CN103996717B - 薄膜晶体管及其制作方法、显示基板和显示装置 - Google Patents

薄膜晶体管及其制作方法、显示基板和显示装置 Download PDF

Info

Publication number
CN103996717B
CN103996717B CN201410190720.9A CN201410190720A CN103996717B CN 103996717 B CN103996717 B CN 103996717B CN 201410190720 A CN201410190720 A CN 201410190720A CN 103996717 B CN103996717 B CN 103996717B
Authority
CN
China
Prior art keywords
zinc oxide
indium gallium
gallium zinc
oxide layer
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410190720.9A
Other languages
English (en)
Other versions
CN103996717A (zh
Inventor
陈江博
王东方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201410190720.9A priority Critical patent/CN103996717B/zh
Publication of CN103996717A publication Critical patent/CN103996717A/zh
Priority to PCT/CN2014/089900 priority patent/WO2015169069A1/zh
Priority to US14/651,376 priority patent/US9773917B2/en
Application granted granted Critical
Publication of CN103996717B publication Critical patent/CN103996717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明涉及到显示装置的技术领域,公开了一种薄膜晶体管及其制作方法、显示基板和显示装置,该薄膜晶体管的制作方法包括:在衬底上采用铟镓锌氧化物InGaO3(ZnO)m制作具有C轴结晶取向特性的有源层,其中,m≥2。本发明的有益效果为:通过采用InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物在源、漏极的刻蚀液中的刻蚀速率较慢,有源层材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了刻蚀阻挡层的制作工艺。并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量。

Description

薄膜晶体管及其制作方法、显示基板和显示装置
技术领域
本发明涉及到显示装置的技术领域,尤其涉及到一种薄膜晶体管及其制作方法、显示基板和显示装置。
背景技术
目前,氧化物晶体管由于具有较高的迁移率及与a-Si产线兼容性好而受到广泛的关注。然而刻蚀阻挡层(ESL)结构的氧化物晶体管由于存在工艺复杂,相对于a-Si竞争力不足,因此开发背沟道刻蚀型(BCE)的氧化物(如铟镓锌氧化物)薄膜晶体管成为开发重点,但是铟镓锌氧化物存在晶化温度高,如现有技术使用的铟镓锌氧氧化物半导体薄膜晶体管器件及背板制备时采用的靶材成分为InGaZnO4,利用该成分靶材进行沉积的样品不易晶化,甚至基底加热至500度时仍不能结晶,使得其对工艺要求较高,从而影响到薄膜晶体管的生产效率以及其稳定性。
发明内容
本发明提供了一种薄膜晶体管及其制作方法、显示基板和显示装置,用以提高薄膜晶体管的制作效率以及薄膜晶体管的稳定性,进而提高显示装置的质量。
本发明提供了一种薄膜晶体管的制作方法,该方法包括以下步骤:
在衬底上采用铟镓锌氧化物InGaO3(ZnO)m制作具有C轴结晶取向特性的有源层,其中,m≥2。
在上述方案中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,改变了现有靶材中锌的含量,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,也就是说,有源层材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层的制作工艺,并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量,进而提高了显示装置的质量。
优选的,所述采用铟镓锌氧化物InGaO3(ZnO)m制作具有C轴结晶取向特性的有源层具体为:
通过物理气相沉积方式以第一功率和第一速率沉积具有C轴取向的第一铟镓锌氧化物层;
在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,其中,所述第一功率小于所述第二功率,所述第一速率小于所述第二速率。
通过慢速沉积形成第一铟镓锌氧化物层,由于沉积速率慢,第一铟镓锌氧化物层可获得较好的结晶效果,在后续快速沉积形成第二铟镓锌氧化物层时,第一铟稼锌氧化物层可作为第二铟镓锌氧化物层结晶时的晶核,提高第二铟镓锌氧化物层结晶速率,进而提高了有源层的制作效率,同时保证了生成的有源层具有C轴结晶取向特性。
优选的,所述形成第一铟镓锌氧化物层的温度条件和第二铟镓锌氧化物层的温度条件均为200℃~400℃,与现有技术相比具有较低的结晶温度。
可选择的,所述通过物理气相沉积方式以第一功率和第一速率沉积具有C轴结晶取向特性的第一铟镓锌氧化物层;在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,具体为采用激光脉冲方式:
采用Nd:YAG脉冲激光器,其输出波长为1064nm,重复频率为10Hz,脉宽为10ns;
首先,打开真空系统的机械泵,对真空室抽真空。当真空度达到0~5Pa时,打开分子泵,继续进行抽真空操作;
在真空度达到2.5×10-4Pa时,关闭分子泵,打开机械泵,并同时向真空室通入氧气,使氧分压保持在10.0Pa;
沉积时,聚焦前激光采用第一功率,具体为0.3W,沉积铟镓锌氧化物层时的温度为200~400度,沉积时间为10~30s,铟镓锌氧化物以第一速率形成一层0-10nm的第一铟镓锌氧化物层;
降低氧气流量,保持真空腔压强为5.0Pa,聚焦前激光采用第二功率,具体为0.5W,在第一铟镓锌氧化物层上以第二沉积速率形成第二铟镓锌氧化物层。
可选择的,所述通过物理气相沉积方式以第一功率和第一速率沉积具有C轴结晶取向特性的第一铟镓锌氧化物层;在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,具体为采用溅射方式:
当真空度达到2.5×10-4Pa时,开始进行铟镓锌氧化物薄膜沉积,沉积温度保持200~400度不变,向真空室通入氧气和Ar气,O:Ar=1:4;
沉积时的功率采用第一功率,具体为3KW,O2流量为25标况毫升/分,扫描次数为1scan,使铟镓锌氧化物以第一速率形成第一铟镓锌氧化物层;
在沉积的第一层铟镓锌氧化物层上沉积第二层铟镓锌氧化物层,在沉积时,沉积功率提高至第二功率,具体为4.5KW,O2流量为25标况毫升/分,扫描次数为1scan,沉积至所需薄膜厚度。
优选的,所述铟稼锌氧化物InGaO3(ZnO)m具体为:InGaZn2O5、InGaZn3O6、InGaZn4O7、InGaZn5O8或InGaZn6O9中的一种,具有较低的结晶温度。
本发明还提供了一种薄膜晶体管,该薄膜晶体管包括设置于衬底上的有源层,其中,所述有源层包括具有C轴结晶取向特性的铟稼锌氧化物,所述铟稼锌氧化物为InGaO3(ZnO)m,其中,m≥2。
在上述方案中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,改变了现有靶材组分中锌的含量,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,也就是材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层的制作工艺,并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量,进而提高了显示装置的质量。
优选的,所述铟稼锌氧化物InGaO3(ZnO)m具体为:InGaZn2O5、InGaZn3O6、InGaZn4O7、InGaZn5O8或InGaZn6O9中的一种。铟镓锌氧化物可以为不同的材料。
本发明还提供了一种显示基板,该显示基板包括衬底以及设置于所述衬底上的上述任一项所述的薄膜晶体管。
在上述方案中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,也就是材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层的制作工艺,并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量,进而提高了显示基板的质量。
本发明还提供了一种显示装置,该显示装置包括上述显示基板。
在上述方案中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,也就是材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层的制作工艺,并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量,进而提高了显示装置的质量。
附图说明
图1为本发明实施例提供的显示基板的结构示意图;
图2a~图2d为本发明实施例提供的具有薄膜晶体管结构的制作流程图。
附图标记:
1-衬底         2-栅极            3-栅极绝缘层
4-有源层       5-源极            6-漏极
7-像素电极
具体实施方式
为了提高提高薄膜晶体管的制作效率以及薄膜晶体管的稳定性,本发明实施例提供了一种薄膜晶体管及其制作方法、显示基板和显示装置。在本发明的技术方案中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,改变了现有靶材中锌的含量,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,也就是材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层的制作工艺,并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量,进而提高了显示装置的质量。为使本发明的目的、技术方案和优点更加清楚,以下以非限制性的实施例为例对本发明作进一步详细说明。
本发明实施例提供了一种薄膜晶体管的制作方法,该方法包括以下步骤:
在衬底上采用铟镓锌氧化物InGaO3(ZnO)m制作具有C轴结晶取向特性的有源层,其中,m≥2。
其中的C轴结晶取向具体为:X轴沿水平取向Y轴垂直于X轴,Z轴垂直于XY轴所构成的平面,沿Z轴作圆周运动就是C轴取向。在上述方法中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,改变了现有靶材中锌的含量,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,也就是材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层的制作工艺,并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量。
其中的铟稼锌氧化物InGaO3(ZnO)m具体为:InGaZn2O5、InGaZn3O6、InGaZn4O7、InGaZn5O8或InGaZn6O9中的一种,采用此种铟稼锌氧化物制作有源层,其具有较低的结晶温度,在200~400℃的条件下即可结晶,有效地降低了铟镓锌氧化物的结晶温度。
具体的,所述采用铟镓锌氧化物InGaO3(ZnO)m制作具有C轴结晶取向特性的有源层具体为:
通过物理气相沉积方式以第一功率和第一速率沉积具有C轴取向的第一铟镓锌氧化物层;
在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,其中,所述第一功率小于所述第二功率,所述第一速率小于所述第二速率。
通过慢速沉积形成第一铟镓锌氧化物层,由于沉积速率慢,第一铟镓锌氧化物层可获得较好的结晶效果,在后续快速沉积形成第二铟镓锌氧化物层时,第一铟稼锌氧化物层可作为第二铟镓锌氧化物层结晶时的晶核,提高第二铟镓锌氧化物层结晶速率,进而提高了有源层的制作效率,同时保证了生成的有源层具有C轴结晶取向特性。
在形成第一铟镓锌氧化物层的温度条件和第二铟镓锌氧化物层的温度条件均为200℃~400℃。与现有技术相比,降低了铟镓锌氧化物结晶时的温度。
在具体采用物理沉积方式形成有源层时,可以采用不同的工艺方法,具体如下:
可选择的,所述通过物理气相沉积方式以第一功率和第一速率沉积具有C轴结晶取向特性的第一铟镓锌氧化物层;在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,具体为采用激光脉冲方式:
采用Nd:YAG脉冲激光器,其输出波长为1064nm,重复频率为10Hz,脉宽为10ns;
首先,打开真空系统的机械泵,对真空室抽真空。当真空度达到0~5Pa时,打开分子泵,继续进行抽真空操作;
在真空度达到2.5×10-4Pa时,关闭分子泵,打开机械泵,并同时向真空室通入氧气,使氧分压保持在10.0Pa;
沉积时,聚焦前激光采用第一功率,具体为0.3W,沉积铟镓锌氧化物层时的温度为200~400度,沉积时间为10~30s,铟镓锌氧化物以第一速率形成一层0-10nm的第一铟镓锌氧化物层;
降低氧气流量,保持真空腔压强为5.0Pa,聚焦前激光采用第二功率,具体为0.5W,在第一铟镓锌氧化物层上以第二沉积速率形成第二铟镓锌氧化物层。
或者采用溅射方式:
当真空度达到2.5×10-4Pa时,开始进行铟镓锌氧化物薄膜沉积,沉积温度保持200~400度不变,向真空室通入氧气和Ar气,O:Ar=1:4;
沉积时的功率采用第一功率,具体为3KW,O2流量为25标况毫升/分,扫描次数为1scan,使铟镓锌氧化物以第一速率形成第一铟镓锌氧化物层;
在沉积的第一层铟镓锌氧化物层上沉积第二层铟镓锌氧化物层,在沉积时,沉积功率提高至第二功率,具体为4.5KW,O2流量为25标况毫升/分,扫描次数为1scan,沉积至所需薄膜厚度。
通过不同的工艺方式均可以形成两层铟镓锌氧化物层,通过慢速沉积形成第一铟镓锌氧化物层,由于沉积速率慢,第一铟镓锌氧化物层可获得较好的结晶效果,在后续快速沉积形成第二铟镓锌氧化物层时,第一铟稼锌氧化物层可作为第二铟镓锌氧化物层结晶时的晶核,提高第二铟镓锌氧化物层结晶速率,进而提高了有源层的制作效率,同时保证了生成的有源层具有C轴结晶取向特性。结晶后的InGaO3(ZnO)m样品在源、漏极的刻蚀液中的刻蚀速率,比未结晶的铟稼锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,而背沟道刻蚀型结构薄膜晶体管,要求刻蚀液对有源层和源、漏极层有不同的刻蚀选择比,否则在源、漏极层图案过程中会较大地损伤沟道甚至把沟道刻蚀掉。本发明实施例中结晶后的InGaO3(ZnO)m相对于非晶的铟稼锌氧化物,其受源、漏极刻蚀液影响更小,这样的物理性质使其可采用背沟道刻蚀型氧化物薄膜晶体管结构,相对于刻蚀阻挡层型的薄膜晶体管结构,其可节省刻蚀阻挡层单独的构图工艺,可简化氧化物薄膜晶体管的制作流程,节省制作成本。附图2a~图2d为本发明实施例提供的薄膜晶体管结构的生产流程,下面结合其中的图2a~图2d对本发明实施例提供的薄膜晶体管的制作方法进行详细说明。
步骤一、透明衬底1采用标准方法进行清洗;
步骤二、如图2a所示,在透明衬底1上形成栅极2;
具体的,用溅射或蒸镀法沉积50~400nm的栅极金属层,根据需要进行图形化得到栅极2;
步骤三、如图2b所示,在栅极2上形成栅极绝缘层3;
具体的,利用等离子体增强化学气相沉积法制备厚度为100~500nm的SiNx或SiOx的栅极绝缘层3,其中,x为自然数;
步骤四、如图2c所示,采用铟镓锌氧化物InGaO3(ZnO)m制作具有C轴结晶取向特性的有源层4,其中,m≥2;
具体的,通过物理气相沉积方式以第一功率和第一速率沉积具有C轴取向的第一铟镓锌氧化物层;
在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层4,其中,第一功率小于第二功率,第一速率小于第二速率。
其中的物理气相沉积可以为溅射或激光脉冲的方式,具体的:
1)激光脉冲方式:所使用的激光系统为Nd:YAG脉冲激光器,其输出波长为1064nm,重复频率为10Hz,脉宽为10ns。本实验采用该设备的三次谐波(波长为355nm)。首先,打开真空系统的机械泵,对真空室抽真空。当真空度达到0~5Pa时,打开分子泵,继续进行抽真空操作。当真空度达到2.5×10-4Pa时,关闭分子泵,打开机械泵,并同时向真空室通入氧气,使氧分压保持在10.0Pa。沉积时,聚焦前激光平均功率为0.3W。沉积铟镓锌氧化物层时的温度为200~400度,沉积时间为10~30s,形成一层0-10nm的铟镓锌氧化物层,即第一铟镓锌氧化物层,其作为籽晶可提高结晶性能,然后降低氧气流量,保持真空腔压强为5.0Pa,聚焦前平均功率为0.5W,在第一铟镓锌氧化物层上继续沉积至所需有源层厚度,形成第二铟镓锌氧化物层。
2)溅射方式:当真空度达到2.5×10-4Pa时,开始进行铟镓锌氧化物薄膜沉积,沉积温度保持200~400度不变,向真空室通入氧气和Ar气,O:Ar=1:4;
沉积时的功率采用第一功率,具体为3KW,O2流量为25标况毫升/分,扫描次数为1scan,使铟镓锌氧化物以第一速率形成第一铟镓锌氧化物层;
在沉积的第一层铟镓锌氧化物层上沉积第二层铟镓锌氧化物层,在沉积时,沉积功率提高至第二功率,具体为4.5KW,O2流量为25标况毫升/分,扫描次数为1scan,沉积至所需薄膜厚度。
在沉积形成铟镓锌氧化物有源层后,通过构图工艺最终形成有源层图形4。
步骤四、如图2d所示,形成源极5和漏极6;
具体的,采用钼、铝、铝钕合金,铜等材料,通过溅射的方式制备厚度为50~400nm的源极5和漏极6,并根据所需图形进行光刻和刻蚀。
通过上述具体实施例描述可以看出,本发明实施例提供的方法,通过采用铟镓锌氧化物InGaO3(ZnO)m,m≥2制作具有C轴结晶取向特性的有源层4,降低了铟镓锌氧化物的结晶温度,提高了形成的有源层4的稳定性,并且采用InGaO3(ZnO)m制作的有源层4具有良好的电子迁移效果。
在制作显示基板时,根据需要,除上述制作薄膜晶体管的步骤外还包括制作显示基板中为实现显示而设置的其他结构,如像素电极、像素界定层、阳极等,本发明不对显示基板的具体结构做限定。如图1所示,本发明实施例提供的显示基板可以包括像素电极7,像素电极7通过过孔与漏极6相连。
本发明实施例的薄膜晶体管的制作方法,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,改变了现有靶材组分中锌的含量,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,即有源层材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层单独形成的制作工艺,可简化氧化物薄膜晶体管的制作流程,节省制作成本;并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量。
如图2d所示,本发明实施例提供了一种薄膜晶体管,该薄膜晶体管包括设置于衬底1上的有源层4,其中,有源层4为铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的薄膜层,其中,m≥2。
其中的铟镓锌氧化物为InGaO3(ZnO)m,m≥2,因此,制作有源层4的铟镓锌氧化物可以为不同组分的材料制作而成,只需满足:InGaO3(ZnO)m,m≥2;具体的,上述InGaO3(ZnO)m可以为:InGaZn2O5、InGaZn3O6、InGaZn4O7、InGaZn5O8或InGaZn6O9中的一种,这些材料相对于现有技术中的靶材,其组成中锌的含量发生了改变,最终降低了氧化物有源层的结晶温度,并且采用InGaO3(ZnO)m制作的有源层4具有良好的电子迁移效果,提高了有源层4的质量,此外,结晶后的InGaO3(ZnO)m样品在源、漏极的刻蚀液中的刻蚀速率,比未结晶的铟稼锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制。应当理解的是,本实施例提供的铟镓锌氧化物不仅限于上述具体实施例列举的几种,任何满足InGaO3(ZnO)m,m≥2的铟镓锌氧化物均可应用于本实施例中。
继续参考图2d,本实施例提供的薄膜晶体管的结构还包括栅极2、设置于栅极2和有源层4之间的栅极绝缘层3。此时,本实施例提供的薄膜晶体管的结构为:栅极2、设置在栅极2上方的栅极绝缘层3、设置在栅极绝缘层3上方的有源层4,分别与有源层4两端连接的源极5和漏极6,其中,源极5、漏极6以及有源层4形成背沟道刻蚀型结构,背沟道刻蚀型结构在有源层上省略了刻蚀阻挡层的设置,该薄膜晶体管结构和制作工艺简单、制作成本低、生产效率高。
在上述实施例中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有的有源层4,改变了现有靶材中锌的含量,降低了铟镓锌氧化物的结晶温度,从而提高了形成的有源层4的稳定性,并且采用InGaO3(ZnO)m制作的有源层4具有良好的电子迁移效果,提高了有源层4的质量,此外,结晶后的InGaO3(ZnO)m样品在源、漏极的刻蚀液中的刻蚀速率,比未结晶的铟稼锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制。而背沟道刻蚀型结构薄膜晶体管,要求刻蚀液对有源层和源、漏极层有不同的刻蚀选择比,否则在源、漏极层图案过程中会较大地损伤沟道甚至把沟道刻蚀掉。本发明实施例中结晶后的InGaO3(ZnO)m相对于非晶的铟稼锌氧化物,其受源、漏极刻蚀液影响更小,这样的物理性质使其可采用背沟道刻蚀型氧化物薄膜晶体管结构,相对于刻蚀阻挡层型的薄膜晶体管结构,其可节省刻蚀阻挡层单独的构图工艺,可简化氧化物薄膜晶体管的制作流程,节省制作成本。
本发明实施例还提供了一种显示基板,该显示基板包括衬底1以及设置于衬底1上的上述任一项的薄膜晶体管,该显示基板除上述薄膜晶体管外,根据需要,该显示基板还可以包括实现显示而设置的其他结构,如像素电极、像素界定层、阳极等,本发明不对显示基板的具体结构做限定。如图1所示,本发明实施例提供的显示基板可以包括像素电极7,像素电极7通过过孔与漏极6相连。
本发明实施例中的显示基板,其具有的薄膜晶体管通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层,改变了现有靶材中锌的含量,降低了铟镓锌氧化物的结晶温度,提高了薄膜晶体管的偏压测试的稳定性,结晶后的铟镓锌氧化物样品在源、漏极的刻蚀液中的刻蚀速率,与未结晶的铟镓锌氧化物样品在源、漏极刻蚀液中的刻蚀速率慢数倍,可以实现刻蚀的精确控制,也就是材料的特性使薄膜晶体管可采用背沟道刻蚀型结构,减少了现有技术中刻蚀阻挡层的制作工艺,并且采用InGaO3(ZnO)m制作的有源层具有良好的电子迁移效果,提高了制作的有源层的质量,进而提高了显示装置的质量。
本发明实施例还提供了一种显示装置,该显示装置包括上述显示基板。
在上述实施例中,通过采用铟镓锌氧化物InGaO3(ZnO)m制作的具有C轴结晶取向特性的有源层4,降低了铟镓锌氧化物的结晶温度,从而提高了形成的有源层4的稳定性,并且采用InGaO3(ZnO)m制作的有源层4具有良好的电子迁移效果,提高了制作的有源层4的质量,进而提高了显示装置的质量。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明实施例权利要求及其等同技术的范围之内,则本发明实施例也意图包含这些改动和变型在内。

Claims (9)

1.一种薄膜晶体管的制作方法,其特征在于,包括:
在衬底上采用铟镓锌氧化物InGaO3(ZnO)m制作具有C轴结晶取向特性的有源层,其中,m≥2,具体为:
通过物理气相沉积方式以第一功率和第一速率沉积具有C轴结晶取向特性的第一铟镓锌氧化物层;
在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,其中,所述第一功率小于所述第二功率,所述第一速率小于所述第二速率。
2.如权利要求1所述的薄膜晶体管的制作方法,其特征在于,所述形成第一铟镓锌氧化物层的温度条件和第二铟镓锌氧化物层的温度条件均为200℃~400℃。
3.如权利要求2所述的薄膜晶体管的制作方法,其特征在于,所述通过物理气相沉积方式以第一功率和第一速率沉积具有C轴结晶取向特性的第一铟镓锌氧化物层;在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,具体为采用激光脉冲方式:
采用Nd:YAG脉冲激光器,其输出波长为1064nm,重复频率为10Hz,脉宽为10ns;
首先,打开真空系统的机械泵,对真空室抽真空;当真空度达到0~5Pa时,打开分子泵,继续进行抽真空操作;
在真空度达到2.5×10-4Pa时,关闭分子泵,打开机械泵,并同时向真空室通入氧气,使氧分压保持在10.0Pa;
沉积时,聚焦前激光采用第一功率,具体为0.3W,沉积铟镓锌氧化物层时的温度为200~400度,沉积时间为10~30s,铟镓锌氧化物以第一速率形成一层0-10nm的第一铟镓锌氧化物层;
降低氧气流量,保持真空腔压强为5.0Pa,聚焦前激光采用第二功率,具体为0.5W,在第一铟镓锌氧化物层上以第二沉积速率形成第二铟镓锌氧化物层。
4.如权利要求2所述的薄膜晶体管的制作方法,其特征在于,所述通过物理气相沉积方式以第一功率和第一速率沉积具有C轴结晶取向特性的第一铟镓锌氧化物层;在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述第一铟镓锌氧化物层和第二铟镓锌氧化物层形成有源层,具体为采用溅射方式:
当真空度达到2.5×10-4Pa时,开始进行铟镓锌氧化物薄膜沉积,沉积温度保持200~400度不变,向真空室通入氧气和Ar气,O:Ar=1:4;
沉积时的功率采用第一功率,具体为3KW,O2流量为25标况毫升/分,扫描次数为1scan,使铟镓锌氧化物以第一速率形成第一铟镓锌氧化物层;
在沉积的第一层铟镓锌氧化物层上沉积第二层铟镓锌氧化物层,在沉积时,沉积功率提高至第二功率,具体为4.5KW,O2流量为25标况毫升/分,扫描次数为1scan,沉积至所需薄膜厚度。
5.如权利要求1~4任一项所述的薄膜晶体管的制作方法,其特征在于,所述铟稼锌氧化物InGaO3(ZnO)m具体为:InGaZn2O5、InGaZn3O6、InGaZn4O7、InGaZn5O8或InGaZn6O9中的一种。
6.一种薄膜晶体管,其特征在于,包括设置于衬底上的有源层,其中,所述有源层包括通过物理气相沉积方式以第一功率和第一速率沉积具有C轴结晶取向特性的第一铟镓锌氧化物层;在形成的第一层铟镓锌氧化物层上通过物理气相沉积方式以第二功率和第二速率沉积第二铟镓锌氧化物层,所述铟稼锌氧化物为InGaO3(ZnO)m,其中,m≥2。
7.如权利要求6所述的薄膜晶体管,其特征在于,所述铟稼锌氧化物InGaO3(ZnO)m具体为:InGaZn2O5、InGaZn3O6、InGaZn4O7、InGaZn5O8或InGaZn6O9中的一种。
8.一种显示基板,其特征在于,包括衬底以及设置所述衬底上的如权利要求6或7所述的薄膜晶体管。
9.一种显示装置,其特征在于,包括如权利要求8所述的显示基板。
CN201410190720.9A 2014-05-07 2014-05-07 薄膜晶体管及其制作方法、显示基板和显示装置 Active CN103996717B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410190720.9A CN103996717B (zh) 2014-05-07 2014-05-07 薄膜晶体管及其制作方法、显示基板和显示装置
PCT/CN2014/089900 WO2015169069A1 (zh) 2014-05-07 2014-10-30 薄膜晶体管及其制作方法、显示基板和显示装置
US14/651,376 US9773917B2 (en) 2014-05-07 2014-10-30 Thin film transistor and manufacturing method thereof, display substrate and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410190720.9A CN103996717B (zh) 2014-05-07 2014-05-07 薄膜晶体管及其制作方法、显示基板和显示装置

Publications (2)

Publication Number Publication Date
CN103996717A CN103996717A (zh) 2014-08-20
CN103996717B true CN103996717B (zh) 2015-08-26

Family

ID=51310818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410190720.9A Active CN103996717B (zh) 2014-05-07 2014-05-07 薄膜晶体管及其制作方法、显示基板和显示装置

Country Status (3)

Country Link
US (1) US9773917B2 (zh)
CN (1) CN103996717B (zh)
WO (1) WO2015169069A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756877B (zh) * 2016-12-13 2019-02-19 武汉华星光电技术有限公司 C轴结晶igzo薄膜及其制备方法
CN106876281B (zh) * 2017-04-27 2020-12-08 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、阵列基板
JP7166522B2 (ja) * 2017-08-21 2022-11-08 株式会社Flosfia 結晶膜の製造方法
CN107968095A (zh) * 2017-11-21 2018-04-27 深圳市华星光电半导体显示技术有限公司 背沟道蚀刻型tft基板及其制作方法
CN113838801A (zh) * 2020-06-24 2021-12-24 京东方科技集团股份有限公司 半导体基板的制造方法和半导体基板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903758A (zh) * 2009-12-28 2013-01-30 株式会社半导体能源研究所 制造半导体装置的方法
CN103124805A (zh) * 2011-06-08 2013-05-29 株式会社半导体能源研究所 溅射靶材、溅射靶材的制造方法及薄膜形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202365B2 (en) * 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
TWI473896B (zh) 2008-06-27 2015-02-21 Idemitsu Kosan Co From InGaO 3 (ZnO) crystal phase, and a method for producing the same
US8629438B2 (en) * 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2012029637A1 (en) * 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8405085B2 (en) * 2010-12-01 2013-03-26 Au Optronics Corporation Thin film transistor capable of reducing photo current leakage
CN103500712B (zh) * 2010-12-03 2016-05-25 株式会社半导体能源研究所 半导体装置
WO2014054428A1 (ja) * 2012-10-01 2014-04-10 シャープ株式会社 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903758A (zh) * 2009-12-28 2013-01-30 株式会社半导体能源研究所 制造半导体装置的方法
CN103124805A (zh) * 2011-06-08 2013-05-29 株式会社半导体能源研究所 溅射靶材、溅射靶材的制造方法及薄膜形成方法

Also Published As

Publication number Publication date
WO2015169069A1 (zh) 2015-11-12
CN103996717A (zh) 2014-08-20
US20160260834A1 (en) 2016-09-08
US9773917B2 (en) 2017-09-26

Similar Documents

Publication Publication Date Title
CN103996717B (zh) 薄膜晶体管及其制作方法、显示基板和显示装置
CN103474469B (zh) 具有氧化物半导体薄膜层的层叠结构以及薄膜晶体管
KR101758538B1 (ko) 박막 트랜지스터 및 표시 장치
CN103268855B (zh) 多晶硅形成方法、tft阵列基板制造方法及显示装置
CN103311130B (zh) 一种非晶金属氧化物薄膜晶体管及其制备方法
CN110867458B (zh) 金属氧化物半导体薄膜晶体管阵列基板及制作方法
JP2012033854A (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
CN102522429A (zh) 一种基于金属氧化物的薄膜晶体管及其制备方法和应用
CN106298879B (zh) 顶栅和垂直结构tft的制作方法
CN102768992A (zh) 一种薄膜晶体管驱动背板的制作方法
CN105957805B (zh) 低温多晶硅薄膜制作方法、薄膜晶体管、阵列基板和显示装置
CN102723279A (zh) 一种金属氧化物薄膜晶体管的制作方法
CN103117226B (zh) 一种合金氧化物薄膜晶体管的制备方法
CN102709189A (zh) 一种薄膜晶体管及其制作方法及一种阵列基板
CN103794652A (zh) 金属氧化物半导体薄膜晶体管及其制备方法
CN106971944A (zh) 金属氧化物薄膜晶体管的制备方法及其结构
CN109524476A (zh) 氧化物薄膜晶体管的制备方法及阵列基板的制备方法
CN102651399B (zh) 微晶非晶硅复合型薄膜晶体管及其制造方法
CN107369719B (zh) 一种氧化物薄膜晶体管纯铜复合结构源漏电极及其制备方法
CN104167447A (zh) 一种薄膜晶体管及其制备方法、显示基板和显示设备
JP2007073614A (ja) 酸化物半導体を用いた薄膜トランジスタの製造方法
CN105552080A (zh) 基于金属氧化物薄膜晶体管的非挥发性存储器的制备方法
CN103956325B (zh) 一种多层复合氧化物高k介质薄膜晶体管的制备方法
CN104934444A (zh) 共平面型氧化物半导体tft基板结构及其制作方法
JP2011142174A (ja) 成膜方法および半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant