WO2017130776A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2017130776A1
WO2017130776A1 PCT/JP2017/001252 JP2017001252W WO2017130776A1 WO 2017130776 A1 WO2017130776 A1 WO 2017130776A1 JP 2017001252 W JP2017001252 W JP 2017001252W WO 2017130776 A1 WO2017130776 A1 WO 2017130776A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
opening
insulating layer
semiconductor device
wiring
Prior art date
Application number
PCT/JP2017/001252
Other languages
English (en)
French (fr)
Inventor
貴翁 斉藤
庸輔 神崎
中澤 淳
一篤 伊東
誠二 金子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/072,910 priority Critical patent/US10651209B2/en
Priority to CN201780008343.4A priority patent/CN108496244B/zh
Publication of WO2017130776A1 publication Critical patent/WO2017130776A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76805Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • the active matrix substrate includes, for example, a thin film transistor (hereinafter, “TFT”) as a switching element for each pixel.
  • TFT thin film transistor
  • pixel TFT a thin film transistor
  • amorphous TFTs using an amorphous silicon film as an active layer and crystalline silicon TFTs using a crystalline silicon film such as a polycrystalline silicon film as an active layer have been widely used as pixel TFTs.
  • a part or the whole of the peripheral drive circuit may be integrally formed on the same substrate as the pixel TFT.
  • Such an active matrix substrate is called a driver monolithic active matrix substrate.
  • the peripheral driver circuit is provided in a region (non-display region or frame region) other than a region (display region) including a plurality of pixels.
  • the pixel TFT and the TFT constituting the driving circuit (circuit TFT) can be formed using the same semiconductor film.
  • this semiconductor film for example, a polycrystalline silicon film having a high field effect mobility is used.
  • oxide semiconductor instead of amorphous silicon or polycrystalline silicon as a material for the active layer of a TFT. It has also been proposed to use an In—Ga—Zn—O-based semiconductor containing indium, gallium, zinc, and oxygen as main components as an oxide semiconductor. Such a TFT is referred to as an “oxide semiconductor TFT”.
  • An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, the oxide semiconductor film can be applied to a device that requires a large area. Therefore, the pixel TFT and the circuit TFT can be formed over the same substrate using the oxide semiconductor film.
  • Patent Document 1 discloses an active matrix liquid crystal panel including an oxide semiconductor TFT as a pixel TFT and a TFT (for example, a crystalline silicon TFT) having a non-oxide semiconductor film as an active layer as a circuit TFT. Disclosure.
  • the source and drain electrodes of the crystalline silicon TFT and the oxide semiconductor TFT are formed using the same conductive film as the source bus line, and protective insulation is provided so as to cover these electrodes. A film is formed.
  • detection electrodes of the touch sensor may be provided on the active matrix substrate (for example, Patent Document 2).
  • the active matrix substrate disclosed in Patent Document 1 has a problem that the parasitic capacitance between the source bus line and the gate bus line is increased.
  • a driving wiring for driving the touch sensor is formed on the active matrix substrate. That is, it is necessary to form a wiring layer different from the gate electrode, source and drain electrodes of the oxide semiconductor TFT on the substrate. For this reason, it is difficult to apply the configuration of the active matrix substrate disclosed in Patent Document 1 to an in-cell touch panel display device as it is.
  • the present inventor examined a configuration that can reduce parasitic capacitance and can be applied to, for example, an in-cell touch panel display device.
  • an active matrix substrate it has been found that with such an active matrix substrate, it is difficult to form a contact portion for connecting an oxide semiconductor TFT or a crystalline silicon TFT and a predetermined wiring by a simple process. Details will be described later.
  • One embodiment of the present invention has been made in view of the above circumstances, and provides a semiconductor device having an oxide semiconductor TFT and a crystalline silicon TFT on the same substrate and having excellent contact characteristics.
  • a semiconductor device includes a substrate, and a first thin film transistor and a second thin film transistor supported by the substrate, wherein the first thin film transistor includes a first gate electrode, a crystalline silicon semiconductor layer, A first gate insulating layer disposed between the first gate electrode and the crystalline silicon semiconductor layer; and a first source electrode and a first drain electrode electrically connected to the crystalline silicon semiconductor layer.
  • the second thin film transistor includes a second gate electrode, an oxide semiconductor layer, a second gate insulating layer disposed between the second gate electrode and the oxide semiconductor layer, and the oxide semiconductor layer. A second source electrode and a second drain electrode which are electrically connected, and the first source electrode and the first drain electrode are connected to the crystalline silicon semiconductor.
  • the crystalline silicon semiconductor is provided in a first source contact hole and a first drain contact hole provided on the first layer via a first interlayer insulating layer and formed in the first interlayer insulating layer, respectively.
  • the second source electrode is electrically connected to a wiring formed of the same conductive film as the first source electrode and the first drain electrode, and the wiring is connected to the second source. And is in contact with the second source electrode in a second contact hole provided on the electrode through a second interlayer insulating layer and including an opening formed in the second interlayer insulating layer,
  • the two source electrodes have a laminated structure including a main layer and an upper layer disposed on the main layer, and the upper layer has a first opening portion below the opening of the second interlayer insulating layer. And the main layer is second open. Has a part or recess, when viewed from the normal direction of the substrate, the second opening or the recess is larger than the first opening.
  • a side surface of the second opening or the recess of the main layer is not in contact with the wiring.
  • the wiring is in contact with a side surface of the first opening in the upper layer.
  • the semiconductor device further includes a conductive layer formed from the conductive film and positioned in the second opening or the recess, and the conductive layer is electrically separated from the wiring.
  • the main layer has the recess
  • the first opening in the upper layer exposes at least a part of the bottom surface of the recess
  • the wiring has the second contact hole. In contact with the bottom surface of the recess.
  • the second source electrode further includes a lower layer located on the substrate side of the main layer, the main layer has the second opening, and the second opening is one of the lower layers.
  • the wiring is in contact with the exposed portion of the lower layer in the second contact hole.
  • a side surface of the first opening in the upper layer is not in contact with the wiring.
  • the upper layer is made of a material having a lower etching rate with respect to hydrofluoric acid than the main layer.
  • the main layer includes Al or Cu.
  • the upper layer includes Ti or Mo.
  • the first thin film transistor has a top gate structure
  • the second thin film transistor has a bottom gate structure
  • the first gate electrode and the second gate electrode are provided in the same layer
  • the first interlayer insulating layer includes the first gate insulating layer, the second gate insulating layer, and the second interlayer insulating layer.
  • the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may include a crystalline portion.
  • the oxide semiconductor layer has a stacked structure.
  • the second thin film transistor is a channel etch type.
  • a method of manufacturing a semiconductor device includes a first thin film transistor having a crystalline silicon semiconductor layer as an active layer and a second thin film transistor having an oxide semiconductor layer as an active layer on a substrate, A method of manufacturing a semiconductor device in which a first thin film transistor is disposed in a first TFT formation region and the second thin film transistor is disposed in a second TFT formation region, and (A) the crystalline silicon is disposed in the first TFT formation region.
  • a semiconductor layer and a first interlayer insulating layer covering the crystalline silicon semiconductor layer are formed, and a source electrode and a drain electrode of the second thin film transistor, and the source electrode and the drain electrode are formed in the second TFT formation region.
  • the second opening or the recess is larger than the first opening when viewed from the normal direction of the substrate.
  • the oxide semiconductor layer includes an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may include a crystalline portion.
  • the oxide semiconductor layer has a stacked structure.
  • the second thin film transistor has a channel etch structure.
  • the semiconductor device further includes a drive wiring for an in-cell touch panel, and the drive wiring for the in-cell touch panel is formed of the same conductor film as the wiring.
  • An in-cell touch panel display device includes any one of the semiconductor devices described above.
  • a semiconductor device having an oxide semiconductor TFT and a crystalline silicon TFT on the same substrate and having excellent contact characteristics can be realized.
  • FIG. 1A is sectional drawing of the crystalline silicon TFT101 and the oxide semiconductor TFT102 in the semiconductor device of 1st Embodiment, respectively, (c) and (d) are respectively crystalline silicon TFT101.
  • 2 is a plan view of an oxide semiconductor TFT 102.
  • FIGS. 7A to 7C are schematic enlarged cross-sectional views for explaining a method of forming a second contact portion in the semiconductor device of the first embodiment.
  • FIGS. 5A to 5F are process cross-sectional views for explaining a method for manufacturing the crystalline silicon TFT 101 and the oxide semiconductor TFT 102 in the first embodiment.
  • FIG. 5A to 5D are process cross-sectional views for explaining a method for manufacturing the crystalline silicon TFT 101 and the oxide semiconductor TFT 102 in the first embodiment.
  • 6 is an enlarged cross-sectional view illustrating a second contact portion in a semiconductor device according to a second embodiment
  • FIG. (A) And (b) is an expanded sectional view which shows the other example of the 2nd contact part in the semiconductor device of 2nd Embodiment, respectively.
  • FIG. 10 is an enlarged cross-sectional view illustrating a second contact portion in a semiconductor device according to a third embodiment. It is an expanded sectional view showing other examples of the 2nd contact part in the semiconductor device of a 3rd embodiment.
  • FIG. 1 It is an expanded sectional view showing other examples of the 2nd contact part in the semiconductor device of a 1st embodiment.
  • (A) And (b) is sectional drawing and a top view which illustrate a part of display area in the active matrix substrate for in-cell touch panel type display devices, respectively.
  • (A)-(c) is process sectional drawing which shows the process of the reference example which forms an oxide semiconductor TFT and a crystalline silicon TFT on the same board
  • (A)-(c) is an expanded sectional view which respectively shows the formation method of the 2nd contact part in a reference example.
  • the present inventor has repeatedly studied the configuration of an active matrix substrate that includes a crystalline silicon TFT and an oxide semiconductor TFT on the same substrate and can also be applied to, for example, an in-cell touch panel display device. .
  • the inventors have arrived at a structure in which a wiring layer is formed on the insulating protective film covering the oxide semiconductor TFT using a conductive film different from the source and drain electrodes of the oxide semiconductor TFT.
  • the source bus line is provided in the wiring layer, the parasitic capacitance between the source bus line and the gate bus line can be reduced.
  • the source and drain electrodes of the crystalline silicon TFT are formed in the wiring layer, the number of steps for forming the contact hole may be reduced.
  • the contact portion (first contact portion) that connects the crystalline silicon semiconductor layer and the source and drain electrodes in the wiring layer, the source electrode of the oxide semiconductor TFT, and the wiring layer in the wiring layer It has been found that good contact characteristics may not be obtained in both the contact portion (second contact portion) connecting to the source wiring.
  • 11 (a) to 11 (c) are process cross-sectional views showing processes of a reference example in which an oxide semiconductor TFT and a crystalline silicon TFT are formed on the same substrate, respectively.
  • a method of forming a crystalline silicon semiconductor TFT 1001 having a top gate structure and a top contact type oxide semiconductor TFT 1002 having a bottom gate structure on the substrate 11 is exemplified.
  • the crystalline silicon semiconductor layer 13 and the first layer that covers the crystalline silicon semiconductor layer 13 are formed.
  • An insulating layer, a first gate electrode 15 disposed on the first insulating layer, and an insulating layer 21 covering the first gate electrode 15 are formed.
  • the second gate electrode 17, the second insulating layer 19 covering the second gate electrode 17, and the second insulating layer 19 are disposed.
  • An oxide semiconductor TFT 1002 having the oxide semiconductor layer 23 and the second source electrode 25S and the second drain electrode 25D in contact with the oxide semiconductor layer 23 is formed.
  • a third insulating layer 27 is formed on the oxide semiconductor TFT 1002.
  • the insulating layers 14, 21, and 27 are etched using a resist mask (not shown).
  • a resist mask not shown.
  • CH1d (may be collectively referred to as “first contact hole CH1”) is formed, and the second contact hole CH2 that exposes a part of the second source electrode 25S to the third insulating layer 27 in the second TFT formation region.
  • the first source electrode 31 and the first drain electrode 33 of the crystalline silicon TFT 1001 and the wiring 35 of the oxide semiconductor TFT 1002 are formed using the same conductive film. .
  • the first source electrode 31 and the first drain electrode 33 are in contact with the crystalline silicon semiconductor layer 13 in the first source contact hole CH1s and the first drain contact hole CH1d, respectively.
  • the wiring 35 is in contact with the oxide semiconductor layer 23 in the second contact hole CH2. In this way, a semiconductor device is obtained.
  • connection portion between the first source electrode 31 and the first drain electrode 33 and the crystalline silicon semiconductor layer 13 in the first contact hole CH1 is referred to as a “first contact portion”
  • second contact hole CH2 is in the second contact hole CH2.
  • a connection portion between the wiring 35 and the source electrode 25S in FIG. 5 is referred to as a “second contact portion”.
  • the second source electrode 25S (typically a metal electrode) exposed by the second contact hole CH2 is also exposed to the HF solution at the same time, and the second source electrode 25S may be etched.
  • FIG. 12A to 12C are process cross-sectional views for explaining a method of manufacturing a semiconductor device as a reference example in the case where a cleaning process is performed, and an enlarged view of a second contact portion.
  • FIG. 12A corresponds to the step shown in FIG.
  • an opening 27p exposing a part of the second source electrode 25S is formed in the third insulating layer 27.
  • the crystalline silicon exposed in the first contact hole CH1 is cleaned using HF liquid.
  • the second source electrode 25S exposed through the opening 27p is also exposed to the HF liquid.
  • an opening 25p is formed in the second source electrode 25S. If the second source electrode 25S is a metal electrode such as Al or Cu, the opening 25p may be larger than the opening 27p of the third insulating layer 27 when viewed from the normal direction of the substrate.
  • the wiring 35 is disposed on the third insulating layer 27 and on the side surface of the third insulating layer 27 and does not contact the second source electrode 25S.
  • the conductive film part 35 a may be located in the opening of the second source electrode 25 ⁇ / b> S while being separated from the wiring 35.
  • the present inventor has found a configuration in which good contact characteristics can be obtained even when the second source electrode 25S is etched by a cleaning process or the like, and has arrived at the present invention.
  • crystalline silicon TFT refers to a TFT having an active region (region in which a channel is formed) mainly containing crystalline silicon, such as a crystalline silicon TFT, a single crystal silicon TFT, etc. including.
  • Oxide semiconductor TFT refers to a TFT having an active region mainly containing an oxide semiconductor.
  • the semiconductor device according to the embodiment of the present invention only needs to include an oxide semiconductor TFT and a crystalline silicon TFT formed on the same substrate, such as a circuit substrate such as an active matrix substrate, a liquid crystal display device, and an organic EL.
  • Various display devices such as display devices, image sensors, electronic devices, etc. are widely included.
  • the semiconductor device of this embodiment has the same configuration as the semiconductor device of the reference example described above with reference to FIG. However, the structure of the second source electrode 25S is different from the structure of the second contact portion.
  • FIGS. 1A and 1B are cross-sectional views of the crystalline silicon TFT 101 and the oxide semiconductor TFT 102 in the semiconductor device of this embodiment, respectively.
  • FIGS. 1C and 1D are FIGS. It is a top view of (a) and (b).
  • FIG. 1 the same components as those in the semiconductor device of the reference example (FIG. 11) are denoted by the same reference numerals.
  • the semiconductor device of this embodiment includes a substrate 11, a crystalline silicon TFT 101 (also referred to as “first thin film transistor”) and an oxide semiconductor TFT 102 (also referred to as “second thin film transistor”) supported by the substrate 11. .
  • the crystalline silicon TFT 101 overlaps the crystalline silicon semiconductor layer 13 and at least a part of the crystalline silicon semiconductor layer 13 via the first insulating layer 14.
  • the first gate electrode 15 is disposed, and the first source electrode 31 and the first drain electrode 33 are electrically connected to the crystalline silicon semiconductor layer 13.
  • the first source electrode 31 and the first drain electrode 33 are provided on the crystalline silicon semiconductor layer 13 via the first interlayer insulating layer L1.
  • the crystalline silicon semiconductor layer 13 includes a channel region 13c and a source region 13s and a drain region 13d disposed on both sides of the channel region 13c.
  • the crystalline silicon TFT 101 may have a top gate structure.
  • the first insulating layer 14 is formed so as to cover the crystalline silicon semiconductor layer 13, and the first gate electrode 15 is disposed on the first insulating layer 14.
  • the first gate electrode 15 is disposed so as to overlap the channel region 13 c of the crystalline silicon semiconductor layer 13 with the first insulating layer 14 interposed therebetween.
  • the crystalline silicon semiconductor layer 13 and the first gate electrode 15 are covered with an insulating layer 21.
  • the first source contact hole CH1s and the first drain contact hole CH1d reaching the crystalline silicon semiconductor layer 13 are formed.
  • the first source electrode 31 is disposed on the insulating layer 21 and in the first source contact hole CH1s, and contacts the crystalline silicon semiconductor layer 13 in the first source contact hole CH1s.
  • the first drain electrode 33 is disposed on the insulating layer 21 and in the first drain contact hole CH1d, and contacts the crystalline silicon semiconductor layer 13 in the first drain contact hole CH1d.
  • an insulating layer here, the first insulating layer that is located between the crystalline silicon semiconductor layer 13 and the first source electrode 31 and the first drain electrode 33 and in which the first contact hole CH1 is formed. 14 and insulating layer 21) are referred to as "first interlayer insulating layer L1".
  • the oxide semiconductor TFT 102 is disposed so as to overlap with the oxide semiconductor layer 23 and at least a part of the oxide semiconductor layer 23 with the second insulating layer 19 interposed therebetween.
  • the second gate electrode 17 and the second source electrode 25S and the second drain electrode 25D electrically connected to the oxide semiconductor layer 23 are provided.
  • the second source electrode 25S has a laminated structure including a main layer 25m and an upper layer 25u disposed on the main layer 25m.
  • the second drain electrode 25D may also have a similar stacked structure.
  • the materials of the upper layer 25u and the main layer 25m are selected so that the etching rate of the upper layer 25u with respect to the HF liquid is smaller than that of the main layer 25m.
  • the main layer 25m may include, for example, Al or Cu.
  • the upper layer 25u may contain Ti or Mo, for example.
  • the main layer 25m is made of a material having a lower electrical resistance than the upper layer 25u, and may be thicker than the upper layer 25u.
  • the oxide semiconductor TFT 102 may have a bottom gate structure.
  • the second gate electrode 17 is formed on the first insulating layer 14.
  • the second gate electrode 17 is covered with a second insulating layer 19, and an oxide semiconductor layer 23 is formed on the second insulating layer 19.
  • the second source electrode 25S and the second drain electrode 25D may be disposed so as to be in contact with the upper surface of the oxide semiconductor layer 23, respectively.
  • a region in contact with the second source electrode 25S in the oxide semiconductor layer 23 is referred to as a source contact region 23s, and a region in contact with the second drain electrode 25D is referred to as a drain contact region 23d.
  • the oxide semiconductor layer 23, the second source electrode 25S, and the second drain electrode 25D are covered with a third insulating layer 27.
  • the second source electrode 25S is electrically connected to a wiring (here, a source bus line) 35 formed of the same conductive film as the first source electrode 31 and the first drain electrode 33 of the crystalline silicon TFT 101 in the second contact portion. It is connected.
  • the wiring 35 is provided on the second source electrode 25S via the third insulating layer 27.
  • the wiring 35 is formed in the second contact hole CH2 including the opening 27p formed in the third insulating layer 27. 2 is in direct contact with the source electrode 25S.
  • an insulating layer herein, the third insulating layer 27 that is located between the oxide semiconductor layer 23 and the wiring 35 and in which the second contact hole CH2 is formed is referred to as a “second interlayer insulating layer L2”. Call it.
  • the second contact hole CH2 includes the opening 27p, the first opening p1 in the upper layer 25u of the source electrode 25S, and the second opening p2 in the main layer 25m.
  • the second opening p2 is larger than the first opening p1.
  • the wiring 35 is in contact with, for example, the side surface of the upper layer 25u in the second contact hole CH2. Thereby, the second source electrode 25S and the wiring 35 are connected.
  • a conductive layer 35a separated from the wiring 35 may be disposed in the second opening p2.
  • FIG. 2A to 2C are schematic enlarged cross-sectional views showing a method for forming the second contact portion.
  • FIG. 2 the same components as those of the semiconductor device of the reference example shown in FIG.
  • the second source electrode 25S of the oxide semiconductor TFT is formed so as to be in contact with the oxide semiconductor layer (not shown) formed on the substrate.
  • the second source electrode 25S has a stacked structure including a main layer (for example, an Al layer) 25m and an upper layer (for example, a Ti layer) 25u disposed on the main layer 25m.
  • a third insulating layer 27 is formed so as to cover the source electrode 25 ⁇ / b> S, and an opening 27 p is formed in the third insulating layer 27.
  • the opening 27p is formed simultaneously with the first contact hole (not shown) of the crystalline silicon TFT.
  • the crystalline silicon exposed through the first contact hole is cleaned with HF solution.
  • the source electrode 25S exposed through the opening 27p of the third insulating layer 27 is also exposed to the HF liquid.
  • the upper layer 25u and the main layer 25m of the source electrode 25S are etched to form the first opening p1 in the upper layer 25u and the second opening p2 in the main layer 25m.
  • These openings p1 and p2 are formed at positions overlapping the openings 27p when viewed from the normal direction of the substrate.
  • the second contact hole CH2 including the opening 27p of the third insulating layer 27, the first opening p1 of the upper layer 25u of the source electrode 25S, and the second opening p2 of the main layer 25m is obtained.
  • the cleaning liquid is not limited to the HF liquid.
  • a solution containing hydrofluoric acid can be used as the cleaning liquid.
  • buffered hydrofluoric acid BHF which is a mixed liquid of hydrofluoric acid and ammonium fluoride solution may be used.
  • the second opening p2 is larger than the first opening p1 when viewed from the normal direction of the substrate 11 due to the difference in etching rate between the main layer 25m and the upper layer 25u.
  • the side surface s1 of the first opening p1 protrudes from the side surface s2 of the second opening p2 into the second contact hole CH2. Therefore, in the second contact portion, the second source electrode 25S has an overhang structure.
  • the side surface s1 of the first opening p1 may be substantially aligned with the side surface of the opening 27p of the third insulating layer 27.
  • a first source electrode is formed by forming a conductive film on the third insulating layer 27, in the first contact hole and in the second contact hole CH2, and patterning the conductive film.
  • a first drain electrode (not shown) and a wiring 35 are formed.
  • the wiring 35 is in contact with the source electrode 25S in the second contact hole CH2.
  • the wiring 35 is disposed so as to be in contact with the upper surface of the third insulating layer 27, the side surface of the third insulating layer 27, and the side surface s1 of the upper layer 25u. In this way, the wiring 35 can be formed so as to be in direct contact with the upper layer 25u of the second source electrode 25S on the side wall (tapered portion) of the second contact hole CH2.
  • the side surface s2 of the main layer 25m may not be in contact with the wiring 35. Further, a part of the conductive film may be disposed in the second opening p2 to form the conductive layer 35a.
  • the conductive layer 35a may be electrically separated from the wiring 35 as shown in FIG. Alternatively, as illustrated in FIG. 9, the conductive layer 35 a is connected to a portion of the conductive film located on the side surface of the third insulating layer 27, and may be a part of the wiring 35.
  • the wiring 35 and the second source electrode 25S can be more reliably connected.
  • the silicon surface can be cleaned using HF liquid, so that good contact characteristics can be obtained.
  • the active matrix substrate disclosed in Patent Document 1 since the insulating layer (the gate insulating layer of the pixel TFT) located between the source bus line and the gate bus line is thin, the parasitic capacitance is increased. There was a problem.
  • the wiring 35 that functions as the source bus line is formed on the third insulating layer 27 (for example, the planarization layer), the parasitic capacitance between the source bus line and the gate bus line is reduced. It becomes possible.
  • FIGS. 4 (a) to 4 (d) are process cross-sectional views showing a method for manufacturing the crystalline silicon TFT 101 and the oxide semiconductor TFT 102, respectively.
  • a base film 12 is formed on a substrate 11, and a crystalline silicon film (here, a polysilicon (p-Si) film) 13 'is formed thereon.
  • a crystalline silicon film here, a polysilicon (p-Si) film
  • various substrates such as a glass substrate, a resin plate, or a resin film can be used.
  • the a-Si film can be formed by a known method such as a plasma CVD (Chemical Vapor Deposition) method or a sputtering method.
  • the a-Si film may be crystallized by, for example, irradiating the a-Si film with excimer laser light 104.
  • the p-Si film 13 ′ is patterned, and an island-like crystalline silicon semiconductor layer (thickness: for example, 30 nm or more and 70 nm or less) 13 is formed in the first TFT formation region.
  • a first insulating layer (thickness: 50 nm or more and 130 nm or less) 14 is formed so as to cover the crystalline silicon semiconductor layer 13.
  • the first insulating layer 14 is not particularly limited, but may mainly include, for example, silicon oxide (SiOx).
  • the first insulating layer 14 functions as a gate insulating layer (first gate insulating layer) of the crystalline silicon TFT 101.
  • the first insulating layer 14 is also extended to the second TFT formation region.
  • the material of the gate electrode film is not particularly limited, and is a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), etc.
  • a film containing an alloy thereof can be used as appropriate.
  • a laminated film in which these plural films are laminated may be used.
  • the patterning method is not particularly limited, and known photolithography and dry etching can be used.
  • impurities are implanted into the crystalline silicon semiconductor layer 13 to form a source region 13s and a drain region 13d.
  • a region of the crystalline silicon semiconductor layer 13 where no impurity is implanted becomes an active region (channel region) 13c.
  • a second insulating layer (thickness: for example, 180 nm or more and 550 nm or less) 19 that covers the first insulating layer 14, the first gate electrode 15, and the second gate electrode 17 is formed.
  • the second insulating layer 19 functions as a gate insulating layer (second gate insulating layer) of the oxide semiconductor TFT 102.
  • membrane can be used.
  • a stacked film having a silicon nitride (SiNx) layer (thickness: 150 nm to 450 nm or less) as a lower layer and a silicon oxide (SiOx) layer (thickness: 30 nm to 100 nm or less) as an upper layer may be used.
  • the second insulating layer 19 may also extend to the first TFT formation region.
  • the oxide semiconductor layer 23 is formed on the second insulating layer 19. Specifically, first, an oxide semiconductor film is formed by, for example, a sputtering method, and the oxide semiconductor film is patterned to obtain the island-shaped oxide semiconductor layer 23.
  • an oxide semiconductor film for example, an In—Ga—Zn—O-based semiconductor film (thickness: 40 nm to 120 nm, for example) may be used.
  • source / drain electrode films are formed on the second insulating layer 19 and the oxide semiconductor layer 23 by, for example, sputtering. Subsequently, the source / drain electrode film is patterned. Thus, the second source electrode 25S and the second drain electrode 25D that are in contact with the upper surface of the oxide semiconductor layer 23 are formed. Portions of the oxide semiconductor layer 23 that are in contact with the second source electrode 25S and the second drain electrode 25D become the source contact region 23s and the drain contact region 23d, respectively. A portion of the oxide semiconductor layer 23 that overlaps with the gate electrode 17 (via the second insulating layer 19) and is located between the source contact region 23s and the drain contact region 23d becomes a channel region 23c.
  • the source / drain electrode film has a stacked structure including a main layer 25m and an upper layer 25u disposed on the main layer 25m.
  • the main layer 25m may be a Cu layer, an Al layer, Cu or an alloy layer containing Al, for example.
  • the materials of the upper layer 25u and the main layer 25m are selected so that the etching rate of the upper layer 25u with respect to the HF liquid is smaller than that of the main layer 25m.
  • the upper layer 25u may be, for example, a Ti layer, a Mo layer, an alloy layer containing Ti or Mo, or the like.
  • the source / drain electrode film may have a laminated structure of three or more layers including the main layer 25m and the upper layer 25u.
  • the thickness of the upper layer 25u is, for example, 15 nm or more and 25 nm or less. If it is 15 nm or more, the contact area with the wiring 35 can be secured, and the contact resistance can be further reduced. If it is 25 nm or less, the electrical resistance can be reduced while suppressing the thickness of the second source electrode 25S and the second drain electrode 25D.
  • the thickness of the main layer 25m is not particularly limited, but may be larger than the thickness of the upper layer 25u.
  • the thickness of the main layer 25m may be, for example, 100 nm or more and 500 nm or less.
  • the third insulating layer 27 includes an inorganic insulating film such as a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, a silicon nitride oxide (SiNxOy; x> y) film, An organic insulating film such as a photosensitive resin film can be used as appropriate.
  • the thickness of the third insulating layer 27 may be, for example, 1 ⁇ m or more and 3 ⁇ m or less.
  • the second and third insulating layers 19 and 27 are formed on the first insulating layer 14 in the first TFT formation region.
  • the first insulating layer 14 and the insulating layer 21 are exposed to a part of the source region 13s.
  • a source contact hole CH1s and a first drain contact hole CH1d exposing a part of the drain region 13d are formed.
  • an opening 27p is formed in the third insulating layer 27 (second interlayer insulating layer L2). A part of the upper layer 25u of the source electrode 25S is exposed through the opening 27p.
  • the crystalline silicon exposed by the first source contact hole CH1s and the first drain contact hole CH1d is cleaned using HF liquid.
  • the source electrode 25S exposed through the second contact hole CH2 is also exposed to the HF liquid.
  • the upper layer 25u and the main layer 25m of the source electrode 25S are etched to form the first opening in the upper layer 25u and the second opening in the main layer 25m.
  • the second contact hole CH2 is obtained.
  • the second contact hole CH2 has the structure described above with reference to FIG.
  • the conditions for the cleaning process are not particularly limited.
  • the processing time of the HF solution Is, for example, 15 sec.
  • the cleaning liquid is not limited to the HF liquid, and may be a BHF liquid.
  • a conductive film is formed on the third insulating layer 27 in the first source contact hole CH1s, the first drain contact hole CH1d, and the second contact hole CH2, and the conductive film is patterned.
  • the first source electrode 31 in contact with the source region 13s in the first source contact hole CH1s, the first drain electrode 33 in contact with the drain region 13d in the first drain contact hole CH1d, and the second in the second contact hole CH2.
  • a wiring 35 in contact with the source electrode 25S is formed.
  • the wiring 35 may be arranged in contact with the side surface s1 of the upper layer 25u in the second contact hole CH2.
  • a conductive layer 35a that is electrically separated from the wiring 35 may be formed by disposing a part of the conductive film in the second opening p2. In this way, a semiconductor device including the crystalline silicon TFT 101 and the oxide semiconductor TFT 102 is manufactured.
  • the structure and manufacturing method of the crystalline silicon TFT 101 and the oxide semiconductor TFT 102 are not limited to the structure shown in FIG.
  • the crystalline silicon TFT 101 may have a bottom gate structure. Further, a method for forming a crystalline silicon semiconductor layer such as a method for crystallizing an amorphous silicon film is not limited to the above.
  • the oxide semiconductor TFT 102 may be a channel etch type TFT or an etch stop type TFT.
  • the etch stop layer is not formed on the channel region, and the lower surface of the end of the source and drain electrodes on the channel side is in contact with the upper surface of the oxide semiconductor layer. Is arranged.
  • a channel etch type TFT is formed, for example, by forming a conductive film for a source / drain electrode on an oxide semiconductor layer and performing source / drain separation. In the source / drain separation step, the surface portion of the channel region may be etched.
  • etch stop type TFT in which an etch stop layer is formed on the channel region
  • the lower surfaces of the end portions on the channel side of the source and drain electrodes are located on the etch stop layer, for example.
  • a conductive film for a source / drain electrode is formed on the oxide semiconductor layer and the etch stop layer.
  • the oxide semiconductor TFT 102 illustrated in FIG. 1 has a top contact structure in which the source and drain electrodes are in contact with the upper surface of the oxide semiconductor layer 23, but may have a bottom contact structure in contact with the lower surface of the oxide semiconductor layer 23. .
  • the first gate electrode 15 and the second gate electrode 17 are formed using the same conductive film, but the first gate electrode 15 of the crystalline silicon TFT 101 and the second source electrode 25S of the oxide semiconductor TFT 102 and The second drain electrode 25D may be formed using the same conductive film.
  • the first interlayer insulating layer L1 is the first to third insulating layers 14, 19, and 27, and the second interlayer insulating layer L2 is the third insulating layer 27.
  • the configuration of the first interlayer insulating layer L1 and the second interlayer insulating layer L2 may be different from the above configuration.
  • This embodiment is applied to a configuration in which at least one of the first source contact hole and the first drain contact hole of the crystalline silicon TFT 101 and the second contact hole of the oxide semiconductor TFT 102 are formed at the same time.
  • the oxide semiconductor included in the oxide semiconductor layer 23 may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the oxide semiconductor layer 23 may have a stacked structure of two or more layers.
  • the oxide semiconductor layer 23 may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • a plurality of amorphous oxide semiconductor layers may be included.
  • the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer.
  • the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the oxide semiconductor layer 23 may include, for example, at least one metal element of In, Ga, and Zn.
  • the oxide semiconductor layer 23 includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide).
  • Such an oxide semiconductor layer 23 can be formed of an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • a channel-etch TFT having an active layer containing an oxide semiconductor such as an In—Ga—Zn—O-based semiconductor may be referred to as a “CE-OS-TFT”.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
  • a driving TFT for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels
  • a pixel TFT a TFT provided in the pixel
  • the oxide semiconductor layer 23 may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the oxide semiconductor layer 23 includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O.
  • Cd—Ge—O semiconductor Cd—Pb—O semiconductor, CdO (cadmium oxide), Mg—Zn—O semiconductor, In—Ga—Sn—O semiconductor, In—Ga—O semiconductor
  • a Zr—In—Zn—O based semiconductor an Hf—In—Zn—O based semiconductor, or the like may be included.
  • the semiconductor device according to the second embodiment is different from the first embodiment in that, in the second contact portion of the oxide semiconductor TFT 102, a part of the main layer 25m of the source electrode 25S is thinned to form a recess p3. This is different from the semiconductor device of the embodiment (FIG. 1).
  • FIG. 5 is an enlarged cross-sectional view of the second contact portion in the semiconductor device of this embodiment. Constituent elements similar to those in FIG. Since the structure other than the second contact portion is the same as that of the semiconductor device of the first embodiment (FIG. 1), description thereof is omitted.
  • a first opening p1 is formed in the upper layer 25u of the source electrode 25S below the opening 27p in the third insulating layer 27, and a recess p3 is formed in the main layer 25m. ing.
  • the recess p3 has a side surface s3 and a bottom surface b3.
  • the second contact hole CH2 includes an opening 27p, a first opening p1, and a recess p3.
  • the bottom surface b3 of the recess p3 becomes the bottom surface of the second contact hole CH2.
  • the recess p3 is larger than the first opening p1 when viewed from the normal direction of the substrate 11.
  • the side surface s1 of the upper layer 25u protrudes more into the second contact hole CH2 than the side surface s3 of the recess p3.
  • the second source electrode 25S has an overhang structure in the second contact portion.
  • the wiring 35 is provided on the third insulating layer 27 and in the second contact hole CH2.
  • the wiring 35 may be in contact with the main layer 25m in the recess p3 of the main layer 25m in the second contact hole CH2.
  • the wiring 35 is disposed on the third insulating layer 27, the side surface of the third insulating layer 27, and the bottom surface b3 of the recess p3.
  • the side surface s3 of the recess p3 and the side surface s1 of the upper layer 25u may not be in direct contact with the wiring 35.
  • the height h1 from the bottom surface b3 of the recess p3 to the lower surface of the third insulating layer 27 may be substantially equal to or less than the thickness d of the wiring 35.
  • the semiconductor device of this embodiment can be formed by a method similar to the method described above with reference to FIGS.
  • the time for the main layer 25m to be exposed to the HF liquid is shortened because the upper layer 25u having a relatively high etching rate is exposed to the HF liquid.
  • a part of the layer 25m remains without being removed.
  • the recess p3 is formed.
  • This configuration can be obtained by appropriately selecting the material, thickness, processing conditions with the HF liquid, and the like of the upper layer 25u and the main layer 25m of the source electrode 25S.
  • the wiring 35 is formed so as to be in contact with at least a part of the bottom surface b3 of the recess p3.
  • a part of the main layer 25m is thinned substantially uniformly, but the thickness of the thinned part may not be uniform.
  • the wiring 35 may contact not only the bottom surface b3 of the main layer 25m but also the side surface s1 of the upper layer 25u.
  • the wiring 35 may be in contact with the side surface s1 of the upper layer 25u and may not be in contact with the main layer 25m.
  • a conductive layer 35a separated from the wiring 35 may be formed in the recess p3.
  • the semiconductor device of the third embodiment is different from the above-described embodiment in that the source electrode 25S and the drain electrode 25D have a three-layer structure including an upper layer 25u, a main layer 25m, and a lower layer 25t.
  • the semiconductor device of the first embodiment FIG. 1
  • FIG. 7 is an enlarged cross-sectional view of the second contact portion in the semiconductor device of this embodiment. Constituent elements similar to those in FIG.
  • the source electrode 25S and the drain electrode 25D are three layers including a main layer 25m, an upper layer 25u disposed on the main layer 25m, and a lower layer 25t disposed on the substrate 11 side of the main layer 25m. It has a structure. Note that the source electrode 25S and the drain electrode 25D only need to include these three layers, and may have a stacked structure of four or more layers.
  • the materials of the upper layer 25u and the lower layer 25t in the source electrode 25S and the drain electrode 25D are selected so that the etching rate of the upper layer 25u and the lower layer 25t with respect to the HF liquid is smaller than that of the main layer 25m.
  • the main layer 25m may include, for example, Al, Cu, or an alloy thereof.
  • the upper layer 25u and the lower layer 25t may include, for example, Ti, Mo, or an alloy thereof.
  • the main layer 25m is formed of a material having a lower electrical resistance than the upper layer 25u and the lower layer 25t, and may be thicker than the upper layer 25u and the lower layer 25t.
  • an Al layer is used as the main layer 25m
  • a Ti layer is used as the upper layer 25u and the lower layer 25t.
  • the materials of the upper layer 25u and the lower layer 25t may be different from each other.
  • a first opening p1 is formed in the upper layer 25u of the source electrode 25S below the opening 27p in the third insulating layer 27, and a second opening p2 is formed in the main layer 25m.
  • the second opening p2 is larger than the upper layer 25u. That is, the side surface s1 of the first opening p1 protrudes from the side surface s2 of the second opening p2 into the second contact hole CH2.
  • the lower layer 25t remains without being removed. For this reason, the surface s4 of the lower layer 25t is exposed by the first and second openings p1 and p2. In some cases, only the surface portion of the lower layer 25t is removed with the HF liquid, and the film is made thinner than other portions of the lower layer 25t.
  • the second contact hole CH2 is composed of the opening 27p, the first opening p1, and the second opening p2, and the surface s4 of the lower layer 25t is the bottom surface of the second contact hole CH2.
  • the wiring 35 is provided on the third insulating layer 27 and in the second contact hole CH2.
  • the wiring 35 may be in contact with the exposed surface s4 of the lower layer 25t in the second contact hole CH2.
  • the wiring 35 is disposed on the third insulating layer 27, the side surface of the third insulating layer 27, and the exposed surface s4 of the lower layer 25t.
  • the side surface s3 of the recess p3 and the side surface s1 of the upper layer 25u may not be in direct contact with the wiring 35.
  • the wiring 35 may be in contact with the side surface s1 of the upper layer 25u.
  • the height h2 from the surface s4 of the lower layer 25t to the lower surface of the third insulating layer 27 may be substantially equal to or less than the thickness d of the wiring 35.
  • the thickness of the upper layer 25u is, for example, not less than 10 nm and not more than 100 nm.
  • the thickness of the lower layer 25t is, for example, not less than 10 nm and not more than 100 nm. If it is 10 nm or more, it is more reliably left in the second contact hole CH2 without being removed by the cleaning step with the HF solution, and therefore it can be brought into contact with the wiring 35. If it is 100 nm or less, the electrical resistance can be reduced while suppressing the thickness of the source electrode 25S and the drain electrode 25D.
  • the thickness of the main layer 25m is not particularly limited, but may be larger than the thickness of the upper layer 25u and the lower layer 25t.
  • the thickness of the main layer 25m may be, for example, 100 nm or more and 500 nm or less.
  • the second contact portion of the present embodiment can be formed by a method similar to the method described above with reference to FIGS.
  • the upper layer 25u having a relatively high etching rate is exposed to the HF liquid, so that the time during which the lower layer 25t is exposed to the HF liquid is shortened.
  • the lower layer 25t Remains without being removed.
  • This configuration can be obtained by appropriately selecting the material, thickness, processing conditions with the HF liquid, and the like of the upper layer 25u, the lower layer 25t, and the main layer 25m of the source electrode 25S.
  • the wiring 35 is formed so as to be in contact with at least a part of the exposed surface s4 of the lower layer 25t.
  • the first to third embodiments described above can be suitably applied to, for example, an active matrix substrate.
  • the crystalline silicon TFT 101 may be used as a circuit TFT constituting a driving circuit, and the oxide semiconductor TFT 102 may be used as a pixel TFT arranged in each pixel.
  • the wiring 35 connected to the source electrode 25S of the oxide semiconductor TFT 102 is a source bus line.
  • the drain electrode 25D of the oxide semiconductor TFT 102 is connected to a pixel electrode (not shown).
  • the first to third embodiments are particularly preferably applied to an active matrix substrate of an in-cell touch panel display device.
  • a drive wiring (drive electrode wiring or detection electrode wiring) of the touch panel by using the same conductor film as the source bus line (wiring 35).
  • a touch panel drive wiring 45 and a touch panel electrode 47 may be provided on the wiring (source bus line) 35 via an organic insulating film 43.
  • the wiring 35 is connected to the source electrode 25S in the contact hole CH2 provided in the third insulating layer 27 including the inorganic insulating film 27a and the organic insulating film 27b.
  • the second contact portion may have any of the structures described above with reference to FIGS. 1 and 5 to 9.
  • the in-cell touch panel type display device in order to perform touch panel sensing and pixel writing, it is required to further shorten the pixel writing time.
  • the parasitic capacitance between the source bus line and the gate bus line can be reduced, so that the writing time to the pixel can be shortened. become.
  • Embodiments of the present invention can be widely applied to devices and electronic devices including a plurality of thin film transistors.
  • circuit boards such as active matrix substrates, liquid crystal display devices, display devices such as organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, imaging devices such as radiation detectors and image sensors, image input devices,
  • EL organic electroluminescence
  • the present invention can be applied to an electronic device such as a fingerprint reading device.
  • Substrate 12 Base film 13: Crystalline silicon semiconductor layer 14: First insulating layer 15: First gate electrode 17: Second gate electrode 19: Second insulating layer 21: Insulating layer 23: Oxide semiconductor layer 25D: Second drain electrode 25S: second source electrode 25u: upper layer 25m: main layer 25t: lower layer 27: third insulating layer 27p: opening 31: first source electrode 33: first drain electrode 35: wiring 35a: conductive layer 101: Crystalline silicon TFT 102: Oxide semiconductor TFT CH1d: first drain contact hole CH1s: first source contact hole CH2: second contact hole p1: first opening p2: second opening p3: recess

Abstract

半導体装置は、結晶質シリコン半導体層(13)を有する第1薄膜トランジスタ(101)と、酸化物半導体層(23)を有する第2薄膜トランジスタ(102)とを備え、第1薄膜トランジスタ(101)の第1ソース・ドレイン電極(31)、(33)は、結晶質シリコン半導体層の上に第1の層間絶縁層(L1)を介して設けられ、第2薄膜トランジスタ(102)の第2ソース電極(25S)は、第1ソース・ドレイン電極と同じ導電膜から形成された配線(35)に電気的に接続されており、配線(35)は、第2ソース電極(25S)の上に第2の層間絶縁層(L2)を介して設けられ、かつ、第2の層間絶縁層(L2)に形成された開口を含む第2コンタクトホール内で第2ソース電極(25S)と接し、第2ソース電極は、主層(25m)と、主層の上に配置された上層(25u)とを含む積層構造を有し、第2の層間絶縁層の開口の下方において、上層(25u)は第1開口部を有し、主層(25m)は第2開口部(p2)または凹部を有し、基板の法線方向から見たとき、第2開口部(p2)または凹部は第1開口部(p1)よりも大きい。

Description

半導体装置およびその製造方法
 本発明は、半導体装置およびその製造方法に関する。
 アクティブマトリクス基板は、画素毎にスイッチング素子として、例えば薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)を備えている。本明細書では、このようなTFTを「画素用TFT」と称する。画素用TFTとしては、従来から、アモルファスシリコン膜を活性層とするアモルファスシリコンTFTや、多結晶シリコン膜などの結晶質シリコン膜を活性層とする結晶質シリコンTFTが広く用いられている。
 画素用TFTと同一基板上に、周辺駆動回路の一部または全体を一体的に形成することもある。このようなアクティブマトリクス基板は、ドライバモノリシックのアクティブマトリクス基板と呼ばれる。ドライバモノリシックのアクティブマトリクス基板では、周辺駆動回路は、複数の画素を含む領域(表示領域)以外の領域(非表示領域または額縁領域)に設けられる。画素用TFTと、駆動回路を構成するTFT(回路用TFT)とは、同じ半導体膜を用いて形成され得る。この半導体膜としては、例えば、電界効果移動度の高い多結晶シリコン膜が用いられる。
 また、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることが提案されている。酸化物半導体として、インジウム、ガリウム、亜鉛および酸素を主成分とするIn-Ga-Zn-O系半導体を用いることも提案されている。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できる。従って、酸化物半導体膜を用いて、画素用TFTおよび回路用TFTを同一基板上に一体的に形成することも可能である。
 しかしながら、多結晶シリコン膜および酸化物半導体膜の何れを用いても、画素用TFTおよび回路用TFTの両方に要求される特性を十分に満足することは困難である。
 これに対し、特許文献1は、画素用TFTとして酸化物半導体TFT、回路用TFTとして非酸化物半導体膜を活性層とするTFT(例えば結晶質シリコンTFT)を備えたアクティブマトリクス型の液晶パネルを開示している。特許文献1に開示された半導体装置では、結晶質シリコンTFTおよび酸化物半導体TFTのソースおよびドレイン電極は、ソースバスラインと同一の導電膜を用いて形成され、これらの電極を覆うように保護絶縁膜が形成されている。
 一方、アクティブマトリクス基板を、タッチセンサ機能を内蔵した表示装置(以下、「インセルタッチパネル型表示装置」)に適用する場合には、アクティブマトリクス基板に、タッチセンサの検出電極が設けられることがある(例えば特許文献2)。
特開2010-3910号公報 国際公開第2015/059995号
 特許文献1に開示されたアクティブマトリクス基板では、ソースバスラインとゲートバスラインとの間の寄生容量が大きくなってしまうという問題があった。
 また、例えばインセルタッチパネル型表示装置では、アクティブマトリクス基板に、タッチセンサを駆動させるための駆動用配線が形成される。すなわち、酸化物半導体TFTのゲート電極、ソースおよびドレイン電極とは別の配線層を基板上に形成する必要がある。このため、特許文献1に開示されたアクティブマトリクス基板の構成をそのままインセルタッチパネル型表示装置に適用することは困難であった。
 そこで、本発明者は、寄生容量を低減でき、かつ、例えばインセルタッチパネル型表示装置にも適用可能な構成を検討した。しかしながら、そのようなアクティブマトリクス基板では、簡便なプロセスで、酸化物半導体TFTまたは結晶質シリコンTFTと所定の配線とを接続するコンタクト部を形成するのは難しいことが分かった。詳細は後述する。
 本発明の一実施形態は、上記事情に鑑みてなされたものであり、酸化物半導体TFTおよび結晶質シリコンTFTを同一基板上に備え、コンタクト特性に優れた半導体装置を提供する。
 本発明の一実施形態の半導体装置は、基板と、前記基板に支持された第1薄膜トランジスタおよび第2薄膜トランジスタとを備え、前記第1薄膜トランジスタは、第1ゲート電極と、結晶質シリコン半導体層と、前記第1ゲート電極および前記結晶質シリコン半導体層の間に配置された第1ゲート絶縁層と、前記結晶質シリコン半導体層に電気的に接続された第1ソース電極および第1ドレイン電極とを有し、前記第2薄膜トランジスタは、第2ゲート電極と、酸化物半導体層と、前記第2ゲート電極および前記酸化物半導体層の間に配置された第2ゲート絶縁層と、前記酸化物半導体層に電気的に接続された第2ソース電極および第2ドレイン電極とを有し、前記第1ソース電極および前記第1ドレイン電極は、前記結晶質シリコン半導体層の上に第1の層間絶縁層を介して設けられ、かつ、前記第1の層間絶縁層に形成された第1ソースコンタクトホールおよび第1ドレインコンタクトホール内で、それぞれ、前記結晶質シリコン半導体層と接しており、前記第2ソース電極は、前記第1ソース電極および前記第1ドレイン電極と同じ導電膜から形成された配線に電気的に接続されており、前記配線は、前記第2ソース電極の上に第2の層間絶縁層を介して設けられ、かつ、前記第2の層間絶縁層に形成された開口を含む第2コンタクトホール内で前記第2ソース電極と接しており、前記第2ソース電極は、主層と、前記主層の上に配置された上層とを含む積層構造を有し、前記第2の層間絶縁層の前記開口の下方において、前記上層は第1開口部を有し、前記主層は第2開口部または凹部を有し、前記基板の法線方向から見たとき、前記第2開口部または前記凹部は前記第1開口部よりも大きい。
 ある実施形態において、前記主層の前記第2開口部または前記凹部の側面は、前記配線と接していない。
 ある実施形態において、前記配線は、前記上層の前記第1開口部の側面と接している。
 ある実施形態において、前記導電膜から形成された、前記第2開口部内または前記凹部内に位置する導電層をさらに有し、前記導電層は前記配線とは電気的に分離されている。
 ある実施形態において、前記主層は前記凹部を有しており、前記上層の前記第1開口部は、前記凹部の底面の少なくとも一部を露出しており、前記配線は、前記第2コンタクトホール内で前記凹部の前記底面と接している。
 ある実施形態において、前記第2ソース電極は、前記主層の前記基板側に位置する下層をさらに含み、前記主層は前記第2開口部を有し、前記第2開口部は前記下層の一部を露出しており、前記配線は、前記第2コンタクトホール内で前記下層の露出した部分と接している。
 ある実施形態において、前記上層の前記第1開口部の側面は前記配線と接していない。
 ある実施形態において、前記上層は、前記主層よりもフッ化水素酸に対するエッチングレートの小さい材料から形成されている。
 ある実施形態において、前記主層はAlまたはCuを含む。
 ある実施形態において、前記上層はTiまたはMoを含む。
 ある実施形態において、前記第1薄膜トランジスタはトップゲート構造を有し、前記第2薄膜トランジスタはボトムゲート構造を有し、前記第1ゲート電極および前記第2ゲート電極は同じ層内に設けられており、前記第1の層間絶縁層は、前記第1ゲート絶縁層、前記第2ゲート絶縁層および前記第2の層間絶縁層を含む。
 ある実施形態において、前記酸化物半導体層はIn-Ga-Zn-O系半導体を含む。前記In-Ga-Zn-O系半導体は結晶質部分を含んでもよい。
 ある実施形態において、前記酸化物半導体層は積層構造を有する。
 ある実施形態において、前記第2薄膜トランジスタはチャネルエッチ型である。
 本発明の一実施形態の半導体装置の製造方法は、基板上に、結晶質シリコン半導体層を活性層とする第1薄膜トランジスタと、酸化物半導体層を活性層とする第2薄膜トランジスタとを備え、前記第1薄膜トランジスタは第1TFT形成領域に配置され、前記第2薄膜トランジスタは第2TFT形成領域に配置されている、半導体装置の製造方法であって、(A)前記第1TFT形成領域に、前記結晶質シリコン半導体層と、前記結晶質シリコン半導体層を覆う第1の層間絶縁層とが形成され、前記第2TFT形成領域に、前記第2薄膜トランジスタのソース電極およびドレイン電極と、前記ソース電極および前記ドレイン電極を覆う第2の層間絶縁層とが形成された基板を用意する工程であって、前記ソース電極および前記ドレイン電極は、主層と、前記主層の上に位置し、前記主層よりもフッ化水素酸に対するエッチングレートの小さい上層とを含む積層構造を有する、工程と、(B)前記第1の層間絶縁層に、前記結晶質シリコン半導体層に達する第1ソースコンタクトホールおよび第1ドレインコンタクトホールを形成し、かつ、前記第2の層間絶縁層に、前記ソース電極に達する開口を形成する工程と、(C)前記第1ソースコンタクトホールおよび前記第1ドレインコンタクトホールによって露出した前記結晶質シリコン半導体層の表面を、フッ化水素酸を含む洗浄液を用いて洗浄する工程であって、前記洗浄液によって前記ソース電極の前記上層および前記主層がエッチングされて、前記第2の層間絶縁層の前記開口の下方において、前記上層には第1開口部が形成され、前記主層には第2開口部または凹部が形成され、これにより、前記開口と、前記第1開口部と、前記第2開口部または前記凹部とから構成される第2コンタクトホールが形成される、工程と、(D)前記第2の層間絶縁層上および前記第2コンタクトホール内に、前記第2コンタクトホール内で前記ソース電極と接する配線とを形成する工程とを包含する。
 ある実施形態において、前記基板の法線方向から見たとき、前記第2開口部または前記凹部は前記第1開口部よりも大きい。
 ある実施形態において、前記酸化物半導体層はIn-Ga-Zn-O系半導体を含む。前記In-Ga-Zn-O系半導体は結晶質部分を含んでもよい。
 ある実施形態において、前記酸化物半導体層は積層構造を有する。
 ある実施形態において、前記第2薄膜トランジスタはチャネルエッチ構造を有する。
 ある実施形態において、上記半導体装置は、インセルタッチパネルの駆動用配線をさらに備え、前記インセルタッチパネルの駆動用配線は、前記配線と同じ導電体膜から形成されている。
 本発明の一実施形態のインセルタッチパネル型表示装置は、上記のいずれかの半導体装置を備える。
 本発明の一実施形態によると、酸化物半導体TFTおよび結晶質シリコンTFTを同一基板上に備え、コンタクト特性に優れた半導体装置を実現できる。
(a)および(b)は、それぞれ、第1の実施形態の半導体装置における結晶質シリコンTFT101および酸化物半導体TFT102の断面図であり、(c)および(d)は、それぞれ、結晶質シリコンTFT101および酸化物半導体TFT102の平面図である。 (a)~(c)は、それぞれ、第1の実施形態の半導体装置における第2コンタクト部の形成方法を説明するための模式的な拡大断面図である。 (a)~(f)は、それぞれ、第1の実施形態における結晶質シリコンTFT101および酸化物半導体TFT102の製造方法を説明するための工程断面図である。 (a)~(d)は、それぞれ、第1の実施形態における結晶質シリコンTFT101および酸化物半導体TFT102の製造方法を説明するための工程断面図である。 第2の実施形態の半導体装置における第2コンタクト部を例示する拡大断面図である。 (a)および(b)は、それぞれ、第2の実施形態の半導体装置における第2コンタクト部の他の例を示す拡大断面図である。 第3の実施形態の半導体装置における第2コンタクト部を例示する拡大断面図である。 第3の実施形態の半導体装置における第2コンタクト部の他の例を示す拡大断面図である。 第1の実施形態の半導体装置における第2コンタクト部の他の例を示す拡大断面図である。 (a)および(b)は、それぞれ、インセルタッチパネル型表示装置用のアクティブマトリクス基板における表示領域の一部を例示する断面図および平面図である。 (a)~(c)は、それぞれ、酸化物半導体TFTおよび結晶質シリコンTFTを同一基板上に形成する参考例のプロセスを示す工程断面図である。 (a)~(c)は、それぞれ、参考例における第2コンタクト部の形成方法を示す拡大断面図である。
 上述したように、本発明者は、結晶質シリコンTFTおよび酸化物半導体TFTを同一基板上に備え、かつ、例えばインセルタッチパネル型表示装置にも適用可能なアクティブマトリクス基板の構成について、検討を重ねた。この結果、酸化物半導体TFTを覆う絶縁保護膜上に、酸化物半導体TFTのソースおよびドレイン電極とは異なる導電膜を用いて配線層を形成する構造に想到した。この配線層内にソースバスラインを設けると、ソースバスラインとゲートバスラインとの寄生容量を低減することが可能になる。さらに、この配線層内に、結晶質シリコンTFTのソースおよびドレイン電極を形成すれば、コンタクトホールを形成する工程の数を低減できる場合がある。
 しかしながら、上記の構造によると、結晶質シリコン半導体層と上記配線層内のソースおよびドレイン電極とを接続するコンタクト部(第1コンタクト部)と、酸化物半導体TFTのソース電極と上記配線層内のソース配線とを接続するコンタクト部(第2コンタクト部)との両方で良好なコンタクト特性が得られない可能性があることを見出した。
 以下、図面を参照しながら、上記の構造を有する半導体装置(参考例の半導体装置)の製造方法およびその課題を説明する。
 図11(a)~(c)は、それぞれ、酸化物半導体TFTおよび結晶質シリコンTFTを同一基板上に形成する参考例のプロセスを示す工程断面図である。ここでは、トップゲート構造を有する結晶質シリコン半導体TFT1001、およびボトムゲート構造を有するトップコンタクト型の酸化物半導体TFT1002を基板11上に形成する方法を例示する。
 まず、図11(a)に示すように、基板11のうち結晶質シリコンTFT1001を形成する領域(第1TFT形成領域)には、結晶質シリコン半導体層13、結晶質シリコン半導体層13を覆う第1絶縁層14、第1絶縁層14上に配置された第1ゲート電極15、および第1ゲート電極15を覆う絶縁層21を形成する。
 基板11のうち酸化物半導体TFT1002を形成する領域(第2TFT形成領域)には、第2ゲート電極17、第2ゲート電極17を覆う第2絶縁層19、第2絶縁層19上に配置された酸化物半導体層23、および、酸化物半導体層23と接する第2ソース電極25Sおよび第2ドレイン電極25Dを有する酸化物半導体TFT1002を形成する。酸化物半導体TFT1002上には第3絶縁層27を形成する。
 次いで、図示しないレジストマスクを用いて絶縁層14、21、27のエッチングを行う。これにより、図11(b)に示すように、第1TFT形成領域において、絶縁層14、21に、結晶質シリコン半導体層13の一部を露出する第1ソースコンタクトホールCH1sおよび第1ドレインコンタクトホールCH1d(「第1コンタクトホールCH1」と総称することがある。)を形成するとともに、第2TFT形成領域において、第3絶縁層27に第2ソース電極25Sの一部を露出する第2コンタクトホールCH2を形成する。
 この後、図11(c)に示すように、同一の導電膜を用いて、結晶質シリコンTFT1001の第1ソース電極31および第1ドレイン電極33と、酸化物半導体TFT1002の配線35とを形成する。第1ソース電極31および第1ドレイン電極33は、それぞれ、第1ソースコンタクトホールCH1sおよび第1ドレインコンタクトホールCH1d内で結晶質シリコン半導体層13と接する。配線35は、第2コンタクトホールCH2内で酸化物半導体層23と接する。このようにして、半導体装置を得る。
 なお、本明細書では、第1コンタクトホールCH1内における第1ソース電極31および第1ドレイン電極33と結晶質シリコン半導体層13との接続部を「第1コンタクト部」、第2コンタクトホールCH2内における配線35とソース電極25Sとの接続部を「第2コンタクト部」と称する。
 上記の方法において、第1ソース電極31および第1ドレイン電極33と結晶質シリコン半導体層13とのコンタクト抵抗を低減する目的で、図11(b)に示す工程で、第1コンタクトホールCH1によって露出された結晶質シリコンの表面をフッ化水素酸(HF液)で洗浄する場合がある。このとき、第2コンタクトホールCH2によって露出された第2ソース電極25S(典型的には金属電極)も同時にHF液に曝される結果、第2ソース電極25Sがエッチングされてしまうおそれがある。
 図12(a)~(c)は、それぞれ、洗浄工程を行う場合の参考例の半導体装置の製造方法を説明するための工程断面図であり、第2コンタクト部を拡大して示している。図12(a)は、図11(b)に示す工程と対応している。
 図12(a)に示すように、第3絶縁層27に、第2ソース電極25Sの一部を露出する開口27pを形成する。次いで、上述したように、HF液を用いて、第1コンタクトホールCH1内に露出した結晶質シリコンの洗浄を行う。このとき、開口27pによって露出された第2ソース電極25SもHF液に曝される。この結果、例えば図12(b)に示すように、第2ソース電極25Sに開口部25pが形成されてしまう。第2ソース電極25Sが例えばAl、Cu等の金属電極であれば、基板の法線方向から見て、開口部25pは第3絶縁層27の開口27pよりも大きくなる可能性がある。この状態で、配線35を形成するための導電膜を形成しても、図12(c)に示すように、導電膜を第2ソース電極25Sと接触させることが困難になる。この例では、配線35は第3絶縁層27上および第3絶縁層27の側面上に配置され、第2ソース電極25Sとは接しない。また、導電膜の一部35aは、配線35とは分離された状態で、第2ソース電極25Sの開口部内に位置する場合もある。
 このように、HF液を用いた洗浄工程を行うと、第2コンタクト部において、第2ソース電極25Sと配線35との良好なコンタクトを実現できなくなる。一方、HF液による洗浄工程を行わなければ、第1コンタクト部において、結晶質シリコン半導体層13と第1ソース電極31および第1ドレイン電極33とのコンタクト抵抗が高くなってしまう。従って、第1コンタクト部および第2コンタクト部の両方で良好なコンタクト特性を得ることは困難である。
 これに対し、本発明者は、洗浄工程等によって第2ソース電極25Sがエッチングされた場合でも、良好なコンタクト特性が得られる構成を見出し、本願発明に想到した。
 なお、本明細書では、「結晶質シリコンTFT」とは、結晶質シリコンを主に含む活性領域(チャネルが形成される領域)を有するTFTを指し、例えば結晶質シリコンTFT、単結晶シリコンTFTなどを含む。「酸化物半導体TFT」は、酸化物半導体を主として含む活性領域を有するTFTを指す。また、本発明による実施形態の半導体装置は、同一基板上に形成された酸化物半導体TFTと結晶質シリコンTFTとを備えていればよく、アクティブマトリクス基板などの回路基板、液晶表示装置や有機EL表示装置などの各種表示装置、イメージセンサ、電子機器などを広く含む。
 (第1の実施形態)
 以下、図面を参照しながら、第1の実施形態の半導体装置を説明する。
 本実施形態の半導体装置は、図11(c)を参照しながら前述した参考例の半導体装置と同様の構成を有する。ただし、第2ソース電極25Sの構造および第2コンタクト部の構造が異なっている。
 図1(a)および(b)は、それぞれ、本実施形態の半導体装置における結晶質シリコンTFT101および酸化物半導体TFT102の断面図であり、図1(c)および(d)は、それぞれ、図1(a)および(b)の平面図である。図1では、参考例の半導体装置(図11)と同様の構成要素には同じ参照符号を付している。
 本実施形態の半導体装置は、基板11と、基板11に支持された結晶質シリコンTFT101(「第1薄膜トランジスタ」ともいう。)および酸化物半導体TFT102(「第2薄膜トランジスタ」ともいう。)とを備える。
 結晶質シリコンTFT101は、図1(a)および(c)に示すように、結晶質シリコン半導体層13と、第1絶縁層14を介して結晶質シリコン半導体層13の少なくとも一部と重なるように配置された第1ゲート電極15と、結晶質シリコン半導体層13に電気的に接続された第1ソース電極31および第1ドレイン電極33とを有する。第1ソース電極31および第1ドレイン電極33は、結晶質シリコン半導体層13の上に第1の層間絶縁層L1を介して設けられている。結晶質シリコン半導体層13は、チャネル領域13cと、チャネル領域13cの両側にそれぞれ配置されたソース領域13sおよびドレイン領域13dとを含んでいる。
 結晶質シリコンTFT101はトップゲート構造を有していてもよい。この場合、第1絶縁層14は結晶質シリコン半導体層13を覆うように形成され、第1ゲート電極15は第1絶縁層14上に配置されている。第1ゲート電極15は、第1絶縁層14を介して結晶質シリコン半導体層13のチャネル領域13cと重なるように配置されている。結晶質シリコン半導体層13および第1ゲート電極15は絶縁層21で覆われている。
 第1絶縁層14および絶縁層21には、結晶質シリコン半導体層13に達する第1ソースコンタクトホールCH1sおよび第1ドレインコンタクトホールCH1dが形成されている。第1ソース電極31は、絶縁層21上および第1ソースコンタクトホールCH1s内に配置され、第1ソースコンタクトホールCH1s内で結晶質シリコン半導体層13と接する。第1ドレイン電極33は、絶縁層21上および第1ドレインコンタクトホールCH1d内に配置され、第1ドレインコンタクトホールCH1d内で結晶質シリコン半導体層13と接する。なお、本明細書では、結晶質シリコン半導体層13と第1ソース電極31および第1ドレイン電極33との間に位置し、第1コンタクトホールCH1が形成される絶縁層(ここでは第1絶縁層14および絶縁層21)を「第1の層間絶縁層L1」と呼ぶ。
 酸化物半導体TFT102は、図1(b)および(d)に示すように、酸化物半導体層23と、第2絶縁層19を介して酸化物半導体層23の少なくとも一部と重なるように配置された第2ゲート電極17と、酸化物半導体層23に電気的に接続された第2ソース電極25Sおよび第2ドレイン電極25Dとを有する。
 第2ソース電極25Sは、主層25mと、主層25mの上に配置された上層25uとを含む積層構造を有している。第2ドレイン電極25Dも、同様の積層構造を有していてもよい。上層25uおよび主層25mの材料は、上層25uのHF液に対するエッチングレートが主層25mよりも小さくなるように選択される。主層25mは、例えばAlまたはCuを含んでもよい。上層25uは、例えばTiまたはMoを含んでもよい。主層25mは、上層25uよりも電気抵抗の低い材料から形成され、かつ、上層25uよりも厚くてもよい。
 酸化物半導体TFT102は、ボトムゲート構造を有していてもよい。この例では、第1絶縁層14上に、第2ゲート電極17が形成されている。第2ゲート電極17は、第2絶縁層19で覆われており、第2絶縁層19上に酸化物半導体層23が形成されている。第2ソース電極25Sおよび第2ドレイン電極25Dは、それぞれ、酸化物半導体層23の上面に接するように配置されていてもよい。酸化物半導体層23のうち第2ソース電極25Sと接する領域をソースコンタクト領域23s、第2ドレイン電極25Dと接する領域をドレインコンタクト領域23dと呼ぶ。酸化物半導体層23、第2ソース電極25Sおよび第2ドレイン電極25Dは、第3絶縁層27で覆われている。
 第2ソース電極25Sは、第2コンタクト部において、結晶質シリコンTFT101の第1ソース電極31および第1ドレイン電極33と同じ導電膜から形成された配線(ここではソースバスライン)35に電気的に接続されている。配線35は、第2ソース電極25Sの上に第3絶縁層27を介して設けられ、第2コンタクト部において、第3絶縁層27に形成された開口27pを含む第2コンタクトホールCH2内で第2ソース電極25Sと直接接している。本明細書では、酸化物半導体層23と配線35との間に位置し、第2コンタクトホールCH2が形成される絶縁層(ここでは第3絶縁層27)を「第2の層間絶縁層L2」と呼ぶ。
 この例では、第3絶縁層27に形成された開口27pの下方において、ソース電極25Sの上層25uは第1開口部p1を有し、主層25mは第2開口部p2を有している。従って、第2コンタクトホールCH2は、開口27p、ソース電極25Sの上層25uの第1開口部p1および主層25mの第2開口部p2から構成されている。基板11の法線方向から見たとき、第2開口部p2は第1開口部p1よりも大きい。配線35は、第2コンタクトホールCH2内において、例えば上層25uの側面と接している。これにより、第2ソース電極25Sと配線35とが接続されている。なお、第2開口部p2内には、配線35とは分離された導電層35aが配置されていてもよい。
 ここで、本実施形態における第2コンタクト部の構造および形成方法を説明する。
 図2(a)~(c)は、第2コンタクト部の形成方法を示す模式的な拡大断面図である。図2では、図12に示す参考例の半導体装置と同様の構成要素には同じ参照符号を付している。
 まず、図2(a)に示すように、基板上に形成された酸化物半導体層(不図示)と接するように酸化物半導体TFTの第2ソース電極25Sを形成する。第2ソース電極25Sは、主層(例えばAl層)25mと、主層25m上に配置された上層(例えばTi層)25uとを含む積層構造を有する。
 次いで、ソース電極25Sを覆うように第3絶縁層27を形成し、第3絶縁層27に開口27pを形成する。開口27pは、結晶質シリコンTFTの第1コンタクトホール(不図示)と同時に形成される。
 この後、HF液を用いて、第1コンタクトホールによって露出された結晶質シリコンの洗浄を行う。この工程において、第3絶縁層27の開口27pによって露出されたソース電極25SもHF液に曝される。この結果、図2(b)に示すように、ソース電極25Sの上層25uおよび主層25mがエッチングされ、上層25uに第1開口部p1、主層25mに第2開口部p2が形成される。これらの開口部p1、p2は、基板の法線方向から見たとき、開口27pと重なる位置に形成される。このようにして、第3絶縁層27の開口27p、ソース電極25Sの上層25uの第1開口部p1および主層25mの第2開口部p2から構成される第2コンタクトホールCH2が得られる。
 なお、洗浄液はHF液に限定されない。洗浄液として、フッ化水素酸を含む溶液を用いることができる。例えば、フッ化水素酸とフッ化アンモニウム溶液との混合液であるバッファードフッ酸(BHF)を用いてもよい。
 第2コンタクトホールCH2では、主層25mおよび上層25uのエッチングレートの差に起因して、基板11の法線方向から見たとき、第2開口部p2は第1開口部p1よりも大きくなる。言い換えると、第1開口部p1の側面s1は、第2開口部p2の側面s2から第2コンタクトホールCH2内に突出する。従って、第2コンタクト部において、第2ソース電極25Sはオーバーハング構造を有する。第1開口部p1の側面s1は、第3絶縁層27の開口27pの側面と略整合していてもよい。
 次いで、図2(c)に示すように、第3絶縁層27上、第1コンタクトホール内および第2コンタクトホールCH2内に導電膜を形成し、導電膜をパターニングすることにより、第1ソース電極および第1ドレイン電極(不図示)と配線35とを形成する。配線35は、第2コンタクトホールCH2内でソース電極25Sと接する。この例では、配線35は、第3絶縁層27の上面、第3絶縁層27の側面および上層25uの側面s1と接するように配置される。このように、第2コンタクトホールCH2の側壁(テーパー部分)において、第2ソース電極25Sの上層25uと直接接するように配線35を形成できる。
 主層25mの側面s2は、配線35と接していなくてもよい。また、導電膜の一部が第2開口部p2内に配置され、導電層35aを形成してもよい。導電層35aは、図2(c)に示すように、配線35とは電気的に分離されていてもよい。あるいは、図9に例示するように、導電層35aは、導電膜のうち第3絶縁層27の側面上に位置する部分と接続されており、配線35の一部であってもよい。
 このように、本実施形態によると、HF液によるエッチングシフトが第2ソース電極25Sに生じた場合でも、配線35と第2ソース電極25Sとをより確実に接続することが可能になる。一方、結晶質シリコンTFTの第1コンタクト部においても、HF液を用いてシリコン表面の洗浄を行うことができるので、良好なコンタクト特性が得られる。
 また、特許文献1に開示されたアクティブマトリクス基板では、ソースバスラインとゲートバスラインとの間に位置する絶縁層(画素TFTのゲート絶縁層)が薄いために、寄生容量が大きくなってしまうという問題があった。これに対し、本実施形態では、ソースバスラインとして機能する配線35が第3絶縁層27(例えば平坦化層)上に形成されるので、ソースバスラインとゲートバスライン間の寄生容量を低減することが可能になる。
 次いで、図面を参照しながら、本実施形態の半導体装置の製造方法の一例を説明する。
 図3(a)~(f)および図4(a)~(d)は、それぞれ、結晶質シリコンTFT101および酸化物半導体TFT102の製造方法を示す工程断面図である。
 まず、図3(a)に示すように、基板11上に、下地膜12を形成し、その上に結晶質シリコン膜(ここではポリシリコン(p-Si)膜)13’を形成する。基板11として、ガラス基板、樹脂板または樹脂フィルムなどの種々の基板を用いることができる。a-Si膜の形成は、例えばプラズマCVD(Chemical Vapor Deposition)法やスパッタ法などの公知の方法で行うことができる。a-Si膜の結晶化は、例えばa-Si膜にエキシマレーザー光104を照射することによって行ってもよい。
 次に、図3(b)に示すように、p-Si膜13’のパターニングを行い、第1TFT形成領域に、島状の結晶質シリコン半導体層(厚さ:例えば30nm以上70nm以下)13を形成する。この後、結晶質シリコン半導体層13を覆うように第1絶縁層(厚さ:例えば50nm以上130nm以下)14を形成する。第1絶縁層14は、特に限定しないが、例えば酸化珪素(SiOx)を主に含んでもよい。第1絶縁層14は、結晶質シリコンTFT101のゲート絶縁層(第1ゲート絶縁層)として機能する。ここでは、第1絶縁層14を第2TFT形成領域にも延設する。
 続いて、図3(c)に示すように、ゲート用電極膜(厚さ:200nm以上500nm以下)を形成した後、これをパターニングする。これにより、結晶質シリコンTFT101の第1ゲート電極15と、酸化物半導体TFT102の第2ゲート電極17とを得る。ゲート用電極膜の材料は、特に限定されず、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はその合金を含む膜を適宜用いることができる。また、これら複数の膜を積層した積層膜を用いてもよい。パターニング方法は特に限定されず、公知のフォトリソグラフィおよびドライエッチングを用いることができる。
 この後、第1ゲート電極15をマスクとして、結晶質シリコン半導体層13に不純物を注入し、ソース領域13sおよびドレイン領域13dを形成する。結晶質シリコン半導体層13のうち不純物を注入されなかった領域が活性領域(チャネル領域)13cとなる。
 続いて、図3(d)に示すように、第1絶縁層14および第1ゲート電極15および第2ゲート電極17を覆う第2絶縁層(厚さ:例えば180nm以上550nm以下)19を形成する。第2絶縁層19は、酸化物半導体TFT102のゲート絶縁層(第2ゲート絶縁層)として機能する。第2絶縁層19として、特に限定されないが、例えば窒化珪素(SiNx)膜、酸化珪素(SiOx)膜を用いることができる。例えば窒化珪素(SiNx)層(厚さ:例えば150nm以上450nm以下)を下層とし、酸化珪素(SiOx)層(厚さ:例えば30nm以上100nm以下)を上層とする積層膜を用いてもよい。第2絶縁層19は、第1TFT形成領域にも延設されてもよい。
 次いで、図3(e)に示すように、第2絶縁層19上に酸化物半導体層23を形成する。具体的には、まず、例えばスパッタリング法により、酸化物半導体膜を形成し、酸化物半導体膜のパターニングを行い、島状の酸化物半導体層23を得る。酸化物半導体膜として、例えばIn-Ga-Zn-O系の半導体膜(厚さ:例えば40nm以上120nm以下)を用いてもよい。
 この後、図3(f)に示すように、第2絶縁層19上および酸化物半導体層23上に、例えばスパッタリング法によりソース・ドレイン用電極膜を形成する。続いて、ソース・ドレイン用電極膜のパターニングを行う。これにより、酸化物半導体層23の上面と接する第2ソース電極25Sおよび第2ドレイン電極25Dが形成される。酸化物半導体層23のうち第2ソース電極25Sおよび第2ドレイン電極25Dと接する部分は、それぞれ、ソースコンタクト領域23sおよびドレインコンタクト領域23dとなる。酸化物半導体層23のうちゲート電極17と(第2絶縁層19を介して)重なり、かつ、ソースコンタクト領域23sおよびドレインコンタクト領域23dの間に位置する部分は、チャネル領域23cとなる。
 ソース・ドレイン用電極膜は、主層25mと、主層25mの上に配置された上層25uとを含む積層構造を有している。主層25mは、例えばCu層、Al層、CuまたはAlを含む合金層などであってもよい。上層25uおよび主層25mの材料は、上層25uのHF液に対するエッチングレートが主層25mよりも小さくなるように選択される。上層25uは、例えばTi層、Mo層、TiまたはMoを含む合金層などであってもよい。ソース・ドレイン用電極膜は、主層25mおよび上層25uを含む3層以上の積層構造を有していてもよい。
 上層25uの厚さは、例えば15nm以上25nm以下である。15nm以上であれば、配線35との接触面積を確保でき、コンタクト抵抗をより小さくできる。25nm以下であれば、第2ソース電極25Sおよび第2ドレイン電極25Dの厚さを抑えつつ、電気抵抗を小さくできる。主層25mの厚さは、特に限定しないが、上層25uの厚さよりも大きくてもよい。主層25mの厚さは、例えば100nm以上500nm以下であってもよい。
 この後、図4(a)に示すように、第1および第2TFT形成領域に第3絶縁層27を形成する。第3絶縁層27は、酸化珪素(SiOx)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等の無機絶縁膜、感光性樹脂膜などの有機絶縁膜を適宜用いることができる。第3絶縁層27が有機絶縁膜などの平坦化膜を含む場合、第3絶縁層27の厚さは例えば1μm以上3μm以下であってもよい。この例では、第1TFT形成領域において、第1絶縁層14上に、第2および第3絶縁層19、27(図1に示す絶縁層21に相当する)が形成される。
 次に、図4(b)に示すように、第1TFT形成領域において、第1絶縁層14および絶縁層21(第1の層間絶縁層L1)に、ソース領域13sの一部を露出する第1ソースコンタクトホールCH1sと、ドレイン領域13dの一部を露出する第1ドレインコンタクトホールCH1dとを形成する。同時に、第3絶縁層27(第2の層間絶縁層L2)に開口27pを形成する。開口27pによって、ソース電極25Sの上層25uの一部が露出する。
 この後、HF液を用いて、第1ソースコンタクトホールCH1sおよび第1ドレインコンタクトホールCH1dによって露出された結晶質シリコンの洗浄を行う。この工程において、第2コンタクトホールCH2によって露出されたソース電極25SもHF液に曝される。この結果、図4(c)に示すように、ソース電極25Sの上層25uおよび主層25mがエッチングされ、上層25uに第1開口部、主層25mに第2開口部が形成される。これにより、第2コンタクトホールCH2が得られる。第2コンタクトホールCH2は、例えば、図2(b)を参照しながら前述した構造を有する。洗浄処理の条件は特に限定しないが、例えば、主層25mをAl層(厚さ:300nm)、上層25uをTi層(厚さ:50nm)とすると、HF液(濃度:1%)の処理時間は例えば15secである。また、洗浄液もHF液に限定されず、BHF液であってもよい。
 次いで、図4(d)に示すように、第3絶縁層27上、第1ソースコンタクトホールCH1s、第1ドレインコンタクトホールCH1dおよび第2コンタクトホールCH2内に導電膜を形成し、導電膜をパターニングする。これにより、第1ソースコンタクトホールCH1s内でソース領域13sと接する第1ソース電極31、第1ドレインコンタクトホールCH1d内でドレイン領域13dと接する第1ドレイン電極33、第2コンタクトホールCH2内で第2ソース電極25Sと接する配線35が形成される。配線35は、第2コンタクトホールCH2内で、上層25uの側面s1と接するように配置されてもよい。導電膜の一部が第2開口部p2内に配置されることにより、配線35とは電気的に分離された導電層35aが形成されてもよい。このようにして、結晶質シリコンTFT101および酸化物半導体TFT102を備えた半導体装置が製造される。
 結晶質シリコンTFT101および酸化物半導体TFT102の構造および製造方法は図1に示す構造に限定されない。
 結晶質シリコンTFT101はボトムゲート構造であってもよい。また、非晶質シリコン膜の結晶化方法などの結晶質シリコン半導体層の形成方法も上記に限定されない。
 酸化物半導体TFT102は、チャネルエッチ型のTFTであってもよいし、エッチストップ型のTFTであってもよい。チャネルエッチ型のTFTでは、図1に示すように、チャネル領域上にエッチストップ層が形成されておらず、ソースおよびドレイン電極のチャネル側の端部下面は、酸化物半導体層の上面と接するように配置されている。チャネルエッチ型のTFTは、例えば酸化物半導体層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。ソース・ドレイン分離工程において、チャネル領域の表面部分がエッチングされる場合がある。
 一方、チャネル領域上にエッチストップ層が形成されたTFT(エッチストップ型TFT)では、ソースおよびドレイン電極のチャネル側の端部下面は、例えばエッチストップ層上に位置する。エッチストップ型のTFTは、例えば酸化物半導体層のうちチャネル領域となる部分を覆うエッチストップ層を形成した後、酸化物半導体層およびエッチストップ層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。
 さらに、図1に示す酸化物半導体TFT102は、ソースおよびドレイン電極が酸化物半導体層23の上面と接するトップコンタクト構造であるが、酸化物半導体層23の下面と接するボトムコンタクト構造であってもよい。
 上記方法では、第1ゲート電極15および第2ゲート電極17を同じ導電膜を用いて形成しているが、結晶質シリコンTFT101の第1ゲート電極15と酸化物半導体TFT102の第2ソース電極25Sおよび第2ドレイン電極25Dとを同じ導電膜を用いて形成してもよい。また、上記方法では、第1の層間絶縁層L1は第1~第3絶縁層14、19、27であり、第2の層間絶縁層L2は第3絶縁層27であるが、TFT構造および製造方法によって、第1の層間絶縁層L1および第2の層間絶縁層L2の構成は、上記構成と異なり得る。
 本実施形態は、結晶質シリコンTFT101の第1ソースコンタクトホールおよび第1ドレインコンタクトホールの少なくとも一方と、酸化物半導体TFT102の第2コンタクトホールとが同時に形成される構成に適用される。
 ここで、本実施形態で用いる酸化物半導体層23を説明する。酸化物半導体層23に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
 酸化物半導体層23は、2層以上の積層構造を有していてもよい。酸化物半導体層23が積層構造を有する場合には、酸化物半導体層23は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体層23が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体層23は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体層23は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層23は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。なお、In-Ga-Zn-O系の半導体等、酸化物半導体を含む活性層を有するチャネルエッチ型のTFTを、「CE-OS-TFT」と呼ぶことがある。
 In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。
 酸化物半導体層23は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層23は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体などを含んでいてもよい。
 (第2の実施形態)
 第2の実施形態の半導体装置は、酸化物半導体TFT102の第2コンタクト部において、ソース電極25Sの主層25mの一部が薄膜化されて凹部p3が形成されている点で、第1の実施形態の半導体装置(図1)と異なっている。
 図5は、本実施形態の半導体装置における第2コンタクト部の拡大断面図である。図2と同様の構成要素には同じ参照符号を付している。なお、第2コンタクト部以外の構造は、第1の実施形態の半導体装置(図1)と同じであるため、説明を省略する。
 本実施形態における第2コンタクト部では、第3絶縁層27の開口27pの下方において、ソース電極25Sの上層25uに第1開口部p1が形成されるとともに、主層25mには凹部p3が形成されている。凹部p3は、側面s3および底面b3を有している。第2コンタクトホールCH2は、開口27p、第1開口部p1および凹部p3で構成される。凹部p3の底面b3は、第2コンタクトホールCH2の底面になる。本実施形態でも、上層25uは、主層25mよりもHF液に対するエッチングレートが小さいので、基板11の法線方向から見たときに凹部p3は第1開口部p1よりも大きくなっている。言い換えると、上層25uの側面s1は、凹部p3の側面s3よりも第2コンタクトホールCH2の内部に突出している。第2ソース電極25Sは、第2コンタクト部において、オーバーハング構造を有する。
 配線35は、第3絶縁層27上および第2コンタクトホールCH2内に設けられている。配線35は、第2コンタクトホールCH2内で主層25mの凹部p3内で主層25mと接していてもよい。この例では、配線35は、第3絶縁層27上、第3絶縁層27の側面、および凹部p3の底面b3上に配置されている。凹部p3の側面s3、上層25uの側面s1は、配線35と直接接していなくてもよい。
 凹部p3の底面b3から第3絶縁層27の下面までの高さh1は、配線35の厚さdと略同等またはそれ以下であってもよい。これにより、配線35のうち第3絶縁層27の側面上に位置する部分と、凹部p3の底面b3上に位置する部分とがより確実に接続される。
 本実施形態の半導体装置は、図2~図4を参照しながら前述した方法と同様の方法で形成され得る。ただし、本実施形態では、HF液による洗浄工程において、エッチングレートが比較的大きい上層25uからHF液に曝されるため、主層25mがHF液に曝される時間が短くなり、その結果、主層25mの一部が除去されずに残る。このようにして、凹部p3が形成される。この構成は、ソース電極25Sの上層25uおよび主層25mの材料、厚さ、HF液による処理条件などを適宜選択することによって得られる。この後、凹部p3の底面b3の少なくとも一部と接するように配線35が形成される。なお、図示する例では、主層25mの一部が略均等に薄膜化されているが、薄膜化された部分の厚さは均等でなくてもよい。
 本実施形態における第2コンタクト部の構成は、図5に示す例に限定されない。図6(a)に例示するように、配線35は主層25mの底面b3だけでなく、上層25uの側面s1とも接していてもよい。または、図6(b)に例示するように、配線35は上層25uの側面s1と接し、主層25mとは接していなくてもよい。この場合、凹部p3内に、配線35とは分離された導電層35aが形成されていてもよい。
 (第3の実施形態)
 第3の実施形態の半導体装置は、ソース電極25Sおよびドレイン電極25Dが、上層25u、主層25mおよび下層25tを含む3層構造を有する点で、前述の実施形態と異なっている。以下の説明では、第1の実施形態の半導体装置(図1)と異なる点を説明する。
 図7は、本実施形態の半導体装置における第2コンタクト部の拡大断面図である。図2と同様の構成要素には同じ参照符号を付している。
 本実施形態では、ソース電極25Sおよびドレイン電極25Dは、主層25mと、主層25mの上に配置された上層25uと、主層25mの基板11側に配置された下層25tとを含む3層構造を有している。なお、ソース電極25Sおよびドレイン電極25Dは、これらの3層を含んでいればよく、4層以上の積層構造を有していてもよい。
 ソース電極25Sおよびドレイン電極25Dにおける上層25uおよび下層25tの材料は、上層25uおよび下層25tのHF液に対するエッチングレートが主層25mよりも小さくなるように選択される。主層25mは、例えばAl、Cuまたはこれらの合金を含んでもよい。上層25uおよび下層25tは、例えばTi、Mo、またはこれらの合金を含んでもよい。主層25mは、上層25uおよび下層25tよりも電気抵抗の低い材料から形成され、かつ、上層25uおよび下層25tよりも厚くてもよい。この例では、主層25mとしてAl層、上層25uおよび下層25tとしてTi層を用いる。なお、上層25uおよび下層25tの材料は互いに異なっていてもよい。
 本実施形態における第2コンタクト部では、第3絶縁層27の開口27pの下方において、ソース電極25Sの上層25uに第1開口部p1が形成され、主層25mには第2開口部p2が形成されている。基板11の法線方向から見たとき、第2開口部p2は上層25uよりも大きい。すなわち、第1開口部p1の側面s1は、第2開口部p2の側面s2から第2コンタクトホールCH2内に突出している。一方、下層25tは除去されずに残っている。このため、第1および第2開口部p1、p2によって下層25tの表面s4が露出している。なお、HF液で下層25tの表面部分のみが除去されて、下層25tの他の部分よりも薄膜化されている場合もある。
 このように、本実施形態では、第2コンタクトホールCH2は、開口27p、第1開口部p1および第2開口部p2で構成され、下層25tの表面s4は第2コンタクトホールCH2の底面になる。
 配線35は、第3絶縁層27上および第2コンタクトホールCH2内に設けられている。配線35は、第2コンタクトホールCH2内で下層25tの露出した表面s4と接していてもよい。この例では、配線35は、第3絶縁層27上、第3絶縁層27の側面、および下層25tの露出した表面s4上に配置されている。凹部p3の側面s3、上層25uの側面s1は、配線35と直接接していなくてもよい。あるいは、図8に例示するように、配線35は上層25uの側面s1とも接していてもよい。下層25tの表面s4から第3絶縁層27の下面までの高さh2は、配線35の厚さdと略同等またはそれ以下であってもよい。これにより、配線35のうち第3絶縁層27の側面上に位置する部分と、下層25tの表面s4上に位置する部分とがより確実に接続される。
 上層25uの厚さは、例えば10nm以上100nm以下である。下層25tの厚さは、例えば10nm以上100nm以下である。10nm以上であれば、より確実に、HF液による洗浄工程で除去されずに第2コンタクトホールCH2内に残るので、配線35と接触させることが可能になる。100nm以下であれば、ソース電極25Sおよびドレイン電極25Dの厚さを抑えつつ、電気抵抗を小さくできる。主層25mの厚さは、特に限定しないが、上層25uおよび下層25tの厚さよりも大きくてもよい。主層25mの厚さは、例えば100nm以上500nm以下であってもよい。
 本実施形態の第2コンタクト部は、図2~図4を参照しながら前述した方法と同様の方法で形成され得る。ただし、本実施形態では、HF液による洗浄工程において、エッチングレートが比較的大きい上層25uからHF液に曝されるため、下層25tがHF液に曝される時間が短くなり、その結果、下層25tが除去されずに残る。この構成は、ソース電極25Sの上層25u、下層25tおよび主層25mの材料、厚さ、HF液による処理条件などを適宜選択することによって得られる。この後、下層25tの露出した表面s4の少なくとも一部と接するように配線35が形成される。
 上述した第1~第3の実施形態は、例えばアクティブマトリクス基板に好適に適用され得る。アクティブマトリクス基板において、結晶質シリコンTFT101は駆動回路を構成する回路TFT、酸化物半導体TFT102は各画素に配置される画素TFTとして用いてもよい。この場合、酸化物半導体TFT102のソース電極25Sに接続される配線35はソースバスラインである。また、酸化物半導体TFT102のドレイン電極25Dは、不図示の画素電極に接続される。第1~第3の実施形態は、インセルタッチパネル型表示装置のアクティブマトリクス基板に特に好適に適用される。この場合、ソースバスライン(配線35)と同一の導電体膜を用いて、タッチパネルの駆動用配線(駆動電極用配線または検出電極用配線)を形成することも可能である。あるいは、図10(a)および(b)に示すように、配線(ソースバスライン)35上に、有機絶縁膜43を介してタッチパネルの駆動用配線45およびタッチパネル電極47を設けてもよい。この例では、第2コンタクト部において、配線35は、無機絶縁膜27aおよび有機絶縁膜27bを含む第3絶縁層27に設けられたコンタクトホールCH2内で、ソース電極25Sと接続される。図示を省略しているが、この第2コンタクト部は、図1、図5~図9を参照しながら前述したいずれかの構造を有し得る。インセルタッチパネル型表示装置では、タッチパネルのセンシングと画素への書き込みとを行うために、画素への書き込み時間をより短くすることが求められている。上記の実施形態を適用し、ソースバスラインを平坦化層上に設けることにより、ソースバスラインとゲートバスラインとの間の寄生容量を低減できるので、画素への書き込み時間を短縮することが可能になる。
 本発明の実施形態は、複数の薄膜トランジスタを備えた装置や電子機器に広く適用可能である。例えば、アクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置等の表示装置、放射線検出器、イメージセンサ等の撮像装置、画像入力装置や指紋読み取り装置等の電子装置などに適用され得る。
11         :基板
12         :下地膜
13         :結晶質シリコン半導体層
14         :第1絶縁層
15         :第1ゲート電極
17         :第2ゲート電極
19         :第2絶縁層
21         :絶縁層
23         :酸化物半導体層
25D        :第2ドレイン電極
25S        :第2ソース電極
25u        :上層
25m        :主層
25t        :下層
27         :第3絶縁層
27p        :開口
31         :第1ソース電極
33         :第1ドレイン電極
35         :配線
35a        :導電層
101     :結晶質シリコンTFT
102     :酸化物半導体TFT
CH1d       :第1ドレインコンタクトホール
CH1s       :第1ソースコンタクトホール
CH2        :第2コンタクトホール
p1         :第1開口部
p2         :第2開口部
p3         :凹部

Claims (23)

  1.  基板と、前記基板に支持された第1薄膜トランジスタおよび第2薄膜トランジスタとを備え、
     前記第1薄膜トランジスタは、第1ゲート電極と、結晶質シリコン半導体層と、前記第1ゲート電極および前記結晶質シリコン半導体層の間に配置された第1ゲート絶縁層と、前記結晶質シリコン半導体層に電気的に接続された第1ソース電極および第1ドレイン電極とを有し、
     前記第2薄膜トランジスタは、第2ゲート電極と、酸化物半導体層と、前記第2ゲート電極および前記酸化物半導体層の間に配置された第2ゲート絶縁層と、前記酸化物半導体層に電気的に接続された第2ソース電極および第2ドレイン電極とを有し、
     前記第1ソース電極および前記第1ドレイン電極は、前記結晶質シリコン半導体層の上に第1の層間絶縁層を介して設けられ、かつ、前記第1の層間絶縁層に形成された第1ソースコンタクトホールおよび第1ドレインコンタクトホール内で、それぞれ、前記結晶質シリコン半導体層と接しており、
     前記第2ソース電極は、前記第1ソース電極および前記第1ドレイン電極と同じ導電膜から形成された配線に電気的に接続されており、
     前記配線は、前記第2ソース電極の上に第2の層間絶縁層を介して設けられ、かつ、前記第2の層間絶縁層に形成された開口を含む第2コンタクトホール内で前記第2ソース電極と接しており、
     前記第2ソース電極は、主層と、前記主層の上に配置された上層とを含む積層構造を有し、前記第2の層間絶縁層の前記開口の下方において、前記上層は第1開口部を有し、前記主層は第2開口部または凹部を有し、前記基板の法線方向から見たとき、前記第2開口部または前記凹部は前記第1開口部よりも大きい、半導体装置。
  2.  前記主層の前記第2開口部または前記凹部の側面は、前記配線と接していない、請求項1に記載の半導体装置。
  3.  前記配線は、前記上層の前記第1開口部の側面と接している、請求項1または2に記載の半導体装置。
  4.  前記導電膜から形成された、前記第2開口部内または前記凹部内に位置する導電層をさらに有し、前記導電層は前記配線とは電気的に分離されている、請求項3に記載の半導体装置。
  5.  前記主層は前記凹部を有しており、前記上層の前記第1開口部は、前記凹部の底面の少なくとも一部を露出しており、
     前記配線は、前記第2コンタクトホール内で前記凹部の前記底面と接している、請求項1から3のいずれかに記載の半導体装置。
  6.  前記第2ソース電極は、前記主層の前記基板側に位置する下層をさらに含み、
     前記主層は前記第2開口部を有し、前記第2開口部は前記下層の一部を露出しており、
     前記配線は、前記第2コンタクトホール内で前記下層の露出した部分と接している、請求項1から3のいずれかに記載の半導体装置。
  7.  前記上層の前記第1開口部の側面は前記配線と接していない、請求項5または6に記載の半導体装置。
  8.  前記上層は、前記主層よりもフッ化水素酸に対するエッチングレートの小さい材料から形成されている、請求項1から7のいずれかに記載の半導体装置。
  9.  前記主層はAlまたはCuを含む、請求項1から8のいずれかに記載の半導体装置。
  10.  前記上層はTiまたはMoを含む請求項1から9のいずれかに記載の半導体装置。
  11.  前記第1薄膜トランジスタはトップゲート構造を有し、前記第2薄膜トランジスタはボトムゲート構造を有し、前記第1ゲート電極および前記第2ゲート電極は同じ層内に設けられており、
     前記第1の層間絶縁層は、前記第1ゲート絶縁層、前記第2ゲート絶縁層および前記第2の層間絶縁層を含む、請求項1から10のいずれかに記載の半導体装置。
  12.  前記酸化物半導体層はIn-Ga-Zn-O系半導体を含む、請求項1から11のいずれかに記載の半導体装置。
  13.  前記In-Ga-Zn-O系半導体は結晶質部分を含む、請求項12に記載の半導体装置。
  14.  前記酸化物半導体層は積層構造を有する、請求項1から13のいずれかに記載の半導体装置。
  15.  前記第2薄膜トランジスタはチャネルエッチ型である、請求項1から14のいずれかに記載の半導体装置。
  16.  基板上に、結晶質シリコン半導体層を活性層とする第1薄膜トランジスタと、酸化物半導体層を活性層とする第2薄膜トランジスタとを備え、前記第1薄膜トランジスタは第1TFT形成領域に配置され、前記第2薄膜トランジスタは第2TFT形成領域に配置されている、半導体装置の製造方法であって、
     (A)前記第1TFT形成領域に、前記結晶質シリコン半導体層と、前記結晶質シリコン半導体層を覆う第1の層間絶縁層とが形成され、前記第2TFT形成領域に、前記第2薄膜トランジスタのソース電極およびドレイン電極と、前記ソース電極および前記ドレイン電極を覆う第2の層間絶縁層とが形成された基板を用意する工程であって、前記ソース電極および前記ドレイン電極は、主層と、前記主層の上に位置し、前記主層よりもフッ化水素酸に対するエッチングレートの小さい上層とを含む積層構造を有する、工程と、
     (B)前記第1の層間絶縁層に、前記結晶質シリコン半導体層に達する第1ソースコンタクトホールおよび第1ドレインコンタクトホールを形成し、かつ、前記第2の層間絶縁層に、前記ソース電極に達する開口を形成する工程と、
     (C)前記第1ソースコンタクトホールおよび前記第1ドレインコンタクトホールによって露出した前記結晶質シリコン半導体層の表面を、フッ化水素酸を含む洗浄液を用いて洗浄する工程であって、前記洗浄液によって前記ソース電極の前記上層および前記主層がエッチングされて、前記第2の層間絶縁層の前記開口の下方において、前記上層には第1開口部が形成され、前記主層には第2開口部または凹部が形成され、これにより、前記開口と、前記第1開口部と、前記第2開口部または前記凹部とから構成される第2コンタクトホールが形成される、工程と、
     (D)前記第2の層間絶縁層上および前記第2コンタクトホール内に、前記第2コンタクトホール内で前記ソース電極と接する配線とを形成する工程と
    を包含する半導体装置の製造方法。
  17.  前記基板の法線方向から見たとき、前記第2開口部または前記凹部は前記第1開口部よりも大きい、請求項16に記載の半導体装置の製造方法。
  18.  前記酸化物半導体層はIn-Ga-Zn-O系半導体を含む請求項16または17に記載の半導体装置の製造方法。
  19.  前記In-Ga-Zn-O系半導体は結晶質部分を含む、請求項18に記載の半導体装置の製造方法。
  20.  前記酸化物半導体層は積層構造を有する、請求項16から19のいずれかに記載の半導体装置の製造方法。
  21.  前記第2薄膜トランジスタはチャネルエッチ構造を有する、請求項16から20のいずれかに記載の半導体装置の製造方法。
  22.  インセルタッチパネルの駆動用配線をさらに備え、前記インセルタッチパネルの駆動用配線は、前記配線と同じ導電体膜から形成されている、請求項1から15のいずれかに記載の半導体装置。
  23.  請求項22に記載の半導体装置を備えたインセルタッチパネル型表示装置。
PCT/JP2017/001252 2016-01-27 2017-01-16 半導体装置およびその製造方法 WO2017130776A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/072,910 US10651209B2 (en) 2016-01-27 2017-01-16 Semiconductor device and method for manufacturing same
CN201780008343.4A CN108496244B (zh) 2016-01-27 2017-01-16 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-012982 2016-01-27
JP2016012982 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130776A1 true WO2017130776A1 (ja) 2017-08-03

Family

ID=59398316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001252 WO2017130776A1 (ja) 2016-01-27 2017-01-16 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US10651209B2 (ja)
CN (1) CN108496244B (ja)
WO (1) WO2017130776A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116107A1 (ja) * 2018-12-04 2020-06-11 株式会社ジャパンディスプレイ 表示装置および半導体装置
WO2021186285A1 (ja) * 2020-03-20 2021-09-23 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106952928B (zh) * 2017-03-30 2018-10-23 深圳市华星光电技术有限公司 一种tft背板的制作方法及tft背板
CN111656430B (zh) * 2018-02-01 2022-07-26 株式会社半导体能源研究所 显示装置及电子设备
CN113678092A (zh) * 2019-04-19 2021-11-19 夏普株式会社 显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003910A (ja) * 2008-06-20 2010-01-07 Toshiba Mobile Display Co Ltd 表示素子
JP2011048339A (ja) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法
WO2012176422A1 (ja) * 2011-06-24 2012-12-27 シャープ株式会社 表示装置及びその製造方法
WO2015052991A1 (ja) * 2013-10-09 2015-04-16 シャープ株式会社 半導体装置およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080108223A (ko) * 2006-01-31 2008-12-12 이데미쓰 고산 가부시키가이샤 Tft 기판, 반사형 tft 기판 및 이들의 제조 방법
JP5466939B2 (ja) * 2007-03-23 2014-04-09 出光興産株式会社 半導体デバイス、多結晶半導体薄膜、多結晶半導体薄膜の製造方法、電界効果型トランジスタ、及び、電界効果型トランジスタの製造方法
EP2256814B1 (en) * 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same
EP2284891B1 (en) * 2009-08-07 2019-07-24 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
CN103339715B (zh) 2010-12-03 2016-01-13 株式会社半导体能源研究所 氧化物半导体膜以及半导体装置
CN102339835A (zh) * 2011-07-14 2012-02-01 友达光电股份有限公司 半导体组件及电致发光组件及其制作方法
KR102071545B1 (ko) 2012-05-31 2020-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9864457B2 (en) 2013-10-22 2018-01-09 Sharp Kabushiki Kaisha Display device with touch sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003910A (ja) * 2008-06-20 2010-01-07 Toshiba Mobile Display Co Ltd 表示素子
JP2011048339A (ja) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法
WO2012176422A1 (ja) * 2011-06-24 2012-12-27 シャープ株式会社 表示装置及びその製造方法
WO2015052991A1 (ja) * 2013-10-09 2015-04-16 シャープ株式会社 半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116107A1 (ja) * 2018-12-04 2020-06-11 株式会社ジャパンディスプレイ 表示装置および半導体装置
WO2021186285A1 (ja) * 2020-03-20 2021-09-23 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Also Published As

Publication number Publication date
US10651209B2 (en) 2020-05-12
CN108496244B (zh) 2021-04-13
US20190035824A1 (en) 2019-01-31
CN108496244A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
TWI538222B (zh) 半導體裝置
WO2017130776A1 (ja) 半導体装置およびその製造方法
US7863607B2 (en) Thin film transistor array panel and manufacturing method thereof
KR101790176B1 (ko) 어레이 기판의 제조방법
EP2546884A1 (en) Semiconductor device and method for manufacturing the same
TWI538210B (zh) 半導體裝置及其製造方法
US10388676B2 (en) Active matrix substrate and method for producing same, and in-cell touch panel-type display device
US9502442B2 (en) Thin film transistor array substrate and method of manufacturing the same
US11145679B2 (en) Method for manufacturing active matrix board
WO2017146058A1 (ja) 半導体装置および半導体装置の製造方法
WO2014042125A1 (ja) 半導体装置およびその製造方法
US11637132B2 (en) Active matrix substrate and method for manufacturing same
US20190243194A1 (en) Active matrix substrate and method for manufacturing same
US20160056184A1 (en) Thin film transistor, display, and method for fabricating the same
US20190296050A1 (en) Active matrix substrate and method for manufacturing same
WO2018221294A1 (ja) アクティブマトリクス基板およびその製造方法
US10825843B2 (en) Active matrix substrate and method for producing same
WO2011136071A1 (ja) 半導体装置及びその製造方法
US20210183899A1 (en) Active matrix substrate and method for manufacturing same
US11296126B2 (en) Active matrix substrate and manufacturing method thereof
JP2019078862A (ja) アクティブマトリクス基板およびその製造方法
US10629622B2 (en) Display device and manufacturing method thereof
WO2012017626A1 (ja) 薄膜トランジスタ基板及びその製造方法並びに液晶表示パネル
TWI559554B (zh) 半導體裝置及其製造方法
US20220181356A1 (en) Active matrix substrate and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP