices, electronic devices, and the like.
  • FIG. 1 is a schematic plan view illustrating a part of the semiconductor device 1000 of this embodiment.
  • the semiconductor device 1000 of this embodiment includes a display area 100 including a plurality of pixel areas Pix and a non-display area 200 formed in an area other than the display area.
  • a source wiring S extending along the pixel column direction
  • a gate wiring G extending along the pixel row direction
  • an oxide semiconductor TFT (hereinafter simply referred to as “TFT”) 101 In each pixel region Pix, a source wiring S extending along the pixel column direction, a gate wiring G extending along the pixel row direction, and an oxide semiconductor TFT (hereinafter simply referred to as “TFT”) 101.
  • a pixel electrode 19 is provided.
  • a capacitor wiring Cs and an auxiliary capacitor 105 may be further provided.
  • the gate wiring G and the capacitor wiring Cs are formed from the same conductive film (gate conductive film).
  • the TFT 101 is disposed in the vicinity of a point where the source line S and the gate line G intersect.
  • the auxiliary capacitor 105 is formed on the capacitor wiring Cs.
  • TFT101 has the oxide semiconductor layer 5 used as an active layer.
  • the oxide semiconductor layer 5 is connected to a source electrode 7s and a drain electrode 7d that are formed integrally with the source wiring S, respectively.
  • the drain electrode 7 d is connected to the pixel electrode 19.
  • the drain electrode 7 d extends to the capacity wiring Cs and functions as the upper electrode 7 c of the auxiliary capacity 105.
  • the contact hole CH1 for connecting the drain electrode 7d and the pixel electrode 19 is disposed so as to overlap with the capacitor wiring Cs when viewed from the normal direction of the substrate.
  • wiring connection portions such as a source / gate connection portion 203 and a terminal portion 201 are provided.
  • the source wiring S is electrically connected to a wiring 3sg formed of a conductive film for gate (referred to as “gate connection wiring”).
  • gate connection wiring a wiring 3sg formed of a conductive film for gate
  • the source line S and the gate connection line 3 sg are electrically connected via a transparent connection part 19 sg formed of the same transparent conductive film as the pixel electrode.
  • the transparent connection portion 19sg is in contact with the source line S and the gate connection line 3sg in the contact hole CH2 formed in the insulating layer.
  • the gate wiring G or the gate connection wiring 3sg is electrically connected to the upper wiring formed of the same transparent conductive film as the pixel electrode.
  • the upper wiring is in contact with the gate wiring G or the gate connection wiring 3sg in the contact hole formed in the insulating layer.
  • the wiring connection portion includes at least a conductive portion (hereinafter collectively referred to as a “lower conductive portion”) such as the gate wiring G and the gate connection wiring 3sg provided below the insulating layer, and the lower conductive portion.
  • a conductive portion hereinafter collectively referred to as a “lower conductive portion”
  • the side wall of the contact hole has a predetermined step structure.
  • the upper conductive portion is disposed in contact with the lower conductive portion in the contact hole.
  • the structure of the oxide semiconductor TFT 101, the auxiliary capacitor 105, the source / gate connection portion 203, and the terminal portion 201 will be described more specifically with reference to FIGS.
  • ⁇ TFT 101 and auxiliary capacitor 105> 2 is a cross-sectional view of the TFT 101 and the auxiliary capacitor 105 of the semiconductor device 1000, and shows cross sections taken along lines II ′ and II-II ′ in FIG. 1, respectively.
  • An oxide semiconductor TFT (hereinafter simply referred to as “TFT”) 101 is an etch stop type TFT.
  • the TFT 101 includes a gate electrode 3 supported on the substrate 1, a gate insulating layer 4 covering the gate electrode 3, an oxide semiconductor layer 5 arranged so as to overlap the gate electrode 3 with the gate insulating layer 4 interposed therebetween, A protective layer 9 covering the channel region 5c of the oxide semiconductor layer 5, and a source electrode 7s and a drain electrode 7d are provided.
  • the gate electrode 3 may be formed integrally with the gate line G, and the source electrode 7s may be formed integrally with the source line S.
  • the oxide semiconductor layer 5 has a channel region 5c and source and drain contact regions located on both sides of the channel region.
  • the source electrode 7 s is formed so as to be in contact with the source contact region through a source opening provided in the protective layer 9.
  • the drain electrode 7 d is formed so as to be in contact with the drain contact region through the drain opening provided in the protective layer 9.
  • the source electrode 7s and the drain electrode 7d may be formed of the same conductive film (source conductive film).
  • the auxiliary capacitor 105 includes a capacitor line Cs provided on the substrate 1 and an upper electrode 7c disposed so as to overlap the capacitor line Cs with the gate insulating layer 4 interposed therebetween.
  • the capacitor wiring Cs is formed from a gate conductive film
  • the upper electrode 7c is formed from a source conductive film.
  • the drain electrode 7d extends over the capacitor wiring Cs and functions as the upper electrode 7c.
  • the TFT 101 and the auxiliary capacitor 105 are covered with an interlayer insulating layer 13 formed on the source and drain electrodes 7s and 7d.
  • the interlayer insulating layer 13 may have a laminated structure.
  • a first insulating layer (passivation film) 11 and a second insulating layer 12 thicker than the first insulating layer may be included from the TFT 101 side.
  • the first insulating layer 11 may be an inorganic insulating layer such as a SiO 2 layer
  • the second insulating layer 12 may be an organic insulating layer.
  • the second insulating layer 12 may be a planarizing film.
  • a contact hole (referred to as a “pixel contact hole”) CH1 reaching the drain electrode 7d is formed.
  • a pixel electrode 19 is provided on the interlayer insulating layer 13 and in the pixel contact hole CH1 so as to be in direct contact with the drain electrode 7d in the pixel contact hole CH1.
  • the pixel contact hole CH1 may be disposed on the capacitor wiring Cs.
  • FIGS. 3A and 3B are a plan view and a cross-sectional view illustrating the terminal portion 201.
  • the terminal portion 201 includes a lower connection portion 3t formed from a gate conductive film, an insulating layer 15 formed on the lower connection portion 3t, and an upper connection portion 19t formed from the same transparent conductive film as the pixel electrode.
  • the lower connection portion 3t may be a part of the gate wiring G, or may be the gate connection wiring 3sg electrically connected to the source wiring S by the source / gate connection portion 203.
  • the insulating layer 15 includes a gate insulating layer 4, a protective layer 9, and an interlayer insulating layer 13 that extend to a region for forming a terminal portion (terminal portion forming region).
  • terminal part contact hole exposing at least a part of the lower connection part 3t is formed.
  • the upper connection portion 19t is in contact with the lower connection portion 3t in the terminal portion contact hole CH2.
  • the gate insulating layer 4 has a step on the side wall of the terminal contact hole CH2.
  • FIG. 15 is an enlarged cross-sectional view for explaining a step of the gate insulating layer 4.
  • the gate insulating layer 4 has an upper step portion 41 and a lower step portion 42 located on the substrate side of the upper step portion 41.
  • the side surface 42s of the lower step portion 42 is located outside the side surface 41s of the upper step portion 41.
  • the “outside” here refers to the one having a longer distance extending from the side surface 13s of the interlayer insulating layer 13 when viewed from the normal direction of the substrate.
  • the distance d2 between the side surface 42s of the lower step portion 42 and the side surface 13s of the interlayer insulating layer 13 is larger than the distance d1 between the side surface 41s of the upper step portion 41 and the side surface 13s of the interlayer insulating layer 13. Accordingly, when the terminal portion contact hole CH2 is viewed from the normal direction of the substrate, the upper surface 42u of the lower step portion 42 protrudes from the upper step portion 41. Further, the side surface 42s of the lower step portion 42 and the side surface 41s of the upper step portion 41 are not aligned in the thickness direction.
  • step structure Such a structure (hereinafter referred to as “step structure”) can be formed without increasing the number of masks by performing etching using the protective layer 9 as described later.
  • an island-shaped oxide semiconductor connection portion 5t is disposed between the gate insulating layer 4 and the protective layer 9.
  • the oxide semiconductor connection portion 5t is formed of the same semiconductor film as the oxide semiconductor layer 5 of the TFT 101.
  • the protective layer 9 has an opening that exposes the lower connection portion 3t, the lower step portion 42 of the gate insulating layer 4, and the end portions of the oxide semiconductor connection portion 5t.
  • the side surface (end surface) 5ts of the oxide semiconductor connection portion 5t has a side surface 42s of the lower step portion 42 of the gate insulating layer 4 and the protective layer 9 when viewed from the normal direction of the substrate. It may be located between the side surface 9s.
  • the side surface 5ts of the oxide semiconductor connection portion 5t may be aligned with the side surface 41s of the upper step portion 41 of the gate insulating layer 4.
  • the side surface 9 s of the protective layer 9 may be aligned with the side surface 13 s of the interlayer insulating layer 13.
  • the side wall of the terminal contact hole CH2 has a stepped shape with the lower step portion 42 of the gate insulating layer 4 as the first step and the upper step portion 41 of the gate insulating layer 4 and the end of the oxide semiconductor connection portion 5t as the second step. .
  • side surfaces of two or more different layers in a contact hole are aligned” only when the side surfaces exposed in the contact hole in these layers are flush with each other in the vertical direction. It also includes a case where an inclined surface such as a tapered shape is continuously formed. Such a configuration can be obtained, for example, by etching these layers using the same mask, or by etching the other layer using one layer as a mask.
  • the upper connection portion 19t extends from the bottom surface of the terminal portion contact hole CH2 to the upper surface of the interlayer insulating layer 13 through the side wall.
  • the upper connection portion 19t includes the lower connection portion 3t, the side surface 42s and the upper surface 42u of the lower step portion 42 of the gate insulating layer 4, the side surface 41s of the upper step portion 41, and the oxide semiconductor connection portion 5t.
  • the side surface 5ts and the upper surface 5tu, the side surface 9s of the protective layer 9, and the side surface 13s of the interlayer insulating layer 13 are disposed.
  • the upper connecting portion 19t may be disposed so as to cover at least a part of the lower connecting portion 3t, the side surface 42s of the lower step portion 42, and the upper surface 42u of the lower step portion 42.
  • the side wall of the terminal part contact hole CH2 has a tapered shape due to the above-described step structure. For this reason, since the coverage of the upper connection part 19t can be improved, corrosion of the lower connection part 3t can be suppressed.
  • steps are formed in the oxide semiconductor connection portion 5t and the protective layer 9 in addition to the step in the gate insulating layer 4 (two-stage structure), and the coverage can be improved more effectively.
  • the semiconductor device of this embodiment should just be provided with at least 1 wiring connection part which has the said structure.
  • FIG. 4 is a cross-sectional view of the source / gate connection 203, showing a cross section taken along line III-III ′ in FIG.
  • the source-gate connection portion 203 includes a gate connection wiring 3sg formed from the gate conductive film, an insulating layer 15 formed on the gate connection wiring 3sg, a source connection wiring 7sg formed from the source conductive film, And a transparent connection portion 19sg formed of the same transparent conductive film as the pixel electrode.
  • the source connection wiring 7sg is a part of the source wiring S.
  • the gate connection wiring 3sg is electrically separated from the gate wiring G.
  • the insulating layer 15 includes the gate insulating layer 4, the protective layer 9, and the interlayer insulating layer 13.
  • a contact hole (hereinafter referred to as “SG contact hole”) CH3 exposing at least a part of the gate connection wiring 3sg and at least a part of the source connection wiring 7sg is formed in the insulating layer 15. That is, the SG contact hole CH3 is formed in the gate insulating layer 4, the protective layer 9, and the interlayer insulating layer 13, and is formed in the gate side contact hole reaching the gate connection wiring 3sg and the interlayer insulating layer 13, and the source connection wiring And a source side contact hole reaching 7 sg.
  • the transparent connection portion 19sg is in contact with both the gate connection wiring 3sg and the source connection wiring 7sg in the SG contact hole CH3. As a result, the gate connection wiring 3sg and the source connection wiring 7sg are connected via the transparent connection portion 19sg.
  • the gate insulating layer 4 has a step structure similar to the structure described above with reference to FIG. That is, the gate insulating layer 4 has an upper step portion 41 and a lower step portion 42 located on the substrate side of the upper step portion 41.
  • the side surface 42s of the lower step portion 42 is located outside the side surface 41s of the upper step portion 41.
  • the side surface 42s and the upper surface 42u of the lower step portion 42 and the side surface 41s of the upper step portion 41 constitute part of the side wall of the SG contact hole CH3.
  • the protective layer 9 has an opening exposing a part of the gate connection wiring 3 sg and the lower step portion 42 of the gate insulating layer 4.
  • the side surface of the source connection wiring 7 sg is located inside the side surface of the lower step portion 42 of the gate insulating layer 4.
  • the side surface 9s of the protective layer 9 and the side surface 41s of the upper step portion 41 of the gate insulating layer 4 are aligned with the end surface of the source connection wiring 7sg.
  • the transparent connection portion 19sg includes the gate connection wiring 3sg, the side surface 42s and the upper surface 42u of the lower step portion 42 of the gate insulating layer 4, the side surface 41s of the upper step portion 41, the side surface 9s of the protective layer 9 and the source in the SG contact hole CH3.
  • the connection wiring 7sg is disposed so as to cover the side surface and the upper surface of the connection wiring 7sg and the side surface of the interlayer insulating layer 13.
  • the transparent connection portion 19sg only needs to be disposed so as to cover at least the gate connection wiring 3sg, the step structure of the gate insulating layer 4, and the source connection wiring 7sg.
  • the side wall of the SG contact hole CH3 has the above-described step structure, as in the case of the terminal portion 201. Therefore, the coverage of the transparent connection portion 19sg can be improved, and the gate connection wiring 3sg Corrosion can be suppressed.
  • a predetermined mark may be formed in the non-display area 200.
  • the mark is, for example, a mark for alignment between the TFT substrate and the counter substrate, a mark for measuring a shift amount between the TFT substrate and the counter substrate, and a shift amount of a dividing line when the glass substrate is cut. Mark.
  • the mark can be formed of the same material as the gate wiring G.
  • the interlayer insulating layer on the mark is removed.
  • the mark is not covered with an interlayer insulating layer but only covered with a gate insulating layer, for example, if a pinhole or a crack is generated in the gate insulating film, the mark is etched by the etchant and the mark is lost. There is a problem that disappears or disappears. For this reason, a mark cover may be provided to cover the mark.
  • a portion including a mark and a mark cover is referred to as a “mark portion”.
  • 5A and 5B are a cross-sectional view and a plan view showing an example of the mark portion 205 in the semiconductor device of this embodiment.
  • the mark portion 205 includes an island-shaped mark 3m formed using a gate conductive film, a gate insulating layer 4 covering the mark 3m, and a mark cover 21 formed on the gate insulating layer 4. .
  • the planar shape of the mark 3m may be, for example, a rectangle or a cross shape.
  • the mark cover 21 includes an island-shaped oxide semiconductor cover 5m and an island-shaped transparent conductor cover 19m formed on the oxide semiconductor cover 5m.
  • the oxide semiconductor cover 5 m is formed from the same semiconductor film as the oxide semiconductor layer 5.
  • the transparent conductor cover 19m is formed using the same transparent conductive film as the pixel electrode 19.
  • the gate insulating layer 4 is patterned in an island shape so as to cover the mark 3m.
  • the side surface (end surface) of the gate insulating layer 4 has the above-described step structure. That is, it has an upper step portion 41 and a lower step portion 42 located on the substrate side of the upper step portion 41, and the side surface 42 s of the lower step portion 42 is disposed on the outer side than the side surface 41 s of the upper step portion 41.
  • the oxide semiconductor cover 5 m is disposed on the upper surface of the gate insulating layer 4.
  • the side surface of the oxide semiconductor cover 5 m may be aligned with the side surface of the upper stage portion 41.
  • the transparent conductor cover 19m is formed so as to cover the side surface 42s and the upper surface of the lower step portion 42 of the gate insulating layer 4, the side surface of the upper step portion 41, and the side surface and upper surface of the oxide semiconductor cover 5m.
  • Such a structure makes it possible to form the mark cover 21 having excellent coverage, and to prevent loss of the mark 3m, corrosion of the mark 3m, and the like.
  • FIGS. 6A to 6D and FIGS. 7A to 7C are schematic cross-sectional views for explaining a method of manufacturing the semiconductor device 1000, respectively.
  • a TFT forming region 31 in which a TFT is formed a capacitor forming region 32 for forming an auxiliary capacitor, a source / gate connecting portion forming region 33 for forming a source / gate connecting portion, and a terminal portion forming for forming a terminal portion.
  • a region 34 and a mark formation region 35 for forming an alignment mark are shown.
  • a photomask pattern in the terminal portion formation region 34 is illustrated in FIG.
  • the source / gate connection portion formation region 33 and the terminal portion formation region 34 may be collectively referred to as a “wiring connection portion formation region”.
  • a gate wiring layer including the gate wiring G is formed on the substrate 1.
  • the gate electrode 3 is formed in the TFT forming region 31
  • the capacitor wiring Cs is formed in the capacitor forming region 32
  • the gate connecting wire 3sg is formed in the source / gate connecting portion forming region 33
  • the lower connecting portion 3t is formed in the terminal forming region 34
  • the mark is formed.
  • a mark 3 m is formed in the region 35.
  • a first photomask 61 shown in FIG. 8 is used.
  • the lower connection portion 3t has a width larger than that of the gate line G, for example.
  • the substrate for example, a glass substrate, a silicon substrate, a heat-resistant plastic substrate (resin substrate), or the like can be used.
  • the gate wiring layer is obtained by forming a gate conductive film (thickness: for example, 50 nm or more and 500 nm or less) on the substrate 1 by sputtering or the like and patterning it.
  • a conductive film for a gate a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), or an alloy thereof, or a metal thereof
  • a film containing nitride can be used as appropriate.
  • a laminated film in which these plural films are laminated may be used.
  • a laminated film having a Ti film and a Cu film in this order is used as the gate conductive film.
  • a gate insulating layer 4 is formed so as to cover the gate wiring layer.
  • the gate insulating layer 4 can be formed by a CVD method or the like.
  • a silicon oxide (SiOx) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy; x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer, or the like is appropriately used. it can.
  • the gate insulating layer 4 may have a stacked structure.
  • a silicon nitride layer, a silicon nitride oxide layer, or the like is formed on the substrate side (lower layer) to prevent diffusion of impurities and the like from the substrate 1, and the insulating layer is secured on the upper layer (upper layer).
  • a silicon oxide layer, a silicon oxynitride layer, or the like may be formed. Note that when an oxygen-containing layer (eg, an oxide layer such as SiO 2 ) is used as the uppermost layer of the gate insulating layer 4 (that is, a layer in contact with the oxide semiconductor layer), oxygen vacancies are generated in the oxide semiconductor layer. In addition, since oxygen vacancies can be recovered by oxygen contained in the oxide layer, oxygen vacancies in the oxide semiconductor layer can be effectively reduced.
  • an oxygen-containing layer eg, an oxide layer such as SiO 2
  • the thickness of the gate insulating layer 4 is set to be larger than the thickness of a protective layer 9 described later. Thereby, a step structure can be formed more reliably.
  • the thickness of the gate insulating layer 4 may be, for example, twice or more, preferably three times or more the thickness of the protective layer 9.
  • the thickness of the gate insulating layer 4 may be, for example, 200 nm or more and 500 nm or less.
  • a SiNx layer having a thickness of 200 nm to 500 nm and a SiO 2 layer having a thickness of 25 nm to 100 nm are stacked in this order on the substrate 1.
  • an oxide semiconductor film is formed over the gate insulating layer 4, and the oxide semiconductor film (thickness: for example, 30 nm or more and 200 nm or less) is patterned to form the oxide semiconductor layer 5 and the terminal portion in the TFT formation region 31.
  • An oxide semiconductor connecting portion 5t is formed in the region 34, and an oxide semiconductor cover 5m is formed in the mark forming region 35.
  • the oxide semiconductor film may have a stacked structure.
  • a second photomask 62 shown in FIG. 8 is used for patterning the oxide semiconductor film.
  • the island-shaped oxide semiconductor connection portion 5t is formed so as to cover a part of the lower connection portion 3t via the gate insulating layer 4.
  • the width of the oxide semiconductor connection portion 5t is larger than the width of the lower connection portion 3t.
  • the oxide semiconductor layer 5 is formed so that at least a part thereof overlaps with the gate electrode 3 with the gate insulating layer 4 interposed therebetween.
  • an oxide semiconductor cover 5m is formed so as to cover the mark 3m via the gate insulating layer 4.
  • a protective layer 9 (thickness: for example, 30 nm or more and 200 nm or less) to be an etch stop layer (channel protective layer) of the TFT is formed.
  • a silicon oxide (SiOx) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy; x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer, or the like can be used as appropriate.
  • a silicon oxide film (SiO 2 film) having a thickness of, for example, 100 nm is formed as the protective layer 9 by CVD.
  • the protective layer 9 is patterned. Thereby, in the TFT formation region 31, a source opening 9ps exposing the source contact region of the oxide semiconductor layer 5 and a drain opening 9pd exposing the drain contact region are formed. In the capacitance forming region 32, an opening 9q located on a part of the capacitor wiring Cs is formed, and in the source / gate connection forming region 33, an opening 9r located on a part of the gate connection wiring 3sg is formed. In the terminal portion formation region 34, the opening 9u is formed on the portion that becomes the contact region of the lower connection portion 3t using the third photomask 63 shown in FIG.
  • the protective layer 9 covers the side surface (that is, the end surface on the opening 9u side) 51s of the oxide semiconductor connection portion 5t on the contact region side. That is, when viewed from the normal direction of the substrate 1, the side surface of the protective layer 9 (side surface of the opening 9u) is located closer to the contact region than the side surface 51s of the oxide semiconductor connection portion 5t.
  • the protective layer 9 is patterned so as to have an island pattern that covers the end surface and the upper surface of the oxide semiconductor cover 5m.
  • a source conductive film (thickness: for example, 50 nm or more and 500 nm or less) is formed on the substrate 1.
  • a source wiring layer including a source wiring is formed by patterning the source conductive film using a fourth photomask (not shown). Specifically, in the TFT formation region 31, the source electrode 7 s in contact with the oxide semiconductor layer 5 in the source opening 9 ps and the drain electrode 7 d in contact with the oxide semiconductor layer 5 in the drain opening 9 pd are formed. Get. In the capacitance forming region 32, an upper electrode 7c that is in contact with the gate insulating layer 4 is formed in the opening 9q. The upper electrode 7c is formed integrally with the drain electrode 7d.
  • the source connection wiring 7 sg is formed on the protective layer 9 in the source / gate connection forming region 33.
  • the end portion 7A on the opening 9r side of the source connection wiring 7sg is located on the upper surface of the protective layer 9. Accordingly, as shown in the drawing, the peripheral edge (end) 9A of the opening 9r in the protective layer 9 is exposed from the source connection wiring 7sg. In the terminal portion formation region 34 and the mark formation region 35, the source conductive film is removed.
  • a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), or an alloy thereof, or a metal thereof
  • a film containing nitride can be used as appropriate.
  • a laminated film in which these plural films are laminated may be used.
  • a Ti film (thickness: 10 to 100 nm) and a Cu film (thickness: 50 to 400 nm) are laminated in this order from the substrate side (Cu / Ti).
  • an interlayer insulating layer (thickness: for example, 1 ⁇ m or more and 3 ⁇ m or less) 13 is formed so as to cover the oxide semiconductor TFT 101.
  • a laminated film including the first insulating layer 11 and the second insulating layer 12 is formed as the interlayer insulating layer 13 by, for example, the CVD method.
  • the first insulating layer 11 may be an inorganic insulating layer (thickness: for example, 0.1 ⁇ m to 1 ⁇ m)
  • the second insulating layer 12 may be an organic insulating layer (thickness: for example, 1 ⁇ m to 4 ⁇ m).
  • an inorganic insulating film such as a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, a silicon nitride oxide (SiNxOy; x> y) film
  • Passivation film can be used.
  • the first insulating layer 11 may be a laminated film.
  • a SiOx layer having a thickness of, for example, 100 nm or more and 400 nm or less and a SiNx layer having a thickness of 20 nm or more and 400 nm or less are formed in this order by, for example, CVD.
  • an organic insulating film containing an organic insulating material such as a photosensitive resin material may be formed.
  • a positive type photosensitive resin film having a thickness of, for example, 2000 nm is used as the second insulating layer 12.
  • an opening 12q is formed in the second insulating layer 12 in the capacitance forming region 32.
  • the opening 12q is disposed so as to overlap at least a part of the upper electrode 7c.
  • an opening 12 r is formed in the source / gate connection portion formation region 33.
  • the opening 12r is at least a part (including the end 7A) of the upper surface of the source connection wiring 7sg, the end (peripheral edge) 9A of the protective layer 9, and one of the gate connection wiring 3sg located below the opening 9r. It arrange
  • an opening 12u is provided using the fifth photomask 65 shown in FIG.
  • the opening 12u is disposed so as to overlap at least a part of the lower connection portion 3t, the end portion 9B of the protective layer 9, and the end portion 5B of the oxide semiconductor connection portion 5t.
  • the second insulating layer 12 is removed from the mark formation region 35.
  • the first insulating layer 11, the protective layer 9, and the gate insulating layer 4 are collectively etched using the second insulating layer 12 as an etching mask.
  • the inorganic insulating layer (the first insulating layer 11, the protective layer 9, and the gate insulating layer 4) is etched using the source conductive film and the oxide semiconductor film as an etch stop, and the gate insulating layer 4 is described later.
  • Etching conditions are selected according to the material of the insulating layer and the like so that a stepped structure is formed.
  • the etching conditions here include, when dry etching is used, the type of etching gas, the substrate temperature, the degree of vacuum in the chamber, and the like. When wet etching is used, the type of etching solution, etching time, and the like are included. In this embodiment, CF 4 / O 2 is used as an etching gas, and dry etching is performed in the chamber.
  • the first insulating layer 11 is removed and the upper electrode 7c (drain electrode 7d) is exposed in the capacitance forming region 32.
  • an SG contact hole CH3 exposing the source connection wiring 7sg and the gate connection wiring 3sg is formed.
  • the source connection wiring 7sg functions as an etch stop, and only a portion (end portion 9A) of the protective layer 9 exposed from the source connection wiring 7sg is removed.
  • the end 9A of the protective layer 9 and the upper portion of the gate insulating layer 4 located below the end 9A are removed, and the gate insulating layer 4 is below the end 9A.
  • Etching is performed under such a condition that the lower portion of the position is left without being removed. Thereby, a step structure is formed in the gate insulating layer 4.
  • the end surface 71s of the source connection wiring 7sg, the end surface of the protective layer 9, and the side surface of the upper step portion 41 of the gate insulating layer 4 are aligned in the thickness direction.
  • the lower portion (lower step portion) 42 of the gate insulating layer 4 that remains without being etched is formed at a position corresponding to the end portion 9A of the protective layer 9 before being etched.
  • the thickness of the lower step portion 42 may be 50 nm or more and 300 nm or less, for example, 10% or more and 80% or less of the thickness of the gate insulating layer 4, depending on the etching conditions and the material to be etched.
  • a terminal part contact hole CH2 exposing the lower connection part 3t is formed.
  • the portion (including the end portion 9B) exposed from the second insulating layer 12 in the protective layer 9 is removed, and the end portion 5B of the oxide semiconductor connection portion 5t is exposed in the terminal portion contact hole CH2.
  • the side surfaces of the protective layer 9 and the first insulating layer 11 are aligned with the side surfaces of the second insulating layer 12. Therefore, a step is formed by the oxide semiconductor connection portion 5t and the protective layer 9.
  • only the upper part of the part 4B located below the end part 9B of the protective layer 9 in the gate insulating layer 4 is removed, and the lower part remains without being removed.
  • a step structure is also formed in the gate insulating layer 4.
  • the step structure of the gate insulating layer 4 is the same as the structure formed in the source / gate connection portion formation region 33.
  • the lower step portion 42 of the gate insulating layer 4 is formed at a position corresponding to the end portion 9B of the protective layer 9 before being etched. Accordingly, in the terminal portion formation region 34, the lower step portion 42 of the gate insulating layer 4 has a pattern defined by the third photomask 63 (FIG. 8).
  • the protective layer 9 and the portion of the gate insulating layer 4 that is not covered with the oxide semiconductor cover 5m are removed. Also in this case, the lower portion of the portion of the gate insulating layer 4 located below the end portion 9C of the protective layer 9 remains without being removed. Thereby, an island-shaped insulating film having a step structure on the end face is obtained from the gate insulating layer 4.
  • a transparent conductive film (thickness: 50 nm or more and 200 nm or less) is formed on the interlayer insulating layer 13, the oxide semiconductor cover 5m, and in the contact holes CH1, CH2, and CH3. , Pattern this.
  • the transparent conductive film for example, an ITO (indium / tin oxide) film, an In—Zn—O-based oxide (indium / zinc oxide) film, a ZnO film (zinc oxide film), or the like can be used.
  • the pixel electrode 19 in contact with the upper electrode 7c (drain electrode 7d) is formed in the pixel contact hole CH1.
  • a transparent connection portion 19sg is formed in contact with the source connection wiring 7sg and the gate connection wiring 3sg in the terminal portion contact hole CH2.
  • the transparent connection portion 19sg covers the side surface of the interlayer insulating layer 13, the upper surface and the side surface of the source connection wiring 7sg, the side surface of the protective layer 9, the upper surface and the side surface of the lower step portion 42 of the gate insulating layer 4, and the upper surface of the gate connection wiring 3sg. Formed.
  • an upper connection part 19t in contact with the lower connection part 3t is formed in the terminal part contact hole CH2.
  • the upper connection portion 19t includes the upper surface of the lower connection portion 3t, the side surface and the upper surface of the lower step portion 42 of the gate insulating layer 4, the side surface of the upper step portion 41, the side surface and the upper surface of the end portion 5B of the oxide semiconductor connection portion 5t, and the protective layer 9. And the side surface of the interlayer insulating layer 13 are formed.
  • a transparent conductor cover 19m covering the oxide semiconductor cover 5m is formed.
  • the transparent conductor cover 19m is formed so as to cover the side surface and upper surface of the lower step portion 42 of the gate insulating layer 4, the side surface of the upper step portion 41, and the side surface and upper surface of the oxide semiconductor cover 5m. In this way, the semiconductor device 1000 is obtained.
  • FIG. 9 is a cross-sectional view illustrating the step structure of the side wall of the terminal contact hole CH2, and shows a cross section taken along the line A-A 'shown in FIG.
  • the length of the portion of the oxide semiconductor connection portion 5t exposed from the interlayer insulating layer 13, that is, the side surface of the interlayer insulating layer 13 and the oxide semiconductor connection The distance d1 between the side surface of the portion 5t or the side surface of the upper step portion 41 is the length of the gate insulating layer 4 exposed from the oxide semiconductor connection portion 5t (lower step portion 42), that is, the upper step portion of the gate insulating layer 4 It may be set to be larger than the distance D between the side surface of 41 and the side surface of the lower step portion 42.
  • the distances d1 and D are the lengths in the direction perpendicular to the peripheral edge of the interlayer insulating layer 13 defined by the fifth photomask 65 (AA ′ line) when viewed from the normal direction of the substrate. It is.
  • the distance d1 is determined by the fifth photomask 65 and the second photomask 62 when patterning the oxide semiconductor film, and is, for example, 1 ⁇ m or more and 15 ⁇ m or less (here, 8.0 ⁇ m). is there.
  • the distance D is, for example, not less than 1 ⁇ m and not more than 10 ⁇ m (here 4.0 ⁇ m).
  • the oxide semiconductor film (oxide semiconductor layer 5) used in this embodiment will be described.
  • the oxide semiconductor included in the oxide semiconductor layer 5 may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the oxide semiconductor layer 5 may have a stacked structure of two or more layers.
  • the oxide semiconductor layer 5 may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • a plurality of amorphous oxide semiconductor layers may be included.
  • the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer.
  • the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the oxide semiconductor layer 5 may include at least one metal element of In, Ga, and Zn, for example.
  • the oxide semiconductor layer 5 includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide).
  • Such an oxide semiconductor layer 5 can be formed of an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
  • a driving TFT for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels
  • a pixel TFT a TFT provided in the pixel
  • the oxide semiconductor layer 5 may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the oxide semiconductor layer 5 includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O semiconductor.
  • Cd—Ge—O semiconductor Cd—Pb—O semiconductor, CdO (cadmium oxide), Mg—Zn—O semiconductor, In—Ga—Sn—O semiconductor, In—Ga—O semiconductor
  • a Zr—In—Zn—O based semiconductor an Hf—In—Zn—O based semiconductor, or the like may be included.
  • 10 (a) and 10 (b) are a plan view and a cross-sectional view of the terminal portion in the present embodiment, respectively. Components similar to those in FIG. 3 are denoted by the same reference numerals, and description thereof may be omitted.
  • the terminal portion 201A includes a lower connection portion 3t formed of a gate conductive film, an insulating layer 15 formed on the lower connection portion 3t, and an upper connection portion 19t formed of the same transparent conductive film as the pixel electrode.
  • the lower connection portion 3t may be the gate line G or the gate connection line 3sg.
  • the insulating layer 15 includes the gate insulating layer 4, the protective layer 9, and the interlayer insulating layer 13.
  • the upper connecting portion 19t is in contact with the lower connecting portion 3t in the terminal portion contact hole CH2 formed in the insulating layer 15. In the terminal portion formation region, the oxide semiconductor film is removed.
  • the gate insulating layer 4 has a step structure on the side wall of the terminal contact hole CH2 as in the above-described embodiment. That is, the gate insulating layer 4 has an upper step portion 41 and a lower step portion 42 that is located on the substrate side of the upper step portion 41, and the side surface 42 s of the lower step portion 42 is positioned outside the side surface 41 s of the upper step portion 41. is doing. Further, on the side wall of the terminal contact hole CH2, the side surface 41s of the upper step portion 41 of the gate insulating layer 4, the side surface 9s of the protective layer 9, and the side surface 13s of the interlayer insulating layer 13 are aligned.
  • the upper connection portion 19t includes the lower connection portion 3t, the side surface 42s and the upper surface 42u of the lower step portion 42 of the gate insulating layer 4, the side surface 41s of the upper step portion 41, the side surface 9s of the protective layer 9, and the interlayer insulation in the terminal contact hole CH2.
  • the side surface 13s of the layer 13 and a part of the upper surface of the interlayer insulating layer 13 are arranged to cover the side surface 13s.
  • the side wall of the terminal part contact hole CH2 has a tapered shape due to the step structure of the gate insulating layer 4. For this reason, since the coverage of the upper connection part 19t can be improved, corrosion of the lower connection part 3t can be suppressed. Furthermore, since the lower connection portion 3t is covered not only by the gate insulating layer 4 but also by the protective layer 9, corrosion of the lower connection portion 3t due to moisture can be more effectively suppressed.
  • the terminal part 201A is manufactured as follows.
  • 11A to 11C are process cross-sectional views illustrating an example of a method for manufacturing the terminal portion 201A in the terminal portion forming region.
  • the material, thickness, and formation method of each layer are the same as those described above with reference to FIGS.
  • the lower connection portion 3t and the gate insulating layer 4 are formed in the terminal portion formation region.
  • an oxide semiconductor film is deposited, and the oxide semiconductor film is patterned.
  • the oxide semiconductor film is removed from the terminal portion formation region.
  • a protective layer 9 having an opening 9 u is formed on the gate insulating layer 4. When viewed from the normal direction of the substrate, the opening 9u is disposed so as to overlap the lower connecting portion 3t.
  • the first insulating layer 11 is formed so as to cover the gate insulating layer 4 and the protective layer 9.
  • the second insulating layer 12 is formed, and the opening 12 u is provided in the second insulating layer 12.
  • the opening 12u is disposed so as to overlap with the end 9B of the protective layer 9 when viewed from the normal direction of the substrate.
  • the first insulating layer 11, the protective layer 9, and the gate insulating layer 4 are patterned using the second insulating layer 12 as a mask to form the terminal contact hole CH2.
  • the patterning is performed under the condition that the end portion 9B of the protective layer 9 and the upper portion of the gate insulating layer 4 located below the end portion 9B of the protective layer 9 are removed and the lower portion remains without being removed. . Thereby, a step structure is formed in the gate insulating layer 4.
  • an upper connection portion 19t is formed in the terminal portion contact hole CH2 and on the second insulating layer 12. In this way, the terminal portion 201A is obtained.
  • the upper connecting portion 19t extends from the bottom surface of the terminal portion contact hole CH2 to the upper surface of the interlayer insulating layer 13 through the side wall. An end portion of the upper connection portion 19t is disposed on the interlayer insulating layer 13. On the other hand, in the present embodiment, the upper connecting portion 19t partially covers the side surface of the terminal contact hole CH2, and the end of the upper connecting portion 19t is disposed in the terminal contact hole CH2. Different from the terminal portions 201 and 201A.
  • 12 (a) and 12 (b) are a plan view and a cross-sectional view of the terminal portion 201B in the present embodiment, respectively. Components similar to those in FIG. 3 are denoted by the same reference numerals, and description thereof may be omitted.
  • the upper connecting portion 19t includes at least a part of the lower connecting portion 3t exposed on the bottom surface of the terminal contact hole CH2, the side surface 42s of the lower step portion 42 of the gate insulating layer 4, and the upper surface 42u of the lower step portion 42. It is arranged to cover. An end portion (end portion on the display area side) 19E of the upper connection portion 19t is located on the upper surface 42u of the lower step portion 42.
  • Other structures are the same as those shown in FIG.
  • the coverage of the upper connection portion 19t can be increased by the step structure formed on the side wall of the terminal portion contact hole CH2, corrosion of the lower connection portion 3t can be suppressed. Further, the area of the upper connecting portion 19t can be reduced as compared with the terminal portion 201 shown in FIG. Furthermore, since the upper connection part 19t can be arranged only in the terminal part contact hole CH2, when a plurality of terminal parts are arranged, leakage between two adjacent terminal parts can be suppressed.
  • the shape of the upper connection part 19t is not limited to the example illustrated.
  • the upper connection portion 19t only needs to extend from the lower connection portion 3t to at least a part of the upper surface 42u of the lower step portion 42, and may extend to the side surface and the upper surface of the oxide semiconductor connection portion 5t.
  • the upper connection portion 19t extends to at least part of the upper surface 5tu of the oxide semiconductor connection portion 5t, and the end portion 19E of the upper connection portion 19t is connected to the oxide semiconductor connection. You may be located in the upper surface 5tu of the part 5t. Thereby, the coverage of the upper connection part 19t can be more effectively increased by using the two steps of the terminal part contact hole CH2. Further, in the configuration shown in FIG. 12, a part of the lower connection portion 3t is covered only with the lower step portion 42 of the gate insulating layer 4. However, in the configuration shown in FIG. Further, corrosion of the lower connection portion 3t can be suppressed.
  • FIGS. 14A and 14B are a plan view and a cross-sectional view, respectively, of another terminal portion 201D in the present embodiment. Constituent elements similar to those in FIG. 10 are denoted by the same reference numerals and description thereof may be omitted.
  • the upper connection portion 19t includes at least a part of the lower connection portion 3t exposed on the bottom surface of the terminal portion contact hole CH2, the side surface 42s of the lower step portion 42 of the gate insulating layer 4, and the upper surface 42u of the lower step portion 42. It is arranged to cover. An end portion (end portion on the display area side) 19E of the upper connection portion 19t is located on the upper surface 42u of the lower step portion 42.
  • Other structures are the same as those shown in FIG.
  • the coverage of the upper connection part 19t can be improved by the step structure formed on the side wall of the terminal part contact hole CH2. Moreover, since the upper connection part 19t can be arrange
  • the semiconductor device of this embodiment is an active matrix substrate including an oxide semiconductor TFT and a crystalline silicon TFT formed on the same substrate.
  • the active matrix substrate is provided with a TFT (pixel TFT) for each pixel.
  • a TFT pixel TFT
  • the pixel TFT for example, an oxide semiconductor TFT using an In—Ga—Zn—O-based semiconductor film as an active layer is used.
  • a part or the whole of the peripheral drive circuit may be integrally formed on the same substrate as the pixel TFT.
  • Such an active matrix substrate is called a driver monolithic active matrix substrate.
  • the peripheral driver circuit is provided in a region (non-display region or frame region) other than a region (display region) including a plurality of pixels.
  • the TFT (circuit TFT) constituting the peripheral drive circuit for example, a crystalline silicon TFT having a polycrystalline silicon film as an active layer is used.
  • an oxide semiconductor TFT is used as a pixel TFT and a crystalline silicon TFT is used as a circuit TFT, power consumption can be reduced in the display region, and further, the frame region can be reduced. It becomes.
  • the TFT 101 described above with reference to FIGS. 1 and 2 can be applied as the pixel TFT. This point will be described later.
  • FIG. 16 is a schematic plan view showing an example of a planar structure of the active matrix substrate 700 of this embodiment
  • FIG. 17 is a crystalline silicon TFT (hereinafter referred to as “first thin film transistor”) in the active matrix substrate 700
  • 710A is a cross-sectional view illustrating a cross-sectional structure of 710A and an oxide semiconductor TFT (hereinafter referred to as "second thin film transistor”) 710B.
  • the active matrix substrate 700 has a display area 702 including a plurality of pixels and an area (non-display area) other than the display area 702.
  • the non-display area includes a drive circuit formation area 701 in which a drive circuit is provided.
  • a gate driver circuit 740, an inspection circuit 770, and the like are provided in the drive circuit formation region 701, for example.
  • a plurality of gate bus lines (not shown) extending in the row direction and a plurality of source bus lines S extending in the column direction are formed.
  • each pixel is defined by a gate bus line and a source bus line S, for example.
  • Each gate bus line is connected to each terminal of the gate driver circuit.
  • Each source bus line S is connected to each terminal of a driver IC 750 mounted on the active matrix substrate 700.
  • the terminals of the driver IC 750 the terminal portions 201, 201A, 201B, 201C, and 201D described above with reference to FIGS. 1, 3, 10, 12, 13, and 14 can be applied.
  • the source / gate connection portion 203 described above with reference to FIGS. 1 and 4 can be disposed in the vicinity of the display region 702 in the drive circuit formation region 701.
  • a second thin film transistor 710B is formed as a pixel TFT in each pixel of the display region 702, and a first thin film transistor 710A is formed as a circuit TFT in the drive circuit formation region 701. Has been.
  • the active matrix substrate 700 includes a substrate 711, a base film 712 formed on the surface of the substrate 711, a first thin film transistor 710A formed on the base film 712, and a second thin film transistor 710B formed on the base film 712. It has.
  • the first thin film transistor 710A is a crystalline silicon TFT having an active region mainly containing crystalline silicon.
  • the second thin film transistor 710B is an oxide semiconductor TFT having an active region mainly including an oxide semiconductor.
  • the first thin film transistor 710A and the second thin film transistor 710B are integrally formed on the substrate 711.
  • the “active region” refers to a region where a channel is formed in a semiconductor layer serving as an active layer of a TFT.
  • the first thin film transistor 710A includes a crystalline silicon semiconductor layer (eg, a low-temperature polysilicon layer) 713 formed over the base film 712, a first insulating layer 714 that covers the crystalline silicon semiconductor layer 713, and a first insulating layer. 714A, and a gate electrode 715A provided on 714.
  • a portion of the first insulating layer 714 located between the crystalline silicon semiconductor layer 713 and the gate electrode 715A functions as a gate insulating film of the first thin film transistor 710A.
  • the crystalline silicon semiconductor layer 713 has a region (active region) 713c where a channel is formed, and a source region 713s and a drain region 713d located on both sides of the active region, respectively.
  • the first thin film transistor 710A also includes a source electrode 718sA and a drain electrode 718dA connected to the source region 713s and the drain region 713d, respectively.
  • the source and drain electrodes 718 sA and 718 dA are provided on an interlayer insulating film (here, the second insulating layer 716) that covers the gate electrode 715 A and the crystalline silicon semiconductor layer 713, and are in contact holes formed in the interlayer insulating film. And may be connected to the crystalline silicon semiconductor layer 713.
  • the second thin film transistor 710B includes a gate electrode 715B provided over the base film 712, a second insulating layer 716 covering the gate electrode 715B, and an oxide semiconductor layer 717 disposed over the second insulating layer 716.
  • a first insulating layer 714 that is a gate insulating film of the first thin film transistor 710A may be extended to a region where the second thin film transistor 710B is to be formed.
  • the oxide semiconductor layer 717 may be formed over the first insulating layer 714.
  • a portion of the second insulating layer 716 located between the gate electrode 715B and the oxide semiconductor layer 717 functions as a gate insulating film of the second thin film transistor 710B.
  • the oxide semiconductor layer 717 includes a region (active region) 717c where a channel is formed, and a source contact region 717s and a drain contact region 717d located on both sides of the active region.
  • a portion of the oxide semiconductor layer 717 that overlaps with the gate electrode 715B with the second insulating layer 716 interposed therebetween serves as an active region 717c.
  • a protective layer (etch stop layer) 725 is formed over the oxide semiconductor layer 717.
  • the protective layer 725 has an opening that is in contact with the active region 717c of the oxide semiconductor layer 717 and exposes the source contact region 717s and the drain contact region 717d.
  • the second thin film transistor 710B further includes a source electrode 718sB and a drain electrode 718dB connected to the source contact region 717s and the drain contact region 717d in each opening of the protective layer 725, respectively. Note that a structure in which the base film 712 is not provided over the substrate 711 is also possible.
  • the thin film transistors 710A and 710B are covered with a passivation film 719 and a planarization film 720.
  • the gate electrode 715B is connected to the gate bus line (not shown)
  • the source electrode 718sB is connected to the source bus line (not shown)
  • the drain electrode 718dB is connected to the pixel electrode 723.
  • the drain electrode 718 dB is connected to the corresponding pixel electrode 723 in the opening formed in the passivation film 719 and the planarization film 720.
  • a video signal is supplied to the source electrode 718sB through the source bus line, and necessary charges are written into the pixel electrode 723 based on the gate signal from the gate bus line.
  • a transparent conductive layer 721 is formed as a common electrode on the planarizing film 720, and a third insulating layer 722 is formed between the transparent conductive layer (common electrode) 721 and the pixel electrode 723. May be.
  • the pixel electrode 723 may be provided with a slit-shaped opening.
  • Such an active matrix substrate 700 can be applied, for example, to a display device in FFS (Fringe Field Switching) mode.
  • the FFS mode is a transverse electric field mode in which a pair of electrodes is provided on one substrate and an electric field is applied to liquid crystal molecules in a direction parallel to the substrate surface (lateral direction).
  • This electric field has a component transverse to the liquid crystal layer.
  • a horizontal electric field can be applied to the liquid crystal layer.
  • the horizontal electric field method has an advantage that a wider viewing angle can be realized than the vertical electric field method because liquid crystal molecules do not rise from the substrate.
  • the TFT 101 described above with reference to FIGS. 1 and 2 can be applied as a pixel TFT.
  • the gate electrode 3, the gate insulating layer 4, the oxide semiconductor layer 5, and the source and drain electrodes 7 s and 7 d in the TFT 101 are respectively connected to the gate electrode 715 B and the second insulating layer (gate insulating layers) shown in FIG. Layer) 716, the oxide semiconductor layer 717, and the source and drain electrodes 718sB and 718dB.
  • a thin film transistor 710B that is an oxide semiconductor TFT may be used as a TFT (inspection TFT) included in the inspection circuit 770 illustrated in FIG.
  • the inspection TFT and the inspection circuit may be formed in a region where the driver IC 750 shown in FIG. 16 is mounted, for example. In this case, the inspection TFT is disposed between the driver IC 750 and the substrate 711.
  • the first thin film transistor 710A has a top gate structure in which a crystalline silicon semiconductor layer 713 is disposed between a gate electrode 715A and a substrate 711 (base film 712).
  • the second thin film transistor 710B has a bottom gate structure in which the gate electrode 715B is disposed between the oxide semiconductor layer 717 and the substrate 711 (the base film 712).
  • the TFT structures of the first thin film transistor 710A and the second thin film transistor 710B are not limited to the above.
  • these thin film transistors 710A and 710B may have the same TFT structure.
  • the first thin film transistor 710A may have a bottom gate structure.
  • a second insulating layer 716 that is a gate insulating film of the second thin film transistor 710B extends to a region where the first thin film transistor 710A is formed, and is an interlayer that covers the gate electrode 715A and the crystalline silicon semiconductor layer 713 of the first thin film transistor 710A. It may function as an insulating film. As described above, when the interlayer insulating film of the first thin film transistor 710A and the gate insulating film of the second thin film transistor 710B are formed in the same layer (second insulating layer) 716, the second insulating layer 716 has a stacked structure. You may have.
  • the second insulating layer 716 includes a hydrogen-donating layer that can supply hydrogen (eg, a silicon nitride layer) and an oxygen-donating layer that can supply oxygen and is disposed over the hydrogen-donating layer (eg, it may have a stacked structure including a silicon oxide layer.
  • the gate electrode 715A of the first thin film transistor 710A and the gate electrode 715B of the second thin film transistor 710B may be formed in the same layer.
  • the source and drain electrodes 718sA and 718dA of the first thin film transistor 710A and the source and drain electrodes 718sB and 718dB of the second thin film transistor 710B may be formed in the same layer. “Formed in the same layer” means formed using the same film (conductive film). Thereby, the increase in the number of manufacturing processes and manufacturing cost can be suppressed.
  • Embodiments of the present invention can be widely applied to various semiconductor devices having an oxide semiconductor TFT and an oxide semiconductor TFT.
  • circuit boards such as active matrix substrates, liquid crystal display devices, display devices such as organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, imaging devices such as image sensor devices, image input devices, fingerprint readers,
  • EL organic electroluminescence
  • imaging devices such as image sensor devices, image input devices, fingerprint readers
  • the present invention is also applied to various electronic devices such as semiconductor memories.

Abstract

半導体装置は、酸化物半導体層を有する薄膜トランジスタと、配線接続部(201)とを備え、配線接続部(201)は、ゲート電極と同一の導電膜から形成された下部導電部(3t)と、下部導電部(3t)の少なくとも一部を露出するコンタクトホール(CH2)を有する絶縁層(15)と、少なくとも一部がコンタクトホール(CH2)内に配置された上部導電部(19t)とを備え、絶縁層(15)はゲート絶縁層(4)、保護層(9)および層間絶縁層(13)を含み、コンタクトホールの側壁において、ゲート絶縁層(4)は、上段部(41)と、上段部(41)の基板側に位置する下段部(42)とを有し、基板の法線方向から見たとき、下段部(42)の側面は上段部(41)の側面よりも外側に位置し、上部導電部(19t)は、コンタクトホール内で、下部導電部(3t)、および、ゲート絶縁層(4)の下段部(42)の側面および上面と接する。

Description

半導体装置およびその製造方法
 本発明は、酸化物半導体を用いて形成された半導体装置およびその製造方法に関する。
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。このようなスイッチング素子としては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている。
 アクティブマトリクス基板は、一般に、複数の画素を含む表示領域と、表示領域以外の領域(周辺領域)とを有している。表示領域の各画素には、画素の列方向に沿って延びるソース配線と、画素の行方向に沿って延びるゲート配線と、画素電極と、TFTとが設けられている。周辺領域には、ゲート配線またはソース配線を外部配線と接続するための複数の端子部が設けられている。例えば、ゲート配線は、表示領域から周辺領域まで延び、端子部(ゲート端子)を介してゲートドライバと接続される。一方、ソース配線は、例えば、ゲート配線と同一膜から形成されたゲート接続配線と電気的に接続される。この接続部を「ソース・ゲート接続部」と称する。ゲート接続配線は、周辺領域において、端子部(ソース端子)を介してソースドライバに接続される。ゲート配線、ソース配線、ゲート接続配線など配線は、例えば金属配線である。本明細書では、ゲート端子部、ソース端子部、ソース・ゲート接続部などの配線同士を接続する構造を、「配線接続部」と総称する。
 近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることが提案されている。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できる。
 酸化物半導体TFTとして、例えば、ボトムゲート構造を有し、かつ、酸化物半導体層のチャネル領域を覆うように保護層(エッチストップ層)が設けられた構造が提案されている。このような構造を「チャネル保護型(またはエッチストップ型)」と称する。エッチストップ型TFTの製造プロセスでは、酸化物半導体層上に保護層を形成した後、ソース・ドレイン電極を形成する。このため、ソース・ドレイン電極を形成するためのエッチング(ソース・ドレイン分離)を行う際に、保護層がエッチストップとして機能するので、チャネル領域がエッチングによって受けるダメージを低減できる。
 エッチストップ型の酸化物半導体TFTを備えたアクティブマトリクス基板では、保護層を形成する工程が増加する。このようなアクティブマトリクス基板を、フォトマスクの枚数を抑えて製造するため種々のプロセスが検討されている(例えば特許文献1)。
国際公開第2011-070981号
 従来のアクティブマトリクス基板では、配線接続部において、ゲート配線、ソース配線、ゲート接続配線などの金属配線に腐食が生じる場合があった。詳細は後述する。
 本発明の実施形態は上記事情に鑑みてなされたものであり、その目的は、酸化物半導体TFTを備えた半導体装置において、配線の腐食を抑制し得る、新規な配線接続構造を提供することにある。
 本発明の一実施形態の半導体装置は、基板と、前記基板に支持された薄膜トランジスタと、前記薄膜トランジスタを覆う層間絶縁層と、配線接続部とを備える半導体装置であって、前記薄膜トランジスタは、前記基板の上に形成されたゲート電極と、前記ゲート電極を覆うゲート絶縁層と、前記ゲート絶縁層上に形成された酸化物半導体層と、前記酸化物半導体層の少なくともチャネル領域を覆う保護層と、それぞれが前記酸化物半導体層に接するように形成されたソース電極及びドレイン電極とを有し、前記配線接続部は、前記ゲート電極と同一の導電膜から形成された下部導電部と、前記下部導電部上に形成され、かつ、前記下部導電部の少なくとも一部を露出するコンタクトホールを有する絶縁層と、少なくとも一部が前記コンタクトホール内に配置された上部導電部とを備え、前記絶縁層は、前記ゲート絶縁層、前記保護層および前記層間絶縁層を含み、前記コンタクトホールの側壁において、前記ゲート絶縁層は、上段部と、前記上段部の前記基板側に位置する下段部とを有し、前記基板の法線方向から見たとき、前記下段部の側面は前記上段部の側面よりも外側に位置しており、前記上部導電部は、前記コンタクトホール内で、前記下部導電部、および、前記ゲート絶縁層の前記下段部の側面および上面と接する。
 ある実施形態において、前記配線接続部は、前記保護層および前記ゲート絶縁層の間に位置し、かつ、前記酸化物半導体層と同一の半導体膜から形成された酸化物半導体接続部をさらに有し、前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記酸化物半導体接続部の側面は、前記保護層の側面と前記ゲート絶縁層の前記下段部の側面との間に位置しており、前記上部導電部は、前記コンタクトホール内で、前記ゲート絶縁層の前記上段部の側面、および、前記酸化物半導体接続部の側面および上面とさらに接する。
 ある実施形態において、前記コンタクトホールの前記側壁において、前記ゲート絶縁層の前記上段部の側面は、前記保護層の側面と整合している。
 ある実施形態において、前記コンタクトホールの前記側壁において、前記ゲート絶縁層の前記上段部の側面は、前記酸化物半導体接続部の側面と整合している。
 ある実施形態において、前記上部導電部は、前記コンタクトホールの底面から前記側壁を経て前記層間絶縁層上まで延びている。
 ある実施形態において、前記上部導電部は、前記ゲート絶縁層の前記下段部の上面上に端部を有する。
 ある実施形態において、前記上部導電部は、前記酸化物半導体接続部の上面上に端部を有する。
 ある実施形態において、前記配線接続部は、前記保護層および前記層間絶縁層の間に位置し、かつ、前記ソース電極と同一の導電膜から形成されたソース接続部をさらに有し、前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記ソース接続部の側面は、前記ゲート絶縁層の前記下段部の側面よりも内側に位置しており、前記上部導電部は、前記コンタクトホール内で、前記ゲート絶縁層の前記上段部の側面、前記保護層の側面、および、前記ソース接続部の側面および上面とさらに接する。
 ある実施形態において、前記ソース接続部の側面は、前記保護層の側面および前記ゲート絶縁層の前記上段部の側面と整合している。
 ある実施形態において、前記ゲート電極と同一の導電膜から形成されたマーク部と、前記マーク部を覆う島状の絶縁膜と、前記酸化物半導体層と同一の半導体膜から形成され、かつ、前記絶縁膜を介して前記マーク部と少なくとも部分的に重なるように配置された酸化物半導体カバー部と、前記酸化物半導体カバー部を覆う上部導電体カバー部とを有し、前記絶縁膜の周縁において、前記絶縁膜は、他の上段部と、前記他の上段部の前記基板側に位置する他の下段部とを有し、前記基板の法線方向から見たとき、前記他の下段部の側面は前記他の上段部の側面よりも外側に位置しており、前記他の上段部の側面は、前記酸化物半導体カバー部の側面と整合しており、前記上部導電体カバー部は、前記他の下段部の側面および上面、前記他の上段部の側面、および、前記酸化物半導体カバー部の側面および上面と接するように配置されている。
 ある実施形態において、前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記ゲート絶縁層の前記上段部の側面と前記下段部の側面との距離Dは1μm以上10μm以下である。
 ある実施形態において、前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記保護層の側面と前記酸化物半導体接続部の側面との距離d1は、前記上段部の側面と前記下段部の側面との距離Dよりも大きい。
 ある実施形態において、前記酸化物半導体層はIn-Ga-Zn-O系半導体を含む。
 ある実施形態において、前記酸化物半導体層は結晶質部分を含む。
 本発明の一実施形態の半導体装置の製造方法は、薄膜トランジスタおよび配線接続部を備えた半導体装置の製造方法であって、(A)基板上にゲート用導電膜を形成し、これをパターニングすることによって、薄膜トランジスタを形成するTFT形成領域に前記薄膜トランジスタのゲート電極を形成し、配線接続部を形成する配線接続部形成領域に前記配線接続部の下部導電部を形成する工程と、(B)前記ゲート電極および前記下部導電部を覆うゲート絶縁層を形成する工程と、(C)前記ゲート絶縁層上に酸化物半導体膜を形成し、これをパターニングすることによって、前記薄膜トランジスタの酸化物半導体層を形成する工程と、(D)前記酸化物半導体層および前記ゲート絶縁層上に、前記酸化物半導体層の少なくともチャネル領域を覆う保護層を形成する工程であって、前記保護層は前記配線接続部形成領域にも延設され、前記基板の法線方向から見たとき、前記保護層は、前記下部導電部の一部と重なる開口部を有する、工程と、(E)前記酸化物半導体層を覆うようにソース用導電膜を形成し、これをパターニングすることによって、前記薄膜トランジスタのソース電極およびドレイン電極を形成し、これによって前記薄膜トランジスタを得る工程と、(F)前記薄膜トランジスタを覆うように層間絶縁層を形成する工程であって、前記層間絶縁層は前記配線接続部形成領域にも延設される、工程と、(G)前記層間絶縁層、前記保護層および前記ゲート絶縁層のエッチングを行うことにより、前記配線接続部形成領域に、前記下部導電部の一部を露出するコンタクトホールを形成する工程であって、前記エッチングは、前記保護層の端部、および前記ゲート絶縁層のうち前記保護層の前記端部の下方に位置する部分の上部が除去され、かつ、前記ゲート絶縁層のうち前記保護層の前記端部の下方に位置する部分の下部が残るような条件で行われ、これにより、前記コンタクトホールの側壁において、前記ゲート絶縁層は、上段部と、前記上段部の前記基板側に位置する下段部とを有し、前記基板の法線方向から見たとき、前記下段部は前記上段部よりも外側に位置する段差構造を有する、工程と、(H)前記コンタクトホール内において、前記下部導電部の前記一部、および、前記ゲート絶縁層の前記下段部の側面および上面と接する上部導電部を形成し、これにより、前記配線接続部を得る、工程とを包含する。
 ある実施形態において、前記工程(C)は、前記酸化物半導体膜のパターニングによって、前記配線接続部形成領域に島状の酸化物半導体接続部を形成する工程を含み、前記工程(D)において、前記保護層は、前記酸化物半導体接続部の側面および上面を覆うように形成され、前記工程(E)において、前記ソース用導電膜のパターニングは、前記酸化物半導体接続部がエッチストップとして機能する条件で行われ、前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記酸化物半導体接続部の側面は、前記保護層の側面と前記ゲート絶縁層の前記下段部の側面との間に位置している。
 ある実施形態において、前記工程(F)において、前記層間絶縁層は、無機絶縁層である第1絶縁層と、前記第1絶縁層の上に形成された有機絶縁層である第2絶縁層とを含み、前記工程(G)は、前記第2絶縁層をパターニングする工程と、パターニングされた前記第2絶縁層をマスクとして前記第1絶縁層、前記保護層および前記ゲート絶縁層を一括してエッチングする工程とを含む。
 本発明の一実施形態によると、酸化物半導体TFTを備えた半導体装置において、配線の腐食を抑制し得る、新規な配線接続構造が提供される。
第1の実施形態の半導体装置1000の一部を例示する模式的な平面図である。 第1の実施形態の半導体装置におけるTFT101および補助容量105の断面図である。 (a)および(b)は、それぞれ、第1の実施形態の半導体装置における端子部201を例示する平面図および断面図である。 第1の実施形態の半導体装置におけるソース・ゲート接続部203を例示する断面図である。 (a)および(b)は、それぞれ、第1の実施形態の半導体装置におけるマーク部205の一例を示す断面図および平面図である。 (a)~(d)は、それぞれ、半導体装置1000の製造方法を説明するための模式的な工程断面図である。 (a)~(c)は、それぞれ、半導体装置1000の製造方法を説明するための模式的な工程断面図である。 端子部形成領域34におけるフォトマスクのパターンを例示する図である。 端子部コンタクトホールCH2の側壁の段差構造を例示する断面図である。 (a)および(b)は、それぞれ、第2の実施形態の半導体装置における端子部201Aの平面図および断面図である。 (a)~(c)は、それぞれ、第2の実施形態の半導体装置の製造方法を説明するための模式的な工程断面図である。 (a)および(b)は、それぞれ、第3の実施形態の半導体装置における端子部201Bの平面図および断面図である。 (a)および(b)は、それぞれ、第3の実施形態の半導体装置における他の端子部201Cの平面図および断面図である。 (a)および(b)は、それぞれ、第3の実施形態の半導体装置におけるさらに他の端子部201Dの平面図および断面図である。 第1の実施形態の半導体装置におけるゲート絶縁層の段差構造を説明するための拡大断面図である。 第4の実施形態のアクティブマトリクス基板700の平面構造の一例を示す模式的な平面図である。 アクティブマトリクス基板700における結晶質シリコンTFT710Aおよび酸化物半導体TFT710Bの断面図である。
 エッチストップ型の酸化物半導体TFTを備えたアクティブマトリクス基板の配線接続部の構造は、例えば特許文献1に開示されている。特許文献1の配線接続部(ゲート端子部)では、ゲート配線と、画素電極と同一の膜から形成された上部配線とを、ソース配線と同一の膜(ソース用導電膜)から形成された中間層を介して接続している。
 しかしながら、アクティブマトリクス基板の製造プロセスによっては、ゲート配線と上部配線との接続にソース用導電膜を利用できない場合がある。この場合には、上部配線は、例えば、コンタクトホール内でゲート配線と直接接するように配置される。
 本願発明者が検討したところ、コンタクトホール内で上部配線とゲート配線とを直接接触させる配線接続構造では、コンタクトホールが深くなると、上部配線のカバレッジが低くなり、この結果、ゲート配線(メタル)の腐食を引き起こす可能性がある。特に、比較的厚い平坦化膜が端子部形成領域に形成されている場合、コンタクトホールが深くなるので、上記問題はより顕著になる。
 これに対し、本願発明者は、酸化物半導体TFTの保護層(エッチストップ層)を利用することにより、使用するフォトマスクの枚数を増大させることなく、配線の腐食を抑制し得る配線接続構造を形成できることを見出し、本願発明に想到した。
 (第1の実施形態)
 以下、図面を参照しながら、本発明による半導体装置の第1の実施形態を説明する。本実施形態の半導体装置は、酸化物半導体TFTおよび配線接続部を備えている。なお、本実施形態の半導体装置は、アクティブマトリクス基板、各種表示装置、電子機器などを広く含む。
 図1は、本実施形態の半導体装置1000の一部を例示する模式的な平面図である。
 本実施形態の半導体装置1000は、複数の画素領域Pixを含む表示領域100と、表示領域以外の領域に形成された非表示領域200とを有している。
 各画素領域Pixには、画素の列方向に沿って延びるソース配線Sと、画素の行方向に沿って延びるゲート配線Gと、酸化物半導体TFT(以下、単に「TFT」と略す。)101と、画素電極19とが設けられている。容量配線Csと、補助容量105とがさらに設けられていてもよい。ゲート配線Gおよび容量配線Csは、同一の導電膜(ゲート用導電膜)から形成されている。TFT101は、ソース配線Sとゲート配線Gとの交差する点の近傍に配置されている。また、補助容量105は、容量配線Cs上に形成されている。
 TFT101は、活性層となる酸化物半導体層5を有している。酸化物半導体層5は、ソース配線Sと一体的に形成されたソース電極7sおよびドレイン電極7dとそれぞれ接続されている。ドレイン電極7dは、画素電極19と接続されている。この例では、ドレイン電極7dは容量配線Cs上まで延設されて、補助容量105の上部電極7cとして機能する。また、ドレイン電極7dと画素電極19とを接続するためのコンタクトホールCH1は、基板の法線方向から見たとき、容量配線Csと重なるように配置されている。
 非表示領域200には、ソース・ゲート接続部203および端子部201などの配線接続部が設けられている。
 ソース・ゲート接続部203では、ソース配線Sは、ゲート用導電膜から形成された配線(「ゲート接続配線」と呼ぶ。)3sgと電気的に接続される。ここでは、画素電極と同一の透明導電膜から形成された透明接続部19sgを介して、ソース配線Sとゲート接続配線3sgとが電気的に接続される。透明接続部19sgは、絶縁層に形成されたコンタクトホールCH2内でソース配線Sおよびゲート接続配線3sgと接している。
 端子部201では、ゲート配線Gまたはゲート接続配線3sgが、画素電極と同一の透明導電膜から形成された上部配線に電気的に接続される。上部配線は、絶縁層に形成されたコンタクトホール内でゲート配線Gまたはゲート接続配線3sgと接している。
 このように、配線接続部は、絶縁層よりも下層に設けられたゲート配線G、ゲート接続配線3sgなどの導電部(以下、「下部導電部」と総称する。)と、下部導電部の少なくとも一部を露出するコンタクトホールを有する絶縁層と、透明接続部19sg、上部配線などの導電部(以下、「上部導電部」と総称する。)とを備える。後述するように、コンタクトホールの側壁は所定の段差構造を有している。上部導電部は、コンタクトホール内で下部導電部と接するように配置される。
 次に、図2~4を参照しながら、酸化物半導体TFT101、補助容量105、ソース・ゲート接続部203および端子部201の構造をより具体的に説明する。
 <TFT101および補助容量105>
 図2は、半導体装置1000のTFT101および補助容量105の断面図であり、図1におけるI-I’線およびII-II‘線に沿った断面をそれぞれ示している。
 酸化物半導体TFT(以下、単に「TFT」と略す。)101は、エッチストップ型のTFTである。TFT101は、基板1上に支持されたゲート電極3と、ゲート電極3を覆うゲート絶縁層4と、ゲート絶縁層4を介してゲート電極3と重なるように配置された酸化物半導体層5と、酸化物半導体層5のチャネル領域5cを覆う保護層9と、ソース電極7sおよびドレイン電極7dとを備えている。ゲート電極3はゲート配線Gと一体的に形成され、ソース電極7sはソース配線Sと一体的に形成されていてもよい。酸化物半導体層5は、チャネル領域5cと、チャネル領域の両側に位置するソースコンタクト領域およびドレインコンタクト領域とを有している。ソース電極7sは、保護層9に設けられたソース開口部を介してソースコンタクト領域と接するように形成されている。同様に、ドレイン電極7dは、保護層9に設けられたドレイン開口部を介してドレインコンタクト領域と接するように形成されている。ソース電極7sおよびドレイン電極7dは、同一の導電膜(ソース用導電膜)から形成されていてもよい。
 補助容量105は、基板1の上に設けられた容量配線Csと、ゲート絶縁層4を介して容量配線Csと重なるように配置された上部電極7cとを備えている。容量配線Csはゲート用導電膜から形成され、上部電極7cはソース用導電膜から形成されている。ここでは、ドレイン電極7dが容量配線Cs上まで延び、上部電極7cとして機能する。
 TFT101および補助容量105は、ソースおよびドレイン電極7s、7d上に形成された層間絶縁層13で覆われている。層間絶縁層13は、積層構造を有していてもよい。例えば、TFT101側から、第1絶縁層(パッシベーション膜)11と、第1絶縁層よりも厚い第2絶縁層12とを含んでもよい。第1絶縁層11は、例えばSiO2層などの無機絶縁層、第2絶縁層12は有機絶縁層であってもよい。第2絶縁層12は、平坦化膜でもよい。
 層間絶縁層13には、ドレイン電極7dに達するコンタクトホール(「画素コンタクトホール」と称する。)CH1が形成されている。層間絶縁層13上および画素コンタクトホールCH1内には、画素コンタクトホールCH1内でドレイン電極7dと直接接するように画素電極19が設けられている。画素コンタクトホールCH1は、容量配線Cs上に配置されていてもよい。
 <端子部201>
 図3(a)および(b)は、端子部201を例示する平面図および断面図である。
 端子部201は、ゲート用導電膜から形成された下部接続部3tと、下部接続部3t上に形成された絶縁層15と、画素電極と同一の透明導電膜から形成された上部接続部19tとを有する。下部接続部3tは、ゲート配線Gの一部であってもよいし、ソース・ゲート接続部203によってソース配線Sと電気的に接続されたゲート接続配線3sgであってもよい。絶縁層15は、端子部を形成する領域(端子部形成領域)まで延設されたゲート絶縁層4、保護層9および層間絶縁層13を含んでいる。絶縁層15には、下部接続部3tの少なくとも一部を露出するコンタクトホール(以下、「端子部コンタクトホール」)CH2が形成されている。上部接続部19tは、端子部コンタクトホールCH2内で下部接続部3tと接している。
 本実施形態では、端子部コンタクトホールCH2の側壁において、ゲート絶縁層4は段差を有している。図15は、ゲート絶縁層4の段差を説明するための拡大断面図である。図15に示すように、ゲート絶縁層4は、上段部41と、上段部41よりも基板側に位置する下段部42とを有している。下段部42の側面42sは、上段部41の側面41sよりも外側に位置している。なお、ここでいう「外側」とは、基板の法線方向から見たとき、層間絶縁層13の側面13sから延びる距離が大きい方を指す。すなわち、下段部42の側面42sと層間絶縁層13の側面13sとの距離d2は、上段部41の側面41sと層間絶縁層13の側面13sとの距離d1よりも大きい。従って、基板の法線方向から端子部コンタクトホールCH2を見たとき、下段部42の上面42uは、上段部41から突出している。また、下段部42の側面42sと上段部41の側面41sとは厚さ方向に整合していない。下段部42の側面42sおよび上面42uと、上段部41の側面41sとは、端子部コンタクトホールCH2の側壁の一部を構成している。このような構造(以下、「段差構造」と称する。)は、後述するように、保護層9を利用したエッチングを行うことで、マスク枚数を増加させることなく形成できる。
 本実施形態では、ゲート絶縁層4と保護層9との間に、島状の酸化物半導体接続部5tが配置されている。酸化物半導体接続部5tは、TFT101の酸化物半導体層5と同一の半導体膜から形成されている。保護層9は、下部接続部3t、ゲート絶縁層4の下段部42および酸化物半導体接続部5tの端部を露出する開口を有している。
 端子部コンタクトホールCH2の側壁において、酸化物半導体接続部5tの側面(端面)5tsは、基板の法線方向から見たとき、ゲート絶縁層4の下段部42の側面42sと、保護層9の側面9sとの間に位置していてもよい。酸化物半導体接続部5tの側面5tsは、ゲート絶縁層4の上段部41の側面41sと整合していてもよい。保護層9の側面9sは、層間絶縁層13の側面13sと整合していてもよい。このような構成では、基板の法線方向から端子部コンタクトホールCH2を見たとき、保護層9および層間絶縁層13から酸化物半導体接続部5tの端部が突出し、酸化物半導体接続部5tの端部からゲート絶縁層4の下段部42が突出する。従って、端子部コンタクトホールCH2の側壁には、ゲート絶縁層4の段差に加えて、酸化物半導体接続部5tと保護層9および層間絶縁層13とによって段差が形成される(2段構造)。端子部コンタクトホールCH2の側壁は、ゲート絶縁層4の下段部42を1段目、ゲート絶縁層4の上段部41および酸化物半導体接続部5tの端部を2段目とする階段状になる。
 なお、本明細書では、コンタクトホール内において、異なる2以上の層の「側面が整合する」とは、これらの層におけるコンタクトホール内に露出した側面が、垂直方向に面一である場合のみでなく、連続してテーパー形状などの傾斜面を構成する場合をも含む。このような構成は、例えば、同一のマスクを用いてこれらの層をエッチングする、あるいは、一方の層をマスクとして他方の層のエッチングを行うこと等によって得られる。
 上部接続部19tは、端子部コンタクトホールCH2の底面から側壁を経て層間絶縁層13の上面まで延びている。ここでは、端子部コンタクトホールCH2内において、上部接続部19tは、下部接続部3t、ゲート絶縁層4の下段部42の側面42sおよび上面42u、上段部41の側面41s、酸化物半導体接続部5tの側面5tsおよび上面5tu、保護層9の側面9s、層間絶縁層13の側面13sを覆うように配置されている。なお、上部接続部19tは、少なくとも、下部接続部3t、下段部42の側面42s、および下段部42の上面42uの少なくとも一部を覆うように配置されていればよい。
 本実施形態における端子部201では、端子部コンタクトホールCH2の側壁は、上述した段差構造によるテーパー形状を有する。このため、上部接続部19tのカバレッジを向上できるので、下部接続部3tの腐食を抑制できる。特に、図示する例では、ゲート絶縁層4の段差に加えて、酸化物半導体接続部5tおよび保護層9でも段差が形成されており(2段構造)、より効果的にカバレッジを改善できる。
 さらに、下部接続部3tは、ゲート絶縁層4のみでなく、酸化物半導体接続部5tおよび保護層9でも覆われるので、水分による下部接続部3tの腐食をより効果的に抑制できる。
 なお、本実施形態の半導体装置は、上記構造を有する配線接続部を少なくとも1つ備えていればよい。
 <ソース・ゲート接続部203>
 図4は、ソース・ゲート接続部203の断面図であり、図1におけるIII-III’線に沿った断面を示している。
 ソース・ゲート接続部203は、ゲート用導電膜から形成されたゲート接続配線3sgと、ゲート接続配線3sg上に形成された絶縁層15と、ソース用導電膜から形成されたソース接続配線7sgと、画素電極と同一の透明導電膜から形成された透明接続部19sgとを有する。ソース接続配線7sgはソース配線Sの一部である。ゲート接続配線3sgは、ゲート配線Gと電気的に分離している。絶縁層15は、ゲート絶縁層4、保護層9および層間絶縁層13を含んでいる。絶縁層15には、ゲート接続配線3sgの少なくとも一部およびソース接続配線7sgの少なくとも一部を露出するコンタクトホール(以下、「S-Gコンタクトホール」)CH3が形成されている。すなわち、S-GコンタクトホールCH3は、ゲート絶縁層4、保護層9および層間絶縁層13に形成され、ゲート接続配線3sgに達するゲート側コンタクトホールと、層間絶縁層13に形成され、ソース接続配線7sgに達するソース側コンタクトホールとを含んでいる。透明接続部19sgは、S-GコンタクトホールCH3内でゲート接続配線3sgおよびソース接続配線7sgの両方と接している。これにより、ゲート接続配線3sgとソース接続配線7sgとが、透明接続部19sgを介して接続される。
 本実施形態では、S-GコンタクトホールCH3の側壁(ゲート側コンタクトホールの側壁)において、ゲート絶縁層4は、図3を参照しながら前述した構造と同様の段差構造を有している。すなわち、ゲート絶縁層4は、上段部41と、上段部41の基板側に位置する下段部42とを有している。下段部42の側面42sは、上段部41の側面41sよりも外側に位置している。下段部42の側面42sおよび上面42uと、上段部41の側面41sとは、S-GコンタクトホールCH3の側壁の一部を構成している。保護層9は、ゲート接続配線3sgの一部およびゲート絶縁層4の下段部42を露出する開口を有している。基板の法線方向から見たとき、ソース接続配線7sgの側面は、ゲート絶縁層4の下段部42の側面よりも内側に位置している。この例では、保護層9の側面9sおよびゲート絶縁層4の上段部41の側面41sは、ソース接続配線7sgの端面と整合している。
 透明接続部19sgは、S-GコンタクトホールCH3内において、ゲート接続配線3sg、ゲート絶縁層4の下段部42の側面42sおよび上面42u、上段部41の側面41s、保護層9の側面9s、ソース接続配線7sgの側面および上面、層間絶縁層13の側面を覆うように配置されている。なお、透明接続部19sgは、少なくとも、ゲート接続配線3sg、ゲート絶縁層4の段差構造、およびソース接続配線7sgを覆うように配置されていればよい。
 ソース・ゲート接続部203においても、端子部201と同様に、S-GコンタクトホールCH3の側壁が上記段差構造を有しているので、透明接続部19sgのカバレッジを向上でき、ゲート接続配線3sgの腐食を抑制できる。
 <マーク部205>
 非表示領域200には、所定のマークが形成されていてもよい。マークは、例えば、TFT基板と対向基板とのアライメント用のマーク、TFT基板と対向基板とのズレ量を測定するためのマーク、及びガラス基板を分断する際の分断ラインのズレ量を測定するためのマーク等である。上記マークは、ゲート配線Gと同じ材料によって形成することが可能である。
 非表示領域200の狭小化のため、上記マークをシール部材と重ねて配置する場合、マーク上の層間絶縁層が除去される。しかしながら、マークが層間絶縁層で覆われず、例えばゲート絶縁層等によってのみ覆われていると、ゲート絶縁膜等にピンホールやクラックが生じていれば、エッチャントによりマークがエッチングされ、マークが欠損したり消失してしまう問題がある。このため、マークを覆うようにマークカバーを設けることがある。本明細書において、マークおよびマークカバーを含む部分を「マーク部」と称する。
 図5(a)および(b)は、本実施形態の半導体装置におけるマーク部205の一例を示す断面図および平面図である。
 マーク部205は、ゲート用導電膜を用いて形成された島状のマーク3mと、マーク3mを覆うゲート絶縁層4と、ゲート絶縁層4上に形成されたマークカバー21とを有している。マーク3mの平面形状は、例えば矩形、十字形状などであってもよい。マークカバー21は、島状の酸化物半導体カバー5mと、酸化物半導体カバー5m上に形成された島状の透明導電体カバー19mとを含んでいる。酸化物半導体カバー5mは、酸化物半導体層5と同じ半導体膜から形成されている。透明導電体カバー19mは、画素電極19と同じ透明導電膜を用いて形成されている。
 本実施形態では、ゲート絶縁層4は、マーク3mを覆うように、島状にパターニングされている。ゲート絶縁層4の側面(端面)は、上述した段差構造を有している。すなわち、上段部41と、上段部41の基板側に位置する下段部42とを有し、下段部42の側面42sは、上段部41の側面41sよりも外側に配置されている。酸化物半導体カバー5mは、ゲート絶縁層4の上面に配置されている。酸化物半導体カバー5mの側面は、上段部41の側面と整合していてもよい。透明導電体カバー19mは、ゲート絶縁層4の下段部42の側面42sおよび上面、上段部41の側面、酸化物半導体カバー5mの側面および上面を覆うように形成されている。
 このような構造により、優れたカバレッジを有するマークカバー21を形成することが可能になり、マーク3mの損失、マーク3mの腐食などを防止できる。
 <半導体装置1000の製造方法>
 次いで、半導体装置1000の製造方法を説明する。ここでは、6枚のフォトマスクを使用するプロセスを例示する。
 図6(a)~(d)、図7(a)~(c)は、それぞれ、半導体装置1000の製造方法を説明するための模式的な断面図である。各図には、TFTが形成されるTFT形成領域31、補助容量を形成する容量形成領域32、ソース・ゲート接続部を形成するソース・ゲート接続部形成領域33、端子部を形成する端子部形成領域34、およびアライメントマークを形成するマーク形成領域35を示している。また、端子部形成領域34におけるフォトマスクのパターンを図8に例示する。なお、本願明細書において、ソース・ゲート接続部形成領域33および端子部形成領域34を「配線接続部形成領域」と総称することがある。
 まず、図3(a)に示すように、基板1上に、ゲート配線Gを含むゲート配線層を形成する。具体的には、TFT形成領域31にゲート電極3、容量形成領域32に容量配線Cs、ソース・ゲート接続部形成領域33にゲート接続配線3sg、端子部形成領域34に下部接続部3t、マーク形成領域35にマーク3mを形成する。ゲート用導電膜のパターニングでは、図8に示す第1のフォトマスク61を用いる。下部接続部3tは、例えばゲート配線Gよりも大きい幅を有する。
 基板1としては、例えばガラス基板、シリコン基板、耐熱性を有するプラスチック基板(樹脂基板)などを用いることができる。
 ゲート配線層は、スパッタ法などによって基板1上にゲート用導電膜(厚さ:例えば50nm以上500nm以下)を形成し、これをパターニングすることによって得られる。ゲート用導電膜として、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。また、これら複数の膜を積層した積層膜を用いてもよい。ここでは、ゲート用導電膜として、例えばTi膜およびCu膜をこの順で有する積層膜を用いる。
 続いて、図6(b)に示すように、ゲート配線層を覆うようにゲート絶縁層4を形成する。ゲート絶縁層4は、CVD法等によって形成され得る。ゲート絶縁層4としては、酸化珪素(SiOx)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を適宜用いることができる。ゲート絶縁層4は積層構造を有していてもよい。例えば、基板側(下層)に、基板1からの不純物等の拡散防止のために窒化珪素層、窒化酸化珪素層等を形成し、その上の層(上層)に、絶縁性を確保するために酸化珪素層、酸化窒化珪素層等を形成してもよい。なお、ゲート絶縁層4の最上層(すなわち酸化物半導体層と接する層)として、酸素を含む層(例えばSiO2などの酸化物層)を用いると、酸化物半導体層に酸素欠損が生じた場合に、酸化物層に含まれる酸素によって酸素欠損を回復することが可能となるので、酸化物半導体層の酸素欠損を効果的に低減できる。ゲート絶縁層4の厚さは、後述する保護層9の厚さよりも大きくなるように設定される。これにより、より確実に段差構造を形成できる。ゲート絶縁層4の厚さは、保護層9の厚さの例えば2倍以上、好ましくは3倍以上であってもよい。ゲート絶縁層4の厚さは、例えば200nm以上500nm以下であってもよい。ここでは、ゲート絶縁層4として、基板1上に、厚さが200nm以上500nm以下のSiNx層と、厚さが25nm以上100nm以下のSiO2層とをこの順で積層する。
 次いで、ゲート絶縁層4上に酸化物半導体膜を形成し、酸化物半導体膜(厚さ:例えば30nm以上200nm以下)をパターニングすることにより、TFT形成領域31に酸化物半導体層5、端子部形成領域34に酸化物半導体接続部5t、マーク形成領域35に酸化物半導体カバー5mを形成する。酸化物半導体膜は積層構造を有していてもよい。
 酸化物半導体膜のパターニングでは、図8に示す第2のフォトマスク62を用いる。これにより、端子部形成領域34では、下部接続部3tの一部をゲート絶縁層4を介して覆うように、島状の酸化物半導体接続部5tが形成される。酸化物半導体接続部5tの幅は、下部接続部3tの幅よりも大きい。また、TFT形成領域31では、少なくとも一部がゲート絶縁層4を介してゲート電極3と重なるように酸化物半導体層5が形成される。マーク形成領域35では、ゲート絶縁層4を介してマーク3mを覆うように酸化物半導体カバー5mが形成される。
 次いで、図6(c)に示すように、TFTのエッチストップ層(チャネル保護層)となる保護層9(厚さ:例えば30nm以上200nm以下)を形成する。保護層9として、酸化珪素(SiOx)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を適宜用いることができる。ここでは、CVD法により、保護層9として、厚さが例えば100nmの酸化シリコン膜(SiO2膜)を形成する。
 次いで、保護層9のパターニングを行う。これにより、TFT形成領域31では、酸化物半導体層5のソースコンタクト領域を露出するソース開口部9ps、およびドレインコンタクト領域を露出するドレイン開口部9pdを形成する。容量形成領域32では、容量配線Csの一部上に位置する開口部9q、ソース・ゲート接続部形成領域33では、ゲート接続配線3sgの一部上に位置する開口部9rを形成する。端子部形成領域34では、図8に示す第3のフォトマスク63を用いて、下部接続部3tのコンタクト領域となる部分上に開口部9uを形成する。図示するように、端子部形成領域34では、保護層9は、酸化物半導体接続部5tのコンタクト領域側の側面(すなわち開口部9u側の端面)51sを覆っている。すなわち、基板1の法線方向から見て、保護層9の側面(開口部9uの側面)は、酸化物半導体接続部5tの側面51sよりもコンタクト領域側に位置する。マーク形成領域35では、保護層9は、酸化物半導体カバー5mの端面および上面を覆う島状のパターンを有するようにパターニングされる。
 この後、図6(d)に示すように、基板1上にソース用導電膜(厚さ:例えば50nm以上500nm以下)を形成する。次いで、第4のフォトマスク(図示せず)を用いてソース用導電膜をパターニングすることにより、ソース配線を含むソース配線層を形成する。具体的には、TFT形成領域31において、ソース開口部9ps内で酸化物半導体層5に接するソース電極7s、およびドレイン開口部9pd内で酸化物半導体層5に接するドレイン電極7dを形成し、TFT101を得る。また、容量形成領域32において、開口部9q内でゲート絶縁層4と接する上部電極7cを形成する。上部電極7cは、ドレイン電極7dと一体的に形成する。さらに、ソース・ゲート接続部形成領域33において、保護層9上にソース接続配線7sgを形成する。ソース接続配線7sgの開口部9r側の端部7Aは、保護層9の上面に位置する。従って、図示するように、保護層9における開口部9rの周縁部(端部)9Aがソース接続配線7sgから露出する。端子部形成領域34およびマーク形成領域35においては、ソース用導電膜は除去される。
 ソース用導電膜として、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。また、これら複数の膜を積層した積層膜を用いてもよい。ここでは、例えば、基板側からTi膜(厚さ:10~100nm)、Cu膜(厚さ:50~400nm)この順で積層した積層膜(Cu/Ti)を用いる。
 次に、図7(a)に示すように、酸化物半導体TFT101を覆うように層間絶縁層(厚さ:例えば1μm以上3μm以下)13を形成する。この例では、層間絶縁層13として、例えばCVD法により、第1絶縁層11および第2絶縁層12を含む積層膜を形成する。第1絶縁層11は無機絶縁層(厚さ:例えば0.1μm以上1μm以下)、第2絶縁層12は有機絶縁層(厚さ:例えば1μm以上4μm以下)であってもよい。
 第1絶縁層11として、酸化珪素(SiOx)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等の無機絶縁膜(パッシベーション膜)を用いることができる。第1絶縁層11は積層膜であってもよい。ここでは、第1絶縁層11として、例えばCVD法により、厚さが例えば100nm以上400nm以下のSiOx層と、厚さが20nm以上400nm以下のSiNx層とをこの順で形成する。第2絶縁層12として、感光性樹脂材料などの有機絶縁材料を含む有機絶縁膜を形成してもよい。ここでは、第2絶縁層12として、厚さが例えば2000nmのポジ型の感光性樹脂膜を用いる。
 この後、第2絶縁層12のパターニングを行う。これにより、容量形成領域32において、第2絶縁層12に開口部12qを形成する。開口部12qは、上部電極7cの少なくとも一部と重なるように配置される。また、ソース・ゲート接続部形成領域33に開口部12rを形成する。開口部12rは、ソース接続配線7sgの上面の少なくとも一部(端部7Aを含む)、保護層9の端部(周縁部)9A、および開口部9rの下に位置するゲート接続配線3sgの一部と重なるように配置される。端子部形成領域34には、図8に示す第5のフォトマスク65を用いて、開口部12uを設ける。開口部12uは、下部接続部3tの少なくとも一部、保護層9の端部9Bおよび酸化物半導体接続部5tの端部5Bと重なるように配置される。マーク形成領域35からは第2絶縁層12を除去する。
 続いて、図7(b)に示すように、第2絶縁層12をエッチングマスクとして用いて、第1絶縁層11、保護層9およびゲート絶縁層4を一括してエッチングする。ここでは、ソース用導電膜および酸化物半導体膜をエッチストップとして、無機絶縁層(第1絶縁層11、保護層9およびゲート絶縁層4)のエッチングが行われ、かつ、ゲート絶縁層4に後述する段差構造が形成されるように、絶縁層の材料などに応じてエッチング条件が選択される。ここでいうエッチング条件とは、ドライエッチングを用いる場合、エッチングガスの種類、基板温度、チャンバー内の真空度などを含む。また、ウェットエッチングを用いる場合、エッチング液の種類やエッチング時間などを含む。本実施形態では、エッチングガスとしてCF4/O2を用い、チャンバー内でドライエッチングを行う。
 上記エッチングにより、容量形成領域32では、第1絶縁層11が除去され、上部電極7c(ドレイン電極7d)が露出される。
 ソース・ゲート接続部形成領域33では、ソース接続配線7sgおよびゲート接続配線3sgを露出するS-GコンタクトホールCH3が形成される。このとき、ソース接続配線7sgがエッチストップとして機能し、保護層9のうちソース接続配線7sgから露出した部分(端部9A)のみが除去される。また、ここでは、保護層9の端部9Aと、ゲート絶縁層4のうち端部9Aの下方に位置する部分の上部とが除去され、かつ、ゲート絶縁層4のうち端部9Aの下方に位置する部分の下部が除去されずに残るような条件でエッチングを行う。これにより、ゲート絶縁層4に段差構造が形成される。ソース接続配線7sgの端面71s、保護層9の端面、およびゲート絶縁層4の上段部41の側面とは厚さ方向に整合する。基板の法線方向から見て、ゲート絶縁層4のうちエッチングされずに残った下部(下段部)42は、エッチングされる前の保護層9の端部9Aと対応する位置に形成される。下段部42の厚さは、エッチング条件、被エッチング材料にもよるが、50nm以上300nm以下、ゲート絶縁層4の厚さの例えば10%以上80%以下であってもよい。
 端子部形成領域34には、下部接続部3tを露出する端子部コンタクトホールCH2が形成される。このとき、保護層9のうち第2絶縁層12から露出している部分(端部9Bを含む)のみが除去され、酸化物半導体接続部5tの端部5Bが端子部コンタクトホールCH2内に露出する。保護層9および第1絶縁層11の側面は、第2絶縁層12の側面と整合する。従って、酸化物半導体接続部5tおよび保護層9によって段差が形成される。さらに、本実施形態では、ゲート絶縁層4のうち、保護層9の端部9Bの下方に位置する部分4Bの上部のみが除去され、下部は除去されずに残る。このため、ゲート絶縁層4にも段差構造が形成される。ゲート絶縁層4の段差構造は、ソース・ゲート接続部形成領域33に形成された構造と同様である。基板の法線方向から見て、ゲート絶縁層4の下段部42は、エッチングされる前の保護層9の端部9Bと対応する位置に形成される。従って、端子部形成領域34では、ゲート絶縁層4の下段部42は、第3のフォトマスク63(図8)で規定されるパターンを有する。
 マーク形成領域35では、保護層9と、ゲート絶縁層4のうち酸化物半導体カバー5mで覆われていない部分とが除去される。ここでも、ゲート絶縁層4のうち、保護層9の端部9Cの下方に位置する部分の下部が除去されずに残る。これにより、ゲート絶縁層4から、端面に段差構造を有する島状の絶縁膜が得られる。
 続いて、図7(c)に示すように、層間絶縁層13上、酸化物半導体カバー5m上およびコンタクトホールCH1、CH2、CH3内に透明導電膜(厚さ:50nm以上200nm以下)を形成し、これをパターニングする。透明導電膜として、例えばITO(インジウム・錫酸化物)膜、In-Zn-O系酸化物(インジウム・亜鉛酸化物)膜、ZnO膜(酸化亜鉛膜)などを用いることができる。
 これにより、TFT形成領域31において、画素コンタクトホールCH1内で上部電極7c(ドレイン電極7d)と接する画素電極19が形成される。
 また、端子部コンタクトホールCH2内でソース接続配線7sgおよびゲート接続配線3sgと接する透明接続部19sgが形成される。透明接続部19sgは、層間絶縁層13の側面、ソース接続配線7sgの上面および側面、保護層9の側面、ゲート絶縁層4の下段部42の上面および側面、ゲート接続配線3sgの上面を覆うように形成される。
 端子部形成領域34では、端子部コンタクトホールCH2内で、下部接続部3tと接する上部接続部19tが形成される。上部接続部19tは、下部接続部3tの上面、ゲート絶縁層4の下段部42の側面および上面、上段部41の側面、酸化物半導体接続部5tの端部5Bの側面および上面、保護層9の側面、層間絶縁層13の側面を覆うように形成される。
 マーク形成領域35では、酸化物半導体カバー5mを覆う透明導電体カバー19mが形成される。透明導電体カバー19mは、ゲート絶縁層4の下段部42の側面および上面、上段部41の側面、酸化物半導体カバー5mの側面および上面を覆うように形成される。このようにして、半導体装置1000を得る。
 図9は、端子部コンタクトホールCH2の側壁の段差構造を例示する断面図であり、図9に示すA-A’線に沿った断面を示している。基板の法線方向から見たとき、端子部コンタクトホールCH2において、酸化物半導体接続部5tのうち層間絶縁層13から露出する部分の長さ、すなわち、層間絶縁層13の側面と酸化物半導体接続部5tの側面または上段部41の側面との距離d1は、ゲート絶縁層4のうち酸化物半導体接続部5tから露出する部分(下段部42)の長さ、すなわち、ゲート絶縁層4の上段部41の側面と下段部42の側面との距離Dよりも大きくなるように設定されてもよい。これにより、ゲート絶縁層4のうち薄膜化される部分の面積を低減できるので、配線腐食をより効果的に抑制できる。ここでいう距離d1、Dは、基板の法線方向から見たとき、第5のフォトマスク65で規定される層間絶縁層13の周縁部に垂直な方向(A-A’線)の長さである。
 図8に示すように、距離d1は、第5のフォトマスク65と酸化物半導体膜をパターニングする際の第2のフォトマスク62とによって決まり、例えば1μm以上15μm以下(ここでは8.0μm)である。距離Dは、第5のフォトマスク65と保護層9をパターニングする際の第3のフォトマスク63とによって決まる距離d2から、上記距離d1を引いたものである(D=d2-d1)。距離Dは、例えば1μm以上10μm以下(ここでは4.0μm)である。
 ここで、本実施形態で用いられる酸化物半導体膜(酸化物半導体層5)について説明する。酸化物半導体層5に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
 酸化物半導体層5は、2層以上の積層構造を有していてもよい。酸化物半導体層5が積層構造を有する場合には、酸化物半導体層5は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体層5が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体層5は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体層5は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層5は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。
 In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。
 酸化物半導体層5は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層5は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体などを含んでいてもよい。
 (第2の実施形態)
 以下、図面を参照しながら、本発明による半導体装置の第2の実施形態を説明する。本実施形態の半導体装置は、端子部に酸化物半導体接続部5tを形成しない点で、図1~図5を参照しながら前述の実施形態と異なる。TFT、容量素子、ソース・ゲート接続部およびマーク部の構成は、前述の実施形態と同様である。
 図10(a)および(b)は、それぞれ、本実施形態における端子部の平面図および断面図である。図3と同様の構成要素には同じ参照符号を付し、説明を省略することがある。
 端子部201Aは、ゲート用導電膜から形成された下部接続部3tと、下部接続部3t上に形成された絶縁層15と、画素電極と同一の透明導電膜から形成された上部接続部19tとを有する。下部接続部3tは、ゲート配線Gまたはゲート接続配線3sgであってもよい。絶縁層15は、ゲート絶縁層4、保護層9および層間絶縁層13を含んでいる。上部接続部19tは、絶縁層15に形成された端子部コンタクトホールCH2内で下部接続部3tと接している。端子部形成領域では、酸化物半導体膜は除去されている。
 本実施形態では、前述の実施形態と同様に、端子部コンタクトホールCH2の側壁において、ゲート絶縁層4は段差構造を有している。すなわち、ゲート絶縁層4は、上段部41と、上段部41よりも基板側に位置する下段部42とを有し、下段部42の側面42sは、上段部41の側面41sよりも外側に位置している。また、端子部コンタクトホールCH2の側壁において、ゲート絶縁層4の上段部41の側面41s、保護層9の側面9sおよび層間絶縁層13の側面13sは整合している。
 上部接続部19tは、端子部コンタクトホールCH2内において、下部接続部3t、ゲート絶縁層4の下段部42の側面42sおよび上面42u、上段部41の側面41s、保護層9の側面9s、層間絶縁層13の側面13s、および層間絶縁層13の上面の一部を覆うように配置されている。
 本実施形態における端子部201Aでは、端子部コンタクトホールCH2の側壁は、ゲート絶縁層4の段差構造によるテーパー形状を有する。このため、上部接続部19tのカバレッジを向上できるので、下部接続部3tの腐食を抑制できる。さらに、下部接続部3tは、ゲート絶縁層4のみでなく保護層9でも覆われるので、水分による下部接続部3tの腐食をより効果的に抑制できる。
 端子部201Aは、次のようにして製造される。図11(a)から(c)は、端子部形成領域に端子部201Aを製造する方法の一例を示す工程断面図である。各層の材料、厚さおよび形成方法は、図6および図7を参照しながら前述した方法と同様であるので、説明を省略する。
 まず、図11(a)に示すように、端子部形成領域に、下部接続部3tおよびゲート絶縁層4を形成する。次いで、酸化物半導体膜を堆積し、酸化物半導体膜のパターニングを行う。これにより、端子部形成領域から酸化物半導体膜を除去する。次いで、ゲート絶縁層4の上に、開口部9uを有する保護層9を形成する。基板の法線方向から見たとき、開口部9uは下部接続部3tと重なるように配置される。
 次に、図11(b)に示すように、ゲート絶縁層4および保護層9を覆うように第1絶縁層11を形成する。続いて、第2絶縁層12を形成し、第2絶縁層12に開口部12uを設ける。開口部12uは、基板の法線方向から見たとき、保護層9の端部9Bと重なるように配置する。
 続いて、図11(c)に示すように、第2絶縁層12をマスクとして、第1絶縁層11、保護層9およびゲート絶縁層4のパターニングを行い、端子部コンタクトホールCH2を形成する。パターニングは、保護層9の端部9Bと、ゲート絶縁層4のうち保護層9の端部9Bの下方に位置する部分の上部とが除去され、下部は除去されずに残るような条件で行う。これにより、ゲート絶縁層4に段差構造が形成される。
 次いで、図示しないが、端子部コンタクトホールCH2内および第2絶縁層12上に上部接続部19tを形成する。このようにして、端子部201Aを得る。
 (第3の実施形態)
 以下、図面を参照しながら、本発明による半導体装置の第3の実施形態を説明する。
 図3および図10を参照しながら前述した端子部201、201Aでは、上部接続部19tは端子部コンタクトホールCH2の底面から側壁を経て層間絶縁層13の上面まで延びている。上部接続部19tの端部は層間絶縁層13上に配置される。これに対し、本実施形態は、上部接続部19tは端子部コンタクトホールCH2の側面を部分的に覆っており、上部接続部19tの端部は端子部コンタクトホールCH2内に配置される点で前述した端子部201、201Aと異なる。
 図12(a)および(b)は、それぞれ、本実施形態における端子部201Bの平面図および断面図である。図3と同様の構成要素には同じ参照符号を付し、説明を省略することがある。
 端子部201Bでは、上部接続部19tは、端子部コンタクトホールCH2の底面に露出した下部接続部3t、ゲート絶縁層4の下段部42の側面42s、および下段部42の上面42uの少なくとも一部を覆うように配置されている。上部接続部19tの端部(表示領域側の端部)19Eは、下段部42の上面42u上に位置している。その他の構造は、図3に示す構造と同様である。
 本実施形態でも、端子部コンタクトホールCH2の側壁に形成された段差構造によって、上部接続部19tのカバレッジを高めることができるので、下部接続部3tの腐食を抑制できる。また、図3に示す端子部201と比べて、上部接続部19tの面積を小さくできる。さらに、上部接続部19tを端子部コンタクトホールCH2内のみに配置できるので、複数の端子部が配列された場合に、隣接する2つの端子部間のリークを抑制できる。
 上部接続部19tの形状は、図示する例に限定されない。上部接続部19tは、下部接続部3tから下段部42の上面42uの少なくとも一部まで延びていればよく、酸化物半導体接続部5tの側面および上面まで延びていてもよい。
 例えば図13(a)および(b)に例示するように、上部接続部19tが酸化物半導体接続部5tの上面5tuの少なくとも一部まで延び、上部接続部19tの端部19Eが酸化物半導体接続部5tの上面5tuに位置していてもよい。これにより、端子部コンタクトホールCH2の2段の段差を利用して上部接続部19tのカバレッジをより効果的に高めることができる。また、図12に示す構成では、下部接続部3tの一部はゲート絶縁層4の下段部42のみで覆われているが、図13に示す構成ではそのような部分が存在しないので、より確実に下部接続部3tの腐食を抑制できる。
 図14(a)および(b)は、それぞれ、本実施形態における他の端子部201Dの平面図および断面図である。図10と同様の構成要素には同じ参照符号を付し、説明を省略することがある。
 端子部201Dでは、上部接続部19tは、端子部コンタクトホールCH2の底面に露出した下部接続部3t、ゲート絶縁層4の下段部42の側面42s、および下段部42の上面42uの少なくとも一部を覆うように配置されている。上部接続部19tの端部(表示領域側の端部)19Eは、下段部42の上面42u上に位置している。その他の構造は、図10に示す構造と同様である。
 端子部201Dでも、上述したように、端子部コンタクトホールCH2の側壁に形成された段差構造によって上部接続部19tのカバレッジを向上できる。また、上部接続部19tを端子部コンタクトホールCH2内のみに配置できるので、隣接する端子部間のリークを抑制できる。
 (第4の実施形態)
 以下、図面を参照しながら、本発明による半導体装置の第4の実施形態を説明する。本実施形態の半導体装置は、同一基板上に形成された酸化物半導体TFTと結晶質シリコンTFTとを備えるアクティブマトリクス基板である。
 アクティブマトリクス基板は、画素毎にTFT(画素用TFT)を備えている。画素用TFTとしては、例えばIn-Ga-Zn-O系の半導体膜を活性層とする酸化物半導体TFTが用いられる。
 画素用TFTと同一基板上に、周辺駆動回路の一部または全体を一体的に形成することもある。このようなアクティブマトリクス基板は、ドライバモノリシックのアクティブマトリクス基板と呼ばれる。ドライバモノリシックのアクティブマトリクス基板では、周辺駆動回路は、複数の画素を含む領域(表示領域)以外の領域(非表示領域または額縁領域)に設けられる。周辺駆動回路を構成するTFT(回路用TFT)は、例えば、多結晶シリコン膜を活性層とした結晶質シリコンTFTが用いられる。このように、画素用TFTとして酸化物半導体TFTを用い、回路用TFTとして結晶質シリコンTFTを用いると、表示領域では消費電力を低くすることが可能となり、さらに、額縁領域を小さくすることが可能となる。
 画素用TFTとして、図1および図2を参照しながら上述したTFT101を適用することが可能である。この点については後述する。
 次に、本実施形態のアクティブマトリクス基板のより具体的な構成を、図面を用いて説明する。
 図16は、本実施形態のアクティブマトリクス基板700の平面構造の一例を示す模式的な平面図、図17は、アクティブマトリクス基板700における結晶質シリコンTFT(以下、「第1薄膜トランジスタ」と称する。)710Aおよび酸化物半導体TFT(以下、「第2薄膜トランジスタ」と称する。)710Bの断面構造を示す断面図である。
 図16に示すように、アクティブマトリクス基板700は、複数の画素を含む表示領域702と、表示領域702以外の領域(非表示領域)とを有している。非表示領域は、駆動回路が設けられる駆動回路形成領域701を含んでいる。駆動回路形成領域701には、例えばゲートドライバ回路740、検査回路770などが設けられている。表示領域702には、行方向に延びる複数のゲートバスライン(図示せず)と、列方向に延びる複数のソースバスラインSとが形成されている。図示していないが、各画素は、例えばゲートバスラインおよびソースバスラインSで規定されている。ゲートバスラインは、それぞれ、ゲートドライバ回路の各端子に接続されている。ソースバスラインSは、それぞれ、アクティブマトリクス基板700に実装されるドライバIC750の各端子に接続されている。ドライバIC750の端子として、図1、図3、図10、図12、図13、図14を参照しながら前述した端子部201、201A、201B、201C、201Dを適用することが可能である。また、駆動回路形成領域701における表示領域702の近傍に、図1および図4を参照しながら前述したソース・ゲート接続部203が配置され得る。
 図17に示すように、アクティブマトリクス基板700において、表示領域702の各画素には画素用TFTとして第2薄膜トランジスタ710Bが形成され、駆動回路形成領域701には回路用TFTとして第1薄膜トランジスタ710Aが形成されている。
 アクティブマトリクス基板700は、基板711と、基板711の表面に形成された下地膜712と、下地膜712上に形成された第1薄膜トランジスタ710Aと、下地膜712上に形成された第2薄膜トランジスタ710Bとを備えている。第1薄膜トランジスタ710Aは、結晶質シリコンを主として含む活性領域を有する結晶質シリコンTFTである。第2薄膜トランジスタ710Bは、酸化物半導体を主として含む活性領域を有する酸化物半導体TFTである。第1薄膜トランジスタ710Aおよび第2薄膜トランジスタ710Bは、基板711に一体的に作り込まれている。ここでいう「活性領域」とは、TFTの活性層となる半導体層のうちチャネルが形成される領域を指すものとする。
 第1薄膜トランジスタ710Aは、下地膜712上に形成された結晶質シリコン半導体層(例えば低温ポリシリコン層)713と、結晶質シリコン半導体層713を覆う第1の絶縁層714と、第1の絶縁層714上に設けられたゲート電極715Aとを有している。第1の絶縁層714のうち結晶質シリコン半導体層713とゲート電極715Aとの間に位置する部分は、第1薄膜トランジスタ710Aのゲート絶縁膜として機能する。結晶質シリコン半導体層713は、チャネルが形成される領域(活性領域)713cと、活性領域の両側にそれぞれ位置するソース領域713sおよびドレイン領域713dとを有している。この例では、結晶質シリコン半導体層713のうち、第1の絶縁層714を介してゲート電極715Aと重なる部分が活性領域713cとなる。第1薄膜トランジスタ710Aは、また、ソース領域713sおよびドレイン領域713dにそれぞれ接続されたソース電極718sAおよびドレイン電極718dAを有している。ソースおよびドレイン電極718sA、718dAは、ゲート電極715Aおよび結晶質シリコン半導体層713を覆う層間絶縁膜(ここでは、第2の絶縁層716)上に設けられ、層間絶縁膜に形成されたコンタクトホール内で結晶質シリコン半導体層713と接続されていてもよい。
 第2薄膜トランジスタ710Bは、下地膜712上に設けられたゲート電極715Bと、ゲート電極715Bを覆う第2の絶縁層716と、第2の絶縁層716上に配置された酸化物半導体層717とを有している。図示するように、第1薄膜トランジスタ710Aのゲート絶縁膜である第1の絶縁層714が、第2薄膜トランジスタ710Bを形成しようとする領域まで延設されていてもよい。この場合には、酸化物半導体層717は、第1の絶縁層714上に形成されていてもよい。第2の絶縁層716のうちゲート電極715Bと酸化物半導体層717との間に位置する部分は、第2薄膜トランジスタ710Bのゲート絶縁膜として機能する。酸化物半導体層717は、チャネルが形成される領域(活性領域)717cと、活性領域の両側にそれぞれ位置するソースコンタクト領域717sおよびドレインコンタクト領域717dを有している。この例では、酸化物半導体層717のうち、第2の絶縁層716を介してゲート電極715Bと重なる部分が活性領域717cとなる。酸化物半導体層717上には、保護層(エッチストップ層)725が形成されている。保護層725は、酸化物半導体層717の活性領域717cと接し、かつ、ソースコンタクト領域717sおよびドレインコンタクト領域717dをそれぞれ露出する開口部を有している。第2薄膜トランジスタ710Bは、また、保護層725の各開口部内でソースコンタクト領域717sおよびドレインコンタクト領域717dにそれぞれ接続されたソース電極718sBおよびドレイン電極718dBをさらに有している。尚、基板711上に下地膜712を設けない構成も可能である。
 薄膜トランジスタ710A、710Bは、パッシベーション膜719および平坦化膜720で覆われている。画素用TFTとして機能する第2薄膜トランジスタ710Bでは、ゲート電極715Bはゲートバスライン(図示せず)、ソース電極718sBはソースバスライン(図示せず)、ドレイン電極718dBは画素電極723に接続されている。この例では、ドレイン電極718dBは、パッシベーション膜719および平坦化膜720に形成された開口部内で、対応する画素電極723と接続されている。ソース電極718sBにはソースバスラインを介してビデオ信号が供給され、ゲートバスラインからのゲート信号に基づいて画素電極723に必要な電荷が書き込まれる。
 なお、図示するように、平坦化膜720上にコモン電極として透明導電層721が形成され、透明導電層(コモン電極)721と画素電極723との間に第3の絶縁層722が形成されていてもよい。この場合、画素電極723にスリット状の開口が設けられていてもよい。このようなアクティブマトリクス基板700は、例えばFFS(Fringe FieldSwitching)モードの表示装置に適用され得る。FFSモードは、一方の基板に一対の電極を設けて、液晶分子に、基板面に平行な方向(横方向)に電界を印加する横方向電界方式のモードである。この例では、画素電極723から出て液晶層(図示せず)を通り、さらに画素電極723のスリット状の開口を通ってコモン電極721に出る電気力線で表される電界が生成される。この電界は、液晶層に対して横方向の成分を有している。その結果、横方向の電界を液晶層に印加することができる。横方向電界方式では、基板から液晶分子が立ち上がらないため、縦方向電界方式よりも広視野角を実現できるという利点がある。
 本実施形態の第2薄膜トランジスタ710Bとして、画素用TFTとして、図1および図2を参照しながら上述したTFT101を適用することが可能である。TFT101を適用する場合、TFT101におけるゲート電極3、ゲート絶縁層4、酸化物半導体層5、ソースおよびドレイン電極7s、7dを、それぞれ、図17に示すゲート電極715B、第2の絶縁層(ゲート絶縁層)716、酸化物半導体層717、ソースおよびドレイン電極718sB、718dBに対応させてもよい。
 また、図16に示す検査回路770を構成するTFT(検査用TFT)として、酸化物半導体TFTである薄膜トランジスタ710Bを用いてもよい。
 なお、図示していないが、検査TFTおよび検査回路は、例えば、図16に示すドライバIC750が実装される領域に形成されてもよい。この場合、検査用TFTは、ドライバIC750と基板711との間に配置される。
 図示する例では、第1薄膜トランジスタ710Aは、ゲート電極715Aと基板711(下地膜712)との間に結晶質シリコン半導体層713が配置されたトップゲート構造を有している。一方、第2薄膜トランジスタ710Bは、酸化物半導体層717と基板711(下地膜712)との間にゲート電極715Bが配置されたボトムゲート構造を有している。このような構造を採用することにより、同一基板711上に、2種類の薄膜トランジスタ710A、710Bを一体的に形成する際に、製造工程数や製造コストの増加をより効果的に抑えることが可能である。
 第1薄膜トランジスタ710Aおよび第2薄膜トランジスタ710BのTFT構造は上記に限定されない。例えば、これらの薄膜トランジスタ710A、710Bは同じTFT構造を有していてもよい。例えば、第1薄膜トランジスタ710Aがボトムゲート構造であってもよい。
 第2薄膜トランジスタ710Bのゲート絶縁膜である第2の絶縁層716は、第1薄膜トランジスタ710Aが形成される領域まで延設され、第1薄膜トランジスタ710Aのゲート電極715Aおよび結晶質シリコン半導体層713を覆う層間絶縁膜として機能してもよい。このように第1薄膜トランジスタ710Aの層間絶縁膜と第2薄膜トランジスタ710Bのゲート絶縁膜とが同一の層(第2の絶縁層)716内に形成されている場合、第2の絶縁層716は積層構造を有していてもよい。例えば、第2の絶縁層716は、水素を供給可能な水素供与性の層(例えば窒化珪素層)と、水素供与性の層上に配置された、酸素を供給可能な酸素供与性の層(例えば酸化珪素層)とを含む積層構造を有していてもよい。
 第1薄膜トランジスタ710Aのゲート電極715Aと、第2薄膜トランジスタ710Bのゲート電極715Bとは、同一層内に形成されていてもよい。また、第1薄膜トランジスタ710Aのソースおよびドレイン電極718sA、718dAと、第2薄膜トランジスタ710Bのソースおよびドレイン電極718sB、718dBとは、同一の層内に形成されていてもよい。「同一層内に形成されている」とは、同一の膜(導電膜)を用いて形成されていることをいう。これにより、製造工程数および製造コストの増加を抑制できる。
 本発明の実施形態は、酸化物半導体TFTおよび酸化物半導体TFTを有する種々の半導体装置に広く適用され得る。例えばアクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置、指紋読み取り装置、半導体メモリ等の種々の電子装置にも適用される。
 1     基板
 3     ゲート電極
 3m    マーク
 3sg   ゲート接続配線
 3t    下部接続部
 4     ゲート絶縁層
 5     酸化物半導体層
 5m    酸化物半導体カバー
 5t    酸化物半導体接続部
 7c    補助容量の上部電極
 7d    ドレイン電極
 7s    ソース電極
 7sg   ソース接続配線
 9     保護層
 11    第1絶縁層
 12    第2絶縁層
 13    層間絶縁層
 19    画素電極
 19m   透明導電体カバー
 19sg  透明接続部
 19t   上部接続部
 21    マークカバー
 41    ゲート絶縁層の上段部
 42    ゲート絶縁層の下段部
 101   TFT
 105   補助容量
 201、201A、201B、201C、201D     端子部
 203   ソース・ゲート接続部
 205   マーク部
 1000  半導体装置

Claims (19)

  1.  基板と、前記基板に支持された薄膜トランジスタと、前記薄膜トランジスタを覆う層間絶縁層と、配線接続部とを備える半導体装置であって、
     前記薄膜トランジスタは、前記基板の上に形成されたゲート電極と、前記ゲート電極を覆うゲート絶縁層と、前記ゲート絶縁層上に形成された酸化物半導体層と、前記酸化物半導体層の少なくともチャネル領域を覆う保護層と、それぞれが前記酸化物半導体層に接するように形成されたソース電極及びドレイン電極とを有し、
     前記配線接続部は、
      前記ゲート電極と同一の導電膜から形成された下部導電部と、
      前記下部導電部上に形成され、かつ、前記下部導電部の少なくとも一部を露出するコンタクトホールを有する絶縁層と、
      少なくとも一部が前記コンタクトホール内に配置された上部導電部と
    を備え、
     前記絶縁層は、前記ゲート絶縁層、前記保護層および前記層間絶縁層を含み、
     前記コンタクトホールの側壁において、前記ゲート絶縁層は、上段部と、前記上段部の前記基板側に位置する下段部とを有し、前記基板の法線方向から見たとき、前記下段部の側面は前記上段部の側面よりも外側に位置しており、
     前記上部導電部は、前記コンタクトホール内で、前記下部導電部、および、前記ゲート絶縁層の前記下段部の側面および上面と接する半導体装置。
  2.  前記配線接続部は、前記保護層および前記ゲート絶縁層の間に位置し、かつ、前記酸化物半導体層と同一の半導体膜から形成された酸化物半導体接続部をさらに有し、
     前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記酸化物半導体接続部の側面は、前記保護層の側面と前記ゲート絶縁層の前記下段部の側面との間に位置しており、
     前記上部導電部は、前記コンタクトホール内で、前記ゲート絶縁層の前記上段部の側面、および、前記酸化物半導体接続部の側面および上面とさらに接する、請求項1に記載の半導体装置。
  3.  前記コンタクトホールの前記側壁において、前記ゲート絶縁層の前記上段部の側面は、前記保護層の側面と整合している、請求項1に記載の半導体装置。
  4.  前記コンタクトホールの前記側壁において、前記ゲート絶縁層の前記上段部の側面は、前記酸化物半導体接続部の側面と整合している、請求項2に記載の半導体装置。
  5.  前記上部導電部は、前記コンタクトホールの底面から前記側壁を経て前記層間絶縁層上まで延びている、請求項1から4のいずれかに記載の半導体装置。
  6.  前記上部導電部は、前記ゲート絶縁層の前記下段部の上面上に端部を有する、請求項1から4のいずれかに記載の半導体装置。
  7.  前記上部導電部は、前記酸化物半導体接続部の上面上に端部を有する、請求項2または4に記載の半導体装置。
  8.  前記配線接続部は、前記保護層および前記層間絶縁層の間に位置し、かつ、前記ソース電極と同一の導電膜から形成されたソース接続部をさらに有し、
     前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記ソース接続部の側面は、前記ゲート絶縁層の前記下段部の側面よりも内側に位置しており、
     前記上部導電部は、前記コンタクトホール内で、前記ゲート絶縁層の前記上段部の側面、前記保護層の側面、および、前記ソース接続部の側面および上面とさらに接する、請求項1に記載の半導体装置。
  9.  前記ソース接続部の側面は、前記保護層の側面および前記ゲート絶縁層の前記上段部の側面と整合している、請求項8に記載の半導体装置。
  10.  前記ゲート電極と同一の導電膜から形成されたマーク部と、
     前記マーク部を覆う島状の絶縁膜と、
     前記酸化物半導体層と同一の半導体膜から形成され、かつ、前記絶縁膜を介して前記マーク部と少なくとも部分的に重なるように配置された酸化物半導体カバー部と、
     前記酸化物半導体カバー部を覆う上部導電体カバー部と
    を有し、
     前記絶縁膜の周縁において、前記絶縁膜は、他の上段部と、前記他の上段部の前記基板側に位置する他の下段部とを有し、前記基板の法線方向から見たとき、前記他の下段部の側面は前記他の上段部の側面よりも外側に位置しており、
     前記他の上段部の側面は、前記酸化物半導体カバー部の側面と整合しており、
     前記上部導電体カバー部は、前記他の下段部の側面および上面、前記他の上段部の側面、および、前記酸化物半導体カバー部の側面および上面と接するように配置されている、請求項1から9のいずれかに記載の半導体装置。
  11.  前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記ゲート絶縁層の前記上段部の側面と前記下段部の側面との距離Dは1μm以上10μm以下である、請求項1から10のいずれかに記載の半導体装置。
  12.  前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記保護層の側面と前記酸化物半導体接続部の側面との距離d1は、前記上段部の側面と前記下段部の側面との距離Dよりも大きい、請求項2、4および7のいずれかに記載の半導体装置。
  13.  前記酸化物半導体層はIn-Ga-Zn-O系半導体を含む請求項1から12のいずれかに記載の半導体装置。
  14.  前記酸化物半導体層は結晶質部分を含む請求項13に記載の半導体装置。
  15.  薄膜トランジスタおよび配線接続部を備えた半導体装置の製造方法であって、
     (A)基板上にゲート用導電膜を形成し、これをパターニングすることによって、薄膜トランジスタを形成するTFT形成領域に前記薄膜トランジスタのゲート電極を形成し、配線接続部を形成する配線接続部形成領域に前記配線接続部の下部導電部を形成する工程と、
     (B)前記ゲート電極および前記下部導電部を覆うゲート絶縁層を形成する工程と、
     (C)前記ゲート絶縁層上に酸化物半導体膜を形成し、これをパターニングすることによって、前記薄膜トランジスタの酸化物半導体層を形成する工程と、
     (D)前記酸化物半導体層および前記ゲート絶縁層上に、前記酸化物半導体層の少なくともチャネル領域を覆う保護層を形成する工程であって、前記保護層は前記配線接続部形成領域にも延設され、前記基板の法線方向から見たとき、前記保護層は、前記下部導電部の一部と重なる開口部を有する、工程と、
     (E)前記酸化物半導体層を覆うようにソース用導電膜を形成し、これをパターニングすることによって、前記薄膜トランジスタのソース電極およびドレイン電極を形成し、これによって前記薄膜トランジスタを得る工程と、
     (F)前記薄膜トランジスタを覆うように層間絶縁層を形成する工程であって、前記層間絶縁層は前記配線接続部形成領域にも延設される、工程と、
     (G)前記層間絶縁層、前記保護層および前記ゲート絶縁層のエッチングを行うことにより、前記配線接続部形成領域に、前記下部導電部の一部を露出するコンタクトホールを形成する工程であって、前記エッチングは、前記保護層の端部、および前記ゲート絶縁層のうち前記保護層の前記端部の下方に位置する部分の上部が除去され、かつ、前記ゲート絶縁層のうち前記保護層の前記端部の下方に位置する部分の下部が残るような条件で行われ、これにより、前記コンタクトホールの側壁において、前記ゲート絶縁層は、上段部と、前記上段部の前記基板側に位置する下段部とを有し、前記基板の法線方向から見たとき、前記下段部は前記上段部よりも外側に位置する段差構造を有する、工程と、
     (H)前記コンタクトホール内において、前記下部導電部の前記一部、および、前記ゲート絶縁層の前記下段部の側面および上面と接する上部導電部を形成し、これにより、前記配線接続部を得る、工程と
    を包含する半導体装置の製造方法。
  16.  前記工程(C)は、前記酸化物半導体膜のパターニングによって、前記配線接続部形成領域に島状の酸化物半導体接続部を形成する工程を含み、
     前記工程(D)において、前記保護層は、前記酸化物半導体接続部の側面および上面を覆うように形成され、
     前記工程(E)において、前記ソース用導電膜のパターニングは、前記酸化物半導体接続部がエッチストップとして機能する条件で行われ、
     前記基板の法線方向から見たとき、前記コンタクトホールの前記側壁において、前記酸化物半導体接続部の側面は、前記保護層の側面と前記ゲート絶縁層の前記下段部の側面との間に位置している、請求項15に記載の半導体装置の製造方法。
  17.  前記工程(F)において、前記層間絶縁層は、無機絶縁層である第1絶縁層と、前記第1絶縁層の上に形成された有機絶縁層である第2絶縁層とを含み、前記工程(G)は、前記第2絶縁層をパターニングする工程と、パターニングされた前記第2絶縁層をマスクとして前記第1絶縁層、前記保護層および前記ゲート絶縁層を一括してエッチングする工程とを含む、請求項15または16に記載の半導体装置の製造方法。
  18.  前記酸化物半導体層はIn-Ga-Zn-O系半導体を含む請求項15から17のいずれかに記載の半導体装置の製造方法。
  19.  前記酸化物半導体層は結晶質部分を含む請求項18に記載の半導体装置の製造方法。
PCT/JP2016/077638 2015-09-24 2016-09-20 半導体装置およびその製造方法 WO2017051791A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017541550A JP6526215B2 (ja) 2015-09-24 2016-09-20 半導体装置およびその製造方法
US15/762,572 US10340392B2 (en) 2015-09-24 2016-09-20 Semiconductor device including mark portion and production method for same
CN201680054850.7A CN108028202B (zh) 2015-09-24 2016-09-20 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-186630 2015-09-24
JP2015186630 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051791A1 true WO2017051791A1 (ja) 2017-03-30

Family

ID=58386643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077638 WO2017051791A1 (ja) 2015-09-24 2016-09-20 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US10340392B2 (ja)
JP (1) JP6526215B2 (ja)
CN (1) CN108028202B (ja)
WO (1) WO2017051791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167327A (ja) * 2019-03-29 2020-10-08 シャープ株式会社 アクティブマトリクス基板およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9753590B2 (en) * 2014-06-13 2017-09-05 Lg Display Co., Ltd. Display device integrated with touch screen panel and method of fabricating the same
CN107086220A (zh) * 2017-04-24 2017-08-22 惠科股份有限公司 一种主动开关阵列基板及其制造方法、显示面板
JP2019169660A (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 薄膜トランジスタ基板、表示装置、および、薄膜トランジスタ基板の製造方法
CN114326231B (zh) * 2021-12-14 2023-10-13 广州华星光电半导体显示技术有限公司 显示面板及其制备方法与显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070981A1 (ja) * 2009-12-09 2011-06-16 シャープ株式会社 半導体装置およびその製造方法
JP2013122580A (ja) * 2011-11-11 2013-06-20 Semiconductor Energy Lab Co Ltd 液晶表示装置、el表示装置、及びその作製方法
JP2013131742A (ja) * 2011-11-25 2013-07-04 Semiconductor Energy Lab Co Ltd 半導体装置、およびその作製方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027656A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
CN103026398B (zh) * 2010-07-21 2014-07-09 夏普株式会社 基板及其制造方法、显示装置
WO2012023226A1 (ja) * 2010-08-18 2012-02-23 シャープ株式会社 表示装置用基板及びその製造方法、表示装置
CN103155153B (zh) * 2010-10-07 2016-03-30 夏普株式会社 半导体装置、显示装置以及半导体装置和显示装置的制造方法
KR102637010B1 (ko) 2010-12-03 2024-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR101394938B1 (ko) * 2011-05-03 2014-05-14 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
WO2013073619A1 (ja) * 2011-11-18 2013-05-23 シャープ株式会社 半導体装置、表示装置、ならびに半導体装置の製造方法
CN104040416B (zh) * 2012-01-11 2017-05-17 夏普株式会社 半导体装置、显示装置和半导体装置的制造方法
KR102071545B1 (ko) 2012-05-31 2020-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102032962B1 (ko) * 2012-10-26 2019-10-17 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102092845B1 (ko) * 2013-06-21 2020-03-25 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070981A1 (ja) * 2009-12-09 2011-06-16 シャープ株式会社 半導体装置およびその製造方法
JP2013122580A (ja) * 2011-11-11 2013-06-20 Semiconductor Energy Lab Co Ltd 液晶表示装置、el表示装置、及びその作製方法
JP2013131742A (ja) * 2011-11-25 2013-07-04 Semiconductor Energy Lab Co Ltd 半導体装置、およびその作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167327A (ja) * 2019-03-29 2020-10-08 シャープ株式会社 アクティブマトリクス基板およびその製造方法
JP7284613B2 (ja) 2019-03-29 2023-05-31 シャープ株式会社 アクティブマトリクス基板およびその製造方法

Also Published As

Publication number Publication date
JP6526215B2 (ja) 2019-06-05
CN108028202B (zh) 2021-05-25
US10340392B2 (en) 2019-07-02
US20180286985A1 (en) 2018-10-04
JPWO2017051791A1 (ja) 2018-07-05
CN108028202A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2016195039A1 (ja) アクティブマトリクス基板およびその製造方法、ならびにアクティブマトリクス基板を用いた表示装置
EP2511896B1 (en) Semiconductor device and method for producing same
JP5253674B2 (ja) 半導体装置およびその製造方法
US9613990B2 (en) Semiconductor device and method for manufacturing same
WO2017051791A1 (ja) 半導体装置およびその製造方法
US11302718B2 (en) Active matrix substrate and production method therefor
US11637132B2 (en) Active matrix substrate and method for manufacturing same
US10283645B2 (en) Semiconductor device and method for manufacturing same
US20180259820A1 (en) Semiconductor device, display apparatus, and method of manufacturing semiconductor device
JP2013507771A (ja) マスク・レベルを削減した金属酸化物fetの製造法
WO2017090477A1 (ja) 半導体装置および半導体装置の製造方法
JP2019169606A (ja) アクティブマトリクス基板およびその製造方法
US11695020B2 (en) Active matrix substrate and method for manufacturing same
KR20090078527A (ko) 표시 기판
WO2018061851A1 (ja) アクティブマトリクス基板およびその製造方法
US11502115B2 (en) Active matrix substrate and method for manufacturing same
US20060054889A1 (en) Thin film transistor array panel
US11817459B2 (en) Active matrix substrate and manufacturing method thereof
US11927860B2 (en) Active matrix substrate, method for manufacturing active matrix substrate, and liquid crystal display device with touch sensor using active matrix substrate
JP2023163682A (ja) アクティブマトリクス基板および液晶表示装置
JP2022135619A (ja) アクティブマトリクス基板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541550

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15762572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848579

Country of ref document: EP

Kind code of ref document: A1