WO2015198957A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2015198957A1
WO2015198957A1 PCT/JP2015/067583 JP2015067583W WO2015198957A1 WO 2015198957 A1 WO2015198957 A1 WO 2015198957A1 JP 2015067583 W JP2015067583 W JP 2015067583W WO 2015198957 A1 WO2015198957 A1 WO 2015198957A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
pixels
image
image data
display
Prior art date
Application number
PCT/JP2015/067583
Other languages
English (en)
French (fr)
Inventor
陽介 中邨
達彦 須山
照久 増井
健太郎 植村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580033923.XA priority Critical patent/CN106471566B/zh
Priority to US15/318,451 priority patent/US9940864B2/en
Publication of WO2015198957A1 publication Critical patent/WO2015198957A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2044Display of intermediate tones using dithering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/065Waveforms comprising zero voltage phase or pause
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present invention relates to a display device and a driving method thereof, and more particularly, to a display device that performs rest driving and a driving method thereof.
  • a plurality of pixel forming portions are formed in a matrix.
  • Each pixel formation portion is provided with a thin film transistor (Thin Transistor: hereinafter referred to as “TFT”) operating as a switching element and a pixel capacitor connected to the data signal line through the TFT.
  • TFT Thin Transistor
  • a data signal for displaying an image is written as a data voltage in a pixel capacitor in the pixel formation portion.
  • This data voltage is applied to the liquid crystal layer of the pixel formation portion, and the orientation direction of the liquid crystal molecules is changed in a direction corresponding to the voltage value of the data signal.
  • the liquid crystal display device displays an image on the display unit by controlling the light transmittance of the liquid crystal layer of each pixel forming unit.
  • a control signal or the like can be prevented from being supplied to the gate driver as the scanning signal line driver circuit and / or the source driver as the data signal line driver circuit. Accordingly, the operation of the gate driver and / or the source driver can be paused, so that power consumption can be reduced.
  • driving performed by providing a pause period after the refresh period is referred to as “pause driving”, for example.
  • This pause drive is also called “low frequency drive” or “intermittent drive”. Such pause driving is suitable for still image display.
  • luminance drop occurs in which the brightness of the image display decreases when the display image is refreshed.
  • luminance drop in the portion displayed in the halftone is large, and this reduces the quality of the display image.
  • Such a decrease in image quality is likely to be perceived when the refresh interval of the display image becomes longer due to pause driving.
  • an object of the present invention is to provide a display device that can suppress the occurrence of a luminance drop due to refresh of a display image during pause driving, and a driving method thereof.
  • a first aspect of the present invention is a display device that receives an input signal including image data by a continuous tone method from the outside and displays an image based on the input signal.
  • the display control unit is an image processing unit that performs a conversion process for converting a gradation method so that an image is displayed on the display unit by an area gradation method in the low-frequency driving mode on a part or all of the image data. It is characterized by including.
  • the image processing unit performs the conversion process on the image data so that a gradation is expressed in a pseudo manner by a dither method using a plurality of pixels as a unit.
  • the image processing unit uses the dither method to detect pixels that can express gradation within a predetermined error range by a dither method using a predetermined number of two or more pixels as a unit among pixels in the continuous tone image represented by the image data.
  • the conversion process is performed so that the pixels that are changed to pixels and cannot express the gradation within the predetermined error range by the dither method among the pixels in the continuous gradation image remain the pixels by the continuous gradation method. It is characterized by being applied to data.
  • the image processing unit At least two pixel numbers including a first pixel number and a second pixel number larger than the first pixel number as a pixel number serving as a unit of gradation expression by the dither method are determined in advance.
  • a pixel capable of expressing gradation within a predetermined error range is changed to a pixel by the first dither method by the first dither method using the first number of pixels as a unit.
  • the gradation cannot be expressed by the first dither method within the predetermined error range among the pixels in the continuous tone image, but the gradation within the predetermined error range by the second dither method with the second pixel number as a unit.
  • the representable pixels are changed to pixels by the second dither method, and the dither method using any number of the at least two pixels among the pixels in the continuous tone image as a unit within a predetermined error range.
  • the conversion processing is performed on the image data so that pixels that cannot express a tone remain as pixels based on a continuous tone method.
  • the area gradation method is a method in which a gradation is expressed in a pseudo manner by a dither method using two values including a maximum gradation value and a minimum gradation value that can be taken by a pixel in the image represented by the image data.
  • a sixth aspect of the present invention provides any one of the first to fifth aspects of the present invention,
  • the display unit includes a thin film transistor in which a channel layer is formed of an oxide semiconductor as a switching element for forming each pixel constituting an image to be displayed.
  • the display unit in the normal drive mode, the display unit is driven so that the refresh period for refreshing the display image appears continuously, and in the low frequency drive mode, the refresh period for refreshing the display image. And the display unit are driven so that the non-refresh period in which the refresh of the display image is paused alternately appears. More specifically, in the refresh period in the normal drive mode, the display unit is driven so that an image represented by image data by the continuous tone method is displayed on the display unit. On the other hand, in the refresh period in the low frequency drive mode, part or all of the continuous tone image data included in the input signal received from the outside is converted into the area tone image data, and the area tone The display unit is driven so that an image represented by the image data by the method is displayed. Thereby, pixel display of intermediate gradation values is suppressed in the low frequency drive mode, so that a luminance drop during refresh in the low frequency drive mode is reduced or eliminated.
  • the conversion process for converting the gradation method so that the gradation is expressed in a pseudo manner by the dither method using a plurality of pixels as a unit is performed on the image data. Therefore, the luminance drop at the time of refresh in the low frequency drive mode can be reduced or eliminated without changing the configuration of the drive unit or the control timing.
  • the image data in the input signal is dithered with a predetermined number of pixels equal to or greater than 2 (a gray scale is expressed by a dither method).
  • the display unit is driven so that an image represented by the partial dithered image data is displayed.
  • the image data in the input signal is dithered with the first pixel number as the unit and the dithered data with the second pixel number as the unit.
  • the display unit is driven so that it is converted into partial dithered image data composed of continuous tone data that is not subjected to dither processing, and an image represented by the partial dithered image data is displayed.
  • part or all of the image data in the input signal is converted into binary image data in which the gradation is expressed in a pseudo manner by the dither method.
  • the pixel value is either the maximum gradation value or the minimum gradation value.
  • a thin film transistor in which a channel layer is formed of an oxide semiconductor is used as a switching element for forming each pixel constituting an image to be displayed on the display unit.
  • the off-leakage current of the thin film transistor is significantly reduced, and the display device can be satisfactorily driven.
  • FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • 6 is a timing chart for explaining an example of an operation in a low-frequency drive mode in the first embodiment.
  • FIG. 10 is a diagram (A to C) for explaining dither processing in the first embodiment.
  • FIG. 6 is a luminance waveform diagram (A, B) for explaining the effect of the first embodiment.
  • FIG. 10 is a diagram (A to E) for explaining dither processing in a modification of the first embodiment. It is a figure which shows an example of the dither matrix used in the dither process in the modification of the said 1st Embodiment.
  • It is a block diagram which shows the structure of the liquid crystal display device which concerns on the 2nd Embodiment of this invention. It is a flowchart which shows the procedure of the dither process in the said 2nd Embodiment.
  • one frame period is a period for refreshing a display image for one screen
  • the length of “one frame period” is one frame in a general display device having a refresh rate of 60 Hz.
  • the length of the period (16.67 ms) is assumed, the present invention is not limited to this.
  • FIG. 1 is a block diagram showing a configuration of a liquid crystal display device 100 according to the first embodiment of the present invention.
  • the liquid crystal display device 100 includes a display control unit 200, a drive unit 300, and a display unit 500.
  • the driving unit 300 includes a source driver 310 as a data signal line driving circuit and a gate driver 320 as a scanning signal line driving circuit.
  • the display unit 500 constitutes a liquid crystal panel, and the liquid crystal panel may have a configuration in which both or one of the source driver 310 and the gate driver 320 and the display unit 500 are integrally formed.
  • a host 80 mainly composed of a CPU (Central Processing Unit) is provided as a signal source outside the liquid crystal display device 100.
  • CPU Central Processing Unit
  • the display unit 500 includes a plurality (m) of data signal lines SL1 to SLm, a plurality (n) of scanning signal lines GL1 to GLn, the plurality of data signal lines SL1 to SLm, and the plurality of data signals.
  • a plurality of (m ⁇ n) pixel forming portions 10 arranged in a matrix corresponding to the scanning signal lines GL1 to GLn are formed.
  • the m data signal lines SL1 to SLm are indicated by the symbol “SL” when not distinguished from each other
  • the n scanning signal lines GL1 to GLn are indicated by the symbol “GL” when not distinguished from each other.
  • Each pixel forming unit 10 includes a thin film transistor (TFT) 11 as a switching element having a gate terminal connected to the corresponding scanning signal line GL and a source terminal connected to the corresponding data signal line SL, and a drain terminal of the TFT 11.
  • TFT thin film transistor
  • the pixel electrode 12 connected to the common electrode 13, the common electrode 13 provided in common to the plurality of pixel forming portions 10, and the pixel electrode 12 and the common electrode 13. 10 has a liquid crystal layer provided in common.
  • a pixel capacitor Cp is constituted by a liquid crystal capacitor formed by the pixel electrode 12 and the common electrode 13. Note that, typically, an auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to reliably hold the voltage in the pixel capacitor Cp. Therefore, the pixel capacitor Cp is actually composed of a liquid crystal capacitor and an auxiliary capacitor.
  • a TFT using an oxide semiconductor layer as a channel layer (hereinafter referred to as “oxide TFT”) is used as the TFT 11.
  • the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor.
  • an In—Ga—Zn—O-based semiconductor film containing In, Ga, and Zn at a ratio of 1: 1: 1 is used.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of a TFT using amorphous silicon as a channel layer, ie, an a-Si TFT) and low leakage current (100 minutes compared to an a-Si TFT). Therefore, it is suitably used as a driving TFT and a pixel TFT.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer is used, power consumption of the display device can be significantly reduced.
  • the In—Ga—Zn—O-based semiconductor may be amorphous, may include a crystalline portion, and may have crystallinity.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-134475. For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
  • the oxide semiconductor layer may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • Zn—O based semiconductor ZnO
  • In—Zn—O based semiconductor IZO (registered trademark)
  • Zn—Ti—O based semiconductor ZTO
  • Cd—Ge—O based semiconductor Cd—Pb—O based
  • CdO cadmium oxide
  • Mg—Zn—O based semiconductors In—Sn—Zn—O based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO), In—Ga—Sn—O based semiconductors, etc. You may go out.
  • the use of an oxide TFT as the TFT 11 is merely an example, and a silicon-based TFT or the like may be used instead.
  • the display control unit 200 is typically realized as an IC (Integrated Circuit).
  • the display control unit 200 receives input data DAT including input image data representing an image to be displayed from the host 80, and in response thereto, a source driver control signal SsC, a gate driver control signal SgC, a common voltage signal, and the like. Generate.
  • the source driver control signal SsC includes a driver image signal SsD and a timing control signal SsCT, and is supplied to the source driver 310.
  • the gate driver control signal SgC is given to the gate driver 320.
  • a common voltage signal (not shown) is applied to the common electrode 13 in the display unit 500.
  • the source driver 310 generates and outputs data signals S1 to Sm to be applied to the data signal lines SL1 to SLm, respectively, according to the source driver control signal SsC.
  • the driver image signal SsD represents an image to be displayed
  • the timing control signal SsCT includes a source start pulse signal, a source clock signal, a latch strobe signal, a polarity switching control signal, and the like.
  • the source driver 310 operates a shift register, a sampling latch circuit, and the like (not shown) therein, and outputs a plurality of digital signals obtained based on the driver image signal SsD (not shown).
  • the data signals S1 to Sm are generated by converting into analog signals by the conversion circuit.
  • the gate driver 320 sequentially selects the scanning signal lines GL1 to GLn, that is, the scanning signal lines by repeating the application of the active scanning signal to each scanning signal line GL in accordance with the gate driver control signal SgC.
  • the scanning of GL1 to GLn is repeated at a predetermined cycle.
  • the gate driver control signal SgC includes, for example, a gate clock signal and a gate start pulse signal.
  • the gate driver 320 generates the scanning signal by operating an internal shift register (not shown) in accordance with the gate clock signal and the gate start pulse signal.
  • a backlight unit (not shown) is provided on the back side of the display unit 500, so that the back surface of the display unit 500 is irradiated with backlight light.
  • the backlight unit may be controlled by the display control unit 200, or may be controlled by other methods.
  • the liquid crystal panel is a reflection type, it is not necessary to provide a backlight unit.
  • the liquid crystal display device 100 when the liquid crystal display device 100 receives the input data DAT transmitted from the host 80 as an input signal, the liquid crystal display device 100 applies a data signal to each data signal line SL based on the input signal. Then, a scanning signal is applied to each scanning signal line GL and the backlight unit is driven, whereby an image based on the input image data included in the data signal DAT from the host 80 is displayed on the display unit 500 in the liquid crystal panel.
  • the liquid crystal display device 100 has two operation modes for driving the display unit 500: a normal drive mode and a low frequency drive mode.
  • the control information that specifies whether the liquid crystal display device 100 operates in the normal drive mode or the low frequency drive mode is included in the input data DAT from the host 80.
  • the configuration for designating is not limited to this.
  • the operation mode may be switched between the normal drive mode and the low frequency drive mode by manually operating a switch (not shown).
  • scanning signal lines GL1 to GLn in the display unit 500 are sequentially selected by the gate driver 320, and a plurality of data signals S1 to Sm representing an image to be displayed are data signals in the display unit 500 by the source driver 310. Applied to lines SL1 to SLm, respectively. Thereby, rewriting of the voltage held as pixel data in the pixel capacitance Cp of each pixel forming unit 10 in the display unit 500, that is, refreshing of the display image in the display unit 500 is performed.
  • the drive unit 300 (the source driver 310, the gate driver 320, and the like) is controlled by the display control unit 200 so that only the refresh period during which the display image is refreshed repeatedly appears.
  • the dither processing circuit 220 stops its operation.
  • FIG. 2 is a timing chart for explaining an example of the operation in the low frequency drive mode in the present embodiment.
  • display image data pixel data for one screen
  • display image data writing is suspended for the subsequent 59 frame periods. That is, the display unit 500 of the liquid crystal display device 100 is driven so that a refresh period composed of one refresh frame period and a non-refresh period composed of 59 pause frame periods appear alternately. Therefore, the refresh rate is 1 Hz, and the refresh cycle is 1 second.
  • the display control unit 200 in this embodiment includes a drive control circuit 210, a dither processing circuit 220, and a data selector 230.
  • the drive control circuit 210 corresponds to a timing controller as a display control unit in a conventional liquid crystal display device, and generates a gate driver control signal SgC and a source driver timing control signal SsCT based on input data DAT from the host 80.
  • the input image data SsD0 is extracted from the data DAT and output, and the selection control signal Ssw1 is generated and output.
  • the gate driver control signal SgC is supplied to the gate driver 320, the source driver timing signal ScCT is supplied to the source driver 320, and the selection control signal Ssw1 is supplied to the data selector 230.
  • the input image data SsD0 is digital data representing an image to be displayed by a continuous tone method, and is supplied to the dither processing circuit 220 and the data selector 230.
  • the dither processing circuit 220 functions as an image processing unit that performs processing for converting the gradation method of the input image data. That is, the dither processing unit 220 inputs image data SsD0 by a continuous tone method in units of four pixels (hereinafter referred to as “2 ⁇ 2 pixels” or “adjacent four pixels”) in which two pixels are adjacent in the horizontal direction and the vertical direction, respectively. Is subjected to dither processing to generate image data (hereinafter referred to as “area gradation image data”) that expresses a gradation by an area gradation method.
  • This area gradation image data is a pseudo binary value composed of a maximum value Lmax and a minimum value Lmin that can be taken as pixel gradation values (hereinafter referred to as “pixel values”) in a continuous gradation image that is an image represented by input image data.
  • pixel values pixel gradation values
  • the area gradation method is a method of expressing gradations in a pseudo manner using binary values, and the area ratio of the binary values, that is, the number of pixels having one value of the binary values and the other value.
  • the gray scale is expressed in a pseudo manner by the ratio to the number of pixels having. For example, if the gradation values that can be taken by the pixels in the continuous gradation image are 0 to 255 and the number of gradations is 256, the gradation value 63 is a unit of dither processing as shown in FIG. Of the four adjacent pixels, the gradation value (pixel value) of one pixel is set to 255, and the gradation values (pixel values) of the remaining three pixels are set to 0. Further, as shown in FIG.
  • the gradation value 127 is realized by setting the gradation value of 2 pixels among the adjacent 4 pixels to 255 and the gradation value of the remaining 2 pixels to 0,
  • the gradation value 191 is realized by setting the gradation value (pixel value) of three of the four adjacent pixels to 255 and setting the gradation value of the remaining one pixel to 0. Is done. For the gradation value 0, the gradation values of the adjacent four pixels are all 0, and for the gradation value 255, the gradation values of the adjacent four pixels are all 255.
  • the dither processing circuit 220 When the average gradation value of the four adjacent pixels of the input image data SsD0 is equal to one of the five gradation values of gradation values 0, 63, 127, 191, and 255, the dither processing circuit 220 Four pixels are converted into adjacent four pixels composed of binary pixels corresponding to the average gradation value.
  • the dither processing circuit 220 when the average gradation value of the adjacent four pixels of the input image data SsD0 is a gradation value other than the five gradation values of gradation values 0, 63, 127, 191, and 255, Four adjacent pixels composed of binary pixels corresponding to the gradation value closest to the average gradation value among the five gradation values (that is, the gradation value that can be regarded as being equal to the average gradation value within a predetermined error range). Convert to
  • the dither processing circuit 220 converts the given input image data SsD0 from continuous gradation data to area gradation data in units of four adjacent pixels.
  • Image data (hereinafter referred to as “dithered input image data”) SsD1 obtained by this conversion is supplied to the data selector 230.
  • the data selector 230 selects one of the input image data SsD0 from the drive control circuit 210 and the dithered input image data SsD1 from the dither processing circuit 220 according to the selection control signal Ssw1.
  • the drive control circuit 210 gives the data selector 230 a low level (L level) as the selection control signal Ssw1 in the normal drive mode, and a high level (as the selection control signal Ssw1 in the low frequency drive mode). H level).
  • the data selector 230 selects the input image data SsD0 in the normal drive mode, selects the dithered input image data SsD1 in the low frequency drive mode, and selects the selected input image data SsD0 or dithered input image data SsD1. Is supplied to the source driver 310 as a driver image signal SsD representing an image to be displayed.
  • the input data DAT from the host 80 is given to the display control unit 200, and the drive control circuit 210 in the display control unit 200 determines whether the normal drive mode or the low frequency is based on the input data DAT. It is determined whether the drive mode is selected. As a result, when the normal drive mode is selected, the gate driver control signal SgC and the timing control signal SsCT are generated based on the input data DAT, and the input image data SsD0 is generated from the input data DAT. Are extracted and the L level is output as the selection control signal Ssw1.
  • the gate driver control signal SgC is supplied to the gate driver 320
  • the timing control signal SsCT is supplied to the source driver 310
  • the input image data SsD0 is based on the L level selection control signal Ssw1.
  • the signal is selected at 230 and supplied to the source driver 310 (as the driver image signal SsD).
  • the scanning signal lines GL1 to GLn are sequentially selected by the gate driver 320 based on the gate driver control signal SgC, and the data signal line SL1 by the source driver 310 based on the driver image signal SsD and the timing control signal SsCT.
  • Data signals S1 to Sm are applied to .about.SLm, respectively.
  • the display unit 500 (scanning signal lines GL1 to GLn and data signal lines SL1 to SLm) is driven to rewrite the pixel data of each pixel forming unit 10, thereby refreshing the display image.
  • Such refresh of the display image is repeatedly performed at intervals of one frame period.
  • the drive control circuit 210 in the display control unit 200 determines whether the drive mode is the normal drive mode or the low frequency drive mode based on the input data DAT from the host 80. Based on the input data DAT, the gate driver control signal SgC and the timing control signal SsCT are generated, and the input image data SsD0 is extracted from the input data DAT, but the H level is output as the selection control signal Ssw1 and the data selection is performed. Is provided to the device 230. Further, in this case, the input image data SsD0 is supplied to the dither processing circuit 220, where it is converted into area gray scale data and output as dithered input image data SsD1.
  • the dithered input image data SsD1 is selected by the data selector 230 based on the H level selection control signal Ssw1, and is supplied to the source driver 310 as the driver image signal SsD.
  • the scanning signal lines GL1 to GLn are sequentially selected by the gate driver 320 based on the gate driver control signal SgC, and the data signal line SL1 by the source driver 310 based on the driver image signal SsD and the timing control signal SsCT.
  • Data signals S1 to Sm are applied to .about.SLm, respectively. In this way, the display unit 500 is driven and the pixel data of each pixel forming unit 10 is rewritten, whereby the display image is refreshed.
  • the display unit 500 when such refresh is performed in one frame period, driving of the display unit 500 by the gate driver 320 and the source driver 310 is stopped and refresh of the display image is performed in the next 59 frame period. Not done. In the next one frame period after the 59 frame period, the display unit 500 is driven again by the gate driver 320 and the source driver 310 to refresh the display image. In this way, the display unit 500 is driven so that a refresh period of one frame period and a non-refresh period of 59 frame periods appear alternately.
  • an image represented by the input image data DsD0 by the continuous gradation method is displayed on the display unit 500, but in the low frequency drive mode, the dithering by the area gradation method is performed.
  • An image represented by the converted input image data SsD1 is displayed on the display unit 500.
  • a pseudo gradation is obtained with two values including the maximum value Lmax and the minimum value Lmin that can be taken as the gradation value (pixel value) of the pixel in the continuous gradation image represented by the input image data. Key is expressed. Therefore, since the display image in the low frequency drive mode does not include pixels with intermediate gradation values, the luminance drop that occurs when refreshing the display image during the pause drive in the conventional liquid crystal display device is reduced or eliminated. Is done.
  • FIG. 4 is a luminance waveform diagram for explaining the effect of suppressing such luminance drop in the present embodiment.
  • FIG. 4A is a luminance waveform diagram showing the measurement result of the luminance of the display image during the pause driving of the conventional liquid crystal display device
  • FIG. 4B is the low frequency of the liquid crystal display device according to the present embodiment.
  • It is a luminance waveform figure which shows the measurement result of the brightness
  • the horizontal axis represents time
  • the vertical axis represents a photo for a display image having a gradation value of 128 in a 256-gradation configuration having gradation values of 0 to 255. It represents the brightness measured by the sensor.
  • the refresh period at the time of these measurements is 1 second.
  • 4A and 4B show a high-frequency luminance waveform (a luminance waveform that changes drastically). If the luminance at the center of the change in the luminance waveform indicates the luminance as a measurement result, FIG. Can think.
  • the luminance drop at the time of refresh during low frequency driving is greatly reduced as compared with the conventional case.
  • the continuous tone type input image data SsD0 is converted into the area tone type dithered input image data by the dither processing in units of four adjacent pixels (2 ⁇ 2 pixels).
  • the unit of this dither processing is not limited to the adjacent four pixels.
  • dither processing may be performed in units of 6 adjacent pixels (hereinafter also referred to as “3 ⁇ 2 pixels”) in which 2 pixels are adjacent in the horizontal direction and 3 pixels are adjacent in the vertical direction.
  • FIG. 5 shows an example of the dither process when the gradation values that can be taken by the pixels of the image represented by the input image data SsD0 are 0 to 255.
  • the gradation value 43 is a gradation value (pixel value) of one pixel among the adjacent six pixels as a unit of dither processing, and the remaining five pixels. This is realized by setting the tone value (pixel value) to 0. Further, as shown in FIG.
  • the gradation value 85 is realized by setting the gradation value of 2 pixels among the adjacent 6 pixels to 255 and the gradation value of the remaining 4 pixels to 0.
  • the tone value 128 is realized by setting the tone value of three pixels among the six adjacent pixels to 255 and the tone value of the remaining three pixels to 0.
  • 170 is realized by setting the gradation value of 4 pixels among the adjacent 6 pixels to 255 and the gradation value of the remaining 2 pixels to 0, and the gradation value 211 is
  • the gradation value of 5 pixels among the adjacent 6 pixels is set to 255, and the gradation value of the remaining one pixel is set to 0.
  • the dither processing circuit 220 in the present modification has an average gradation value of 6 pixels adjacent to the input image data SsD0, which is one of the seven gradation values of gradation values 0, 43, 85, 128, 170, 211, and 255. If it is equal, the adjacent 6 pixels are converted into adjacent 6 pixels composed of binary pixels corresponding to the average gradation value.
  • the dither processing circuit 220 in the present modification has an average gradation value of adjacent six pixels of the input image data SsD0 other than the seven gradation values of gradation values 0, 43, 85, 128, 170, 211, and 255. If it is a gradation value, it corresponds to the gradation value closest to the average gradation value among the seven gradation values (that is, the gradation value that can be regarded as being equal to the average gradation value within a predetermined error range). To 6 adjacent pixels composed of binary pixels.
  • a dither matrix in which each element has a value corresponding to the number of gradations is set, and the corresponding pixel value of the input image data SsD0 by the continuous gradation method is set.
  • a known method of comparing with (gradation value) can be used (this is the same in other embodiments).
  • a dither matrix as shown in FIG. 6 may be used. it can.
  • the gradation value (pixel value) in the input image data SsD0 is compared with the dither matrix in FIG. 6 every 16 adjacent pixels (4 ⁇ 4 pixels), and the pixel value in the input image data SsD0 corresponds to the dither matrix. If it is larger than the element, the pixel value is changed to 255, and if it is equal to or less than the corresponding element of the dither matrix, the pixel value is changed to 0.
  • dithered input image data SsD1 is obtained as input image data by the area gradation method.
  • each pixel of the image to be displayed is formed by any one of the pixel forming units 10 in the display unit 500, but the image to be displayed is a color image and each pixel has a plurality of primary colors.
  • dither processing may be performed for each of the plurality of primary colors.
  • each pixel of an image to be displayed is a red subpixel (hereinafter referred to as “R subpixel”), a green subpixel (hereinafter referred to as “G subpixel”), and a blue subpixel (hereinafter referred to as “B subpixel”).
  • R subpixel red subpixel
  • G subpixel green subpixel
  • B subpixel blue subpixel
  • Image data SsD1 can be generated. Note that the above-described dither processing in the color image display in which each pixel is composed of a plurality of sub-pixels can be similarly applied to a color image display device as a modified example of other embodiments.
  • FIG. 7 is a block diagram showing a configuration of a liquid crystal display device 100 according to the second embodiment of the present invention.
  • the liquid crystal display device 100 is the same as the liquid crystal display device according to the first embodiment shown in FIG. 1 except for the configuration of the display control unit 200, and corresponding portions are denoted by the same reference numerals and detailed. Description is omitted. Below, it demonstrates centering around a structure, operation
  • the display control unit 200 receives the input data DAT including the input image data SsD0 from the host 80, and in response thereto, the source driver control signal SsC and the gate driver control A signal SgC, a common voltage signal, and the like are generated.
  • the source driver control signal SsC includes a driver image signal SsD and a timing control signal SsCT.
  • the display control unit 200 has a normal drive mode and a low-frequency drive mode (see FIG. 2) for driving the display unit 500 by the drive unit 300, as in the first embodiment.
  • the dither processing circuit 220, the gradation determination circuit 215, and the second data selector 232 constitute an image processing unit that executes processing for converting the gradation method of the input image data.
  • the image processing unit stops its operation.
  • the display control unit 200 in this embodiment includes a drive control circuit 210, a dither processing circuit 220, and a data selector (hereinafter referred to as “first data to distinguish this from a data selector 232 described later).
  • a gradation determination circuit 215 and a second data selector 232 are provided.
  • the drive control circuit 210 generates a gate driver control signal SgC and a source driver timing control signal SsCT based on the input data DAT from the host 80, extracts the input image data SsD0 from the data DAT, and outputs it.
  • a first selection control signal Ssw1 is generated.
  • the gate driver control signal SgC is supplied to the gate driver 320, the timing control signal SsCT is supplied to the source driver 320, and the first selection control signal Ssw1 is supplied to the first data selector 230.
  • the input image data SsD0 is digital data representing an image to be displayed by a continuous gradation method, and is supplied to the gradation determination circuit 215 and the first data selector 230.
  • the gradation determination circuit 215 determines, for each predetermined number of adjacent pixels (for example, every 2 ⁇ 2 pixels), whether or not any of a plurality of dither processes prepared in advance is possible based on the input image data SsD0.
  • a signal indicating the determination result (hereinafter referred to as “determination result signal”) Sdet is output, and a second selection control signal Ssw2 corresponding to the determination result is output.
  • the determination result signal Sdet is input to the dither processing circuit 220, and the second selection control signal Ssw2 is input to the second data selector 232. Note that this determination result signal Sdet includes identification information of the possible dither process when it is determined that any of the plurality of dither processes is possible.
  • the input image data SsD0 is given to the dither processing circuit 220 and the second data selector 232 via the gradation determination circuit 215.
  • the dither processing circuit 220 converts the continuous tone method input image data SsD0 into the area gradation method by the possible dither processing. Is converted to the ditherized input image data SsD11 and supplied to the second data selector 232. On the other hand, when none of the plurality of dither processes is possible, the dither processing circuit 220 stops its operation, and any dither process is not performed on the input image data SsD0.
  • the second data selector 232 selects the input image data SsD0 by the continuous tone method when none of the plurality of dither processes is possible. If any of the dither processing is possible, the dithered input image data SsD11 obtained by the possible dither processing is selected. As described above, whether or not any of the plurality of dither processes is possible is determined for each predetermined number of pixels. Therefore, the selection operation of the second data selector 232 is also performed for each predetermined number of pixels. . For this reason, the image data output from the second data selector 232 normally includes a mixture of continuous gradation data and area gradation data, and the output image data is partially dithered. Is provided to the first data selector 230 as converted input image data SsD01.
  • the first selection control signal Ssw1 generated by the drive control circuit 210 is a signal indicating the normal drive mode or the low frequency drive mode. Based on the first selection control signal Ssw1, the first data selector 230 selects the input image data SsD0 by the continuous gradation method in the normal drive mode, and supplies the input image data SsD0 to the source driver 310 as the driver image signal SsD. Then, the partial dithered input image data SsD01 is selected and supplied to the source driver 310 as a driver image signal SsD.
  • the input image data SsD0 in the continuous gradation method is partially dithered input image data by the gradation determination circuit 215, the dither processing circuit 220, and the second data selector 232. This is converted to SsD01, and the partially dithered input image data SsD01 is given to the source driver 310 as a driver image signal SsD.
  • FIG. 8 is a flowchart showing a procedure of dither processing executed by the image processing unit (the dither processing circuit 220, the gradation determination circuit 215, and the second data selector 232) in order to obtain the partial dithered input image data SsD0. It is.
  • the gradation determination circuit 215 pays attention to the adjacent four pixels (2 ⁇ 2 pixels) in the input image data SsD0 sequentially. Then, the average value of the tone values (pixel values) of the four pixels of interest is calculated as the tone value of interest (step S12).
  • the target gradation value is a gradation value 0, 63, 127, 191, 255 (hereinafter referred to as these five gradation values) that can be expressed in a pseudo manner by four pixels of two values (gradation values 0, 255).
  • 16
  • the gradation value is 0, if it is in the range of 47 to 79, it is in the gradation value 63, and if it is in the range of 111 to 143, the gradation is 0.
  • the gradation value 127 can be regarded as being equal to the gradation value 191 if it is within the range of 175 to 207, and the gradation value 255 if it is within the range of 239 to 255.
  • the dither processing circuit 220 can determine that the gradation is equal.
  • the data of the adjacent four pixels dithered in this way is output from the display control unit 200 via the second data selector 232 and the first data selector 230, and is supplied as pixel data constituting the driver image signal SsD. It is given to the driver 310 (step S18). Thereafter, the gradation determination circuit 215 determines whether or not the input image data SsD0 from the drive control circuit 210 includes unfocused adjacent four pixels (2 ⁇ 2 pixels). Returning to step S12, the processing after step S12 is executed.
  • the gradation determination circuit 215 performs drive control on the target four pixels. Focusing on the adjacent 6 pixels including the 2 unfocused pixels in the input image data SsD0 from the circuit 210, the average value of the gradation values of the 6 pixels of interest is newly calculated as the focused gradation value (step S30). Next, the target gradation value is a gradation value 0, 43, 85, 128, 170, 211, 255 (hereinafter referred to as “7”) that can be expressed in a pseudo manner with 6 pixels of 2 values (gradation values 0, 255).
  • the gradation value is in the range of 116 to 144, the gradation value is 128. If the gradation value is in the range of 154 to 186, the gradation value is 170. If the gradation value is in the range of 194 to 227, the gradation value is 211. In addition, it can be determined that it can be regarded as being equal to the gradation value 255 within the range of 239 to 255.
  • the dither processing circuit 220 can determine that the gradation value is equal.
  • the data of the adjacent 6 pixels dithered in this way is output from the display control unit 200 via the second data selector 232 and the first data selector 230, and is supplied as pixel data constituting the driver image signal SsD. It is given to the driver 310 (step S36). Thereafter, the processes after step S20 described above are executed.
  • step S32 If it is determined in step S32 that the target gradation value is not equal to any of the six-pixel pseudo gradation expressionable values within a predetermined error range, the continuous gradation method given to the gradation determination circuit 215
  • the six pixels of interest in the input image data SsD0 are output from the display control unit 200 via the second data selector 232 and the first data selector 230 as they are (without being subjected to dither processing), and the driver image
  • the pixel data constituting the signal SsD is given to the source driver 310 (step S40).
  • step S20 it is determined whether or not the input image data SsD0 from the drive control circuit 210 has four unfocused adjacent pixels (2 ⁇ 2 pixels) (step S20). As a result of the determination, if there are four unfocused adjacent pixels, the process returns to step S12, and the processing after step S12 (the above-described processing) is executed. The dither process is terminated. After the end, when the input image data SsD0 based on the new input data DAT from the host 80 is given from the drive control circuit 210 to the gradation determination circuit 215, the dither processing of FIG. 8 is started again.
  • this embodiment has a specific effect that luminance drop at the time of refreshing a display image in low frequency driving can be reduced in consideration of a trade-off with gradation reproducibility.
  • the target gradation value it is determined in two steps whether or not the target gradation value can be expressed as a pseudo gradation within a predetermined error range (steps S14 and S32 in FIG. 8). This determination is performed only in one step. Alternatively, it may be three or more stages. In the dither processing shown in FIG. 8, when this determination is made only in one stage, steps S30 to S40 are deleted, and the target gradation value (average value of the gradation values of the four pixels of interest) falls within the predetermined error range.
  • step S14 When it is determined that it is not equal to any of the gradation representable values (step S14), the four pixels of interest in the input image data SsD0 in the continuous gradation method given to the gradation determination circuit 215 are The data is directly output from the display control unit 200 via the second data selector 232 and the first data selector 230.
  • the dither processing is performed in units of 4 adjacent pixels (2 ⁇ 2 pixels) and 6 adjacent pixels (3 ⁇ 2 pixels).
  • the unit of dither processing in the present invention is not limited to this. .
  • the liquid crystal display device having the low frequency drive mode for performing the pause drive has been described as an example.
  • the present invention is not limited to this, and any display device that performs the pause drive may be used.
  • the present invention can also be applied to other display devices such as an organic EL (Electro Luminescence) display device.
  • the display control unit 200 in each of the above embodiments is realized by hardware (see FIGS. 1 and 7), but instead of this, some or all of the functions of the display control unit 200 are transferred to the CPU. Or the like may be realized by software by executing a predetermined program.
  • the present invention can be applied to a display device that performs pause driving and a driving method thereof.
  • second selection control signal SsD0 input image data (image data by continuous tone method) SsD1 ... Dithered input image data SsD01 ... Partially dithered input image data SsCT ... Timing control signal SsD ... Driver image signal SgC ... Gate driver control signal SsC ... Source driver control signal

Abstract

 休止駆動中における表示画像のリフレッシュによる輝度ドロップの発生を抑制できる表示装置を提供する。 通常駆動モードでは、連続階調方式による入力画像データ(SsD0)がデータ選択器(230)を介してソースドライバ(310)にドライバ用画像信号(SsD)として与えられる。これに対し、休止駆動を行う低周波駆動モードでは、上記入力画像データ(SsD0)がディザ処理回路(220)によりディザ化入力画像データ(SsD1)に変換され、データ選択器(230)を経てソースドライバ(310)にドライバ用画像信号(SsD)として与えられる。このディザ化入力画像データ(SsD1)は、入力画像データ(SsD0)の階調値が取り得る最大値と最小値からなる2値で面積階調方式により擬似的に階調を表現する。

Description

表示装置およびその駆動方法
 本発明は、表示装置およびその駆動方法に関し、特に、休止駆動を行う表示装置およびその駆動方法に関する。
 アクティブマトリクス型液晶表示装置の表示部には、複数の画素形成部がマトリクス状に形成されている。各画素形成部には、スイッチング素子として動作する薄膜トランジスタ(Thin Film Transistor:以下「TFT」という)と、当該TFTを介してデータ信号線に接続された画素容量とが設けられている。このTFTをオン/オフすることにより、画像を表示するためのデータ信号が画素形成部内の画素容量にデータ電圧として書き込まれる。このデータ電圧は画素形成部の液晶層に印加され、液晶分子の配向方向をデータ信号の電圧値に応じた方向に変化させる。このようにして液晶表示装置は、各画素形成部の液晶層の光透過率を制御することにより表示部に画像を表示する。
 このような液晶表示装置が携帯型電子機器等で使用される場合には、その消費電力の低減が従来より求められている。そこで、液晶表示装置の走査信号線としてのゲートラインを走査して表示画像のリフレッシュを行う走査期間(「リフレッシュ期間」ともいう)の後に、全てのゲートラインを非走査状態にしてリフレッシュを休止する休止期間(「非リフレッシュ期間」ともいう)を設ける表示装置の駆動方法が提案されている(例えば特許文献1参照)。この休止期間では、例えば、走査信号線駆動回路としてのゲートドライバおよび/またはデータ信号線駆動回路としてのソースドライバに制御用の信号などを与えないようにすることができる。これにより、ゲートドライバおよび/またはソースドライバの動作を休止させることができるので消費電力を低減することができる。特許文献1に記載の駆動方法のように、リフレッシュ期間の後に休止期間を設けることにより行う駆動は、例えば「休止駆動」と呼ばれる。なお、この休止駆動は「低周波駆動」または「間欠駆動」とも呼ばれる。このような休止駆動は静止画表示に好適である。
日本国特開2013-3467号公報 国際公開第2013/008668号パンフレット
 上記のような休止駆動を行っている液晶表示装置において、表示画像がリフレッシュされるときに画像表示の輝度が低下するという現象(「輝度ドロップ」と呼ばれる)が生じる。特に、中間調で表示されている部分での輝度ドロップが大きく、これにより表示画像の質が低下する。このような画質低下は、休止駆動によって表示画像のリフレッシュの間隔が長くなると知覚されやすい。
 そこで本発明は、休止駆動中における表示画像のリフレッシュによる輝度ドロップの発生を抑制できる表示装置およびその駆動方法を提供することを目的とする。
 本発明の第1の局面は、連続階調方式による画像データを含む入力信号を外部から受け取り、当該入力信号に基づき画像を表示する表示装置であって、
 表示部と、前記表示部を駆動する駆動部と、前記入力信号に基づき前記表示部に画像が表示されるように前記駆動部を制御する表示制御部とを備え、
 前記表示部における表示画像をリフレッシュするリフレッシュ期間が連続的に現れるように前記表示部を駆動する通常駆動モードと、前記表示部における表示画像をリフレッシュするリフレッシュ期間と前記表示部における表示画像のリフレッシュを休止する非リフレッシュ期間とが交互に現れるように前記表示部を駆動する低周波駆動モードとを有し、
 前記表示制御部は、前記低周波駆動モードにおいて面積階調方式により前記表示部に画像が表示されるように階調方式を変換する変換処理を前記画像データの一部または全部に施す画像処理部を含むことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記画像処理部は、複数の画素を単位とするディザ法より擬似的に階調が表現されるように前記変換処理を前記画像データに施すことを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記画像処理部は、前記画像データが表す連続階調画像における画素のうち2以上の所定数の画素を単位とするディザ法により所定誤差範囲内で階調を表現可能な画素が当該ディザ法による画素に変更され、前記連続階調画像における画素のうち当該ディザ法により当該所定誤差範囲内で階調を表現できない画素が連続階調方式による画素のままとなるように、前記変換処理を前記画像データに施すことを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記画像処理部は、
  ディザ法による階調表現の単位となる画素数として第1画素数と当該第1画素数よりも多い第2画素数とを含む少なくとも2つの画素数を予め決めておき、
  前記画像データが表す連続階調画像における画素のうち前記第1画素数を単位とする第1ディザ法により所定誤差範囲内で階調を表現可能な画素が当該第1ディザ法による画素に変更され、当該連続階調画像における画素のうち当該所定誤差範囲内で当該第1ディザ法により階調を表現できないが前記第2画素数を単位とする第2ディザ法により所定誤差範囲内で階調を表現可能な画素が当該第2ディザ法による画素に変更され、前記連続階調画像における画素のうち前記少なくとも2つの画素数のいずれの画素数を単位とするディザ法によっても所定誤差範囲内で階調を表現できない画素が連続階調方式による画素のままとなるように、前記変換処理を前記画像データに施すことを特徴とする。
 本発明の第5の局面は、本発明の第1から4の局面のいずれかにおいて、
 前記面積階調方式は、前記画像データが表す画像における画素が取り得る最大階調値および最小階調値からなる2値を使用するディザ法により擬似的に階調を表現する方式であることを特徴とする。
 本発明の第6の局面は、本発明の第1から5の局面のいずれかにおいて、
 前記表示部は、表示すべき画像を構成する各画素を形成するためのスイッチング素子として、酸化物半導体によりチャネル層が形成された薄膜トランジスタを含むことを特徴とする。
 本発明の他の局面は、本発明の上記第1から6の局面および後述の各実施形態に関する説明から明らかであるので、その説明を省略する。
 本発明の第1の局面によれば、通常駆動モードでは、表示画像のリフレッシュを行うリフレッシュ期間が連続的に現れるように表示部が駆動され、低周波駆動モードでは、表示画像をリフレッシュするリフレッシュ期間と表示画像のリフレッシュを休止する非リフレッシュ期間とが交互に現れるように表示部が駆動される。より詳しくは、通常駆動モードにおけるリフレッシュ期間では、連続階調方式による画像データの表す画像が表示部に表示されるように表示部が駆動される。これに対し、低周波駆動モードにおけるリフレッシュ期間では、外部から受け取った入力信号に含まれる連続階調方式による画像データの一部または全部が面積階調方式による画像データに変換され、その面積階調方式による画像データの表す画像が表示されるように表示部が駆動される。これにより、低周波駆動モードにおいて中間的な階調値の画素表示が抑制されるので、低周波駆動モードにおけるリフレッシュ時の輝度ドロップが低減または解消される。
 本発明の第2の局面によれば、低周波駆動モードでは、複数の画素を単位とするディザ法より擬似的に階調が表現されるように階調方式を変換する変換処理が画像データに施されるので、駆動部の構成や制御タイミングを変更することなく、低周波駆動モードにおけるリフレッシュ時の輝度ドロップを低減または解消することができる。
 本発明の第3の局面によれば、低周波駆動モードでは、入力信号における画像データが、2以上の所定数の画素を単位としてディザ化されたデータ(ディザ法により擬似的に階調を表現する2値画像データ)とディザ処理を施されない連続階調方式によるデータとからなる部分ディザ化画像データに変換され、この部分ディザ化画像データの表す画像が表示されるように表示部が駆動される。これにより、ディザ処理による階調再現性の低下を抑えつつ低周波駆動モードにおけるリフレッシュ時の輝度ドロップを低減することが可能となり、ディザ処理における許容誤差の設定によって階調再現性と輝度ドロップ抑制のトレードオフを調整することができる。
 本発明の第4の局面によれば、低周波駆動モードにおいて、入力信号における画像データが、第1画素数を単位としてディザ化されたデータと第2画素数を単位としてディザ化されたデータとディザ処理を施されない連続階調方式によるデータとからなる部分ディザ化画像データに変換され、この部分ディザ化画像データの表す画像が表示されるように表示部が駆動される。これにより、ディザ処理による階調再現性の低下を抑えつつ低周波駆動モードにおけるリフレッシュ時の輝度ドロップを低減することが可能となり、2段階のディザ処理のそれぞれにおける許容誤差の設定によって階調再現性と輝度ドロップ抑制のトレードオフをよりきめ細かく調整することができる
 本発明の第5の局面によれば、入力信号における画像データの一部または全部が、ディザ法により擬似的に階調が表現される2値画像データに変換され、この2値画像データにおける各画素値は、最大階調値または最小階調値のいずれかである。これにより、低周波駆動モードにおけるリフレッシュ時の輝度ドロップを確実に低減することができる。
 本発明の第6の局面によれば、表示部に表示すべき画像を構成する各画素を形成するためのスイッチング素子として、酸化物半導体によりチャネル層が形成された薄膜トランジスタが使用されているので、薄膜トランジスタのオフリーク電流が大幅に低減され、表示装置の休止駆動を良好に行うことができる。
 本発明の他の局面の効果については、本発明の上記第1から6の局面の効果および下記実施形態についての説明から明らかであるので、説明を省略する。
本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図である。 上記第1の実施形態における低周波駆動モードでの動作の一例を説明するためのタイミングチャートである。 上記第1の実施形態におけるディザ処理を説明するための図(A~C)である。 上記第1の実施形態による効果を説明するための輝度波形図(A,B)である。 上記第1の実施形態の変形例におけるディザ処理を説明するための図(A~E)である。 上記第1の実施形態の変形例におけるディザ処理において用いられるディザマトリクスの一例を示す図である 本発明の第2の実施形態に係る液晶表示装置の構成を示すブロック図である 上記第2の実施形態におけるディザ処理の手順を示すフローチャートである。
 以下、本発明の各実施形態について説明する。以下の各実施形態については、休止駆動を行うアクティブマトリクス型液晶表示装置を例に挙げて説明する。なお以下では、「1フレーム期間」とは1画面分の表示画像のリフレッシュのための期間であり、「1フレーム期間」の長さは、リフレッシュレートが60Hzである一般的な表示装置における1フレーム期間の長さ(16.67ms)であるものとするが、本発明はこれに限定されない。
<1.第1の実施形態>
<1.1 全体構成および動作概要>
 図1は、本発明の第1の実施形態に係る液晶表示装置100の構成を示すブロック図である。この液晶表示装置100は、表示制御部200と駆動部300と表示部500とを備えている。駆動部300は、データ信号線駆動回路としてのソースドライバ310と走査信号線駆動回路としてのゲートドライバ320とを含んでいる。表示部500は液晶パネルを構成し、この液晶パネルは、ソースドライバ310およびゲートドライバ320の双方または一方と表示部500とが一体的に形成された構成としてもよい。液晶表示装置100の外部には、主としてCPU(Central Processing Unit)により構成されるホスト80が信号源として設けられている。
 表示部500には、複数本(m本)のデータ信号線SL1~SLmと、複数本(n本)の走査信号線GL1~GLnと、当該複数本のデータ信号線SL1~SLmおよび当該複数本の走査信号線GL1~GLnに対応してマトリクス状に配置された複数個(m×n個)の画素形成部10とが形成されている。以下では、m本のデータ信号線SL1~SLmを互いに区別しない場合には記号“SL”で示し、n本の走査信号線GL1~GLnを互いに区別しない場合には記号“GL”で示すものとし、図1では、便宜上、1個の画素形成部10と、それに対応する1本のデータ信号線SLおよび1本の走査信号線GLとを示している。各画素形成部10は、対応する走査信号線GLにゲート端子が接続されると共に対応するデータ信号線SLにソース端子が接続されたスイッチング素子としての薄膜トランジスタ(TFT)11と、そのTFT11のドレイン端子に接続された画素電極12と、上記複数個の画素形成部10に共通的に設けられた共通電極13と、画素電極12と共通電極13との間に挟持され、上記複数個の画素形成部10に共通的に設けられた液晶層とを有している。そして、画素電極12および共通電極13により形成される液晶容量により画素容量Cpが構成される。なお、典型的には、画素容量Cpに確実に電圧を保持すべく液晶容量に並列に補助容量が設けられるので、実際には画素容量Cpは液晶容量および補助容量により構成される。
 本実施形態ではTFT11として、例えば酸化物半導体層をチャネル層に用いたTFT(以下「酸化物TFT」という。)が用いられる。酸化物半導体層は、例えばIn-Ga-Zn-O系の半導体を含む。ここで、In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。本実施形態では、In、GaおよびZnを1:1:1の割合で含むIn-Ga-Zn-O系半導体膜を用いる。
 In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(アモルファスシリコンをチャネル層に用いたTFTすなわちa-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFTおよび画素TFTとして好適に用いられる。In-Ga-Zn-O系半導体層を有するTFTを用いれば、表示装置の消費電力を大幅に削減することが可能になる。
 In-Ga-Zn-O系半導体は、アモルファスでもよいし、結晶質部分を含み、結晶性を有していてもよい。結晶質In-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系半導体が好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば、日本国特開2012-134475号公報に開示されている。参考のために、日本国特開2012-134475号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体層は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO(登録商標))、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドニウム)、Mg-Zn-O系半導体、In―Sn―Zn―O系半導体(例えばIn23-SnO2-ZnO)、In-Ga-Sn-O系半導体などを含んでいてもよい。なお、TFT11として酸化物TFTを用いるのは単なる一例であり、これに代えてシリコン系のTFTなどを用いても良い。
 表示制御部200は、典型的にはIC(Integrated Circuit)として実現される。表示制御部200は、表示すべき画像を表す入力画像データを含む入力データDATをホスト80から受信し、これに応じて、ソースドライバ制御信号SsC、ゲートドライバ制御信号SgC、および共通電圧信号等を生成する。ソースドライバ制御信号SsCは、ドライバ用画像信号SsDおよびタイミング制御信号SsCTからなり、ソースドライバ310に与えられる。ゲートドライバ制御信号SgCはゲートドライバ320に与えられる。共通電圧信号(不図示)は表示部500における共通電極13に与えられる。
 ソースドライバ310は、ソースドライバ制御信号SsCに応じて、データ信号線SL1~SLmにそれぞれ与えるべきデータ信号S1~Smを生成し出力する。ソースドライバ制御信号SsCのうち、ドライバ用画像信号SsDは表示すべき画像を表し、タイミング制御信号SsCTは、ソーススタートパルス信号、ソースクロック信号、ラッチストローブ信号、および、極性切替制御信号等を含む。ソースドライバ310は、このようなタイミング制御信号SsCTに応じて、その内部の図示しないシフトレジスタおよびサンプリングラッチ回路などを動作させ、ドライバ用画像信号SsDに基づいて得られる複数のデジタル信号を図示しないDA変換回路でアナログ信号に変換することにより上記データ信号S1~Smを生成する。
 ゲートドライバ320は、ゲートドライバ制御信号SgCに応じて、アクティブな走査信号の各走査信号線GLへの印加を所定周期で繰り返すことにより、走査信号線GL1~GLnの順次的な選択すなわち走査信号線GL1~GLnの走査を所定周期で繰り返す。ゲートドライバ制御信号SgCには、例えばゲートクロック信号およびゲートスタートパルス信号が含まれる。ゲートドライバ320は、ゲートクロック信号およびゲートスタートパルス信号に応じて、その内部の図示しないシフトレジスタなどを動作させることにより上記走査信号を生成する。
 表示部500の背面側にはバックライトユニット(不図示)が設けられており、これにより表示部500の背面にバックライト光が照射される。バックライトユニットは、表示制御部200により制御されるものであってもよいし、その他の方法により制御されるものであってもよい。なお、液晶パネルが反射型である場合には、バックライトユニットは設ける必要がない。
 以上のようにして、ホスト80から送信される入力データDATを液晶表示装置100が入力信号として受け取ると、この液晶表示装置100において、その入力信号に基づき、各データ信号線SLにデータ信号が印加され、各走査信号線GLに走査信号が印加され、バックライトユニットが駆動されることにより、ホスト80からのデータ信号DATに含まれる入力画像データに基づく画像が液晶パネルにおける表示部500に表示される。
<1.2 動作モード>
 本実施形態に係る液晶表示装置100は、表示部500の駆動に関し、通常駆動モードと低周波駆動モードという2つの動作モードを有している。本実施形態では、液晶表示装置100が通常駆動モードと低周波駆動モードのいずれで動作するかを指定する制御情報は、ホスト80からの入力データDATに含まれているものとするが、動作モードを指定するための構成はこれに限定されない。例えば、図示しないスイッチを手動で操作することにより動作モードが通常駆動モードと低周波駆動モードの間で切り替えられるように構成されていてもよい。
 本実施形態では、ゲートドライバ320によって表示部500における走査信号線GL1~GLnが順次選択されると共に、表示すべき画像を表す複数のデータ信号S1~Smがソースドライバ310によって表示部500におけるデータ信号線SL1~SLmにそれぞれ印加される。これにより、表示部500における各画素形成部10の画素容量Cpに画素データとして保持される電圧の書き換え、すなわち表示部500における表示画像のリフレッシュが行われる。通常駆動モードでは、このような表示画像のリフレッシュが行われるリフレッシュ期間のみが繰り返し現れるように表示制御部200により駆動部300(ソースドライバ310およびゲートドライバ320等)が制御される。なお、通常駆動モードでは、ディザ処理回路220はその動作を停止している。
 これに対し低周波駆動モードでは、表示画像のリフレッシュが行われるリフレッシュ期間と全ての走査信号線が非選択状態となってリフレッシュが休止される非リフレッシュ期間とが交互に繰り返されるように、表示制御部200により駆動部300が制御される。図2は、本実施形態における低周波駆動モードでの動作の一例を説明するためのタイミングチャートである。この例では、1フレーム期間で1画面分の画素データ(以下「表示画像データ」という)の書込が行われ、その後の59フレーム期間は表示画像データの書込が休止される。すなわち、1個のリフレッシュフレーム期間からなるリフレッシュ期間と59個の休止フレーム期間からなる非リフレッシュ期間とが交互に現れるように液晶表示装置100の表示部500が駆動される。したがって、リフレッシュレートは1Hzであり、リフレッシュ周期は1秒である。
<1.3 表示制御部の構成>
 本実施形態における表示制御部200は、図1に示すように、駆動制御回路210とディザ処理回路220とデータ選択器230とを備えている。駆動制御回路210は、従来の液晶表示装置における表示制御部としてのタイミングコントローラに対応し、ホスト80からの入力データDATに基づき、ゲートドライバ制御信号SgCおよびソースドライバ用のタイミング制御信号SsCTを生成して出力すると共に、当該データDATから入力画像データSsD0を取り出して出力し、さらに選択制御信号Ssw1を生成して出力する。ゲートドライバ制御信号SgCはゲートドライバ320に、ソースドライバ用タイミング信号ScCTはソースドライバ320に、選択制御信号Ssw1はデータ選択器230にそれぞれ与えられる。入力画像データSsD0は、表示すべき画像を連続階調方式により表すデジタルデータであり、ディザ処理回路220およびデータ選択器230に与えられる。
 ディザ処理回路220は、入力画像データの階調方式を変換する処理を行う画像処理部として機能する。すなわちディザ処理部220は、水平方向および垂直方向にそれぞれ2画素が隣接する4画素(以下「2×2画素」または「隣接4画素」という)を単位として、連続階調方式による入力画像データSsD0に対してディザ処理を施すことにより、面積階調方式により階調を表現する画像データ(以下「面積階調画像データ」という)を生成する。この面積階調画像データは、入力画像データの表す画像である連続階調画像における画素の階調値(以下「画素値」という)として取り得る最大値Lmaxおよび最小値Lminからなる2値で擬似的に階調を表現する。
 ここで、面積階調方式とは、2値で階調を擬似的に表現する方式であって、当該2値の面積比すなわち当該2値のうちの一方の値を有する画素数と他方の値を有する画素数との比によって階調を擬似的に表現するものである。例えば、上記連続階調画像における画素が取り得る階調値が0~255であって階調数が256とすると、階調値63は、図3(A)に示すように、ディザ処理の単位としての隣接4画素のうち1画素の階調値(画素値)を255とし残りの3画素の階調値(画素値)を0とすることで実現される。また、階調値127は、図3(B)に示すように、当該隣接4画素のうち2画素の階調値を255とし残りの2画素の階調値を0とすることで実現され、階調値191は、図3(C)に示すように、当該隣接4画素のうち3画素の階調値(画素値)を255とし残りの1画素の階調値を0とすることで実現される。なお、階調値0に対しては当該隣接4画素の階調値は全て0とされ、階調値255に対しては当該隣接4画素の階調値は全て255とされる。したがってディザ処理回路220は、入力画像データSsD0の隣接4画素の平均階調値が階調値0,63,127,191,255の5つの階調値のいずれかに等しい場合には、当該隣接4画素をその平均階調値に対応する2値画素からなる隣接4画素に変換する。またディザ処理回路220は、入力画像データSsD0の隣接4画素の平均階調値が階調値0,63,127,191,255の5つの階調値以外の階調値である場合には、当該5つの階調値のうち当該平均階調値に最も近い階調値(すなわち所定誤差範囲内で当該平均階調値に等しいとみなせる階調値)に対応する2値画素からなる隣接4画素に変換する。
 上記のようにしてディザ処理回路220は、与えられる入力画像データSsD0を隣接4画素単位で連続階調方式のデータから面積階調方式のデータに変換する。この変換により得られる画像データ(以下「ディザ化入力画像データ」という)SsD1は、データ選択器230に与えられる。
 データ選択器230は、駆動制御回路210からの入力画像データSsD0とディザ処理回路220からのディザ化入力画像データSsD1のうちいずれか一方を選択制御信号Ssw1に従って選択する。駆動制御回路210は、データ選択器230に対し、通常駆動モードの場合には選択制御信号Ssw1としてローレベル(Lレベル)を与え、低周波駆動モードの場合には選択制御信号Ssw1としてハイレベル(Hレベル)を与える。これにより、データ選択器230は、通常駆動モードでは入力画像データSsD0を選択し、低周波駆動モードではディザ化入力画像データSsD1を選択し、選択された入力画像データSsD0またはディザ化入力画像データSsD1は、表示すべき画像を表すドライバ用画像信号SsDとしてソースドライバ310に与えられる。
<1.4 作用および効果>
 上記のような本実施形態では、ホスト80からの入力データDATが表示制御部200に与えられ、表示制御部200内の駆動制御回路210では、この入力データDATに基づき、通常駆動モードか低周波駆動モードかが判定され、その結果、通常駆動モードである場合には、その入力データDATに基づきゲートドライバ制御信号SgCおよびタイミング制御信号SsCTが生成されると共に、その入力データDATから入力画像データSsD0が取り出され、選択制御信号Ssw1としてLレベルが出力される。ここで得られる信号のうち、ゲートドライバ制御信号SgCはゲートドライバ320に、タイミング制御信号SsCTはソースドライバ310にそれぞれ与えられ、入力画像データSsD0は、Lレベルの選択制御信号Ssw1に基づきデータ選択器230で選択されてソースドライバ310に(ドライバ用画像信号SsDとして)与えられる。表示部500では、ゲートドライバ制御信号SgCに基づいてゲートドライバ320により走査信号線GL1~GLnが順次選択されると共に、ドライバ用画像信号SsDおよびタイミング制御信号SsCTに基づきソースドライバ310によりデータ信号線SL1~SLmにデータ信号S1~Smがそれぞれ印加される。このようにして表示部500(における走査信号線GL1~GLnおよびデータ信号線SL1~SLm)が駆動されて各画素形成部10の画素データが書き換えられることにより、表示画像がリフレッシュされる。このような表示画像のリフレッシュは1フレーム期間の間隔で繰り返し行われる。
 これに対し、表示制御部200内の駆動制御回路210において、ホスト80からの入力データDATに基づき通常駆動モードか低周波駆動モードかが判定された結果、低周波駆動モードである場合にも、その入力データDATに基づきゲートドライバ制御信号SgCおよびタイミング制御信号SsCTが生成されると共に、その入力データDATから入力画像データSsD0が取り出されるが、選択制御信号Ssw1としてはHレベルが出力されてデータ選択器230に与えられる。またこの場合、入力画像データSsD0はディザ処理回路220に与えられ、そこで面積階調方式のデータに変換され、ディザ化入力画像データSsD1として出力される。このディザ化入力画像データSsD1は、Hレベルの選択制御信号Ssw1に基づきデータ選択器230で選択されてドライバ用画像信号SsDとしてソースドライバ310に与えられる。表示部500では、ゲートドライバ制御信号SgCに基づいてゲートドライバ320により走査信号線GL1~GLnが順次選択されると共に、ドライバ用画像信号SsDおよびタイミング制御信号SsCTに基づきソースドライバ310によりデータ信号線SL1~SLmにデータ信号S1~Smがそれぞれ印加される。このようにして表示部500が駆動されて各画素形成部10の画素データが書き換えられることにより、表示画像がリフレッシュされる。
 本実施形態における低周波駆動モードでは、このようなリフレッシュが1フレーム期間で行われると、次の59フレーム期間ではゲートドライバ320およびソースドライバ310による表示部500の駆動が停止し表示画像のリフレッシュは行われない。その59フレーム期間の次の1フレーム期間では、再び、ゲートドライバ320およびソースドライバ310により表示部500が駆動されることにより表示画像がリフレッシュされる。このようにして、1フレーム期間のリフレッシュ期間と59フレーム期間の非リフレッシュ期間とが交互に現れるように表示部500が駆動される。
 上記のような本実施形態によれば、通常駆動モードでは、連続階調方式による入力画像データDsD0の表す画像が表示部500に表示されるが、低周波駆動モードでは、面積階調方式によるディザ化入力画像データSsD1の表す画像が表示部500に表示される。このため、低周波駆動モードにおける表示画像では、入力画像データの表す連続階調画像における画素の階調値(画素値)として取り得る最大値Lmaxおよび最小値Lminからなる2値で擬似的に階調が表現される。したがって、低周波駆動モードにおける表示画像には中間的な階調値の画素は含まれないので、従来の液晶表示装置において休止駆動中の表示画像のリフレッシュ時に生じていた輝度ドロップは、低減または解消される。
 図4は、本実施形態におけるこのような輝度ドロップの抑制効果を説明するための輝度波形図である。図4(A)は、従来の液晶表示装置の休止駆動中における表示画像の輝度の測定結果を示す輝度波形図であり、図4(B)は、本実施形態に係る液晶表示装置の低周波駆動モードにおける表示画像の輝度の測定結果を示す輝度波形図である。図4(A)および図4(B)のいずれにおいても、横軸は時間を表し、縦軸は、階調値0~255からなる256階調の構成において階調値128の表示画像につきフォトセンサで測定した輝度を表している。なお、これらの測定時のリフレッシュ周期は1秒である。図4(A)および図4(B)では、周波数の高い輝度波形(激しく変化する輝度波形)が示されているが、この輝度波形の変化の中心の輝度が測定結果としての輝度を示すと考えることができる。図4(A)と図4(B)を比較すれば明らかなように、本実施形態によれば、従来に比べ、低周波駆動中のリフレッシュ時の輝度ドロップが大きく低減される。
<1.5 変形例>
 上記第1の実施形態では、低周波駆動モードにおいて、隣接4画素(2×2画素)を単位とするディザ処理によって連続階調方式の入力画像データSsD0が面積階調方式のディザ化入力画像データSsD1に変換されるが、このディザ処理の単位は隣接4画素に限定されない。ディザ処理の単位としての画素数を増やすことにより、ディザ処理後の画像データで表現可能な階調数を増やすことができる。
 例えば、図5に示すように、水平方向に2画素が隣接し垂直方向に3画素が隣接する隣接6画素(以下「3×2画素」ともいう)を単位としてディザ処理を行うようにしてもよい。この図5は、入力画像データSsD0の表す画像の画素が取り得る階調値が0~255である場合におけるディザ処理の例を示している。この例では、階調値43は、図5(A)に示すように、ディザ処理の単位としての隣接6画素のうち1画素の階調値(画素値)を255とし残りの5画素の階調値(画素値)を0とすることで実現される。また階調値85は、図5(B)に示すように、当該隣接6画素のうち2画素の階調値を255とし残りの4画素の階調値を0とすることで実現され、階調値128は、図5(C)に示すように、当該隣接6画素のうち3画素の階調値を255とし残りの3画素の階調値を0とすることで実現され、階調値170は、図5(D)に示すように、当該隣接6画素のうち4画素の階調値を255とし残りの2画素の階調値を0とすることで実現され、階調値211は、図5(E)に示すように、当該隣接6画素のうち5画素の階調値を255とし残りの1画素の階調値を0とすることで実現される。なお、階調値0に対しては上記隣接6画素の階調値は全て0とされ、階調値255に対しては上記隣接6画素の階調値は全て255とされる。したがって、本変形例におけるディザ処理回路220は、入力画像データSsD0の隣接6画素の平均階調値が階調値0,43,85,128,170,211,255の7つの階調値のいずれかに等しい場合には、当該隣接6画素をその平均階調値に対応する2値画素からなる隣接6画素に変換する。また、本変形例におけるディザ処理回路220は、入力画像データSsD0の隣接6画素の平均階調値が階調値0,43,85,128,170,211,255の7つの階調値以外の階調値である場合には、当該7つの階調値のうち当該平均階調値に最も近い階調値(すなわち所定誤差範囲内で当該平均階調値に等しいとみなせる階調値)に対応する2値画素からなる隣接6画素に変換する。
 なお、ディザ処理の具体的な手順としては、上記の手順の他、各要素が階調数に応じた値を有するディザマトリクスを設定し、連続階調方式による入力画像データSsD0の対応する画素値(階調値)と比較する、という周知の手法を用いることができる(この点は他の実施形態においても同様である)。例えば、取り得る階調値が0~255である入力画像データSsD0に対し隣接16画素(4×4画素)を単位としてディザ処理を行う場合、図6に示すようなディザマトリクスを使用することができる。この場合、入力画像データSsD0における階調値(画素値)が隣接16画素(4×4画素)毎に図6のディザマトリクスと比較され、入力画像データSsD0における画素値が当該ディザマトリクスの対応する要素よりも大きければその画素値が255に変更され、当該ディザマトリクスの対応する要素以下であればその画素値が0に変更される。入力画像データSsD0に対し隣接16画素毎にこのような処理が繰り返されることにより、面積階調方式による入力画像データとしてディザ化入力画像データSsD1が得られる。
 上記第1の実施形態では、表示すべき画像の各画素は、表示部500におけるいずれかの画素形成部10によって形成されるが、表示すべき画像がカラー画像であって各画素が複数の原色に対応する複数の副画素から構成される場合には、当該複数の原色のそれぞれにつきディザ処理を行えばよい。例えば、表示すべき画像の各画素が赤の副画素(以下「R副画素」という)、緑の副画素(以下「G副画素」という)、および青の副画素(以下「B副画素」という)から構成される場合には、例えば隣接4画素を単位としてディザ処理を行うとすると、当該隣接4画素における4つのR副画素毎に図3に示すようなディザ処理、当該隣接4画素における4つのG副画素毎に図3に示すようなディザ処理、当該隣接4画素における4つのB副画素毎に図3に示すようなディザ処理をそれぞれ行うことにより、面積階調方式によるディザ化入力画像データSsD1を生成することができる。なお、各画素が複数の副画素からなる上記のようなカラー画像表示における上記ディザ処理は、他の実施形態の変形例としてのカラー画像表示装置においても同様に適用できる。
<2.第2の実施形態>
 図7は、本発明の第2の実施形態に係る液晶表示装置100の構成を示すブロック図である。この液晶表示装置100は、表示制御部200の構成を除き、図1に示した第1の実施形態に係る液晶表示装置と同様であり、対応する部分には同一の参照符号を付して詳しい説明を省略する。以下では、本実施形態における表示制御部200の構成および動作等を中心に説明する。
<2.1 要部の構成>
 本実施形態においても、第1の実施形態と同様、表示制御部200は、入力画像データSsD0を含む入力データDATをホスト80から受信し、これに応じて、ソースドライバ制御信号SsC、ゲートドライバ制御信号SgC、および共通電圧信号等を生成する。ソースドライバ制御信号SsCは、ドライバ用画像信号SsDおよびタイミング制御信号SsCTからなる。表示制御部200は、駆動部300による表示部500の駆動につき、第1の実施形態と同様、通常駆動モードおよび低周波駆動モード(図2参照)を有している。なお本実施形態では、ディザ処理回路220、階調判定回路215,および第2データ選択器232は、入力画像データの階調方式を変換するための処理を実行する画像処理部を構成し、本実施形態の通常駆動モードでは、この画像処理部はその動作を停止している。
 図7に示すように、本実施形態における表示制御部200は、駆動制御回路210、ディザ処理回路220、およびデータ選択器(以下これを後述のデータ選択器232と区別するために「第1データ選択器」という)230に加えて、階調判定回路215および第2データ選択器232を備えている。駆動制御回路210は、ホスト80からの入力データDATに基づき、ゲートドライバ制御信号SgCおよびソースドライバ用のタイミング制御信号SsCTを生成すると共に、当該データDATから入力画像データSsD0を取り出して出力し、さらに第1選択制御信号Ssw1を生成する。ゲートドライバ制御信号SgCはゲートドライバ320に、タイミング制御信号SsCTはソースドライバ320に、第1選択制御信号Ssw1は第1データ選択器230にそれぞれ与えられる。入力画像データSsD0は、表示すべき画像を連続階調方式により表すデジタルデータであり、階調判定回路215および第1データ選択器230に与えられる。
 階調判定回路215は、入力画像データSsD0に基づき、予め用意された複数のディザ処理のいずれかが可能か否かを所定数の隣接画素毎(例えば2×2画素毎)に判定し、その判定結果を示す信号(以下「判定結果信号」という)Sdetを出力すると共に、その判定結果に応じた第2選択制御信号Ssw2を出力する。判定結果信号Sdetはディザ処理回路220に入力され、第2選択制御信号Ssw2は第2データ選択器232に入力される。なお、この判定結果信号Sdetは、上記複数のディザ処理のいずれかが可能と判定された場合には、その可能なディザ処理の識別情報を含んでいる。また、入力画像データSsD0は、階調判定回路215を介してディザ処理回路220および第2データ選択器232に与えられる。
 ディザ処理回路220は、上記の判定結果信号Sdetに基づき、上記複数のディザ処理のいずれかが可能な場合には、その可能なディザ処理によって連続階調方式の入力画像データSsD0を面積階調方式のディザ化入力画像データSsD11に変換し、これを第2データ選択器232に与える。一方、上記複数のディザ処理のいずれもが可能ではない場合には、ディザ処理回路220はその動作を停止し、入力画像データSsD0にはいずれのディザ処理も施されない。
 第2データ選択器232は、上記の第2選択制御信号Ssw2に基づき、上記複数のディザ処理のいずれもが可能でない場合には、連続階調方式による入力画像データSsD0を選択し、上記複数のディザ処理のいずれかが可能である場合には、その可能なディザ処理により得られるディザ化入力画像データSsD11を選択する。既述のように、上記複数のディザ処理のいずれかが可能か否かは所定数の画素毎に判定されるので、第2データ選択器232の選択動作も当該所定数の画素毎に行われる。このため、第2データ選択器232から出力される画像データには、通常、連続階調方式によるデータと面積階調方式によるデータとが混在しており、当該出力される画像データは、部分ディザ化入力画像データSsD01として第1データ選択器230に与えられる。
 駆動制御回路210によって生成される第1選択制御信号Ssw1は、通常駆動モードか低周波駆動モードかを示す信号である。第1データ選択器230は、この第1選択制御信号Ssw1に基づき、通常駆動モードでは、連続諧調方式による入力画像データSsD0を選択しドライバ用画像信号SsDとしてソースドライバ310に与え、低周波駆動モードでは、上記の部分ディザ化入力画像データSsD01を選択しドライバ用画像信号SsDとしてソースドライバ310に与える。
<2.2 ディザ処理の詳細>
 上記のように本実施形態では、低周波駆動モードにおいて、階調判定回路215、ディザ処理回路220、および第2データ選択器232により連続階調方式による入力画像データSsD0が部分ディザ化入力画像データSsD01に変換され、その部分ディザ化入力画像データSsD01がドライバ用画像信号SsDとしてソースドライバ310に与えられる。図8は、この部分ディザ化入力画像データSsD0を得るために画像処理部(ディザ処理回路220、階調判定回路215、および第2データ選択器232)で実行されるディザ処理の手順を示すフローチャートである。以下、図8を参照しつつ、本実施形態における低周波駆動モードにおけるディザ処理の詳細を説明する。なお以下では、入力画像データSsD0の階調数は256であって階調値として取り得る値は0~255のいずれかであるものとするが、本発明はこれに限定されない。
 駆動制御回路210から連続階調方式による入力画像データSsD0が階調判定回路215に与えられると、階調判定回路215において、その入力画像データSsD0における隣接4画素(2×2画素)に順次着目し、着目4画素の階調値(画素値)の平均値を着目階調値として算出する(ステップS12)。次に、この着目階調値が、2値(階調値0,255)の4画素で擬似的に表現可能な階調値0,63,127,191,255(以下これら5つの階調値を「4画素擬似階調表現可能値」という)のいずれかに所定誤差範囲内で等しいとみなせるか否かを判定する(ステップS14)。ここで所定誤差範囲とは、4画素擬似階調表現可能値のそれぞれの±α(ただし、αは256/(5-1)/2=32以下の正数である)の範囲であり、例えばα=16として、着目階調値が0~16の範囲内であれば階調値0に、47~79の範囲内であれば階調値63に、111~143の範囲内であれば階調値127に、175~207の範囲内であれば階調値191に、239~255の範囲内であれば階調値255にそれぞれ等しいとみなせる、と判定することができる。
 階調判定回路215において、着目階調値が所定誤差範囲内で4画素擬似階調表現可能値のいずれかに等しいとみなせると判定された場合には、ディザ処理回路220において、等しいとみなせる階調値を面積階調方式により擬似的に表現する2値画素からなる隣接4画素に変換する(図3参照)(ステップS16)。例えば、α=16とすると着目階調値132は4画素擬似階調表現可能値のうちの127に等しいとみなせるので、図3(B)に示すように、着目4画素を階調値255の2画素と階調値0の2画素からなる隣接4画素に変換する。
 このようにしてディザ化された隣接4画素のデータは、第2データ選択器232および第1データ選択器230を経て表示制御部200から出力され、ドライバ用画像信号SsDを構成する画素データとしてソースドライバ310に与えられる(ステップS18)。
 その後、階調判定回路215において、駆動制御回路210からの入力画像データSsD0に未着目の隣接4画素(2×2画素)があるか否かを判定し、未着目の隣接4画素があれば、ステップS12へ戻り、そのステップS12以降の処理を実行する。
 上記ステップS14において、着目階調値が所定誤差範囲内で4画素擬似階調表現可能値のいずれにも等しくないと判定された場合には、階調判定回路215において、着目4画素に駆動制御回路210からの入力画像データSsD0における未着目の2画素を加えた隣接6画素に着目し、着目6画素の階調値の平均値を新たに着目階調値として算出する(ステップS30)。次に、この着目階調値が、2値(階調値0,255)の6画素で擬似的に表現可能な階調値0,43,85,128,170,211,255(以下これら7つの階調値を「6画素擬似階調表現可能値」という)のいずれかに所定誤差範囲内で等しいとみなせるか否かを判定する(ステップS32)。ここで所定誤差範囲とは、6画素擬似階調表現可能値のそれぞれの±α(ただし、αは256/(7-1)/2=21.3以下の正数である)の範囲であり、例えばα=16として、着目階調値が0~16の範囲内であれば階調値0に、27~59の範囲内であれば階調値43に、69~101の範囲内であれば階調値85に、116~144の範囲内であれば階調値128に、154~186の範囲内であれば階調値170に、194~227の範囲内であれば階調値211に、239~255の範囲内であれば階調値255にそれぞれ等しいとみなせる、と判定することができる。
 階調判定回路215において、着目階調値が所定誤差範囲内で6画素擬似階調表現可能値のいずれかに等しいとみなせると判定された場合には、ディザ処理回路220において、等しいとみなせる階調値を面積階調方式により擬似的に表現する2値画素からなる隣接6画素に変換する(図5参照)(ステップS34)。例えば、α=16とすると着目階調値98は6画素擬似階調表現可能値のうちの85に等しいとみなせるので、図5(B)に示すように、着目6画素を階調値255の2画素と階調値0の4画素からなる隣接6画素に変換する。
 このようにしてディザ化された隣接6画素のデータは、第2データ選択器232および第1データ選択器230を経て表示制御部200から出力され、ドライバ用画像信号SsDを構成する画素データとしてソースドライバ310に与えられる(ステップS36)。
 その後は、既述のステップS20以降の処理が実行される。
 上記ステップS32において、着目階調値が所定誤差範囲内で6画素擬似階調表現可能値のいずれにも等しくないと判定された場合には、階調判定回路215に与えられた連続階調方式による入力画像データSsD0のうち当該着目6画素については、第2データ選択器232および第1データ選択器230を経てそのまま(ディザ処理を施されずに)表示制御部200から出力され、ドライバ用画像信号SsDを構成する画素データとしてソースドライバ310に与えられる(ステップS40)。
 その後、階調判定回路215において、駆動制御回路210からの入力画像データSsD0に未着目の隣接4画素(2×2画素)があるか否かを判定する(ステップS20)。その判定の結果、未着目の隣接4画素があれば、ステップS12へ戻り、当該ステップS12以降の処理(上述の処理)を実行するが、未着目の隣接4画素がなければ、本実施形態のディザ処理を終了する。この終了後において、ホスト80からの新たな入力データDATに基づく入力画像データSsD0が駆動制御回210から階調判定回路215に与えられると、図8のディザ処理が再び開始される。
<2.3 作用および効果>
 上記のような本実施形態によれば、通常駆動モードでは、上記第1の実施形態と同様、表示部500の駆動による表示画像のリフレッシュが1フレーム期間の間隔で繰り返し行われる。これに対し低周波駆動モードでは、連続階調方式による入力画像データSsD0から、隣接4画素を単位としてディザ化されたデータと隣接6画素を単位としてディザ化したデータとディザ処理を施されないデータとが混在したデータすなわち部分ディザ化入力画像データSsD01が生成され(図8のステップS14,S16,S32,S40参照)、この部分ディザ化入力画像データSsD01がドライバ用画像信号SsDとしてソースドライバ310に与えられる。これにより、上記第1の実施形態に比べ、低周波駆動モードにおけるディザ処理による階調再現性の低下を抑えることができる。一方、上記の部分ディザ化入力画像データSsD01においてディザ処理を施されないデータの割合が高くなると、表示画像のリフレッシュ時の輝度ドロップの抑制効果が小さくなる。このようにして低周波駆動モードにおける階調再現性と輝度ドロップの抑制効果とはトレードオフの関係にあり、両者のトレードオフを既述の所定誤差範囲(α)の設定によって調整することができる。したがって本実施形態は、低周波駆動において表示画像のリフレッシュ時の輝度ドロップを階調再現性とのトレードオフを考慮しつつ低減できるという特有の効果を奏する。
<2.4 変形例>
 上記第2の実施形態では、着目階調値が所定誤差範囲内で擬似階調表現可能か否かが2段階で判定されるが(図8のステップS14、S32)、この判定を1段階のみとしてもよいし、また3段階以上にしてもよい。図8の示すディザ処理においてこの判定を1段階のみとした場合、ステップS30~S40が削除され、着目階調値(着目4画素の階調値の平均値)が所定誤差範囲内で4画素擬似階調表現可能値のいずれにも等しくないと判定された場合には(ステップS14)、階調判定回路215に与えられた連続階調方式による入力画像データSsD0のうち当該着目4画素については、第2データ選択器232および第1データ選択器230を経てそのまま表示制御部200から出力されることになる。
 また、上記第2の実施形態では、ディザ処理は隣接4画素(2×2画素)および隣接6画素(3×2画素)を単位としているが、本発明におけるディザ処理の単位はこれに限定されない。
<3.その他の変形例>
 上記各実施形態では、休止駆動を行う低周波駆動モードを有する液晶表示装置を例に挙げて説明したが、本発明は、これに限定されるものではなく、休止駆動を行う表示装置であれば有機EL(Electro Luminescence)表示装置等の他の表示装置にも適用することができる。
 また、上記各実施形態における表示制御部200はハードウェア的に実現されているが(図1、図7参照)、これに代えて、この表示制御部200の機能の一部または全部を、CPU等が所定のプログラムを実行することによりソフトウェア的に実現するようにしてもよい。
 本発明は、休止駆動を行う表示装置およびその駆動方法に適用することができる。
 10   …画素形成部
 11   …薄膜トランジスタ(スイッチング素子)
 80   …ホスト(信号源)
 100  …液晶表示装置
 200  …表示制御部
 210  …駆動制御回路
 215  …階調判定回路
 220  …ディザ処理回路
 230  …データ選択器(第1データ選択器)
 232  …第2データ選択器
 300  …駆動部
 310  …ソースドライバ(データ信号線駆動回路)
 320  …ゲートドライバ(走査信号線駆動回路)
 Cp   …画素容量
 DAT  …入力データ
 Sdet …判定結果信号
 Ssw1 …選択制御信号(第1選択制御信号)
 Ssw2 …第2選択制御信号
 SsD0 …入力画像データ(連続階調方式による画像データ)
 SsD1 …ディザ化入力画像データ
 SsD01…部分ディザ化入力画像データ
 SsCT …タイミング制御信号
 SsD  …ドライバ用画像信号
 SgC  …ゲートドライバ制御信号
 SsC  …ソースドライバ制御信号

Claims (8)

  1.  連続階調方式による画像データを含む入力信号を外部から受け取り、当該入力信号に基づき画像を表示する表示装置であって、
     表示部と、前記表示部を駆動する駆動部と、前記入力信号に基づき前記表示部に画像が表示されるように前記駆動部を制御する表示制御部とを備え、
     前記表示部における表示画像をリフレッシュするリフレッシュ期間が連続的に現れるように前記表示部を駆動する通常駆動モードと、前記表示部における表示画像をリフレッシュするリフレッシュ期間と前記表示部における表示画像のリフレッシュを休止する非リフレッシュ期間とが交互に現れるように前記表示部を駆動する低周波駆動モードとを有し、
     前記表示制御部は、前記低周波駆動モードにおいて面積階調方式により前記表示部に画像が表示されるように階調方式を変換する変換処理を前記画像データの一部または全部に施す画像処理部を含むことを特徴とする、表示装置。
  2.  前記画像処理部は、複数の画素を単位とするディザ法より擬似的に階調が表現されるように前記変換処理を前記画像データに施すことを特徴とする、請求項1に記載の表示装置。
  3.  前記画像処理部は、前記画像データが表す連続階調画像における画素のうち2以上の所定数の画素を単位とするディザ法により所定誤差範囲内で階調を表現可能な画素が当該ディザ法による画素に変更され、前記連続階調画像における画素のうち当該ディザ法により当該所定誤差範囲内で階調を表現できない画素が連続階調方式による画素のままとなるように、前記変換処理を前記画像データに施すことを特徴とする、請求項1に記載の表示装置。
  4.  前記画像処理部は、
      ディザ法による階調表現の単位となる画素数として第1画素数と当該第1画素数よりも多い第2画素数とを含む少なくとも2つの画素数を予め決めておき、
      前記画像データが表す連続階調画像における画素のうち前記第1画素数を単位とする第1ディザ法により所定誤差範囲内で階調を表現可能な画素が当該第1ディザ法による画素に変更され、当該連続階調画像における画素のうち当該所定誤差範囲内で当該第1ディザ法により階調を表現できないが前記第2画素数を単位とする第2ディザ法により所定誤差範囲内で階調を表現可能な画素が当該第2ディザ法による画素に変更され、前記連続階調画像における画素のうち前記少なくとも2つの画素数のいずれの画素数を単位とするディザ法によっても所定誤差範囲内で階調を表現できない画素が連続階調方式による画素のままとなるように、前記変換処理を前記画像データに施すことを特徴とする、請求項1に記載の表示装置。
  5.  前記面積階調方式は、前記画像データが表す画像における画素が取り得る最大階調値および最小階調値からなる2値を使用するディザ法により擬似的に階調を表現する方式であることを特徴とする、請求項1から4のいずれか1項に記載の表示装置。
  6.  前記表示部は、表示すべき画像を構成する各画素を形成するためのスイッチング素子として、酸化物半導体によりチャネル層が形成された薄膜トランジスタを含むことを特徴とする、請求項1から5のいずれか1項に記載の表示装置。
  7.  連続階調方式による画像データを含む入力信号を外部から受け取り、当該入力信号に基づき画像を表示部に表示する表示装置の駆動方法であって、
     前記入力信号に基づき前記表示部に画像が表示されるように前記表示部を駆動する駆動制御ステップを備え、
     前記表示装置は、通常駆動モードおよび低周波駆動モードを有し、
     前記駆動制御ステップは、
      前記通常駆動モードにおいて、前記表示部における表示画像をリフレッシュするリフレッシュ期間が連続的に現れるように前記表示部を駆動する通常駆動ステップと、
      前記低周波駆動モードにおいて、前記表示部における表示画像をリフレッシュするリフレッシュ期間と前記表示部における表示画像のリフレッシュを休止する非リフレッシュ期間とが交互に現れるように前記表示部を駆動する低周波駆動ステップと、
      前記低周波駆動モードにおいて面積階調方式により前記表示部に画像が表示されるように階調方式を変換する変換処理を前記画像データの一部または全部に施す画像処理ステップと
    を含むことを特徴とする、駆動方法。
  8.  前記面積階調方式は、前記画像データが表す画像における画素が取り得る最大階調値および最小階調値からなる2値を使用するディザ法により擬似的に階調を表現する方式であることを特徴とする、請求項7に記載の駆動方法。
PCT/JP2015/067583 2014-06-25 2015-06-18 表示装置およびその駆動方法 WO2015198957A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580033923.XA CN106471566B (zh) 2014-06-25 2015-06-18 显示装置及其驱动方法
US15/318,451 US9940864B2 (en) 2014-06-25 2015-06-18 Display device and method for driving same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014130653 2014-06-25
JP2014-130653 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015198957A1 true WO2015198957A1 (ja) 2015-12-30

Family

ID=54938042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067583 WO2015198957A1 (ja) 2014-06-25 2015-06-18 表示装置およびその駆動方法

Country Status (3)

Country Link
US (1) US9940864B2 (ja)
CN (1) CN106471566B (ja)
WO (1) WO2015198957A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217408B2 (en) * 2015-11-11 2019-02-26 Joled Inc. Display device, display device correction method, display device manufacturing method, and display device display method
US11397490B2 (en) * 2020-12-10 2022-07-26 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving same
KR20230109817A (ko) * 2022-01-13 2023-07-21 삼성디스플레이 주식회사 전자 장치 및 전자 장치 구동 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091396A (ja) * 2000-09-18 2002-03-27 Sanyo Electric Co Ltd 表示装置及びその制御方法
JP2005227627A (ja) * 2004-02-13 2005-08-25 Sharp Corp 表示装置の駆動装置、表示装置、及び表示装置の駆動方法
JP2006106174A (ja) * 2004-10-01 2006-04-20 Seiko Epson Corp 表示装置、データ処理装置、データ処理方法及び電子機器
WO2013153987A1 (ja) * 2012-04-09 2013-10-17 シャープ株式会社 表示装置およびそのための電源生成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719429B2 (ja) * 2003-06-27 2011-07-06 株式会社 日立ディスプレイズ 表示装置の駆動方法及び表示装置
JP5169251B2 (ja) * 2008-01-28 2013-03-27 セイコーエプソン株式会社 電気泳動表示装置の駆動方法、電気泳動表示装置、電子機器
RU2011124247A (ru) * 2008-11-19 2012-12-20 Шарп Кабусики Кайся Жидкокристаллическое устройство отображения и способ его возбуждения
CN103339715B (zh) 2010-12-03 2016-01-13 株式会社半导体能源研究所 氧化物半导体膜以及半导体装置
JP5771453B2 (ja) 2011-06-20 2015-09-02 株式会社ジャパンディスプレイ 表示装置および電子機器
JP5911867B2 (ja) 2011-07-08 2016-04-27 シャープ株式会社 液晶表示装置およびその駆動方法
US9349335B2 (en) * 2012-02-24 2016-05-24 Sharp Kabushiki Kaisha Display device, electronic device comprising same, and drive method for display device
WO2013190912A1 (ja) * 2012-06-18 2013-12-27 シャープ株式会社 液晶表示装置、それを備える電子機器、および液晶表示装置の駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091396A (ja) * 2000-09-18 2002-03-27 Sanyo Electric Co Ltd 表示装置及びその制御方法
JP2005227627A (ja) * 2004-02-13 2005-08-25 Sharp Corp 表示装置の駆動装置、表示装置、及び表示装置の駆動方法
JP2006106174A (ja) * 2004-10-01 2006-04-20 Seiko Epson Corp 表示装置、データ処理装置、データ処理方法及び電子機器
WO2013153987A1 (ja) * 2012-04-09 2013-10-17 シャープ株式会社 表示装置およびそのための電源生成方法

Also Published As

Publication number Publication date
CN106471566A (zh) 2017-03-01
US20170148370A1 (en) 2017-05-25
US9940864B2 (en) 2018-04-10
CN106471566B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
JP6104266B2 (ja) 液晶表示装置およびその駆動方法
JP5897136B2 (ja) 液晶表示装置およびその駆動方法
KR101399017B1 (ko) 표시장치 및 이의 구동방법
KR101657023B1 (ko) 표시 장치 및 그 구동 방법
WO2013047300A1 (ja) 液晶表示装置およびその駆動方法
JP5955098B2 (ja) 液晶表示装置、データ線駆動回路、および液晶表示装置の駆動方法
JP2008139891A (ja) 表示装置及びその駆動方法
JP2001343941A (ja) 表示装置
WO2014010313A1 (ja) 表示装置および表示方法
WO2015198957A1 (ja) 表示装置およびその駆動方法
WO2013187196A1 (ja) 表示装置および表示方法
KR101354272B1 (ko) 액정표시장치 및 그 구동 방법
JP2009058684A (ja) 液晶表示装置
KR101389232B1 (ko) 액정 표시 장치
WO2013024776A1 (ja) 表示装置およびその駆動方法
CN107967906B (zh) 一种基于反向电极驱动电路的液晶显示设备
WO2014156402A1 (ja) 液晶表示装置およびその駆動方法
WO2012002258A1 (ja) 表示装置及びその制御方法、プログラム並びに記録媒体
KR101266066B1 (ko) 구동장치, 이를 갖는 표시장치 및 표시장치의 구동방법
WO2016204085A1 (ja) 液晶表示装置およびその駆動方法
JP2005148362A (ja) Tft液晶パネルの駆動方法及びtft液晶パネル駆動モジュール
US9626920B2 (en) Liquid crystal display device and method for driving same
US10522069B2 (en) Driving device for driving display device, liquid crystal display, and driving method for driving display device
KR101237157B1 (ko) 표시장치의 다운 샘플링 방법 및 장치
JP2006126346A (ja) 液晶表示装置及びその駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15811032

Country of ref document: EP

Kind code of ref document: A1