JP4267266B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP4267266B2
JP4267266B2 JP2002199191A JP2002199191A JP4267266B2 JP 4267266 B2 JP4267266 B2 JP 4267266B2 JP 2002199191 A JP2002199191 A JP 2002199191A JP 2002199191 A JP2002199191 A JP 2002199191A JP 4267266 B2 JP4267266 B2 JP 4267266B2
Authority
JP
Japan
Prior art keywords
semiconductor film
film
crystalline semiconductor
semiconductor layer
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002199191A
Other languages
English (en)
Other versions
JP2003115457A5 (ja
JP2003115457A (ja
Inventor
舜平 山崎
亨 三津木
健司 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002199191A priority Critical patent/JP4267266B2/ja
Publication of JP2003115457A publication Critical patent/JP2003115457A/ja
Publication of JP2003115457A5 publication Critical patent/JP2003115457A5/ja
Application granted granted Critical
Publication of JP4267266B2 publication Critical patent/JP4267266B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結晶構造を有する半導体膜とそれを用いた半導体装置及びそれら作製方法に係り、特に結晶性が優れ、結晶の配向が単一方向に揃った半導体膜とそれを用いた半導体装置及びそれら作製方法に関する。
【0002】
【従来の技術】
ガラスなどの絶縁基板上に形成した非晶質シリコン膜を結晶化させる方法として、レーザーアニール方法と呼ばれる技術が開発されている。レーザーアニール方法は、100〜500mJ/cm2程度のエネルギーを有するレーザー光を非晶質シリコン膜に照射することで結晶化を実現している。
【0003】
非晶質シリコンを結晶化するためには、通常600℃以上に加熱する必要があるが、レーザーアニール方法は基板をほぼ室温に保ったままで、非晶質シリコン膜の結晶化が可能であるという極めて優れた特徴を有している。レーザーにはエキシマレーザーやYAGレーザーに代表される固体レーザーが用いられるが、いずれにしてもビームサイズが限定されるため、大面積基板を処理するためには、ビームを走査して繋ぎ合わせて照射する必要がある。よって繋ぎ合わせ部分で結晶性が変化して、一様な結晶が得られないという欠点が指摘されている。また、レーザーアニールによる場合には、レーザー発振器の出力の不安定さのために、やはり均質な結晶を得ることが困難である。このような結晶の品質のばらつきは薄膜トランジスタ(以下、TFTと記す)の特性ばらつきの原因となっている。
【0004】
一方、特開平7−231100号公報、特開平7−130652号公報、特開平8−78329号公報などには非晶質シリコン膜の結晶化を助長する触媒元素を用い、450℃〜650℃に温度で加熱処理を行って非晶質シリコン膜の一部又は全部を結晶化させ、さらに上記加熱温度よりも高い温度で加熱して大粒径の結晶質シリコン膜を得る技術が開示されている。
【0005】
【発明が解決しようとする課題】
高品質の結晶質シリコン膜を得るためには、結晶粒を大きくすることの他に、結晶方位を揃えることが重要である。しかしながら、レーザーアニール法では非晶質シリコン膜と基板との界面に自然に発生する結晶核が基になり結晶化が進むと考えられている。この方法で結晶化されたシリコン膜は、X線回折でその結晶構造を解析すると、通常は(111)、(220)、(311)などの回折ピークが観測され、いろいろな方位をもって集合した多結晶体であることが確認されている。多結晶体における個々の結晶粒は任意な結晶面が析出してしまうが、下地にある酸化シリコンとの界面エネルギーが最小となる(111)面の結晶が析出する確率的に最も多くなっている。
【0006】
また、シリコンの結晶化を助長する触媒元素を非晶質シリコン膜に導入して結晶化を行う場合には、自然核が発生するより低い温度で導入した元素のシリサイド化物が形成され、当該シリサイドを基にした結晶成長が起こっている。例えば、形成されるNiSi2は特定の配向性を持たないが、非晶質半導体膜の厚さを200nm以下とすると、基板表面に対し平行な方向しかほとんど成長することが許されなくなる。この場合、NiSi2と結晶シリコンの(111)面とが接する界面エネルギーが最も小さいので、結晶質シリコン膜の表面と平行な面は(110)面となり、この格子面が優先的に配向する。結晶成長方向が基板表面に対し平行な方向に、柱状の結晶が成長する場合には、その柱状結晶を軸とした回転方向には自由度が存在し、必ずしも(110)面が配向するとは限らないため、その他の格子面も析出して全体として見れば(110)面に配向する割合はやはり20%に満たない。
【0007】
配向率が低い場合、異なる方位の結晶がぶつかる結晶粒界で、格子の連続性を保持することが殆ど不可能となり、不対結合手が多く形成されることが容易に推定される。粒界にできる不対結合手は再結合中心又は捕獲中心となり、キャリア(電子・ホール)の輸送特性を低下させている。その結果、キャリアが再結合で消滅したり欠陥にトラップされたりするため、このような結晶質半導体膜を用いても高い移動度を期待することができないという問題がある。
【0008】
結晶の配向率を高めるために、シリコン膜にゲルマニウムを適量添加して結晶化を行う技術が特開2000−114172号公報に開示されている。同公報によれば、複数の結晶粒が集合して形成された半導体膜でありながら、個々の結晶粒の面方位が揃っているような結晶性を示す実質的に単結晶と見なせる半導体膜が得られることが示されている。しかし、それを得るためには、ゲルマニウムの添加の他に、900〜1200℃の熱処理を必要としている。
【0009】
このように、900℃を越える高温で熱処理をすることで結晶の品質を向上させることも可能であるが、耐熱性の低いガラス基板上に形成した結晶質シリコン膜に対してそのような熱処理を行うことはできない。また、ゲルマニウムを添加して配向率を高めたとしても、ゲルマニウムは水素との結合エネルギーが小さく水素化が容易でないという問題もある。即ち、水素化処理によってゲルマニウムに起因するダングリングボンドを補償出来ないことになる。
【0010】
上記問題点に鑑み、本発明は、ガラスなどの耐熱性の低い材料を基板として用いながらも、非晶質半導体膜を結晶化して得られる結晶質半導体膜の配向率を高め、単結晶に匹敵する高品質の結晶質半導体膜を用いた半導体装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記問題点を解決するために本発明は、第1元素と第2元素を含む結晶の配向性の高い第1結晶質半導体膜を形成し、その結晶方位に依存して配向率の高い第1元素から成る第2結晶質半導体膜を形成するものである。前記第2元素は配向率を向上させるために用いるものであり、高品質の結晶質半導体膜及びそれを用いる半導体装置を得るためには、本来第1元素のみの結晶質半導体膜で良い。このことから本発明は以下の構成を有している。
【0012】
本発明は、絶縁表面を有する基板上に形成した第1非晶質半導体膜を結晶化した後、その上に第2非晶質半導体膜を堆積し結晶化させる。第2非晶質半導体膜は、下地に形成されている第1結晶質半導体膜の結晶に依存してエピタキシャル的に結晶化させる。
【0013】
従って、第1結晶質半導体膜の結晶性は重要な特性パラメータとなる。第1結晶質半導体膜の配向性を高める手段としては、シリコンに対し0.1乃至10原子%の割合でゲルマニウムを含ませた非晶質半導体膜を適用することと、当該非晶質半導体膜の結晶化を促進する作用のある触媒元素を適用する。
【0014】
結晶化を助長する元素(触媒元素)としてはFe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Auから選ばれた一種又は複数種を用いる。また、非晶質半導体膜の厚さは10nm乃至200nmで形成する。非晶質シリコン膜に当該金属元素を添加して加熱処理を施すことにより、シリコンと当該金属元素との化合物(シリサイド化物)を形成し、それが拡散することにより結晶化が進行する。非晶質シリコン膜に添加したゲルマニウムはこの化合物と反応せず、その周囲に存在することにより局所的な歪みを生じさせる。この歪みは核生成の臨界半径を大きくする方向に作用して、核生成密度を低減させると共に、結晶の配向を制限する効力を持つ。
【0015】
このような作用を発現させるのに必要なゲルマニウムの濃度は、実験の結果シリコンに対し、0.1原子%以上10原子%以下、好ましくは1原子%以上5原子%以下とすれば良いことが分かっている。ゲルマニウムの濃度がこの上限値以上になるとシリコンとゲルマニウムの合金材料として発生する自然核(添加する金属元素との化合物によらず発生する核)の発生が顕著となり、得られる多結晶半導体膜の配向比率を高めることができない。また、下限値以下であると十分な歪を発生させることができず、やはり配向比率を高めることができない。
【0016】
ゲルマニウムが添加された非晶質シリコン膜は、間欠放電又はパルス放電を用いたプラズマCVD法により形成する。間欠放電又はパルス放電は、発振周波数1〜120MHz、好ましくは13.56〜60MHzの高周波電力を、繰り返し周波数10Hz〜10kHzに変調してカソードに供給することにより形成する。繰り返し周波数の1周期において高周波電力が印加される時間の割合をデューティ比とすると、その値は1〜50%とする。
【0017】
このような間欠放電又はパルス放電は、非晶質半導体膜の堆積過程におけるラジカル種(ここでは、電気的に中性であり、化学的に活性な原子又は分子を指していう)を選択して、比較的長寿命のラジカル種による膜の成長を行うことができる。例えば、SiH4を放電空間中で分解するとき様々なラジカル種やイオン種が生成される。ラジカル種は生成と消滅反応を繰り返すが、定常的に持続する放電は、ラジカル種の存在比率が一定の割合に保たれている。しかし、間欠放電又はパルス放電のように放電がオフになる時間が存在する場合には、ラジカル種やイオン種の寿命時間の違いにより、長寿命のラジカル種のみが被膜の堆積表面に供給され成膜に寄与することになる。
【0018】
長寿命ラジカルを選択する理由は、膜の成長表面を不活性化するためであり、ゲルマニウムを非晶質シリコン膜中に分散させて含ませるのに適している。ゲルマニウムのソースであるGeH4はSiH4に比べ分解エネルギーが小さいので、同じ供給電力で分解すると原子状ゲルマニウムが生成され、気相反応又は表面反応によりゲルマニウムクラスターが生成される。前述の結晶成長モデルによればゲルマニウムは分散していた方が良いので、クラスターの発生しない間欠放電が良いことになる。
【0019】
非晶質半導体膜を結晶化すると原子の再配列により、膜の体積は減少する。その結果、基板上に形成される多結晶半導体膜は引っ張り応力が内在することになる。しかし、シリコンに原子半径の大きいゲルマニウムを0.1原子%以上10原子%以下、好ましくは1原子%以上5原子%以下の範囲で含有させることにより、結晶化に伴う体積収縮は抑制され、発生する内部応力を小さくすることができる。この場合、被膜全体に渡って均質な効果を得るためには、ゲルマニウムが分散した状態で存在するのが好ましい。
【0020】
しかしながら、ゲルマニウムはシリコンと比較して原子半径が大きく、シリコンの中にあってはむしろ結晶を歪ませる要因となる。また、ゲルマニウムは水素化による欠陥の補償が困難であるので、結晶化後は極力その濃度を低減させておくことが望ましい。具体的には、シリコンとゲルマニウムを含む半導体が溶融−固化する際にゲルマニウムが偏析する現象を利用する。当該半導体膜はレーザー光の照射により容易に溶融−固化させることができる。ゲルマニウムが偏析した高濃度ゲルマニウム領域は、化学エッチングや化学的機械研磨により除去して第1結晶質半導体膜を薄片化すれば良い。第1結晶質半導体膜の表面は、フッ酸を含有する水溶液で処理して清浄な表面を形成した後、第2非晶質半導体膜を堆積することが望ましい。しかし、表面には吸着した酸素、炭素、窒素などの大気成分の元素が若干残っていても良い。
【0021】
こうして、配向率の高い第1結晶質半導体膜上に第2非晶質半導体膜を形成し、ファーネスアニール又はRTA(瞬間熱アニール)などの加熱処理又はレーザー光の照射により結晶化させる。結晶は下地の結晶方位に従って同じ面方位に成長させることができる。
【0022】
以上の如く、本発明に係る半導体装置の作製方法は、シリコンに対し、0.1乃至10原子%の割合でゲルマニウムを含む第1非晶質半導体膜を形成し、第1非晶質半導体膜に結晶化の触媒作用を有する元素を添加した後、不活性気体中にて加熱処理による第1結晶化処理と、酸化雰囲気中でレーザー光の照射による第2結晶化処理を行って第1結晶質半導体膜を形成し、第1結晶質半導体膜を表面から所定の厚さ除去し、その後、第1結晶質半導体膜上に、シリコンを主成分とする第2非晶質半導体膜を形成し、不活性気体中で第2非晶質半導体膜を結晶化して、第2結晶質半導体膜を形成するものである。
【0023】
また他の構成は、シリコンに対し、0.1乃至10原子%の割合でゲルマニウムを含む第1非晶質半導体膜を形成し、第1非晶質半導体膜に結晶化の触媒作用を有する元素を添加した後、不活性気体中にて加熱処理による第1結晶化処理と、酸化雰囲気中でレーザー光の照射による第2結晶化処理を行って第1結晶質半導体膜を形成し、第1結晶質半導体膜を表面から所定の厚さ除去し、第1結晶化処理と第2結晶化処理とエッチング処理とを順次複数回繰り返した後、第1結晶質半導体膜上に、シリコンを主成分とする第2非晶質半導体膜を形成し、不活性気体中で第2非晶質半導体膜を結晶化して、第2結晶質半導体膜を形成するものである。
【0024】
第1結晶質半導体膜を所定の厚さ除去する手段としては、ウエットエッチング又はドライエッチング、及び化学的機械研磨を適用することができる。ウエットエッチングで行う場合にはHNO3、HF、CH3COOH、Br2を含むエッチング液、又はHNO3、HF、CH3COOH、I2を含むエッチング液で行うことができる。
【0025】
また、第1非晶質半導体膜の結晶化の際に用いた触媒元素はゲッタリングにより除去する。上記第2の結晶化処理の後、ゲッタリング処理を行うか、或いは第2結晶質半導体膜を形成した後行えば良い。
【0026】
こうして得られる結晶質半導体層は、シリコンとゲルマニウムを含有する第1結晶質半導体膜に密接して、シリコンを主成分とする第2結晶質半導体膜が設けられ、第1結晶質半導体膜は{101}面の配向率が30%以上であり、第2結晶質半導体膜は{101}面の配向率が20%以上である。また、第1結晶質半導体膜は、1×1020/cm3以下の濃度でゲルマニウムを含有し、第2結晶質半導体膜は、1×1019/cm3以下の濃度でゲルマニウムを含有している。また、第1結晶質半導体膜と第2結晶質半導体膜との結晶方位は60%以上の割合で一致している結晶質半導体層が提供される。
【0027】
また本発明は、基板上に配向率の高い第1結晶質半導体膜を形成し、その上に第2半導体層として非晶質シリコン膜を形成し、結晶化のためのレーザー光照射処理を施すことにより、第1結晶質半導体層の高い配向率の影響を受け、高い配向率を有する半導体層を得る。特に、好適には第1半導体層として、シリコンゲルマニウム(Si1-xGex)膜を用いる。
【0028】
同一の面方位の配向性が高いSi1-xGex膜は、プラズマCVD法により形成されたSi1-xGex(x=0.001〜0.05)膜に触媒元素を添加して加熱処理をすることにより得る。触媒元素を添加して加熱処理をすることにより得られた第1結晶質半導体層(結晶質Si1-xGex膜)は{110}面の配向性が高い。
【0029】
第1結晶質半導体層上に第2半導体層として、非晶質シリコン膜を形成し、レーザー光を照射する。この時、第1結晶質半導体層の配向性が第2半導体層(非晶質シリコン)の結晶配向性に影響して、{110}面の配向性が高い結晶質シリコン膜を得ることができる。第1結晶質半導体層を第2半導体層の結晶化工程における種(核)とすることにより、配向率の高い良好な結晶質半導体層を形成することができる。
【0030】
第1結晶質半導体層を形成する際に用いた触媒元素が、半導体層中に残留することで、この半導体層を用いて作製されたTFTの特性に悪影響を及ぼす可能性があるため、半導体層から触媒元素を移動させるための処理を行う。第2半導体層上に、ゲッタリング領域を形成する。なお、ゲッタリング領域を形成する前に、第2半導体層上にバリア層として、オゾン含有水溶液で処理して形成されるケミカルオキサイド膜を用いればよい。このバリア層の上にゲッタリング領域として、スパッタ法またはプラズマCVD法を用いて、半導体層を形成する。なお、ゲッタリング領域は、後にエッチングにより除去するため、結晶質半導体層との選択比の高い非晶質シリコン膜等密度の低い膜を用いることが好ましい。ゲッタリング領域に希ガス元素を添加する。希ガス元素としてはHe、Ne、Ar、Kr、Xeから選ばれた一種または複数種を用いればよい。なお、ゲッタリング領域の半導体層を形成する際に、半導体層中にこれらの希ガス元素を取り込ませると、それによりゲッタリング領域を形成することができる。
【0031】
触媒元素をゲッタリングに移動させるための加熱処理を行う。加熱処理は、光源の輻射熱を用いて加熱を行う方法、加熱した不活性気体により加熱を行う方法、電熱炉を用いて加熱を行う方法のどれを選択しても良い。このようなゲッタリングのための加熱処理を行うことにより、ゲッタリング領域に触媒元素が移動され、半導体層に残留する触媒元素の濃度を1×1017/cm3以下に低減することができる。ゲッタリング工程が終了したら、ゲッタリング領域を除去する。
【0032】
このように、配向率の高い第1結晶質半導体層を形成し、その上に第2半導体層を形成して結晶化のためにレーザー光を照射することにより、第1結晶質半導体層の配向性の影響を受け、第2半導体層も配向率の高い結晶質半導体層とすることができる。
【0033】
【発明の実施の形態】
(実施形態1)
本発明で得られる{101}面の配向率が高い結晶質半導体層は、シリコンを主成分とする複数の半導体膜から成ることを特徴としている。このような結晶質半導体層の典型的な一実施形態は、シリコンを主成分とし、ゲルマニウムを含む第1結晶質半導体膜と、シリコンを主成分とする第2結晶質半導体膜とから成っている。第1結晶質半導体膜は、第1非晶質半導体膜を絶縁表面上に形成し、その後結晶化を助長する触媒元素を添加して結晶化させることにより形成するものである。第2結晶質半導体膜は、第1結晶質半導体膜上に第2非晶質半導体膜を形成し、その後加熱処理又はレーザー光の照射により、エピタキシャル的に結晶成長させるものである。
【0034】
図1は本発明の結晶質半導体層の構成を説明する図である。基板101上にはブロッキング層102が形成される。その上に第1結晶質半導体膜103と第2結晶質半導体膜104が積層形成され、それが一体となって結晶質半導体層を構成している。第1及び第2結晶質半導体膜は、複数の結晶粒が集合した多結晶体である。しかしながら、それぞれの結晶粒は{101}面の方位に30%以上、好ましくは80%以上の割合で揃っている。また、第1結晶質半導体膜の結晶粒の面方位に依存して第2結晶質半導体膜の面方位も同じ方向に揃っていて、その確率は60%以上である。即ち、第1結晶質半導体膜の結晶上に第2結晶質半導体膜の結晶がエピタキシャル的に成長している。図1では、個々の結晶粒をハッチングを異ならせて区別し、ハッチングの違いとして示し、第1結晶質半導体膜の結晶粒と第2結晶質半導体膜の結晶粒が同じ方位をもって成長している様子を模式的に示している。
【0035】
このような結晶質半導体層を形成するための基板は、アルミナホウケイ酸ガラスやバリウムホウケイ酸ガラスなどのガラス基板を適用する。その他にも石英や、シリコン、ゲルマニウム、ガリウム・砒素などの半導体基板の表面に絶縁膜を形成したものを基板とすることも可能である。
【0036】
上記ガラス基板を用いる場合には、半導体膜とガラス基板との間に窒化シリコン、酸化シリコン、又は酸化窒化シリコンなどでブロッキング層を形成する。こうして、ガラス基板中に含まれるアルカリ金属元素などの不純物元素が半導体膜中に拡散することを防ぐ。ブロッキング層の好適な一例は、プラズマCVD法で形成されるSiH4、N2O、NH3を反応ガスとして用いた酸化窒化シリコン膜であり、又はSiH4、NH3、N2を反応ガスとして用いた窒化シリコン膜である。ブロッキング層は20〜200nmの厚さで形成する。
【0037】
ブロッキング層の表面に形成する第1非晶質半導体膜は、シリコンに0.1〜10原子%、好ましくは1〜5原子%のゲルマニウムを添加したものである。ゲルマニウムの含有量は、代表的な反応ガスとして用いられるSiH4とGeH4の混合比により調節することができる。その他にも適用される反応ガスはSi26、SiF4、GeF4などがあり、適宜組み合わせて使うことができる。第1非晶質半導体中に含まれる窒素及び炭素の濃度は5×1018/cm3未満、酸素の濃度は1×1018/cm3未満とし、非晶質半導体膜の結晶化の過程において、また作製される結晶質半導体膜の電気的特性に悪影響が出ないようにする。
【0038】
第1非晶質半導体膜の形成は、プラズマCVD法、減圧CVD法、スパッタ法などの各種成膜方法を適用することができる。代用的な成膜法としてプラズマCVD法を適用する場合にはSiH4とGeH4とから成る反応ガス、或いはSiH4と、H2で希釈したGeH4から成る反応ガスを反応室に導入し、1〜200MHzの高周波放電を10Hz〜100kHzの繰り返し周波数で変調した間欠放電により成膜することが好ましい。間欠放電とすることにより、ラジカルを主体とした成長により均質な被膜を形成することができる。堆積する非晶質半導体膜の厚さは20〜100nmとする。
【0039】
減圧CVD法を用いる場合にも同様な反応ガスを適用することが可能であり、好ましくはHeで反応ガスを希釈して、400〜500℃の温度で基板上に非晶質半導体膜を堆積する。いずれにしても、本発明で用いる上記ガスは、堆積される非晶質半導体膜に取り込まれる酸素、窒素、炭素などの不純物元素の濃度を低減するために高純度に精製されたものを用いる。
【0040】
結晶化に際しては、第1非晶質半導体膜の表面に、該非晶質半導体膜の結晶化を助長する元素(触媒元素)を導入する。当該元素としてはFe、Ni、Co、Ru、Rh、Pd、Os、Ir、Pt、Cu、Auから選ばれた一種又は複数種の元素を用いる。これらの元素は、本明細書に記載する何れの発明においても非晶質半導体膜の結晶化を助長する元素として使用することができる。上記いずれの元素を用いても同様の効果を得ることができるが、代表的にはNiを用いる。
【0041】
当該元素を導入する箇所は、第2非晶質半導体膜の全面、又は第1非晶質半導体膜の全面とする。或いは第2非晶質半導体膜における適宣箇所のスリット状の面又は点状の面などとする。後者の場合には、好ましくは非晶質半導体膜上に絶縁膜が形成され、その絶縁膜に設けられた開孔を利用して当該元素を導入することができる。開孔の大きさに特に限定はないが、その幅は10〜40μmとすることができる。また、その長手方向の長さは任意に決めれば良く、数十μm〜数十cmの範囲とすることができる。
【0042】
これらの当該元素を導入する方法は、当該元素を含む薄膜を非晶質半導体膜の表面又は内部に存在させる手法であれば特に限定はなく、例えば、スパッタ法、蒸着法、プラズマ処理法(含むプラズマCVD法)、吸着法、金属塩の溶液を塗布する方法などを使用することができる。プラズマ処理法は、不活性ガスを用いたグロー放電雰囲気において、陰極からスパッタされる元素を利用する。また、金属塩の溶液を塗布する方法は簡易であり、当該元素の濃度調整が容易である点で有用である。
【0043】
金属塩としては各種塩を用いることが可能であり、溶媒としては水、アルコール類、アルヒデト類、エーテル類その他の有機溶媒、又は水とこれらの有機溶媒のいずれかの混合物を用いることができる。また、金属塩が完全に溶解した溶液とは限らず、金属塩の一部又は全部が懸濁状態で存在する溶液であっても良い。いずれの方法を採用するにしても、当該元素は非晶質半導体膜の表面又は内部に分散させて導入する。
【0044】
上記何れかの方法でシリコンの結晶化を助長する元素を導入した後、当該元素を利用して非晶質半導体膜の結晶化を行う。結晶化は電熱炉を用いた加熱処理の他に、RTA法を用いても良い。RTA法における加熱手段としては、ハロゲンランプ等を用いた輻射加熱又は、加熱された気体をもって半導体膜を加熱する手段を採用することができる。RTA法の場合は短時間で加熱処理が進むので、加熱温度は600〜750℃とする。一方、電熱炉を用いる場合には、500〜600℃で1〜12時間の加熱処理が適している。以上の加熱処理は空気中や水素雰囲気中でも良いが、好適には窒素或いは不活性ガス雰囲気中にて行う。
【0045】
その後、さらにレーザー光又は紫外線、赤外線などの強光の照射により結晶性を高める処理を行う。加熱処理のみでも{101}に優先的に配向する結晶質半導体膜を得ることができるが、好ましくは、加熱処理を行いその後レーザー光などの強光の照射を行う。加熱処理後のレーザーアニールは、結晶粒内に残される結晶欠陥を修復し消滅させることができ、結晶の品質を向上させる目的に対して有効な処置となる。
【0046】
レーザーアニールは、波長400nm以下エキシマレーザーやアルゴンレーザーなどの気体レーザー、又はYAG、YVO4、YAlO3、YLFレーザーに代表される固体レーザーの第2高調波〜第4高調波を用いる。例えば、Nd:YAGレーザーの第2高調波は532nmであり、半導体のバンド間遷移の吸収帯域の光を適用する。レーザー自体はパルス発振又は連続発振のいずれのレーザーを適用しても良い。これらのレーザー光は光学系にて線状又はスポット状に集光し、そのエネルギー密度を100〜700mJ/cm2として照射し、上記のように集光したレーザー光を基板の所定の領域に渡って走査させ処理を行う。レーザーの代わりに、ハロゲンランプ、キセノンランプ、水銀ランプ、メタルハライドランプ、エキシマ発光ランプなどを光源として強光を照射しても同様の効果を得ることが出来る。
【0047】
連続発振レーザーを用いる場合の好適な一例は、連続発振モードのYVO4レーザー発振器を用い、その第2高調波(波長532nm)の出力5〜10Wを、光学系にて短手方向に対する長手方向の比が10以上である線状レーザー光に集光し、且つ長手方向に均一なエネルギー密度分布を有するように集光して10〜200cm/secの速度で走査して結晶化させる。均一なエネルギー密度分布とは、完全に一定であるもの以外を排除することではなく、エネルギー密度分布において許容される範囲は±10%である。
【0048】
以上のような工程により、{101}面の配向率が高い第1結晶質半導体膜が得られるメカニズムは、概略以下のように推測することができる。
【0049】
第1非晶質半導体膜に導入された触媒元素は、脱水素処理中に速やかに非晶質半導体中に拡散する。そして、不均質な核形成が始まる。そして、当該元素とシリコンが反応してシリサイドが形成され、これが結晶核となりその後の結晶成長に寄与する。例えば、代表的な元素としてNiを用いた場合、ニッケルシリサイド(以下、NiSi2と記する)が形成される。第1非晶質半導体膜においては、NiSi2中にゲルマニウムが殆ど固溶されないため、第1非晶質半導体膜中のゲルマニウムを周囲に排除しつつ核が形成する。
【0050】
NiSi2は特定の配向性を持たないが、第1非晶質半導体膜の厚さを20〜100nmとすると基板表面に対し平行な方向しか殆ど成長することが許されなくなる。この場合、NiSi2と結晶半導体の(111)面とが接する界面エネルギーが最も小さいので、結晶質半導体膜の表面と平行な面は(110)面となり、この格子面が優先的に配向する。結晶成長方向が基板表面に対し平行な方向に、しかも柱状に成長する場合には、その柱状結晶を軸とした回転方向には自由度が存在するため、必ずしも(110)面が配向するとは限らないため、その他の格子面も析出すると考えられる。
【0051】
NiSi2から見ると、周囲の非晶質領域のみに原子半径の大きいゲルマニウムが存在しているため、大きな歪み(引っ張り応力)が発生していることが予想される。この歪みエネルギーにより、核生成の臨界半径を大きくする方向に働く。さらに、この歪み(引っ張り応力)は、NiSi2による核の結晶方位に制限を与え、特定の結晶面(具体的には、{101}面)の配向率を高める作用があると推測される。
【0052】
NiSi2はホタル石型構造であり、ダイアモンド型構造のシリコン格子間にNi原子を配置した構造となっている。NiSi2からNi原子が無くなるとシリコンの結晶構造が残ることになる。数々の実験の結果から、Ni原子は非晶質半導体側に移動していくことが判明しており、この理由は非晶質半導体中の固溶度の方が結晶半導体中のそれよりも高いためであると考えられる。従って、恰もNiが非晶質半導体中を移動しながら結晶質半導体を形成するというモデルを立案することができる。以上の考察より、加熱処理によって、第1非晶質半導体膜は{101}面の配向率が高い結晶が成長する。
【0053】
非晶質シリコンに0.1〜10原子%のゲルマニウムを含有させると結晶核の発生密度が低下する。図2は結晶核の隣接間距離に対するGeH4の添加量依存性について調べた結果であり、縦軸はその累積度数を示している。図2(A)はシリコンの結晶化を助長する元素として、酢酸Ni塩が3ppmの水溶液を用いた結果であり、図2(B)は1ppmの結果を示している。GeH4の添加量の増加は、非晶質半導体膜中に含まれるゲルマニウム濃度がそれに伴って増えることを意味する。図2(A)、(B)の結果は、いずれもGeH4の添加量が多い方が結晶核の隣接間距離が長くなることを示している。図3はこの結果を基に、GeH4の添加量に対する結晶核の密度を示している。GeH4の量が増加するに従い、結晶核密度が低下している傾向が示されている。この結果は、上記考察において、非晶質半導体膜中にゲルマニウムが存在することにより核生成の臨界半径を大きくする方向に働くことを裏付けている。
【0054】
ゲルマニウム濃度の妥当性は作製される結晶質半導体膜の特性から推測することができる。図14は成膜時のGeH4流量を変化させた場合におけるラマン分光分析のデータを示している。二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)によりGeH4流量が5SCCMの場合ゲルマニウム含有量は1.5原子%、10SCCMの場合は3原子%、30SCCMの場合は11原子%となることが判明しているが、ラマンスペクトルから見るとゲルマニウム濃度の増加に従い低波数側にピーク位置がシフトしていることが示されている。単結晶シリコンのピーク位置(520.7cm-1)からのシフトは結晶の歪みを示し、ゲルマニウム濃度の増加に従い歪みが増大している。GeH4を添加しない結晶質半導体膜のピーク位置は516cm-1であり、GeH4流量が5SCCMの場合は515cm-1、10SCCMの場合は514cm-1であるのに対し、30SCCMの場合は506cm-1とシフト量が増大している。この結果はGeH4流量の増加に従い結晶が歪んで行くことを示し、上記結晶質半導体膜中のゲルマニウム含有量との関連から、ゲルマニウムの好適な含有量は10原子%以下、好ましくは5原子%以下であることが解る。
【0055】
一旦溶融状態を経て固化するレーザーアニールにより、結晶の配向率が向上すると共に、融点の低いゲルマニウムは膜の表面側に偏析する。図4は固相成長後とレーザーアニール後のゲルマニウム濃度分布をSIMSにて測定した結果であり、レーザーアニール後においてゲルマニウム濃度が表面側で高くなっていることを示している。それに伴って、膜中ではゲルマニウム濃度の低下が確認され、明らかに膜の表面側にゲルマニウムが偏析していることが確認できる。
【0056】
ゲルマニウムは上述にように結晶化に対し、シリコン結晶の配向率を高めるのに有効に作用すると考えられる。しかし、ゲルマニウムの存在により、欠陥が生成される。欠陥はシリコンネットワークの乱れに起因するものであり、ゲルマニウム自身は水素で補償されにくいという性質に起因するものである。従って、結晶化後においてゲルマニウムは必ずしも必要ではない。
【0057】
図4で示すようにレーザーアニール後はゲルマニウムが表面に偏析するので、高濃度となった層をエッチング除去する手段を図ることができる。エッチングにはHNO3、HF、CH3COOH、及びBr2(CP−4という)又はHNO3、HF、CH3COOH、及びI2(CP−8という)から成るエッチング液によって行うことができる。その他にもセコ液、ダッシュ液などを用いても良い。
【0058】
また、レーザーアニールとエッチング処理を複数回繰り返すことで、結晶の配向を保持したまま、第1結晶質半導体膜のゲルマニウム濃度をさらに低減させることができる。勿論、第1結晶質半導体膜の厚さは減少するが、50nmの膜厚に対し、5nmづつ3回のエッチング処理により残存するゲルマニウム濃度を1×1021/cm3以下に減少させることができる。
【0059】
その後、第1結晶質半導体膜上に第2非晶質半導体膜をプラズマCVD法又は減圧CVD法などの堆積法で形成する。第2非晶質半導体膜はシリコンを主成分とする半導体膜であり、代表的には非晶質シリコン膜で形成する。第2非晶質半導体膜の厚さは10〜100nm、好ましくは30〜60nmの厚さで形成する。第1結晶質半導体膜の表面はフッ酸で酸化膜の除去を行うが、工程上膜表面に付着した空気により酸素、炭素等の付着元素が残りそれが界面に保持されたまま残る。
【0060】
第2非晶質半導体膜は、加熱処理又はレーザーアニールにより結晶化させる。結晶化は下地の結晶に依存してエピタキシャル的に成長する。即ち、下地の配向性をそのまま残して、配向率の高い結晶質半導体層を得ることができる。
【0061】
次に、本発明に基づいて作製される結晶質半導体層について、その作製方法の一例を示す。第1非晶質半導体膜を形成するための反応ガスはSiH4と水素で10%に希釈されたGeH4を用いる。これらの反応ガスは、形成される非晶質半導体膜に含まれる酸素、窒素、炭素の不純物濃度を低減させるために高純度に精製されたものを用いる。SiH4の純度は99.9999%以上のものを、またGeH4は窒素、炭化水素化合物が1ppm以下、CO2が2ppm以下を適用する。第1非晶質半導体膜において、シリコンに対するゲルマニウムの含有量を変化させたい場合には、合計流量が一定になるようにして、SiH4とH2で10%に希釈したGeH4のガス流量比を変化させる。その他、共通条件としては、高周波電力が0.2〜0.5W/cm2、好ましくは0.35W/cm2(27MHz)であり、繰り返し周波数1〜10kHz(デューティ比30%)のパルス放電に変調して平行平板型のプラズマCVD装置の陰極に給電する。反応圧力20〜50Pa、好ましくは33.25Pa、基板温度300℃、電極間隔35mmとする。
【0062】
図5は第1及び第2非晶質半導体膜を形成するために用いるプラズマCVD装置の構成の一例を示している。プラズマCVD装置は反応室501に高周波電源505が接続する陰極(カソード)502、陽極(アノード)503が設けられた平行平板型である。陰極502はシャワー板となっていて、ガス供給手段506からの反応ガスは、このシャワー板を通して反応室中に供給される。陽極503にはシーズヒーターなどによる加熱手段504が設けられ、基板515が設置されている。ガス供給系の詳細は省略するが、SiH4やGeH4などが充填されたシリンダー514、ガスの流量を制御するマスフローコントローラー512、ストップバルブ513などから構成されている。排気手段507は、ゲートバルブ508、自動圧力制御弁509、ターボ分子ポンプ(又は複合分子ポンプ)510、ドライポンプ511から成っている。ターボ分子ポンプ(又は複合分子ポンプ)510、ドライポンプ511は潤滑油を使用しないもので、油の拡散による反応室内の汚染を完全に無くしている。反応室の容積13リットルの反応室に対し、一段目に排気速度300リットル/secのターボ分子ポンプ、二段目に排気速度40m3/hrのドライポンプを設け、排気系側から有機物の蒸気が逆拡散してくるのを防ぐと共に、反応室の到達真空度を高め、非晶質半導体膜の形成時に不純物元素が膜中に取り込まれることを極力防いでいる。
【0063】
絶縁表面上に形成する第1非晶質半導体膜の厚さは5〜30nmとする。第1非晶質半導体膜にはシリコンに対して原子半径の大きなゲルマニウムを添加することで、結晶核の生成密度を小さくする効果を得ることができる。同様の効果は錫や、シリコンと結合しない不活性気体であるAr、Kr、Xeなどで代用することもできる。この場合、シリコンの結晶化が困難となるが、触媒元素を用いて結晶化することでその問題は解消される。
【0064】
第1非晶質半導体膜の結晶化には、シリコンの結晶化を助長する元素としてNiを用い、500〜600℃の加熱処理とレーザーアニールを行う。代表的な作製条件として、窒素雰囲気中550℃にて4時間の加熱処理及びレーザーアニールを行う方法がある。Niは酢酸Niを10ppmの濃度で含有する水溶液を用い、スピナーで塗布する。また、レーザーアニールはXeClエキシマレーザー(波長308nm)を用い、照射エネルギー密度300〜600mJ/cm2、重ね合わせ率90〜95%で照射する。レーザーアニールは加熱処理により結晶化した膜の未結晶化部分の結晶化や、結晶粒内に欠陥を補修するために行っている。また、ゲルマニウムを膜表面に偏析させるために行う。
【0065】
第1結晶質半導体膜は表面から1〜10nm、好ましくは5nm程度の厚さで除去して薄膜化する。薄膜化の方法はウエットエッチング又はドライエッチングなどの化学エッチング又は化学的機械研磨による除去等の方法で行う。こうして、ゲルマニウムが偏析した表面層を除去することで第1結晶質半導体膜は薄くなるが、ゲルマニウム濃度を低減することが可能となる。このレーザーアニールとエッチング処理を繰り返し行うことで第1結晶質半導体膜中に残るゲルマニウム濃度を低減させることができる。
【0066】
第1結晶質半導体膜の表面に形成された酸化膜の除去を行う。酸化膜の除去はフッ酸又は緩衝フッ酸により行う。その後プラズマCVD法により第2非晶質半導体膜の形成を行う。第2非晶質半導体膜はSiH4又はSiH4と水素の混合ガス、或いはSi26を用いて行う。堆積する厚さは10〜50nmであり、その後、レーザーアニール又は加熱処理による固相成長により結晶化させる。この場合、下地に形成されている第1結晶質半導体膜の結晶方位に従い、エピタキシャル的な結晶成長を得ることができる。
【0067】
こうして、ガラスなどの耐熱性の低い材料を基板として用いながらも、{101}面に対して高い配向性を示す結晶質半導体層を得ることができる。この半導体層は第1結晶質半導体膜、第2結晶質半導体膜から成り、上記レーザーアニールとエッチング処理により、この高い配向率を持ちながらもゲルマニウム濃度の低い結晶質半導体層を得ることができ、単結晶に匹敵する高品質の結晶質半導体層を得ることができる。
【0068】
勿論、この結晶質半導体層は2層に限定されるものではなく、3層又はそれ以上の積層構造としても良い。その場合には基板側から徐徐にゲルマニウムの含有量の少ない半導体膜を複数積層した形態とするのが好ましい。そのような構成により、ゲルマニウム量が徐徐に減少しつつ、{101}面の配向率の高い結晶質半導体膜を形成することができる。このような{101}面の配向率の高い結晶質半導体膜はTFTのチャネル形成領域、光起電力素子の光電変換層など素子の特性を決定付ける部位に好適に用いることができる。
【0069】
(実施形態2)
図21で示すように基板10上に下地絶縁膜11、該下地絶縁膜11上に第1半導体層として非晶質のシリコンゲルマニウム(Si1-xGex:x=0.001〜0.05)膜12を形成する。下地絶縁膜11としては、SiH4、NH3およびN2Oを反応ガスとして形成される酸化窒化シリコン膜およびSiH4およびN2Oを反応ガスとして成膜される酸化窒化シリコン膜を積層して用いる。
【0070】
第1半導体層12は、実施形態1と同様にして、非晶質シリコンゲルマニウム膜をプラズマCVD法または減圧CVD法により形成する。堆積される非晶質半導体膜の厚さは20〜100nmの範囲とする。
【0071】
続いて、第1半導体層の結晶化処理を行う。結晶化に際しては、第1半導体層12の表面に実施形態1と同様な触媒元素13を添加する。上記いずれの元素を用いても同質同様の効果を得ることができるが、代表的にはNiを用いる。これら触媒元素を半導体層に添加する方法は実施形態1と同様半導体層の表面または内部に存在させる手法であれば特に限定はない(図21(A))。
【0072】
上記いずれかの方法で半導体層に触媒元素を添加した後、加熱処理を行い、第1結晶質半導体(Si1-xGex:x=0.001〜0.05)層14を形成する。光源の輻射熱を用いて加熱処理を行う方法、加熱した不活性気体により加熱処理を行う方法、電熱炉を用いて加熱処理を行う方法のいずれかを用いればよい(図21(C))。
【0073】
次いで、酸素雰囲気中または大気雰囲気において、第1結晶質半導体層14に第1のレーザー光の照射を行う。ここまでの段階で{101}に優先的に配向し、結晶粒の大きな第1結晶質半導体層15を得ることができる(図21(D))。なお、酸素を含む雰囲気中でのレーザー光照射工程により、第1結晶質半導体層15表面は、凹凸形状となる。また、酸化膜16が形成される。
【0074】
レーザー光としては、波長400nm以下のエキシマレーザーや、YAGレーザーまたはYVO4レーザーの第2高調波(波長532nm)〜第4高調波(波長266nm)を光源として用いて行う。これらのレーザー光は光学系にて線状またはスポット状に集光し、そのエネルギー密度を200〜500mJ/cm2として照射し、上記のように集光したレーザー光を基板の所定の領域に渡って走査させ、90〜98%のオーバーラップ率をもって結晶質半導体膜に照射する。
【0075】
レーザー光照射の後、第1結晶質半導体層15表面に形成された酸化膜16を除去し、第1結晶質半導体層上に第2半導体層17を形成する。第2半導体層17として、プラズマCVD法により非晶質シリコン膜を膜厚20〜100nmで形成する。
【0076】
続いて、図22(A)で示すように第2半導体層にレーザー光を照射して、第1結晶質半導体層の配向性を影響させた結晶化を行う。第2のレーザー光照射の工程は、窒素雰囲気または真空において行う。第2のレーザー光としては、波長400nm以下のエキシマレーザーや、YAGレーザーまたはYVO4レーザーの第2高調波(波長532nm)〜第4高調波(波長266nm)を光源として用いて行う。これらのレーザー光は光学系にて線状またはスポット状に集光し、そのエネルギー密度を400〜800mJ/cm2として照射し、上記のように集光したレーザー光を基板の所定の領域に渡って走査させ、90〜98%のオーバーラップ率をもって結晶質半導体膜に照射する。
【0077】
このようにして、第1結晶質半導体層(結晶質シリコンゲルマニウム)および第2結晶質半導体層18(結晶質シリコン)の積層からなる結晶質半導体層19が形成される。なお、第2のレーザー光照射工程では、得られる結晶質半導体層の表面に凹凸が形成されることはない。
【0078】
続いて、図22(B)で示すように半導体層に含まれる触媒元素を除去するための工程を説明する。結晶質半導体層上にバリア層20を形成する。バリア層の厚さは特には限定されないが、簡便にはオゾン含有水溶液で処理することにより形成されるケミカルオキサイド膜で代用してもよい。また、硫酸、塩酸、硝酸などと過酸化水素水とを混合させた水溶液で処理しても同様にケミカルオキサイド膜を形成することができる。他の方法としては、酸化雰囲気中でのプラズマ処理や、酸素含有雰囲気中での紫外線照射によりオゾンを発生させて酸化処理を行ってもよい。また、クリーンオーブンを用いて、200〜350℃程度に加熱して薄い酸化膜を形成しバリア層としてもよい。あるいは、プラズマCVD法やスパッタ法、蒸着法などで1〜5nm程度の酸化膜を堆積してバリア層としてもよい。
【0079】
その上にプラズマCVD法やスパッタ法でゲッタリング領域21となる半導体膜を形成する。代表的にはスパッタ法でArを0.01〜20原子%含む非晶質シリコン膜で形成する。この半導体膜はゲッタリング工程後に除去するため、結晶質半導体層とエッチングの選択比を高くするため、密度の低い膜としておくことが望ましい。非晶質シリコン膜中に希ガス元素を添加させて、膜中に希ガス元素を同時に取り込ませると、それによりゲッタリング領域を形成することができる。希ガス元素としてはHe、Ne、Ar、Kr、Xeから選ばれた一種または複数種を用いる。
【0080】
次いで、ゲッタリングのための加熱処理を行う。加熱処理は、電熱炉を用いた方法(窒素雰囲気中にて450〜600℃で0.5〜12時間)や、加熱用の光源を用いたRTA法、加熱した不活性気体によるRTA法(550〜700℃で、1〜5分)などいずれかの方法を用いればよい。この加熱処理により、触媒元素が拡散によりゲッタリング領域に移動する。
【0081】
その後、半導体膜21を選択的にエッチングして除去する。エッチングの方法としては、ClF3によるプラズマを用いないドライエッチング、或いはヒドラジンや、テトラエチルアンモニウムハイドロオキサイド(化学式 (CH34NOH)を含む水溶液などアルカリ溶液によるウエットエッチングで行うことができる。この時バリア層20はエッチングストッパーとして機能する。また、バリア層20はその後フッ酸により除去すれば良い。
【0082】
以上のように本発明を用いることにより、結晶質半導体層に含まれる触媒元素の濃度を1×1017/cm3以下にまで低減することができる。また、得られた結晶質半導体層は、高い配向率を有する第1結晶質半導体層およびその第1結晶質半導体層の影響を受けて結晶成長した第2結晶質半導体層の積層からなり、配向率が高く粒径の大きな結晶粒が集まった良好な結晶質半導体層である。
【0083】
このようにして得られた半導体膜を反射電子回折パターン(EBSP:Electron Backscatter diffraction Pattern、以下EBSPという)により観察した結果を図23と図24に示す。
【0084】
EBSPは、走査型電子顕微鏡(SEM:Scanning Electron Microscopy)に専用の検出器を設け、一次電子の後方散乱から結晶方位を分析する手段である。試料の電子線の当たる位置を移動させつつ方位解析を繰り返す(マッピング測定)ことにより、面状の試料の結晶方位または配向の情報を得ることができる。その一例として、本実施例で示すように各測定ポイントの結晶粒が表面に向けている結晶方位を色別に表したりすることができる。また、ある測定ポイントに着目し、隣接するポイントにおいて、測定者の設定した結晶方位のずれ角(許容ずれ角)の範囲内である領域を区別して表すこともできる。
【0085】
許容ずれ角は測定者が自由に設定することが可能であるが、この許容ずれ角を10°と設定し、あるポイントに着目したときに隣接するポイントの結晶方位のずれ角が10°以下の範囲内である領域を結晶粒と呼び、結晶粒が複数集合して多結晶構造の結晶質半導体膜が形成されている。図23と図24は同じ面方位の領域を同じ色調で表したマッピング測定の結果であり、同じ色調の塊を一つの結晶粒と見なすことができる。なお、結晶粒は実際には複数の微小な結晶が集合したものであるが、結晶方位の許容ずれ角が小さいため、巨視的には1つの結晶粒と見なすことができる。
【0086】
図23は本発明を用いて作製された結晶質半導体層を観察した結果を示す。以下に、作製方法を簡単に説明する。まず、第1半導体層として、ゲルマニウムを3.5原子%含んだシリコンゲルマニウム膜をCVD法により膜厚55nmに形成する。次いで、第1半導体層に触媒元素としてNiを添加する。第1半導体層表に重量換算で10ppmのNiを含む水溶液をスピンコート法により塗布して添加する。第1半導体層を500℃で1時間加熱処理することにより水素を脱離させた後、電熱炉を用いて、580℃で4時間の加熱処理を行う。これにより、第1半導体層は結晶化され、{101}面の配向率が高い第1結晶質半導体層が形成される。
【0087】
続いて、第1結晶質半導体層表面に形成された酸化膜を除去し、その表面を清浄にしたら、第1のレーザー光を照射する。第1のレーザー光照射は、酸化雰囲気において行う。この処理により、第1結晶質半導体層の表面は凹凸形状となる。続いて、第1結晶質半導体層表面に形成された酸化膜を再び除去し、表面を清浄にしてから、第2半導体層として非晶質シリコン膜を膜厚30nmで形成する。次いで、第2半導体層に第2のレーザー光を照射して、第2半導体層を結晶化させる。なお、第2のレーザー光照射は窒素を含む雰囲気下で行えばよい。この処理では、第1結晶質半導体層の配向性の影響を受けて、第2半導体層が結晶成長し、高い配向率を有して、粒径の大きな結晶粒が集まった結晶成長をする。
【0088】
このような結晶質半導体層をEBSPにより観察したところ、図23は{101}面を示す色調の領域が多いことを示すデータであり、{101}面の配向率は30〜40%となっている(面方位の区別は図中に挿入した凡例図を参照されたい。扇形状の枠は標準三角形と呼ばれ、この中の立方晶系における全ての指数が含まれている。各頂点の結晶方位は{001}、{101}、{111}を表している。)。なお、図24には、比較のために、第1半導体層に非晶質シリコン膜を用いて、触媒元素を用いた結晶化方法(本発明と同様の処理)により結晶化し、第2半導体層として再び非晶質シリコン膜を形成して、以下、レーザー光照射を本発明と同様に処理を施して作製された結晶質シリコン膜を観察した結果を示している。
【0089】
図23および図24を比較しても明らかなように、本発明を用いて作製された結晶質半導体膜は、{101}面の配向率が高く、また、粒径の大きな結晶粒が得られており、このような粒径の大きな結晶粒が集合した結晶性の高い結晶質半導体膜を得ることができる。
【0090】
【実施例】
(実施例1)
本発明の一実施例を図6と図7を参照して説明する。まず、図6(A)で示すように、基板10上にブロッキング層11として、SiH4、NH3およびN2Oを反応ガスとして形成される酸化窒化シリコン膜およびSiH4およびN2Oを反応ガスとして成膜される酸化窒化シリコン膜を順次積層した絶縁層を形成する。その上に第1非晶質半導体膜12として、シリコンに3原子%のゲルマニウムが添加された膜を用いる。この非晶質半導体膜は、プラズマCVD法でSiH4と、H2で10%に希釈されたGeH4を用い、その流量比を9対1として形成する。基板加熱温度は300℃、反応室内の圧力は33.25Paとし、27MHz、0.35W/cm2の高周波電力で反応ガスを分解し、非晶質半導体膜を堆積する。この時、放電は繰り返し周波数10KHz、デューティ比(電力が供給されるオンとオフの時間比)30%の間欠放電としている。
【0091】
いずれにしても、本発明で用いる上記ガスは、堆積される非晶質シリコンゲルマニウム膜に取り込まれる酸素、窒素、炭素などの不純物元素の濃度を低減するために高純度に精製されたものを用いる。堆積される第1非晶質半導体膜12の厚さは20〜100nmの範囲とする。
【0092】
続いて、図6(B)に示すように第1非晶質半導体膜12の結晶化処理を行う。結晶化に際しては、第1非晶質半導体膜の表面に触媒元素としてNiを添加する。Niの添加方法は、Ni材で形成される陰極を用い、Arなどの不活性気体のグロー放電により、陰極をスパッタリングして微量のNiを第1非晶質半導体膜12に付着させる。その他の手法として、金属塩の溶液を塗布する方法を適用しても良い。
【0093】
触媒元素を添加した後、加熱処理を行い結晶化する。加熱処理は光源の輻射熱を用いて加熱処理を行う方法、加熱した不活性気体により加熱処理を行う方法、電熱炉を用いて加熱処理を行う方法のいずれかを用いれば良い。こうして図6(C)に示す様に第1結晶質半導体膜14が形成される。
【0094】
次いで、酸素雰囲気中又は大気雰囲気において、第1結晶質半導体膜14にレーザー光の照射を行う。レーザー光としては、波長400nm以下のエキシマレーザーや、Nd:YAGレーザーの第2高調波(波長532nm)〜第4高調波(波長266nm)から出力されるパルスレーザー光又は連続発振レーザー光を用いる。レーザー光は光学系にて線状又はスポット状に集光し、そのエネルギー密度を200〜500mJ/cm2として照射しする。上記のように集光したレーザー光を基板の所定の領域に渡って走査させ、90〜98%のオーバーラップ率をもって第1結晶質半導体膜に照射する。なお、酸素を含む雰囲気中でのレーザー光の照射工程により、第1結晶質結晶質半導体膜15表面には、突起部(リッジとも呼ばれる)が形成される。また、大気雰囲気中にて溶融固化を行うため表面には酸化膜が形成される(図6(D))。
【0095】
レーザー光照射の後、第1結晶質半導体膜15表面に形成された酸化膜16は緩衝フッ酸で除去する。その後、5HNO3、3HF、3CH3COOH、0.1Br2(CP−4という)を混合したエッチング液で第1結晶質半導体膜15の表面層を5nm程度の厚さで除去する。それにより、ゲルマニウムが偏析した高濃度領域を除去することができ、残された第1結晶質半導体膜のゲルマニウム濃度を低減することができる。以上の工程により、図6(E)に示す様に{101}に優先的に配向し、結晶粒の大きな第1結晶質シリコンゲルマニウム膜17を得ることができる。
【0096】
第1結晶質半導体膜17上に第2非晶質半導体膜を形成する。第2非晶質半導体膜18はプラズマCVD法で非晶質シリコン膜をもって形成する。その厚さは50nmとする(図6(F))。
【0097】
その後、前述と同様のレーザー光を照射して、第2非晶質半導体膜18を結晶化する。結晶成長は下地にある第1結晶質半導体膜からエピタキシャル的に成長する。これにより、{101}の配向率が高い第2結晶質半導体膜19を得ることができる(図7(A))。
【0098】
結晶化に伴って、第1結晶質半導体膜に残存するNiの一部は、第2結晶質半導体膜まで拡散する可能性がある。いずれにしても、結晶質半導体層に残存するNiは結晶化後ゲッタリング除去することが望ましい。
【0099】
図7(B)はゲッタリング工程を説明する図であり、第2結晶質半導体膜の表面に薄いバリア層20を形成する。薄いバリア層20はケミカルオキサイドのような酸化膜、オゾン雰囲気或いは大気中において精製される酸化膜、蒸着やスパッタリング法などで形成される薄い酸化膜などにより形成する。その厚さは1〜5nm程度とする。その上にはArを1×1020/cm3以上含む非晶質シリコン膜21を形成する。高濃度にArを含むことにより、非晶質シリコン膜に歪み場が形成されこれがゲッタリングサイトとして機能する。
【0100】
ゲッタリングの加熱処理はガス加熱型の熱処理装置を用い、650℃、10分の処理により行う。電熱炉を用いる場合には550℃にて4時間の熱処理を行う。結晶質半導体層に残存するNiはこの処理により非晶質シリコン膜21に偏析させせることができる(図中矢印の方向)。Niの含有量は1×1018/cm3以下とすることができる。
【0101】
その後、非晶質シリコン膜21を選択的にエッチングにより除去する。エッチングの方法としては、ClF3によるプラズマを用いないドライエッチング、或いはヒドラジンや、テトラチルアンモニウムハイドロオキサイド(化学式 (CH34NOH)を含む水溶液などアルカリ溶液によるウエットエッチングで行うことができる。この時、薄い絶縁膜20はエッチングストッパーとして機能する。この薄い絶縁膜20はフッ酸により除去すれば良く、これにより清浄な結晶質半導体層の表面を得ることができる。
【0102】
さらに、図7(C)に示す如く、結晶質半導体層中に残存する歪みを緩和する熱処理を行うと良い。熱処理温度は400〜500℃であり、この熱処理は、RTA法などにより行う。以上のようにして配向率の高い結晶質半導体膜を得ることができる。
【0103】
図15(A)は第1結晶質半導体膜としてゲルマニウムを3.5原子%含んだ膜のEBSP測定の結果である。膜厚は55nmであり、重量換算で10ppmのNiを含む水溶液を塗布して、スピンコート法により添加し、500℃で1時間加熱処理することにより水素を脱離させた後、電熱炉を用いて、580℃で4時間の加熱処理を行い、さらにレーザーアニールを行ったものである。この結晶質半導体膜をEBSPにより観察した。図15(A)は、{101}面を示す色調の領域が多く、{101}面の配向率が60%程度であることを示している(面方位の区別は図中に挿入した凡例図を参照されたい。)。
【0104】
続いて、第1結晶質半導体膜表面に形成された酸化膜を再び除去し、表面を清浄にしてから、第2非晶質半導体膜として非晶質シリコン膜を膜厚30nmで形成する。その後、580℃にて4時間の加熱処理により結晶化させた膜のEBSP測定の結果を図15(B)に示す。{101}の配向率は若干低下するものの、30〜40%の配向率が得られている。第1結晶質半導体膜の配向性の影響を受けて、第2結晶質半導体膜が結晶成長し、高い配向率を有して、粒径の大きな結晶粒が集まった結晶成長をすることができる。
【0105】
図15から明らかなように、本発明を用いて作製された結晶質半導体膜は、{101}面の配向率が高く、また、粒径の大きな結晶粒が得られており、このような粒径の大きな結晶粒が集合した結晶性の高い結晶質半導体膜を得ることができる。
【0106】
(実施例2)
実施例1と同様にして第1結晶質半導体膜15を形成した後にゲッタリングを行っても良い。図8(A)に示す様に、バリア層30を介して歪み場を有する非晶質シリコン膜31から成るゲッタリングサイトを形成する。バリア層30は、レーザーアニール時に形成される酸化膜を適用することも可能であるし、前述のようにケミカルオキサイドを用いても良い。
【0107】
その後、不活性気体中にて650℃、30分の加熱処理をおこないゲッタリングを行う。非晶質シリコン膜31、バリア層30を除去した後、さらにHNO3、HF、CH3COOH、I2(CP−8という)から成るエッチング液を用い、第1結晶質半導体膜15の表面を5nm程度エッチングして表面を平坦化すると共にゲルマニウムが偏析した高濃度の層を除去する。それにより、第1結晶質半導体膜のゲルマニウム濃度を低減することができる。
【0108】
第1結晶質半導体膜32上に第2非晶質半導体膜33を形成する。第2非晶質半導体膜33はプラズマCVD法で非晶質シリコン膜をもって50nmの厚さで形成する。
【0109】
レーザー光を照射して第2非晶質半導体膜33を結晶化する。結晶成長は下地にある第1結晶質半導体膜からエピタキシャル的に成長し、同じ配向をもって結晶成長する。以上の工程を経ても{101}の配向率が高い第2結晶質半導体膜34を得ることができる。
【0110】
(実施例3)
実施例1と同様にして図9(A)に示すように、基板10上に下地絶縁膜11、第1非晶質半導体膜12を形成した後、100nmのマスク絶縁膜40を形成し、開口41を設ける。次に、重量換算で1〜100ppmの触媒元素(本実施例ではNi)を含む水溶液(酢酸Ni水溶液)をスピンコート法で塗布して触媒元素(Ni)含有層42を形成すると触媒元素は開口41で第1非晶質半導体膜12と接することになる。
【0111】
次いで、図9(B)に示す如く、第非晶質半導体膜12を結晶化するために加熱処理を行う。加熱処理としては、光源の輻射熱を用いて加熱処理を行う方法、加熱した不活性気体により加熱処理を行う方法、電熱炉を用いて加熱処理を行う方法のいずれかを用いればよい。ここでは電熱炉を用いて580℃で4時間の加熱処理を行い、第1結晶質半導体膜を形成する。加熱処理後第1結晶質半導体膜43上のマスク絶縁膜40を除去する。以降は実施例1又は実施例1に実施例2を組み合わせて結晶質半導体層を得ることができる。
【0112】
(実施例4)
本実施例では、第1半導体層に触媒元素を部分的に添加して本発明の結晶質半導体膜を形成する一実施例を図31と図32を参照して説明する。
【0113】
基板300上に窒化酸化シリコン膜からなる下地絶縁膜301とその上に第1半導体層302としてSi1-xGex(x=0.001〜0.05)膜を形成する。なお、下地絶縁膜301として、1〜10nmの窒化シリコン膜を用いてもよい。次いで、第1半導体層302上に開口部304を有し酸化シリコン膜からなるマスク絶縁膜303を形成する。
【0114】
次に、重量換算で1〜100ppmの触媒元素(本実施例ではNi)を含む水溶液(酢酸Ni水溶液)をスピンコート法で塗布して触媒元素(Ni)含有層305を添加する。触媒元素含有層305は、マスク絶縁膜303の開口部304において、選択的に第1半導体層302に形成される(図31(A))。
【0115】
次いで、第1半導体層を結晶化するために電熱炉を用いて、580℃で4時間の加熱処理を行い、第1結晶質半導体層を形成する(図31(B))。
【0116】
加熱処理後、第1結晶質半導体層306上のマスク絶縁膜303を除去する。続いて、第1結晶質半導体層306に第1のレーザー光を照射する。第1のレーザー光としては、パルス発振型または連続発振型のエキシマレーザーやYAGレーザー、YVO4レーザー等を用いればよい。これらのレーザーを用いる場合には、レーザー発振器から放射されたレーザー光を光学系で線状に集光し、半導体膜に照射する方法を用いるとよい。レーザー光の照射条件は、実施者が適宜決定すればよいが、エキシマレーザーを用いる場合には、パルス発振周波数300Hzとし、レーザエネルギー密度を200〜500mJ/cm2とする。また、YAGレーザーを用いる場合には、その第2高調波を用い、パルス発振周波数10〜300Hzとし、レーザエネルギー密度を250mJ/cm2とする。第1のレーザー光照射により、第1結晶質半導体層306は表面に凹凸を有する結晶質半導体層307となり、さらに酸化膜308も形成される(図31(D))。
【0117】
次いで、第1半導体層に添加された触媒元素をゲッタリング領域に移動させるための処理を行う。なお、第1のレーザー光照射の工程において、第1結晶質半導体層上に酸化膜308が形成される。この酸化膜308の形成は、バリア層309形成の前に除去しても、酸化膜308上にバリア層309を形成した後でもよい。
【0118】
バリア層309上にゲッタリング領域310となる半導体層を形成する。ゲッタリング領域としては、プラズマCVD法やスパッタ法で半導体膜を25〜250nmの厚さで形成する。代表的にはスパッタ法でArを0.01〜20原子%含む非晶質シリコン膜で形成する。この半導体膜は、後に除去するため、エッチングで除去しやすいように結晶質半導体層と選択比を高くするため、密度の低い膜(例えば非晶質シリコン)としておくことが望ましい。非晶質シリコン膜中に希ガス元素を添加させて、膜中に希ガス元素としてArを同時に取り込ませることにより、ゲッタリング領域を形成することができる。
【0119】
次いで、ゲッタリングのための加熱処理を行う。加熱処理は、電熱炉を用いた方法(窒素雰囲気中にて450〜600℃で0.5〜12時間)や、ハロゲンランプを光源とするRTA法、加熱した不活性気体によるRTA法(550〜700℃で、1〜5分)などいずれかの方法を用いればよい。この加熱処理により、触媒元素をゲッタリング領域に移動させることができ、第1結晶質半導体層に含まれる触媒元素の濃度を1×1017/cm3以下に低減することができる(図31(E))。
【0120】
その後、半導体膜310を選択的にエッチングして除去する。エッチングはClF3によるプラズマを用いないドライエッチング、或いはヒドラジンや、テトラエチルアンモニウムハイドロオキサイド(化学式 (CH34NOH)を含む水溶液などアルカリ溶液によるウエットエッチングで行うことができる。この時バリア層309はエッチングストッパーとして機能する。また、バリア層309はその後フッ酸により除去すれば良い。
【0121】
次いで、第1結晶質半導体層307上に第2半導体層として、非晶質シリコン膜311を形成する。非晶質シリコン膜は、プラズマCVD法またはスパッタ法等公知の方法で形成すればよく、20〜100nmの膜厚で形成する(図32(A))。
【0122】
続いて、第2半導体層311にレーザー光を照射して、第1結晶質半導体層の配向性を影響させて第2半導体層の結晶化を行う。第2のレーザー光照射の工程は、窒素雰囲気または真空において、照射を行う。第2のレーザー光としては、波長400nm以下のエキシマレーザー光や、YAGレーザーの第2高調波、第3高調波を用いる。また、エキシマレーザー光に代えて紫外光ランプから発する光を用いてもよい。なお、第2のレーザー光のエネルギー密度は、第1のレーザー光のエネルギー密度より大きくし、400〜800mJ/cm2となるようにする。このようにして、第1結晶質半導体層307(結晶質シリコンゲルマニウム)および第2結晶質半導体層312(結晶質シリコン)の積層からなる結晶質半導体層313が形成される(図32(B))。
【0123】
(実施例5)
本実施例では、第1半導体層に触媒元素を部分的に添加して本発明の結晶質半導体膜を形成する他の一実施例を図33を参照して説明する。
【0124】
実施例4(図31)にしたがい、第1半導体層の形成から触媒元素の添加までの工程を行う。基板400上に窒化酸化シリコン膜からなる下地絶縁膜401、該下地絶縁膜401上に第1半導体層402としてSixGe1-x(x=0.001〜0.05)膜を形成する。なお、下地絶縁膜401として、1〜10nmの窒化シリコン膜を用いてもよい。
【0125】
次いで、第1半導体層402上に開口部404を有し酸化シリコン膜からなるマスク絶縁膜403を形成する。そして、重量換算で1〜100ppmの触媒元素(本実施例ではNi)を含む水溶液(酢酸Ni水溶液)をスピンコート法で塗布して触媒元素(Ni)含有層405を添加する。触媒元素含有層405は、マスク絶縁膜403の開口部において、選択的に第1半導体層402に形成される(図33(A))。
【0126】
続いて、図33(B)で示すように第1半導体層を加熱処理し、第1結晶質半導体層を形成する。加熱処理の方法としては、光源の輻射熱を用いて加熱処理を行う方法、加熱した不活性気体により加熱処理を行う方法、電熱炉を用いて加熱処理を行う方法のいずれかを用いればよい。ここでは、電熱炉を用いて、580℃で4時間の加熱処理を行い、第1結晶質半導体層406を形成する(図33(C))。
【0127】
次いで、実施例4と同様にレーザー光を照射して表面に凹凸を有する第1結晶質半導体層407と該第1結晶質半導体層407の表面に酸化膜408が形成する(図33(D))。
【0128】
次いで、第1結晶質半導体層表面に形成された酸化膜408を除去し、第1結晶質半導体層上に第2半導体層409として非晶質シリコン膜を形成する。非晶質シリコン膜は、プラズマCVD法により非晶質シリコン膜を膜厚20〜100nmで形成する(図33(E))。
【0129】
続いて、第2半導体層409に対して第2のレーザー光照射を行う。第2のレーザー光照射工程に先立ち、第2半導体層(シリコン)中に含まれる水素を除去するための加熱処理を行う。400〜500℃で1時間程度の加熱処理を行い、非晶質シリコン膜中に含まれる水素を脱離させる。ただし、スパッタ法により形成された非晶質半導体層は、水素含有率が低いため、水素脱離の処理を行う必要はない。次いで、第2半導体層409にレーザー光を照射して、第1結晶質半導体層の配向性を影響させた結晶化を行う。第2のレーザー光照射の工程は、実施例4と同様にして行えば良い。この第2のレーザー光照射により、第2半導体層も結晶化され、第1結晶質半導体(結晶質シリコンゲルマニウム)層および第2結晶質半導体(結晶質シリコン)層410からなる結晶質半導体層411が形成される(図33(F))。
【0130】
続いて、第1半導体層の結晶化処理の際に用いた触媒元素の濃度を低減させるため、結晶質半導体層から移動させるための処理を行う。
【0131】
まず、結晶質半導体層上にバリア層412を形成する。バリア層412は、特に厚さは限定されないが、簡便に形成する方法としては、結晶質半導体層の表面をオゾン水で処理する方法がある。また、硫酸、塩酸、硝酸などと過酸化水素水とを混合させた水溶液で処理しても同様にケミカルオキサイドを形成しても良い。バリア層を形成する他の方法としては、酸化雰囲気中でのプラズマ処理や、酸素含有雰囲気中での紫外線照射によりオゾンを発生させて酸化処理し形成する方法、クリーンオーブンを用いて200〜350℃程度に加熱し、薄い酸化膜を形成する方法、プラズマCVD法やスパッタ法、蒸着法などで1〜5nm程度の酸化膜を堆積させる方法などのいずれかを用いればよい。
【0132】
次いで、そのバリア層上に、実施例4と同様にしてゲッタリング領域413となる半導体層を形成する。具体的には非晶質シリコン膜中にArを添加させて、膜中に希ガス元素を同時に取り込ませることにより、ゲッタリング領域413を形成することができる(図33(G))。
【0133】
この後、結晶質半導体層に残留する触媒元素をゲッタリング領域に移動させるため加熱処理を行う。この加熱処理により、触媒元素が拡散によりゲッタリング領域に移動して、結晶質半導体層に含まれる触媒元素の濃度を1×1017/cm3以下にすることができる。なお、この加熱処理によっても、ゲッタリング領域は、1×1020/cm3以上の濃度で希ガス元素を含んでおり結晶化することはない。
【0134】
次いで、実施例4と同様にしてゲッタリング領域413である半導体膜を選択的にエッチングして除去する。この時、バリア層412は結晶質半導体層がエッチングされないように保護するエッチングストッパーとして機能する。ゲッタリング領域のエッチング処理が終了した後、バリア層412は、フッ酸により除去すればよい。
【0135】
こうして、触媒元素濃度が低減され、配向率が高く粒径の大きな結晶粒が集まった良好な構造の第1結晶質半導体層および第2結晶質半導体層の積層からなる結晶質半導体層が形成される。
【0136】
(実施例6)
本実施例では、第1半導体層に触媒元素を全面に添加して本発明の結晶質半導体膜を形成する一実施例を図34を参照して説明する。
【0137】
基板1550上に下地絶縁膜1551、該下地絶縁膜1551上に第1半導体層として非晶質のシリコンゲルマニウム(Si1-xGex:x=0.001〜0.05)膜1552を形成する。下地絶縁膜1551としては、SiH4、NH3およびN2Oを反応ガスとして形成される酸化窒化シリコン膜およびSiH4およびN2Oを反応ガスとして成膜される酸化窒化シリコン膜を積層して用いる。
【0138】
非晶質シリコンゲルマニウム膜(第1半導体層)1552は、プラズマCVD法または減圧CVD法、その他適宣の方法により形成すれば。堆積される非晶質半導体層の厚さは20〜100nmの範囲とする。
【0139】
続いて、第1半導体層1552の結晶化処理を行う。結晶化に際しては、第1半導体層1552の表面に、触媒元素としてNiを添加して触媒元素含有層1553を形成する(図34(A))。
【0140】
半導体層に触媒元素を添加した後、加熱処理を行い、第1結晶質半導体(結晶質シリコンゲルマニウム)層1554を形成する(図34(B))。
【0141】
次いで、実施例4と同様にして、酸素雰囲気中または大気雰囲気において、第1結晶質半導体層1554に第1のレーザー光の照射を行う。以上の工程により、{101}に優先的に配向して、結晶粒の大きな第1結晶質半導体層1555を得ることができる。このようにして得られた第1結晶質半導体層1555の表面は、凹凸を有しており、さらに、酸化膜1556が形成されている。
【0142】
次いで、第1結晶質半導体層1555に含まれる触媒元素濃度を低減させるためのゲッタリング処理を行う。第1結晶質半導体層上にバリア層1557を形成する。バリア層1557として、第1結晶質半導体層の表面にケミカルオキサイドを形成する。
【0143】
次いで、バリア層1557上に、ゲッタリング領域1558となる半導体膜を形成する。ゲッタリング領域としては、プラズマCVD法やスパッタ法で半導体膜を25〜250nmの厚さで形成する。代表的にはスパッタ法でArを0.01〜20原子%含む非晶質シリコン膜で形成する(図34(E))。
【0144】
この後、実施例5と同様にして、第1結晶質半導体層に残留する触媒元素をゲッタリング領域に移動させるため、加熱処理を行う。
【0145】
次いで、ゲッタリング領域1558の半導体膜を選択的にエッチングして除去し、ゲッタリング領域のエッチング処理が終了した後、バリア層1557はフッ酸により除去する。第1結晶質半導体層の表面に形成された酸化膜を除去し、その表面を清浄にした後、第1結晶質半導体層1555上に第2半導体層1559として非晶質シリコン膜をプラズマCVD法またはスパッタ法などにより形成する。
【0146】
続いて、第2レーザー光照射工程に先立ち、第2半導体層(非晶質シリコン)中に含まれる水素を除去するための加熱処理を行う。400〜500℃で1時間程度の加熱処理を行い、非晶質シリコン膜中に含まれる水素を脱離させる。ただし、スパッタ法により形成された非晶質半導体層は、水素含有率が低いため、水素脱離の処理を行う必要はない。次いで、第2半導体層にレーザー光を照射して、第1結晶質半導体層の配向性を影響させた結晶化を行う。第2のレーザー光照射の工程は、実施例4と同様に行えば良い。この第2のレーザー光照射により、第2半導体層も結晶化され、第1結晶質半導体層1555および第2結晶質半導体層1560からなる結晶質半導体層1561が形成される。
【0147】
第2のレーザー光の照射により、{101}面の配向率の高い第1結晶質半導体層の影響を受けて、第2半導体層を結晶化させることができ、結晶質半導体層全体としての配向率が高く、その結果、粒径の大きな結晶粒の集まった結晶質半導体層を形成することができる。
【0148】
(実施例7)
実施例1〜4により作製される結晶質半導体層を用いてTFTを作製する一例を図10を用いて説明する。まず、図10(A)において、アルミノシリケートガラス又はバリウムホウケイ酸ガラスなどによるガラス基板200上に実施例2で作製された半導体膜から、島状に分離された半導体層202、203を形成する。また、基板200と半導体層との間には、窒化酸化シリコンで成るブロッキング層201を200nmの厚さで形成する。半導体層202、203は実施例1〜4で示す方法により形成される結晶質半導体層をエッチングにより島状に分割したものが適用される。
【0149】
さらに、ゲート絶縁膜204を80nmの厚さで形成する。ゲート絶縁膜204はプラズマCVD法を用いて、SiH4とN2OにO2を反応ガスとして用いて酸化窒化シリコン膜で形成する。本実施例において適用される結晶質半導体層は、{101}面の配向率が高いため、その上に形成するゲート絶縁膜の膜質のバラツキを少なくすることができ、それ故にTFTのしきい値電圧のバラツキを小さくすることができる。
【0150】
ゲート絶縁膜204上には、ゲート電極を形成するための第1導電膜205、第2導電膜206を形成する。第1導電膜は、窒化タンタル、又は窒化チタンで30nmの厚さで形成する。第2導電膜はAl、Ta、Ti、W、Moなどの導電性材料又はこれらの合金を適用し、300nmの厚さで形成する。その後、図10(B)に示すようにレジストパターン207を形成し、ドライエッチングにより第1形状のゲート電極208、209を形成する。また、図示しないが、ゲート電極に接続する配線も同時に形成することができる。
【0151】
このゲート電極をマスクとして、自己整合的にn型半導体領域を形成する。ドーピングではイオン注入法又はイオンドーピング法(ここでは、質量分離しないイオンを注入する方法をいう)で燐を注入する。この領域の燐濃度は1×1020〜1×1021/cm3の範囲となるようにする。こうして第1不純物領域210、211を形成する。
【0152】
次いで、図10(C)で示すように、ドライエッチングによりゲート電極の第2導電膜を選択的にエッチングして第2形状のゲート電極212、213を形成する。そして、第1導電膜の表面が露出した領域を通過させて燐イオンを注入し、第2不純物領域214、215を形成する。
【0153】
続いて、図10(D)に示すように一方の半導体層203を覆うマスク216を形成し、半導体膜203に硼素イオンを注入した第3不純物領域217を形成する。添加する不純物は硼素を用い、燐よりも1.5〜3倍の濃度で添加してp型に反転させる。この領域の硼素濃度は1.5×1020〜3×1021/cm3の範囲となるようにする。
【0154】
その後、図10(E)に示すように窒化シリコン膜218、酸化シリコン膜219をプラズマCVD法で形成する。そして、第1乃至第3不純物領域の結晶性の回復と、活性化のために熱処理を行う。活性化に適した温度は450±50℃であり、1〜10分の熱処理を行えば良い。加熱用のガスには窒素、Arなどを用いることができる。
【0155】
次いで、各半導体層の不純物領域に達するコンタクトホールを形成し、Al、Ti、Taなどを用いて配線220、221を形成する。こうしてnチャネル型TFT222とpチャネル型TFT223を形成することができる。ここではそれぞれのTFTを単体として示しているが、これらのTFTを使ってCMOS回路やNMOS回路、PMOS回路を形成することができる。
【0156】
本実施例ではLDD構造のTFTについて説明したが、勿論、シングルドレイン構造を形成することも可能である。本発明により得られる結晶質半導体層は{101}面の配向率が高いので、結晶粒界における欠陥密度が低減し、高い電界効果移動度を得ることができる。こうして作製されるTFTは、アクティブマトリクス型の液晶表示装置や発光素子を用いた表示装置を作製するためのTFTとして、また、ガラス基板上にメモリやマイクロプロセッサを形成するためのTFTとして用いることができる。
【0157】
このようなTFTを用いてアクティブマトリクス駆動型の表示装置を実現するためのTFT基板(TFTが形成された基板)を形成する一例を図11により説明する。図11では、nチャネル型TFT1501、pチャネル型TFT1502、nチャネル型TFT1503を有する駆動回路部1506と、nチャネル型TFT1504、容量素子1505とを有する画素部1507が同一基板上に形成されている。
【0158】
駆動回路部1506のnチャネル型TFT1501はチャネル形成領域1262、ゲート電極1210と一部が重なる第2不純物領域1263とソース領域又はドレイン領域として機能する第1不純物領域1264を有している。pチャネル型TFT1502にはチャネル形成領域1265、ゲート電極1211と一部が重なる第4不純物領域1266とソース領域又はドレイン領域として機能する第3不純物領域1267を有している。nチャネル型TFT1503にはチャネル形成領域1268、ゲート電極1212と一部が重なる第2不純物領域1269とソース領域又はドレイン領域として機能する第1不純物領域1270を有している。このようなnチャネル型TFT及びpチャネル型TFTによりシフトレジスタ回路、バッファ回路、レベルシフタ回路、ラッチ回路などを形成することができる。特に、駆動電圧が高いバッファ回路には、ホットキャリア効果による劣化を防ぐ目的から、nチャネル型TFT1501又は1503の構造が適している。
【0159】
画素部1507の画素TFT1504にはチャネル形成領域1271、ゲート電極1213の外側に形成される第2不純物領域1272とソース領域又はドレイン領域として機能する第1不純物領域1273を有している。また、容量素子1205の一方の電極として機能する半導体膜には硼素が添加された第3不純物領域1276が形成されている。容量素子1505は、絶縁膜(ゲート絶縁膜と同一膜)を誘電体として、電極1214と半導体膜1206とで形成されている。なお、1253〜1260は各種配線であり、1261は画素電極に相当するものである。
【0160】
これらのTFTは、チャネル形成領域や不純物領域を形成する半導体層の配向率が高く、{101}面の配向比率が高いため、その上に形成するゲート絶縁膜の膜質のバラツキを少なくすることができ、それ故にTFTのしきい値電圧のバラツキを小さくすることができる。それにより、低電圧でTFTを駆動することが可能であり、消費電力を低減する利点がある。また、表面が平滑化されている為、電界が凸部に集中しないことにより、特にドレイン端において発生するホットキャリア効果に起因する劣化を抑制することが可能となる。また、ソース・ドレイン間を流れるキャリアの濃度分布はゲート絶縁膜との界面近傍において高くなるが、平滑化されているためキャリアが散乱されることなくスムーズに移動することができ、電界効果移動度を高めることができる。
【0161】
図12はそのようなアクティブマトリクス基板の回路構成を示している。画素部701のTFT700を駆動する駆動回路部はXドライバ702、Yドライバ703であり、必要に応じてシフトレジスタ回路、バッファ回路、レベルシフタ回路、ラッチ回路などが配置されている。この場合、Xドライバ702は映像信号を送り出すものであり、コントローラ704からの映像信号と、タイミングジェネレータ707からのXドライバ用タイミング信号が入力される。Yドライバ703にはタイミングジェネレータ707からのYドライバ用タイミング信号が入力され、走査線に信号を出力する。マイクロプロセッサ706はコントローラ704の制御や、メモリ705への映像信号などのデータの書き込み、外部インターフェース708からの入出力、これらシステム全体の動作管理などを行う。
【0162】
これらの回路を構成するためのTFTは本実施例で示すような構成のTFTで形成することが可能である。TFTのチャネル形成領域を形成する結晶質半導体層の配向率を高めることにより、TFTの特性を向上させ、様々な機能回路をガラスなどの基板上に形成することができる。
【0163】
(実施例8)
実施例4〜6の結晶質半導体層を用いて作製されるTFTを配列させたアクティブマトリクス基板の一実施例を図25〜図28を用いて説明する。ここでは、同一基板上に画素部と、画素部の周辺に設ける駆動回路のTFT(nチャネル型TFT及びpチャネル型TFT)を同時に作製する方法について詳細に説明する。
【0164】
図25(A)において、基板110はアルミノホウケイ酸ガラスを用いる。この基板110上に下地絶縁膜を形成する。本実施例では、SiH4、NH3及びN2Oを反応ガスとして成膜される第1酸化窒化シリコン膜111aを50nm、SiH4及びN2Oを反応ガスとして成膜される第2酸化窒化シリコン膜111bを100nmの厚さに積層形成する。
【0165】
次いで、下地絶縁膜111上に非晶質半導体膜を形成し、結晶化処理を行った後分割して、半導体層120〜123(本実施例では、便宜上、第1半導体層120、第2半導体層121、第3半導体層122および第4半導体層123とする)を形成する。
【0166】
結晶化方法は以下の通りである。下地絶縁膜111上に第1半導体層112として非晶質シリコンゲルマニウム(Si1-xGex:x=0.001〜0.05)膜を形成する。ゲルマニウムの含有量は、代表的な反応ガスとして用いられるSiH4とGeH4の混合比により調節することができる。
【0167】
上記第1半導体層112の形成は、プラズマCVD法または減圧CVD法、その他適宣の方法により行う。プラズマCVD法を適用する場合には、SiH4とGeH4とから成る反応ガス、或いは、SiH4とH2で希釈したGeH4成る反応ガスを加えて反応室に導入し、1〜200MHzの高周波放電により分解し基板上に非晶質半導体膜を堆積させる。堆積される第1半導体層102の厚さは20〜100nmの範囲とする(図25(A))。
【0168】
次いで、第1半導体層112に触媒元素としてNiを添加する。その後、加熱処理を行い、第1半導体層を結晶化させ第1結晶質半導体(結晶質シリコンゲルマニウム)層113を形成する。加熱処理は電熱炉を用いて、580℃で4時間の加熱処理を行い、第1結晶質半導体層を形成する(図25(B))。
【0169】
次いで、実施例4と同様にして第1結晶質半導体層113に第1のレ−ザ光を照射する。この第1のレーザー光照射工程において、第1結晶質半導体層113の表面は凹凸形状となる。また、表面に酸化膜114が形成される(図25(C))。
【0170】
上記第1のレーザー光照射後、第1結晶質半導体層113表面に形成された酸化膜114を除去し、第1結晶質半導体層上に第2半導体層115として非晶質シリコン膜を形成する。非晶質シリコン膜は、プラズマCVD法により非晶質シリコン膜を膜厚20〜100nmで形成する。なお、第2半導体層115を形成する前に、TMAH(テトラメチルアンモニウムハイドロオキサイド)を用いたウエットエッチング法、ClF3を用いたドライエッチング法またはCMP法などを用いて、第1結晶質半導体層113を薄膜化してもよい。このようにすることで、半導体層全体の膜厚を抑えることができるため、ゲート絶縁膜を成膜する際に問題になる段差を低減することができる。
【0171】
続いて、第2のレーザー光照射工程に先立ち、第2半導体層(シリコン)中に含まれる水素を除去するための加熱処理を行う。400〜500℃で1時間程度の加熱処理を行い、非晶質シリコン膜中に含まれる水素を脱離させる。次いで、実施例4と同様にして第2半導体層にレーザー光を照射して、第1結晶質半導体層の配向性を影響させた結晶化を行う。この第2のレーザー光照射により、第2半導体層も結晶化され、第1結晶質半導体(結晶質シリコンゲルマニウム)層113および第2結晶質半導体(結晶質シリコン)層106からなる結晶質半導体層117が形成される(図26(A))。
【0172】
第1半導体層の結晶化処理の際に用いた触媒元素の結晶質半導体層に含まれる濃度を低減させるため、結晶質半導体層から移動させるための処理を行う。まず、結晶質半導体層上にバリア層118を形成する。バリア層118は、特に厚さは限定されないが、簡便に形成する方法としては、結晶質半導体層の表面をオゾン水で処理する方法がある。この処理により結晶質半導体層表面にケミカルオキサイドが形成される。
【0173】
そのバリア層上に、ゲッタリング領域となる半導体層119を形成する。ゲッタリング領域119としては、プラズマCVD法やスパッタ法で半導体膜を25〜250nmの厚さで形成する。代表的にはスパッタ法でArを0.01〜20原子%含む非晶質シリコン膜で形成する。
【0174】
この後、結晶質半導体層に残留する触媒元素をゲッタリング領域に移動させるため、加熱処理を行う。加熱処理は、電熱炉を用いた方法や、加熱用の光源を用いたRTA法、加熱した不活性気体によるRTA法(550〜700℃で、1〜5分)などいずれかの方法を用いればよい。この加熱処理により、触媒元素が拡散によりゲッタリング領域に移動して、結晶質半導体層に含まれる触媒元素の濃度を1×1017/cm3以下にすることができる。
【0175】
ゲッタリング工程が終了したら、実施例5と同様にしてゲッタリング領域119の半導体膜を選択的にエッチングして除去する。ゲッタリング領域のエッチング処理が終了した後、バリア層118は、フッ酸により除去すればよい。
【0176】
こうして、触媒元素濃度が低減され、配向率が高く粒径の大きな結晶粒が集まった良好な構造の第1結晶質半導体層および第2結晶質半導体層の積層からなる結晶質半導体層が形成される。なお、結晶化後、TFTのしきい値電圧を制御するために、アクセプタ型の不純物として硼素をイオンドープ法により半導体膜に添加する。添加する濃度は実施者が適宣決定すれば良い。
【0177】
こうして形成された多結晶シリコン膜をエッチング処理により分割して、半導体膜120〜123を形成する。その上に、ゲート絶縁膜124として、SiH4、N2Oを用いプラズマCVD法により作製される酸化窒化シリコン膜を110nmの厚さに形成する(図26(C))。
【0178】
さらに、ゲート絶縁膜124上に第1導電膜125として窒化タンタル膜をスパッタ法で30nmの厚さに形成し、さらに第2導電膜116としてタングステンを300nmの厚さに形成する(図26(D))。
【0179】
次に、図27(A)に示すように光感光性のレジスト材料を用い、マスク127〜130を形成する。そして、第1導電膜125及び第2導電膜126に対する第1のエッチング処理を行う。エッチングにはICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いる。エッチング用ガスに限定はないがW膜や窒化タンタル膜のエッチングにはCF4とCl2とO2とを用いる。それぞれのガス流量を25:25:10とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してエッチングを行う。この場合、基板側(試料ステージ)にも150WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチング条件により主にW膜を所定の形状にエッチングする。
【0180】
この後、エッチング用ガスをCF4とCl2に変更し、それぞれのガス流量比を30:30とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行う。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2との混合ガスは窒化タンタル膜とW膜とを同程度の速度でエッチングする。こうして、端部にテーパーを有する第1電極131a〜134aおよび第2電極131b〜134bからなる第1形状のゲート電極131〜134を形成する。テーパーは45〜75°で形成する。なお、ゲート絶縁膜124の第1形状のゲート電極131〜134で覆われない領域の表面は20〜50nm程度エッチングされ薄くなった領域が形成される(図27(A))。
【0181】
次に、マスク127〜130を除去せずに図27(B)に示すように第2のエッチング処理を行う。エッチング用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を20:20:20とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行う。基板側(試料ステージ)には20WのRF(13.56MHz)電力を投入し、第1のエッチング処理に比べ低い自己バイアス電圧を印加する。このエッチング条件により第2導電膜として用いたW膜をエッチングする。こうして第3電極135a〜138aと第4電極135b〜138bからなる第2形状のゲート電極135〜138を形成する。ゲート絶縁膜124の第2形状のゲート電極135〜138で覆われない領域表面は20〜50nm程度エッチングされ薄くなる。この第3電極、第4電極を便宜上電極(A)、電極(B)とも称する。
【0182】
続いてn型を付与する不純物元素(n型不純物元素)を半導体層に添加する第1のドーピング処理を行う。ドーピングは第1形状の電極135〜138をマスクとして用い、水素希釈のフォスフィン(PH3)ガスまたは希ガスで希釈したフォスフィンガスを用い、半導体膜120〜123に第1濃度のn型不純物元素を含むn型不純物領域139〜142を形成する。このドーピングにより形成する第1濃度のn型不純物元素を含むn型不純物領域の燐濃度は1×1016〜1×1017/cm3となるようにする(図27(B))。
【0183】
その後、第2半導体層121を覆うマスク143、第3半導体層122の一部を露出するマスク144、第4半導体層123を覆うマスク145を形成し、第2のドーピング処理を行う。第2のドーピング処理では、第3電極(電極(A))135aを通して第1半導体層120に第2濃度のn型不純物元素を含むn型不純物領域146を形成する。このドーピングにより形成する第2濃度のn型不純物元素を含むn型不純物領域の燐濃度は1×1017〜1×1019/cm3となるようにする。
【0184】
続いて、マスク143〜145をそのままに第3のドーピング処理を行う。第1半導体層120、第3半導体層122にゲート絶縁膜124を通してn型不純物元素を添加を行い、第3濃度のn型不純物元素を含むn型不純物領域147、148を形成する。このドーピングにより形成する第3濃度のn型不純物元素を含むn型不純物領域の燐濃度は1×1020〜1×1021/cm3となるようにする(図27(C))。
【0185】
なお、本実施例では、以上のように2回にわけて不純物元素を添加しているが、ゲート絶縁膜およびゲート電極を形成する第3電極の膜厚を制御したり、ドーピングの際の加速電圧を調整したりすることにより、1回のドーピング工程で、第2濃度のn型不純物元素を含むn型不純物領域および第3濃度のn型不純物元素を含むn型不純物領域を形成することもできる。
【0186】
次いで、図28(A)で示すように第1半導体層120および第3半導体層122を覆うマスク149、150を形成し第4のドーピング処理を行う。ドーピングは水素希釈のジボラン(B26)ガスまたは希ガスで希釈したジボランガスを用い、第2半導体層121に第1濃度のp型不純物領域152及び第2濃度のp型不純物領域151を形成する。また、画素部において保持容量を形成する第4半導体層123には、第1濃度のp型不純物領域154及び第2濃度のp型不純物領域153が形成される。第1濃度のp型不純物領域152、154は電極(A)136a、138aと重なる領域に形成されるものであり、1×1018〜1×1020/cm3の濃度範囲で硼素を添加し、第2濃度のp型不純物領域151、153には2×1020〜3×1021/cm3の濃度範囲で硼素が添加されるようにする。
【0187】
以上までの工程でそれぞれの半導体膜に燐又は硼素が添加された領域が形成される。第2形状のゲート電極135〜137はゲート電極となる。また、第2形状の電極138は画素部において保持容量を形成する一方の容量電極となる。
【0188】
次いで、図28(B)に示すように、それぞれの半導体膜に添加された不純物元素を活性化処理するために、YAGレーザーの第2高調波(532nm)の光を半導体膜に照射する。
【0189】
また、先のゲッタリング処理と活性化のための加熱処理とを組み合わせることで半導体膜を結晶化する際に用いた触媒元素を後のTFTのソース領域またはドレイン領域(高濃度に燐が添加されている領域)に移動させてチャネル形成領域の触媒元素濃度をより低減することができる。
【0190】
その後、図28(B)に示すように、プラズマCVD法で窒化シリコン膜または窒化酸化シリコン膜から成る第1層間絶縁膜145を50nmの厚さに形成し、クリーンオーブンを用いて410℃の加熱処理を行い、窒化シリコン膜または窒化酸化シリコン膜から放出される水素で半導体膜の水素化を行う。
【0191】
次いで、第1層間絶縁膜155上に第2層間絶縁膜156をアクリルで形成する。そしてコンタクトホールを形成する。このエッチング処理においては外部入力端子部の第1層間絶縁膜及び第3層間絶縁膜も除去する。そして、チタン膜とアルミニウム膜を積層して形成される配線157〜164を形成する(図28(C))。
【0192】
以上のようにして、同一基板上にnチャネル型TFT81、pチャネル型TFT82を有する駆動回路85と、TFT83と保持容量84を有する画素部86を形成することができる。保持容量84は半導体123、ゲート絶縁膜124、容量配線168で形成されている。
【0193】
駆動回路205のnチャネル型TFT81はチャネル形成領域165、ゲート電極を形成する電極(A)135aと重なる第2濃度のn型不純物元素を含むn型不純物領域146(Lov領域)と、ソース領域またはドレイン領域として機能する第3濃度のn型不純物元素を含むn型不純物領域147を有している。Lov領域のチャネル長方向の長さは0.5〜2.5μm、好ましくは1.5μmで形成する。このようなLov領域の構成は、主にホットキャリア効果によるTFTの劣化を防ぐことを目的としている。これらnチャネル型TFT及びpチャネル型TFTによりシフトレジスタ回路、バッファ回路、レベルシフタ回路、ラッチ回路などを形成することができる。
【0194】
駆動回路85のpチャネル型TFT82にはチャネル形成領域166、ゲート電極を形成する電極(A)136aの外側に第2濃度のp型不純物元素を含むp型不純物領域151(ソース領域またはドレイン領域として機能する領域)と、電極(A)136aと重なる第1濃度のp型不純物元素を含むp型不純物領域152を有している。
【0195】
画素部86のTFT(画素TFT)83にはチャネル形成領域167、該チャネル形成領域の外側に形成される第1濃度のn型不純物元素を含むn型不純物領域141と、ソース領域またはドレイン領域として機能する第3濃度のn型不純物元素を含むn型不純物領域148を有している。また、保持容量84の一方の電極として機能する半導体層123にはp型不純物領域153、154が形成されている。
【0196】
図29はアクティブマトリクス基板の回路構成の一例を示す回路ブロックである。TFTを組み込まれて形成される画素部601、データ信号線駆動回路602、走査信号線駆動回路606が形成されている。データ信号線駆動回路602は、シフトレジスタ603、ラッチ604、605、その他バッファ回路などから構成される。シフトレジスタ603にはクロック信号、スタート信号が入力し、ラッチにはデジタルデータ信号やラッチ信号が入力する。また、走査信号線駆動回路606もシフトレジスタ、バッファ回路などから構成されている。画素部601の画素数は任意なものとするが、XGAならば1024×768個の画素が設けられる。
【0197】
このようなアクティブマトリクス基板を用いて、アクティブマトリクス駆動をする表示装置を形成することができる。本実施例では画素電極を光反射性の材料で形成したため、液晶表示装置に適用すれば反射型の表示装置を形成することができる。このような基板から液晶表示装置や有機発光素子で画素部を形成する発光装置を形成することができる。こうして反射型の表示装置に対応したアクティブマトリクス基板を作製することができる。
【0198】
このアクティブマトリクス基板からアクティブマトリクス型液晶表示装置を作製する工程は以下の通りである。
【0199】
まず、図28(C)の状態のアクティブマトリクス基板を作製した後、アクティブマトリクス基板上に配向膜180を形成してラビング処理を行う。次いで、対向基板181を用意し、対向基板181上に着色層182、183、平坦化膜184を形成する。赤色着色層182と青色着色層183とを一部重ねることにより、遮光膜として機能させている。なお、図30では図示しないが、赤色着色層と緑色着色層とを重ねて遮光膜として機能させている領域もある。
【0200】
次いで、対向電極185を画素部に形成した後、全面に配向膜186を形成してラビング処理を行う。そして、画素部と駆動回路とが形成されたアクティブマトリクス基板と着色層と画素電極とが形成された対向基板とをシール材187で貼り合わせる。シール材187には、フィラーが混入されていて、このフィラーと柱状スペーサとによって均一な間隔をもって2枚の基板を貼り合わせることができる。その後、貼り合わせた基板間に液晶材料188を注入して、封止材(図示せず)によって完全に封止する。液晶材料188には、公知の液晶材料を用いればよい。このようにして図30に示すアクティブマトリクス型液晶表示装置が完成する。
【0201】
(実施例9)
本発明は、TFTの形状に関わらず適応することができる。本実施例では、図38、図39を用いてボトムゲート型TFTの作製工程に本発明を適応した例を説明する。
【0202】
基板50上に、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜等の絶縁膜を形成し(図示せず)、ゲート電極を形成するために導電膜を形成し、所望の形状にパターニングしてゲート電極51を得る。導電膜には、Ta、Ti、W、Mo、CrまたはAlから選ばれた元素または複数の元素を主成分とする導電膜を用いればよい。
【0203】
次いで、ゲート絶縁膜52を形成する。ゲート絶縁膜は、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜の単層、もしくはいずれかの膜の積層構造にしてもよい。非晶質半導体膜として第1半導体層としてシリコンゲルマニウム膜53を形成する。反応ガスにSiH4とGeH4を用いて、プラズマCVD法または減圧CVD法等により膜厚を20〜100nmで成膜すればよい。
【0204】
続いて、第1半導体層に触媒元素を添加して触媒元素含有層54を形成し、加熱処理を行って、第1結晶質半導体層を形成する。加熱処理としては、光源の輻射熱を用いて加熱処理を行う方法、加熱した不活性気体により加熱処理を行う方法、電熱炉を用いて加熱処理を行う方法のいずれかを用いればよい(図38(C))。
【0205】
次いで、第1結晶質半導体層に実施例4と同様にして第1のレ−ザ光を照射する。第1のレーザー光としては、波長400nm以下のエキシマレーザーや、YAGレーザーまたはYVO4レーザの第2高調波(波長532nm)〜第4高調波(波長266nm)を光源として用いて行う。これらのレーザー光は光学系にて線状またはスポット状に集光し、そのエネルギー密度を460mJ/cm2として照射し、上記のように集光したレーザー光を基板の所定の領域に渡って走査させ、90〜98%のオーバーラップ率をもって第1結晶質半導体層に照射し、表面が凹凸形状となった第1結晶質半導体層55を形成する。また、第1結晶質半導体層55表面には、酸化膜56が形成される(図38(D))。
【0206】
次いで、酸化膜56を除去した後、第2半導体層として、非晶質シリコン膜57を形成する。プラズマCVD法を用い、膜厚が、20〜100nmになるように形成すればよい(図38(E))。
【0207】
続いて、第2半導体層57に実施例4と同様にして第2のレーザー光を照射して、第2半導体層57を結晶化する。第2半導体層は、第1結晶質半導体層55の高い配向性の影響を受けて、高い配向性を有する第2結晶質半導体層58が形成される。なお、第2のレーザー光のエネルギー密度は、第1のレーザー光のエネルギー密度より大きくする。本実施例では、553mJ/cm2としている。この第2のレーザー光照射により、第2半導体層も結晶化され、第1結晶質半導体層55および第2結晶質半導体層58からなる結晶質半導体層59が形成される(図38(F))。
【0208】
次いで、第1半導体層の結晶化の際に用いた触媒元素をゲッタリング領域に移動させるための工程を行う。結晶質半導体層59上にバリア層60を形成し、バリア層60上にゲッタリング領域61を形成する。バリア層60は、特に厚さは限定されないが、簡便に形成する方法としては、結晶質半導体層の表面をオゾン水で処理すればよい。この処理により、結晶質半導体層表面にケミカルオキサイドが形成されるのでこの膜を用いれば良い。ゲッタリング領域となる半導体層61としては、プラズマCVD法やスパッタ法でArを0.01〜20原子%含む非晶質シリコン膜を25〜250nmの厚さで形成する。この半導体膜は、後に除去するため、エッチングで除去しやすいように結晶質半導体層と選択比を高くするため、密度の低い膜(例えば非晶質シリコン膜)としておくことが望ましい。
【0209】
この後、触媒元素をゲッタリング領域に移動させるため、加熱処理を行う。光源の輻射熱を用いて加熱処理を行う方法、加熱した不活性気体により加熱処理を行う方法、電熱炉を用いて加熱処理を行う方法のいずれかを用いればよい。この加熱処理により、触媒元素が拡散によりゲッタリング領域に移動して、結晶質半導体層に含まれる触媒元素の濃度を1×1017/cm3以下にすることができる(図39(A))。
【0210】
ゲッタリング工程が終了したら、ゲッタリング領域61およびバリア層60は、順に除去すればよい。こうして、触媒元素濃度が低減され、配向率が高く粒径の大きな結晶粒が集まった良好な構造の第1結晶質半導体層および第2結晶質半導体層の積層からなる結晶質半導体層が形成される。
【0211】
結晶化工程が終わったら、後の不純物添加工程において結晶質シリコン膜(チャネル形成領域)を保護する絶縁膜62を100〜400nm厚で形成する。次いで、レジストからなるマスクを用いて、後のnチャネル型TFTの活性層となる結晶質シリコン膜にn型を付与する不純物元素を1×1020〜1×1021/cm3の濃度で、後のpチャネル型TFTの活性層となる結晶質シリコン膜にp型不純物元素を1×1020〜5×1021/cm3の濃度で、さらに希ガス元素を1×1019〜1×1022/cm3の濃度で添加して、ソース領域、ドレイン領域、LDD領域を形成する(図39(B))。
【0212】
次いで、結晶質シリコン膜上の絶縁膜を除去し、結晶質シリコン膜を所望の形状にパターニングした後、層間絶縁膜63を形成する。層間絶縁膜は、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜等の絶縁膜から500〜1500nm厚で形成する。その後、それぞれのTFTのソース領域またはドレイン領域に達するコンタクトホールを形成して、各TFTを電気的に接続するための配線64〜67を形成する。
【0213】
なお、本実施例では、第1半導体層に含まれる触媒元素の濃度を低減するゲッタリング処理を行う前に第2半導体層を形成したが、作製工程は、実施例4〜6のいずれかを組み合わせて用いることができる。以上のように本発明は、TFTの形状に関わることなく適応することができる。
【0214】
(実施例10)
本実施例では、図40と図41を用いて半導体層を一対のゲート配線で挟んだTFTの作製工程に本発明を適応した例を説明する。
【0215】
基板1000上に、実施例6と同様にして酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜等の絶縁膜を形成し(図示せず)、ゲート電極を形成するために導電膜を形成し、所望の形状にパターニングして第1ゲート配線1001を得る。
【0216】
次いで、下地絶縁膜1002を形成する。下地絶縁膜は、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜の単層、もしくはこれらの膜の積層構造にしてもよい。第1半導体層としてシリコンゲルマニウム膜1003を形成する。反応ガスにSiH4とGeH4を用いて、プラズマCVD法または減圧CVD法等により膜厚を20〜100nmで成膜すればよい。
【0217】
続いて、第1半導体層に触媒元素を添加して触媒元素含有層54を形成し、加熱処理を行って、第1結晶質半導体層を形成する。加熱処理としては、光源の輻射熱を用いて加熱処理を行う方法、加熱した不活性気体により加熱処理を行う方法、電熱炉を用いて加熱処理を行う方法のいずれかを用いればよい(図40(C))。
【0218】
第1結晶質半導体層に実施例6と同様に第1のレ−ザ光を照射し、表面が凹凸形状となった第1結晶質半導体層1004を形成する。また、第1結晶質半導体層1004表面には、酸化膜1005が形成される(図40(D))。
【0219】
酸化膜1005を除去した後、第2半導体層として、非晶質シリコン膜1006を形成する。プラズマCVD法を用い、膜厚が、20〜100nmになるように形成すればよい(図40(E))。
【0220】
続いて、実施例6と同様にして第2半導体層1006に第2のレーザー光を照射して、第2半導体層1006を結晶化する。第2半導体層は、第1結晶質半導体層1004の高い配向性の影響を受けて、高い配向性を有する第2結晶質半導体層1007が形成され、第1結晶質半導体層1004および第2結晶質半導体層1007からなる結晶質半導体層1008が形成される(図38(F))。
【0221】
次いで、第1半導体層1003の結晶化の際に用いた触媒元素をゲッタリング領域に移動させるための工程を行う。結晶質半導体層1008上にバリア層1009を形成し、バリア層1009上にゲッタリング領域1010を形成する。ゲッタリング領域となる半導体層1010としては、Arを0.01〜20原子%含む非晶質シリコン膜を25〜250nmの厚さで形成する。この後、実施例6と同様に触媒元素をゲッタリング領域に移動させるための加熱処理を行う(図41(A))。
【0222】
ゲッタリング工程が終了したら、ゲッタリング領域1010およびバリア層1009は、順に除去すればよい。こうして、触媒元素濃度が低減され、配向率が高く粒径の大きな結晶粒が集まった良好な構造の第1結晶質半導体層および第2結晶質半導体層の積層からなる結晶質半導体層が形成される。
【0223】
続いて、結晶質半導体層1008を覆うゲート絶縁膜1011を形成する。ゲート絶縁膜1011は、プラズマCVD法やスパッタ法でシリコンを含む絶縁物で形成する。その厚さは40〜150nmとする。その上には第2ゲート配線1012、1013を形成する。第2ゲート配線を形成する材料に限定はないが、モリブデン、タングステンなどの高融点金属の窒化物で形成する第1層と、その上に形成する高融点金属又はアルミニウムや銅などの低抵抗金属、或いは多結晶シリコンなどの積層構造にしてもよい。
【0224】
その後、イオンドーピング法により各半導体膜に導電型を付与する不純物元素を添加して、後のソース領域またはドレイン領域、LDD領域となる不純物領域を形成する。さらに活性化や水素化の加熱処理を行う。次いで、アクリル、ポリイミド、ポリアミド、ポリイミドアミドから選ばれる有機樹脂材料から成る層間絶縁膜1014を形成する。層間絶縁膜の表面はCMPにより平坦化処理することが望ましい。その後、結晶質半導体層1008に達するコンタクトホールを形成し、配線1015〜1018を形成する。
【0225】
なお、本実施例では、第1半導体層に含まれる触媒元素の濃度を低減するゲッタリング処理を行う前に第2半導体層を形成したが、作製工程は、実施例4〜6のいずれかを組み合わせて用いることができる。
【0226】
(実施例11)
図35は本発明に適用可能なレーザー処理装置の一態様を示す図である。この装置はレーザー1400、光学系1401、基板ステージ1402、基板搬送手段1404、ブロワー1410などから構成されている。また、付随するものとして、基板1411を保管するカセット1408、カセットを保持する1407、基板上のレーザー光照射領域をブロワーから供給する気体で置換するノズル1409などが備えられている。
【0227】
レーザーは波長400nm以下の光を発振するエキシマレーザーなどの気体レーザーや、YAGレーザー、YLFレーザーなどの固体レーザーを用いる。YAGレーザーでは基本波(1060nm)の他に、第2高調波(532nm)や第3高調波(353.3nm)などを用いることができる。これらのレーザーはパルス発振するものを用い、発振周波数は5〜300Hz程度のものが採用される。
【0228】
光学系1410はレーザー1400から放出されるレーザー光を集光及び伸張して、被照射面に断面形状が細い線状のレーザー光を照射するためのものである。その構成は任意なものとして良いが、シリンドリカルレンズアレイ1412、シリンドリカルレンズ1413、ミラー1414、ダブレットシリンドリカルレンズ1415などを用いて構成する。レンズの大きさにもよるが、長手方向は100〜400mm程度、短手方向は100〜500μm程度の線状レーザー光を照射することが可能である。
【0229】
ステージ1402は処理する基板1411を保持し、レーザーと同期して移動させるためのものである。基板1411のカセット1408からの取り出し、及びレーザー処理に伴う移動は搬送手段1404により行う。搬送手段1404にはアーム1405が備えられている。アーム1405は基板1411の一端を掴み一軸方向に動かすことにより、前述の線状レーザー光を基板の全面に照射することが可能となる。
【0230】
このようなレーザー照射装置の構成は、レーザー光の照射時の雰囲気制御をするためのチャンバーを必要とせず、基板が大型化してもレーザー照射装置の小型化を図ることができる。本実施例は、実施例1〜10に適応することができる。
【0231】
(実施例12)
TFT基板を用いた他の実施例として、発光素子を用いた表示装置の一例を図面を参照して説明する。図13は各画素毎にTFTを配置して形成される表示装置の画素構造を上面図で示している。なお、図13において示すnチャネル型TFT1600、1602及びpチャネル型TFT701は実施例5と同様の構成であり、本実施例では詳細な説明は省略する。
【0232】
図13(A)は基板601上にブロッキング層602を介してnチャネル型TFT700とpチャネル型TFT701が画素に形成された構成を示している。この場合、nチャネル型TFT700はスイッチング用TFTであり、pチャネル型TFT701は電流制御用TFTであり、そのドレイン側は発光素子705の一方の電極と接続している。pチャネル型TFT702は発光素子に流す電流を制御する動作を目的としている。勿論、一つの画素に設けるTFTの数に限定はなく、表示装置の駆動方式に従い適切な回路構成とすることが可能である。
【0233】
図13(A)に示す発光素子1105は、陽極層1111、発光体を含む有機化合物層1112、陰極層1113から成り、その上にパッシベーション層1114が形成されている。有機化合物層は、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。また、有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)があり、これらのうちどちらか、あるいは両方の発光を含んでいる。
【0234】
陽極は酸化インジウムや酸化スズ、酸化亜鉛などの仕事関数の高い材料を用い、陰極にはMgAg、AlMg、Ca、Mg、Li、AlLi、AlLiAgなどのアルカリ金属又はアルカリ土類金属、代表的にはマグネシウム化合物で形成される仕事関数の低い材料を用いる。また、1〜20nmの薄いフッ化リチウム層とAl層との組み合わせ、薄いセシウム層とAl層との組み合わせによって陰極を構成しても良い。陽極はpチャネル型TFT1602のドレイン側の配線1110と接続しており、陽極1111の端部を覆うように隔壁層1103が形成されている。
【0235】
発光素子1605上にはパッシベーション膜1114が形成されている。パッシベーション層1114には窒化シリコン、酸窒化シリコン、ダイヤモンドライクカーボン(DLC)など酸素や水蒸気に対しバリア性の高い材料を用いて形成する。このような構成により発光素子の発する光は陽極側から放射される構成となる。
【0236】
一方、図13(B)は基板1101上にブロッキング層1102を介してnチャネル型TFT1600とnチャネル型TFT1602が画素に形成された構成を示している。この場合、nチャネル型TFT1600はスイッチング用TFTであり、nチャネル型TFT1602は電流制御用TFTであり、そのドレイン側は発光素子706の一方の電極と接続している。
【0237】
発光素子1606は、nチャネル型TFT1602のドレイン側に接続する配線1115上に陽極材料として酸化インジウムや酸化スズ、酸化亜鉛などの仕事関数の高い材料の膜を形成している。その上に形成する有機化合物層は図13(A)の有機化合物層1112と同様な構成が適用される。
【0238】
陰極の構成は、1〜2nmの低仕事関数の材料で形成される第1陰極層1119と、その上に形成されて陰極の低抵抗化を図るために設ける第2陰極層1117とで形成される。第1陰極層1119はセシウム、セシウムと銀の合金、フッ化リチウムの他にMgAg、AlMg、Ca、Mg、Li、AlLi、AlLiAgなどのアルカリ金属又はアルカリ土類金属、代表的にはマグネシウム化合物で形成される。第2陰極層1117は、10〜20nmのAl、Agなどの金属材料又は、10〜100nmの酸化インジウムや酸化スズ、酸化亜鉛などの透明導電膜で形成される。発光素子1606上にはパッシベーション膜1120が形成されている。このような構成により発光素子の発する光は陰極側から放射される構成となる。
【0239】
また、図13(B)における発光素子1606の他の形態として、nチャネル型TFT1602のドレイン側に接続する配線1115上に陰極材料としてセシウム、セシウムと銀の合金、フッ化リチウムの他にMgAg、AlMg、Ca、Mg、Li、AlLi、AlLiAgなどのアルカリ金属又はアルカリ土類金属、代表的にはマグネシウム化合物から成る陰極層1116、有機化合物層1118、1〜2nm程度の薄い第1陽極層1119、透明導電膜で形成される第2陽極層1117とした構成とすることもできる。第1陽極層はNi、Pt、Pbなどの仕事関数の高い材料を真空蒸着法で形成する。
【0240】
以上のようにしてアクティブマトリクス駆動の発光素子を用いた表示装置を作製することができる。本発明により得られる結晶質半導体層は{101}面の配向率が高いので、結晶粒界における欠陥密度が低減し、高い電界効果移動度を得ることができる。この表示装置においては、発光素子に接続する電流制御用にTFTに高い電流駆動能力が要求されるので、その用途に適している。また、ここでは示さないが、画素部の周辺に駆動回路部を設ける構成は、実施例6と同様にすれば良い。
【0241】
(実施例13)
図16に電圧補償回路を有する発光素子を用いた表示装置の画素の構成について示す。図16(A)に示すとおり、スイッチング用TFT1301、駆動用TFT1302、発光素子1304、ソース信号線(S)、ゲート信号線(G)、電流供給線(Current)については従来と同様に有している。この画素の構成は、スイッチング用TFT1301の出力電極と、駆動用TFT1302のゲート電極との間に、電圧補償回路1310を有している点を特徴としている。
【0242】
図16(B)は、電圧補償回路1310の構成を含む回路図である。電圧補償回路1310は、第1TのFT1351、第2TFT1352、第3TFT1353、第1容量1354および第2容量1355を有する。また、G(m)はm行目に走査されるゲート信号線、G(m−1)は、m−1行目に走査されるゲート信号線である。
【0243】
第1容量1354と、第2容量1355とは、直列に配置される。第1容量1354の第1電極は、スイッチング用TFT1301の出力電極と接続され、第1容量1354の第2電極は、第2容量1355の第1電極と接続され、第2容量1355の第2電極は、電流供給線と接続されている。
【0244】
第1TFT1351のゲート電極は、ゲート信号線G(m−1)と接続され、入力電極は、ゲート信号線G(m)と接続され、出力電極は、スイッチング用TFT1301の出力電極と接続されている。第2TFT1352のゲート電極は、ゲート信号線G(m−1)と接続され、入力電極は、ゲート信号線G(m)と接続され、出力電極は、第1容量1354の第2電極および、第2容量1355の第1電極と接続されている。第3TFT1353のゲート電極は。スイッチング用TFT1351の出力電極と接続され、入力電極は、電流供給線と接続され、出力電極は、第1容量1354の第2電極および、第2容量1355の第1電極と接続されている。
【0245】
なお、画素を構成するTFT1301、1302、1351〜1353は全て同一極性のTFTを用いており、その極性はnチャネル型でもpチャネル型でも良い。これらのTFTを本発明の結晶質半導体層で形成すると、{101}面の配向率が高いので、結晶粒界における欠陥密度が低減し、高い電界効果移動度を得ることができ、高速に動作させることができると共に、高い電流駆動能力を有し余裕を持って発光素子を駆動させることができる。
【0246】
また、第1容量1354は、第3TFT1353の出力電極とゲート電極間に配置され、その容量結合を利用して駆動用TFT1302のゲート電極電位を上昇させるために用いられる容量であり、第2容量1355は、第1容量1354と直列配置され、電位が安定している電流供給線と、駆動用TFT1302の間を容量結合して、駆動用TFT1302のゲート電極の電位を保持するために用いられる容量である。
【0247】
ここで、第2容量1355のもう1つの機能として、電圧補償回路のブートストラップを正常に機能させるための負荷として用いている点を付記しておく。この負荷がない場合、第3TFT1353のゲート電極の電位が、ソース信号線からのデジタル映像信号の入力によって上昇をはじめると、容量結合によって直ちに第3TFT1353の出力電極の電位が上昇する。この動作が起こった場合、先に述べたブートストラップが正常に働かなくなることがあるため、第2容量1355を配置することによって、第3TFT1353のゲート電極の電位の上昇に対し、第3TFT1353の出力電極の、容量結合による電位上昇を遅延させる。このようにすると、第3TFTの出力電極の電位上昇は、第3TFT1353自身がONして流れるドレイン電流によるものが支配的となり、ブートストラップを正常に働かせることが出来る。
【0248】
以上の方法により、通常、ソース信号線に入力されるデジタル映像信号の電圧振幅よりも大きい電圧振幅が必要であったゲート信号線選択パルスを、デジタル映像信号と同等の電圧振幅にすることが可能となる。よって、ゲート信号線駆動回路側の消費電力を低減することが可能となる。なお、ここで示した動作の場合、電流供給線の電位は高くしておくことが動作上望ましいため、発光素子1304の電極の向きは、1305を陽極、1306を陰極とするのが望ましい。この場合、従来例にて述べたのとは逆に、nチャネル型TFTによって構成した場合には下面出射、pチャネル型TFTによって構成した場合には上面出射となる。
【0249】
(実施例14)
本実施例では、実施例6又は実施例7における有機発光素子を備えた表示装置の形態を図17に示す。図17(A)は、表示装置を示す上面図であり、そのA−A'線の断面図を図17(B)に示す。絶縁表面を有する基板250(例えば、ガラス基板、結晶化ガラス基板、もしくはプラスチック基板等)に、画素領域252、ソース側駆動回路251、及びゲート側駆動回路253を形成する。
【0250】
268はシール材、269はDLC膜であり、画素領域および駆動回路部はシール材268で覆われ、そのシール材は保護膜269で覆われている。さらに、接着材を用いてカバー材270で封止されている。熱や外力などによる変形に耐えるためカバー材270は基板250と同じ材質のもの、例えばガラス基板を用いることが望ましく、サンドブラスト法などにより図17に示す凹部形状(深さ3〜10μm)に加工する。さらに加工して乾燥剤271が設置できる凹部(深さ50〜200μm)を形成することが望ましい。なお、258はソース側駆動回路251及びゲート側駆動回路253に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)1709からビデオ信号やクロック信号を受け取る。
【0251】
次に、断面構造について図17(B)を用いて説明する。基板250上に絶縁膜260が設けられ、絶縁膜260の上方には画素領域252、ゲート側駆動回路253が形成されており、画素領域252は電流制御用TFT261とそのドレインに電気的に接続された発光素子の一方の電極262を含む複数の画素により形成される。また、ゲート側駆動回路253はnチャネル型TFT263とpチャネル型TFT264とを組み合わせたCMOS回路を用いて形成される。これらのTFT(261、263、264を含む)は、公知の技術に従い作製すればよい。
【0252】
画素電極262は有機発光素子の陽極として機能する。また、画素電極262の両端には隔壁265が形成され、発光素子の電極262上には有機化合物層266および有機発光素子の陰極267が形成される。有機化合物層266は正孔注入層や発光層、電子注入層などを適宜組み合わせて形成する。その全てをインクジェット方式の印刷技術で形成しても良いし、スピン塗布法とインクジェット方式を組み合わせて形成しても良い。
【0253】
例えば、正孔注入層としてPEDOTから成る第1有機化合物層を形成し、その上にインクジェット方式による印刷装置を用いて線状又はストライプ状の第2有機化合物層を形成することができる。この場合、第2有機化合物層が発光層となる。適用する有機化合物材料は、高分子系又は中分子系のものが可能である。
【0254】
陰極267は全画素に共通の配線としても機能し、接続配線258を経由してFPC259に電気的に接続されている。さらに、画素領域252及びゲート側駆動回路253に含まれる素子は全て陰極267、シール材268、及び保護膜269で覆われている。また、シール材268を用いて有機発光素子を完全に覆った後、すくなくとも図17に示すようにDLC膜などからなる保護膜269をシール材268の表面(露呈面)に設けることが好ましい。また、基板の裏面を含む全面に保護膜を設けてもよい。ここで、外部入力端子(FPC)が設けられる部分に保護膜が成膜されないように注意することが必要である。マスクを用いて保護膜が成膜されないようにしてもよいし、マスキングテープで外部入力端子部分を覆うことで保護膜が成膜されないようにしてもよい。
【0255】
以上のような構造で有機発光素子をシール材268及び保護膜で封入することにより、有機発光素子を外部から完全に遮断することができ、外部から水分や酸素等の有機化合物層の酸化による劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い表示装置を得ることができる。また、画素電極を陰極とし、有機化合物層と陽極を積層して図17とは逆方向に発光する構成としてもよい。
【0256】
(実施例15)
本実施例では、実施例8のアクティブマトリクス基板を用いて発光装置を作製した例について説明する。発光装置とは基板上に形成された発光素子を該基板とカバー材の間に封入した表示用パネルおよび該表示用パネルにICを実装した表示用モジュールを総称したものである。なお、発光素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層(EL層)と陽極層と、陰極層とを有する。
【0257】
EL層には具体的に発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的に発光素子は、陽極層、発光層、陰極層が順に積層された構造を有しており、この構造に加えて、陽極層、正孔注入層、発光層、陰極層、陽極層、正孔注入層、発光層、電子輸送層、陰極層の順に積層した構造を有していても良い。
【0258】
図36は本実施例の発光装置の断面図である。図36において、基板上に設けられたスイッチングTFT73は図28(C)の画素TFT83を用いて形成される。したがって、構造の説明は画素TFT83の説明を参照すれば良い。基板1650上に設けられた駆動回路は図28(C)の駆動回路を用いて形成される。従って、nチャネル型TFT81およびpチャネル型TFT82の構造の説明は図28(C)のnチャネル型TFT201とpチャネル型TFT202の説明を参照すれば良い。電流制御TFT74は図28(C)のpチャネル型TFT202を用いて形成される。
【0259】
また、配線1658は電流制御TFTのソース配線(電流供給線に相当する)であり、1657は電流制御TFTの画素電極1660上に重ねることで画素電極1660と電気的に接続する配線である。なお、画素電極1660は、透明導電膜からなる画素電極(発光素子の陽極)である。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを導入したものを用いても良い。画素電極1660は、上記配線を形成する前に平坦な層間絶縁膜1659上に形成する。
【0260】
配線1651〜1658を形成後、図36に示すように隔壁層1661を形成する。隔壁層1661は100〜400nmの絶縁膜もしくは有機樹脂膜をパターニングして形成すれば良い。なお、隔壁層1661は絶縁膜であるため、成膜時における素子の静電破壊には注意が必要である。本実施例では隔壁層1661の材料となる絶縁膜中にカーボン粒子や金属粒子を導入して抵抗率を下げ、静電気の発生を抑制する。この際、抵抗率は1×106〜1×1012Ωm(好ましくは1×108〜1×1010Ωm)となるようにカーボン粒子や金属粒子の導入量を調節すれば良い。
【0261】
画素電極1660の上には発光層1662が形成される。図36では一画素しか図示していないがR(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けることは可能である。具体的には、正孔注入層として20nm厚の銅フタロシアニン(CuPc)膜を設け、その上に発光層として70nm厚のトリス−8−キノリノラトアルミニウム錯体(Alq3)膜を設けた積層構造としている。Alq3にキナクリドン、ペリレンもしくはDCM1といった蛍光色素を導入することで発光色を制御することができる。
【0262】
但し、以上の例は発光層として用いることのできる有機発光材料の一例であって、これに限定する必要はない。発光層、電荷輸送層または電荷注入層を自由に組み合わせてEL層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、本実施例では低分子系有機発光材料を発光層として用いる例を示したが、中分子系有機発光材料や高分子系有機発光材料を用いても良い。昇華性を有さず、かつ、分子数が20以下または連鎖する分子の長さが10μm以下の有機発光材料を中分子系有機発光材料とする。また、高分子系有機発光材料を用いる例として、正孔注入層として20nmのポリチオフェン(PEDOT)膜をスピン塗布法により設け、その上に発光層として100nm程度のパラフェニレンビニレン(PPV)膜を設けた積層構造としても良い。また、電荷輸送層や電荷注入層として炭化シリコン等の無機材料を用いることも可能である。これらの有機発光材料や無機材料は公知の材料を用いることができる。
【0263】
次に、EL層1662の上にはアルミニウムとリチウムとの合金膜からなる陰極1663が設けられる。この陰極1663まで形成された時点で発光素子1664が完成する。発光素子1664は、画素電極(陽極)1660、EL層1662及び陰極1663からなる。
【0264】
発光素子1664を完全に覆うようにしてパッシベーション膜1665を設ける。パッシベーション膜1665としては、炭素膜、窒化シリコン膜もしくは窒化酸化シリコン膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。特にDLC(ダイヤモンドライクカーボン)膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低いEL層1662の上方にも容易に成膜することができる。DLC膜は酸素に対するブロッキング効果が高く、EL層1662の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間にEL層1662が酸化するといった問題を防止できる。
【0265】
さらに、パッシベーション膜1665上に封止材1666を設け、カバー材1667を貼り合わせる。封止材1666としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設ける。カバー材1667はガラス基板や合成石英ガラス基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。
【0266】
こうして図36に示すような構造の発光装置が完成する。なお、隔壁層1661を形成した後、パッシベーション膜1665を形成するまでの工程をマルチチャンバー方式(またはインライン方式)の成膜装置を用いて、大気解放せずに連続的に処理することは有効である。また、さらに発展させてカバー材1667を貼り合わせる工程までを大気解放せずに連続的に処理することも可能である。こうして、基板にnチャネル型TFT71、pチャネル型TFT72、スイッチングTFT(nチャネル型TFT)73および電流制御TFT(nチャネル型TFT)74が形成される。
【0267】
本実施例では画素部と駆動回路の構成のみ示しているが、その他にも信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路などの論理回路を同一の絶縁体上に形成可能であり、さらにはメモリやマイクロプロセッサをも形成しうる。
【0268】
さらに、発光素子を保護するための封止(または封入)工程まで行った後の本実施例の発光装置について図37を用いて説明する。なお、必要に応じて図36で用いた符号を引用する。
【0269】
図37(A)は、発光素子の封止までを行った状態を示す上面図、図37(B)は図37(A)をC−C'で切断した断面図である。点線で示された801はソース側駆動回路、806は画素部、807はゲート側駆動回路である。また、901はカバー材、902は第1シール材、903は第2シール材であり、第1シール材902で囲まれた内側には封止材907が設けられる。なお、904はソース側駆動回路801及びゲート側駆動回路807に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)905からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。
【0270】
次に、断面構造について図37(B)を用いて説明する。基板700の上方には画素部806、ゲート側駆動回路807が形成されており、画素部806は電流制御TFT1604とそのドレインに電気的に接続された画素電極711を含む複数の画素により形成される。また、ゲート側駆動回路807はnチャネル型TFT1601とpチャネル型TFT1602とを組み合わせたCMOS回路(図36参照)を用いて形成される。
【0271】
画素電極710は発光素子の陽極として機能する。また、画素電極710の両端には隔壁層711が形成され、画素電極710上にはEL層712および発光素子の陰極713が形成される。陰極713は全画素に共通の配線としても機能し、接続配線904を経由してFPC905に電気的に接続されている。さらに、画素部806及びゲート側駆動回路807に含まれる素子は全て陰極713およびパッシベーション膜715で覆われている。
【0272】
また、第1シール材902によりカバー材901が貼り合わされている。なお、カバー材901と発光素子との間隔を確保するために樹脂膜からなるスペーサを設けても良い。そして、第1シール材902の内側には封止材716が充填されている。なお、第1シール材902、封止材716としてはエポキシ系樹脂を用いるのが好ましい。また、第1シール材902はできるだけ水分や酸素を透過しない材料であることが望ましい。さらに、封止材716の内部に吸湿効果をもつ物質や酸化防止効果をもつ物質を含有させても良い。
【0273】
発光素子を覆うようにして設けられた封止材716はカバー材901を接着するための接着剤としても機能する。また、本実施例ではカバー材901を構成するプラスチック基板901aの材料としてFRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、マイラー、ポリエステルまたはアクリルを用いることができる。また、封止材716を用いてカバー材901を接着した後、封止材907の側面(露呈面)を覆うように第2シール材903を設ける。第2シール材903は第1シール材902と同じ材料を用いることができる。
【0274】
以上のような構造で発光素子を封止材716に封入することにより、発光素子を外部から完全に遮断することができ、外部から水分や酸素等のEL層の酸化による劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置が得られる。このような発光装置は各種電気器具の表示部として用いることができる。本実施例は実施例1〜13を組み合わせて用いて作製することが可能である。
【0275】
(実施例16)
本発明を実施して形成された半導体装置又は表示装置は様々な電子装置に組み込むことができる。その様な電子装置としては、ビデオカメラ、デジタルカメラ、プロジェクター(リア型またはフロント型)、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図18、図19及び図20に示す。
【0276】
図18(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004等を含む。本発明により表示部2003をアクティブマトリクス駆動の表示装置により構成してパーソナルコンピュータを完成させることができる。
【0277】
図18(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106等を含む。本発明により表示部2102をアクティブマトリクス駆動の表示装置により構成してビデオカメラを完成させることができる。
【0278】
図18(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示部2205等を含む。本発明により表示部2205をアクティブマトリクス駆動の表示装置により構成してモバイルコンピュータを完成させることができる。
【0279】
図18(D)はゴーグル型ディスプレイであり、本体2301、表示部2302、アーム部2303等を含む。本発明により表示部2302をアクティブマトリクス駆動の表示装置により構成してゴーグル型ディスプレイを完成させることができる。
【0280】
図18(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体2401、表示部2402、スピーカ部2403、記録媒体2404、操作スイッチ2405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digital Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。本発明により表示部2402をアクティブマトリクス駆動の表示装置により構成して当該プレーヤーを完成させることができる。
【0281】
図18(F)はデジタルカメラであり、本体2501、表示部2502、接眼部2503、操作スイッチ2504、受像部(図示しない)等を含む。本発明により表示部2502をアクティブマトリクス駆動の表示装置により構成してデジタルカメラを完成させることができる。
【0282】
図19(A)はフロント型プロジェクターであり、投射装置2601、スクリーン2602等を含む。図19(B)はリア型プロジェクターであり、本体2701、投射装置2702、ミラー2703、スクリーン2704等を含む。
【0283】
なお、図19(C)は、図19(A)及び図19(B)中における投射装置2601、2702の構造の一例を示した図である。投射装置2601、2702は、光源光学系2801、ミラー2802、2804〜2806、ダイクロイックミラー2803、プリズム2807、液晶表示装置2808、位相差板2809、投射光学系2810で構成される。投射光学系2810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図19(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。
【0284】
また、図19(D)は、図19(C)中における光源光学系2801の構造の一例を示した図である。本実施例では、光源光学系2801は、リフレクター2811、光源2812、レンズアレイ2813、2814、偏光変換素子2815、集光レンズ2816で構成される。なお、図19(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。但し、図19に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の液晶表示装置の適用例は図示していない。
【0285】
図20(A)は携帯電話であり、3001は表示用パネル、3002は操作用パネルである。表示用パネル3001と操作用パネル3002とは接続部3003において接続されている。接続部3003における、表示用パネル3001の表示部3004が設けられている面と操作用パネル3002の操作キー3006が設けられている面との角度θは、任意に変えることができる。さらに、音声出力部3005、操作キー3006、電源スイッチ3007、音声入力部3008を有している。本発明により表示部3004をアクティブマトリクス駆動の表示装置により構成して携帯電話を完成させることができる。
【0286】
図20(B)は携帯書籍(電子書籍)であり、本体3101、表示部3102、3103、記憶媒体3104、操作スイッチ3105、アンテナ3106等を含む。本発明により表示部3102をアクティブマトリクス駆動の表示装置により構成して携帯書籍を完成させることができる。
【0287】
図20(C)はテレビ受像器であり、本体3201、支持台3202、表示部3203等を含む。本発明のディスプレイは特に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)のディスプレイには有利である。本発明により表示部3203をアクティブマトリクス駆動の表示装置により構成してテレビ受像器を完成させることができる。
【0288】
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電気器具に適用することが可能である。
【0289】
【発明の効果】
本発明は、まず高い配向性を有する第1結晶質半導体膜を形成するために、第1非晶質半導体膜としてゲルマニウムを含有するシリコン膜を用いている。そして、この第1非晶質半導体膜を触媒元素を用いて結晶化させることにより、(110)面の配向性が高い第1結晶質半導体膜を形成する。さらに、第1のレーザー光を照射することにより、結晶性を向上させ非晶質領域をなくすと共に、高濃度ゲルマニウム含有領域を除去している。
【0290】
続いて、第1結晶質半導体層上に第2半導体層として、シリコン膜を形成し、加熱処理又はレーザー光の照射により第1結晶質半導体膜を結晶化の種(核)として第2結晶質半導体膜を形成する。第2結晶質半導体膜は、第1結晶質半導体膜の配向性の影響を受け、高い配向率で結晶成長する。
【0291】
このように、高い配向率で結晶成長することにより、隣接した異なる配向を有する核からの結晶成長がぶつかることによって発生する結晶粒界が少なくなり、ひとつひとつの結晶粒の粒径を大きくすることができる。また、第1結晶質半導体層を形成する際に用いた触媒元素は、ゲッタリング工程によりゲッタリング領域に移動され、結晶質半導体層に含まれる触媒元素の濃度を低減している。以上のように、本発明を用いると、触媒元素濃度が低く、配向性が高く、粒径の大きな結晶粒が集まった良好な結晶質半導体膜を得ることができる。
【0292】
さらに、本発明によれば、まず高い配向性を有する第1半導体層を形成するために、第1半導体層として、シリコンゲルマニウム膜を用いる。そして、このシリコンゲルマニウム膜を触媒元素を用いて結晶化させることにより、{101}面の配向性が高い第1結晶質半導体層を得ることができる。さらに、第1のレーザー光を照射することにより、結晶性を向上させ非晶質領域をなくし、第1結晶質半導体層上に第2半導体層として、シリコン膜を形成し、レーザー光を照射することにより、第1結晶質半導体層が結晶化の種(核)となって第2半導体層が結晶成長する。なお、第2半導体層は、第1結晶質半導体層の配向性の影響を受け、高い配向率で結晶成長する。
【0293】
このように、高い配向率で結晶成長することにより、隣接した、異なる配向を有する核からの結晶成長がぶつかることによって発生する結晶粒界が少なくなり、ひとつひとつの結晶粒の粒径を大きくすることができる。また、第1結晶質半導体層を形成する際に用いた触媒元素は、ゲッタリング工程によりゲッタリング領域に移動され、結晶質半導体層に含まれる触媒元素の濃度を低減している。以上のように、本発明を用いると、触媒元素濃度が低く、配向性が高く、粒径の大きな結晶粒が集まった良好な結晶質半導体膜を得ることができる。
【図面の簡単な説明】
【図1】 本発明の一実施態様を説明する断面図。
【図2】 結晶核の隣接間距離を示す累積度数グラフ。
【図3】 GeH4の添加量と結晶核発生密度との関係を示すグラフ。
【図4】 レーザーアニール前後における第1結晶質半導体膜のゲルマニウム濃度分布を示すグラフ。
【図5】 本発明に用いるプラズマCVD装置の構成を示す図。
【図6】 本発明による結晶質半導体膜の作製工程を説明する断面図。
【図7】 本発明による結晶質半導体膜の作製工程を説明する断面図。
【図8】 本発明による結晶質半導体膜の作製工程を説明する断面図。
【図9】 本発明による結晶質半導体膜の作製工程を説明する断面図。
【図10】 TFTの作製工程を説明する断面図。
【図11】 アクティブマトリクス基板の構成を示す断面図。
【図12】 アクティブマトリクス基板の回路構成を示すブロック図。
【図13】 発光素子を用いたアクティブマトリクス型の表示装置の画素の構成を示す断面図。
【図14】 ゲルマニウムを含有させた結晶質半導体膜のラマンスペクトルを示すグラフ。
【図15】 EBSPによる結晶質半導体膜の表面観察の結果を示す図。
【図16】 発光素子を用いたアクティブマトリクス型の表示装置の画素の回路構成を示す回路図。
【図17】 発光素子を用いたアクティブマトリクス型の表示装置の構成を示す上面図及び断面図。
【図18】 電子装置の一例を示す図。
【図19】 プロジェクターの一例を示す図。
【図20】 電子装置の一例を示す図。
【図21】 本発明の実施の形態を示す図。
【図22】 本発明の実施の形態を示す図。
【図23】 EBSPによる観察結果を示す図。
【図24】 EBSPによる観察結果を示す図。
【図25】 本発明を用いてTFTを作製する工程を示す図。
【図26】 本発明を用いてTFTを作製する工程を示す図。
【図27】 本発明を用いてTFTを作製する工程を示す図。
【図28】 本発明を用いてTFTを作製する工程を示す図。
【図29】 本発明の実施の一例を示す図。
【図30】 本発明の実施の一例を示す図。
【図31】 本発明の実施の一例を示す図。
【図32】 本発明の実施の一例を示す図。
【図33】 本発明の実施の一例を示す図。
【図34】 本発明の実施の一例を示す図。
【図35】 本発明の実施の一例を示す図。
【図36】 発光装置の一例を示す図。
【図37】 発光装置の一例を示す図。
【図38】 本発明の実施の一例を示す図。
【図39】 本発明の実施の一例を示す図。
【図40】 本発明の実施の一例を示す図。
【図41】 本発明の実施の一例を示す図。

Claims (16)

  1. シリコンに対し0.1乃至10原子%の割合でゲルマニウムを含む第1非晶質半導体膜を形成し、
    前記第1非晶質半導体膜に前記第1非晶質半導体膜の結晶化を助長する元素を添加し、不活性気体中にて加熱処理による第1の結晶化処理と、酸化雰囲気中でレーザー光の照射による第2の結晶化処理を行うことによって第1結晶質半導体膜を形成し、
    前記第1結晶質半導体膜をエッチング処理により前記第1結晶質半導体膜の表面から1〜10nm除去して薄膜化し、
    前記第1結晶質半導体膜上にシリコンを主成分とする第2非晶質半導体膜を形成し、
    不活性気体中で前記第2非晶質半導体膜を結晶化して、第2結晶質半導体膜を形成することを特徴とする半導体装置の作製方法。
  2. シリコンに対し0.1乃至10原子%の割合でゲルマニウムを含む第1非晶質半導体膜を形成し、
    前記第1非晶質半導体膜に前記第1非晶質半導体膜の結晶化を助長する元素を添加し、不活性気体中にて加熱処理による第1の結晶化処理と、酸化雰囲気中でレーザー光の照射による第2の結晶化処理を行うことによって第1結晶質半導体膜を形成し、
    前記第1結晶質半導体膜をエッチング処理により前記第1結晶質半導体膜の表面から1〜10nm除去して薄膜化し、
    前記第1の結晶化処理と前記第2の結晶化処理と前記エッチング処理とを順次複数回繰り返し、
    前記第1結晶質半導体膜上にシリコンを主成分とする第2非晶質半導体膜を形成し、
    不活性気体中で前記第2非晶質半導体膜を結晶化して、第2結晶質半導体膜を形成することを特徴とする半導体装置の作製方法。
  3. 請求項1または請求項2において、
    前記エッチング処理をウエットエッチングで行うことを特徴とする半導体装置の作製方法。
  4. 請求項3において、
    前記ウエットエッチングをHNO、HF、CHCOOHおよびBrを含むエッチング液で行うことを特徴とする半導体装置の作製方法。
  5. 請求項3において、
    前記ウエットエッチングをHNO、HF、CHCOOHおよびIを含むエッチング液で行うことを特徴とする半導体装置の作製方法。
  6. 請求項1または請求項2において、
    前記エッチング処理をドライエッチングで行うことを特徴とする半導体装置の作製方法。
  7. シリコンに対し0.1乃至10原子%の割合でゲルマニウムを含む第1非晶質半導体膜を形成し、
    前記第1非晶質半導体膜に前記第1非晶質半導体膜の結晶化を助長する元素を添加し、不活性気体中にて加熱処理による第1の結晶化処理と、酸化雰囲気中でレーザー光の照射による第2の結晶化処理を行うことによって第1結晶質半導体膜を形成し、
    前記第1結晶質半導体膜を化学的機械研磨により前記第1結晶質半導体膜の表面から1〜10nm除去して薄膜化し、
    前記第1結晶質半導体膜上にシリコンを主成分とする第2非晶質半導体膜を形成し、
    不活性気体中で前記第2非晶質半導体膜を結晶化して、第2結晶質半導体膜を形成することを特徴とする半導体装置の作製方法。
  8. シリコンに対し0.1乃至10原子%の割合でゲルマニウムを含む第1非晶質半導体膜を形成し、
    前記第1非晶質半導体膜に前記第1非晶質半導体膜の結晶化を助長する元素を添加し、不活性気体中にて加熱処理による第1の結晶化処理と、酸化雰囲気中でレーザー光の照射による第2の結晶化処理を行うことによって第1結晶質半導体膜を形成し、
    前記第1結晶質半導体膜を化学的機械研磨により前記第1結晶質半導体膜の表面から1〜10nm除去して薄膜化し、
    前記第1の結晶化処理と前記第2の結晶化処理と前記化学的機械研磨とを順次複数回繰り返し、
    前記第1結晶質半導体膜上にシリコンを主成分とする第2非晶質半導体膜を形成し、
    不活性気体中で前記第2非晶質半導体膜を結晶化して、第2結晶質半導体膜を形成することを特徴とする半導体装置の作製方法。
  9. 請求項1乃至請求項8のいずれか一項において、
    前記第2非晶質半導体膜の結晶化を、ファーネスアニールまたはRTAにより行うことを特徴とする半導体装置の作製方法。
  10. 請求項1乃至請求項8のいずれか一項において、
    前記第2非晶質半導体膜の結晶化を、レーザー光の照射により行うことを特徴とする半導体装置の作製方法。
  11. 請求項1乃至請求項10のいずれか一項において、
    前記第2の結晶化処理の後、ゲッタリング処理を行うことを特徴とする半導体装置の作製方法。
  12. 請求項1乃至請求項10のいずれか一項において、
    前記第2結晶質半導体膜を形成した後、ゲッタリング処理を行うことを特徴とする半導体装置の作製方法。
  13. 請求項1乃至請求項12のいずれか一項において、
    前記第2非晶質半導体膜を形成する前に、前記第1結晶質半導体膜の表面をフッ酸を含有する水溶液で処理することを特徴とする半導体装置の作製方法。
  14. 請求項1乃至請求項13のいずれか一項において、
    前記レーザー光の照射は、連続発振レーザーを用いて行われること特徴とする半導体装置の作製方法。
  15. 請求項1乃至請求項14のいずれか一項において、
    前記レーザー光の照射は、気体レーザーを用いて行われることを特徴とする半導体装置の作製方法。
  16. 請求項1乃至請求項14のいずれか一項において、
    前記レーザー光の照射は、固体レーザーの第2高調波〜第4高調波を用いて行われることを特徴とする半導体装置の作製方法。
JP2002199191A 2001-07-10 2002-07-08 半導体装置の作製方法 Expired - Fee Related JP4267266B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199191A JP4267266B2 (ja) 2001-07-10 2002-07-08 半導体装置の作製方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001-209877 2001-07-10
JP2001209877 2001-07-10
JP2001-234302 2001-08-01
JP2001234302 2001-08-01
JP2002199191A JP4267266B2 (ja) 2001-07-10 2002-07-08 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2003115457A JP2003115457A (ja) 2003-04-18
JP2003115457A5 JP2003115457A5 (ja) 2005-09-15
JP4267266B2 true JP4267266B2 (ja) 2009-05-27

Family

ID=26618470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199191A Expired - Fee Related JP4267266B2 (ja) 2001-07-10 2002-07-08 半導体装置の作製方法

Country Status (5)

Country Link
US (2) US6828179B2 (ja)
JP (1) JP4267266B2 (ja)
KR (1) KR100889509B1 (ja)
CN (1) CN1294619C (ja)
TW (1) TW579602B (ja)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331457B1 (en) * 1997-01-24 2001-12-18 Semiconductor Energy Laboratory., Ltd. Co. Method for manufacturing a semiconductor thin film
JP4376979B2 (ja) 1998-01-12 2009-12-02 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7503975B2 (en) * 2000-06-27 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method therefor
US6855584B2 (en) 2001-03-29 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP4854866B2 (ja) 2001-04-27 2012-01-18 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW558861B (en) * 2001-06-15 2003-10-21 Semiconductor Energy Lab Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
TW550648B (en) * 2001-07-02 2003-09-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
TW200304175A (en) * 2001-11-12 2003-09-16 Sony Corp Laser annealing device and thin-film transistor manufacturing method
US7238557B2 (en) * 2001-11-14 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7936338B2 (en) * 2002-10-01 2011-05-03 Sony Corporation Display unit and its manufacturing method
US6709910B1 (en) * 2002-10-18 2004-03-23 Sharp Laboratories Of America, Inc. Method for reducing surface protrusions in the fabrication of lilac films
US7374976B2 (en) * 2002-11-22 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin film transistor
KR100947180B1 (ko) * 2003-06-03 2010-03-15 엘지디스플레이 주식회사 폴리실리콘 박막트랜지스터의 제조방법
TWI290768B (en) * 2003-06-05 2007-12-01 Au Optronics Corp Method for manufacturing polysilicon film
US7348222B2 (en) * 2003-06-30 2008-03-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor and method for manufacturing a semiconductor device
KR100753568B1 (ko) * 2003-06-30 2007-08-30 엘지.필립스 엘시디 주식회사 비정질 반도체층의 결정화방법 및 이를 이용한 액정표시소자의 제조방법
US7247527B2 (en) * 2003-07-31 2007-07-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, and laser irradiation apparatus
US7358165B2 (en) * 2003-07-31 2008-04-15 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and method for manufacturing semiconductor device
US20050104072A1 (en) * 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7396779B2 (en) 2003-09-24 2008-07-08 Micron Technology, Inc. Electronic apparatus, silicon-on-insulator integrated circuits, and fabrication methods
KR101054340B1 (ko) * 2003-12-30 2011-08-04 삼성전자주식회사 박막 트랜지스터 표시판 및 그 제조 방법
JP2005228819A (ja) * 2004-02-10 2005-08-25 Mitsubishi Electric Corp 半導体装置
JP4082400B2 (ja) * 2004-02-19 2008-04-30 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置および電子機器
EP1774562B1 (en) * 2004-06-08 2012-02-22 Dichroic cell s.r.l. System for low-energy plasma-enhanced chemical vapor deposition
US7566602B2 (en) 2004-06-12 2009-07-28 Samsung Electronics Co., Ltd. Methods of forming single crystalline layers and methods of manufacturing semiconductor devices having such layers
KR100578787B1 (ko) 2004-06-12 2006-05-11 삼성전자주식회사 반도체 장치 및 그 제조 방법
US7504327B2 (en) * 2004-06-14 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film semiconductor device
US20060024870A1 (en) * 2004-07-27 2006-02-02 Wen-Chun Wang Manufacturing method for low temperature polycrystalline silicon cell
US7148122B2 (en) * 2004-08-24 2006-12-12 Intel Corporation Bonding of substrates
US7459406B2 (en) * 2004-09-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Laser processing unit, laser processing method, and method for manufacturing semiconductor device
WO2006033451A1 (en) * 2004-09-24 2006-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7041520B1 (en) * 2004-10-18 2006-05-09 Softpixel, Inc. Method for fabricating liquid crystal displays with plastic film substrate
US20060091397A1 (en) * 2004-11-04 2006-05-04 Kengo Akimoto Display device and method for manufacturing the same
US20060286004A1 (en) * 2005-06-15 2006-12-21 Jacobs Merrit N Containers for reducing or eliminating foaming
WO2007021757A2 (en) 2005-08-15 2007-02-22 Massachusetts Institute Of Technology Fluorescent sensor and methods
DE102005047081B4 (de) * 2005-09-30 2019-01-31 Robert Bosch Gmbh Verfahren zum plasmalosen Ätzen von Silizium mit dem Ätzgas ClF3 oder XeF2
JP4542492B2 (ja) 2005-10-07 2010-09-15 セイコーエプソン株式会社 電気光学装置及びその製造方法、電子機器、並びに半導体装置
JP4947954B2 (ja) * 2005-10-31 2012-06-06 スタンレー電気株式会社 発光素子
KR100721956B1 (ko) * 2005-12-13 2007-05-25 삼성에스디아이 주식회사 다결정 실리콘층, 상기 다결정 실리콘층을 이용한 평판표시 장치 및 이들을 제조하는 방법
KR100721957B1 (ko) * 2005-12-13 2007-05-25 삼성에스디아이 주식회사 다결정 실리콘층, 상기 다결정 실리콘층을 이용한 평판표시 장치 및 이들을 제조하는 방법
TW200824003A (en) * 2006-11-17 2008-06-01 Chunghwa Picture Tubes Ltd Semiconductor device and manufacturing method thereof
US7972943B2 (en) * 2007-03-02 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5152827B2 (ja) * 2007-03-22 2013-02-27 株式会社日立製作所 薄膜トランジスタ及びそれを用いた有機el表示装置
JP5346497B2 (ja) 2007-06-12 2013-11-20 株式会社半導体エネルギー研究所 半導体装置
US7851343B2 (en) * 2007-06-14 2010-12-14 Cree, Inc. Methods of forming ohmic layers through ablation capping layers
JP5395415B2 (ja) 2007-12-03 2014-01-22 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
TWI521712B (zh) * 2007-12-03 2016-02-11 半導體能源研究所股份有限公司 薄膜電晶體,包括該薄膜電晶體的顯示裝置,和其製造方法
JP5527966B2 (ja) * 2007-12-28 2014-06-25 株式会社半導体エネルギー研究所 薄膜トランジスタ
US20100295047A1 (en) * 2008-01-25 2010-11-25 Masao Moriguchi Semiconductor element and method for manufacturing the same
US20090189159A1 (en) * 2008-01-28 2009-07-30 Atmel Corporation Gettering layer on substrate
US8192806B1 (en) * 2008-02-19 2012-06-05 Novellus Systems, Inc. Plasma particle extraction process for PECVD
KR101282897B1 (ko) * 2008-07-08 2013-07-05 엘지디스플레이 주식회사 폴리실리콘 박막트랜지스터 및 그 제조방법
KR101000941B1 (ko) * 2008-10-27 2010-12-13 한국전자통신연구원 게르마늄 광 검출기 및 그 형성방법
KR101049806B1 (ko) 2008-12-30 2011-07-15 삼성모바일디스플레이주식회사 다결정 실리콘의 제조방법, 박막트랜지스터, 그의 제조방법및 이를 포함하는 유기전계발광표시장치
KR101049805B1 (ko) * 2008-12-30 2011-07-15 삼성모바일디스플레이주식회사 다결정 실리콘의 제조방법, 박막트랜지스터, 그의 제조방법및 이를 포함하는 유기전계발광표시장치
KR101041141B1 (ko) 2009-03-03 2011-06-13 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그의 제조방법
KR101056428B1 (ko) 2009-03-27 2011-08-11 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 및 이를 포함하는 유기전계발광표시장치
KR101094295B1 (ko) 2009-11-13 2011-12-19 삼성모바일디스플레이주식회사 다결정 실리콘층의 제조방법, 박막트랜지스터의 제조방법, 및 유기전계발광표시장치의 제조방법
KR101041147B1 (ko) 2010-04-07 2011-06-13 삼성모바일디스플레이주식회사 박막 트랜지스터, 박막 트랜지스터의 액티브층의 제조 방법 및 표시 장치
US8940610B2 (en) 2010-04-16 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Electrode for energy storage device and method for manufacturing the same
US9546416B2 (en) 2010-09-13 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline oxide semiconductor film
CN103500712B (zh) * 2010-12-03 2016-05-25 株式会社半导体能源研究所 半导体装置
KR20120107762A (ko) 2011-03-22 2012-10-04 삼성전자주식회사 반도체 소자의 제조 방법
JP5901048B2 (ja) * 2011-08-19 2016-04-06 国立大学法人東京工業大学 半導体基材およびその製造方法
US8647439B2 (en) 2012-04-26 2014-02-11 Applied Materials, Inc. Method of epitaxial germanium tin alloy surface preparation
CN103219228B (zh) * 2013-03-11 2016-05-25 京东方科技集团股份有限公司 多晶硅层的制作方法和多晶硅薄膜晶体管及其制造方法
CN104253026A (zh) * 2013-06-27 2014-12-31 上海和辉光电有限公司 制备多晶硅层的方法
KR102629466B1 (ko) * 2016-09-21 2024-01-26 에스케이하이닉스 주식회사 반도체 장치의 제조 방법
KR20180045964A (ko) 2016-10-26 2018-05-08 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
US10103280B1 (en) 2017-04-13 2018-10-16 International Business Machines Corporation Rapid melt growth photodetector
CN111564520A (zh) * 2019-07-18 2020-08-21 国家电投集团西安太阳能电力有限公司 一种用于太阳能电池制作的掺杂方法
KR20220033596A (ko) * 2020-09-08 2022-03-17 삼성디스플레이 주식회사 다결정 실리콘층의 제조 방법, 표시 장치 및 이의 제조 방법

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413805B1 (en) 1993-03-12 2002-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
TW241377B (ja) * 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
JPH06349735A (ja) 1993-06-12 1994-12-22 Semiconductor Energy Lab Co Ltd 半導体装置
US5923962A (en) 1993-10-29 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
TW264575B (ja) 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
JP3431033B2 (ja) 1993-10-29 2003-07-28 株式会社半導体エネルギー研究所 半導体作製方法
JP2873669B2 (ja) 1993-12-24 1999-03-24 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP3540012B2 (ja) * 1994-06-07 2004-07-07 株式会社半導体エネルギー研究所 半導体装置作製方法
JP3464287B2 (ja) 1994-09-05 2003-11-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5789284A (en) 1994-09-29 1998-08-04 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor thin film
JP3138169B2 (ja) * 1995-03-13 2001-02-26 シャープ株式会社 半導体装置の製造方法
TW355845B (en) 1995-03-27 1999-04-11 Semiconductor Energy Lab Co Ltd Semiconductor device and a method of manufacturing the same
JPH08316485A (ja) * 1995-05-12 1996-11-29 Fuji Xerox Co Ltd 半導体結晶の形成方法及びこれを用いた半導体装置の製造方法
JP3204489B2 (ja) * 1995-09-19 2001-09-04 シャープ株式会社 半導体装置の製造方法
JP3544280B2 (ja) * 1997-03-27 2004-07-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3090201B2 (ja) * 1997-06-04 2000-09-18 日本電気株式会社 多結晶シリコン膜及び半導体装置
US6326226B1 (en) * 1997-07-15 2001-12-04 Lg. Philips Lcd Co., Ltd. Method of crystallizing an amorphous film
JP3844566B2 (ja) * 1997-07-30 2006-11-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP2251913A3 (en) * 1997-11-10 2012-02-22 Kaneka Corporation Method of Manufacturing Silicon-Based Thin Film Photoelectric Converter and Plasma CVD Apparatus Used for Such Method
JP4376979B2 (ja) * 1998-01-12 2009-12-02 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6388270B1 (en) * 1998-03-27 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for producing same
JP4115585B2 (ja) * 1998-03-27 2008-07-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2000114172A (ja) 1998-08-07 2000-04-21 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US6559036B1 (en) 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
EP1049167A3 (en) * 1999-04-30 2007-10-24 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP4307635B2 (ja) * 1999-06-22 2009-08-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2001318627A (ja) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd 発光装置
TWI263336B (en) * 2000-06-12 2006-10-01 Semiconductor Energy Lab Thin film transistors and semiconductor device
JP2002083974A (ja) * 2000-06-19 2002-03-22 Semiconductor Energy Lab Co Ltd 半導体装置
US6828587B2 (en) * 2000-06-19 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7503975B2 (en) * 2000-06-27 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method therefor
US6624051B1 (en) * 2000-08-25 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
JP4045731B2 (ja) * 2000-09-25 2008-02-13 株式会社日立製作所 薄膜半導体素子の製造方法
US6815278B1 (en) * 2003-08-25 2004-11-09 International Business Machines Corporation Ultra-thin silicon-on-insulator and strained-silicon-direct-on-insulator with hybrid crystal orientations

Also Published As

Publication number Publication date
CN1294619C (zh) 2007-01-10
US7196400B2 (en) 2007-03-27
US20030010980A1 (en) 2003-01-16
KR20030007093A (ko) 2003-01-23
JP2003115457A (ja) 2003-04-18
US20040201023A1 (en) 2004-10-14
US6828179B2 (en) 2004-12-07
CN1396626A (zh) 2003-02-12
TW579602B (en) 2004-03-11
KR100889509B1 (ko) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4267266B2 (ja) 半導体装置の作製方法
JP5393726B2 (ja) 半導体装置の作製方法
US7253032B2 (en) Method of flattening a crystallized semiconductor film surface by using a plate
JP4850858B2 (ja) 半導体装置の作製方法
US7442592B2 (en) Manufacturing a semiconductor device
US7485553B2 (en) Process for manufacturing a semiconductor device
US7202119B2 (en) Method of manufacturing semiconductor device
JP4439789B2 (ja) レーザ照射装置、並びに半導体装置の作製方法
JP4209638B2 (ja) 半導体装置の作製方法
JP4230160B2 (ja) 半導体装置の作製方法
JP4860055B2 (ja) 半導体装置の作製方法
JP4216003B2 (ja) 半導体装置の作製方法
JP4212844B2 (ja) 半導体装置の作製方法
JP4837871B2 (ja) 半導体装置の作製方法
JP4968996B2 (ja) 半導体装置の作製方法
JP4342843B2 (ja) 半導体装置の作製方法
JP5127101B2 (ja) 半導体装置の作製方法
JP4267253B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees