JP4555358B2 - 薄膜電界効果型トランジスタおよび表示装置 - Google Patents

薄膜電界効果型トランジスタおよび表示装置 Download PDF

Info

Publication number
JP4555358B2
JP4555358B2 JP2008076493A JP2008076493A JP4555358B2 JP 4555358 B2 JP4555358 B2 JP 4555358B2 JP 2008076493 A JP2008076493 A JP 2008076493A JP 2008076493 A JP2008076493 A JP 2008076493A JP 4555358 B2 JP4555358 B2 JP 4555358B2
Authority
JP
Japan
Prior art keywords
layer
active layer
thin film
effect transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008076493A
Other languages
English (en)
Other versions
JP2009231613A (ja
Inventor
雄一郎 板井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008076493A priority Critical patent/JP4555358B2/ja
Priority to US12/397,358 priority patent/US8188480B2/en
Priority to KR1020090021204A priority patent/KR101549704B1/ko
Priority to AT09003673T priority patent/ATE526686T1/de
Priority to EP09003673A priority patent/EP2105967B1/en
Publication of JP2009231613A publication Critical patent/JP2009231613A/ja
Application granted granted Critical
Publication of JP4555358B2 publication Critical patent/JP4555358B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、薄膜電界効果型トランジスタおよびそれを用いた表示装置に関する。特に活性層にアモルファス酸化物半導体を用いた薄膜電界効果型トランジスタおよびそれを用いた表示装置に関する。
近年、液晶やエレクトロルミネッセンス(ElectroLuminescence:EL)技術等の進歩により、平面薄型画像表示装置(Flat Panel Display:FPD)が実用化されている。特に、電流を通じることによって励起され発光する薄膜材料を用いた有機電界発光素子(以後、「有機EL素子」と記載する場合がある)は、低電圧で高輝度の発光が得られるために、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で、デバイスの薄型化、軽量化、小型化、および省電力のなどが期待されている。
これらFPDは、ガラス基板上に設けた非晶質シリコン薄膜や多結晶シリコン薄膜を活性層に用いる電界効果型薄膜トランジスタ(以後の説明で、Thin Film Transistor、もしくはTFTと記載する場合がある)のアクティブマトリクス回路により駆動されている。
一方、これらFPDのより一層の薄型化、軽量化、耐破損性の向上を求めて、ガラス基板の替わりに軽量で可撓性のある樹脂基板を用いる試みも行われている。
しかし、上述のシリコン薄膜を用いるトランジスタの製造は、比較的高温の熱工程を要し、一般的に耐熱性の低い樹脂基板上に直接形成することは困難である。
例えば、シリコン薄膜を用いたトランジスタの駆動電圧を低減したMOSFET(Metal−Oxide Semiconductor Field−Effect Transistor)が開示され、活性層の半導体材料として酸化インジウム錫(ITO)、酸化錫、或いは酸化亜鉛などが用いられ、ゲート絶縁膜に比誘電率の大きな誘電体材料を用いた構成が開示されている(例えば、特許文献1参照)。ITO、酸化錫、或いは酸化亜鉛などは結晶性金属酸化物であり、キャリア濃度が1×1019/cm程度有することが開示されている。結晶性金属酸化物よりなる活性層の場合、所望の半導体特性を発現するためには、スパッタリングによる膜形成の後、例えば300℃で15分間ポストアニールするなどの結晶化制御のための高温加熱処理工程が必要になる。従って、このような活性層を耐熱性の低い樹脂基板上に直接形成することは困難である。
液晶画面制御用TFTとして、アモルファスシリコン等の薄膜からなるチャネル層と炭化ケイ素薄膜等よりなるオフセット層の2層構成を用いたTFTが開示されている(例えば、特許文献2参照)。しかしながら、ガラス基板を用いた液晶画面制御用TFTとして利用できるものの、上記の耐熱性の問題を本質的に内在するので可撓性樹脂基板上に作製することは困難である。
アモルファス酸化物、例えば、In−Ga−Zn−O系アモルファス酸化物は低温での成膜が可能であり、プラスチックフィルム上に室温成膜可能な材料として注目されている。しかしながら、アモルファス酸化物半導体を用いたTFTの活性層に用いると、OFF電流が高く、ON/OFF比が低いという問題を有していた。あるいはTFTの電気特性にヒステリシスの発生や経時変化といった安定性や信頼性に関して改良が望まれている。
この問題を改良する手段として、In−M−Znを含み(MはGa,Al,Fe,Sn,Mg,Ca,Si,又はGeのうち少なくとも1種)を主たる構成元素とし、その抵抗値が1011Ω・cm以上であるアモルファス酸化物絶縁膜を抵抗層として活性層とゲート絶縁膜との間に設けた構成が開示されている。チャネルを構成する活性層としてIn−M−Znを含み(MはGa,Al,Fe,Sn,Mg,Ca,Si,又はGeのうち少なくとも1種)を主たる構成元素とし、その抵抗値が1010Ω・cm未満のアモルファス酸化物半導体を用いて、アモルファス酸化物絶縁膜のバンドギャップがアモルファス酸化物半導体層のバンドギャップよりも大きくすることが開示されている(例えば、特許文献3参照)。
あるいは、アモルファス酸化物半導体のキャリア濃度を低減すること、例えば、1018/cm未満にするとTFTは動作し、1016/cm未満で良好なON/OFF比を持つTFTが得られること、さらに良好な低いオフ電流特性を持たせるには、キャリア濃度を1016/cm未満にすることが好ましいことが開示されている。該アモルファス酸化物半導体の形成方法として組成又は元素が互いに異なる複数の酸化物層を積層し、その形成過程で互いの層の金属成分が溶融混合し合ったアモルファス酸化物半導体層を形成する方法が開示されている(例えば、特許文献4参照)。また、活性層として母体となる酸化物半導体と、トンネル効果を生じる膜厚以下の厚みで酸素原子を有する酸化物層間材とを積層した酸化物半導体を活性層として用いることが開示されている(例えば、特許文献5参照)。
しかしながら、実用的に供されるTFTは、OFF電流が低く、ON/OFF比が高いことは勿論のこと、連続駆動してもその性能が変化しないこと、作動する環境の温度や湿度などの条件が変動しても安定した性能を示すことが要求され、未だ多くのクリアすべき課題が残る。
特開2006−121029号公報 特開2000−124456号公報 特開2007−73701号公報 特開2007−73704号公報 特開2007−123702号公報
本発明の目的は、アモルファス酸化物半導体を用いたTFTを提供することにあり、特に、OFF電流が低く、高ON/OFF比を有し、かつ繰り返し動作してもTFT性能が変動しない動作安定性が改良されたTFTを提供することにある。さらに、可撓性のある樹脂基板上に作製が可能な高性能のTFTを提供することにある。また、該TFTを用いた表示装置を提供することにある。
本発明の上記課題は下記の手段によって解決された。
<1> 基板上に、少なくとも、ゲート電極、ゲート絶縁膜、アモルファス酸化物を含む活性層、ソース電極及びドレイン電極を有する薄膜電界効果型トランジスタであって、前記活性層と前記ソース電極又はドレイン電極の少なくとも一方との間に、少なくともアモルファスGa を含み厚みが3nmを超える抵抗層を有し、前記活性層のバンドギャップが前記抵抗層のバンドギャップより小さいことを特徴とする薄膜電界効果型トランジスタ。
<2> 前記活性層が少なくともInを含み、前記活性層のバンドギャップが2.0eV以上4.0eV未満である<1>に記載の薄膜電界効果型トランジスタ。
<3> 前記抵抗層のバンドギャップが4.0eV以上15.0eV未満である<1>又は<2>に記載の薄膜電界効果型トランジスタ。
<4> 前記活性層のバンドギャップと前記抵抗層のバンドギャップの差が0.1eV以上13.0eV未満であることを特徴とする<1>〜<3>のいずれかに記載の薄膜電界効果型トランジスタ。
<5> 前記活性層のキャリア濃度が、前記抵抗層のキャリア濃度よりも高いことを特徴とする<1>〜<4>のいずれかに記載の薄膜電界効果型トランジスタ。
<6> 前記抵抗層の膜厚が5nm以上80nm以下であることを特徴とする<1>〜<5>のいずれかに記載の薄膜電界効果型トランジスタ。
> 前記ゲート絶縁膜と、前記ソース電極又はドレイン電極の間は、前記活性層と前記抵抗層の2層からなることを特徴とする<1>〜<>のいずれかに記載の薄膜電界効果型トランジスタ。
> 前記活性層と前記抵抗層がスパッタ法により成膜された層であることを特徴とする<1>〜<>のいずれかに記載の薄膜電界効果型トランジスタ。
> 前記基板がフレキシブル基板であることを特徴とする<1>〜<>のいずれかに記載の薄膜電界効果型トランジスタ。
10> 1対の電極と、該電極間に介在する発光層とを有する発光素子と、該発光素子を駆動するための電界効果型トランジスタとを備えた表示装置であって、該電界効果型トランジスタが<1>〜<>のいずれかに記載の薄膜電界効果型トランジスタであることを特徴とする表示装置。
アモルファス酸化物半導体を用いたTFTは、室温成膜が可能であり、可撓性プラスチックフイルムを基板として作製が可能であるので、フイルム(フレキシブル)TFTの活性層の材料として注目された。特に特開2006−186319号公報で開示されているように、ポリエステルフィルム基板上にキャリア濃度を1018/cm未満のアモルファス酸化物半導体を活性層に用いて、電界効果移動度10cm/Vs、ON/OFF比10超の性能を持つTFTが報告されている。
しかしながら、これを例えば表示装置の駆動回路に用いる場合、移動度、ON/OFF比の観点から駆動回路を動作するには性能がまだ不十分であった。活性層に用いられるアモルファス酸化物半導体は、キャリア濃度が下がると電子移動度が下がる傾向があるので、良好なOFF特性と、高移動度を両立するTFTを形成することが困難であった。
さらに、本発明者らによる詳細な解析の結果、キャリア濃度を1018/cm未満に減少するとTFTの動作安定性が悪くなり、OFF電流値が変動したり、TFTの閾値電圧が変動したりする新たな問題が判明した。このOFF電流値の変動やTFTの閾値電圧の変動はキャリア濃度が低くなるほど大きく、特に3×1017/cm未満に減少すると実用上障害となる変動を引き起こすことが判明した。このOFF電流値の変動やTFTの閾値電圧の変動は、TFTを連続的に繰り返し駆動した場合にも発生することも見出された。従来、半導体素子にこのような問題が生じた場合、温度補償回路ユニットが対策として導入されるのが一般的であったが、回路の複雑化、かつ素子容積が大きくなり開口率が減少する等の弊害を伴う。従って、この問題は解決すべき重大な課題であり、OFF電流特性と高移動度を両立した上で、さらに動作安定性および耐久性の改良が求められた。
本発明者らは、鋭意、開発探索を進めた結果、基板上に、少なくとも、ゲート電極、ゲート絶縁膜、アモルファス酸化物を含む活性層、ソース電極及びドレイン電極を有する薄膜電界効果型トランジスタであって、前記活性層と前記ソース電極又はドレイン電極の少なくとも一方との間に、アモルファス酸化物を含み厚みが3nmを超える抵抗層を有し、前記活性層のバンドギャップが前記抵抗層のバンドギャップより小さいことを特徴とする薄膜電界効果型トランジスタにより、全く予想外に課題が解決し得ることを見出し、本発明に到達した。
本発明によると、OFF電流が低く、高ON/OFF比を示すTFTでかつ連続駆動などにおける動作安定性に優れたTFTが提供される。特に、可撓性基板を用いたフイルム(フレキシブル)TFTとして有用な薄膜電界効果型トランジスタが提供される。また、本願の活性層と抵抗層の構成によれば活性層が抵抗層によって保護されるので、化学的処理に対する抵抗性が高まり、パターニング等におけるエッチング液に対する耐久性が改良される。また、該TFTを用いた表示装置が提供される。
1.薄膜電界効果型トランジスタ(TFT)
本発明のTFTは、少なくとも、ゲート電極、ゲート絶縁膜、活性層、ソース電極及びドレイン電極を順次有し、ゲート電極に電圧を印加して、活性層に流れる電流を制御し、ソース電極とドレイン電極間の電流をスイッチングする機能を有するアクテイブ素子である。TFT構造として、スタガ構造及び逆スタガ構造いずれをも形成することができる。
本発明においては、アモルファス酸化物を含む活性層、及び前記活性層と前記ソース電極又はドレイン電極の少なくとも一方との間に、アモルファス酸化物を含み厚みが3nmを超える抵抗層を有し、前記活性層のバンドギャップが前記抵抗層のバンドギャップより小さい。本発明の構成に寄れば、アモルファス酸化物を含む活性層のキャリア濃度は、1×1015/cm以上の高いキャリア濃度でも優れたON/OFF特性が得られる。
本発明におけるバンドギャップは、電子が占める最も高いエネルギーバンドである価電子帯と、電子のない最も低いバンドである伝導帯とのエネルギー差と定義され、光学的方法(光吸収スペクトル)により決定される値である。光吸収スペクトルは可視・紫外分光光度計に積分球を取り付け、拡散反射スペクトルを測定して行う。バンドギャップ以上のエネルギーを持つ光を照射すると吸収されるので、吸収が始まる吸収端の光のエネルギーをバンドギャップとして測定した。
好ましくは、ゲート絶縁膜と、ソース電極又はドレイン電極の間は、実質的に活性層と抵抗層の2層のみからなる。
好ましくは、アモルファス酸化物を含有する活性層をゲート絶縁膜に隣接し、抵抗層をソース電極及びドレイン電極の少なくとも一方に隣接して配置される。従来、アモルファス酸化物を含有する層は化学的エッチング液により腐食され易いという問題があり、その上に設置される層のパターニングに化学的エッチング法を利用することが困難であった。本発明による積層される抵抗層は耐酸性に優れる利点を有するため、該層配置の構成により、ソース電極及びドレイン電極を化学的エッチングによりパターニングすることが可能になり、TFT生産性が改善される効果が得られる。
好ましくは、活性層のバンドギャップが2.0eV以上4.0eV未満であり、抵抗層のバンドギャップが4.0eV以上15.0eV未満である。抵抗層のバンドギャップ(E)と活性層のバンドギャップ(E)の差(ΔE)は、0.1eV〜13.0eVが好ましく、より好ましくは、0.5eV〜2.0eVである。
が2.0eV未満では、可視光の大部分が吸収されて伝導帯に励起されるため可視の発光体を表示部とした場合、誤作動を起こしやすい問題があり、4.0eV以上ではギャップが大きすぎるため、キャリアを注入してもギャップの間に安定化した準位を作ってしまい活性層として働きにくい問題があり、好ましくない。
が4.0eV未満では、活性層として動作してしまい好ましくなく、また、15.0eV以上の条件を満たす物質を得ることは現実的ではない。
△Eが0.1eV未満では、活性層と抵抗層との間のバンドギャップの差が小さすぎるためデバイスとしての動作に差がなくなってしまい、本発明の効果がえられない。また、13.0eVを超えると活性層と抵抗層との間のバンドギャップの差が大きすぎるため、電子のソース電極から活性層内へ、あるいは、活性層からドレイン電極へ障壁もそれに伴って非常に高くなる場合が多く、ON電流が小さくなるので、好ましくない。
好ましくは、活性層のキャリア濃度が抵抗層のキャリア濃度よりも高い。
好ましくは、活性層が、In、Sn、Zn、及びCdより選ばれる少なくとも一つの元素を含む酸化物を含有する。
好ましくは、抵抗層が、Ga、Mg、Al、Ca、及びSiより選ばれる少なくとも一つの元素を含む酸化物を含有する。
好ましくは、活性層と抵抗層がスパッタ法により成膜された層である。
好ましくは、基板が可撓性樹脂基板である。
本発明のTFTについて以下においてさらに詳細に説明する。
1)活性層
本発明の活性層に用いられるアモルファス酸化物は、低温で成膜可能である為に、プラスティックのような可撓性のある樹脂基板に作製が可能である。
本発明の活性層に用いられるアモルファス酸化物は、好ましくはIn、Sn、Zn、又はCdを含む酸化物であり、より好ましくは、In、Sn、Znを含む酸化物、さらに好ましくは、In、Znを含む酸化物である。本発明における活性層の電気伝導度は、特に限定されないが、電気伝導度10−10S/cm以上10+1S/cm以下であり、より好ましくは、10−7S/cm以上10−3S/cm以下である。
具体的に本発明の活性層に係るアモルファス酸化物は、In、ZnO,SnO、CdO,Indium−Zinc−Oxide(IZO)、Indium−Tin−Oxide(ITO)、Gallium−Zinc−Oxide(GZO)、Indium−Gallium−Oxide(IGO)、Indium−Gallium−Zinc−Oxide(IGZO)である。
<バンドギャップ>
本発明の活性層は、バンドギャップが2.0eV以上4.0eV未満であり、好ましくは2.2eV以上3.8eV以下、より好ましくは3.0eV以上3.5eV以下である。
本発明の活性層のバンドギャップは、下記により調製(調整)される。たとえばIndium−Gallium−Zinc−Oxide(IGZO)であれば、In(2.5eV)とZnO(3.3eV)とGa(4.6eV)による共スパッタにより可能となる。バンドギャップの大きいGa(4.6eV)の比率を大きくすれば、それに伴って活性層のバンドギャップも大きくなり、In(2.5eV)の比率を大きくすると、それに伴って活性層のバンドギャップも小さくなる。
<キャリア濃度>
本発明における活性層のキャリア濃度は、種々の手段により所望の数値に調整することができる。
本発明における活性層のキャリア濃度は、特に限定されないが、好ましくは1×1015/cm以上の高い領域である。より好ましくは、1×1015/cm以上1×1021/cm以下である。
キャリア濃度の調整手段としては、下記の手段を挙げることが出来る。
(1)酸素欠陥による調整
酸化物半導体において、酸素欠陥ができると、活性層のキャリア濃度が増加し、電気伝導度が大きくなることが知られている。よって、酸素欠陥量を調整することにより、酸化物半導体のキャリア濃度を制御することが可能である。酸素欠陥量を制御する具体的な方法としては、成膜中の酸素分圧、成膜後の後処理時の酸素濃度と処理時間等がある。ここでいう後処理とは、具体的に100℃以上の熱処理、酸素プラズマ、UVオゾン処理がある。これらの方法の中でも、生産性の観点から成膜中の酸素分圧を制御する方法が好ましい。成膜中の酸素分圧を調整することにより、酸化物半導体のキャリア濃度の制御ができる。
(2)組成比による調整
酸化物半導体の金属組成比を変えることにより、キャリア濃度が変化することが知られている。例えば、例えば、Indium−Gallium−Zinc−Oxide(IGZO)であれば、Inの比率を大きくすれば、それに伴って活性層のキャリア濃度も大きくなり、Gaの比率を大きくすると、それに伴って活性層のキャリア濃度も小さくなる。
これら組成比を変える具体的な方法としては、例えば、スパッタによる成膜方法においては、組成比が異なるターゲットを用いる。または、多元のターゲットにより、共スパッタし、そのスパッタレートを個別に調整することにより、膜の組成比を変えることが可能である。
(3)不純物による調整
酸化物半導体に、Li,Na,Mn,Ni,Pd,Cu,Cd,C,N,又はP等の元素を不純物として添加することによりキャリア濃度を減少させることが可能である。不純物を添加する方法としては、酸化物半導体と不純物元素とを共蒸着により行う、成膜された酸化物半導体膜に不純物元素のイオンをイオンドープ法により行う等がある。
(4)酸化物半導体材料による調整
上記(1)〜(3)においては、同一酸化物半導体系でのキャリア濃度の調整方法を述べたが、もちろん酸化物半導体材料を変えることにより、キャリア濃度を変えることができる。例えば、一般的にSnO系酸化物半導体は、In系酸化物半導体に比べてキャリア濃度が小さいことが知られている。このように酸化物半導体材料を変えることにより、キャリア濃度の調整が可能である。
キャリア濃度を調整する手段としては、上記(1)〜(4)の方法を単独に用いても良いし、組み合わせても良い。
<活性層の形成方法>
活性層の成膜方法は、酸化物半導体の多結晶焼結体をターゲットとして、気相成膜法を用いるのが良い。気相成膜法の中でも、スパッタリング法、パルスレーザー蒸着法(PLD法)が適している。さらに、量産性の観点から、スパッタリング法が好ましい。
例えば、RFマグネトロンスパッタリング蒸着法により、真空度及び酸素流量を制御して成膜される。酸素流量が多いほど電気伝導度を小さくすることができる。
成膜した膜は、周知のX線回折法によりアモルファス膜であることが確認できる。組成比は、RBS(ラザフォード後方散乱)分析法により求めることができる。
<活性層の膜厚>
本発明に於ける活性層の厚みは、好ましくは、0.1nm以上100nm以下である。
より好ましくは、0.5nm以上50nm以下、さらに好ましくは、1nm以上20nm以下である。
本発明に於ける活性層の膜厚は、作製した素子断面のHRTEM(High Resolution TEM)写真撮影により測定することができる。
2)抵抗層
本発明に用いられる抵抗層のバンドギャップが4.0eV以上15.0eV未満である。
好ましくは、抵抗層が、Ga、Mg、Al、Ca、及びSiより選ばれる少なくとも一つの元素を含む酸化物を含有する。より好ましくは、Ga、Mg、Al、又はCaを含む酸化物、さらに好ましくは、Ga、Mg、又はAlを含む酸化物である。
具体的に本発明の抵抗層に係るアモルファス酸化物は、Ga、MgO、Al、または、以上の酸化物を2種以上を混合した酸化物である。
<バンドギャップ>
本発明の抵抗層は、バンドギャップが4.0eV以上15.0eV未満であり、好ましくは4.2eV以上12.0eV以下、より好ましくは4.5eV以上10.0eV以下である。
本発明の抵抗層のバンドギャップは、下記により調製(調整)される。
例えば、Ga(4.6eV)とMgO(8.0eV)の二種の混合物であれば、Gaの比率が高い場合バンドギャップは小さくなり、Mgの比率が高い場合バンドギャップは大きくなる。
本発明における抵抗層のキャリア濃度は、特に限定されないが、好ましくは1012/cm以下である。より好ましくは、1010/cm以上10/cm以下である。
本発明の抵抗層は、好ましくは、電気伝導度10−10Scm以上10+1Scm以下であり、より好ましくは、10−7Scm以上10−3Scm以下である。電気抵抗率は、前述のバンドギャップの制御手段について説明したと同様の手段により調整することができる。
本発明に於ける抵抗層は、ゲート電極またはソース電極の少なくとも一方に隣接して配される。
本発明に於ける抵抗層の厚みは、好ましくは、3nm以上100nm以下である。より好ましくは、5nm以上80nm以下、さらに好ましくは、10nm以上50nm以下である。
3)ゲート電極
本発明におけるゲート電極としては、例えば、Al、Mo、Cr、Ta、Ti、Au、又はAg等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。
ゲート電極の厚みは、好ましくは、10nm以上1000nm以下である。より好ましくは、20nm以上500nm以下、さらに好ましくは、40nm以上100nm以下である。
電極の成膜法は特に限定されることはなく、印刷方式、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。例えば、ITOを選択する場合には、直流あるいは高周波スパッタリング法、真空蒸着法、イオンプレ−ティング法等に従って行うことができる。またゲート電極の材料として有機導電性化合物を選択する場合には湿式製膜法に従って行うことができる。
4)ゲート絶縁膜
ゲート絶縁膜としては、SiO、SiN、SiON、Al、Y、Ta、又はHfO等の絶縁体、又はそれらの化合物を少なくとも二つ以上含む混晶化合物が用いられる。また、ポリイミドのような高分子絶縁体もゲート絶縁膜として用いることができる。
ゲート絶縁膜の膜厚としては、好ましくは、10nm以上1000nm以下である。より好ましくは、50nm以上500nm以下、さらに好ましくは、100nm以上300nm以下である。ゲート絶縁膜はリーク電流を減らす、電圧耐性を上げる為に、ある程度膜厚を厚くする必要がある。しかし、ゲート絶縁膜の膜厚を厚くすると、TFTの駆動電圧の上昇を招く結果となる。その為、ゲート絶縁膜の膜厚は無機絶縁体だと50nm〜1000nm、高分子絶縁体だと0.5μm〜5μmで用いられることが、より好ましい。
特に、HfOのような高誘電率絶縁体をゲート絶縁膜に用いると、膜厚を厚くしても、低電圧でのTFT駆動が可能であるので、特に好ましい。
5)ソース電極及びドレイン電極
本発明におけるソース電極及びドレイン電極材料として、例えば、Al、Mo、Cr、Ta、Ti、Au、又はAg等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。特に好ましくは、IZOである。
ソース電極及びドレイン電極の厚みは、好ましくは、10nm以上1000nm以下である。より好ましくは、20nm以上500nm以下、さらに好ましくは、40nm以上400nm以下である。
電極の製膜法は特に限定されることはなく、印刷方式、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。例えば、ITOを選択する場合には、直流あるいは高周波スパッタリング法、真空蒸着法、イオンプレ−ティング法等に従って行うことができる。またソース電極及びドレイン電極の材料として有機導電性化合物を選択する場合には湿式製膜法に従って行うことができる。
6)基板
本発明に用いられる基板は特に限定されることはなく、例えばYSZ(ジルコニア安定化イットリウム)、ガラス等の無機材料、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリエチレンナフタレ−ト等のポリエステル、ポリスチレン、ポリカ−ボネ−ト、ポリエ−テルスルホン、ポリアリレ−ト、アリルジグリコ−ルカ−ボネ−ト、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、及びポリ(クロロトリフルオロエチレン)等の合成樹脂等の有機材料、などが挙げられる。前記有機材料の場合、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、又は低吸湿性等に優れていることが好ましい。
本発明においては特に可撓性基板が好ましく用いられる。可撓性基板に用いる材料としては、透過率の高い有機プラスチックフィルムが好ましく、例えばポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、又はポリ(クロロトリフルオロエチレン)等のプラスティックフィルムを用いることができる。また、フィルム状プラスティック基板には、絶縁性が不十分の場合は絶縁層、水分や酸素の透過を防止するためのガスバリア層、フィルム状プラスティック基板の平坦性や電極や活性層との密着性を向上するためのアンダーコート層等を備えることも好ましい。
ここで、可撓性基板の厚みは、50μm以上500μm以下とすることが好ましい。
これは、可撓性基板の厚みを50μm未満とした場合には、基板自体が十分な平坦性を保持することが難しいためである。また、可撓性基板の厚みを500μmよりも厚くした場合には、基板自体を自由に曲げることが困難になる、すなわち基板自体の可撓性が乏しくなるためである。
7)構造
次に、図面を用いて、詳細に本発明におけるTFTの構造を説明する。
図1は、本発明のTFTの一例を示す模式図である。基板1がプラスチックフィルムなどの可撓性基板の場合、基板1の少なくとも一方の面に絶縁層6を配し、その上にゲート電極2、ゲート絶縁膜3、アモルファス酸化物よりなる活性層4、抵抗層7を積層して有し、その表面にソース電極5−1とドレイン電極5−2が設置される。
図2は、本発明のTFTの別の例を示す模式図である。ゲート絶縁膜に隣接して活性層14、及び該活性層14を被覆するように抵抗層17を積層して有し、その表面にソース電極5−1とドレイン電極5−2が設置される。該構成によれば、アモルファス酸化物よりなる活性層14は耐薬品性に優れた抵抗層17により保護されているので、ソース電極5−1およびドレイン電極5−2のパターニングを化学的エッチング法により容易に行うことができる。例えば、抵抗層17の上に蒸着によりソース電極5−1又はドレイン電極5−2を一様に形成後、一般器良く知られているフォトレジスト膜を塗布し、パターン形成後、酸性のエッチング液で処理してソース電極5−1又はドレイン電極5−2をパターン化することができる。
図3は、従来のTFTの例を示す模式図である。基板1がプラスチックフィルムなどの可撓性基板の場合、基板1の少なくとも一方の面に絶縁層6を配し、その上にゲート電極2、ゲート絶縁膜3、及び活性層24を積層して有し、その表面にソース電極5−1とドレイン電極5−2が設置される。活性層24がアモルファス酸化物層である場合、化学エッチング液に対する耐性がないので、ソース電極5−1又はドレイン電極5−2の設置にレジスト法を利用することができず、活性層24の上にシャドーマスクシートを重ねてソース電極5−1又はドレイン電極5−2を形成しない部分を遮蔽してソース電極5−1又はドレイン電極5−2を蒸着する必要がある。該手段では高精細なパターニングが困難である。
図4は、本発明のTFT素子を用いたアクティブマトリクス駆動型有機EL表示装置の等価回路の模式図である。本発明における有機EL表示装置の回路は、特に図4に示すものに限定されるものではなく、従来公知の回路をそのまま応用することができる。
2.表示装置
本発明の電界効果型薄膜トランジスタは、液晶やEL素子を用いた画像表示装置、特に平面薄型表示装置(Flat Panel Display:FPD)に好ましく用いられる。より好ましくは、基板に有機プラスチックフィルムのような可撓性基板を用いたフレキシブル表示装置に用いられる。特に、本発明の電界効果型薄膜トランジスタは、移動度が高いことから有機EL素子を用いた表示装置、フレキシブル有機EL表示装置に最も好ましく用いられる。
(有機EL表示装置)
本発明に用いられる有機EL表示装置は、基板上に少なくとも下部電極、少なくとも発光層を含む有機層、及び上部電極を順次有する有機EL素子、および前記上部電極上に少なくともゲート電極、ゲート絶縁膜、酸化物半導体を含有する活性層、ソース電極、及びドレイン電極を有し前記有機EL素子を駆動するTFTを有する。TFTが有機EL素子の背面に配置されているので、有機EL素子の発光を取り出す開口部を大きく取ることができる。好ましくは、TFTと有機EL素子の間に保護絶縁膜を有し、前記有機EL素子の上部電極とTFTの前記ソース電極または前記ドレイン電極とが前記保護絶縁膜に形成されたコンタクトホールを介して電気的に接続されている。好ましくは、前記下部電極が光透過性電極であり、前記上部電極が光反射性電極である。
以下、本発明の有機EL素子について詳細に説明する。
本発明の発光素子は基板上に陰極と陽極を有し、両電極の間に有機発光層(以下、単に「発光層」と称する場合がある。)を含む有機化合物層を有する。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。
本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層、及び/又は発光層と電子輸送層との間に電子輸送性中間層を有する。
また、発光層と正孔輸送層との間に正孔輸送性中間層を、同様に陰極と電子輸送層との間に電子注入層を設けても良い。
尚、各層は複数の二次層に分かれていてもよい。
有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。
次に、有機EL素子を構成する要素について、詳細に説明する。
(基板)
本発明で使用する基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。
基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。
基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。
本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。が、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。
なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。
陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。
陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。
なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。
(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
陰極を構成する材料としては、例えば、金属、合金、金属酸化物、及び電気伝導性化合物、これらの混合物などが挙げられる。具体例としてはアルカリ金属(たとえば、LI、Na、K、又はCs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。
陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。
例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
(有機化合物層)
本発明における有機化合物層について説明する。
本発明の有機EL素子は、発光層を含む少なくとも一層の有機化合物層を有しており、発光層以外の他の有機化合物層としては、前述したごとく、正孔輸送層、電子輸送層、電荷ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
本発明の有機EL素子において、有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式等いずれによっても好適に形成することができる。
(発光層)
有機発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、発光材料のみで構成されていても良く、ホスト材料と発光性ドーパントの混合層とした構成でも良い。発光性ドーパントは蛍光発光材料でも燐光発光材料であっても良く、2種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は1種であっても2種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。さらに、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
本発明における発光性ドーパントとしては、燐光性発光材料、蛍光性発光材料等いずれもドーパントとして用いることができる。
本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光性ドーパントを含有することができる。本発明における発光性ドーパントは、更に前記ホスト化合物との間で、1.2eV>△Ip>0.2eV、及び1.2eV>△Ea>0.2eVの少なくとも一方の関係を満たすドーパントであることが駆動耐久性の観点で好ましい。
《燐光発光性ドーパント》
前記燐光性の発光性ドーパントとしては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
例えば、該遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、金、銀、銅、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、好ましくは炭素数5〜30、より好ましくは炭素数6〜30、さらに好ましくは炭素数6〜20であり、特に好ましくは炭素数6〜12であり、シクロペンタジエニルアニオン、ベンゼンアニオン、またはナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、好ましくは炭素数5〜30、より好ましくは炭素数6〜30、さらに好ましくは炭素数6〜20であり、特に好ましくは炭素数6〜12であり、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、またはフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、好ましくは炭素数2〜30、より好ましくは炭素数2〜20、さらに好ましくは炭素数2〜16であり、酢酸配位子など)、アルコラト配位子(例えば、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数6〜20であり、フェノラト配位子など)、シリルオキシ配位子(例えば、好ましくは炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは炭素数3〜20であり、例えば、トリメチルシリルオキシ配位子、ジメチル−tert−ブチルシリルオキシ配位子、トリフェニルシリルオキシ配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子、リン配位子(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは炭素数3〜20、特に好ましくは炭素数6〜20であり、例えば、トリフェニルフォスフィン配位子など)、チオラト配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数6〜20、例えば、フェニルチオラト配位子など)、フォスフィンオキシド配位子(好ましくは炭素数3〜30、より好ましくは炭素数8〜30、さらに好ましくは炭素数18〜30、例えば、トリフェニルフォスフィンオキシド配位子など)であり、より好ましくは、含窒素ヘテロ環配位子である。
上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
これらの中でも、発光性ドーパントの具体例としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001−247859、特開2002−302671、特開2002−117978、特開2003−133074、特開2002−235076、特開2003−123982、特開2002−170684、EP1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特開2006−256999、特開2007−19462、特開2007−84635、特開2007−96259等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光性ドーパントとしては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、およびCe錯体が挙げられる。
特に好ましくは、Ir錯体、Pt錯体、またはRe錯体であり、中でも金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、またはRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、またはRe錯体が特に好ましい。
《蛍光発光性ドーパント》
前記蛍光性の発光性ドーパントとしては、一般には、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、またはペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、およびこれらの誘導体などを挙げることができる。
これらの中でも、発光性ドーパントの具体例としては例えば下記のものが挙げられるが、これらに限定されるものではない。
発光層中の発光性ドーパントは、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%〜50質量%含有されるが、耐久性、外部量子効率の観点から1質量%〜50質量%含有されることが好ましく、2質量%〜40質量%含有されることがより好ましい。
発光層の厚さは、特に限定されるものではないが、通常、2nm〜500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。
<ホスト材料>
本発明に用いられるホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
《正孔輸送性ホスト》
本発明に用いられる正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及びそれらの誘導体等が挙げられる。
好ましくは、インドール誘導体、カルバゾール誘導体、芳香族第三級アミン化合物、又はチオフェン誘導体であり、より好ましくは、分子内にカルバゾール基を有するものが好ましい。特に、t−ブチル置換カルバゾール基を有する化合物が好ましい。
《電子輸送性ホスト》
本発明に用いられる発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物(A)は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。
前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、及び4−ビフェニルオキシなどが挙げられる。)、
ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、
シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。
金属錯体電子輸送性ホストの例としては、例えば特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。
本発明における発光層において、前記ホスト材料の三重項最低励起準位(T1)が、前記燐光発光材料のT1より高いことが色純度、発光効率、駆動耐久性の点で好ましい。
また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。
(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。これらの層に用いる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。
具体的には、ピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、又はカーボン等を含有する層であることが好ましい。
本発明の有機EL素子の正孔注入層あるいは正孔輸送層には、電子受容性ドーパントを含有させることができる。正孔注入層、あるいは正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、および三酸化モリブデンなどの金属酸化物などが挙げられる。
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。この他にも、特開平6−212153、特開平11−111463、特開平11−251067、特開2000−196140、特開2000−286054、特開2000−315580、特開2001−102175、特開2001−160493、特開2002−252085、特開2002−56985、特開2003−157981、特開2003−217862、特開2003−229278、特開2004−342614、特開2005−72012、特開2005−166637、特開2005−209643等に記載の化合物を好適に用いることが出来る。
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはフラーレンC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンがより好ましく、テトラフルオロテトラシアノキノジメタンが特に好ましい。
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。
正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(電子注入層、電子輸送層)
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
具体的には、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。
本発明の有機EL素子の電子注入層あるいは電子輸送層には、電子供与性ドーパントを含有させることができる。電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
この他にも、特開平6−212153、特開2000−196140、特開2003−68468、特開2003−229278、特開2004−342614等に記載の材料を用いることが出来る。
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。
電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(正孔ブロック層)
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(電子ブロック層)
電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機化合物層として、電子ブロック層を設けることができる。電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
電子ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
電子ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(保護層)
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、MgO、SIO、SIO、Al、GeO、NIO、CaO、BaO、Fe、Y、TIO等の金属酸化物、SIN、SIN等の金属窒化物、MgF、LIF、AlF、CaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、又は転写法を適用できる。
(封止)
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、およびシリコーンオイル類が挙げられる。
また、下記に示す、樹脂封止層にて封止する方法も好適に用いられる。
(樹脂封止層)
本発明の機能素子は樹脂封止層により大気との接触により、酸素や水分による素子性能の劣化を抑制することが好ましい。
<素材>
樹脂封止層の樹脂素材としては、特に限定されることはなく、アクリル樹脂、エポキシ樹脂、フッ素系樹脂、シリコン系樹脂、ゴム系樹脂、またはエステル系樹脂等を用いることができるが、中でも水分防止機能の点からエポキシ樹脂が好ましい。エポキシ樹脂の中でも熱硬化型エポキシ樹脂、または光硬化型エポキシ樹脂が好ましい。
<作製方法>
樹脂封止層の作製方法は特に限定されることはなく、例えば、樹脂溶液を塗布する方法、樹脂シートを圧着または熱圧着する方法、蒸着やスパッタリング等により乾式重合する方法が挙げられる。
<膜厚み>
樹脂封止層の厚みは1μm以上、1mm以下が好ましい。更に好ましくは5μm以上、100μm以下であり、最も好ましくは10μm以上50μm以下である。これよりも薄いと、第2の基板を装着時に上記無機膜を損傷する恐れがある。またこれよりも厚いと電界発光素子自体の厚みが厚くなり、有機電界発光素子の特徴である薄膜性を損なうことになる。
(封止接着剤)
本発明に用いられる封止接着剤は、端部よりの水分や酸素の侵入を防止する機能を有する。
<素材>
前記封止接着剤の材料としては、前記樹脂封止層で用いる材料と同じものを用いることができる。中でも、水分防止の点からエポキシ系の接着剤が好ましく、中でも光硬化型接着剤あるいは熱硬化型接着剤が好ましい。
また、上記材料にフィラーを添加することも好ましい。
封止剤に添加されているフィラーとしては、SiO、SiO(酸化ケイ素)、SiON(酸窒化ケイ素)またはSiN(窒化ケイ素)等の無機材料が好ましい。フィラーの添加により、封止剤の粘度が上昇し、加工適正が向上し、および耐湿性が向上する。
<乾燥剤>
封止接着剤は乾燥剤を含有しても良い。乾燥剤としては、酸化バリウム、酸化カルシウム、または酸化ストロンチウムが好ましい。
封止接着剤に対する乾燥剤の添加量は、0.01質量%以上20質量%以下であることが好ましく、更に好ましくは0.05質量%以上15質量%以下である。これよりも少ないと、乾燥剤の添加効果が薄れることになる。またこれよりも多い場合には封止接着剤中に乾燥剤を均一分散させることが困難になり好ましくない。
<封止接着剤の処方>
・ポリマー組成、濃度
封止接着剤としては特に限定されることはなく、前記のものを用いることができる。例えば光硬化型エポキシ系接着剤としては長瀬ケムテック(株)製のXNR5516を挙げることができる。そこに直接前記乾燥剤を添加し、分散せしめれば良い。
・厚み
封止接着剤の塗布厚みは1μm以上1mm以下であることが好ましい。これよりも薄いと封止接着剤を均一に塗れなくなり好ましくない。またこれよりも厚いと、水分が侵入する道筋が広くなり好ましくない。
<封止方法>
本発明においては、上記乾燥剤の入った封止接着剤をディスペンサー等により任意量塗布し、塗布後第2基板を重ねて、硬化させることにより機能素子を得ることができる。
(駆動)
本発明における有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明における有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
本発明における有機EL発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
本発明における発光素子は、陽極側から発光を取り出す、いわゆる、トップエミッション方式であっても良い。
本発明における有機EL素子は、発光効率を向上させるため、複数の発光層の間に電荷発生層が設けた構成をとることができる。
前記電荷発生層は、電界印加時に電荷(正孔及び電子)を発生する機能を有すると共に、発生した電荷を電荷発生層と隣接する層に注入させる機能を有する層である。
前記電荷発生層を形成する材料は、上記の機能を有する材料であれば何でもよく、単一化合物で形成されていても、複数の化合物で形成されていてもよい。
具体的には、導電性を有するものであっても、ドープされた有機層のように半導電性を有するものであっても、また、電気絶縁性を有するものであってもよく、特開平11−329748や、特開2003−272860や、特開2004−39617に記載の材料が挙げられる。
更に具体的には、ITO、IZO(インジウム亜鉛酸化物)などの透明導電材料、C60等のフラーレン類、オリゴチオフェン等の導電性有機物、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等などの導電性有機物、Ca、Ag、Al、Mg:Ag合金、Al:Li合金、Mg:Li合金などの金属材料、正孔伝導性材料、電子伝導性材料、及びそれらを混合させたものを用いてもよい。
前記正孔伝導性材料は、例えば2−TNATA、NPDなどの正孔輸送有機材料にF4−TCNQ、TCNQ、FeClなどの電子求引性を有する酸化剤をドープさせたものや、P型導電性高分子、P型半導体などが挙げられ、前記電子伝導性材料は電子輸送有機材料に4.0eV未満の仕事関数を有する金属もしくは金属化合物をドープしたものや、N型導電性高分子、N型半導体が挙げられる。N型半導体としては、N型Si、N型CdS、N型ZnSなどが挙げられ、P型半導体としては、P型Si、P型CdTe、P型CuOなどが挙げられる。
また、前記電荷発生層として、Vなどの電気絶縁性材料を用いることもできる。
前記電荷発生層は、単層でも複数積層させたものでもよい。複数積層させた構造としては、透明伝導材料や金属材料などの導電性を有する材料と正孔伝導性材料、または、電子伝導性材料を積層させた構造、上記の正孔伝導性材料と電子伝導性材料を積層させた構造の層などが挙げられる。
前記電荷発生層は、一般に、可視光の透過率が50%以上になるよう、膜厚・材料を選択することが好ましい。また膜厚は、特に限定されるものではないが、0.5nm〜200nmが好ましく、1nm〜100nmがより好ましく、3nm〜50nmがさらに好ましく、5nm〜30nmが特に好ましい。
電荷発生層の形成方法は、特に限定されるものではなく、前述した有機化合物層の形成方法を用いることができる。
電荷発生層は前記二層以上の発光層間に形成するが、電荷発生層の陽極側および陰極側には、隣接する層に電荷を注入する機能を有する材料を含んでいても良い。陽極側に隣接する層への電子の注入性を上げるため、例えば、BaO、SrO、LiO、LiCl、LiF、MgF、MgO、又はCaFなどの電子注入性化合物を電荷発生層の陽極側に積層させてもよい。
以上で挙げられた内容以外にも、特開2003−45676号公報、米国特許第6337492号、同第6107734号、同第6872472号等に記載を元にして、電荷発生層の材料を選択することができる。
本発明における有機EL素子は、共振器構造を有しても良い。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明または半透明電極、発光層、および金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
別の好ましい態様では、透明基板上に、透明または半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。
第一の態様の場合の計算式は特開平9−180883号明細書に記載されている。第2の態様の場合の計算式は特開2004−127795号明細書に記載されている。
有機ELディスプレイをフルカラータイプのものとする方法としては、例えば「月刊ディスプレイ」、2000年9月号、33頁〜37頁に記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する有機EL素子を基板上に配置する3色発光法、白色発光用の有機EL素子による白色発光をカラーフィルターを通して3原色に分ける白色法、青色発光用の有機EL素子による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。
また、上記方法により得られる異なる発光色の有機EL素子を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色および黄色の発光素子を組み合わせた白色発光光源、青色、緑色、赤色の発光素子を組み合わせた白色発光光源、等である。
4.保護絶縁膜
本発明の有機EL表示装置において、有機EL素子上全体は、保護絶縁膜によって保護されている。保護絶縁膜は、有機EL素子上にTFTを作製する際に、有機EL素子へ与えるダメージを低減する機能と、有機EL素子とTFTとを電気的に絶縁する機能を有する。また、保護絶縁膜は、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであることが更に好ましい。
その具体例としては、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、CaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護絶縁膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、又は転写法を適用できる。
尚、有機EL素子の上部電極と駆動TFTのソースまたはドレイン電極とは、電気的に接続する必要がある為に、保護絶縁膜にはコンタクトホールを作製する必要がある。コンタクトホールを作製する方法としては、エッチング液によるウエットエッチング法、プラズマを用いたドライエッチング法、レーザーによるエッチング法等がある。
(応用)
本発明のTFTは、液晶やEL素子を用いた画像表示装置、特にFPDのスイッチング素子、駆動素子として用いることができる。特に、フレキシブルFPD装置のスイッチング素子、駆動素子として用いるのが適している。さらに本発明の電界効果型薄膜トランジスタを用いた表示装置は、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で幅広い分野で応用される。
また、本発明のTFTは、表示装置以外にも、有機プラスチックフィルムのような可撓性基板上に本発明の電界効果型薄膜トランジスタを形成し、ICカードやIDタグなどに幅広く応用が可能である。
以下に、本発明の薄膜電界効果型トランジスタについて、実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。
実施例1
1.TFT素子の作製
1)本発明のTFT素子の作製
<n−Si基板の作製>
基板およびゲート電極を下記にて作製した。
厚さ0.5mmのN型Si基板((株)ジェムコ製,抵抗率1Ωcm〜3.5Ωcm)を伝導型N型基板として用い、これをそのまま基板兼ゲート電極として用いた。
<ゲート絶縁膜>
次にゲート電極上に、下記のゲート絶縁膜の形成を行った。
ゲート絶縁膜:SiOをRFマグネトロンスパッタ真空蒸着法(条件:ターゲットSiO、成膜温度54℃、スパッタガスAr/O=12/2sccm、RFパワー400W、成膜圧力0.4Pa)にて100nm形成し、ゲート絶縁膜を設けた。ゲート絶縁膜SiOのパターニングには、スパッタ時にシャドウマスクを用いることにより行った。
<活性層>
・活性層1:この上に、InGaZnOの組成を有する多結晶焼結体をターゲットとして、RFマグネトロンスパッタ真空蒸着法により、Ar流量97sccm、O流量1.7sccm、RFパワー200W、全圧0.4Paの条件で行った。
・活性層2:酸化インジウム錫(ITO)をAr流量12sccm、O流量5.0sccm、RFパワー200W、全圧0.4Paの条件で蒸着した。
活性層の厚みは、蒸着時間を調整して表1に示す厚みに調整した。
活性層のパターニングは、スパッタ時にシャドウマスクを用いることにより行った。
<抵抗層>
・抵抗層:この上に、下記作製条件で酸化ガリウム(Ga)もしくはInGaZnOとIGZO/Gaについて共スパッタを行った抵抗層を設けた。
スパッタ条件:酸化ガリウムについては、RFマグネトロンスパッタ法により、Gaの組成をターゲットとして、Ar流量12sccm、O流量5.0sccm、RFパワー400W、全圧0.4Paの条件であった。InGaZnO、もしくは、IGZO/Gaを共スパッタの場合のIGZOについては、InGaZnOの組成をターゲットとして、Ar流量12sccm、O流5.0sccm、RFパワー400W、全圧0.4Paの条件であった。
蒸着厚みは蒸着時間を調整して、表1に示す厚みに調整した。
次いで、上記抵抗層の上にソース電極及びドレイン電極としてアルミニウム(Al)を400nmの厚みに抵抗加熱蒸着(成膜温度:25℃)にて、蒸着した。
ソース電極及びドレイン電極のパターニングをフォトレジスト法により行った。フォトレジスト法は、一般に公知の手段により行った。形成されたチャネル長L=200μm、チャネル幅W=1000μmであった。
2)比較のTFT素子の作製
本発明のTFT素子の作製において、抵抗層を除き、活性層の材料と厚みを表1に示すように調整し、その他は同様にして、比較のTFT素子1〜6を作製した。
また、比較の素子7は、活性層(IGZO層)をソースドレイン電極側に配置し、抵抗層をゲート絶縁膜側に配置した構成とした素子である。
3.性能評価
得られた各TFT素子について、ソース電極を0(ゼロ)Vとして、飽和領域ドレイン電圧Vd=+40V(ゲート電圧(Vg):−20V≦Vg≦+40V)でのTFT伝達特性の測定を行い、TFTの性能を評価した。TFT伝達特性の測定は、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用いて行った。各パラメータと本発明に於けるその定義は下記の通りである。
・TFTの閾値電圧(Vth):Vgを横軸にし、Isd(ソース・ドレイン間電流)の1/2乗を縦軸とするグラフを作製し、直線で外挿して、Isd=0となるVgをVthをTFTの閾値電圧(Vth)としてもとめた(図5参照)。これは飽和領域でのIsd、Vg及びVthとが下記の式1に従うことによるものである。単位は[V]である。
Isd1/2 ∝(Wμ/2L)1/2(Vg−Vth) (式1)
式中、Wはチャネル幅、Lはチャネル長、μは活性層の移動度を表す。
・ON電流(Ion):Vg=+40Vにおけるドレイン電流である。単位は[A]である。
・1回目の動作での閾値電圧(Vth):各TFT素子をVsd(ソース・ドレイン間電圧)=+40V,Vg=−20〜+40Vで駆動したときの、Vthを測定した。単位は[V]である。
・閾値電圧のシフト量(Vthシフト):各TFT素子を連続4回駆動(Vsd(ソース・ドレイン間電圧)=+40V,Vg=−20〜+40V)し、それぞれについてVthを測定し、4回間でのVthの変動量をVthシフトとして求めた。単位は[V]である。
Vthシフトは駆動のヒステレシスの影響の度合いを示すものであり、小さい方が好ましい。
以上の測定結果から得られたTFT特性を表1に示した。
表1の結果より、本発明のTFTはVthシフトが小さく、ヒステレシスが改良される優れた効果を示した。
一方、比較例のTFT素子では、実施例と比較して、Vthシフトが大きく、駆動のヒステレシスが大きく、駆動が不安定である。
実施例2
実施例1における無アルカリガラス基板の代わりに、ポリエチレンナフタレートフィルム(厚み100μm)の両面に下記バリア機能を持つ絶縁層を有するバリア付きフイルムを用いて、その他は実施例1と同様にしてTFT素子を作製した。
絶縁層:SiONを500nmの厚みに蒸着した。SiONの蒸着にはRFマグネトロンスパッタリング蒸着法(スパッタリング条件:ターゲットSi、RFパワー400W、ガス流量Ar/O=12/3sccm、成膜圧力0.45Pa)を用いた。
得られた素子について実施例1と同様に性能を評価した結果、実施例1と同様に閾値のシフト量が小さくなった。
実施例3
1.有機EL表示装置の作製
(有機EL素子部の作製)
1)下部電極の形成
基板にはポリエチレンナフタレートフィルムの両面に下記バリア機能を持つ絶縁層を有するバリア付きフイルムを用いた。前記基板の上に酸化インジウム錫(以後、ITOと略記)を150nmの厚さで蒸着し、陽極とした。
2)有機層の形成
洗浄後、順次、正孔注入層、正孔輸送層、発光層、正孔ブロッキング層、電子輸送層、および電子注入層を設けた。
各層の構成は、下記の通りである。各層はいずれも抵抗加熱真空蒸着により設けた。
正孔注入層:4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATAと略記する)および2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F4−TCNQと略記する)を2−TNATAに対して1質量%含有する層、厚み160nm。
正孔輸送層:N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)、厚み10nm。
発光層:1,3−bis(carbazol−9−yl)benzene(mCPと略記する)および白金錯体Pt−1をmCPに対して13質量%含有する層、厚み60nm。
正孔ブロック層:bis−(2−methyl−8−quinonylphenolate)aluminium(BAlqと略記する)、厚み40nm。
電子輸送層:トリス(8−ヒドロキシキノニナート)アルミニウム(Alq3と略記する)、厚み10nm。
電子注入層:LiF、厚み1nm。
3)上部電極
素子サイズが2mm×2mmとなるようにシャドウマスクによりパターニングしてAlを厚み100nmに蒸着し、陰極とした。
(保護絶縁膜)
上部電極上に、保護絶縁膜として500nmのSiON膜をイオンプレーティング法により成膜した。成膜後、レーザーによりコンタクトホールを形成した。
以下に実施例に用いた化合物の構造を示す。
(駆動試験)
得られた有機EL素子と実施例1で作製したTFTとを組みあわせて等価回路を構成し、種々の条件下で駆動試験を行った。
その結果、本発明のTFTを用いると連続して長時間駆動させても安定した発光が得られた。
本発明のTFT素子構造を示す模式図である。 本発明の別のTFT素子構造を示す模式図である。 従来のTFT素子構造を示す模式図である。 本発明のTFT素子を用いたアクティブマトリクス駆動型有機EL表示装置の等価回路の模式図である。 性能評価におけるTFTの閾値電圧(Vth)の求め方を示すグラフの模式図である。横軸はゲート電圧(Vg)を表し、縦軸はIsd(ソース・ドレイン間電流)の1/2乗(Isd1/2)を表す。
符号の説明
1:基板
2:ゲート電極
3:ゲート絶縁膜
4、14、24:活性層
7、17:抵抗層
5−1:ソース電極
5−2:ドレイン電極
6:絶縁層
7:抵抗層
200:スイッチングTFT
300:有機EL素子
400:信号電極線
500:走査電極線
600:コンデンサ
700:駆動TFT
800:共通電線

Claims (10)

  1. 基板上に、少なくとも、ゲート電極、ゲート絶縁膜、アモルファス酸化物を含む活性層、ソース電極及びドレイン電極を有する薄膜電界効果型トランジスタであって、前記活性層と前記ソース電極又はドレイン電極の少なくとも一方との間に、少なくともアモルファスGa を含み厚みが3nmを超える抵抗層を有し、前記活性層のバンドギャップが前記抵抗層のバンドギャップより小さいことを特徴とする薄膜電界効果型トランジスタ。
  2. 前記活性層が少なくともInを含み、前記活性層のバンドギャップが2.0eV以上4.0eV未満である請求項1に記載の薄膜電界効果型トランジスタ。
  3. 前記抵抗層のバンドギャップが4.0eV以上15.0eV未満である請求項1又は請求項2に記載の薄膜電界効果型トランジスタ。
  4. 前記活性層のバンドギャップと前記抵抗層のバンドギャップの差が0.1eV以上13.0eV未満であることを特徴とする請求項1〜請求項3のいずれか1項に記載の薄膜電界効果型トランジスタ。
  5. 前記活性層のキャリア濃度が、前記抵抗層のキャリア濃度よりも高いことを特徴とする請求項1〜請求項4のいずれか1項に記載の薄膜電界効果型トランジスタ。
  6. 前記抵抗層の膜厚が5nm以上80nm以下であることを特徴とする請求項1〜請求項5のいずれか1項に記載の薄膜電界効果型トランジスタ。
  7. 前記ゲート絶縁膜と、前記ソース電極又はドレイン電極の間は、前記活性層と前記抵抗層の2層からなることを特徴とする請求項1〜請求項のいずれか1項に記載の薄膜電界効果型トランジスタ。
  8. 前記活性層と前記抵抗層がスパッタ法により成膜された層であることを特徴とする請求項1〜請求項のいずれか1項に記載の薄膜電界効果型トランジスタ。
  9. 前記基板がフレキシブル基板であることを特徴とする請求項1〜請求項のいずれか1項に記載の薄膜電界効果型トランジスタ。
  10. 1対の電極と、該電極間に介在する発光層とを有する発光素子と、該発光素子を駆動するための電界効果型トランジスタとを備えた表示装置であって、該電界効果型トランジスタが請求項1〜請求項のいずれか1項に記載の薄膜電界効果型トランジスタであることを特徴とする表示装置。
JP2008076493A 2008-03-24 2008-03-24 薄膜電界効果型トランジスタおよび表示装置 Active JP4555358B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008076493A JP4555358B2 (ja) 2008-03-24 2008-03-24 薄膜電界効果型トランジスタおよび表示装置
US12/397,358 US8188480B2 (en) 2008-03-24 2009-03-04 Thin film field effect transistor and display
KR1020090021204A KR101549704B1 (ko) 2008-03-24 2009-03-12 박막 전계 효과형 트랜지스터 및 표시 장치
AT09003673T ATE526686T1 (de) 2008-03-24 2009-03-13 Dünnschicht-feldeffekttransistor und anzeige
EP09003673A EP2105967B1 (en) 2008-03-24 2009-03-13 Thin film field effect transistor and display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076493A JP4555358B2 (ja) 2008-03-24 2008-03-24 薄膜電界効果型トランジスタおよび表示装置

Publications (2)

Publication Number Publication Date
JP2009231613A JP2009231613A (ja) 2009-10-08
JP4555358B2 true JP4555358B2 (ja) 2010-09-29

Family

ID=40792915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076493A Active JP4555358B2 (ja) 2008-03-24 2008-03-24 薄膜電界効果型トランジスタおよび表示装置

Country Status (5)

Country Link
US (1) US8188480B2 (ja)
EP (1) EP2105967B1 (ja)
JP (1) JP4555358B2 (ja)
KR (1) KR101549704B1 (ja)
AT (1) ATE526686T1 (ja)

Families Citing this family (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609797B2 (ja) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP5148211B2 (ja) * 2007-08-30 2013-02-20 出光興産株式会社 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP5489423B2 (ja) * 2007-09-21 2014-05-14 富士フイルム株式会社 放射線撮像素子
JP5430248B2 (ja) * 2008-06-24 2014-02-26 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
KR100963026B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963027B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
EP2146379B1 (en) * 2008-07-14 2015-01-28 Samsung Electronics Co., Ltd. Transistor comprising ZnO based channel layer
JP2010050165A (ja) * 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd 半導体装置、半導体装置の製造方法、トランジスタ基板、発光装置、および、表示装置
WO2010029866A1 (en) 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI633605B (zh) 2008-10-31 2018-08-21 半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI508304B (zh) 2008-11-28 2015-11-11 Semiconductor Energy Lab 半導體裝置和其製造方法
KR101648927B1 (ko) 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8704216B2 (en) * 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101671210B1 (ko) 2009-03-06 2016-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
EP2256814B1 (en) 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same
WO2011001881A1 (en) 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011013523A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN102473734B (zh) 2009-07-31 2015-08-12 株式会社半导体能源研究所 半导体装置及其制造方法
WO2011013502A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102386147B1 (ko) 2009-07-31 2022-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 디바이스 및 그 형성 방법
CN103489871B (zh) 2009-07-31 2016-03-23 株式会社半导体能源研究所 半导体装置及其制造方法
TWI783356B (zh) 2009-09-10 2022-11-11 日商半導體能源研究所股份有限公司 半導體裝置和顯示裝置
KR101823852B1 (ko) * 2009-09-16 2018-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터 및 표시 장치
KR102321565B1 (ko) 2009-09-24 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
WO2011046010A1 (en) 2009-10-16 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device including the liquid crystal display device
WO2011048945A1 (en) 2009-10-21 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device including the same
KR20190006091A (ko) 2009-10-29 2019-01-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20120102653A (ko) 2009-10-30 2012-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
SG188112A1 (en) 2009-10-30 2013-03-28 Semiconductor Energy Lab Logic circuit and semiconductor device
KR102378013B1 (ko) 2009-11-06 2022-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR101787353B1 (ko) 2009-11-13 2017-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20120106950A (ko) * 2009-11-13 2012-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링 타겟 및 그 제작 방법 및 트랜지스터
WO2011058882A1 (en) 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
JP5762723B2 (ja) 2009-11-20 2015-08-12 株式会社半導体エネルギー研究所 変調回路及びそれを備えた半導体装置
KR102426613B1 (ko) 2009-11-28 2022-07-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
WO2011065216A1 (en) 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR101824124B1 (ko) 2009-11-28 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2011065210A1 (en) 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR20120099475A (ko) 2009-12-04 2012-09-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR102333270B1 (ko) 2009-12-04 2021-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101396102B1 (ko) 2009-12-04 2014-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101945171B1 (ko) 2009-12-08 2019-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011074407A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101900662B1 (ko) 2009-12-18 2018-11-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 그 구동 방법
KR101768433B1 (ko) 2009-12-18 2017-08-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
EP2513893A4 (en) * 2009-12-18 2016-09-07 Semiconductor Energy Lab Liquid crystal display device and electronic device
KR101781336B1 (ko) 2009-12-25 2017-09-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101921619B1 (ko) 2009-12-28 2018-11-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101603246B1 (ko) * 2009-12-31 2016-03-15 엘지디스플레이 주식회사 박막 트랜지스터
KR101701208B1 (ko) 2010-01-15 2017-02-02 삼성디스플레이 주식회사 표시 기판
US8780629B2 (en) 2010-01-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
KR102008754B1 (ko) 2010-01-24 2019-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치와 이의 제조 방법
KR101791713B1 (ko) * 2010-02-05 2017-10-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전계 효과 트랜지스터 및 반도체 장치
KR101399611B1 (ko) 2010-02-05 2014-05-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제조 방법
CN105336744B (zh) 2010-02-12 2018-12-21 株式会社半导体能源研究所 半导体装置及其驱动方法
US8803063B2 (en) * 2010-02-19 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Photodetector circuit
KR101878206B1 (ko) * 2010-03-05 2018-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막의 제작 방법 및 트랜지스터의 제작 방법
WO2011118741A1 (en) 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN105304502B (zh) 2010-03-26 2018-07-03 株式会社半导体能源研究所 半导体装置的制造方法
KR102112065B1 (ko) * 2010-03-26 2020-06-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101391964B1 (ko) * 2010-04-02 2014-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8884282B2 (en) 2010-04-02 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130014562A (ko) 2010-04-02 2013-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9196739B2 (en) 2010-04-02 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film and metal oxide film
US9147768B2 (en) 2010-04-02 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor and a metal oxide film
US9190522B2 (en) 2010-04-02 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor
KR101706081B1 (ko) * 2010-04-06 2017-02-15 삼성디스플레이 주식회사 박막 트랜지스터, 그 제조 방법 및 이를 포함하는 액정 표시 장치
KR101803730B1 (ko) 2010-04-09 2017-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8653514B2 (en) 2010-04-09 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101748404B1 (ko) 2010-04-23 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
WO2011132591A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN102859704B (zh) 2010-04-23 2016-08-03 株式会社半导体能源研究所 半导体装置的制造方法
KR101800844B1 (ko) 2010-04-23 2017-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101877377B1 (ko) 2010-04-23 2018-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101974927B1 (ko) 2010-04-23 2019-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9697788B2 (en) * 2010-04-28 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2011135987A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011142467A1 (en) 2010-05-14 2011-11-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011155295A1 (en) 2010-06-10 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Dc/dc converter, power supply circuit, and semiconductor device
WO2011155302A1 (en) 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9209314B2 (en) * 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
KR101862808B1 (ko) 2010-06-18 2018-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011158704A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101350751B1 (ko) 2010-07-01 2014-01-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치의 구동 방법
WO2012002292A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012002186A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5832181B2 (ja) 2010-08-06 2015-12-16 株式会社半導体エネルギー研究所 液晶表示装置
US9058047B2 (en) 2010-08-26 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5806043B2 (ja) 2010-08-27 2015-11-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5081959B2 (ja) * 2010-08-31 2012-11-28 Jx日鉱日石金属株式会社 酸化物焼結体及び酸化物半導体薄膜
JP5081960B2 (ja) * 2010-08-31 2012-11-28 Jx日鉱日石金属株式会社 酸化物焼結体及び酸化物半導体薄膜
US8558960B2 (en) 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
KR101932576B1 (ko) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8647919B2 (en) 2010-09-13 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device and method for manufacturing the same
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
KR20130106398A (ko) 2010-09-15 2013-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 그 제작 방법
KR101856722B1 (ko) * 2010-09-22 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 파워 절연 게이트형 전계 효과 트랜지스터
US9437743B2 (en) 2010-10-07 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Thin film element, semiconductor device, and method for manufacturing the same
US8936965B2 (en) 2010-11-26 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI525818B (zh) 2010-11-30 2016-03-11 半導體能源研究所股份有限公司 半導體裝置及半導體裝置之製造方法
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
KR101995082B1 (ko) 2010-12-03 2019-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
US8894825B2 (en) 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
US9024317B2 (en) 2010-12-24 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit, method for driving the same, storage device, register circuit, display device, and electronic device
US8921948B2 (en) 2011-01-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8536571B2 (en) 2011-01-12 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
TWI535032B (zh) 2011-01-12 2016-05-21 半導體能源研究所股份有限公司 半導體裝置的製造方法
US8916867B2 (en) 2011-01-20 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
DE112012000601T5 (de) 2011-01-28 2014-01-30 Semiconductor Energy Laboratory Co., Ltd. Verfahren zum Herstellen einer Halbleitervorrichtung sowie Halbleitervorrichtung
US8709922B2 (en) 2011-05-06 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101830170B1 (ko) * 2011-05-17 2018-02-21 삼성디스플레이 주식회사 산화물 반도체 소자, 산화물 반도체 소자의 제조 방법, 산화물 반도체소자를 포함하는 표시 장치 및 산화물 반도체 소자를 포함하는 표시 장치의 제조 방법
US8581625B2 (en) 2011-05-19 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
CN102789808B (zh) 2011-05-20 2018-03-06 株式会社半导体能源研究所 存储器装置和用于驱动存储器装置的方法
KR20130007426A (ko) 2011-06-17 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9166055B2 (en) 2011-06-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102546888B1 (ko) * 2011-06-17 2023-06-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치
JP2021101485A (ja) * 2011-06-17 2021-07-08 株式会社半導体エネルギー研究所 液晶表示装置
US9385238B2 (en) 2011-07-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Transistor using oxide semiconductor
US9214474B2 (en) * 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8952377B2 (en) * 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8748886B2 (en) * 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102108572B1 (ko) 2011-09-26 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
SG11201505088UA (en) 2011-09-29 2015-08-28 Semiconductor Energy Lab Semiconductor device
US20130087784A1 (en) 2011-10-05 2013-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
DE112012004307B4 (de) 2011-10-14 2017-04-13 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
KR20130040706A (ko) 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR20130046357A (ko) 2011-10-27 2013-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6082562B2 (ja) 2011-10-27 2017-02-15 株式会社半導体エネルギー研究所 半導体装置
JP6122275B2 (ja) 2011-11-11 2017-04-26 株式会社半導体エネルギー研究所 表示装置
JP6076038B2 (ja) 2011-11-11 2017-02-08 株式会社半導体エネルギー研究所 表示装置の作製方法
US8829528B2 (en) 2011-11-25 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including groove portion extending beyond pixel electrode
US9236494B2 (en) 2011-12-13 2016-01-12 E Ink Holdings Inc. Field effect transistor
TWI613824B (zh) 2011-12-23 2018-02-01 半導體能源研究所股份有限公司 半導體裝置
JP6033071B2 (ja) 2011-12-23 2016-11-30 株式会社半導体エネルギー研究所 半導体装置
KR102034911B1 (ko) 2012-01-25 2019-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR101254910B1 (ko) * 2012-01-30 2013-04-18 서울대학교산학협력단 박막 트랜지스터
TWI562361B (en) 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US20130221345A1 (en) 2012-02-28 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9553201B2 (en) 2012-04-02 2017-01-24 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel, and manufacturing method of thin film transistor
KR20130111874A (ko) 2012-04-02 2013-10-11 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 박막 트랜지스터 표시판 및 표시 장치, 그리고 박막 트랜지스터의 제조 방법
KR102330543B1 (ko) 2012-04-13 2021-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6143423B2 (ja) 2012-04-16 2017-06-07 株式会社半導体エネルギー研究所 半導体装置の製造方法
US9219164B2 (en) 2012-04-20 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor channel
US9048323B2 (en) 2012-04-30 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN107403840B (zh) 2012-05-10 2021-05-11 株式会社半导体能源研究所 半导体装置
JP6208469B2 (ja) 2012-05-31 2017-10-04 株式会社半導体エネルギー研究所 半導体装置
WO2013179922A1 (en) 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2013180040A1 (en) 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9048265B2 (en) 2012-05-31 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising oxide semiconductor layer
US9153699B2 (en) 2012-06-15 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5972065B2 (ja) * 2012-06-20 2016-08-17 富士フイルム株式会社 薄膜トランジスタの製造方法
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102161077B1 (ko) 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6310194B2 (ja) 2012-07-06 2018-04-11 株式会社半導体エネルギー研究所 半導体装置
JP6134598B2 (ja) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 半導体装置
IN2015DN01663A (ja) 2012-08-03 2015-07-03 Semiconductor Energy Lab
CN104584229B (zh) 2012-08-10 2018-05-15 株式会社半导体能源研究所 半导体装置及其制造方法
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102099261B1 (ko) 2012-08-10 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP6220597B2 (ja) 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
US8981372B2 (en) 2012-09-13 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
TWI746200B (zh) 2012-09-24 2021-11-11 日商半導體能源研究所股份有限公司 半導體裝置
WO2014046222A1 (en) 2012-09-24 2014-03-27 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI681233B (zh) 2012-10-12 2020-01-01 日商半導體能源研究所股份有限公司 液晶顯示裝置、觸控面板及液晶顯示裝置的製造方法
JP6351947B2 (ja) 2012-10-12 2018-07-04 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
KR102227591B1 (ko) 2012-10-17 2021-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6033045B2 (ja) * 2012-10-17 2016-11-30 株式会社半導体エネルギー研究所 半導体装置
JP6283191B2 (ja) 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 半導体装置
KR102102589B1 (ko) 2012-10-17 2020-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 프로그램 가능한 논리 장치
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014061762A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102220279B1 (ko) 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막을 포함하는 다층막 및 반도체 장치의 제작 방법
WO2014065301A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102279459B1 (ko) * 2012-10-24 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP6285150B2 (ja) * 2012-11-16 2018-02-28 株式会社半導体エネルギー研究所 半導体装置
US9246011B2 (en) 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9153649B2 (en) 2012-11-30 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for evaluating semiconductor device
TWI582993B (zh) 2012-11-30 2017-05-11 半導體能源研究所股份有限公司 半導體裝置
JP2014135478A (ja) 2012-12-03 2014-07-24 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
KR102207028B1 (ko) 2012-12-03 2021-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014104267A1 (en) 2012-12-28 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6329762B2 (ja) 2012-12-28 2018-05-23 株式会社半導体エネルギー研究所 半導体装置
US9391096B2 (en) 2013-01-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI618252B (zh) 2013-02-12 2018-03-11 半導體能源研究所股份有限公司 半導體裝置
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9293544B2 (en) 2013-02-26 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having buried channel structure
US9373711B2 (en) 2013-02-27 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102238682B1 (ko) 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법
JP6250883B2 (ja) 2013-03-01 2017-12-20 株式会社半導体エネルギー研究所 半導体装置
KR102153110B1 (ko) 2013-03-06 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체막 및 반도체 장치
TWI620324B (zh) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
TWI631711B (zh) * 2013-05-01 2018-08-01 半導體能源研究所股份有限公司 半導體裝置
KR102222344B1 (ko) 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014181785A1 (en) 2013-05-09 2014-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
DE102014208859B4 (de) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
TWI632688B (zh) 2013-07-25 2018-08-11 半導體能源研究所股份有限公司 半導體裝置以及半導體裝置的製造方法
JP6460592B2 (ja) 2013-07-31 2019-01-30 株式会社半導体エネルギー研究所 Dcdcコンバータ、及び半導体装置
TWI677989B (zh) 2013-09-19 2019-11-21 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9425217B2 (en) 2013-09-23 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6570817B2 (ja) 2013-09-23 2019-09-04 株式会社半導体エネルギー研究所 半導体装置
JP2015084418A (ja) 2013-09-23 2015-04-30 株式会社半導体エネルギー研究所 半導体装置
JP6386323B2 (ja) 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 半導体装置
KR102183763B1 (ko) 2013-10-11 2020-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
DE102013111501B4 (de) 2013-10-18 2024-02-08 Universität Stuttgart Dünnschichttransistor und Verfahren zu seiner Herstellung
TWI685116B (zh) 2014-02-07 2020-02-11 日商半導體能源研究所股份有限公司 半導體裝置
TWI675004B (zh) 2014-02-21 2019-10-21 日商半導體能源研究所股份有限公司 半導體膜、電晶體、半導體裝置、顯示裝置以及電子裝置
KR102172972B1 (ko) 2014-02-26 2020-11-03 삼성디스플레이 주식회사 박막 트랜지스터 및 그의 제조방법
US9337030B2 (en) 2014-03-26 2016-05-10 Intermolecular, Inc. Method to grow in-situ crystalline IGZO using co-sputtering targets
KR20220069118A (ko) 2014-07-15 2022-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
KR20230141954A (ko) 2015-02-12 2023-10-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR20240046304A (ko) 2015-03-03 2024-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 그 제작 방법, 또는 그를 포함하는 표시 장치
US10008609B2 (en) 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US10002970B2 (en) 2015-04-30 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, or display device including the same
WO2016186364A1 (en) * 2015-05-18 2016-11-24 Seoul Viosys Co., Ltd. Light detection device
CN113990756A (zh) 2015-05-22 2022-01-28 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
US9627549B1 (en) * 2015-10-05 2017-04-18 United Microelectronics Corp. Semiconductor transistor device and method for fabricating the same
TWI605587B (zh) 2015-11-02 2017-11-11 聯華電子股份有限公司 半導體元件及其製造方法
US9773787B2 (en) 2015-11-03 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, electronic device, or method for driving the semiconductor device
US10312373B2 (en) * 2015-11-17 2019-06-04 Ricoh Company, Ltd. Field-effect transistor (FET) having oxide insulating layer disposed on gate insulating film and between source and drain electrodes, and display element, display and system including said FET, and method of manufacturing said FET
JP6607013B2 (ja) 2015-12-08 2019-11-20 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
KR102458660B1 (ko) 2016-08-03 2022-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
JPWO2018185587A1 (ja) * 2017-04-03 2020-02-13 株式会社半導体エネルギー研究所 撮像装置および電子機器
JP6782211B2 (ja) * 2017-09-08 2020-11-11 株式会社東芝 透明電極、それを用いた素子、および素子の製造方法
JP2019114751A (ja) * 2017-12-26 2019-07-11 シャープ株式会社 薄膜トランジスタ基板及びそれを備えた液晶表示装置並びに薄膜トランジスタ基板の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124456A (ja) * 1998-10-12 2000-04-28 Shoka Kagi Kofun Yugenkoshi 高エネルギーギャップオフセット層構造を有するtft素子
JP2006165529A (ja) * 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885211A (en) 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
US4996523A (en) 1988-10-20 1991-02-26 Eastman Kodak Company Electroluminescent storage display with improved intensity driver circuits
JP2780880B2 (ja) 1990-11-28 1998-07-30 出光興産株式会社 有機エレクトロルミネッセンス素子および該素子を用いた発光装置
JP3236332B2 (ja) 1991-01-29 2001-12-10 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP2784615B2 (ja) 1991-10-16 1998-08-06 株式会社半導体エネルギー研究所 電気光学表示装置およびその駆動方法
JPH06212153A (ja) 1993-01-14 1994-08-02 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JP3063453B2 (ja) 1993-04-16 2000-07-12 凸版印刷株式会社 有機薄膜el素子の駆動方法
JPH07134558A (ja) 1993-11-08 1995-05-23 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス表示装置
US5550066A (en) 1994-12-14 1996-08-27 Eastman Kodak Company Method of fabricating a TFT-EL pixel
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
JP3528470B2 (ja) 1995-10-27 2004-05-17 株式会社豊田中央研究所 微小光共振器型有機電界発光素子
FR2749977B1 (fr) * 1996-06-14 1998-10-09 Commissariat Energie Atomique Transistor mos a puits quantique et procedes de fabrication de celui-ci
US6337492B1 (en) 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
JPH11111463A (ja) 1997-09-30 1999-04-23 Sumitomo Chem Co Ltd 有機エレクトロルミネッセンス素子
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP3884564B2 (ja) 1998-05-20 2007-02-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP4619546B2 (ja) 1999-03-23 2011-01-26 ザ ユニバーシティー オブ サザン カリフォルニア 有機ledの燐光性ドーパントとしてのシクロメタル化金属錯体
JP4408477B2 (ja) 1999-04-01 2010-02-03 大日本印刷株式会社 El素子
JP4420486B2 (ja) 1999-04-30 2010-02-24 出光興産株式会社 有機エレクトロルミネッセンス素子およびその製造方法
KR100934420B1 (ko) 1999-05-13 2009-12-29 더 트러스티즈 오브 프린스턴 유니버시티 전계인광에 기초한 고 효율의 유기 발광장치
US6310360B1 (en) 1999-07-21 2001-10-30 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
JP4729154B2 (ja) 1999-09-29 2011-07-20 淳二 城戸 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
US6458475B1 (en) 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
AU1807201A (en) 1999-12-01 2001-06-12 Trustees Of Princeton University, The Complexes of form L2MX as phosphorescent dopants for organic leds
JP4407776B2 (ja) 1999-12-02 2010-02-03 淳二 城戸 電界発光素子
JP3929690B2 (ja) 1999-12-27 2007-06-13 富士フイルム株式会社 オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP3929706B2 (ja) 2000-02-10 2007-06-13 富士フイルム株式会社 イリジウム錯体からなる発光素子材料及び発光素子
JP2001298470A (ja) 2000-04-11 2001-10-26 Dx Antenna Co Ltd データ伝送システム
JP4144192B2 (ja) 2000-05-29 2008-09-03 三菱化学株式会社 有機電界発光素子の製造方法
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP4340401B2 (ja) 2000-07-17 2009-10-07 富士フイルム株式会社 発光素子及びイリジウム錯体
CN100505375C (zh) 2000-08-11 2009-06-24 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP4505162B2 (ja) 2000-09-21 2010-07-21 富士フイルム株式会社 発光素子および新規レニウム錯体
JP4067286B2 (ja) 2000-09-21 2008-03-26 富士フイルム株式会社 発光素子及びイリジウム錯体
JP4086498B2 (ja) 2000-11-29 2008-05-14 キヤノン株式会社 金属配位化合物、発光素子及び表示装置
JP4086499B2 (ja) 2000-11-29 2008-05-14 キヤノン株式会社 金属配位化合物、発光素子及び表示装置
EP1348711B1 (en) 2000-11-30 2018-06-13 Canon Kabushiki Kaisha Luminescent element and display
JP4154145B2 (ja) 2000-12-01 2008-09-24 キヤノン株式会社 金属配位化合物、発光素子及び表示装置
FR2818439B1 (fr) * 2000-12-18 2003-09-26 Commissariat Energie Atomique Procede de fabrication d'un ilot de matiere confine entre des electrodes, et applications aux transistors
JP2002203678A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP2002203679A (ja) 2000-12-27 2002-07-19 Fuji Photo Film Co Ltd 発光素子
JP3812730B2 (ja) 2001-02-01 2006-08-23 富士写真フイルム株式会社 遷移金属錯体及び発光素子
JP3988915B2 (ja) 2001-02-09 2007-10-10 富士フイルム株式会社 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
JP3972588B2 (ja) 2001-02-26 2007-09-05 淳二 城戸 有機電界発光素子
JP4611578B2 (ja) 2001-07-26 2011-01-12 淳二 城戸 有機エレクトロルミネッセント素子
JP2003123982A (ja) 2001-08-07 2003-04-25 Fuji Photo Film Co Ltd 発光素子及び新規イリジウム錯体
JP4584506B2 (ja) 2001-08-28 2010-11-24 パナソニック電工株式会社 有機電界発光素子
EP1443130B1 (en) * 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP3835263B2 (ja) 2001-11-22 2006-10-18 株式会社豊田自動織機 有機エレクトロルミネッセンスディスプレイパネルの電子受容性ドーパント層の形成方法及び有機エレクトロルミネッセンスディスプレイパネルの製造方法
JP3742054B2 (ja) 2001-11-30 2006-02-01 株式会社半導体エネルギー研究所 表示装置
JP2003217862A (ja) 2002-01-18 2003-07-31 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP3703028B2 (ja) 2002-10-04 2005-10-05 ソニー株式会社 表示素子およびこれを用いた表示装置
JP4524093B2 (ja) 2002-12-17 2010-08-11 富士フイルム株式会社 有機電界発光素子
JP4365196B2 (ja) 2002-12-27 2009-11-18 富士フイルム株式会社 有機電界発光素子
JP4365199B2 (ja) 2002-12-27 2009-11-18 富士フイルム株式会社 有機電界発光素子
JP4945057B2 (ja) 2002-12-27 2012-06-06 富士フイルム株式会社 有機電界発光素子
JP2004327313A (ja) 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 有機電界発光素子
US6936961B2 (en) 2003-05-13 2005-08-30 Eastman Kodak Company Cascaded organic electroluminescent device having connecting units with N-type and P-type organic layers
JP2004357791A (ja) 2003-06-02 2004-12-24 Sea Shell:Kk 履物
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10339772B4 (de) 2003-08-27 2006-07-13 Novaled Gmbh Licht emittierendes Bauelement und Verfahren zu seiner Herstellung
JP4243237B2 (ja) 2003-11-10 2009-03-25 淳二 城戸 有機素子、有機el素子、有機太陽電池、及び、有機fet構造、並びに、有機素子の製造方法
JP5137292B2 (ja) 2003-12-26 2013-02-06 株式会社半導体エネルギー研究所 発光素子、発光装置および電気器具
JP2006121029A (ja) 2004-09-27 2006-05-11 Tokyo Institute Of Technology 固体電子装置
CN101057333B (zh) 2004-11-10 2011-11-16 佳能株式会社 发光器件
JP4399429B2 (ja) 2005-03-16 2010-01-13 富士フイルム株式会社 有機電界発光素子
JP4399382B2 (ja) 2005-03-16 2010-01-13 富士フイルム株式会社 有機電界発光素子
JP5046548B2 (ja) 2005-04-25 2012-10-10 富士フイルム株式会社 有機電界発光素子
JP2007073704A (ja) 2005-09-06 2007-03-22 Canon Inc 半導体薄膜
JP4981283B2 (ja) 2005-09-06 2012-07-18 キヤノン株式会社 アモルファス酸化物層を用いた薄膜トランジスタ
JP2007084635A (ja) 2005-09-21 2007-04-05 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007123702A (ja) 2005-10-31 2007-05-17 Toppan Printing Co Ltd 薄膜トランジスタとその製造方法
KR101117948B1 (ko) * 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
US8129714B2 (en) * 2007-02-16 2012-03-06 Idemitsu Kosan Co., Ltd. Semiconductor, semiconductor device, complementary transistor circuit device
JP4727684B2 (ja) * 2007-03-27 2011-07-20 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124456A (ja) * 1998-10-12 2000-04-28 Shoka Kagi Kofun Yugenkoshi 高エネルギーギャップオフセット層構造を有するtft素子
JP2006165529A (ja) * 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ

Also Published As

Publication number Publication date
KR20090101828A (ko) 2009-09-29
EP2105967A1 (en) 2009-09-30
US20090236596A1 (en) 2009-09-24
EP2105967B1 (en) 2011-09-28
KR101549704B1 (ko) 2015-09-02
JP2009231613A (ja) 2009-10-08
ATE526686T1 (de) 2011-10-15
US8188480B2 (en) 2012-05-29

Similar Documents

Publication Publication Date Title
JP4555358B2 (ja) 薄膜電界効果型トランジスタおよび表示装置
JP5430248B2 (ja) 薄膜電界効果型トランジスタおよび表示装置
JP5489445B2 (ja) 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP5489446B2 (ja) 薄膜電界効果型トランジスタおよびそれを用いた表示装置
KR101495371B1 (ko) 유기 전계발광 표시 장치
JP5330739B2 (ja) 有機el表示装置およびその製造方法
JP2009031750A (ja) 有機el表示装置およびその製造方法
US20090001881A1 (en) Organic el display and manufacturing method thereof
US20090001360A1 (en) Organic el display and method for producing the same
JP2010182449A (ja) 有機el表示装置
JP2009016579A (ja) 有機電界発光素子および製造方法
JP5489410B2 (ja) 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP5191247B2 (ja) 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP2010015092A (ja) 表示装置及びその製造方法
JP2010277956A (ja) 有機電界発光表示装置
CN101652864A (zh) 有机电致发光显示设备
JP2011054747A (ja) 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100125

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250