JP6554224B2 - 走査アンテナ - Google Patents

走査アンテナ Download PDF

Info

Publication number
JP6554224B2
JP6554224B2 JP2018500103A JP2018500103A JP6554224B2 JP 6554224 B2 JP6554224 B2 JP 6554224B2 JP 2018500103 A JP2018500103 A JP 2018500103A JP 2018500103 A JP2018500103 A JP 2018500103A JP 6554224 B2 JP6554224 B2 JP 6554224B2
Authority
JP
Japan
Prior art keywords
substrate
layer
dielectric substrate
slot
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018500103A
Other languages
English (en)
Other versions
JPWO2017141874A1 (ja
Inventor
貴俊 大類
貴俊 大類
中澤 淳
淳 中澤
中村 渉
渉 中村
箕浦 潔
潔 箕浦
忠 大竹
忠 大竹
中野 文樹
文樹 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2017141874A1 publication Critical patent/JPWO2017141874A1/ja
Application granted granted Critical
Publication of JP6554224B2 publication Critical patent/JP6554224B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Description

本発明は、走査アンテナおよびその製造方法に関し、特に、アンテナ単位(「素子アンテナ」ということもある。)が液晶容量を有する走査アンテナ(「液晶アレイアンテナ」ということもある。)およびその製造方法に関する。
移動体通信や衛星放送用のアンテナは、ビームの方向を変えられる(「ビーム走査」または「ビームステアリング」と言われる。)機能を必要とする。このような機能を有するアンテナ(以下、「走査アンテナ(scanned antenna)」という。)として、アンテナ単位を備えるフェイズドアレイアンテナが知られている。しかしながら、従来のフェイズドアレイアンテナは高価であり、民生品への普及の障害となっている。特に、アンテナ単位の数が増えると、コストが著しく上昇する。
そこで、液晶材料(ネマチック液晶、高分子分散液晶を含む)の大きな誘電異方性(複屈折率)を利用した走査アンテナが提案されている(特許文献1〜4および非特許文献1)。液晶材料の誘電率は周波数分散を有するので、本明細書において、マイクロ波の周波数帯における誘電率(「マイクロ波に対する誘電率」ということもある。)を特に「誘電率M(εM)」と表記することにする。
特許文献3および非特許文献1には、液晶表示装置(以下、「LCD」という。)の技術を利用することによって低価格な走査アンテナが得られると記載されている。
特開2007−116573号公報 特開2007−295044号公報 特表2009−538565号公報 特表2013−539949号公報
R. A. Stevenson et al., "Rethinking Wireless Communications:Advanced Antenna Design using LCD Technology", SID 2015 DIGEST, pp.827-830. M. ANDO et al., "A Radial Line Slot Antenna for 12GHz Satellite TV Reception", IEEE Transactions of Antennas and Propagation, Vol. AP-33, No.12, pp. 1347-1353 (1985).
上述したように、LCD技術を適用することによって低価格な走査アンテナを実現すると言うアイデアは知られてはいるものの、LCD技術を利用した走査アンテナの構造、その製造方法、およびその駆動方法を具体的に記載した文献はない。
そこで、本発明は、従来のLCDの製造技術を利用して量産することが可能な走査アンテナおよびその製造方法を提供することを目的とする。
本発明の実施形態による走査アンテナは、複数のアンテナ単位が配列された走査アンテナであって、第1誘電体基板と、前記第1誘電体基板に支持された複数のTFTと、複数のゲートバスラインと、複数のソースバスラインと、複数のパッチ電極とを有するTFT基板と、第2誘電体基板と、前記第2誘電体基板の第1主面上に形成されたスロット電極とを有するスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記第2誘電体基板の前記第1主面と反対側の第2主面に誘電体層を介して対向するように配置された反射導電板とを有し、前記スロット電極は、前記複数のパッチ電極に対応して配置された複数のスロットを有し、少なくとも前記アンテナ単位が配列されている領域において、前記第2誘電体基板の厚さは、前記第1誘電体基板の厚さよりも小さい。
ある実施形態において、前記第2誘電体基板の厚さは、0.35mm以下である。
ある実施形態において、前記第1誘電体基板の厚さは、1.1mm以下である。
ある実施形態において、前記第1誘電体基板の厚さは、0.7mm以上である。
ある実施形態において、前記第2誘電体基板は、ガラス基板と高分子フィルムとを有している。前記第2誘電体基板は、ガラス基板であってよい。前記ガラス基板のマイクロ波に対する誘電率は5以下であることが好ましい。
本発明の他の実施形態による走査アンテナは、複数のアンテナ単位が配列された走査アンテナであって、第1誘電体基板と、前記第1誘電体基板に支持された複数のTFTと、複数のゲートバスラインと、複数のソースバスラインと、複数のパッチ電極とを有するTFT基板と、第2誘電体基板と、前記第2誘電体基板の第1主面上に形成されたスロット電極とを有するスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記第2誘電体基板の前記第1主面と反対側の第2主面に誘電体層を介して対向するように配置された反射導電板とを有し、前記スロット電極は、前記複数のパッチ電極に対応して配置された複数のスロットを有し、前記TFT基板は、前記第1誘電体基板の外側に配置されたヒーター用抵抗膜と、前記ヒーター用抵抗膜を覆う保護層とをさらに有し、少なくとも前記アンテナ単位が配列されている領域において、前記第2誘電体基板の厚さは、前記TFT基板の厚さよりも小さい。
ある実施形態において、前記保護層は、硬化性樹脂層、高分子フィルムまたはガラス板で形成されている。
ある実施形態において、前記第2誘電体基板の厚さは、0.35mm以下である。
ある実施形態において、前記第1誘電体基板の厚さと前記保護層の厚さとの和は、1.4mm以下である。
ある実施形態において、前記第1誘電体基板の厚さと前記保護層の厚さとの和は、0.7mm以上である。
ある実施形態において、前記第2誘電体基板は、ガラス基板と高分子フィルムとを有している。前記第2誘電体基板は、ガラス基板であってよい。前記ガラス基板のマイクロ波に対する誘電率は5以下であることが好ましい。
本発明の一実施形態のTFT基板は、誘電体基板と、前記誘電体基板上に配列された複数のアンテナ単位領域を有するTFT基板であって、前記複数のアンテナ単位領域を含む送受信領域と、前記送受信領域以外の領域に位置する非送受信領域とを含み、前記複数のアンテナ単位領域のそれぞれは、前記誘電体基板に支持された薄膜トランジスタであって、ゲート電極と、半導体層と、前記ゲート電極と前記半導体層との間に位置するゲート絶縁層と、前記半導体層に電気的に接続されたソース電極およびドレイン電極とを含む薄膜トランジスタと、前記薄膜トランジスタを覆い、かつ、前記薄膜トランジスタの前記ドレイン電極を露出する第1開口部を有する第1絶縁層と、前記第1絶縁層上および前記第1開口部内に形成され、前記薄膜トランジスタの前記ドレイン電極に電気的に接続されたパッチ電極とを備え、前記パッチ電極は金属層を含み、前記金属層の厚さは、前記薄膜トランジスタの前記ソース電極および前記ドレイン電極の厚さよりも大きい。
ある実施形態において、上記TFT基板は、前記パッチ電極を覆う第2絶縁層をさらに備えてもよい。前記金属層の厚さは、1μm以上30μm以下であってもよい。
ある実施形態において、上記TFT基板は、前記送受信領域において、前記誘電体基板上に形成された抵抗膜と、前記抵抗膜に接続されたヒーター用端子とをさらに有してもよい。
ある実施形態において、上記TFT基板は、前記非送受信領域に配置されたトランスファー端子部をさらに備え、前記トランスファー端子部は、前記パッチ電極と同じ導電膜から形成されたパッチ接続部と、前記パッチ接続部上に延設され、前記パッチ接続部の一部を露出する第2開口部を有する前記第2絶縁層と、前記第2絶縁層上および前記第2開口部内に形成され、前記パッチ接続部と電気的に接続された上部透明電極とを有する。
ある実施形態において、上記TFT基板は、ゲート端子部をさらに備え、前記ゲート端子部は、前記ゲート電極と同じ導電膜から形成されたゲートバスラインと、前記ゲートバスライン上に延設された前記ゲート絶縁層、前記第1絶縁層および前記第2絶縁層と、前記上部透明電極と同じ透明導電膜から形成されたゲート端子用上部接続部とを有し、前記ゲート絶縁層、前記第1絶縁層および前記第2絶縁層には、前記ゲートバスラインの一部を露出するゲート端子コンタクトホールが形成されており、前記ゲート端子用上部接続部は、前記第2絶縁層上および前記ゲート端子コンタクトホール内に配置され、前記ゲート端子コンタクトホール内で前記ゲートバスラインと接している。
ある実施形態において、上記TFT基板は、前記非送受信領域に配置されたトランスファー端子部をさらに備え、前記トランスファー端子部は、前記ソース電極と同じ導電膜から形成されたソース接続配線と、前記ソース接続配線上に延設され、前記ソース接続配線の一部を露出する第3開口部および前記ソース接続配線の他の一部を露出する第4開口部を有する前記第1絶縁層と、前記第1絶縁層上および前記第3開口部内に形成されたパッチ接続部と、前記第1絶縁層上および前記第4開口部内に形成された上部透明電極とを有し、前記パッチ接続部は、前記ソース接続配線を介して前記上部透明電極と電気的に接続されており、前記パッチ接続部は前記パッチ電極と同じ導電膜から形成されており、前記第2絶縁層は、前記トランスファー端子部上に延設されており、前記パッチ接続部を覆い、かつ、前記上部透明電極の少なくとも一部を露出する開口を有する。
ある実施形態において、上記TFT基板は、前記非送受信領域に配置されたトランスファー端子部をさらに備え、前記トランスファー端子部は、前記第1絶縁層上に、前記パッチ電極と同じ導電膜から形成されたパッチ接続部と、前記パッチ接続部を覆う保護導電層とを有し、前記第2絶縁層は、前記保護導電層上に延設され、前記保護導電層の一部を露出する開口を有する。
ある実施形態において、上記TFT基板は、ゲート端子部をさらに備え、前記ゲート端子部は、前記ゲート電極と同じ導電膜から形成されたゲートバスラインと、前記ゲートバスライン上に延設された前記ゲート絶縁層および前記第1絶縁層と、透明導電膜から形成されたゲート端子用上部接続部とを有し、前記ゲート絶縁層および前記第1絶縁層には、前記ゲート端子用上部接続部を露出するゲート端子コンタクトホールが形成されており、前記ゲート端子用上部接続部は、前記第1絶縁層上および前記ゲート端子コンタクトホール内に配置され、前記ゲート端子コンタクトホール内で前記ゲートバスラインと接しており、前記第2絶縁層は、前記ゲート端子用上部接続部上に延設され、前記ゲート端子用上部接続部の一部を露出する開口を有する。
本発明の一実施形態の走査アンテナは、上記のいずれかに記載のTFT基板と、前記TFT基板と対向するように配置されたスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記スロット基板の前記液晶層と反対側の表面に誘電体層を介して対向するように配置された反射導電板とを備え、前記スロット基板は、他の誘電体基板と、前記他の誘電体基板の前記液晶層側の表面に形成されたスロット電極とを有し、前記スロット電極は複数のスロットを有し、前記複数のスロットは、前記TFT基板の前記複数のアンテナ単位領域における前記パッチ電極に対応して配置されている。
本発明の他の実施形態の走査アンテナは、上記のいずれかに記載のTFT基板と、前記TFT基板と対向するように配置されたスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記スロット基板の前記液晶層と反対側の表面に誘電体層を介して対向するように配置された反射導電板とを備え、前記スロット基板は、他の誘電体基板と、前記他の誘電体基板の前記液晶層側の表面に形成されたスロット電極とを有し、前記スロット電極は複数のスロットを有し、前記複数のスロットは、前記TFT基板の前記複数のアンテナ単位領域における前記パッチ電極に対応して配置されており、前記スロット電極は、前記TFT基板の前記トランスファー端子部に接続されている。
本発明の他の実施形態による走査アンテナは、複数のアンテナ単位が配列された走査アンテナであって、第1誘電体基板と、前記第1誘電体基板に支持された複数のTFTと、複数のゲートバスラインと、複数のソースバスラインと、複数のパッチ電極とを有するTFT基板と、第2誘電体基板と、前記第2誘電体基板の第1主面上に形成されたスロット電極とを有するスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記第2誘電体基板の前記第1主面と反対側の第2主面に誘電体層を介して対向するように配置された反射導電板とを有し、前記スロット電極は、前記複数のパッチ電極に対応して配置された複数のスロットを有し、前記第1誘電体基板の外側または前記第2誘電体基板の外側に配置されたヒーター部をさらに有する。
ある実施形態において、前記ヒーター部は、ヒーター用抵抗膜を含む。
ある実施形態において、前記走査アンテナは、前記ヒーター用抵抗膜を覆う保護層をさらに有する。
ある実施形態において、前記保護層は、硬化性樹脂層、高分子フィルムまたはガラス板で形成されている。
ある実施形態において、前記ヒーター用抵抗膜は、前記第1誘電体基板に直接形成されている。
ある実施形態において、前記走査アンテナは、前記第1誘電体基板と前記ヒーター用抵抗膜との間に接着層をさらに有する。
ある実施形態において、前記ヒーター用抵抗膜は、複数の開口部を有し、前記複数の開口部は、前記複数のスロットに対応し、前記複数のスロットよりも大きい複数の開口部を含む。
ある実施形態において、前記走査アンテナは、前記ヒーター部に接続された電源と、前記電源から前記ヒーター部に供給する電流を制御する温度制御装置とをさらに備える。
本発明の一実施形態のTFT基板の製造方法は、複数のアンテナ単位領域を含む送受信領域と、前記送受信領域以外の非送受信領域とを有し、前記複数のアンテナ単位領域のそれぞれは薄膜トランジスタおよびパッチ電極を備えるTFT基板の製造方法であって、(a)誘電体基板上に薄膜トランジスタを形成する工程と、(b)前記薄膜トランジスタを覆うように第1絶縁層を形成し、前記第1絶縁層に前記薄膜トランジスタのドレイン電極の一部を露出する第1開口部を形成する工程と、(c)前記第1絶縁層上および前記第1開口部内にパッチ電極用導電膜を形成し、前記パッチ電極用導電膜のパターニングにより、前記第1開口部内で前記ドレイン電極と接するパッチ電極を形成する工程と、(d)前記パッチ電極を覆う第2絶縁層を形成する工程とを包含し、前記パッチ電極は金属層を含み、前記金属層の厚さは、前記薄膜トランジスタのソース電極およびドレイン電極の厚さよりも大きい。
ある実施形態において、前記工程(a)は、誘電体基板上にゲート用導電膜を形成し、前記ゲート用導電膜のパターニングにより、複数のゲートバスラインおよび前記薄膜トランジスタのゲート電極を形成する工程(a1)と、前記複数のゲートバスラインおよび前記ゲート電極を覆うゲート絶縁層を形成する工程(a2)と、前記ゲート絶縁層上に、前記薄膜トランジスタの半導体層を形成する工程(a3)と、前記半導体層上および前記ゲート絶縁層上にソース用導電膜を形成し、前記ソース用導電膜のパターニングにより、複数のソースバスラインと、前記半導体層に接するソース電極およびドレイン電極とを形成し、薄膜トランジスタを得る工程(a4)とを包含する。
ある実施形態において、前記TFT基板は、前記非送受信領域にゲート端子部およびトランスファー端子部をさらに備え、前記工程(c)は、前記パッチ電極用導電膜のパターニングにより、前記非送受信領域にパッチ接続部を形成する工程を含み、前記工程(d)の後に、前記ゲート絶縁層、前記第1絶縁層および前記第2絶縁層を一括してエッチングする工程であって、これにより、前記第2絶縁層に前記パッチ接続部を露出する第2開口部を形成するとともに、前記ゲート絶縁層、前記第1絶縁層および前記第2絶縁層に前記ゲートバスラインの一部を露出するゲート端子コンタクトホールを形成する工程と、前記第2絶縁層上、前記第2開口部内、および前記ゲート端子コンタクトホール内に透明導電膜を形成し、前記透明導電膜のパターニングにより、前記第2開口部内で前記パッチ接続部に接する上部透明電極を形成してトランスファー端子部を得るとともに、前記ゲート端子コンタクトホール内で前記ゲートバスラインに接するゲート端子用上部接続部を形成してゲート端子部を得る工程とを包含する。
ある実施形態において、前記TFT基板は、前記非送受信領域にゲート端子部およびトランスファー端子部をさらに備え、前記工程(a4)は、前記ソース用導電膜のパターニングにより、前記非送受信領域にソース接続配線を形成する工程を含み、前記工程(b)は、前記第1絶縁層に前記第1開口部を形成するとともに、前記ソース接続配線の一部を露出する第3開口部と、前記ソース接続配線の他の一部を露出する第4開口部と、前記ゲートバスラインの一部を露出するゲート端子コンタクトホールとを形成する工程を含み、前記工程(b)と前記工程(c)との間に、透明導電膜を形成し、前記透明導電膜のパターニングにより、前記第3開口部内で前記ソース接続配線に接する上部透明電極を形成するとともに、前記ゲート端子コンタクトホール内で前記ゲートバスラインに接するゲート端子用上部接続部を形成してゲート端子部を得る工程をさらに含み、前記工程(c)は、前記パッチ電極用導電膜のパターニングにより、前記第4開口部内で前記ソース接続配線と接するパッチ接続部とを形成してトランスファー端子部を得る工程をさらに含み、前記トランスファー端子部では、前記ソース接続配線を介して前記パッチ接続部と前記上部透明電極とが電気的に接続され、前記工程(d)の後に、前記第2絶縁層に、前記上部透明電極の一部および前記ゲート端子用上部接続部の一部をそれぞれ露出する開口を形成する工程をさらに含む。
ある実施形態において、前記TFT基板は、前記非送受信領域にゲート端子部およびトランスファー端子部をさらに備え、前記工程(b)は、前記第1絶縁層に前記第1開口部を形成するとともに、前記ゲートバスラインの一部を露出するゲート端子コンタクトホールを形成する工程を含み、前記工程(b)と前記工程(c)との間に、透明導電膜を形成し、前記透明導電膜のパターニングにより、前記ゲート端子コンタクトホール内で前記ゲートバスラインに接するゲート端子用上部接続部を形成してゲート端子部を得る工程をさらに含み、前記工程(c)は、前記パッチ電極用導電膜のパターニングにより、前記非送受信領域にパッチ接続部を形成する工程を含み、前記工程(c)と前記工程(d)との間に、前記パッチ接続部を覆う保護導電層を形成する工程をさらに含み、前記工程(d)の後に、前記第2絶縁層に、前記保護導電層の一部および前記ゲート端子用上部接続部の一部をそれぞれ露出する開口を形成する工程をさらに含む。
本発明のある実施形態による走査アンテナは、複数のアンテナ単位が配列された走査アンテナであって、第1誘電体基板と、前記第1誘電体基板に支持された複数のTFTと、複数のゲートバスラインと、複数のソースバスラインと、複数のパッチ電極とを有するTFT基板と、第2誘電体基板と、前記第2誘電体基板の第1主面上に形成されたスロット電極と有するスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記第2誘電体基板の前記第1主面と反対側の第2主面に誘電体層を介して対向するように配置された反射導電板とを有し、前記スロット電極は、前記複数のパッチ電極に対応して配置された複数のスロットを有し、前記複数のパッチ電極のそれぞれは、対応するTFTのドレインに接続されており、対応するTFTのゲートバスラインから供給される走査信号によって選択される期間に、対応するソースバスラインからデータ信号が供給され、前記複数のパッチ電極のそれぞれに印加される電圧の極性が反転する周波数は300Hz以上である。
ある実施形態において、任意のフレームにおいて、前記複数のパッチ電極に印加される電圧の極性は全て同じである。
ある実施形態において、任意のフレームにおいて、前記複数のパッチ電極に印加される電圧の極性は、隣接するゲートバスラインに接続されたパッチ電極間で互いに逆である。
ある実施形態において、前記複数のパッチ電極のそれぞれに印加される電圧の極性が反転する周波数は5kHz以下である。
ある実施形態において、前記スロット電極に印加される電圧は、前記複数のパッチ電極に印加される電圧と180°位相がずれた振動電圧である。
本発明の実施形態による走査アンテナの駆動方法は、複数のアンテナ単位が配列された走査アンテナであって、第1誘電体基板と、前記第1誘電体基板に支持された複数のTFTと、複数のゲートバスラインと、複数のソースバスラインと、複数のパッチ電極とを有するTFT基板と、第2誘電体基板と、前記第2誘電体基板の第1主面上に形成されたスロット電極と有するスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記第2誘電体基板の前記第1主面と反対側の第2主面に誘電体層を介して対向するように配置された反射導電板とを有し、前記スロット電極は、前記複数のパッチ電極に対応して配置された複数のスロットを有する走査アンテナの駆動方法であって、前記複数のパッチ電極のそれぞれに印加される電圧の極性を300Hz以上の周波数で反転させる。
ある実施形態において、前記スロット電極に印加される電圧の極性を前記複数のパッチ電極に印加される電圧の極性と180°位相をずらして反転させる。
本発明のある実施形態によると、従来のLCDの製造技術を利用して量産することが可能な走査アンテナおよびその製造方法が提供される。
第1の実施形態の走査アンテナ1000の一部を模式的に示す断面図である。 (a)および(b)は、それぞれ、走査アンテナ1000におけるTFT基板101およびスロット基板201を示す模式的な平面図である。 (a)および(b)は、それぞれ、TFT基板101のアンテナ単位領域Uを模式的に示す断面図および平面図である。 (a)〜(c)は、それぞれ、TFT基板101のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを模式的に示す断面図である。 TFT基板101の製造工程の一例を示す図である。 スロット基板201におけるアンテナ単位領域Uおよび端子部ITを模式的に示す断面図である。 TFT基板101およびスロット基板201におけるトランスファー部を説明するための模式的な断面図である。 (a)〜(c)は、それぞれ、第2の実施形態におけるTFT基板102のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。 TFT基板102の製造工程の一例を示す図である。 (a)〜(c)は、それぞれ、第3の実施形態におけるTFT基板103のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。 TFT基板103の製造工程の一例を示す図である。 TFT基板103およびスロット基板203におけるトランスファー部を説明するための模式的な断面図である。 (a)は、ヒーター用抵抗膜68を有するTFT基板104の模式的な平面図であり、(b)はスロット57およびパッチ電極15のサイズを説明するための模式的な平面図である。 (a)および(b)は、抵抗加熱構造80aおよび80bの模式的な構造と電流の分布を示す図である。 (a)〜(c)は、抵抗加熱構造80c〜80eの模式的な構造と電流の分布を示す図である。 (a)は、ヒーター用抵抗膜68を有する液晶パネル100Paの模式的な断面図であり、(b)は、ヒーター用抵抗膜68を有する液晶パネル100Pbの模式的な断面図である。 本発明の実施形態による走査アンテナの1つアンテナ単位の等価回路を示す図である。 (a)〜(c)、(e)〜(g)は、実施形態の走査アンテナの駆動に用いられる各信号の波形の例を示す図であり、(d)は、ドット反転駆動を行っているLCDパネルの表示信号の波形を示す図である。 (a)〜(e)は、実施形態の走査アンテナの駆動に用いられる各信号の波形の他の例を示す図である。 (a)〜(e)は、実施形態の走査アンテナの駆動に用いられる各信号の波形のさらに他の例を示す図である。 (a)および(b)は、タイリング構造を有する走査アンテナ1000Aの構造を模式的に示す図であり、(a)は平面図であり、(b)は(a)中の22B−22B’線に沿った断面図である。 タイリング構造を有する他の走査アンテナ1000Bの構造を模式的に示す図であり、(a)は平面図であり、(b)は(a)中の22B−22B’線に沿った断面図である。 (a)は、タイリング構造を有する走査アンテナ1000Bの製造プロセスにおける貼り合せ工程を説明するための模式図であり、(b)は、タイリング構造を有するさらに他の走査アンテナ1000Cの製造プロセスにおける貼り合せ工程を説明するための模式図である。 (a)および(b)は、マザー基板から走査アンテナ用基板を作製する際のパターンレイアウトの例を示す模式図である。 タイリング構造を有する走査アンテナ1000Dにおけるトランスファー部の配置を示す模式図である。 タイリング構造を有する走査アンテナ1000Eにおけるトランスファー部の配置を示す模式図である。 (a)は、走査アンテナ1000A1の模式的な断面図であり、(b)は、走査アンテナ1000B1の模式的な断面図である。 (a)は、走査アンテナ1000A2の模式的な断面図であり、(b)は、走査アンテナ1000B2の模式的な断面図である。 (a)〜(d)は、走査アンテナの液晶パネル100Fの製造方法を説明するための模式的な断面図である。 (a)および(b)は、走査アンテナの液晶パネル100Fの他の製造方法を説明するための模式的な断面図である。 (a)は、従来のLCD900の構造を示す模式図であり、(b)はLCDパネル900aの模式的な断面図である。
以下、図面を参照して、本発明の実施形態による走査アンテナおよびその製造方法を説明する。以下の説明においては、まず、公知のTFT型LCD(以下、「TFT−LCD」という。)の構造および製造方法を説明する。ただし、LCDの技術分野で周知の事項については説明を省略することがある。TFT−LCDの基本的な技術については、例えば、Liquid Crystals, Applications and Uses, Vol. 1−3(Editor: Birenda Bahadur, Publisher: World Scientific Pub Co Inc)などを参照されたい。参考のために、上記の文献の開示内容の全てを本明細書に援用する。
図31(a)および(b)を参照して、典型的な透過型のTFT−LCD(以下、単に「LCD」という。)900の構造および動作を説明する。ここでは、液晶層の厚さ方向に電圧を印加する縦電界モード(例えば、TNモードや垂直配向モード)のLCD900を例示する。LCDの液晶容量に印加される電圧のフレーム周波数(典型的には極性反転周波数の2倍)は例えば4倍速駆動でも240Hzであり、LCDの液晶容量の誘電体層としての液晶層の誘電率εは、マイクロ波(例えば、衛星放送やKuバンド(12〜18GHz)、Kバンド(18〜26GHz)、Kaバンド(26〜40GHz))に対する誘電率M(εM)と異なる。
図31(a)に模式的に示すように、透過型のLCD900は、液晶表示パネル900aと、制御回路CNTLと、バックライト(不図示)と、電源回路(不図示)などを備えている。液晶表示パネル900aは、液晶表示セルLCCと、ゲートドライバGDおよびソースドライバSDを含む駆動回路とを含む。駆動回路は、例えば、液晶表示セルLCCのTFT基板910に実装されてもよいし、駆動回路の一部または全部は、TFT基板910に一体化(モノリシック化)されてもよい。
図31(b)に、LCD900が有する液晶表示パネル(以下、「LCDパネル」という。)900aの模式的に断面図を示す。LCDパネル900aは、TFT基板910と、対向基板920と、これらの間に設けられた液晶層930とを有している。TFT基板910および対向基板920は、いずれもガラス基板などの透明基板911、921を有している。透明基板911、921としては、ガラス基板の他、プラスチック基板が用いられることもある。プラスチック基板は、例えば、透明な樹脂(例えばポリエステル)とガラス繊維(例えば不織布)で形成される。
LCDパネル900aの表示領域DRは、マトリクス状に配列された画素Pによって構成されている。表示領域DRの周辺には表示に寄与しない額縁領域FRが形成されている。液晶材料は表示領域DRを包囲するように形成されたシール部(不図示)によって表示領域DR内に封止されている。シール部は、例えば、紫外線硬化性樹脂とスペーサ(例えば樹脂ビーズ)とを含むシール材を硬化させることによって形成され、TFT基板910と対向基板920とを互いに接着、固定する。シール材中のスペーサは、TFT基板910と対向基板920との間隙、すなわち液晶層930の厚さを一定に制御する。液晶層930の厚さの面内ばらつきを抑制するために、表示領域DR内の遮光される部分(例えば配線上)に、柱状スペーサが紫外線硬化性樹脂を用いて形成される。近年、液晶テレビやスマートフォン用のLCDパネルに見られるように、表示に寄与しない額縁領域FRの幅は非常に狭くなっている。
TFT基板910では、透明基板911上に、TFT912、ゲートバスライン(走査線)GL、ソースバスライン(表示信号線)SL、画素電極914、補助容量電極(不図示)、CSバスライン(補助容量線)(不図示)が形成されている。CSバスラインはゲートバスラインと平行に設けられる。あるいは、次段のゲートバスラインをCSバスラインとして用いることもある(CSオンゲート構造)。
画素電極914は、液晶の配向を制御する配向膜(例えばポリイミド膜)に覆われている。配向膜は、液晶層930と接するように設けられる。TFT基板910はバックライト側(観察者とは反対側)に配置されることが多い。
対向基板920は、液晶層930の観察者側に配置されることが多い。対向基板920は、透明基板921上に、カラーフィルタ層(不図示)と、対向電極924と、配向膜(不図示)とを有している。対向電極924は、表示領域DRを構成する複数の画素Pに共通に設けられるので、共通電極とも呼ばれる。カラーフィルタ層は、画素P毎に設けられるカラーフィルタ(例えば、赤フィルタ、緑フィルタ、青フィルタ)と、表示に不要な光を遮光するためのブラックマトリクス(遮光層)とを含む。ブラックマトリクスは、例えば、表示領域DR内の画素Pの間、および額縁領域FRを遮光するように配置される。
TFT基板910の画素電極914と、対向基板920の対向電極924と、これらの間の液晶層930が、液晶容量Clcを構成する。個々の液晶容量が画素に対応する。液晶容量Clcに印加された電圧を保持するために(いわゆる電圧保持率を高くするために)、液晶容量Clcと電気的に並列に接続された補助容量CSが形成されている。補助容量CSは、典型的には、画素電極914と同電位とされる電極と、無機絶縁層(例えばゲート絶縁層(SiO2層))と、CSバスラインに接続された補助容量電極とで構成される。CSバスラインからは、典型的には、対向電極924と同じ共通電圧が供給される。
液晶容量Clcに印加された電圧(実効電圧)が低下する要因としては、(1)液晶容量Clcの容量値CClcと、抵抗値Rとの積であるCR時定数に基づくもの、(2)液晶材料中に含まれるイオン性不純物に起因する界面分極、および/または、液晶分子の配向分極などがある。これらのうち、液晶容量ClcのCR時定数による寄与が大きく、液晶容量Clcに電気的に並列に接続された補助容量CSを設けることによって、CR時定数を大きくすることができる。なお、液晶容量Clcの誘電体層である液晶層930の体積抵抗率は、汎用されているネマチック液晶材料の場合、1012Ω・cmのオーダを超えている。
画素電極914に供給される表示信号は、ゲートバスラインGLにゲートドライバGDから供給される走査信号によって選択されたTFT912がオン状態となったときに、そのTFT912に接続されているソースバスラインSLに供給されている表示信号である。したがって、あるゲートバスラインGLに接続されているTFT912が同時にオン状態となり、その時に、その行の画素PのそれぞれのTFT912に接続されているソースバスラインSLから対応する表示信号が供給される。この動作を、1行目(例えば表示面の最上行)からm行目(例えば表示面の最下行)まで順次に行うことによって、m行の画素行で構成された表示領域DRに1枚の画像(フレーム)が書き込まれ、表示される。画素Pがm行n列にマトリクス状に配列されているとすると、ソースバスラインSLは各画素列に対応して少なくとも1本、合計で少なくともn本設けられる。
このような走査は線順次走査と呼ばれ、1つの画素行が選択されて、次の行が選択されるまでの時間は水平走査期間(1H)と呼ばれ、ある行が選択され、再びその行が選択されるまでの時間は垂直走査期間(1V)またはフレームと呼ばれる。なお、一般に、1V(または1フレーム)は、m本の画素行を全て選択する期間m・Hに、ブランキング期間を加えたものとなる。
例えば、入力映像信号がNTSC信号の場合、従来のLCDパネルの1V(=1フレーム)は、1/60sec(16.7msec)であった。NTSC信号はインターレース信号であり、フレーム周波数は30Hzで、フィールド周波数は60Hzであるが、LCDパネルにおいては各フィールドで全ての画素に表示信号を供給する必要があるので、1V=(1/60)secで駆動する(60Hz駆動)。なお、近年では、動画表示特性を改善するために、2倍速駆動(120Hz駆動、1V=(1/120)sec)で駆動されるLCDパネルや、3D表示のために4倍速(240Hz駆動、1V=(1/240)sec)で駆動されるLCDパネルもある。
液晶層930に直流電圧が印加されると実効電圧が低下し、画素Pの輝度が低下する。この実効電圧の低下には、上記の界面分極および/または配向分極の寄与があるので、補助容量CSを設けても完全に防止することは難しい。例えば、ある中間階調に対応する表示信号を全ての画素にフレーム毎に書き込むと、フレーム毎に輝度が変動し、フリッカーとして観察される。また、液晶層930に長時間にわたって直流電圧が印加されると液晶材料の電気分解が起こることがある。また、不純物イオンが片側の電極に偏析し、液晶層に実効的な電圧が印加されなくなり、液晶分子が動かなくなることもある。これらを防止するために、LCDパネル900aはいわゆる、交流駆動される。典型的には、表示信号の極性を1フレーム毎(1垂直走査期間毎)に反転する、フレーム反転駆動が行われる。例えば、従来のLCDパネルでは、1/60sec毎に極性反転が行われている(極性反転の周期は30Hz)。
また、1フレーム内においても印加される電圧の極性の異なる画素を均一に分布させるために、ドット反転駆動またはライン反転駆動などが行われている。これは、正極性と負極性とで、液晶層に印加される実効電圧の大きさを完全に一致させることが難しいからである。例えば、液晶材料の体積抵抗率が1012Ω・cmのオーダ超であれば、1/60sec毎に、ドット反転またはライン反転駆動を行えば、フリッカーはほとんど視認されない。
LCDパネル900aにおける走査信号および表示信号は、制御回路CNTLからゲートドライバGDおよびソースドライバSDに供給される信号に基づいて、ゲートドライバGDおよびソースドライバSDがゲートバスラインGLおよびソースバスラインSLにそれぞれ供給される。例えば、ゲートドライバGDおよびソースドライバSDは、それぞれ、TFT基板910に設けられた対応する端子に接続されている。ゲートドライバGDおよびソースドライバSDは、例えば、ドライバICとしてTFT基板910の額縁領域FRに実装されることもあるし、TFT基板910の額縁領域FRにモノリシックに形成されることもある。
対向基板920の対向電極924は、トランスファー(転移)と呼ばれる導電部(不図示)を介して、TFT基板910の端子(不図示)に電気的に接続される。トランスファーは、例えば、シール部と重なるように、あるいは、シール部の一部に導電性を付与することによって形成される。額縁領域FRを狭くするためである。対向電極924には、制御回路CNTLから、直接または間接的に共通電圧が供給される。典型的には、共通電圧は、上述したように、CSバスラインにも供給される。
[走査アンテナの基本構造]
液晶材料の大きな誘電率M(εM)の異方性(複屈折率)を利用したアンテナ単位を用いた走査アンテナは、LCDパネルの画素に対応付けられるアンテナ単位の各液晶層に印加する電圧を制御し、各アンテナ単位の液晶層の実効的な誘電率M(εM)を変化させることによって、静電容量の異なるアンテナ単位で2次元的なパターンを形成する(LCDによる画像の表示に対応する。)。アンテナから出射される、または、アンテナによって受信される電磁波(例えば、マイクロ波)には、各アンテナ単位の静電容量に応じた位相差が与えられ、静電容量の異なるアンテナ単位によって形成された2次元的なパターンに応じて、特定の方向に強い指向性を有することになる(ビーム走査)。例えば、アンテナから出射される電磁波は、入力電磁波が各アンテナ単位に入射し、各アンテナ単位で散乱された結果得られる球面波を、各アンテナ単位によって与えられる位相差を考慮して積分することによって得られる。各アンテナ単位が、「フェイズシフター:phase shifter」として機能していると考えることもできる。液晶材料を用いた走査アンテナの基本的な構造および動作原理については、特許文献1〜4および非特許文献1、2を参照されたい。非特許文献2は、らせん状のスロットが配列された走査アンテナの基本的な構造を開示している。参考のために、特許文献1〜4および非特許文献1、2の開示内容の全てを本明細書に援用する。
なお、本発明の実施形態による走査アンテナにおけるアンテナ単位はLCDパネルの画素に類似してはいるものの、LCDパネルの画素の構造とは異なっているし、複数のアンテナ単位の配列もLCDパネルにおける画素の配列とは異なっている。後に詳細に説明する第1の実施形態の走査アンテナ1000を示す図1を参照して、本発明の実施形態による走査アンテナの基本構造を説明する。走査アンテナ1000は、スロットが同心円状に配列されたラジアルインラインスロットアンテナであるが、本発明の実施形態による走査アンテナはこれに限られず、例えば、スロットの配列は、公知の種々の配列であってよい。
図1は、本実施形態の走査アンテナ1000の一部を模式的に示す断面図であり、同心円状に配列されたスロットの中心近傍に設けられた給電ピン72(図2(b)参照)から半径方向に沿った断面の一部を模式的に示す。
走査アンテナ1000は、TFT基板101と、スロット基板201と、これらの間に配置された液晶層LCと、スロット基板201と、空気層54を介して対向するように配置された反射導電板65とを備えている。走査アンテナ1000は、TFT基板101側からマイクロ波を送受信する。
TFT基板101は、ガラス基板などの誘電体基板1と、誘電体基板1上に形成された複数のパッチ電極15と、複数のTFT10とを有している。各パッチ電極15は、対応するTFT10に接続されている。各TFT10は、ゲートバスラインとソースバスラインとに接続されている。
スロット基板201は、ガラス基板などの誘電体基板51と、誘電体基板51の液晶層LC側に形成されたスロット電極55とを有している。スロット電極55は複数のスロット57を有している。
スロット基板201と、空気層54を介して対向するように反射導電板65が配置されている。空気層54に代えて、マイクロ波に対する誘電率Mが小さい誘電体(例えば、PTFEなどのフッ素樹脂)で形成された層を用いることができる。スロット電極55と反射導電板65と、これらの間の誘電体基板51および空気層54とが導波路301として機能する。
パッチ電極15と、スロット57を含むスロット電極55の部分と、これらの間の液晶層LCとがアンテナ単位Uを構成する。各アンテナ単位Uにおいて、1つのパッチ電極15が1つのスロット57を含むスロット電極55の部分と液晶層LCを介して対向しており、液晶容量を構成している。パッチ電極15とスロット電極55とが液晶層LCを介して対向する構造は、図31に示したLCDパネル900aの画素電極914と対向電極924とが液晶層930を介して対向する構造と似ている。すなわち、走査アンテナ1000のアンテナ単位Uと、LCDパネル900aにおける画素Pとは似た構成を有している。また、アンテナ単位は、液晶容量と電気的に並列に接続された補助容量(図13(a)、図17参照)を有している点でもLCDパネル900aにおける画素Pと似た構成を有している。しかしながら、走査アンテナ1000は、LCDパネル900aと多くの相違点を有している。
まず、走査アンテナ1000の誘電体基板1、51に求められる性能は、LCDパネルの基板に求められる性能と異なる。
一般にLCDパネルには、可視光に透明な基板が用いられ、例えば、ガラス基板またはプラスチック基板が用いられる。反射型のLCDパネルにおいては、背面側の基板には透明性が必要ないので、半導体基板が用いられることもある。これに対し、アンテナ用の誘電体基板1、51としては、マイクロ波に対する誘電損失(マイクロ波に対する誘電正接をtanδMと表すことにする。)が小さいことが好ましい。誘電体基板1、51のtanδMは、概ね0.03以下であることが好ましく、0.01以下がさらに好ましい。具体的には、ガラス基板またはプラスチック基板を用いることができる。ガラス基板はプラスチック基板よりも寸法安定性、耐熱性に優れ、TFT、配線、電極等の回路要素をLCD技術を用いて形成するのに適している。例えば、導波路を形成する材料が空気とガラスである場合、ガラスの方が上記誘電損失が大きいため、ガラスがより薄い方が導波ロスを減らすことができるとの観点から、好ましくは400μm以下であり、300μm以下がさらに好ましい。下限は特になく、製造プロセスにおいて、割れることなくハンドリングできればよい。
電極に用いられる導電材料も異なる。LCDパネルの画素電極や対向電極には透明導電膜としてITO膜が用いられることが多い。しかしながら、ITOはマイクロ波に対するtanδMが大きく、アンテナにおける導電層として用いることができない。スロット電極55は、反射導電板65とともに導波路301の壁として機能する。したがって、導波路301の壁におけるマイクロ波の透過を抑制するためには、導波路301の壁の厚さ、すなわち、金属層(Cu層またはAl層)の厚さは大きいことが好ましい。金属層の厚さが表皮深さの3倍であれば、電磁波は1/20(−26dB)に減衰され、5倍であれば1/150(−43dB)程度に減衰されることが知られている。したがって、金属層の厚さが表皮深さの5倍であれば、電磁波の透過率を1%に低減することができる。例えば、10GHzのマイクロ波に対しては、厚さが3.3μm以上のCu層、および厚さが4.0μm以上のAl層を用いると、マイクロ波を1/150まで低減することができる。また、30GHzのマイクロ波に対しては、厚さが1.9μm以上のCu層、および厚さが2.3μm以上のAl層を用いると、マイクロ波を1/150まで低減することができる。このように、スロット電極55は、比較的厚いCu層またはAl層で形成することが好ましい。Cu層またはAl層の厚さに上限は特になく、成膜時間やコストを考慮して、適宜設定され得る。Cu層を用いると、Al層を用いるよりも薄くできるという利点が得られる。比較的厚いCu層またはAl層の形成は、LCDの製造プロセスで用いられる薄膜堆積法だけでなく、Cu箔またはAl箔を基板に貼り付ける等、他の方法を採用することもできる。金属層の厚さは、例えば、2μm以上30μm以下である。薄膜堆積法を用いて形成する場合、金属層の厚さは5μm以下であることが好ましい。なお、反射導電板65は、例えば、厚さが数mmのアルミニウム板、銅板などを用いることができる。
パッチ電極15は、スロット電極55のように導波路301を構成する訳ではないので、スロット電極55よりも厚さが小さいCu層またはAl層を用いることができる。ただし、スロット電極55のスロット57付近の自由電子の振動がパッチ電極15内の自由電子の振動を誘起する際に熱に変わるロスを避けるために、抵抗が低い方が好ましい。量産性の観点からはCu層よりもAl層を用いることが好ましく、Al層の厚さは例えば0.5μm〜2μmが好ましい。
また、アンテナ単位Uの配列ピッチは、画素ピッチと大きく異なる。例えば、12GHz(Ku band)のマイクロ波用のアンテナを考えると、波長λは、例えば25mmである。そうすると、特許文献4に記載されているように、アンテナ単位Uのピッチはλ/4以下および/またはλ/5以下であるので、6.25mm以下および/または5mm以下ということになる。これはLCDパネルの画素のピッチと比べて10倍以上大きい。したがって、アンテナ単位Uの長さおよび幅もLCDパネルの画素長さおよび幅よりも約10倍大きいことになる。
もちろん、アンテナ単位Uの配列はLCDパネルにおける画素の配列と異なり得る。ここでは、同心円状に配列した例(例えば、特開2002−217640号公報参照)を示すが、これに限られず、例えば、非特許文献2に記載されているように、らせん状に配列されてもよい。さらに、特許文献4に記載されているようにマトリクス状に配列してもよい。
走査アンテナ1000の液晶層LCの液晶材料に求められる特性は、LCDパネルの液晶材料に求められる特性と異なる。LCDパネルは画素の液晶層の屈折率変化によって、可視光(波長380nm〜830nm)の偏光に位相差を与えることによって、偏光状態を変化させる(例えば、直線偏光の偏光軸方向を回転させる、または、円偏光の円偏光度を変化させる)ことによって、表示を行う。これに対して実施形態による走査アンテナ1000は、アンテナ単位Uが有する液晶容量の静電容量値を変化させることによって、各パッチ電極から励振(再輻射)されるマイクロ波の位相を変化させる。したがって、液晶層は、マイクロ波に対する誘電率M(εM)の異方性(ΔεM)が大きいことが好ましく、tanδMは小さいことが好ましい。例えば、M. Wittek et al., SID 2015 DIGESTpp.824-826に記載のΔεMが4以上で、tanδMが0.02以下(いずれも19Gzの値)を好適に用いることができる。この他、九鬼、高分子55巻8月号pp.599-602(2006)に記載のΔεMが0.4以上、tanδMが0.04以下の液晶材料を用いることができる。
一般に液晶材料の誘電率は周波数分散を有するが、マイクロ波に対する誘電異方性ΔεMは、可視光に対する屈折率異方性Δnと正の相関がある。したがって、マイクロ波に対するアンテナ単位用の液晶材料は、可視光に対する屈折率異方性Δnが大きい材料が好ましいと言える。LCD用の液晶材料の屈折率異方性Δnは550nmの光に対する屈折率異方性で評価される。ここでも550nmの光に対するΔn(複屈折率)を指標に用いると、Δnが0.3以上、好ましくは0.4以上のネマチック液晶が、マイクロ波に対するアンテナ単位用に用いられる。Δnに特に上限はない。ただし、Δnが大きい液晶材料は極性が強い傾向にあるので、信頼性を低下させる恐れがある。信頼性の観点からは、Δnは0.4以下であることが好ましい。液晶層の厚さは、例えば、1μm〜500μmである。
以下、本発明の実施形態による走査アンテナの構造および製造方法をより詳細に説明する。
(第1の実施形態)
まず、図1および図2を参照する。図1は詳述した様に走査アンテナ1000の中心付近の模式的な部分断面図であり、図2(a)および(b)は、それぞれ、走査アンテナ1000におけるTFT基板101およびスロット基板201を示す模式的な平面図である。
走査アンテナ1000は2次元に配列された複数のアンテナ単位Uを有しており、ここで例示する走査アンテナ1000では、複数のアンテナ単位が同心円状に配列されている。以下の説明においては、アンテナ単位Uに対応するTFT基板101の領域およびスロット基板201の領域を「アンテナ単位領域」と呼び、アンテナ単位と同じ参照符号Uを付すことにする。また、図2(a)および(b)に示す様に、TFT基板101およびスロット基板201において、2次元的に配列された複数のアンテナ単位領域によって画定される領域を「送受信領域R1」と呼び、送受信領域R1以外の領域を「非送受信領域R2」と呼ぶ。非送受信領域R2には、端子部、駆動回路などが設けられる。
図2(a)は、走査アンテナ1000におけるTFT基板101を示す模式的な平面図である。
図示する例では、TFT基板101の法線方向から見たとき、送受信領域R1はドーナツ状である。非送受信領域R2は、送受信領域R1の中心部に位置する第1非送受信領域R2aと、送受信領域R1の周縁部に位置する第2非送受信領域R2bとを含む。送受信領域R1の外径は、例えば200mm〜1500mmで、通信量などに応じて設定される。
TFT基板101の送受信領域R1には、誘電体基板1に支持された複数のゲートバスラインGLおよび複数のソースバスラインSLが設けられ、これらの配線によってアンテナ単位領域Uが規定されている。アンテナ単位領域Uは、送受信領域R1において、例えば同心円状に配列されている。アンテナ単位領域Uのそれぞれは、TFTと、TFTに電気的に接続されたパッチ電極とを含んでいる。TFTのソース電極はソースバスラインSLに、ゲート電極はゲートバスラインGLにそれぞれ電気的に接続されている。また、ドレイン電極は、パッチ電極と電気的に接続されている。
非送受信領域R2(R2a、R2b)には、送受信領域R1を包囲するようにシール領域Rsが配置されている。シール領域Rsにはシール材(不図示)が付与されている。シール材は、TFT基板101およびスロット基板201を互いに接着させるとともに、これらの基板101、201の間に液晶を封入する。
非送受信領域R2のうちシール領域Rsの外側には、ゲート端子部GT、ゲートドライバGD、ソース端子部STおよびソースドライバSDが設けられている。ゲートバスラインGLのそれぞれはゲート端子部GTを介してゲートドライバGDに接続されている。ソースバスラインSLのそれぞれはソース端子部STを介してソースドライバSDに接続されている。なお、この例では、ソースドライバSDおよびゲートドライバGDは誘電体基板1上に形成されているが、これらのドライバの一方または両方は他の誘電体基板上に設けられていてもよい。
非送受信領域R2には、また、複数のトランスファー端子部PTが設けられている。トランスファー端子部PTは、スロット基板201のスロット電極55(図2(b))と電気的に接続される。本明細書では、トランスファー端子部PTとスロット電極55との接続部を「トランスファー部」と称する。図示するように、トランスファー端子部PT(トランスファー部)は、シール領域Rs内に配置されてもよい。この場合、シール材として導電性粒子を含有する樹脂を用いてもよい。これにより、TFT基板101とスロット基板201との間に液晶を封入させるとともに、トランスファー端子部PTとスロット基板201のスロット電極55との電気的な接続を確保できる。この例では、第1非送受信領域R2aおよび第2非送受信領域R2bの両方にトランスファー端子部PTが配置されているが、いずれか一方のみに配置されていてもよい。
なお、トランスファー端子部PT(トランスファー部)は、シール領域Rs内に配置されていなくてもよい。例えば非送受信領域R2のうちシール領域Rsの外側に配置されていてもよい。
図2(b)は、走査アンテナ1000におけるスロット基板201を例示する模式的な平面図であり、スロット基板201の液晶層LC側の表面を示している。
スロット基板201では、誘電体基板51上に、送受信領域R1および非送受信領域R2に亘ってスロット電極55が形成されている。
スロット基板201の送受信領域R1では、スロット電極55には複数のスロット57が配置されている。スロット57は、TFT基板101におけるアンテナ単位領域Uに対応して配置されている。図示する例では、複数のスロット57は、ラジアルインラインスロットアンテナを構成するように、互いに概ね直交する方向に延びる一対のスロット57が同心円状に配列されている。互いに概ね直交するスロットを有するので、走査アンテナ1000は、円偏波を送受信することができる。
非送受信領域R2には、複数の、スロット電極55の端子部ITが設けられている。端子部ITは、TFT基板101のトランスファー端子部PT(図2(a))と電気的に接続される。この例では、端子部ITは、シール領域Rs内に配置されており、導電性粒子を含有するシール材によって対応するトランスファー端子部PTと電気的に接続される。
また、第1非送受信領域R2aにおいて、スロット基板201の裏面側に給電ピン72が配置されている。給電ピン72によって、スロット電極55、反射導電板65および誘電体基板51で構成された導波路301にマイクロ波が挿入される。給電ピン72は給電装置70に接続されている。給電は、スロット57が配列された同心円の中心から行う。給電の方式は、直結給電方式および電磁結合方式のいずれであってもよく、公知の給電構造を採用することができる。
以下、図面を参照して、走査アンテナ1000の各構成要素をより詳しく説明する。
<TFT基板101の構造>
・アンテナ単位領域U
図3(a)および(b)は、それぞれ、TFT基板101のアンテナ単位領域Uを模式的に示す断面図および平面図である。
アンテナ単位領域Uのそれぞれは、誘電体基板(不図示)と、誘電体基板に支持されたTFT10と、TFT10を覆う第1絶縁層11と、第1絶縁層11上に形成され、TFT10に電気的に接続されたパッチ電極15と、パッチ電極15を覆う第2絶縁層17とを備える。TFT10は、例えば、ゲートバスラインGLおよびソースバスラインSLの交点近傍に配置されている。
TFT10は、ゲート電極3、島状の半導体層5、ゲート電極3と半導体層5との間に配置されたゲート絶縁層4、ソース電極7Sおよびドレイン電極7Dを備える。TFT10の構造は特に限定しない。この例では、TFT10は、ボトムゲート構造を有するチャネルエッチ型のTFTである。
ゲート電極3は、ゲートバスラインGLに電気的に接続されており、ゲートバスラインGLから走査信号を供給される。ソース電極7Sは、ソースバスラインSLに電気的に接続されており、ソースバスラインSLからデータ信号を供給される。ゲート電極3およびゲートバスラインGLは同じ導電膜(ゲート用導電膜)から形成されていてもよい。ソース電極7S、ドレイン電極7DおよびソースバスラインSLは同じ導電膜(ソース用導電膜)から形成されていてもよい。ゲート用導電膜およびソース用導電膜は、例えば金属膜である。本明細書では、ゲート用導電膜を用いて形成された層(レイヤー)を「ゲートメタル層」、ソース用導電膜を用いて形成された層を「ソースメタル層」と呼ぶことがある。
半導体層5は、ゲート絶縁層4を介してゲート電極3と重なるように配置されている。図示する例では、半導体層5上に、ソースコンタクト層6Sおよびドレインコンタクト層6Dが形成されている。ソースコンタクト層6Sおよびドレインコンタクト層6Dは、それぞれ、半導体層5のうちチャネルが形成される領域(チャネル領域)の両側に配置されている。半導体層5は真性アモルファスシリコン(i−a−Si)層であり、ソースコンタクト層6Sおよびドレインコンタクト層6Dはn+型アモルファスシリコン(n+−a−Si)層であってもよい。
ソース電極7Sは、ソースコンタクト層6Sに接するように設けられ、ソースコンタクト層6Sを介して半導体層5に接続されている。ドレイン電極7Dは、ドレインコンタクト層6Dに接するように設けられ、ドレインコンタクト層6Dを介して半導体層5に接続されている。
第1絶縁層11は、TFT10のドレイン電極7Dに達するコンタクトホールCH1を有している。
パッチ電極15は、第1絶縁層11上およびコンタクトホールCH1内に設けられており、コンタクトホールCH1内で、ドレイン電極7Dと接している。パッチ電極15は、金属層を含む。パッチ電極15は、金属層のみから形成された金属電極であってもよい。パッチ電極15の材料は、ソース電極7Sおよびドレイン電極7Dと同じであってもよい。ただし、パッチ電極15における金属層の厚さ(パッチ電極15が金属電極の場合にはパッチ電極15の厚さ)は、ソース電極7Sおよびドレイン電極7Dの厚さよりも大きくなるように設定される。パッチ電極15における金属層の厚さは、Al層で形成する場合、例えば0.5μm以上に設定される。
ゲートバスラインGLと同じ導電膜を用いて、CSバスラインCLが設けられていてもよい。CSバスラインCLは、ゲート絶縁層4を介してドレイン電極(またはドレイン電極の延長部分)7Dと重なるように配置され、ゲート絶縁層4を誘電体層とする補助容量CSを構成してもよい。
ゲートバスラインGLよりも誘電体基板側に、アライメントマーク(例えば金属層)21と、アライメントマーク21を覆う下地絶縁膜2とが形成されていてもよい。アライメントマーク21は、1枚のガラス基板から例えばm枚のTFT基板を作製する場合において、フォトマスク枚がn枚(n<m)であると、各露光工程を複数回に分けて行う必要が生じる。このようにフォトマスクの枚数(n枚)が1枚のガラス基板1から作製されるTFT基板101の枚数(m枚)よりも少ないとき、フォトマスクのアライメントに用いられる。アライメントマーク21は省略され得る。
本実施形態では、ソースメタル層とは異なる層内にパッチ電極15を形成する。これにより、次のようなメリットが得られる。
ソースメタル層は、通常金属膜を用いて形成されることから、ソースメタル層内にパッチ電極を形成することも考えられる(参考例のTFT基板)。しかしながら、パッチ電極は、電子の振動を阻害しない程度に低抵抗であることが好ましく、例えば、厚さが0.5μm以上の比較的厚いAl層で形成される。このため、参考例のTFT基板では、そのような厚い金属膜からソースバスラインSLなども形成することになり、配線を形成する際のパターニングの制御性が低くなるという問題がある。これに対し、本実施形態では、ソースメタル層とは別個にパッチ電極15を形成するので、ソースメタル層の厚さとパッチ電極15の厚さとを独立して制御できる。したがって、ソースメタル層を形成する際の制御性を確保しつつ、所望の厚さのパッチ電極15を形成できる。
本実施形態では、パッチ電極15の厚さを、ソースメタル層の厚さとは別個に、高い自由度で設定できる。なお、パッチ電極15のサイズは、ソースバスラインSL等ほど厳密に制御される必要がないので、パッチ電極15を厚くすることによって線幅シフト(設計値とのずれ)が大きくなっても構わない。なお、パッチ電極15の厚さとソースメタル層の厚さが等しい場合を排除するものではない。
パッチ電極15は、主層としてCu層またはAl層を含んでもよい。走査アンテナの性能はパッチ電極15の電気抵抗と相関があり、主層の厚さは、所望の抵抗が得られるように設定される。電気抵抗の観点から、Cu層の方がAl層よりもパッチ電極15の厚さを小さくできる可能性がある。
・ゲート端子部GT、ソース端子部STおよびトランスファー端子部PT
図4(a)〜(c)は、それぞれ、ゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを模式的に示す断面図である。
ゲート端子部GTは、誘電体基板上に形成されたゲートバスラインGL、ゲートバスラインGLを覆う絶縁層、およびゲート端子用上部接続部19gを備えている。ゲート端子用上部接続部19gは、絶縁層に形成されたコンタクトホールCH2内で、ゲートバスラインGLと接している。この例では、ゲートバスラインGLを覆う絶縁層は、誘電体基板側からゲート絶縁層4、第1絶縁層11および第2絶縁層17を含む。ゲート端子用上部接続部19gは、例えば、第2絶縁層17上に設けられた透明導電膜から形成された透明電極である。
ソース端子部STは、誘電体基板上(ここではゲート絶縁層4上)に形成されたソースバスラインSL、ソースバスラインSLを覆う絶縁層、およびソース端子用上部接続部19sを備えている。ソース端子用上部接続部19sは、絶縁層に形成されたコンタクトホールCH3内で、ソースバスラインSLと接している。この例では、ソースバスラインSLを覆う絶縁層は、第1絶縁層11および第2絶縁層17を含む。ソース端子用上部接続部19sは、例えば、第2絶縁層17上に設けられた透明導電膜から形成された透明電極である。
トランスファー端子部PTは、第1絶縁層11上に形成されたパッチ接続部15pと、パッチ接続部15pを覆う第2絶縁層17と、トランスファー端子用上部接続部19pとを有している。トランスファー端子用上部接続部19pは、第2絶縁層17に形成されたコンタクトホールCH4内で、パッチ接続部15pと接している。パッチ接続部15pは、パッチ電極15と同じ導電膜から形成されている。トランスファー端子用上部接続部(上部透明電極ともいう。)19pは、例えば、第2絶縁層17上に設けられた透明導電膜から形成された透明電極である。本実施形態では、各端子部の上部接続部19g、19sおよび19pは、同じ透明導電膜から形成されている。
本実施形態では、第2絶縁層17を形成した後のエッチング工程により、各端子部のコンタクトホールCH2、CH3、CH4を同時に形成することができるという利点がある。詳細な製造プロセスは後述する。
<TFT基板101の製造方法>
TFT基板101は、例えば以下の方法で製造され得る。図5は、TFT基板101の製造工程を例示する図である。
まず、誘電体基板上に、金属膜(例えばTi膜)を形成し、これをパターニングすることにより、アライメントマーク21を形成する。誘電体基板としては、例えばガラス基板、耐熱性を有するプラスチック基板(樹脂基板)などを用いることができる。次いで、アライメントマーク21を覆うように、下地絶縁膜2を形成する。下地絶縁膜2として、例えばSiO2膜を用いる。
続いて、下地絶縁膜2上に、ゲート電極3およびゲートバスラインGLを含むゲートメタル層を形成する。
ゲート電極3は、ゲートバスラインGLと一体的に形成され得る。ここでは、誘電体基板上に、スパッタ法などによって、図示しないゲート用導電膜(厚さ:例えば50nm以上500nm以下)を形成する。次いで、ゲート用導電膜をパターニングすることにより、ゲート電極3およびゲートバスラインGLを得る。ゲート用導電膜の材料は特に限定しない。アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属またはその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。ここでは、ゲート用導電膜として、MoN(厚さ:例えば50nm)、Al(厚さ:例えば200nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜を形成する。
次いで、ゲートメタル層を覆うようにゲート絶縁層4を形成する。ゲート絶縁層4は、CVD法等によって形成され得る。ゲート絶縁層4としては、酸化珪素(SiO2)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を適宜用いることができる。ゲート絶縁層4は積層構造を有していてもよい。ここでは、ゲート絶縁層4として、SiNx層(厚さ:例えば410nm)を形成する。
次いで、ゲート絶縁層4上に半導体層5およびコンタクト層を形成する。ここでは、真性アモルファスシリコン膜(厚さ:例えば125nm)およびn+型アモルファスシリコン膜(厚さ:例えば65nm)をこの順で形成し、パターニングすることにより、島状の半導体層5およびコンタクト層を得る。半導体層5に用いる半導体膜はアモルファスシリコン膜に限定されない。例えば、半導体層5として酸化物半導体層を形成してもよい。この場合には、半導体層5とソース・ドレイン電極との間にコンタクト層を設けなくてもよい。
次いで、ゲート絶縁層4上およびコンタクト層上にソース用導電膜(厚さ:例えば50nm以上500nm以下)を形成し、これをパターニングすることによって、ソース電極7S、ドレイン電極7DおよびソースバスラインSLを含むソースメタル層を形成する。このとき、コンタクト層もエッチングされ、互いに分離されたソースコンタクト層6Sとドレインコンタクト層6Dとが形成される。
ソース用導電膜の材料は特に限定しない。アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属またはその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。ここでは、ソース用導電膜として、MoN(厚さ:例えば30nm)、Al(厚さ:例えば200nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜を形成する。なお、代わりに、ソース用導電膜として、Ti(厚さ:例えば30nm)、MoN(厚さ:例えば30nm)、Al(厚さ:例えば200nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜を形成してもよい。
ここでは、例えば、スパッタ法でソース用導電膜を形成し、ウェットエッチングによりソース用導電膜のパターニング(ソース・ドレイン分離)を行う。この後、例えばドライエッチングにより、コンタクト層のうち、半導体層5のチャネル領域となる領域上に位置する部分を除去してギャップ部を形成し、ソースコンタクト層6Sおよびドレインコンタクト層6Dとに分離する。このとき、ギャップ部において、半導体層5の表面近傍もエッチングされる(オーバーエッチング)。
なお、例えばソース用導電膜としてTi膜およびAl膜をこの順で積層した積層膜を用いる場合には、例えばリン酸酢酸硝酸水溶液を用いて、ウェットエッチングでAl膜のパターニングを行った後、ドライエッチングでTi膜およびコンタクト層(n+型アモルファスシリコン層)6を同時にパターニングしてもよい。あるいは、ソース用導電膜およびコンタクト層を一括してエッチングすることも可能である。ただし、ソース用導電膜またはその下層とコンタクト層6とを同時にエッチングする場合には、基板全体における半導体層5のエッチング量(ギャップ部の掘れ量)の分布の制御が困難となる場合がある。これに対し、上述したように、ソース・ドレイン分離とギャップ部の形成と別個のエッチング工程で行うと、ギャップ部のエッチング量をより容易に制御できる。
次に、TFT10を覆うように第1絶縁層11を形成する。この例では、第1絶縁層11は、半導体層5のチャネル領域と接するように配置される。また、公知のフォトリソグラフィにより、第1絶縁層11に、ドレイン電極7Dに達するコンタクトホールCH1を形成する。
第1絶縁層11は、例えば、酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等の無機絶縁層であってもよい。ここでは、第1絶縁層11として、例えばCVD法により、厚さが例えば330nmのSiNx層を形成する。
次いで、第1絶縁層11上およびコンタクトホールCH1内にパッチ用導電膜を形成し、これをパターニングする。これにより、送受信領域R1にパッチ電極15を形成し、非送受信領域R2にパッチ接続部15pを形成する。パッチ電極15は、コンタクトホールCH1内でドレイン電極7Dと接する。なお、本明細書では、パッチ用導電膜から形成された、パッチ電極15、パッチ接続部15pを含む層を「パッチメタル層」と呼ぶことがある。
パッチ用導電膜の材料として、ゲート用導電膜またはソース用導電膜と同様の材料が用いられ得る。ただし、パッチ用導電膜は、ゲート用導電膜およびソース用導電膜よりも厚くなるように設定される。これにより、電磁波の透過率を低く抑えること、パッチ電極のシート抵抗を低減させることで、パッチ電極内の自由電子の振動が熱に変わるロスを低減させることが可能になる。パッチ用導電膜の好適な厚さは、例えば、1μm以上30μm以下である。これよりも薄いと、電磁波の透過率が30%程度となり、シート抵抗が0.03Ω/sq以上となり、ロスが大きくなるという問題が生じる可能性があり、厚いとスロットのパターニング性が悪化するという問題が生じる可能性がある。
ここでは、パッチ用導電膜として、MoN(厚さ:例えば50nm)、Al(厚さ:例えば1000nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜(MoN/Al/MoN)を形成する。なお、代わりに、Ti(厚さ:例えば50nm)、MoN(厚さ:例えば50nm)、Al(厚さ:例えば2000nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜(MoN/Al/MoN/Ti)を形成してもよい。あるいは、代わりに、Ti(厚さ:例えば50nm)、MoN(厚さ:例えば50nm)、Al(厚さ:例えば500nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜(MoN/Al/MoN/Ti)を形成してもよい。または、Ti膜、Cu膜およびTi膜をこの順で積層した積層膜(Ti/Cu/Ti)、あるいは、Ti膜およびCu膜をこの順で積層した積層膜(Cu/Ti)を用いてもよい。
次いで、パッチ電極15および第1絶縁層11上に第2絶縁層(厚さ:例えば100nm以上300nm以下)17を形成する。第2絶縁層17としては、特に限定されず、例えば酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等を適宜用いることができる。ここでは、第2絶縁層17として、例えば厚さ200nmのSiNx層を形成する。
この後、例えばフッ素系ガスを用いたドライエッチングにより、無機絶縁膜(第2絶縁層17、第1絶縁層11およびゲート絶縁層4)を一括してエッチングする。エッチングでは、パッチ電極15、ソースバスラインSLおよびゲートバスラインGLはエッチストップとして機能する。これにより、第2絶縁層17、第1絶縁層11およびゲート絶縁層4に、ゲートバスラインGLに達するコンタクトホールCH2が形成され、第2絶縁層17および第1絶縁層11に、ソースバスラインSLに達するコンタクトホールCH3が形成される。また、第2絶縁層17に、パッチ接続部15pに達するコンタクトホールCH4が形成される。
この例では、無機絶縁膜を一括してエッチングするため、得られたコンタクトホールCH2の側壁では、第2絶縁層17、第1絶縁層11およびゲート絶縁層4の側面が整合し、コンタクトホールCH3の側壁では、第2絶縁層17および第1絶縁層11の側壁が整合する。なお、本明細書において、コンタクトホール内において、異なる2以上の層の「側面が整合する」とは、これらの層におけるコンタクトホール内に露出した側面が、垂直方向に面一である場合のみでなく、連続してテーパー形状などの傾斜面を構成する場合をも含む。このような構成は、例えば、同一のマスクを用いてこれらの層をエッチングする、あるいは、一方の層をマスクとして他方の層のエッチングを行うこと等によって得られる。
次に、第2絶縁層17上、およびコンタクトホールCH2、CH3、CH4内に、例えばスパッタ法により透明導電膜(厚さ:50nm以上200nm以下)を形成する。透明導電膜として、例えばITO(インジウム・錫酸化物)膜、IZO膜、ZnO膜(酸化亜鉛膜)などを用いることができる。ここでは、透明導電膜として、厚さが例えば100nmのITO膜を用いる。
次いで、透明導電膜をパターニングすることにより、ゲート端子用上部接続部19g、ソース端子用上部接続部19sおよびトランスファー端子用上部接続部19pを形成する。ゲート端子用上部接続部19g、ソース端子用上部接続部19sおよびトランスファー端子用上部接続部19pは、各端子部で露出した電極または配線を保護するために用いられる。このようにして、ゲート端子部GT、ソース端子部STおよびトランスファー端子部PTが得られる。
<スロット基板201の構造>
次いで、スロット基板201の構造をより具体的に説明する。
図6は、スロット基板201におけるアンテナ単位領域Uおよび端子部ITを模式的に示す断面図である。
スロット基板201は、表面および裏面を有する誘電体基板51と、誘電体基板51の表面に形成された第3絶縁層52と、第3絶縁層52上に形成されたスロット電極55と、スロット電極55を覆う第4絶縁層58とを備える。反射導電板65が誘電体基板51の裏面に誘電体層(空気層)54を介して対向するように配置されている。スロット電極55および反射導電板65は導波路301の壁として機能する。
送受信領域R1において、スロット電極55には複数のスロット57が形成されている。スロット57はスロット電極55を貫通する開口である。この例では、各アンテナ単位領域Uに1個のスロット57が配置されている。
第4絶縁層58は、スロット電極55上およびスロット57内に形成されている。第4絶縁層58の材料は、第3絶縁層52の材料と同じであってもよい。第4絶縁層58でスロット電極55を覆うことにより、スロット電極55と液晶層LCとが直接接触しないので、信頼性を高めることができる。スロット電極55がCu層で形成されていると、Cuが液晶層LCに溶出することがある。また、スロット電極55を薄膜堆積技術を用いてAl層で形成すると、Al層にボイドが含まれることがある。第4絶縁層58は、Al層のボイドに液晶材料が侵入するのを防止することができる。なお、Al層をアルミ箔を接着材により誘電体基板51に貼り付け、これをパターニングすることによってスロット電極55を作製すれば、ボイドの問題を回避できる。
スロット電極55は、Cu層、Al層などの主層55Mを含む。スロット電極55は、主層55Mと、それを挟むように配置された上層55Uおよび下層55Lとを含む積層構造を有していてもよい。主層55Mの厚さは、材料に応じて表皮効果を考慮して設定され、例えば2μm以上30μm以下であってもよい。主層55Mの厚さは、典型的には上層55Uおよび下層55Lの厚さよりも大きい。
図示する例では、主層55MはCu層、上層55Uおよび下層55LはTi層である。主層55Mと第3絶縁層52との間に下層55Lを配置することにより、スロット電極55と第3絶縁層52との密着性を向上できる。また、上層55Uを設けることにより、主層55M(例えばCu層)の腐食を抑制できる。
反射導電板65は、導波路301の壁を構成するので、表皮深さの3倍以上、好ましくは5倍以上の厚さを有することが好ましい。反射導電板65は、例えば、削り出しによって作製された厚さが数mmのアルミニウム板、銅板などを用いることができる。
非送受信領域R2には、端子部ITが設けられている。端子部ITは、スロット電極55と、スロット電極55を覆う第4絶縁層58と、上部接続部60とを備える。第4絶縁層58は、スロット電極55に達する開口を有している。上部接続部60は、開口内でスロット電極55に接している。本実施形態では、端子部ITは、シール領域Rs内に配置され、導電性粒子を含有するシール樹脂によって、TFT基板におけるトランスファー端子部と接続される(トランスファー部)。
・トランスファー部
図7は、TFT基板101のトランスファー端子部PTと、スロット基板201の端子部ITとを接続するトランスファー部を説明するための模式的な断面図である。図7では、図1〜図4と同様の構成要素には同じ参照符号を付している。
トランスファー部では、端子部ITの上部接続部60は、TFT基板101におけるトランスファー端子部PTのトランスファー端子用上部接続部19pと電気的に接続される。本実施形態では、上部接続部60とトランスファー端子用上部接続部19pとを、導電性ビーズ71を含む樹脂(シール樹脂)73(「シール部73」ということもある。)を介して接続する。
上部接続部60、19pは、いずれも、ITO膜、IZO膜などの透明導電層であり、その表面に酸化膜が形成される場合がある。酸化膜が形成されると、透明導電層同士の電気的な接続が確保できず、コンタクト抵抗が高くなる可能性がある。これに対し、本実施形態では、導電性ビーズ(例えばAuビーズ)71を含む樹脂を介して、これらの透明導電層を接着させるので、表面酸化膜が形成されていても、導電性ビーズが表面酸化膜を突き破る(貫通する)ことにより、コンタクト抵抗の増大を抑えることが可能である。導電性ビーズ71は、表面酸化膜だけでなく、透明導電層である上部接続部60、19pをも貫通し、パッチ接続部15pおよびスロット電極55に直接接していてもよい。
トランスファー部は、走査アンテナ1000の中心部および周縁部(すなわち、走査アンテナ1000の法線方向から見たとき、ドーナツ状の送受信領域R1の内側および外側)の両方に配置されていてもよいし、いずれか一方のみに配置されていてもよい。トランスファー部は、液晶を封入するシール領域Rs内に配置されていてもよいし、シール領域Rsの外側(液晶層と反対側)に配置されていてもよい。
<スロット基板201の製造方法>
スロット基板201は、例えば以下の方法で製造され得る。
まず、誘電体基板上に第3絶縁層(厚さ:例えば200nm)52を形成する。誘電体基板としては、ガラス基板、樹脂基板などの、電磁波に対する透過率の高い(誘電率εMおよび誘電損失tanδMが小さい)基板を用いることができる。誘電体基板は電磁波の減衰を抑制するために薄い方が好ましい。例えば、ガラス基板の表面に後述するプロセスでスロット電極55などの構成要素を形成した後、ガラス基板を裏面側から薄板化してもよい。これにより、ガラス基板の厚さを例えば500μm以下に低減できる。
誘電体基板として樹脂基板を用いる場合、TFT等の構成要素を直接、樹脂基板上に形成してもよいし、転写法を用いて樹脂基板上に形成してもよい。転写法によると、例えば、ガラス基板上に樹脂膜(例えばポリイミド膜)を形成し、樹脂膜上に後述するプロセスで構成要素を形成した後、構成要素が形成された樹脂膜とガラス基板とを分離させる。一般に、ガラスよりも樹脂の方が誘電率εMおよび誘電損失tanδMが小さい。樹脂基板の厚さは、例えば、3μm〜300μmである。樹脂材料としては、ポリイミドの他、例えば、液晶高分子を用いることもできる。
第3絶縁層52としては、特に限定しないが、例えば酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等を適宜用いることができる。
次いで、第3絶縁層52の上に金属膜を形成し、これをパターニングすることによって、複数のスロット57を有するスロット電極55を得る。金属膜としては、厚さが2μm〜5μmのCu膜(またはAl膜)を用いてもよい。ここでは、Ti膜、Cu膜およびTi膜をこの順で積層した積層膜を用いる。なお、代わりに、Ti(厚さ:例えば50nm)およびCu(厚さ:例えば5000nm)をこの順で積層した積層膜を形成してもよい。
この後、スロット電極55上およびスロット57内に第4絶縁層(厚さ:例えば100nmまたは200nm)58を形成する。第4絶縁層58の材料は、第3絶縁層の材料と同じであってもよい。この後、非送受信領域R2において、第4絶縁層58に、スロット電極55に達する開口部を形成する。
次いで、第4絶縁層58上および第4絶縁層58の開口部内に透明導電膜を形成し、これをパターニングすることにより、開口部内でスロット電極55と接する上部接続部60を形成する。これにより、端子部ITを得る。
<TFT10の材料および構造>
本実施形態では、各画素に配置されるスイッチング素子として、半導体層5を活性層とするTFTが用いられる。半導体層5はアモルファスシリコン層に限定されず、ポリシリコン層、酸化物半導体層であってもよい。
酸化物半導体層を用いる場合、酸化物半導体層に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
酸化物半導体層は、2層以上の積層構造を有していてもよい。酸化物半導体層が積層構造を有する場合には、酸化物半導体層は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体層が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014−007399号公報に記載されている。参考のために、特開2014−007399号公報の開示内容の全てを本明細書に援用する。
酸化物半導体層は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体層は、例えば、In−Ga−Zn−O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In−Ga−Zn−O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層は、In−Ga−Zn−O系の半導体を含む酸化物半導体膜から形成され得る。なお、In−Ga−Zn−O系の半導体等、酸化物半導体を含む活性層を有するチャネルエッチ型のTFTを、「CE−OS−TFT」と呼ぶことがある。
In−Ga−Zn−O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In−Ga−Zn−O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In−Ga−Zn−O系の半導体が好ましい。
なお、結晶質In−Ga−Zn−O系の半導体の結晶構造は、例えば、上述した特開2014−007399号公報、特開2012−134475号公報、特開2014−209727号公報などに開示されている。参考のために、特開2012−134475号公報および特開2014−209727号公報の開示内容の全てを本明細書に援用する。In−Ga−Zn−O系半導体層を有するTFTは、高い移動度(a−SiTFTに比べ20倍超)および低いリーク電流(a−SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、非送受信領域に設けられる駆動回路に含まれるTFT)および各アンテナ単位領域に設けられるTFTとして好適に用いられる。
酸化物半導体層は、In−Ga−Zn−O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn−Sn−Zn−O系半導体(例えばIn23−SnO2−ZnO;InSnZnO)を含んでもよい。In−Sn−Zn−O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層は、In−Al−Zn−O系半導体、In−Al−Sn−Zn−O系半導体、Zn−O系半導体、In−Zn−O系半導体、Zn−Ti−O系半導体、Cd−Ge−O系半導体、Cd−Pb−O系半導体、CdO(酸化カドミウム)、Mg−Zn−O系半導体、In−Ga−Sn−O系半導体、In−Ga−O系半導体、Zr−In−Zn−O系半導体、Hf−In−Zn−O系半導体、Al−Ga−Zn−O系半導体、Ga−Zn−O系半導体などを含んでいてもよい。
図3に示す例では、TFT10は、ボトムゲート構造を有するチャネルエッチ型のTFTである。「チャネルエッチ型のTFT」では、チャネル領域上にエッチストップ層が形成されておらず、ソースおよびドレイン電極のチャネル側の端部下面は、半導体層の上面と接するように配置されている。チャネルエッチ型のTFTは、例えば半導体層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。ソース・ドレイン分離工程において、チャネル領域の表面部分がエッチングされる場合がある。
なお、TFT10は、チャネル領域上にエッチストップ層が形成されたエッチストップ型TFTであってもよい。エッチストップ型TFTでは、ソースおよびドレイン電極のチャネル側の端部下面は、例えばエッチストップ層上に位置する。エッチストップ型のTFTは、例えば半導体層のうちチャネル領域となる部分を覆うエッチストップ層を形成した後、半導体層およびエッチストップ層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。
また、TFT10は、ソースおよびドレイン電極が半導体層の上面と接するトップコンタクト構造を有するが、ソースおよびドレイン電極は半導体層の下面と接するように配置されていてもよい(ボトムコンタクト構造)。さらに、TFT10は、半導体層の誘電体基板側にゲート電極を有するボトムゲート構造であってもよいし、半導体層の上方にゲート電極を有するトップゲート構造であってもよい。
(第2の実施形態)
図面を参照しながら、第2の実施形態の走査アンテナを説明する。本実施形態の走査アンテナにおけるTFT基板は、各端子部の上部接続部となる透明導電層が、TFT基板における第1絶縁層と第2絶縁層との間に設けられている点で、図2に示すTFT基板101と異なる。
図8(a)〜(c)は、それぞれ、本実施形態におけるTFT基板102のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。図4と同様の構成要素には同じ参照符号を付し、説明を省略する。なお、アンテナ単位領域Uの断面構造は前述の実施形態(図3)と同様であるので図示および説明を省略する。
本実施形態におけるゲート端子部GTは、誘電体基板上に形成されたゲートバスラインGL、ゲートバスラインGLを覆う絶縁層、およびゲート端子用上部接続部19gを備えている。ゲート端子用上部接続部19gは、絶縁層に形成されたコンタクトホールCH2内で、ゲートバスラインGLと接している。この例では、ゲートバスラインGLを覆う絶縁層は、ゲート絶縁層4および第1絶縁層11を含む。ゲート端子用上部接続部19gおよび第1絶縁層11上には第2絶縁層17が形成されている。第2絶縁層17は、ゲート端子用上部接続部19gの一部を露出する開口部18gを有している。この例では、第2絶縁層17の開口部18gは、コンタクトホールCH2全体を露出するように配置されていてもよい。
ソース端子部STは、誘電体基板上(ここではゲート絶縁層4上)に形成されたソースバスラインSL、ソースバスラインSLを覆う絶縁層、およびソース端子用上部接続部19sを備えている。ソース端子用上部接続部19sは、絶縁層に形成されたコンタクトホールCH3内で、ソースバスラインSLと接している。この例では、ソースバスラインSLを覆う絶縁層は、第1絶縁層11のみを含む。第2絶縁層17は、ソース端子用上部接続部19sおよび第1絶縁層11上に延設されている。第2絶縁層17は、ソース端子用上部接続部19sの一部を露出する開口部18sを有している。第2絶縁層17の開口部18sは、コンタクトホールCH3全体を露出するように配置されていてもよい。
トランスファー端子部PTは、ソースバスラインSLと同じ導電膜(ソース用導電膜)から形成されたソース接続配線7pと、ソース接続配線7p上に延設された第1絶縁層11と、第1絶縁層11上に形成されたトランスファー端子用上部接続部19pおよびパッチ接続部15pとを有している。
第1絶縁層11には、ソース接続配線7pを露出するコンタクトホールCH5およびCH6が設けられている。トランスファー端子用上部接続部19pは、第1絶縁層11上およびコンタクトホールCH5内に配置され、コンタクトホールCH5内で、ソース接続配線7pと接している。パッチ接続部15pは、第1絶縁層11上およびコンタクトホールCH6内に配置され、コンタクトホールCH6内でソース接続配線7pと接している。トランスファー端子用上部接続部19pは、透明導電膜から形成された透明電極である。パッチ接続部15pは、パッチ電極15と同じ導電膜から形成されている。なお、各端子部の上部接続部19g、19sおよび19pは、同じ透明導電膜から形成されていてもよい。
第2絶縁層17は、トランスファー端子用上部接続部19p、パッチ接続部15pおよび第1絶縁層11上に延設されている。第2絶縁層17は、トランスファー端子用上部接続部19pの一部を露出する開口部18pを有している。この例では、第2絶縁層17の開口部18pは、コンタクトホールCH5全体を露出するように配置されている。一方、パッチ接続部15pは、第2絶縁層17で覆われている。
このように、本実施形態では、ソースメタル層に形成されたソース接続配線7pによって、トランスファー端子部PTのトランスファー端子用上部接続部19pと、パッチ接続部15pとを電気的に接続している。図示していないが、前述の実施形態と同様に、トランスファー端子用上部接続部19pは、スロット基板201におけるスロット電極と、導電性粒子を含有するシール樹脂によって接続される。
前述した実施形態では、第2絶縁層17の形成後に、深さが異なるコンタクトホールCH1〜CH4を一括して形成する。例えばゲート端子部GT上では、比較的厚い絶縁層(ゲート絶縁層4、第1絶縁層11および第2絶縁層17)をエッチングするのに対し、トランスファー端子部PTでは、第2絶縁層17のみをエッチングする。このため、浅いコンタクトホールの下地となる導電膜(例えばパッチ電極用導電膜)がエッチング時に大きなダメージを受ける可能性がある。
これに対し、本実施形態では、第2絶縁層17を形成する前にコンタクトホールCH1〜3、CH5、CH6を形成する。これらのコンタクトホールは第1絶縁層11のみ、または第1絶縁層11およびゲート絶縁層4の積層膜に形成されるので、前述の実施形態よりも、一括形成されるコンタクトホールの深さの差を低減できる。したがって、コンタクトホールの下地となる導電膜へのダメージを低減できる。特に、パッチ電極用導電膜にAl膜を用いる場合には、ITO膜とAl膜とを直接接触させると良好なコンタクトが得られないことから、Al膜の上層にMoN層などのキャップ層を形成することがある。このような場合に、エッチングの際のダメージを考慮してキャップ層の厚さを大きくする必要がないので有利である。
<TFT基板102の製造方法>
TFT基板102は、例えば次のような方法で製造される。図9は、TFT基板102の製造工程を例示する図である。なお、以下では、各層の材料、厚さ、形成方法などが、前述したTFT基板101と同様である場合には説明を省略する。
まず、TFT基板102と同様の方法で、誘電体基板上に、アライメントマーク、下地絶縁層、ゲートメタル層、ゲート絶縁層、半導体層、コンタクト層およびソースメタル層を形成し、TFTを得る。ソースメタル層を形成する工程では、ソース用導電膜から、ソースおよびドレイン電極、ソースバスラインに加えて、ソース接続配線7pも形成する。
次に、ソースメタル層を覆うように第1絶縁層11を形成する。この後、第1絶縁層11およびゲート絶縁層4を一括してエッチングし、コンタクトホールCH1〜3、CH5、CH6を形成する。エッチングでは、ソースバスラインSLおよびゲートバスラインGLはエッチストップとして機能する。これにより、送受信領域R1において、第1絶縁層11に、TFTのドレイン電極に達するコンタクトホールCH1が形成される。また、非送受信領域R2において、第1絶縁層11およびゲート絶縁層4に、ゲートバスラインGLに達するコンタクトホールCH2、第1絶縁層11に、ソースバスラインSLに達するコンタクトホールCH3およびソース接続配線7pに達するコンタクトホールCH5、CH6が形成される。コンタクトホールCH5をシール領域Rsに配置し、コンタクトホールCH6をシール領域Rsの外側に配置してもよい。あるいは、両方ともシール領域Rsの外部に配置してもよい。
次いで、第1絶縁層11上およびコンタクトホールCH1〜3、CH5、CH6に透明導電膜を形成し、これをパターニングする。これにより、コンタクトホールCH2内でゲートバスラインGLと接するゲート端子用上部接続部19g、コンタクトホールCH3内でソースバスラインSLと接するソース端子用上部接続部19s、およびコンタクトホールCH5内でソース接続配線7pと接するトランスファー端子用上部接続部19pを形成する。
次に、第1絶縁層11上、ゲート端子用上部接続部19g、ソース端子用上部接続部19s、トランスファー端子用上部接続部19p上、およびコンタクトホールCH1、CH6内に、パッチ電極用導電膜を形成し、パターニングを行う。これにより、送受信領域R1に、コンタクトホールCH1内でドレイン電極7Dと接するパッチ電極15、非送受信領域R2に、コンタクトホールCH6内でソース接続配線7pと接するパッチ接続部15pを形成する。パッチ電極用導電膜のパターニングは、ウェットエッチングによって行ってもよい。ここでは、透明導電膜(ITOなど)とパッチ電極用導電膜(例えばAl膜)とのエッチング選択比を大きくできるエッチャントを用いる。これにより、パッチ電極用導電膜のパターニングの際に、透明導電膜をエッチストップとして機能させることができる。ソースバスラインSL、ゲートバスラインGLおよびソース接続配線7pのうちコンタクトホールCH2、CH3、CH5で露出された部分は、エッチストップ(透明導電膜)で覆われているため、エッチングされない。
続いて、第2絶縁層17を形成する。この後、例えばフッ素系ガスを用いたドライエッチングにより、第2絶縁層17のパターニングを行う。これにより、第2絶縁層17に、ゲート端子用上部接続部19gを露出する開口部18g、ソース端子用上部接続部19sを露出する開口部18sおよびトランスファー端子用上部接続部19pを露出する開口部18pを設ける。このようにして、TFT基板102を得る。
(第3の実施形態)
図面を参照しながら、第3の実施形態の走査アンテナを説明する。本実施形態の走査アンテナにおけるTFT基板は、透明導電膜からなる上部接続部をトランスファー端子部に設けない点で、図8に示すTFT基板102と異なる。
図10(a)〜(c)は、それぞれ、本実施形態におけるTFT基板103のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。図8と同様の構成要素には同じ参照符号を付し、説明を省略する。なお、アンテナ単位領域Uの構造は前述の実施形態(図3)と同様であるので図示および説明を省略する。
ゲート端子部GTおよびソース端子部STの構造は、図8に示すTFT基板102のゲート端子部およびソース端子部の構造と同様である。
トランスファー端子部PTは、第1絶縁層11上に形成されたパッチ接続部15pと、パッチ接続部15p上に積み重ねられた保護導電層23とを有している。第2絶縁層17は、保護導電層23上に延設され、保護導電層23の一部を露出する開口部18pを有している。一方、パッチ電極15は、第2絶縁層17で覆われている。
<TFT基板103の製造方法>
TFT基板103は、例えば次のような方法で製造される。図11は、TFT基板103の製造工程を例示する図である。なお、以下では、各層の材料、厚さ、形成方法などが、前述したTFT基板101と同様である場合には説明を省略する。
まず、TFT基板101と同様の方法で、誘電体基板上に、アライメントマーク、下地絶縁層、ゲートメタル層、ゲート絶縁層、半導体層、コンタクト層およびソースメタル層を形成し、TFTを得る。
次に、ソースメタル層を覆うように第1絶縁層11を形成する。この後、第1絶縁層11およびゲート絶縁層4を一括してエッチングし、コンタクトホールCH1〜3を形成する。エッチングでは、ソースバスラインSLおよびゲートバスラインGLはエッチストップとして機能する。これにより、第1絶縁層11に、TFTのドレイン電極に達するコンタクトホールCH1が形成されるとともに、第1絶縁層11およびゲート絶縁層4に、ゲートバスラインGLに達するコンタクトホールCH2が形成され、第1絶縁層11に、ソースバスラインSLに達するコンタクトホールCH3が形成される。トランスファー端子部が形成される領域にはコンタクトホールを形成しない。
次いで、第1絶縁層11上およびコンタクトホールCH1、CH2、CH3内に透明導電膜を形成し、これをパターニングする。これにより、コンタクトホールCH2内でゲートバスラインGLと接するゲート端子用上部接続部19g、およびコンタクトホールCH3内でソースバスラインSLと接するソース端子用上部接続部19sを形成する。トランスファー端子部が形成される領域では、透明導電膜は除去される。
次に、第1絶縁層11上、ゲート端子用上部接続部19gおよびソース端子用上部接続部19s上、およびコンタクトホールCH1内にパッチ電極用導電膜を形成し、パターニングを行う。これにより、送受信領域R1に、コンタクトホールCH1内でドレイン電極7Dと接するパッチ電極15を形成し、非送受信領域R2に、パッチ接続部15pを形成する。前述の実施形態と同様に、パッチ電極用導電膜のパターニングには、透明導電膜(ITOなど)とパッチ電極用導電膜とのエッチング選択比を確保できるエッチャントを用いる。
続いて、パッチ接続部15p上に保護導電層23を形成する。保護導電層23として、Ti層、ITO層およびIZO(インジウム亜鉛酸化物)層など(厚さ:例えば50nm以上100nm以下)を用いることができる。ここでは、保護導電層23として、Ti層(厚さ:例えば50nm)を用いる。なお、保護導電層をパッチ電極15の上に形成してもよい。
次いで、第2絶縁層17を形成する。この後、例えばフッ素系ガスを用いたドライエッチングにより、第2絶縁層17のパターニングを行う。これにより、第2絶縁層17に、ゲート端子用上部接続部19gを露出する開口部18g、ソース端子用上部接続部19sを露出する開口部18s、および保護導電層23を露出する開口部18pを設ける。このようにして、TFT基板103を得る。
<スロット基板203の構造>
図12は、本実施形態における、TFT基板103のトランスファー端子部PTと、スロット基板203の端子部ITとを接続するトランスファー部を説明するための模式的な断面図である。図12では、前述の実施形態と同様の構成要素には同じ参照符号を付している。
まず、本実施形態におけるスロット基板203を説明する。スロット基板203は、誘電体基板51と、誘電体基板51の表面に形成された第3絶縁層52と、第3絶縁層52上に形成されたスロット電極55と、スロット電極55を覆う第4絶縁層58とを備える。反射導電板65が誘電体基板51の裏面に誘電体層(空気層)54を介して対向するように配置されている。スロット電極55および反射導電板65は導波路301の壁として機能する。
スロット電極55は、Cu層またはAl層を主層55Mとする積層構造を有している。送受信領域R1において、スロット電極55には複数のスロット57が形成されている。送受信領域R1におけるスロット電極55の構造は、図6を参照しながら前述したスロット基板201の構造と同じである。
非送受信領域R2には、端子部ITが設けられている。端子部ITでは、第4絶縁層58に、スロット電極55の表面を露出する開口が設けられている。スロット電極55の露出した領域がコンタクト面55cとなる。このように、本実施形態では、スロット電極55のコンタクト面55cは、第4絶縁層58で覆われていない。
トランスファー部では、TFT基板103におけるパッチ接続部15pを覆う保護導電層23と、スロット基板203におけるスロット電極55のコンタクト面55cとを、導電性ビーズ71を含む樹脂(シール樹脂)を介して接続する。
本実施形態におけるトランスファー部は、前述の実施形態と同様に、走査アンテナの中心部および周縁部の両方に配置されていてもよいし、いずれか一方のみに配置されていてもよい。また、シール領域Rs内に配置されていてもよいし、シール領域Rsの外側(液晶層と反対側)に配置されていてもよい。
本実施形態では、トランスファー端子部PTおよび端子部ITのコンタクト面に透明導電膜を設けない。このため、保護導電層23と、スロット基板203のスロット電極55とを、導電性粒子を含有するシール樹脂を介して接続させることができる。
また、本実施形態では、第1の実施形態(図3および図4)と比べて、一括形成されるコンタクトホールの深さの差が小さいので、コンタクトホールの下地となる導電膜へのダメージを低減できる。
<スロット基板203の製造方法>
スロット基板203は、次のようにして製造される。各層の材料、厚さおよび形成方法は、スロット基板201と同様であるので、説明を省略する。
まず、スロット基板201と同様の方法で、誘電体基板上に、第3絶縁層52およびスロット電極55を形成し、スロット電極55に複数のスロット57を形成する。次いで、スロット電極55上およびスロット内に第4絶縁層58を形成する。この後、スロット電極55のコンタクト面となる領域を露出するように、第4絶縁層58に開口部18pを設ける。このようにして、スロット基板203が製造される。
<内部ヒーター構造>
上述したように、アンテナのアンテナ単位に用いられる液晶材料の誘電異方性ΔεMは大きいことが好ましい。しかしながら、誘電異方性ΔεMが大きい液晶材料(ネマチック液晶)の粘度は大きく、応答速度が遅いという問題がある。特に、温度が低下すると、粘度は上昇する。移動体(例えば、船舶、航空機、自動車)に搭載された走査アンテナの環境温度は変動する。したがって、液晶材料の温度をある程度以上、例えば30℃以上、あるいは45℃以上に調整できることが好ましい。設定温度は、ネマチック液晶材料の粘度が概ね10cP(センチポアズ)以下となるように設定することが好ましい。
本発明の実施形態の走査アンテナは、上記の構造に加えて、内部ヒーター構造を有することが好ましい。内部ヒーターとしては、ジュール熱を利用する抵抗加熱方式のヒーターが好ましい。ヒーター用の抵抗膜の材料としては、特に限定されないが、例えば、ITOやIZOなど比較的比抵抗の高い導電材料を用いることができる。また、抵抗値の調整のために、金属(例えば、ニクロム、チタン、クロム、白金、ニッケル、アルミニウム、銅)の細線やメッシュで抵抗膜を形成してもよい。ITOやIZOなどの細線やメッシュを用いることもできる。求められる発熱量に応じて、抵抗値を設定すればよい。
例えば、直径が340mmの円の面積(約90、000mm2)を100V交流(60Hz)で、抵抗膜の発熱温度を30℃にするためには、抵抗膜の抵抗値を139Ω、電流を0.7Aで、電力密度を800W/m2とすればよい。同じ面積を100V交流(60Hz)で、抵抗膜の発熱温度を45℃にするためには、抵抗膜の抵抗値を82Ω、電流を1.2Aで、電力密度を1350W/m2とすればよい。
ヒーター用の抵抗膜は、走査アンテナの動作に影響を及ぼさない限りどこに設けてもよいが、液晶材料を効率的に加熱するためには、液晶層の近くに設けることが好ましい。例えば、図13(a)に示すTFT基板104に示す様に、誘電体基板1のほぼ全面に抵抗膜68を形成してもよい。図13(a)は、ヒーター用抵抗膜68を有するTFT基板104の模式的な平面図である。抵抗膜68は、例えば、図3に示した下地絶縁膜2で覆われる。下地絶縁膜2は、十分な絶縁耐圧を有するように形成される。
抵抗膜68は、開口部68a、68bおよび68cを有することが好ましい。TFT基板104とスロット基板とが貼り合せられたとき、パッチ電極15と対向するようにスロット57が位置する。このときに、スロット57のエッジから距離dの周囲には抵抗膜68が存在しないよう開口部68aを配置する。dは例えば0.5mmである。また、補助容量CSの下部にも開口部68bを配置し、TFTの下部にも開口部68cを配置することが好ましい。
なお、アンテナ単位Uのサイズは、例えば4mm×4mmである。また、図13(b)に示すように、例えば、スロット57の幅s2は0.5mm、スロット57の長さs1は3.3mm、スロット57の幅方向のパッチ電極15の幅p2は0.7mm、スロットの長さ方向のパッチ電極15の幅p1は0.5mmである。なお、アンテナ単位U、スロット57およびパッチ電極15のサイズ、形状、配置関係などは図13(a)および(b)に示す例に限定されない。
ヒーター用抵抗膜68からの電界の影響をさらに低減するために、シールド導電層を形成してもよい。シールド導電層は、例えば、下地絶縁膜2の上に誘電体基板1のほぼ全面に形成される。シールド導電層には、抵抗膜68のように開口部68a、68bを設ける必要はないが、開口部68cを設けることが好ましい。シールド導電層は、例えば、アルミニウム層で形成され、接地電位とされる。
また、液晶層を均一に加熱できるように、抵抗膜の抵抗値に分布を持たせることが好ましい。液晶層の温度分布は、最高温度−最低温度(温度むら)が、例えば15℃以下となることが好ましい。温度むらが15℃を超えると、位相差変調が面内でばらつき、良好なビーム形成ができなくなるという不具合が発生することがある。また、液晶層の温度がTni点(例えば125℃)に近づくと、ΔεMが小さくなるので好ましくない。
図14(a)、(b)および図15(a)〜(c)を参照して、抵抗膜における抵抗値の分布を説明する。図14(a)、(b)および図15(a)〜(c)に、抵抗加熱構造80a〜80eの模式的な構造と電流の分布を示す。抵抗加熱構造は、抵抗膜と、ヒーター用端子とを備えている。
図14(a)に示す抵抗加熱構造80aは、第1端子82aと第2端子84aとこれらに接続された抵抗膜86aとを有している。第1端子82aは、円の中心に配置され、第2端子84aは円周の全体に沿って配置されている。ここで円は、送受信領域R1に対応する。第1端子82aと第2端子84aとの間に直流電圧を供給すると、例えば、第1端子82aから第2端子84aに放射状に電流IAが流れる。したがって、抵抗膜86aは面内の抵抗値は一定であっても、均一に発熱することができる。もちろん、電流の流れる向きは、第2端子84aから第1端子82aに向かう方向でもよい。
図14(b)に抵抗加熱構造80bは、第1端子82bと第2端子84bとこれらに接続された抵抗膜86bとを有している。第1端子82bおよび第2端子84bは円周に沿って互いに隣接して配置されている。抵抗膜86bにおける第1端子82bと第2端子84bとの間を流れる電流IAによって発生する単位面積当たりの発熱量が一定になるように、抵抗膜86bの抵抗値は面内分布を有している。抵抗膜86bの抵抗値の面内分布は、例えば、抵抗膜86を細線で構成する場合、細線の太さや、細線の密度で調整すればよい。
図15(a)に示す抵抗加熱構造80cは、第1端子82cと第2端子84cとこれらに接続された抵抗膜86cとを有している。第1端子82cは、円の上側半分の円周に沿って配置されており、第2端子84cは円の下側半分の円周に沿って配置されている。抵抗膜86cを例えば第1端子82cと第2端子84cとの間を上下に延びる細線で構成する場合、電流IAによる単位面積あたりの発熱量が面内で一定になるように、例えば、中央付近の細線の太さや密度が高くなるように調整されている。
図15(b)に示す抵抗加熱構造80dは、第1端子82dと第2端子84dとこれらに接続された抵抗膜86dとを有している。第1端子82dと第2端子84dとは、それぞれ円の直径に沿って上下方向、左右方向に延びるように設けられている。図では簡略化しているが、第1端子82dと第2端子84dとは互いに絶縁されている。
また、図15(c)に示す抵抗加熱構造80eは、第1端子82eと第2端子84eとこれらに接続された抵抗膜86eとを有している。抵抗加熱構造80eは、抵抗加熱構造80dと異なり、第1端子82eおよび第2端子84eのいずれも円の中心から上下左右の4つの方向に延びる4つの部分を有している。互いに90度を成す第1端子82eの部分と第2端子84eの部分とは、電流IAが、時計回りに流れるように配置されている。
抵抗加熱構造80dおよび抵抗加熱構造80eのいずれにおいても、単位面積当たりの発熱量が面内で均一になるように、円周に近いほど電流IAが多くなるように、例えば、円周に近い側の細線を太く、密度が高くなるように調整されている。
このような内部ヒーター構造は、例えば、走査アンテナの温度を検出して、予め設定された温度を下回ったときに自動的に動作するようにしてもよい。もちろん、使用者の操作に呼応して動作するようにしてもよい。
<外部ヒーター構造>
本発明の実施形態の走査アンテナは、上記の内部ヒーター構造に代えて、あるいは、内部ヒーター構造とともに、外部ヒーター構造を有してもよい。外部ヒーターとしては、公知の種々のヒーターを用いることができるが、ジュール熱を利用する抵抗加熱方式のヒーターが好ましい。ヒーターの内、発熱する部分をヒーター部ということにする。以下では、ヒーター部として抵抗膜を用いる例を説明する。以下でも、抵抗膜は参照符号68で示す。
例えば、図16(a)および(b)に示す液晶パネル100Paまたは100Pbの様に、ヒーター用の抵抗膜68を配置することが好ましい。ここで、液晶パネル100Paおよび100Pbは、図1に示した走査アンテナ1000のTFT基板101と、スロット基板201と、これらの間に設けられた液晶層LCとを有し、さらにTFT基板101の外側に、抵抗膜68を含む抵抗加熱構造を有している。抵抗膜68をTFT基板101の誘電体基板1の液晶層LC側に形成してよいが、TFT基板101の製造プロセスが煩雑化するので、TFT基板101の外側(液晶層LCとは反対側)に配置することが好ましい。
図16(a)に示す液晶パネル100Paは、TFT基板101の誘電体基板1の外側の表面に形成されたヒーター用抵抗膜68と、ヒーター用抵抗膜68を覆う保護層69aとを有している。保護層69aは省略してもよい。走査アンテナは、例えばプラスチック製のケースに収容されるので、抵抗膜68にユーザが直接触れることはない。
抵抗膜68は、誘電体基板1の外側の表面に、例えば、公知の薄膜堆積技術(例えば、スパッタ法、CVD法)、塗布法または印刷法を用いて形成することができる。抵抗膜68は、必要に応じてパターニングされている。パターニングは、例えば、フォトリソグラフィプロセスで行われる。
ヒーター用の抵抗膜68の材料としては、内部ヒーター構造について上述したように、特に限定されず、例えば、ITOやIZOなど比較的比抵抗の高い導電材料を用いることができる。また、抵抗値の調整のために、金属(例えば、ニクロム、チタン、クロム、白金、ニッケル、アルミニウム、銅)の細線やメッシュで抵抗膜68を形成してもよい。ITOやIZOなどの細線やメッシュを用いることもできる。求められる発熱量に応じて、抵抗値を設定すればよい。
保護層69aは、絶縁材料で形成されており、抵抗膜68を覆うように形成されている。抵抗膜68がパターニングされており、誘電体基板1が露出されている部分には保護層69aを形成しなくてもよい。抵抗膜68は、後述するように、アンテナの性能が低下しないようにパターニングされる。保護層69aを形成する材料が存在することによって、アンテナの性能が低下する場合には、抵抗膜68と同様に、パターニングされた保護層69aを用いることが好ましい。
保護層69aは、ウェットプロセス、ドライプロセスのいずれで形成してもよい。例えば、抵抗膜68が形成された誘電体基板1の表面に、液状の硬化性樹脂(または樹脂の前駆体)または溶液を付与した後、硬化性樹脂を硬化させることによって形成される。液状の樹脂または樹脂の溶液は、種々の塗布法(例えば、スロットコータ―、スピンコーター、スプレイを用いて)または種々の印刷法で、所定の厚さとなるように誘電体基板1の表面に付与される。その後、樹脂の種類に応じて、室温硬化、加熱硬化、または光硬化することによって、絶縁性樹脂膜で保護層69aを形成することができる。絶縁性樹脂膜は、例えば、フォトリソグラフィプロセスでパターニングされ得る。
保護層69aを形成する材料としては、硬化性樹脂材料を好適に用いることができる。硬化性樹脂材料は、熱硬化タイプおよび光硬化タイプを含む。また、熱硬化タイプは、熱架橋タイプおよび熱重合タイプを含む。
熱架橋タイプの樹脂材料としては、例えば、エポキシ系化合物(例えばエポキシ樹脂)とアミン系化合物の組合せ、エポキシ系化合物とヒドラジド系化合物の組み合わせ、エポキシ系化合物とアルコール系化合物(例えばフェノール樹脂を含む)の組み合わせ、エポキシ系化合物とカルボン酸系化合物(例えば酸無水物を含む)の組み合わせ、イソシアネート系化合物とアミン系化合物の組み合わせ、イソシアネート系化合物とヒドラジド系化合物の組み合わせ、イソシアネート系化合物とアルコール系化合物の組み合わせ(例えばウレタン樹脂を含む)、イソシアネート系化合物とカルボン酸系化合物の組み合わせが挙げられる。また、カチオン重合タイプ接着材としては、例えば、エポキシ系化合物とカチオン重合開始剤の組み合わせ(代表的なカチオン重合開始剤、芳香族スルホニウム塩)が挙げられる。ラジカル重合タイプの樹脂材料としては、例えば、各種アクリル、メタクリル、ウレタン変性アクリル(メタクリル)樹脂等のビニル基を含むモノマーおよび/またはオリゴマーとラジカル重合開始剤の組み合わせ(代表的なラジカル重合開始剤:アゾ系化合物(例えば、AIBN(アゾビスイソブチロニトリル))、開環重合タイプの樹脂材料としては、例えば、エチレンオキシド系化合物、エチレンイミン系化合物、シロキサン系化合物が挙げられる。この他、マレイミド樹脂、マレイミド樹脂とアミンの組合せ、マレイミドとメタクリル化合物の組合せ、ビスマレイミド−トリアジン樹脂およびポリフェニレンエーテル樹脂を用いることができる。また、ポリイミドも好適に用いることができる。なお、「ポリイミド」は、ポリイミドの前駆体であるポリアミック酸を含む意味で用いる。ポリイミドは、例えば、エポキシ系化合物またはイソシアネート系化合物と組み合わせて用いられる。
耐熱性、化学的安定性、機械特性の観点から、熱硬化性タイプの樹脂材料を用いることが好ましい。特に、エポキシ樹脂またはポリイミド樹脂を含む樹脂材料が好ましく、機械特性(特に機械強度)および吸湿性の観点から、ポリイミド樹脂を含む樹脂材料が好ましい。ポリイミド樹脂とエポキシ樹脂とを混合して用いることもできる。また、ポリイミド樹脂および/またはエポキシ樹脂に熱可塑性樹脂および/またはエラストマを混合してもよい。さらに、ポリイミド樹脂および/またはエポキシ樹脂として、ゴム変性したものを混合してもよい。熱可塑性樹脂またはエラストマを混合することによって、柔軟性や靱性(タフネス)を向上させることができる。ゴム変性したものを用いても同様の効果を得ることができる。
光硬化タイプは、紫外線または可視光によって、架橋反応および/または重合反応を起こし、硬化する。光硬化タイプには、例えば、ラジカル重合タイプとカチオン重合タイプがある。ラジカル重合タイプとしては、アクリル樹脂(エポキシ変性アクリル樹脂、ウレタン変性アクリル樹脂、シリコーン変性アクリル樹脂)と光重合開始剤との組み合わせが代表的である。紫外光用ラジカル重合開始剤としては、例えば、アセトフェノン型およびベンゾフェノン型が挙げられる。可視光用ラジカル重合開始剤としては、例えば、ベンジル型およびチオキサントン型を挙げることができる。カチオン重合タイプとしては、エポキシ系化合物と光カチオン重合開始剤との組合せが代表的である。光カチオン重合開始剤は、例えば、ヨードニウム塩系化合物を挙げることができる。なお、光硬化性と熱硬化性とを併せ持つ樹脂材料を用いることもできる。
図16(b)に示す液晶パネル100Pbは、抵抗膜68と誘電体基板1との間に接着層67をさらに有している点で、液晶パネル100Paと異なる。また、保護層69bが予め作製された高分子フィルムまたはガラス板を用いて形成される点が異なる。
例えば、保護層69bが高分子フィルムで形成された液晶パネル100Pbは、以下の様にして製造される。
まず、保護層69bとなる絶縁性の高分子フィルムを用意する。高分子フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリフェニルスルホン、および、ポリイミド、ポリアミド等のスーパーエンジニアリングプラスチックのフィルムが用いられる。高分子フィルムの厚さ(すなわち、保護層69bの厚さ)は、例えば、5μm以上200μm以下である。
この高分子フィルムの一方の表面の上に、抵抗膜68を形成する。抵抗膜68は、上述の方法で形成され得る。抵抗膜68はパターニングされてもよく、高分子フィルムも必要に応じてパターニングされてもよい。
抵抗膜68が形成された高分子フィルム(すなわち、保護層69bと抵抗膜68とが一体に形成された部材)を、接着材を用いて、誘電体基板1に貼り付ける。接着材としては、上記の保護層69aの形成に用いられる硬化性樹脂と同様の硬化性樹脂を用いることができる。さらに、ホットメルトタイプの樹脂材料(接着材)を用いることもできる。ホットメルトタイプの樹脂材料は、熱可塑性樹脂を主成分とし、加熱により溶融し、冷却により固化する。ポリオレフィン系(例えば、ポリエチレン、ポリプロピレン)、ポリアミド系、エチレン酢酸ビニル系が例示される。また、反応性を有するウレタン系のホットメルト樹脂材料(接着材)も販売されている。接着性および耐久性の観点からは、反応性のウレタン系が好ましい。
また、接着層67は、抵抗膜68および保護層(高分子フィルム)69bと同様にパターニングされてもよい。ただし、接着層67は、抵抗膜68および保護層69bを誘電体基板1に固定できればよいので、抵抗膜68および保護層69bよりも小さくてもよい。
高分子フィルムに代えて、ガラス板を用いて保護層69bを形成することもできる。製造プロセスは、高分子フィルムを用いる場合と同様であってよい。ガラス板の厚さは、1mm以下が好ましく、0.7mm以下がさらに好ましい。ガラス板の厚さの下限は特にないが、ハンドリング性の観点から、ガラス板の厚さは0.3mm以上であることが好ましい。
図16(b)に示した液晶パネル100Pbでは、保護層(高分子フィルムまたはガラス板)69bに形成された抵抗膜68を誘電体基板1に接着層67を介して固定したが、抵抗膜68を誘電体基板1に接触するように配置すればよく、抵抗膜68および保護層69bを誘電体基板1に固定(接着)する必要は必ずしもない。すなわち、接着層67を省略してもよい。例えば、抵抗膜68が形成された高分子フィルム(すなわち、保護層69bと抵抗膜68とが一体に形成された部材)を、抵抗膜68が誘電体基板1に接触するように配置し、走査アンテナを収容するケースで、抵抗膜68を誘電体基板1に押し当てるようにしてもよい。例えば、抵抗膜68が形成された高分子フィルムを単純に置くだけでは、接触熱抵抗が高くなるおそれがあるので、押し当てることによって接触熱抵抗を低下させることが好ましい。このような構成を採用すると、抵抗膜68および保護層(高分子フィルムまたはガラス板)69bが一体として形成された部材を取り外し可能にできる。
なお、抵抗膜68(および保護層69b)が後述するようにパターニングされている場合には、アンテナの性能が低下しないように、TFT基板に対する位置がずれない程度に固定することが好ましい。
ヒーター用の抵抗膜68は、走査アンテナの動作に影響を及ぼさない限りどこに設けてもよいが、液晶材料を効率的に加熱するためには、液晶層の近くに設けることが好ましい。したがって、図16(a)および(b)に示したように、TFT基板101の外側に設けることが好ましい。また、図16(a)に示したように、TFT基板101の誘電体基板1の外側に直接、抵抗膜68を設けた方が、図16(b)に示したように、接着層67を介して抵抗膜68を誘電体基板1の外側に設けるよりも、エネルギー効率が高く、かつ、温度の制御性も高いので好ましい。
抵抗膜68は、例えば、図13(a)に示すTFT基板104に対して、誘電体基板1のほぼ全面に設けてもよい。内部ヒーター構造について上述したように、抵抗膜68は、開口部68a、68bおよび68cを有することが好ましい。
保護層69aおよび69bは、抵抗膜68を覆うように全面に形成してもよい。上述したように、保護層69aまたは69bがアンテナ特性に悪影響を及ぼす場合には、抵抗膜68の開口部68a、68bおよび68cに対応する開口部を設けてもよい。この場合、保護層69aまたは69bの開口部は、抵抗膜68の開口部68a、68bおよび68cの内側に形成される。
ヒーター用抵抗膜68からの電界の影響をさらに低減するために、シールド導電層を形成してもよい。シールド導電層は、例えば、抵抗膜68の誘電体基板1側に絶縁膜を介して形成される。シールド導電層は、誘電体基板1のほぼ全面に形成される。シールド導電層には、抵抗膜68のように開口部68a、68bを設ける必要はないが、開口部68cを設けることが好ましい。シールド導電層は、例えば、アルミニウム層で形成され、接地電位とされる。また、液晶層を均一に加熱できるように、抵抗膜の抵抗値に分布を持たせることが好ましい。これらも内部ヒーター構造について上述した通りである。
抵抗膜は、送受信領域R1の液晶層LCを加熱できればよいので、例示したように、送受信領域R1に対応する領域に抵抗膜を設ければよいが、これに限られない。例えば、図2に示したように、TFT基板101が、送受信領域R1を含む矩形の領域を画定することができるような外形を有している場合には、送受信領域R1を含む矩形の領域に対応する領域に抵抗膜を設けてもよい。勿論、抵抗膜の外形は、矩形に限られず、送受信領域R1を含む、任意の形状であってよい。
上記の例では、TFT基板101の外側に抵抗膜を配置したが、スロット基板201の外側(液晶層LCとは反対側)に、抵抗膜を配置してもよい。この場合にも、図16(a)の液晶パネル100Paと同様に、誘電体基板51に直接、抵抗膜を形成してもよいし、図16(b)の液晶パネル100Pbと同様に、接着層を介して、保護層(高分子フィルムまたはガラス板)に形成された抵抗膜を誘電体基板51に固定してもよい。あるいは、接着層を省略して、抵抗膜が形成された保護層(すなわち、保護層と抵抗膜とが一体に形成された部材)を抵抗膜が誘電体基板51に接触するように配置してもよい。例えば、抵抗膜が形成された高分子フィルムを単純に置くだけでは、接触熱抵抗が高くなるおそれがあるので、押し当てることによって接触熱抵抗を低下させることが好ましい。このような構成を採用すると、抵抗膜および保護層(高分子フィルムまたはガラス板)が一体として形成された部材を取り外し可能にできる。なお、抵抗膜(および保護層)がパターニングされている場合には、アンテナの性能が低下しないように、スロット基板に対する位置がずれない程度に固定することが好ましい。
スロット基板201の外側に抵抗膜を配置する場合には、抵抗膜のスロット57に対応する位置に開口部を設けることが好ましい。また、抵抗膜はマイクロ波を十分に透過できる厚さであることが好ましい。
ここでは、ヒーター部として抵抗膜を用いた例を説明したが、ヒーター部として、この他に、例えば、ニクロム線(例えば巻線)、赤外線ヒーター部などを用いることができる。このような場合にも、アンテナの性能を低下させないように、ヒーター部を配置することが好ましい。
このような外部ヒーター構造は、例えば、走査アンテナの温度を検出して、予め設定された温度を下回ったときに自動的に動作するようにしてもよい。もちろん、使用者の操作に呼応して動作するようにしてもよい。
外部ヒーター構造を自動的に動作させるための温度制御装置として、例えば、公知の種々のサーモスタットを用いることができる。例えば、抵抗膜に接続された2つの端子の一方と電源との間に、バイメタルを用いたサーモスタットを接続すればよい。もちろん、温度検出器を用いて、予め設定した温度を下回らないように、外部ヒーター構造に電源から電流を供給するような温度制御装置を用いてもよい。
<駆動方法>
本発明の実施形態による走査アンテナが有するアンテナ単位のアレイは、LCDパネルと類似した構造を有しているので、LCDパネルと同様に線順次駆動を行う。しかしながら、従来のLCDパネルの駆動方法を適用すると、以下の問題が発生する恐れがある。図17に示す、走査アンテナの1つのアンテナ単位の等価回路図を参照しつつ、走査アンテナに発生し得る問題点を説明する。
まず、上述したように、マイクロ波領域の誘電異方性ΔεM(可視光に対する複屈折Δn)が大きい液晶材料の比抵抗は低いので、LCDパネルの駆動方法をそのまま適用すると、液晶層に印加される電圧を十分に保持できない。そうすると、液晶層に印加される実効電圧が低下し、液晶容量の静電容量値が目標値に到達しない。
このように液晶層に印加された電圧が所定の値からずれると、アンテナのゲインが最大となる方向が所望する方向からずれることになる。そうすると、例えば、通信衛星を正確に追尾できないことになる。これを防止するために、液晶容量Clcと電気的に並列に補助容量CSを設け、補助容量CSの容量値C−Ccsを十分に大きくする。補助容量CSの容量値C−Ccsは、液晶容量Clcの電圧保持率が90%以上となるように適宜設定することが好ましい。
また、比抵抗が低い液晶材料を用いると、界面分極および/または配向分極による電圧低下も起こる。これらの分極による電圧低下を防止するために、電圧降下分を見込んだ十分に高い電圧を印加することが考えられる。しかしながら、比抵抗が低い液晶層に高い電圧を印加すると、動的散乱効果(DS効果)が起こる恐れがある。DS効果は、液晶層中のイオン性不純物の対流に起因し、液晶層の誘電率εMは平均値((εM‖+2εM⊥)/3)に近づく。また、液晶層の誘電率εMを多段階(多階調)で制御するためには、常に十分に高い電圧を印加することもできない。
上記のDS効果および/または分極による電圧降下を抑制するためには、液晶層に印加する電圧の極性反転周期を十分に短くすればよい。よく知られているように、印加電圧の極性反転周期を短くするとDS効果が起こるしきい値電圧が高くなる。したがって、液晶層に印加する電圧(絶対値)の最大値が、DS効果が起こるしきい値電圧未満となるように、極性反転周波数を決めればよい。極性反転周波数が300Hz以上であれば、例えば比抵抗が1×1010Ω・cm、誘電異方性Δε(@1kHz)が−0.6程度の液晶層に絶対値が10Vの電圧を印加しても、良好な動作を確保することができる。また、極性反転周波数(典型的にはフレーム周波数の2倍と同じ)が300Hz以上であれば、上記の分極に起因する電圧降下も抑制される。極性反転周期の上限は、消費電力などの観点から約5kHz以下であることが好ましい。
上述したように液晶材料の粘度は温度に依存するので、液晶層の温度は適宜制御されることが好ましい。ここで述べた液晶材料の物性および駆動条件は、液晶層の動作温度における値である。逆に言うと、上記の条件で駆動できるように、液晶層の温度を制御することが好ましい。
図18(a)〜(g)を参照して、走査アンテナの駆動に用いられる信号の波形の例を説明する。なお、図18(d)に、比較のために、LCDパネルのソースバスラインに供給される表示信号Vs(LCD)の波形を示している。
図18(a)はゲートバスラインG−L1に供給される走査信号Vgの波形、図18(b)はゲートバスラインG−L2に供給される走査信号Vgの波形、図18(c)はゲートバスラインG−L3に供給される走査信号Vgの波形を示し、図18(e)はソースバスラインに供給されるデータ信号Vdaの波形を示し、図18(f)はスロット基板のスロット電極(スロット電極)に供給されるスロット電圧Vidcの波形を示し、図18(g)はアンテナ単位の液晶層に印加される電圧の波形を示す。
図18(a)〜(c)に示す様に、ゲートバスラインに供給される走査信号Vgの電圧が、順次、ローレベル(VgL)からハイレベル(VgH)に切替わる。VgLおよびVgHは、TFTの特性に応じて適宜設定され得る。例えば、VgL=−5V〜0V、Vgh=+20Vである。また、VgL=−20V、Vgh=+20Vとしてもよい。あるゲートバスラインの走査信号Vgの電圧がローレベル(VgL)からハイレベル(VgH)に切替わる時刻から、その次のゲートバスラインの電圧がVgLからVgHに切替わる時刻までの期間を1水平走査期間(1H)ということにする。また、各ゲートバスラインの電圧がハイレベル(VgH)になっている期間を選択期間PSという。この選択期間PSにおいて、各ゲートバスラインに接続されたTFTがオン状態となり、ソースバスラインに供給されているデータ信号Vdaのその時の電圧が、対応するパッチ電極に供給される。データ信号Vdaは例えば−15V〜+15V(絶対値が15V)であり、例えば、12階調、好ましくは16階調に対応する絶対値の異なるデータ信号Vdaを用いる。
ここでは、全てのアンテナ単位にある中間電圧を印加している場合を例示する。すなわち、データ信号Vdaの電圧は、全てのアンテナ単位(m本のゲートバスラインに接続されているとする。)に対して一定であるとする。これはLCDパネルにおいて全面である中間調を表示している場合に対応する。このとき、LCDパネルでは、ドット反転駆動が行われる。すなわち、各フレームにおいて、互いに隣接する画素(ドット)の極性が互いに逆になるように、表示信号電圧が供給される。
図18(d)はドット反転駆動を行っているLCDパネルの表示信号の波形を示している。図18(d)に示したように、1H毎にVs(LCD)の極性が反転している。この波形を有するVs(LCD)が供給されているソースバスラインに隣接するソースバスラインに供給されるVs(LCD)の極性は、図18(d)に示すVs(LCD)の極性と逆になっている。また、全ての画素に供給される表示信号の極性は、フレーム毎に反転する。LCDパネルでは、正極性と負極性とで、液晶層に印加される実効電圧の大きさを完全に一致させることが難しく、かつ、実効電圧の差が輝度の差となり、フリッカーとして観察される。このフリッカーを観察され難くするために、各フレームにおいて極性の異なる電圧が印加される画素(ドット)を空間的に分散させている。典型的には、ドット反転駆動を行うことによって、極性が異なる画素(ドット)を市松模様に配列させる。
これに対して、走査アンテナにおいては、フリッカー自体は問題とならない。すなわち、液晶容量の静電容量値が所望の値でありさえすればよく、各フレームにおける極性の空間的な分布は問題とならない。したがって、低消費電力等の観点から、ソースバスラインから供給されるデータ信号Vdaの極性反転の回数を少なくする、すなわち、極性反転の周期を長くすることが好ましい。例えば、図18(e)に示す様に、極性反転の周期を10H(5H毎に極性反転)にすればよい。もちろん、各ソースバスラインに接続されているアンテナ単位の数(典型的には、ゲートバスラインの本数に等しい。)をm個とすると、データ信号Vdaの極性反転の周期を2m・H(m・H毎に極性反転)としてもよい。データ信号Vdaの極性反転の周期は、2フレーム(1フレーム毎に極性反転)と等しくてもよい。
また、全てのソースバスラインから供給するデータ信号Vdaの極性を同じにしてもよい。したがって、例えば、あるフレームでは、全てのソースバスラインから正極性のデータ信号Vdaを供給し、次にフレームでは、全てのソースバスラインから負極性のデータ信号Vdaを供給してもよい。
あるいは、互いに隣接するソースバスラインから供給するデータ信号Vdaの極性を互いに逆極性にしてもよい。例えば、あるフレームでは、奇数列のソースバスラインからは正極性のデータ信号Vdaを供給し、偶数列のソースバスラインからは負極性のデータ信号Vdaを供給する。そして、次のフレームでは、奇数列のソースバスラインからは負極性のデータ信号Vdaを供給し、偶数列のソースバスラインからは正極性のデータ信号Vdaを供給する。このような駆動方法は、LCDパネルでは、ソースライン反転駆動と呼ばれる。隣接するソースバスラインから供給するデータ信号Vdaを逆極性にすると、フレーム間で供給するデータ信号Vdaの極性を反転させる前に、隣接するソースバスラインを互いに接続する(ショートさせる)ことによって、液晶容量に充電された電荷を隣接する列間でキャンセルさせることができる。したがって、各フレームにおいてソースバスラインから供給する電荷の量を少なくできるという利点が得られる。
スロット電極の電圧Vidcは図18(f)に示す様に、例えば、DC電圧であり、典型的にはグランド電位である。アンテナ単位の容量(液晶容量および補助容量)の容量値は、LCDパネルの画素容量の容量値よりも大きい(例えば、20型程度のLCDパネルと比較して約30倍)ので、TFTの寄生容量に起因する引込電圧の影響がなく、スロット電極の電圧Vidcをグランド電位として、データ信号Vdaをグランド電位を基準に正負対称な電圧としても、パッチ電極に供給される電圧は正負対称な電圧となる。LCDパネルにおいては、TFTの引込電圧を考慮して、対向電極の電圧(共通電圧)を調整することによって、画素電極に正負対称な電圧が印加されるようにしているが、走査アンテナのスロット電圧についてはその必要がなく、グランド電位であってよい。また、図18に図示しないが、CSバスラインには、スロット電圧Vidcと同じ電圧が供給される。
アンテナ単位の液晶容量に印加される電圧は、スロット電極の電圧Vidc(図18(f))に対するパッチ電極の電圧(すなわち、図18(e)に示したデータ信号Vdaの電圧)なので、スロット電圧Vidcがグランド電位のとき、図18(g)に示す様に、図18(e)に示したデータ信号Vdaの波形と一致する。
走査アンテナの駆動に用いられる信号の波形は、上記の例に限られない。例えば、図19および図20を参照して以下に説明するように、スロット電極の電圧として振動波形を有するViacを用いてもよい。
例えば、図19(a)〜(e)に例示する様な信号を用いることができる。図19では、ゲートバスラインに供給される走査信号Vgの波形を省略しているが、ここでも、図18(a)〜(c)を参照して説明した走査信号Vgを用いる。
図19(a)に示す様に、図18(e)に示したのと同様に、データ信号Vdaの波形が10H周期(5H毎)で極性反転している場合を例示する。ここでは、データ信号Vdaとして、振幅が最大値|Vdamax|の場合を示す。上述したように、データ信号Vdaの波形は、2フレーム周期(1フレーム毎)で極性反転させてもよい。
ここで、スロット電極の電圧Viacは、図19(c)に示す様に、データ信号Vda(ON)と極性が逆で、振動の周期は同じ、振動電圧とする。スロット電極の電圧Viacの振幅は、データ信号Vdaの振幅の最大値|Vdamax|と等しい。すなわち、スロット電圧Viacは、データ信号Vda(ON)と極性反転の周期は同じで、極性が逆(位相が180°異なる)で、−Vdamaxと+Vdamaxとの間を振動する電圧とする。
アンテナ単位の液晶容量に印加される電圧Vlcは、スロット電極の電圧Viac(図19(c))に対するパッチ電極の電圧(すなわち、図19(a)に示したデータ信号Vda(ON)の電圧)なので、データ信号Vdaの振幅が±Vdamaxで振動しているとき、液晶容量に印加される電圧は、図19(d)に示す様に、Vdamaxの2倍の振幅で振動する波形となる。したがって、液晶容量に印加される電圧Vlcの最大振幅を±Vdamaxとするために必要なデータ信号Vdaの最大振幅は、±Vdamax/2となる。
このようなスロット電圧Viacを用いることによって、データ信号Vdaの最大振幅を半分にできるので、データ信号Vdaを出力するドライバ回路として、例えば、耐圧が20V以下の汎用のドライバICを用いることができるという利点が得られる。
なお、図19(e)に示す様に、アンテナ単位の液晶容量に印加される電圧Vlc(OFF)をゼロとするとために、図19(b)に示す様に、データ信号Vda(OFF)をスロット電圧Viacと同じ波形にすればよい。
例えば、液晶容量に印加される電圧Vlcの最大振幅を±15Vとする場合を考える。スロット電圧として、図18(f)に示したVidcを用い、Vidc=0Vとすると、図18(e)に示したVdaの最大振幅は、±15Vとなる。これに対して、スロット電圧として、図19(c)に示したViacを用い、Viacの最大振幅を±7.5Vとすると、図19(a)に示したVda(ON)の最大振幅は、±7.5Vとなる。
液晶容量に印加される電圧Vlcを0Vとする場合、図18(e)に示したVdaを0Vとすればよく、図19(b)に示したVda(OFF)の最大振幅は±7.5Vとすればよい。
図19(c)に示したViacを用いる場合は、液晶容量に印加される電圧Vlcの振幅は、Vdaの振幅とは異なるので、適宜変換する必要がある。
図20(a)〜(e)に例示する様な信号を用いることもできる。図20(a)〜(e)に示す信号は、図19(a)〜(e)に示した信号と同様に、スロット電極の電圧Viacを図20(c)に示す様に、データ信号Vda(ON)と振動の位相が180°ずれた振動電圧とする。ただし、図20(a)〜(c)にそれぞれ示す様に、データ信号Vda(ON)、Vda(OFF)およびスロット電圧Viacをいずれも0Vと正の電圧との間で振動する電圧としている。スロット電極の電圧Viacの振幅は、データ信号Vdaの振幅の最大値|Vdamax|と等しい。
このような信号を用いると、駆動回路は正の電圧だけを出力すればよく、低コスト化に寄与する。このように0Vと正の電圧との間で振動する電圧を用いても、図20(d)に示すように、液晶容量に印加される電圧Vlc(ON)は、極性反転する。図20(d)に示す電圧波形において、+(正)は、パッチ電極の電圧がスロット電圧よりも高いことを示し、−(負)は、パッチ電極の電圧がスロット電圧よりも低いことを示している。すなわち、液晶層に印加される電界の向き(極性)は、他の例と同様に反転している。液晶容量に印加される電圧Vlc(ON)の振幅はVdamaxである。
なお、図20(e)に示す様に、アンテナ単位の液晶容量に印加される電圧Vlc(OFF)をゼロとするとために、図20(b)に示す様に、データ信号Vda(OFF)をスロット電圧Viacと同じ波形にすればよい。
図19および図20を参照して説明したスロット電極の電圧Viacを振動させる(反転させる)駆動方法は、LCDパネルの駆動方法でいうと、対向電圧を反転させる駆動方法に対応する(「コモン反転駆動」といわれることがある。)。LCDパネルでは、フリッカーを十分に抑制できないことから、コモン反転駆動は採用されていない。これに対し、走査アンテナでは、フリッカーは問題とならないので、スロット電圧を反転させることができる。振動(反転)は、例えば、フレーム毎に行われる(図19および図20における5Hを1V(垂直走査期間またはフレーム)とする)。
上記の説明では、スロット電極の電圧Viacは1つの電圧が印加される例、すなわち、全てのパッチ電極に対して共通のスロット電極が設けられている例を説明したが、スロット電極を、パッチ電極の1行、または、2以上の行に対応して分割してもよい。ここで、行とは、1つのゲートバスラインにTFTを介して接続されたパッチ電極の集合を指す。このようにスロット電極を複数の行部分に分割すれば、スロット電極の各部分の電圧の極性を互いに独立にできる。例えば、任意のフレームにおいて、パッチ電極に印加される電圧の極性を、隣接するゲートバスラインに接続されたパッチ電極間で互いに逆にできる。このように、パッチ電極の1行毎に極性を反転させる行反転(1H反転)だけでなく、2以上の行毎に極性を反転させるm行反転(mH反転)を行うことができる。もちろん、行反転とフレーム反転とは組合せられる。
駆動の単純さの観点からは、任意のフレームにおいて、パッチ電極に印加される電圧の極性を全て同じにし、フレーム毎に極性が反転する駆動が好ましい。
<アンテナ単位の配列、ゲートバスライン、ソースバスラインの接続の例>
本発明の実施形態の走査アンテナにおいて、アンテナ単位は例えば、同心円状に配列される。
例えば、m個の同心円に配列されている場合、ゲートバスラインは例えば、各円に対して1本ずつ設けられ、合計m本のゲートバスラインが設けられる。送受信領域R1の外径を、例えば800mmとすると、mは例えば、200である。最も内側のゲートバスラインを1番目とすると、1番目のゲートバスラインには、n個(例えば30個)のアンテナ単位が接続され、m番目のゲートバスラインにはnx個(例えば620個)のアンテナ単位が接続されている。
このような配列では、各ゲートバスラインに接続されているアンテナ単位の数が異なる。また、最も外側の円を構成するnx個のアンテナ単位に接続されているnx本のソースバスラインには、m個のアンテナ単位が接続されているが、内側の円を構成するアンテナ単位に接続されているソースバスラインに接続されているアンテナ単位の数はmよりも小さくなる。
このように、走査アンテナにおけるアンテナ単位の配列は、LCDパネルにおける画素(ドット)の配列とは異なり、ゲートバスラインおよび/またはソースバスラインによって、接続されているアンテナ単位の数が異なる。したがって、全てのアンテナ単位の容量(液晶容量+補助容量)を同じにすると、ゲートバスラインおよび/またはソースバスラインによって、接続されている電気的な負荷が異なることになる。そうすると、アンテナ単位への電圧の書き込みにばらつきが生じるという問題がある。
そこで、これを防止するために、例えば、補助容量の容量値を調整することによって、あるいは、ゲートバスラインおよび/またはソースバスラインに接続するアンテナ単位の数を調整することによって、各ゲートバスラインおよび各ソースバスラインに接続されている電気的な負荷を略同一にすることが好ましい。
<タイリング構造>
図21から図26を参照して、タイリング構造を有する走査アンテナの構造を説明する。
本発明の実施形態による走査アンテナにおいては、上述したように、スロット基板は誘電体基板上に比較的厚いCu層またはAl層で形成されたスロット電極を有している。スロット電極による誘電体基板の被覆率は例えば80%を超える。誘電体基板として例えばガラス基板を用いると、ガラス基板上に厚さが2μm以上のCu層を形成すると、ガラス基板に反りが生じることがある。例えば、厚さが0.7mm、404mm×515mmの無アルカリガラス基板(例えば、旭硝子社製のAN100)の全面にわたって、厚さ20nmのTi膜を形成した上に、厚さが2μmのCu膜を形成すると約0.7mmの浮きが生じ、厚さが3μmのCu膜を形成すると約1.2mmの浮きが生じた。ここで浮きは、Ti膜とCu膜との積層膜を形成したそれぞれの基板を平坦な表面に配置した時の基板の端部の下面と該表面との差の最大値を言う。なお、Ti膜は、ガラス基板とCu膜との接着性を改善するために形成した。
このように誘電体基板51に反りが生じると製造ラインにおいて、搬送エラーや吸着エラーが起こることがある。走査アンテナを分割し、複数の走査アンテナ部分をタイリングすることによって走査アンテナを作製するプロセスを採用すると、個々の走査アンテナ部分に含まれる誘電体基板(誘電体基板部分)の反りを小さくすることができる。例えば、上記の例で、厚さが3μmのCu膜を形成した場合、図21(a)に示す様に4つに分割すると、浮きは約1mm以下となり、製造ラインにおいて、搬送エラーや吸着エラーを起こさないレベルに浮きを低減できる。
なお、誘電体基板の反りは、誘電体基板の大きさやCu膜の厚さだけでなく、成膜条件の影響を受ける。例えば、スパッタ法で成膜するとき、成膜時の誘電体基板の温度が約120℃を超えると反りが顕著に増大する傾向があるので、成膜時の誘電体基板の温度は、約120℃以下であることが好ましい。スパッタ法による成膜時の誘電体基板の温度は、ターゲットと誘電体基板の表面との距離によっても影響される。例えば、ターゲットと誘電体基板の表面との距離を50mmとすることによって、ターゲットと誘電体基板の表面との距離が20mmの場合よりも反りを低減できた。
反りの許容範囲は、製造ラインにも依存するので、誘電体基板の材料、大きさ、厚さ、および金属膜(例えばCu膜)の厚さ等に応じて適宜設定される。
図21(a)および(b)に、タイリング構造を有する走査アンテナ1000Aの構造を模式的に示す。図21(a)は走査アンテナ1000Aの模式的な平面図であり、図21(b)は図21(a)中の21B−21B’線に沿った模式的な断面図である。
走査アンテナ1000Aは、図21(a)に示す様に、4つの走査アンテナ部分1000Aa、1000Ab、1000Acおよび1000Adを有しており、これらがタイリングされている。なお、空気層(あるいは他の誘電体層)54および反射導電板65は、4つの走査アンテナ部分1000Aa〜1000Adに対して共通に設けられている。
走査アンテナ1000Aは8角形の外形を有しているが、基本的な構造は、図1等を参照して説明した走査アンテナ1000と実質的に同じ構造を有している。なお、ソースドライバSDおよびゲートドライバGDは、各走査アンテナ部分に設けてもよい。図21〜23においては、走査アンテナ1000と実質的に同じ構成要素に同じ参照符号を用い、添え字A、BおよびCによって、走査アンテナのタイプを区別し、A、BおよびCのそれぞれに後に続くa、b、cおよびdによって、各走査アンテナの部分を示すことにする。
例えば、走査アンテナ部分1000Aaは、スロット基板部分201AaとTFT基板部分101Aaと、これらの間に設けられた液晶層LC(図21(b)では不図示)とを有している。誘電体基板部分51Aaが有する上部接続部60Aaと、誘電体基板部分1Aaが有するトランスファー端子用上部接続部19pAaとが、シール部73Aaを介して互いに接続されている。シール部73Aaは、シール樹脂と導電性ビーズとを有している。導電性ビーズとして、例えば、毬栗状の銀粒子(例えば、化研テック株式会社製の毬栗状TK銀粉)を用いると、上部接続部60Aaおよび/または上部接続部19pAaの表面に自然酸化膜が形成されたり、あるいは保護膜を形成した場合でも、これらの絶縁性の膜を突き破り安定した電気的接続を得ることができる。このような毬栗状の導電性粒子は、他のトランスファー部にも好適に用いられる。シール部73Aaの幅は、例えば、0.45mm以上0.85mm以下である。
同様に、走査アンテナ部分1000Abは、スロット基板部分201AbとTFT基板部分101Abと、これらの間に設けられた液晶層LC(図21(b)では不図示)とを有している。誘電体基板部分51Abが有する上部接続部60Abと、誘電体基板部分1Abが有するトランスファー端子用上部接続部19pAbとが、シール部73Abを介して互いに接続されている。
図21(a)に示す様に4つの走査アンテナ部分1000Aa〜1000Adを貼り合せる構造を採用すると、図21(b)に模式的に示したように、継ぎ目を挟んで隣接する誘電体基板部分51Aaと誘電体基板部分51Abとの間、および誘電体基板部分1Aaと誘電体基板部分1Abとの間に、例えば約1mmの間隙ができる。これは、誘電体基板部分を構成する例えばガラス基板のサイズのばらつきおよび/または位置合せ誤差に起因する。そうすると、誘電体基板部分51Aaと誘電体基板部分51Ab、および誘電体基板部分1Aaと誘電体基板部分1Abとを互いに貼り合せる際の位置合せが難しい、および/または、貼り合せ構造の機械強度が十分に得られないなどの問題が生じることがある。
図22に示す走査アンテナ1000Bは、走査アンテナ1000Aの上記の問題を解決することができる。図22は、タイリング構造を有する他の走査アンテナ1000Bの構造を模式的に示す図であり、図22(a)は走査アンテナ1000Bの平面図であり、図22(b)は図22(a)中の22B−22B’線に沿った断面図である。
走査アンテナ1000Bは、4つの走査アンテナ部分1000Ba、1000Bb、1000Bcおよび1000Bdを有しており、これらがタイリングされている。4つの走査アンテナ部分1000Ba、1000Bb、1000Bcおよび1000Bdのそれぞれにおいて、隣接するアンテナ部分と接合される辺において、TFT基板部分101Ba〜101Bdおよびスロット基板部分201Ba〜201Bdの一方が他方よりも突き出ている。
図22(b)を参照して、互いに隣接する走査アンテナ部分1000Bcと走査アンテナ部分1000Bdとの配置関係を説明する。
例えば、走査アンテナ部分1000Bcは、スロット基板部分201BcとTFT基板部分101Bcと、これらの間に設けられた液晶層LC(図22(b)では不図示)とを有している。誘電体基板部分51Bcが有する上部接続部60Bcと、誘電体基板部分1Bcが有するトランスファー端子用上部接続部19pBcとが、シール部73Bcを介して互いに接続されている。同様に、走査アンテナ部分1000Bdは、スロット基板部分201BdとTFT基板部分101Bdと、これらの間に設けられた液晶層LC(図22(b)では不図示)とを有している。誘電体基板部分51Bdが有する上部接続部60Bdと、誘電体基板部分1Bdが有するトランスファー端子用上部接続部19pBdとが、シール部73Bdを介して互いに接続されている。
走査アンテナ部分1000Bcでは、スロット基板部分201Bcの誘電体基板部分51BcよりもTFT基板部分101Bcの誘電体基板部分1Bcの方が、走査アンテナ部分1000Bdの方へ突き出ている。一方、走査アンテナ部分1000Bdでは、スロット基板部分201Bdの誘電体基板部分51Bdの方がTFT基板部分101Bdの誘電体基板部分1Bdよりも、走査アンテナ部分1000Bcの方へ突き出ている。走査アンテナ部分1000BcのTFT基板部分101Bcの突き出た部分と、走査アンテナ部分1000Bdのスロット基板部分201Bdの突き出た部分とが互いに重なるように配置されている。
このような配置を採用すると、図21に示した走査アンテナ1000Aと異なり、誘電体基板部分51Bcと誘電体基板部分51Bd、および誘電体基板部分1Bcと誘電体基板部分1Bdとを互いに貼り合せる際の位置合せが容易で、かつ、貼り合せ構造の機械強度が十分に得られる。走査アンテナ1000Bは、走査アンテナ1000Aに比べて、例えば、液晶層LCの面一性が高く、スロット57の位置精度が高いので、すぐれたアンテナ性能を有し得る。また、走査アンテナ1000Bは、走査アンテナ1000Aに比べて、機械強度が高いという利点を有し得る。
走査アンテナ部分1000Bdと走査アンテナ部分1000Baとの境界でも、走査アンテナ部分1000BdのTFT基板部分101Bdが突き出ており、走査アンテナ部分1000Baと走査アンテナ部分1000Bbとの境界でも、走査アンテナ部分1000BaのTFT基板部分101Baが突き出ており、走査アンテナ部分1000Bbと走査アンテナ部分1000Bcとの境界でも、走査アンテナ部分1000BbのTFT基板部分101Bbが突き出ている。このように、反時計回りに、継ぎ目の構造を見ると、4つの走査アンテナ部分1000Ba〜Bdの全てにおいて、TFT基板部分の誘電体基板部分がスロット基板部分の誘電体基板部分よりも突き出ている。時計回りに継ぎ目の構造を見ると、逆に、4つの走査アンテナ部分1000Ba〜Bdの全てにおいて、スロット基板部分の誘電体基板部分がTFT基板部分の誘電体基板部分よりも突き出ている。もちろん、これらの逆の配置であってもよい。
次に、図23(a)および(b)を参照して、さらに組立てやすい走査アンテナの構造の例を説明する。図23(a)は、走査アンテナ1000Bの製造プロセスにおける貼り合せ工程を説明するための模式図であり、図23(b)は、タイリング構造を有するさらに他の走査アンテナ1000Cの製造プロセスにおける貼り合せ工程を説明するための模式図である。
図23(a)に示す様に、走査アンテナ1000Bを組み立てる際には、例えば、最後の走査アンテナ部分1000Bdを矢印の方向に差し込むのが難しい。走査アンテナ部分1000Bdを矢印の方向に差し込むためには、3つの走査アンテナ部分1000Ba〜1000Bcが形成する平面内で、走査アンテナ部分1000Bdをスライドさせる必要がある。これは、走査アンテナ部分1000Bdが形成する2つの継ぎ目(図中の上側の水平方向に延びる継ぎ目および左側の垂直方向に延びる継ぎ目)において、突き出ている基板部分(TFT基板部分101Bdまたはスロット基板部分201Bd)が異なるからである。
これに対して、図23(b)に示す走査アンテナ1000Cが有する4つの走査アンテナ部分1000Ca、1000Cb、1000Ccおよび1000Cdは、2つの継ぎ目においてTFT基板部分が突き出たパターン1と、2つの継ぎ目においてスロット基板部分が突き出たパターン2との2種類の走査アンテナ部分で構成されている。したがって、走査アンテナ1000Cを組み立てる際に最後に走査アンテナ部分1000Cdを差し込む場合、3つの走査アンテナ部分1000Ca〜1000Ccが形成する平面に対して、上または斜め上から走査アンテナ部分1000Cdを差し込むことができる。
走査アンテナ1000Cのように、2つの継ぎ目の両方において、TFT基板部分またはスロット基板部分が突き出た、2種類の走査アンテナ部分を2つずつ用いてタイリングすることによって、組み立てを容易化できる。
上述したように、TFT基板部分がスロット基板部分よりも突き出た辺を有する走査アンテナ部分と、スロット基板部分がTFT基板部分よりも突き出た辺を有する走査アンテナ部分とを作製し、TFT基板部分がスロット基板部分よりも突き出た辺を含む部分と、スロット基板部分がTFT基板部分よりも突き出た辺を含む部分とが互いに重なるように配置することによって、アンテナ性能に優れ、機械強度が高い走査アンテナ1000Cを得ることができる。
次に、図24(a)および(b)を参照して、マザー基板から走査アンテナ用基板(TFT基板部分およびスロット基板部分)を作製する際のパターンレイアウトの例を説明する。
図24(a)に示す様なパターンレイアウトを採用すると、マザー基板400Aから、例えば、図23(b)に示したパターン1およびパターン2に対応するTFT基板部分またはスロット基板部分を作製することができる。パターン1およびパターン2は4分の1パターンなので、4枚のマザー基板400Aから、1つの走査アンテナアレイを作製することができる。例えば、マザー基板400Aのサイズが404mm×515mmで、その内、385mm×495mmが有効領域とすると、直径が620mmの走査アンテナを作製することができる。
また、図24(b)に示す様なパターンレイアウトを採用すると、マザー基板400Bから、例えば、図23(b)に示したパターン1およびパターン2に対応するTFT基板部分またはスロット基板部分と、それらと組み合わせられるパターン3に対応するTFT基板部分またはスロット基板部分とを作製することができる。パターン3は、2分の1パターンなので、2枚のマザー基板400Bから、1つの走査アンテナアレイを作製することができる。例えば、マザー基板400Bのサイズが404mm×515mmで、その内、385mm×495mmが有効領域とすると、直径が450mmの走査アンテナを作製することができる。
このように、上述したようなパターンレイアウトを採用すると、マザー基板から効率良くTFT基板部分およびスロット基板部分を作製することができる。また、ここで例示した無アルカリガラス基板は、LCD用に量産されており、マイクロ波に対する誘電損失も比較的小さい。したがって、このようなLCD用のマザーガラス基板を用いれば、走査アンテナを低コストで製造することが可能になる。
なお、走査アンテナの分割数は、上記の例に限られず、2分割以上の任意の分割数であってよい。また、マザー基板のパターンレイアウトも個々の走査アンテナ部分の大きさ、形状に応じて、種々改変され得る。
次に、図25および図26を参照して、タイリング構造を有する走査アンテナにおけるトランスファー部の配置を説明する。
図25は、タイリング構造を有する走査アンテナ1000Dにおけるトランスファー部の配置を示す模式図である。
走査アンテナ1000Dは、破線で示した継ぎ目SMLで貼り合せられた4つの走査アンテナ部分1000Da、1000Db、1000Dcおよび1000Ddを有している。走査アンテナ1000Dは、トランスファー部TrD1およびTrD2を有している。トランスファー部TrD1は、走査アンテナ1000Dの外周に設けられており、トランスファー部TrD2は、走査アンテナ1000Dの中心付近(図2中の第1非送受信領域R2a)に設けられている。
図26は、タイリング構造を有する走査アンテナ1000Eにおけるトランスファー部の配置を示す模式図である。
走査アンテナ1000Eは、破線で示した継ぎ目SMLで貼り合せられた4つの走査アンテナ部分1000Ea、1000Eb、1000Ecおよび1000Edを有している。走査アンテナ1000Eは、トランスファー部TrE1およびTrE2を有している。トランスファー部TrE1は、垂直方向に延びる継ぎ目SMLに沿って設けられており、トランスファー部TrE2は、水平方向に延びる継ぎ目SMLに沿って設けられている。
走査アンテナ1000Dおよび走査アンテナ1000Eにおいて、継ぎ目SMLに沿って設けられているトランスファー部は、図22(b)に示したシール部73Bcまたはシール部73Bdを含むトランスファー部と同様の構造を有することが好ましい。その他のトランスファー部は、例えば、図7に示したシール部73を含むトランスファー部と同様の構造を有してよい。
もちろん、走査アンテナの分断数は、4つの場合に限られず、2以上の分断数であってよく、その場合にも継ぎ目に沿って設けられるトランスファー部は、図22(b)に示したシール部73Bcまたはシール部73Bdを含むトランスファー部と同様の構造を有することが好ましい。
<スロット基板の厚さおよび/またはTFT基板の厚さの最適化>
図1を参照して説明したように、本発明の実施形態による走査アンテナ1000のスロット基板201は、誘電体基板51と、誘電体基板51の液晶層LC側に形成されたスロット電極55とを有し、スロット基板201と、空気層54を介して対向するように反射導電板65が配置されている。スロット電極55と反射導電板65と、これらの間の誘電体基板51および空気層54とが導波路301として機能する。
したがって、誘電体基板51は、マイクロ波のロスや位相の変化が小さくなるように、マイクロ波に対する誘電率εMおよび誘電損失tanδMが小さい材料を用いることが好ましい。誘電体基板51としてガラス基板を用いる場合、ガラス基板の誘電率εMは5以下であることが好ましい。
現在市販されているガラス基板の内、最も誘電率εMが小さいもの(例えば、旭硝子社製のAN100)でも、誘電率εMは約5である。したがって、誘電体基板51としてガラス基板を用いる場合には、誘電体基板51によるアンテナ効率の低下を抑制するために、誘電体基板51の厚さを誘電体基板1の厚さよりも小さくすることが好ましく、特に、0.35mm以下にすることが好ましい。
なお、誘電体基板51をガラス基板と高分子フィルムとで構成してもよい。一般に高分子フィルムの方がガラス基板よりも誘電率εMが小さい。ガラス基板の厚さが0.20mm程度未満になると、製造過程で、割れなどが発生し易くなるので、高分子フィルムを貼り合せることで、割れなどの発生を抑制することができる。高分子フィルムとしては、上述の保護層69bとして用いられる高分子フィルムを用いることができる。
一方、TFT基板101の誘電体基板1の厚さは、スロット基板201の誘電体基板51と異なり、薄い必要はなく、製造過程のハンドリングのし易さや、コスト等を考慮して決めればよく、例えば、1.2mm以下である。誘電体基板1としては、LCD用のガラス基板として広く流通している1.1mm以下のガラス基板を好適に用いることができる。また、本発明者の検討によると、誘電体基板1の厚さを0.7mm未満とすると、予想外に、アンテナの性能(例えば放射効率)が低下することがわかった。種々検討した結果、アンテナの性能(例えば放射効率)は、誘電体基板1の厚さが、1mm付近で最大(極大)をとり、0.7mm以上1.4mm以下であることが好ましい。
本発明の実施形態による走査アンテナは、上述したように、外部ヒーター構造を有してもよい。外部ヒーターとして、図16(a)、(b)に示したように、TFT基板101の誘電体基板1の外側に配置されたヒーター用抵抗膜68と、ヒーター用抵抗膜68を覆う保護層69aまたは69bとを有する構成を採用する場合には、誘電体基板51の厚さは、誘電体基板1の厚さと保護層69aまたは69bの厚さとの和よりも小さくすることが好ましい。接着層67の厚さが無視できない程度に大きいときは、誘電体基板51の厚さは、誘電体基板1の厚さと保護層69aまたは69bの厚さと接着層67の厚さとの和よりも小さくすることが好ましい。このとき、誘電体基板1の厚さと保護層69aまたは69bの厚さと(および接着層67の厚さ)の和は、上記同じ理由から、0.7mm以上1.4mm以下であることが好ましい。誘電体基板51の厚さは、上述のように0.35mm以下であることが好ましく、また、誘電体基板51をガラス基板と高分子フィルムとで構成してもよい。
例えば、誘電体基板51として、厚さが0.35mmのガラス基板を用い、誘電体基板1として、厚さが0.35mmのガラス基板を用い、厚さが0.7mmの保護層69aまたは69bを用いることができる。また、誘電体基板51として、厚さが0.35mmのガラス基板を用い、誘電体基板1として、厚さが0.70mmのガラス基板を用い、厚さが0.3mmの保護層69aまたは69bを用いることもできる。上記の構成において、誘電体基板51として、厚さが0.20mm以上0.35mm未満のガラス基板を用いてもよい。さらに、上記の構成において、誘電体基板51として、厚さが0.20mmのガラス基板と、厚さが0.05mm(50μm)の高分子フィルム(例えばPETフィルム)との積層体を用いてもよい。もちろん、ガラス基板と高分子フィルムとの厚さは適宜変更され得る。
以下、図27および図28を参照して、スロット基板および/またはTFT基板の厚さを最適化した実施形態の走査アンテナの構造の例を説明する。ここでは、上述したタイリング構造を有する走査アンテナを例に説明するが、タイリング構造を有しない走査アンテナに適用できることは言うまでもない。また、タイリング構造は、4分割構造に限られず、2分割構造などであってもよい。
図27(a)は、走査アンテナ1000A1の模式的な断面図であり、図27(b)は、走査アンテナ1000B1の模式的な断面図である。
図27(a)に示した走査アンテナ1000A1は、図21に示した走査アンテナ1000Aにおけるスロット基板部分201Aa、201Abの誘電体基板部分51Aa、51Abの厚さを小さくしたものに相当する。共通の構成には共通の参照符号を付し、説明を省略する。
走査アンテナ1000A1は、走査アンテナ部分1000A1a、1000A1bを有する。走査アンテナ部分1000A1a、1000A1bのスロット基板部分201A1a、201A1bが有する誘電体基板部分51A1a、51A1bの厚さは、TFT基板部分101Aa、101Abが有する誘電体基板部分1Aa、1Abの厚さと、上述した関係を有するように、設定されている。
図27(b)に示した走査アンテナ1000B1は、図22に示した走査アンテナ1000Bにおけるスロット基板部分201Bc、201Bdの誘電体基板部分51Bc、51Bdの厚さを小さくしたものに相当する。共通の構成には共通の参照符号を付し、説明を省略する。
走査アンテナ1000B1は、走査アンテナ部分1000B1c、1000B1dを有する。走査アンテナ部分1000B1c、1000B1dのスロット基板部分201B1c、201B1dが有する誘電体基板部分51B1c、51B1dの厚さは、TFT基板部分101Bc、101Bdが有する誘電体基板部分1Bc、1Bdの厚さと、上述した関係を有するように、設定されている。
図28(a)は、走査アンテナ1000A2の模式的な断面図であり、図28(b)は、走査アンテナ1000B2の模式的な断面図である。
図28(a)に示した走査アンテナ1000A2は、図27(a)に示した走査アンテナ1000A1の改変例であり、走査アンテナ1000A2は、走査アンテナ部分1000A2a、1000A2bを有する。走査アンテナ部分1000A2a、1000A2bのスロット基板部分201A2a、201A2bが有する誘電体基板部分51A2a、51A2bの厚さは、アンテナ単位が配列されている領域RAにおいてのみ小さくされており、TFT基板部分101Aa、101Abが有する誘電体基板部分1Aa、1Abの厚さと、上述した関係を有するように、設定されている。誘電体基板部分51A2a、51A2bのアンテナ単位が配列されていない領域RNにおける厚さは、例えば、誘電体基板部分1Aa、1Abの厚さと同じである。
図28(b)に示した走査アンテナ1000B2は、図27(b)に示した走査アンテナ1000B1の改変例であり、走査アンテナ1000B2は、走査アンテナ部分1000B2c、1000B2dを有する。走査アンテナ部分1000B2c、1000B2dのスロット基板部分201B2c、201B2dが有する誘電体基板部分51B2c、51B2dの厚さは、アンテナ単位が配列されている領域RAにおいてのみ小さくされており、TFT基板部分101Bc、101Bdが有する誘電体基板部分1Bc、1Bdの厚さと、上述した関係を有するように、設定されている。誘電体基板部分51B2c、51B2dのアンテナ単位が配列されていない領域RNにおける厚さは、例えば、誘電体基板部分1Bc、1Bdの厚さと同じである。
走査アンテナのスロット基板において、アンテナの性能に影響を与えるのは、誘電体基板(または誘電体基板部分)の内で、アンテナ単位が配列されている領域RAに存在する部分だけなので、走査アンテナ1000A2および1000B2のように、アンテナ単位が配列されている領域RAの誘電体基板部分の厚さだけを選択的に小さくしてもよい。
このように、スロット基板の誘電体基板の内、アンテナ単位が配列されている領域RAだけを選択的に薄くし、アンテナ単位が配列されていない領域RNを厚くした構成を採用すると、例えば、液晶材料をスロット基板とTFT基板との間隙に注入する際の割れ発生を抑制することができる。また、誘電体基板の一部に厚い部分を残すことによって、誘電体基板の反りを抑制することができる。
次に、図29および図30を参照して、走査アンテナの製造方法において、スロット基板および/またはTFT基板が有するガラス基板を薄くする工程(「スリミング工程」ということがある。)を説明する。ここでは、スロット基板およびTFT基板がそれぞれ1枚のガラス基板(例えば、旭硝子社製のAN100)で形成されている例を説明する。
図29(a)〜(d)は、走査アンテナの液晶パネル100Fの製造方法を説明するための模式的な断面図であり、図30(a)および(b)は、液晶パネル100Fの他の製造方法を説明するための模式的な断面図である。
液晶パネル100Fは、図29(d)に示す様に、TFT基板101Fとスロット基板201Fとを有しており、スロット基板201Fの厚さは、TFT基板101Fの厚さよりも小さい。なお、図29および図30では、簡単のために、TFT基板101Fおよびスロット基板201Fが有するガラス基板とシール部の構造だけを図示する。
まず、図29(a)に示す様に、TFT基板101Faおよびスロット基板201Faのガラス基板として、同じ厚さのガラス基板を用いて作製し、液晶パネル100Faを作製する。一般に、LCDの製造ラインは、共通のガラス基板を用いてTFT基板と対向基板とを製造するように構成されている。したがって、液晶パネル100Faは、LCDの製造ラインをそのまま用いて製造することができる。
液晶パネル100Faの内、スリミングを行うスロット基板(誘電体基板)201Faの背面だけを露出し、他を覆うように保護部材92a、92bおよび92cを設ける。保護部材92a、92bおよび92cは、例えば、耐エッチング性を有する樹脂で形成される。
これを、ガラス用のエッチング液(少なくともHF(フッ酸)を含む)に浸漬する。例えば、液晶パネル100Faはエッチング浴に立てた状態で浸漬される。ガラス用のエッチング液としては市販されているものを適宜用いることができる。スロット基板(誘電体基板)201Faのエッチング量(スリミング量)は、エッチング時間および/または濃度によって制御することができる。
保護部材を取り外すことによって、図29(b)に示す様に、薄いスロット基板(誘電体基板)201Fbを有する液晶パネルが得られる。
この後、必要に応じて、例えば、図29(c)に示す破線に沿って、分断することによって、液晶パネル100Fが得られる。
図29(d)に示した液晶パネル100Fは、他の方法で製造することもできる。例えば、図30(a)に示す様に、スロット基板201Faよりも厚いガラス基板を用いたTFT基板101Fbを有する液晶パネル100Fbを作製する。
次に、図30(b)に示す様に、TFT基板101Fbの上面およびスロット基板201Faの背面を露出し、他を覆うように保護部材92bおよび92cを設ける。
その後、上記と同様に、ガラス用のエッチング液(少なくともHF(フッ酸)を含む)に浸漬し、TFT基板101Fbおよびスロット基板201Faをエッチングする。
そうすると、図30(b)に示す様に、薄いスロット基板(誘電体基板)201Fbと、スロット基板201Fbよりも厚い所定の厚さまでスリム化されたTFT基板101Faを有する液晶パネルが得られる。
この後、上記と同様に、保護部材を取り外し、必要に応じて、分断することによって、液晶パネル100Fが得られる。
上記では、スロット基板およびTFT基板がそれぞれ一枚のガラス基板(例えば、旭硝子社製のAN100)で形成されている例を説明したが、タイリング構造を有する走査アンテナを製造する場合には、各走査アンテナ部分に応じて樹脂で形成された保護部材で保護し、上記と同様にスリミングすればよい。
なお、図28(a)および(b)に示した走査アンテナ1000A2および1000B2では、スロット基板の誘電体基板部分の一部だけを選択的に薄くするので、スリミング工程は、各走査アンテナ部分を作製後に行うことが好ましい。これに対し、図27(a)および(b)に示した走査アンテナ1000A1および1000B1のように、スロット基板の誘電体基板部分の全体を薄くする場合には、各走査アンテナ部分を作製前に、スリミング工程を行ってもよい。
本発明の実施形態による走査アンテナは、必要に応じて、例えばプラスチック製の筺体に収容される。筺体にはマイクロ波の送受信に影響を与えない誘電率εMが小さい材料を用いることが好ましい。また、筺体の送受信領域R1に対応する部分には貫通孔を設けてもよい。さらに、液晶材料が光に曝されないように、遮光構造を設けてもよい。遮光構造は、例えば、TFT基板101の誘電体基板1および/またはスロット基板201の誘電体基板51の側面から誘電体基板1および/または51内を伝播し、液晶層に入射する光を遮光するように設ける。誘電異方性ΔεMが大きな液晶材料は、光劣化しやすいものがあり、紫外線だけでなく、可視光の中でも短波長の青色光も遮光することが好ましい。遮光構造は、例えば、黒色の粘着テープなどの遮光性のテープを用いることによって、必要な個所に容易に形成できる。
本発明による実施形態は、例えば、移動体(例えば、船舶、航空機、自動車)に搭載される衛星通信や衛星放送用の走査アンテナおよびその製造に用いられる。
1 :誘電体基板
2 :下地絶縁膜
3 :ゲート電極
4 :ゲート絶縁層
5 :半導体層
6D :ドレインコンタクト層
6S :ソースコンタクト層
7D :ドレイン電極
7S :ソース電極
7p :ソース接続配線
11 :第1絶縁層
15 :パッチ電極
15p :パッチ接続部
17 :第2絶縁層
18g、18s、18p :開口部
19g :ゲート端子用上部接続部
19p :トランスファー端子用上部接続部
19s :ソース端子用上部接続部
21 :アライメントマーク
23 :保護導電層
51 :誘電体基板
52 :第3絶縁層
54 :誘電体層(空気層)
55 :スロット電極
55L :下層
55M :主層
55U :上層
55c :コンタクト面
57 :スロット
58 :第4絶縁層
60 :上部接続部
65 :反射導電板
68 :ヒーター用抵抗膜
70 :給電装置
71 :導電性ビーズ
72 :給電ピン
73 :シール部
101、102、103、104 :TFT基板
201、203 :スロット基板
1000 :走査アンテナ
CH1、CH2、CH3、CH4、CH5、CH6 :コンタクトホール
GD :ゲートドライバ
GL :ゲートバスライン
GT :ゲート端子部
SD :ソースドライバ
SL :ソースバスライン
ST :ソース端子部
PT :トランスファー端子部
IT :端子部
LC :液晶層
R1 :送受信領域
R2 :非送受信領域
Rs :シール領域
U :アンテナ単位、アンテナ単位領域

Claims (11)

  1. 複数のアンテナ単位が配列された走査アンテナであって、
    第1誘電体基板と、前記第1誘電体基板に支持された複数のTFTと、複数のゲートバスラインと、複数のソースバスラインと、複数のパッチ電極とを有するTFT基板と、
    第2誘電体基板と、前記第2誘電体基板の第1主面上に形成されたスロット電極とを有するスロット基板と、
    前記TFT基板と前記スロット基板との間に設けられた液晶層と、
    前記第2誘電体基板の前記第1主面と反対側の第2主面に誘電体層を介して対向するように配置された反射導電板とを有し、
    前記スロット電極は、前記複数のパッチ電極に対応して配置された複数のスロットを有し、
    少なくとも前記アンテナ単位が配列されている領域において、前記第2誘電体基板の厚さは、前記第1誘電体基板の厚さよりも小さい、走査アンテナ。
  2. 前記第2誘電体基板の厚さは、0.35mm以下である、請求項1に記載の走査アンテナ。
  3. 前記第1誘電体基板の厚さは、1.1mm以下である、請求項1または2に記載の走査アンテナ。
  4. 前記第1誘電体基板の厚さは、0.7mm以上である、請求項1から3のいずれかに記載の走査アンテナ。
  5. 前記第2誘電体基板は、ガラス基板と高分子フィルムとを有している、請求項1から4のいずれかに記載の走査アンテナ。
  6. 複数のアンテナ単位が配列された走査アンテナであって、
    第1誘電体基板と、前記第1誘電体基板に支持された複数のTFTと、複数のゲートバスラインと、複数のソースバスラインと、複数のパッチ電極とを有するTFT基板と、
    第2誘電体基板と、前記第2誘電体基板の第1主面上に形成されたスロット電極とを有するスロット基板と、
    前記TFT基板と前記スロット基板との間に設けられた液晶層と、
    前記第2誘電体基板の前記第1主面と反対側の第2主面に誘電体層を介して対向するように配置された反射導電板とを有し、
    前記スロット電極は、前記複数のパッチ電極に対応して配置された複数のスロットを有し、
    前記第1誘電体基板の外側に配置されたヒーター用抵抗膜と、前記ヒーター用抵抗膜を覆う保護層とをさらに有し、
    少なくとも前記アンテナ単位が配列されている領域において、前記第2誘電体基板の厚さは、前記第1誘電体基板の厚さと前記保護層の厚さとの和よりも小さい、走査アンテナ。
  7. 前記保護層は、硬化性樹脂層、高分子フィルムまたはガラス板で形成されている、請求項6に記載の走査アンテナ。
  8. 前記第2誘電体基板の厚さは、0.35mm以下である、請求項6または7に記載の走査アンテナ。
  9. 前記第1誘電体基板の厚さと前記保護層の厚さとの和は、1.4mm以下である、請求項6から8のいずれかに記載の走査アンテナ。
  10. 前記第1誘電体基板の厚さと前記保護層の厚さとの和は、0.7mm以上である、請求項6から9のいずれかに記載の走査アンテナ。
  11. 前記第2誘電体基板は、ガラス基板と高分子フィルムとを有している、請求項6から10のいずれかに記載の走査アンテナ。
JP2018500103A 2016-02-16 2017-02-13 走査アンテナ Active JP6554224B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016026647 2016-02-16
JP2016026647 2016-02-16
PCT/JP2017/005164 WO2017141874A1 (ja) 2016-02-16 2017-02-13 走査アンテナ

Publications (2)

Publication Number Publication Date
JPWO2017141874A1 JPWO2017141874A1 (ja) 2019-01-17
JP6554224B2 true JP6554224B2 (ja) 2019-07-31

Family

ID=59625900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018500103A Active JP6554224B2 (ja) 2016-02-16 2017-02-13 走査アンテナ

Country Status (4)

Country Link
US (1) US10840266B2 (ja)
JP (1) JP6554224B2 (ja)
CN (1) CN108604735B (ja)
WO (1) WO2017141874A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109451B2 (en) * 2016-07-20 2021-08-31 Kymeta Corporation Internal heater for RF apertures
WO2018186309A1 (ja) * 2017-04-07 2018-10-11 シャープ株式会社 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
WO2018230448A1 (ja) * 2017-06-15 2018-12-20 シャープ株式会社 Tft基板およびtft基板を備えた走査アンテナ
EP3698435B1 (en) * 2017-10-19 2023-11-22 Wafer LLC Polymer dispersed/shear aligned phase modulator device
CN111081605A (zh) * 2019-12-09 2020-04-28 苏州拓升智能装备有限公司 电极间隔离结构、气相沉积设备和石墨舟

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472403A3 (en) * 1990-08-24 1992-08-26 Hughes Aircraft Company Microwave phase modulation with liquid crystals
US5191339A (en) * 1992-03-05 1993-03-02 General Electric Company Phased-array antenna controller
JP2000022428A (ja) * 1998-06-29 2000-01-21 Toshiba Corp 無線通信装置
JP2002217640A (ja) 2001-01-17 2002-08-02 Radial Antenna Kenkyusho:Kk 平面アンテナ及び導波管
KR100858295B1 (ko) 2002-02-26 2008-09-11 삼성전자주식회사 반사-투과형 액정표시장치 및 이의 제조 방법
JP2007295044A (ja) 2006-04-20 2007-11-08 Matsushita Electric Ind Co Ltd フェーズドアレイアンテナ
JP2007116573A (ja) 2005-10-24 2007-05-10 Toyota Central Res & Dev Lab Inc アレーアンテナ
US7466269B2 (en) 2006-05-24 2008-12-16 Wavebender, Inc. Variable dielectric constant-based antenna and array
CN101930134B (zh) 2009-06-19 2013-08-07 台均科技(深圳)有限公司 电磁感应式液晶面板及其制造方法和液晶显示器
FI20106063A (fi) * 2010-10-14 2012-06-08 Valtion Teknillinen Akustisesti kytketty laajakaistainen ohutkalvo-BAW-suodatin
JP6014041B2 (ja) 2010-10-15 2016-10-25 シーレイト リミテッド ライアビリティー カンパニーSearete Llc 表面散乱アンテナ
KR101995082B1 (ko) 2010-12-03 2019-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
ES2388213B2 (es) * 2010-12-16 2013-01-29 Universidad Politécnica de Madrid Antena reflectarray de haz reconfigurable para frecuencias en los rangos de terahercios y de ondas milimétricas.
KR102071545B1 (ko) 2012-05-31 2020-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
ES2935284T3 (es) 2014-02-19 2023-03-03 Kymeta Corp Antena holográfica que se alimenta de forma cilíndrica orientable
US10431899B2 (en) 2014-02-19 2019-10-01 Kymeta Corporation Dynamic polarization and coupling control from a steerable, multi-layered cylindrically fed holographic antenna
CA2949320C (en) * 2014-06-11 2020-08-11 Huawei Technologies Co., Ltd. Sensing screen, control circuit and control method thereof, and sensing screen apparatus
US10263331B2 (en) 2014-10-06 2019-04-16 Kymeta Corporation Device, system and method to mitigate side lobes with an antenna array
US9893435B2 (en) 2015-02-11 2018-02-13 Kymeta Corporation Combined antenna apertures allowing simultaneous multiple antenna functionality
US9905921B2 (en) 2015-03-05 2018-02-27 Kymeta Corporation Antenna element placement for a cylindrical feed antenna
US9887455B2 (en) 2015-03-05 2018-02-06 Kymeta Corporation Aperture segmentation of a cylindrical feed antenna
US11171161B2 (en) * 2017-04-07 2021-11-09 Sharp Kabushiki Kaisha TFT substrate, scanning antenna provided with TFT substrate, and method for producing TFT substrate
WO2018221327A1 (ja) * 2017-05-31 2018-12-06 シャープ株式会社 Tft基板およびtft基板を備えた走査アンテナ

Also Published As

Publication number Publication date
CN108604735A (zh) 2018-09-28
JPWO2017141874A1 (ja) 2019-01-17
US10840266B2 (en) 2020-11-17
WO2017141874A1 (ja) 2017-08-24
US20200279873A1 (en) 2020-09-03
CN108604735B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
JP6139044B1 (ja) 走査アンテナおよびその製造方法
JP6500120B2 (ja) 走査アンテナおよびその製造方法
JP6589058B2 (ja) 走査アンテナ
JP6554224B2 (ja) 走査アンテナ
WO2017115672A1 (ja) 走査アンテナおよびその製造方法
WO2017155084A1 (ja) 走査アンテナならびに走査アンテナの検査方法
CN109155460B (zh) 扫描天线及其制造方法
JP6734934B2 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
JP6618616B2 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
WO2018123696A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
WO2018186281A1 (ja) Tft基板およびtft基板を備えた走査アンテナ
WO2017204114A1 (ja) 走査アンテナおよび走査アンテナの製造方法
WO2018105589A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
CN109314145B (zh) Tft基板、具备tft基板的扫描天线、以及tft基板的制造方法
WO2018186309A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
WO2017130475A1 (ja) 走査アンテナ
CN109478515B (zh) Tft基板、具备tft基板的扫描天线、及tft基板的制造方法
JP6717970B2 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
WO2018079350A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
WO2018159607A1 (ja) Tft基板およびtft基板を備えた走査アンテナ
WO2018030180A1 (ja) 走査アンテナ
WO2018131635A1 (ja) 走査アンテナおよび走査アンテナの製造方法
CN109564944B (zh) Tft基板、具备tft基板的扫描天线、以及tft基板的制造方法
JP6598998B2 (ja) 走査アンテナ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190705

R150 Certificate of patent or registration of utility model

Ref document number: 6554224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150