JP5489446B2 - 薄膜電界効果型トランジスタおよびそれを用いた表示装置 - Google Patents
薄膜電界効果型トランジスタおよびそれを用いた表示装置 Download PDFInfo
- Publication number
- JP5489446B2 JP5489446B2 JP2008289855A JP2008289855A JP5489446B2 JP 5489446 B2 JP5489446 B2 JP 5489446B2 JP 2008289855 A JP2008289855 A JP 2008289855A JP 2008289855 A JP2008289855 A JP 2008289855A JP 5489446 B2 JP5489446 B2 JP 5489446B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- active layer
- less
- organic
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
- H10D30/6756—Amorphous oxide semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/50—Physical imperfections
Landscapes
- Thin Film Transistor (AREA)
Description
これらFPDは、ガラス基板上に設けた非晶質シリコン薄膜や多結晶シリコン薄膜を活性層に用いる薄膜電界効果型トランジスタ(以後の説明で、Thin Film Field Effect Transistor、もしくはTFTと記載する場合がある)のアクティブマトリクス回路により駆動される。
しかし、上述のシリコン薄膜を用いるトランジスタの製造は、比較的高温の熱工程を要し、一般的に耐熱性の低い樹脂基板上に直接形成することは困難である。
この問題を改良する手段として、アモルファス酸化物半導体のキャリア濃度を低減すること、例えば、1018/cm3未満にするとTFTは動作し、1016/cm3未満で良好なON/OFF比を持つTFTが得られること、また、良好な低いオフ電流特性を持たせるには、キャリア濃度を1016/cm3未満にすることが好ましいことが開示されている(例えば、特許文献1,2参照)。
<1> 基板上に、少なくとも、ゲート電極、ゲート絶縁膜、アモルファス酸化物半導体を含有する活性層、ソース電極及びドレイン電極を有する薄膜電界効果型トランジスタであって、前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが2nm未満であり、前記活性層のキャリア濃度が1×1015/cm3以上であり、かつ前記活性層の膜厚が0.5nm以上20nm未満であり、前記活性層の前記ゲート絶縁膜に面する側とは反対側に前記活性層と接してキャリア濃度が10 16 /cm 3 以下の低キャリア濃度層を積層したことを特徴とする薄膜電界効果型トランジスタ。
<2> 前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが1nm未満であり、かつ前記活性層の膜厚が0.5nm以上10nm未満であることを特徴とする<1>に記載の薄膜電界効果型トランジスタ。
<3> 前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが0.5nm未満であり、かつ前記活性層の膜厚が0.5nm以上5nm未満であることを特徴とする<1>又は<2>に記載の薄膜電界効果型トランジスタ。
<4> 前記活性層が、In、Ga,Zn及びSnの少なくとも一つを含むことを特徴とする<1>〜<3>のいずれか1項に記載の薄膜電界効果型トランジスタ。
<5> 前記活性層が、In及びZnを含むことを特徴とする<1>〜<4>のいずれか1項に記載の薄膜電界効果型トランジスタ。
<6> 前記低キャリア濃度層がアモルファス酸化物半導体層であることを特徴とする<1>〜<5>のいずれか1項に記載の薄膜電界効果型トランジスタ。
<7> 前記ゲート絶縁膜がSi、Hf、Y、およびGeより選ばれる少なくとも1つの元素を含有するアモルファス酸化物を含有することを特徴とする<1>〜<6>のいずれか1項に記載の薄膜電界効果型トランジスタ。
<8> 前記基板が可撓性樹脂基板であることを特徴とする<1>〜<7>のいずれか1項に記載の薄膜電界効果トランジスタ。
<9> <1>〜<8>のいずれか1項に記載の薄膜電界効果トランジスタを用いた表示装置。
しかしながら、これを例えば表示装置の駆動回路に用いる場合、移動度、ON/OFF比の観点から駆動回路を動作するには性能がまだ不十分であった。活性層に用いられるアモルファス酸化物半導体は、キャリア濃度が下がると電子移動度が下がる傾向があるので、良好なOFF特性と、高移動度を両立するTFTを形成することが困難であった。
本発明者らは、鋭意、開発探索を進めた結果、前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが2nm未満であり、前記活性層のキャリア濃度が1×1015/cm3以上であり、かつ前記活性層の膜厚を0.5nm以上20nm未満の薄層にすることにより、全く予想外に課題が解決し得ることを見出した。さらに、前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが1nm未満であり、キャリア濃度が1×1017/cm3以上で、前記活性層の膜厚が0.5nm以上10nm未満の薄層にすることにより、さらに環境温度依存性が改良されることが見出された。特に、前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが0.5nm未満であり、前記活性層のキャリア濃度が1×1019/cm3以上で、前記活性層の膜厚が0.5nm以上5nm未満の薄層にすることがさらに好ましく、さらに連続して長時間駆動した場合のOFF電流の変動やTFTの閾値電圧の変動が改良されることが見出された。
本発明のTFTは、少なくとも、ゲート電極、ゲート絶縁膜、活性層、ソース電極及びドレイン電極を順次有し、ゲート電極に電圧を印加して、活性層に流れる電流を制御し、ソース電極とドレイン電極間の電流をスイッチングする機能を有するアクテイブ素子である。TFT構造として、スタガ構造及び逆スタガ構造いずれをも形成することができる。
好ましくは、活性層のアモルファス酸化物半導体が、In、Ga,Zn及びSnより成る群より選ばれる少なくとも一つを含有する。より好ましくは、In及びZnを含有する。
このように、本願における低キャリア濃度層は、活性層と近似した材料系であるため、スパッタで成膜する際に活性層に損傷を与え難い。従来のSiO2を保護膜としてスパッタにより成膜する場合、活性層が損傷を生じやすい問題を有していた。
また、本願における低キャリア濃度層は、活性層に比べてキャリア濃度が桁違いに低く、絶縁性が高いので、活性層の高キャリア濃度を安定に維持し得るので、活性層の効果を阻害せず、安定に保持できる。
更に、本願における低キャリア濃度層は、環境(水分、酸素)から活性層を保護する保護膜としても機能する。低キャリア濃度層は、活性層に比べて膜厚を厚くでき、また、酸化膜であるので、活性層への水分や酸素の拡散を抑制し、活性層のキャリア濃度の経時変化を防止することができる。
また、好ましくは、本発明における基板が可撓性樹脂基板である。
本発明のTFTについてさらに詳細に説明する。
本発明に用いられる活性層には、アモルファス酸化物半導体が用いられる。アモルファス酸化物半導体は、低温で成膜可能である為に、プラスティックのような可撓性のある樹脂基板に作製が可能である。低温で作製可能なアモルファス酸化物半導体としては、Inを含む酸化物、InとZnを含む酸化物、In、Ga及びZnを含有する酸化物であり、組成構造としては、InGaO3(ZnO)m(mは6未満の自然数)が好ましいことが知られている。これらは、キャリアが電子のn型半導体である。もちろん、ZnO・Rh2O3、CuGaO2、SrCu2O2のようなp型酸化物半導体を活性層に用いても良い。特開2006−165529号公報に開示されている酸化物半導体を用いることもできる。
本発明においては、In、Ga,Zn及びSnの少なくとも一つを含有するアモルファス酸化物半導体が好ましい。より好ましくは、In及びZnを含有するアモルファス酸化物半導体である。
本発明における活性層のキャリア濃度は、種々の手段により所望の数値に調整することができる。
(1)酸素欠陥による調整
酸化物半導体において、酸素欠陥ができると、活性層のキャリア濃度が増加し、電気伝導度が大きくなることが知られている。よって、酸素欠陥量を調整することにより、酸化物半導体のキャリア濃度を制御することが可能である。酸素欠陥量を制御する具体的な方法としては、成膜中の酸素分圧、成膜後の後処理時の酸素濃度と処理時間等がある。ここでいう後処理とは、具体的に100℃以上の熱処理、酸素プラズマ、UVオゾン処理がある。これらの方法の中でも、生産性の観点から成膜中の酸素分圧を制御する方法が好ましい。成膜中の酸素分圧を調整することにより、酸化物半導体のキャリア濃度の制御ができる。
(2)組成比による調整
酸化物半導体の金属組成比を変えることにより、キャリア濃度が変化することが知られている。例えば、InGaZn1−XMgXO4において、Mgの比率が増えていくと、キャリア濃度が小さくなる。また、(In2O3)1−X(ZnO)Xの酸化物系において、Zn/In比が10%以上では、Zn比率が増加するにつれ、キャリア濃度が小さくなる。これら組成比を変える具体的な方法としては、例えば、スパッタによる成膜方法においては、組成比が異なるターゲットを用いる。または、多元のターゲットにより、共スパッタし、そのスパッタレートを個別に調整することにより、膜の組成比を変えることが可能である。
(3)不純物による調整
酸化物半導体に、Li,Na,Mn,Ni,Pd,Cu,Cd,C,N,P等の元素を不純物として添加することによりキャリア濃度を減少させることが可能である。不純物を添加する方法としては、酸化物半導体と不純物元素とを共蒸着により行う、成膜された酸化物半導体膜に不純物元素のイオンをイオンドープ法によりドープする方法等がある。
(4)酸化物半導体材料による調整
上記(1)〜(3)においては、同一酸化物半導体系でのキャリア濃度の調整方法を述べたが、もちろん酸化物半導体材料を変えることにより、キャリア濃度を変えることができる。例えば、一般的にSnO2系酸化物半導体は、In2O3系酸化物半導体に比べてキャリア濃度が小さいことが知られている。このように酸化物半導体材料を変えることにより、キャリア濃度の調整が可能である。
キャリア濃度を調整する手段としては、上記(1)〜(4)の方法を単独に用いても良いし、組み合わせても良い。
活性層の成膜方法としては、酸化物半導体の多結晶焼結体をターゲットとして、気相成膜法を用いるのが良い。気相成膜法の中でも、スパッタリング法、パルスレーザー蒸着法(PLD法)が適している。さらに、量産性の観点から、スパッタリング法が好ましい。
本発明に於ける活性層は極めて薄層であり、このような薄層領域で優れたTFT性能を発揮するには、該活性層と活性層が設置される隣接層との界面の均一性が重要である。例えば、ボトムゲート型TFTの場合、通常ゲート絶縁膜上に活性層が設置されるが、該ゲート絶縁膜と該活性層の界面が平滑であることが必要である。具体的にはその平滑度は、界面の平均二乗粗さが2nm未満である。好ましくは1nm未満であり、より好ましくは0.5nm未満ある。そのためには、該ゲート絶縁膜および該活性層の成膜速度をそれぞれの膜成分のスパッタ速度や蒸着速度を制御し、均一に膜形成する条件を見出して実行するのが好ましい。
本発明に於ける活性層の厚みは、0.5nm以上20nm未満と薄層である。好ましくは0.5nm以上10nm未満、より好ましくは0.5nm以上5nm未満である。
本発明に於ける活性層の膜厚は、作製した素子断面のHRTEM(High Resolution TEM)写真撮影により測定することができる。
本発明に於いては、前記活性層の前記ゲート絶縁膜に面する側とは反対側に前記活性層と接してキャリア濃度が1016/cm3以下で、前記活性層より低いキャリア濃度を有する低キャリア濃度層を積層した活性層の重層構成とする。
低キャリア濃度層に用いられる半導体材料も好ましくはアモルファス酸化物である。
低キャリア濃度層のキャリア濃度は、好ましくは、1015/cm3以下であり、さらに好ましくは1014/cm3以下である。
また、低キャリア濃度層をソース・ドレイン電極と活性層の間に設けるトップコンタクト型(図3)の態様の場合、低キャリア濃度層の電気伝導度に対する活性層の電気伝導度の比率(活性層の電気伝導度/低キャリア濃度層の電気伝導度)が、好ましくは101以上1010以下であり、より好ましくは、102以上108以下である。
低キャリア濃度層に用いられる半導体材料は、前述の活性層の材料について説明した材料より選択して用いることができる。キャリア濃度も前述の活性層におけるキャリア濃度の制御手段について説明したと同様の手段により調整することができる。
本発明におけるゲート電極としては、例えば、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。
ゲート電極の厚みは、10nm以上1000nm以下とすることが好ましい。
ゲート絶縁膜としては、Si、Hf、Y、およびGeよりなる群より選ばれる少なくとも1つの元素を含有するアモルファス酸化物が好ましく用いられる。具体的には、SiO2、SiNx、SiON、Al2O3、Y2O3、Ta2O5、HfO2等の絶縁体、又はそれらの化合物を少なくとも二つ以上含む混晶化合物が用いられる。また、ポリイミドのような高分子絶縁体もゲート絶縁膜として用いることができる。
本願においては、ゲート絶縁膜と活性層との界面の粗さは、平均二乗粗さで2nm未満である。好ましくは平均二乗粗さが1nm未満、さらに好ましくは0.5nm未満である。
−ゲート絶縁膜と活性層の界面の粗さの測定方法−
本発明におけるゲート絶縁膜と活性層との界面の平均二乗粗さの測定は、作製したTFT素子断面を高解像力透過型電子顕微鏡(HRTEM)で撮影し、得られた写真より以下の手順により算出される。
チャネル領域における1000nmの領域を選び、ゲート絶縁膜と活性層の境界線を分解能0.1nm以下でトレースし、境界線データを作製する。得られた境界線データから20nm以下の低周波成分を除外したトレンド除去データを作製する。該トレンド除去データの平均二乗誤差を求め、これをゲート絶縁膜と活性層との界面の平均二乗粗さ(Ra)とした。
ゲート絶縁膜と活性層との界面の平均二乗粗さ(Ra)は、ゲート絶縁膜の調製条件と活性層の調製条件によって変動する。また、ゲート絶縁膜と活性層との界面の平均二乗粗さ(Ra)は、ゲート絶縁膜の下地となるゲート電極の表面の平滑性や、さらにゲート電極の下地となる絶縁性基板の表面の平滑性に大きく影響を受ける。特に可撓性基板の場合、プラスチックフィルムの表面はガラス基板に比較して平滑性が低下するので、その上に設置するゲート電極やゲート絶縁膜がプラスチックフィルムが有する表面凹凸を埋め平滑性を高めるようにその成膜条件を調整することが好ましい。
ゲート絶縁膜の作製に際しては、得られるゲート絶縁膜の表面が均一で平滑な面状を形成するようにゲート絶縁膜の材料の選択とともに、膜構成成分のスパッタ速度、温度、蒸着速度が制御される。さらに、活性層の調製条件についても、ゲート絶縁膜の表面を粗さないように活性層の成膜速度を膜構成成分のスパッタ速度や蒸着速度を制御し、均一に膜形成する条件を見出して実行するのが好ましい。
平滑性の点ではガラス基板が好ましいが、中でも溶融フローテイング法で作製されたガラスや表面研磨されたガラスが平滑性に優れる。さらに、基板表面にアクリル樹脂などの平滑化層を積層することも好ましい。
本発明におけるソース電極及びドレイン電極材料として、例えば、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。
ソース電極及びドレイン電極の厚みは、10nm以上1000nm以下とすることが好ましい。
本発明に用いられる基板は特に限定されることはなく、例えばYSZ(ジルコニア安定化イットリウム)、ガラス等の無機材料、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリエチレンナフタレ−ト等のポリエステル、ポリスチレン、ポリカ−ボネ−ト、ポリエ−テルスルホン、ポリアリレ−ト、アリルジグリコ−ルカ−ボネ−ト、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の合成樹脂等の有機材料、などが挙げられる。前記有機材料の場合、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、低吸湿性等に優れていることが好ましい。
次に、図面を用いて、詳細に本発明におけるTFTの構造を説明する。
図1は、逆スタガ構造のTFTの一例を示す模式図である。基板1がプラスチックフィルムなどの可撓性基板の場合、基板1の少なくとも一方の面に絶縁層6を配し、その上にゲート電極2、ゲート絶縁膜3、活性層4を積層して有し、その表面にソース電極5−1とドレイン電極5−2が設置される。
図2は、別の態様のTFTの一例を示す模式図である。基板がプラスチックフィルムなどの可撓性基板の場合、基板1の少なくとも一方の面に絶縁層6を配し、その上にゲート電極2、ゲート絶縁膜3を積層し、その表面にソース電極5−1とドレイン電極5−2が設置され、さらに活性層42が積層される。
図3は、本発明の態様のTFTの一例を示す模式図である。基板がプラスチックフィルムなどの可撓性基板の場合、基板の少なくとも一方の面に絶縁層を配し、その上にゲート電極、ゲート絶縁膜、活性層40、および低キャリア濃度層7を積層して有し、その表面にソース電極とドレイン電極が設置される。ゲート電極に電圧が印加されていない状態での活性層40の電気伝導度が低キャリア濃度層7の電気伝導度より大きくなるように、活性層40及び低キャリア濃度層7の組成が決定される。
図4は、本発明の別の態様のTFTの一例を示す模式図である。基板がプラスチックフィルムなどの可撓性基板の場合、基板1の少なくとも一方の面に絶縁層6を配し、その上にゲート電極2、ゲート絶縁膜3を積層し、その表面にソース電極5−1とドレイン電極5−2が設置され、さらに活性層44が積層され、さらに低キャリア濃度層72が積層して設置される。
図2、図3の構造によれば、薄層である活性層の上に直接、ソース電極またはドレイン電極が積層されないので、ソース電極、ドレイン電極を積層する際に受ける活性層のダメージを防ぐことができる。
図4の構造によれば、活性層44が環境(水分、酸素)から保護されるので、ソース電極、ドレイン電極形成後に有機EL素子部を積層する場合にも、プロセスのダメージを受けにくくなる。
本発明の電界効果型薄膜トランジスタは、液晶やEL素子を用いた画像表示装置、特に平面薄型表示装置(Flat Panel Display:FPD)に好ましく用いられる。より好ましくは、基板に有機プラスチックフィルムのような可撓性基板を用いたフレキシブル表示装置に用いられる。特に、本発明の電界効果型薄膜トランジスタは、移動度が高いことから有機EL素子を用いた表示装置、フレキシブル有機EL表示装置に最も好ましく用いられる。
本発明に用いられる有機EL表示装置は、基板上に少なくとも下部電極、少なくとも発光層を含む有機層、及び上部電極を順次有する有機EL素子、および前記上部電極上に少なくともゲート電極、ゲート絶縁膜、酸化物半導体を含有する活性層、ソース電極、及びドレイン電極を有し前記有機EL素子を駆動するTFTを有する。TFTが有機EL素子の背面に配置されているので、有機EL素子の発光を取り出す開口部を大きく取ることができる。好ましくは、TFTと有機EL素子の間に保護絶縁膜を有し、前記有機EL素子の上部電極とTFTの前記ソース電極または前記ドレイン電極とが前記保護絶縁膜に形成されたコンタクトホールを介して電気的に接続されている。好ましくは、前記下部電極が光透過性電極であり、前記上部電極が光反射性電極である。
本発明の発光素子は基板上に陰極と陽極を有し、両電極の間に有機発光層(以下、単に「発光層」と称する場合がある。)を含む有機化合物層を有する。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。
尚、各層は複数の二次層に分かれていてもよい。
本発明で使用する基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。陽極は、通常透明陽極として設けられる。
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
本発明における有機化合物層について説明する。
本発明の有機EL素子は、発光層を含む少なくとも一層の有機化合物層を有しており、発光層以外の他の有機化合物層としては、前述したごとく、正孔輸送層、電子輸送層、電荷ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
有機発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、発光材料のみで構成されていても良く、ホスト材料と発光性ドーパントの混合層とした構成でも良い。発光性ドーパントは蛍光発光材料でも燐光発光材料であっても良く、2種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は1種であっても2種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。さらに、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
前記燐光性の発光性ドーパントとしては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
例えば、該遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、金、銀、銅、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
前記蛍光性の発光性ドーパントとしては、一般には、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリデン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、またはペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、およびこれらの誘導体などを挙げることができる。
本発明に用いられるホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
本発明に用いられる正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及び、それらの誘導体等が挙げられる。
好ましくは、インドール誘導体、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体であり、より好ましくは、分子内にカルバゾール基を有するものが好ましい。特に、t−ブチル置換カルバゾール基を有する化合物が好ましい。
本発明に用いられる発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、4−ビフェニルオキシなどが挙げられる。)、
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。これらの層に用いる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。
具体的には、ピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、等を含有する層であることが好ましい。
正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
具体的には、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。
この他にも、特開平6−212153号公報、特開2000−196140号公報、特開2003−68468号公報、特開2003−229278号公報、特開2004−342614号公報等に記載の材料を用いることが出来る。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機化合物層として、電子ブロック層を設けることができる。電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
電子ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
電子ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、MgO、SiO、SiO2、Al2O3、GeO、NiO、CaO、BaO、Fe2O3、Y2O3、TiO2等の金属酸化物、SiNx、SiNxOy等の金属窒化物、MgF2、LiF、AlF3、CaF2等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、およびシリコーンオイル類が挙げられる。
(樹脂封止層)
本発明の機能素子は、樹脂封止層により大気との接触により、酸素や水分による素子性能の劣化を抑制することが好ましい。
<素材>
樹脂封止層の樹脂素材としては、特に限定されることはなく、アクリル樹脂、エポキシ樹脂、フッ素系樹脂、シリコン系樹脂、ゴム系樹脂、またはエステル系樹脂等を用いることができるが、中でも水分防止機能の点からエポキシ樹脂が好ましい。エポキシ樹脂の中でも熱硬化型エポキシ樹脂、または光硬化型エポキシ樹脂が好ましい。
<作製方法>
樹脂封止層の作製方法は特に限定されることはなく、例えば、樹脂溶液を塗布する方法、樹脂シートを圧着または熱圧着する方法、蒸着やスパッタリング等により乾式重合する方法が挙げられる。
<膜厚み>
樹脂封止層の厚みは1μm以上、1mm以下が好ましい。更に好ましくは5μm以上、100μm以下であり、最も好ましくは10μm以上50μm以下である。1μm未満では、第2の基板を装着時に上記無機膜を損傷する恐れがある。また、1mmを越えると、電界発光素子自体の厚みが厚くなり、有機電界発光素子の特徴である薄膜性を損なうことになる。
本発明に用いられる封止接着剤は、端部よりの水分や酸素の侵入を防止する機能を有する。
<素材>
前記封止接着剤の材料としては、前記樹脂封止層で用いる材料と同じものを用いることができる。中でも、水分防止の点からエポキシ系の接着剤が好ましく、中でも光硬化型接着剤あるいは熱硬化型接着剤が好ましい。
封止剤に添加されているフィラーとしては、SiO2、SiO(酸化ケイ素)、SiON(酸窒化ケイ素)またはSiN(窒化ケイ素)等の無機材料が好ましい。フィラーの添加により、封止剤の粘度が上昇し、加工適正が向上し、および耐湿性が向上する。
封止接着剤は乾燥剤を含有しても良い。乾燥剤としては、酸化バリウム、酸化カルシウム、または酸化ストロンチウムが好ましい。
封止接着剤に対する乾燥剤の添加量は、0.01質量%以上20質量%以下であることが好ましく、更に好ましくは0.05質量%以上15質量%以下である。0.01質量%未満では、乾燥剤の添加効果が薄れることになる。また、20質量%を越えると、封止接着剤中に乾燥剤を均一分散させることが困難になり好ましくない。
<封止接着剤の処方>
・ポリマー組成、濃度、
封止接着剤としては特に限定されることはなく、前記のものを用いることができる。例えば光硬化型エポキシ系接着剤としては長瀬ケムテック(株)製のXNR5516を挙げることができる。そこに直接前記乾燥剤を添加し、分散せしめれば良い。
・厚み
封止接着剤の塗布厚みは1μm以上1mm以下であることが好ましい。1μm未満では、封止接着剤を均一に塗れなくなり好ましくない。また、1mmを越えると、水分が侵入する道筋が広くなり好ましくない。
<封止方法>
本発明においては、上記乾燥剤の入った封止接着剤をディスペンサー等により任意量塗布し、塗布後第2基板を重ねて、硬化させることにより機能素子を得ることができる。
本発明における有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明における有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
前記電荷発生層は、電界印加時に電荷(正孔及び電子)を発生する機能を有すると共に、発生した電荷を電荷発生層と隣接する層に注入させる機能を有する層である。
具体的には、導電性を有するものであっても、ドープされた有機層のように半導電性を有するものであっても、また、電気絶縁性を有するものであってもよく、特開平11−329748号公報や、特開2003−272860号公報や、特開2004−39617号公報に記載の材料が挙げられる。
更に具体的には、ITO、IZO(インジウム亜鉛酸化物)などの透明導電材料、C60等のフラーレン類、オリゴチオフェン等の導電性有機物、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等などの導電性有機物、Ca、Ag、Al、Mg:Ag合金、Al:Li合金、Mg:Li合金などの金属材料、正孔伝導性材料、電子伝導性材料、及びそれらを混合させたものを用いてもよい。
前記正孔伝導性材料は、例えば2−TNATA、NPDなどの正孔輸送有機材料にF4−TCNQ、TCNQ、FeCl3などの電子求引性を有する酸化剤をドープさせたものや、P型導電性高分子、P型半導体などが挙げられ、前記電子伝導性材料は電子輸送有機材料に4.0eV未満の仕事関数を有する金属もしくは金属化合物をドープしたものや、N型導電性高分子、N型半導体が挙げられる。N型半導体としては、N型Si、N型CdS、N型ZnSなどが挙げられ、P型半導体としては、P型Si、P型CdTe、P型CuOなどが挙げられる。
また、前記電荷発生層として、V2O5などの電気絶縁性材料を用いることもできる。
電荷発生層の形成方法は、特に限定されるものではなく、前述した有機化合物層の形成方法を用いることができる。
以上で挙げられた内容以外にも、特開2003−45676号公報、米国特許第6337492号公報、同第6107734号公報、同第6872472号公報等に記載を元にして、電荷発生層の材料を選択することができる。
別の好ましい態様では、透明基板上に、透明または半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。第一の態様の場合の計算式は特開平9−180883号公報に記載されている。第2の態様の場合の計算式は特開2004−127795号公報に記載されている。
また、上記方法により得られる異なる発光色の有機EL素子を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色および黄色の発光素子を組み合わせた白色発光光源、青色、緑色、赤色の発光素子を組み合わせた白色発光光源、等である。
本発明の有機EL表示装置において、有機EL素子上全体は、保護絶縁膜によって保護されている。保護絶縁膜は、有機EL素子上にTFTを作製する際に、有機EL素子へ与えるダメージを低減する機能と、有機EL素子とTFTとを電気的に絶縁する機能を有する。また、保護絶縁膜は、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであることが更に好ましい。
図5は、本発明に用いられるTFT素子を用いたアクティブマトリクス型有機EL表示装置の画素回路の模式図である。図5で、有機EL素子300、駆動TFT100、スイッチTFT200、コンデンサー600が、走査電線500,信号電線400,共通電線700で結線されている。本発明における表示装置の回路は、特に図5に示すものに限定されるものではなく、従来公知の回路をそのまま応用することができる。
本発明のTFTは、液晶やEL素子を用いた画像表示装置、特にFPDのスイッチング素子、駆動素子として用いることができる。特に、フレキシブルFPD装置のスイッチング素子、駆動素子として用いるのが適している。さらに本発明の電界効果型薄膜トランジスタを用いた表示装置は、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で幅広い分野で応用される。
また、本発明のTFTは、表示装置以外にも、有機プラスチックフィルムのような可撓性基板上に本発明の電界効果型薄膜トランジスタを形成し、ICカードやIDタグなどに幅広く応用が可能である。
1.活性層の作製
(キャリア濃度の異なるIGZO半導体膜の作製)
<条件1>
InGaZnO4の組成を有する多結晶焼結体をターゲットとして、RFマグネトロンスパッタ真空蒸着法により、Ar流量96sccm、O2流量1.7sccm、RFパワー200W、全圧0.4Paの条件で行った。
<条件2>
In2O3:ZnO10質量%の組成を有する焼結体(出光興産(株)製)をターゲットとして、RFマグネトロンスパッタ真空蒸着法により、Ar流量96sccm、O2流量5.0sccm、RFパワー200W、全圧0.4Paの条件で行った。
<条件3>
上記条件2と同様に、但しO2流量を3.0sccmに変更して行った。
物性測定用サンプルのキャリア濃度の測定には、ResiTest8300型(東陽テクニカ社製)を用いてホール効果測定を行うことにより求めた。ホール効果測定は20℃の環境下で行った。尚、ホール効果測定を行うことにより、キャリア濃度だけではなく、キャリアのホール移動度も求めることができる。物性測定用サンプルの膜厚測定には、触針式表面形状測定機DekTak−6M(ULVAC社製)を用いた。
物性測定用サンプルの組成比は、RBS(ラザフォード後方散乱)分析により求めた。
上記のアモルファス半導体材料を用いて、本発明のTFT素子および比較のTFT素子を作製した。これらのTFT素子の断面構成は図1の逆スタガ構造とした。
但し、基板として、無アルカリガラス基板(コーニング社、品番No.1737)を用いた。
<ゲート電極>
ZnO含有率が10質量%である酸化インジウム亜鉛(IZO、出光興産(株)製)タ−ゲットを用いて、RFマグネトロンスパッタ(条件:成膜温度43℃、スパッタガスAr=96sccm、RFパワー200W、成膜圧力0.4Pa)により、ゲート電極としてのIZO薄膜(厚み200nm)を形成した。ゲート電極IZOのパターニングには、スパッタ時にシャドウマスクを用いることにより行った。
次にゲート電極上に、下記のゲート絶縁膜の形成を行った。
《条件4》
SiO2をRFマグネトロンスパッタ真空蒸着法(条件:ターゲットSiO2、成膜温度54℃、スパッタガスAr/O2=12/2sccm、RFパワー400W、成膜圧力0.4Pa)にて200nm形成し、ゲート絶縁膜を設けた。ゲート絶縁膜SiO2のパターニングには、スパッタ時にシャドウマスクを用いることにより行った。
《条件5》
Y2O3:GeO2を条件4と同様に、但しターゲットをY2O3:GeO2(10質量%)に変更して行った。
《条件6》
Y2O3:GeO2を条件4と同様に、但しターゲットをY2O3:GeO2(3質量%)に変更して行った。
《条件7》
Y2O3を条件4と同様に、但しターゲットをY2O3に変更して行った。
この上に、上記の活性層作製条件のいずれかを用いて活性層を設けた。スパッタリング時間を調整して蒸着厚みを調整した。用いた条件及び蒸着厚みを表2に示した。活性層のパターニングは、スパッタ時にシャドウマスクを用いることにより行った。
活性層の膜厚は素子作製後、素子断面の透過型電子顕微鏡(TEM)による写真撮影を行い、得られた写真より算出した。
作製したTFT素子断面を透過型電子顕微鏡(TEM)で撮影し、得られた写真より以下の手順によりゲート絶縁膜と活性層との界面の平均二乗粗さを算出した。
チャネル領域における1000nmの領域を選び、ゲート絶縁膜と活性層の境界線を分解能0.1nm以下でトレース界面ラインデータを作製する。得られた界面ラインデータから20nm以下の低周波成分を除外したトレンド除去データを作製する。該トレンド除去データの平均二乗誤差を求め、これをゲート絶縁膜と活性層との界面の平均二乗粗さ(Ra)とした。
作製された各TFT素子には保護膜を付けず、室温で暗所に3ヶ月間保存してから性能評価を行った。
各TFT素子について、飽和領域ドレイン電圧Vd=10V(ゲート電圧−10V≦Vg≦15V)でのTFT伝達特性の測定を行い、TFTの性能を評価した。TFT伝達特性の測定は、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用いて行った。各パラメータと本発明に於けるその定義は下記の通りである。
・TFTの閾値電圧(Vth):電流値が50nAとなるときのゲート電圧である。
・OFF電流(Ioff):閾値電圧より5V低いゲート電圧におけるドレイン電流値である。単位は[A]である。
・ON電流(Ion):閾値電圧より5V高いゲート電圧におけるドレイン電流である。単位は[A]である。
・閾値電圧のシフト量(Vthシフト2):さらに上記TFT伝達特性の測定間に、各TFT素子に電気ストレスとして、ゲート電圧Vg=10V、ドレイン電圧Vd=0V(ドレイン電流=0A)を1000秒加え、その前後のTFT閾値電圧の変動量(Vthシフト2)である。単位は[V]である。
Vthシフト1およびVthシフト2は駆動のヒステレシスの影響の度合いを示すものであり、小さい方が好ましい。
表2の結果より、前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが2nm未満であり、前記活性層のキャリア濃度が1×1015/cm3以上であり、かつ前記活性層の膜厚が0.5nm以上20nm未満である参考例1〜20は、Vthシフト1(ヒステレシス)が小さく、Ioffが低く、かつON電流も大きく、有機EL表示素子の駆動に適した優れた性能を示した。
一方、ゲート絶縁膜と活性層の界面の平均二乗粗さ(Ra)が本願より大きい比較例8〜11では、Vthシフト1(ヒステレシス)が大きいか、あるいはIoffが大きいか、あるいはON電流が低く、有機EL表示素子の駆動用トランジスタとして適していなかった。
特に活性層の厚みが本願より厚い比較例1、3、6、8では、ヒステレシスが大きく、有機EL表示素子の駆動用トランジスタとして適していなかった。
また、活性層の厚みが0.3nm条件(表2には示していない)ではIonが検出されず、トランジスタとして動作しなかった。
また、ゲート絶縁膜と活性層の界面の平均二乗粗さ(Ra)が、1nm以下で、キャリア濃度が1×1017cm−3以上である参考例6〜9、15,16は、膜厚が10nm未満の場合にも、ON電流を大きくすることができ、ヒステレシスも良好で、かつIoffの悪化も少なかった。
特に、ゲート絶縁膜と活性層の界面の平均二乗粗さ(Ra)が、0.5nm以下で、キャリア濃度が1×1019cm−3以上ある参考例9は、膜厚が3nm未満の場合にも、ON電流を大きくすることができ、かつ、Vthシフト2がさらに有効であり、総合的に最も優れた性能を示した。
参考例1における無アルカリガラス基板の代わりに、ポリエチレンナフタレートフィルム(厚み100μm)の両面に下記バリア機能を持つ絶縁層を有するバリア付きフイルムを用いて、その他は参考例1と同様にしてTFT素子を作製した。
1.有機EL表示装置の作製
(有機EL素子部の作製)
1)下部電極の形成
基板にはポリエチレンナフタレートフィルムの両面に下記バリア機能を持つ絶縁層を有するバリア付きフイルムを用いた。
洗浄後、順次、正孔注入層、正孔輸送層、発光層、正孔ブロッキング層、電子輸送層、および電子注入層を設けた。
正孔注入層:4,4’,4’’−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATAと略記する)および2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F4−TCNQと略記する)を2−TNATAに対して1質量%含有する層、厚み160nm。
正孔輸送層:N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)、厚み10nm。
発光層:1,3−bis(carbazol−9−yl)benzene(mCPと略記する)および白金錯体Pt−1をmCPに対して13質量%含有する層、厚み60nm。
正孔ブロック層:aluminium (III) bis−(2−methyl−8−quinonylnato)−4−phenylphenolate (BAlqと略記する)、厚み40nm。
電子輸送層:トリス(8−ヒドロキシキノニナート)アルミニウム(Alq3と略記する)、厚み10nm。
電子注入層:LiF、厚み1nm。
素子サイズが2mm×2mmとなるようにシャドウマスクによりパターニングしてAlを厚み100nmに蒸着し、陰極とした。
上部電極上に、保護絶縁膜として500nmのSiON膜をイオンプレーティング法により成膜した。成膜後、レーザーによりコンタクトホールを形成した。
得られた有機EL素子と参考例1で作製したTFTとを組みあわせて等価回路を構成し、種々の条件下で駆動試験を行った。
その結果、本発明のTFTを用いると高温度での駆動、および連続して長時間駆動させても安定した発光が得られた。
2:ゲート電極
3:ゲート絶縁膜
4,42,44:活性層
7,72:低キャリア濃度層
5−1:ソース電極
5−2:ドレイン電極
6:絶縁層
100:駆動TFT
200:スイッチングTFT
300:有機EL素子
400:信号電極線
500:走査電極線
600:コンデンサ
700:共通電線
Claims (9)
- 基板上に、少なくとも、ゲート電極、ゲート絶縁膜、アモルファス酸化物半導体を含有する活性層、ソース電極及びドレイン電極を有する薄膜電界効果型トランジスタであって、前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが2nm未満であり、前記活性層のキャリア濃度が1×1015/cm3以上であり、かつ前記活性層の膜厚が0.5nm以上20nm未満であり、前記活性層の前記ゲート絶縁膜に面する側とは反対側に前記活性層と接してキャリア濃度が10 16 /cm 3 以下の低キャリア濃度層を積層したことを特徴とする薄膜電界効果型トランジスタ。
- 前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが1nm未満であり、かつ前記活性層の膜厚が0.5nm以上10nm未満であることを特徴とする請求項1に記載の薄膜電界効果型トランジスタ。
- 前記ゲート絶縁膜と前記活性層の界面の平均二乗粗さが0.5nm未満であり、かつ前記活性層の膜厚が0.5nm以上5nm未満であることを特徴とする請求項1又は請求項2に記載の薄膜電界効果型トランジスタ。
- 前記活性層が、In、Ga,Zn及びSnの少なくとも一つを含むことを特徴とする請求項1〜請求項3のいずれか1項に記載の薄膜電界効果型トランジスタ。
- 前記活性層が、In及びZnを含むことを特徴とする請求項1〜請求項4のいずれか1項に記載の薄膜電界効果型トランジスタ。
- 前記低キャリア濃度層がアモルファス酸化物半導体層であることを特徴とする請求項1〜請求項5のいずれか1項に記載の薄膜電界効果型トランジスタ。
- 前記ゲート絶縁膜がSi、Hf、Y、およびGeより選ばれる少なくとも1つの元素を含有するアモルファス酸化物を含有することを特徴とする請求項1〜請求項6のいずれか1項に記載の薄膜電界効果型トランジスタ。
- 前記基板が可撓性樹脂基板であることを特徴とする請求項1〜請求項7のいずれか1項に記載の薄膜電界効果トランジスタ。
- 請求項1〜請求項8のいずれか1項に記載の薄膜電界効果トランジスタを用いた表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008289855A JP5489446B2 (ja) | 2007-11-15 | 2008-11-12 | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007296392 | 2007-11-15 | ||
JP2007296392 | 2007-11-15 | ||
JP2008289855A JP5489446B2 (ja) | 2007-11-15 | 2008-11-12 | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009141342A JP2009141342A (ja) | 2009-06-25 |
JP5489446B2 true JP5489446B2 (ja) | 2014-05-14 |
Family
ID=40407949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008289855A Active JP5489446B2 (ja) | 2007-11-15 | 2008-11-12 | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8319214B2 (ja) |
EP (1) | EP2061087B1 (ja) |
JP (1) | JP5489446B2 (ja) |
KR (1) | KR101421304B1 (ja) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100998527B1 (ko) * | 2004-11-10 | 2010-12-07 | 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 | 비정질 산화물 및 전계 효과 트랜지스터 |
EP2256814B1 (en) | 2009-05-29 | 2019-01-16 | Semiconductor Energy Laboratory Co, Ltd. | Oxide semiconductor device and method for manufacturing the same |
JP2011029238A (ja) * | 2009-07-21 | 2011-02-10 | Fujifilm Corp | 結晶性ホモロガス化合物層を含む積層体の製造方法及び電界効果型トランジスタ |
KR101904811B1 (ko) | 2009-07-24 | 2018-10-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR101291434B1 (ko) | 2009-07-31 | 2013-08-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 디바이스 및 그 형성 방법 |
WO2011013523A1 (en) * | 2009-07-31 | 2011-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN105810753A (zh) | 2009-09-04 | 2016-07-27 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
KR101056229B1 (ko) | 2009-10-12 | 2011-08-11 | 삼성모바일디스플레이주식회사 | 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를 구비하는 유기전계발광 표시 장치 |
CN107731931B (zh) | 2009-10-21 | 2021-03-23 | 株式会社半导体能源研究所 | 显示装置和包括显示装置的电子设备 |
KR20230173750A (ko) * | 2009-11-13 | 2023-12-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 및 이 표시 장치를 구비한 전자 기기 |
WO2011074407A1 (en) | 2009-12-18 | 2011-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
KR102197397B1 (ko) | 2009-12-18 | 2020-12-31 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 액정 표시 장치 및 전자 기기 |
KR102479269B1 (ko) | 2010-01-20 | 2022-12-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치 및 휴대 전화기 |
KR101838130B1 (ko) * | 2010-02-12 | 2018-03-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작방법 |
KR20180020327A (ko) | 2010-03-08 | 2018-02-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치를 제작하는 방법 |
WO2011111507A1 (en) * | 2010-03-12 | 2011-09-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
WO2011118741A1 (en) | 2010-03-26 | 2011-09-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP5496745B2 (ja) | 2010-03-31 | 2014-05-21 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタおよびその製造方法 |
JP5577796B2 (ja) * | 2010-03-31 | 2014-08-27 | 凸版印刷株式会社 | 薄膜トランジスタ及びその製造方法 |
JP5604938B2 (ja) * | 2010-03-31 | 2014-10-15 | 凸版印刷株式会社 | 薄膜トランジスタ及びその製造方法 |
TWI438868B (zh) | 2010-07-30 | 2014-05-21 | Au Optronics Corp | 互補金氧半電晶體及其製作方法 |
KR101920709B1 (ko) * | 2010-07-30 | 2018-11-22 | 삼성전자주식회사 | 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자 |
TWI562285B (en) * | 2010-08-06 | 2016-12-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device and method for manufacturing the same |
US8748224B2 (en) * | 2010-08-16 | 2014-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
US8634228B2 (en) | 2010-09-02 | 2014-01-21 | Semiconductor Energy Laboratory Co., Ltd. | Driving method of semiconductor device |
US8546892B2 (en) | 2010-10-20 | 2013-10-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing semiconductor device |
US8894825B2 (en) | 2010-12-17 | 2014-11-25 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target, method for manufacturing the same, manufacturing semiconductor device |
EP2660870A4 (en) * | 2010-12-27 | 2014-03-05 | Panasonic Corp | FIELD EFFECT TRANSISTOR AND MANUFACTURING METHOD THEREFOR |
US8987728B2 (en) * | 2011-03-25 | 2015-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing semiconductor device |
CN105931967B (zh) * | 2011-04-27 | 2019-05-03 | 株式会社半导体能源研究所 | 半导体装置的制造方法 |
US8952377B2 (en) | 2011-07-08 | 2015-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
WO2013021632A1 (ja) * | 2011-08-11 | 2013-02-14 | 出光興産株式会社 | 薄膜トランジスタ |
CN102956711B (zh) | 2011-08-18 | 2016-10-19 | 元太科技工业股份有限公司 | 金属氧化物半导体晶体管的制造方法 |
KR101308809B1 (ko) * | 2012-01-20 | 2013-09-13 | 경희대학교 산학협력단 | 산화물 반도체 박막 트랜지스터 제조방법 및 이를 이용한 능동구동 디스플레이 장치, 능동구동 센서장치 |
KR101254910B1 (ko) * | 2012-01-30 | 2013-04-18 | 서울대학교산학협력단 | 박막 트랜지스터 |
WO2013154195A1 (en) | 2012-04-13 | 2013-10-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP5722293B2 (ja) * | 2012-10-19 | 2015-05-20 | 株式会社神戸製鋼所 | 薄膜トランジスタ |
US10304859B2 (en) | 2013-04-12 | 2019-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having an oxide film on an oxide semiconductor film |
US9337030B2 (en) | 2014-03-26 | 2016-05-10 | Intermolecular, Inc. | Method to grow in-situ crystalline IGZO using co-sputtering targets |
CN105810749B (zh) * | 2014-12-31 | 2018-12-21 | 清华大学 | N型薄膜晶体管 |
WO2018190811A1 (en) * | 2017-04-11 | 2018-10-18 | Intel Corporation | Transistors with temperature compensating gate structures |
WO2019066912A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | SELF-ALIGNED CONTACTS FOR THIN FILM TRANSISTORS |
WO2022076592A1 (en) * | 2020-10-08 | 2022-04-14 | Amorphyx, Incorporated | Low roughness thin-film transistors |
CN119698042A (zh) * | 2023-09-20 | 2025-03-25 | 云谷(固安)科技有限公司 | 薄膜晶体管及其制备方法、显示面板 |
CN118465026B (zh) * | 2024-07-12 | 2024-09-17 | 宁波大学 | 一种检测水体中铝离子的现场电化学传感器及其制备方法 |
Family Cites Families (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4885211A (en) | 1987-02-11 | 1989-12-05 | Eastman Kodak Company | Electroluminescent device with improved cathode |
US4996523A (en) | 1988-10-20 | 1991-02-26 | Eastman Kodak Company | Electroluminescent storage display with improved intensity driver circuits |
JP2780880B2 (ja) | 1990-11-28 | 1998-07-30 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子および該素子を用いた発光装置 |
JP3236332B2 (ja) | 1991-01-29 | 2001-12-10 | パイオニア株式会社 | 有機エレクトロルミネッセンス素子 |
JP2784615B2 (ja) | 1991-10-16 | 1998-08-06 | 株式会社半導体エネルギー研究所 | 電気光学表示装置およびその駆動方法 |
JPH06212153A (ja) | 1993-01-14 | 1994-08-02 | Toyo Ink Mfg Co Ltd | 有機エレクトロルミネッセンス素子 |
JP3063453B2 (ja) | 1993-04-16 | 2000-07-12 | 凸版印刷株式会社 | 有機薄膜el素子の駆動方法 |
JPH07134558A (ja) | 1993-11-08 | 1995-05-23 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス表示装置 |
US5550066A (en) | 1994-12-14 | 1996-08-27 | Eastman Kodak Company | Method of fabricating a TFT-EL pixel |
US6137467A (en) | 1995-01-03 | 2000-10-24 | Xerox Corporation | Optically sensitive electric paper |
JP3528470B2 (ja) | 1995-10-27 | 2004-05-17 | 株式会社豊田中央研究所 | 微小光共振器型有機電界発光素子 |
US6337492B1 (en) | 1997-07-11 | 2002-01-08 | Emagin Corporation | Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer |
JPH11111463A (ja) | 1997-09-30 | 1999-04-23 | Sumitomo Chem Co Ltd | 有機エレクトロルミネッセンス素子 |
US6303238B1 (en) | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
JPH11251067A (ja) | 1998-03-02 | 1999-09-17 | Junji Kido | 有機エレクトロルミネッセント素子 |
JP3884564B2 (ja) | 1998-05-20 | 2007-02-21 | 出光興産株式会社 | 有機el発光素子およびそれを用いた発光装置 |
US6097147A (en) | 1998-09-14 | 2000-08-01 | The Trustees Of Princeton University | Structure for high efficiency electroluminescent device |
JP2000196140A (ja) | 1998-12-28 | 2000-07-14 | Sharp Corp | 有機エレクトロルミネッセンス素子とその製造法 |
KR101166264B1 (ko) | 1999-03-23 | 2012-07-17 | 유니버시티 오브 서던 캘리포니아 | 유기 엘이디의 인광성 도펀트로서의 사이클로메탈화 금속복합체 |
JP4408477B2 (ja) | 1999-04-01 | 2010-02-03 | 大日本印刷株式会社 | El素子 |
JP4420486B2 (ja) | 1999-04-30 | 2010-02-24 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子およびその製造方法 |
CN101312235B (zh) | 1999-05-13 | 2010-06-09 | 普林斯顿大学理事会 | 基于电致磷光的极高效有机发光器件 |
US6310360B1 (en) | 1999-07-21 | 2001-10-30 | The Trustees Of Princeton University | Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices |
JP4729154B2 (ja) | 1999-09-29 | 2011-07-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法 |
US6458475B1 (en) | 1999-11-24 | 2002-10-01 | The Trustee Of Princeton University | Organic light emitting diode having a blue phosphorescent molecule as an emitter |
AU1807201A (en) | 1999-12-01 | 2001-06-12 | Trustees Of Princeton University, The | Complexes of form L2MX as phosphorescent dopants for organic leds |
JP4407776B2 (ja) | 1999-12-02 | 2010-02-03 | 淳二 城戸 | 電界発光素子 |
JP3929690B2 (ja) | 1999-12-27 | 2007-06-13 | 富士フイルム株式会社 | オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体 |
JP3929706B2 (ja) | 2000-02-10 | 2007-06-13 | 富士フイルム株式会社 | イリジウム錯体からなる発光素子材料及び発光素子 |
JP2001298470A (ja) | 2000-04-11 | 2001-10-26 | Dx Antenna Co Ltd | データ伝送システム |
JP4144192B2 (ja) | 2000-05-29 | 2008-09-03 | 三菱化学株式会社 | 有機電界発光素子の製造方法 |
US20020121638A1 (en) | 2000-06-30 | 2002-09-05 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
JP4340401B2 (ja) | 2000-07-17 | 2009-10-07 | 富士フイルム株式会社 | 発光素子及びイリジウム錯体 |
WO2002015645A1 (en) | 2000-08-11 | 2002-02-21 | The Trustees Of Princeton University | Organometallic compounds and emission-shifting organic electrophosphorescence |
JP4067286B2 (ja) | 2000-09-21 | 2008-03-26 | 富士フイルム株式会社 | 発光素子及びイリジウム錯体 |
JP4505162B2 (ja) | 2000-09-21 | 2010-07-21 | 富士フイルム株式会社 | 発光素子および新規レニウム錯体 |
JP4086499B2 (ja) | 2000-11-29 | 2008-05-14 | キヤノン株式会社 | 金属配位化合物、発光素子及び表示装置 |
JP4086498B2 (ja) | 2000-11-29 | 2008-05-14 | キヤノン株式会社 | 金属配位化合物、発光素子及び表示装置 |
WO2002044189A1 (en) | 2000-11-30 | 2002-06-06 | Canon Kabushiki Kaisha | Luminescent element and display |
JP4154145B2 (ja) | 2000-12-01 | 2008-09-24 | キヤノン株式会社 | 金属配位化合物、発光素子及び表示装置 |
JP2002203679A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP2002203678A (ja) | 2000-12-27 | 2002-07-19 | Fuji Photo Film Co Ltd | 発光素子 |
JP3812730B2 (ja) | 2001-02-01 | 2006-08-23 | 富士写真フイルム株式会社 | 遷移金属錯体及び発光素子 |
JP3988915B2 (ja) | 2001-02-09 | 2007-10-10 | 富士フイルム株式会社 | 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子 |
JP3972588B2 (ja) | 2001-02-26 | 2007-09-05 | 淳二 城戸 | 有機電界発光素子 |
JP4611578B2 (ja) | 2001-07-26 | 2011-01-12 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
JP2003123982A (ja) | 2001-08-07 | 2003-04-25 | Fuji Photo Film Co Ltd | 発光素子及び新規イリジウム錯体 |
JP4584506B2 (ja) | 2001-08-28 | 2010-11-24 | パナソニック電工株式会社 | 有機電界発光素子 |
JP3835263B2 (ja) | 2001-11-22 | 2006-10-18 | 株式会社豊田自動織機 | 有機エレクトロルミネッセンスディスプレイパネルの電子受容性ドーパント層の形成方法及び有機エレクトロルミネッセンスディスプレイパネルの製造方法 |
JP3742054B2 (ja) | 2001-11-30 | 2006-02-01 | 株式会社半導体エネルギー研究所 | 表示装置 |
JP2003217862A (ja) | 2002-01-18 | 2003-07-31 | Honda Motor Co Ltd | 有機エレクトロルミネッセンス素子 |
US6872472B2 (en) | 2002-02-15 | 2005-03-29 | Eastman Kodak Company | Providing an organic electroluminescent device having stacked electroluminescent units |
JP3933591B2 (ja) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
JP3913756B2 (ja) * | 2002-05-22 | 2007-05-09 | 雅司 川崎 | 半導体装置およびそれを用いる表示装置 |
JP3703028B2 (ja) | 2002-10-04 | 2005-10-05 | ソニー株式会社 | 表示素子およびこれを用いた表示装置 |
JP4524093B2 (ja) | 2002-12-17 | 2010-08-11 | 富士フイルム株式会社 | 有機電界発光素子 |
JP4365199B2 (ja) | 2002-12-27 | 2009-11-18 | 富士フイルム株式会社 | 有機電界発光素子 |
JP4945057B2 (ja) | 2002-12-27 | 2012-06-06 | 富士フイルム株式会社 | 有機電界発光素子 |
JP4365196B2 (ja) | 2002-12-27 | 2009-11-18 | 富士フイルム株式会社 | 有機電界発光素子 |
JP2004327313A (ja) | 2003-04-25 | 2004-11-18 | Fuji Photo Film Co Ltd | 有機電界発光素子 |
US6936961B2 (en) | 2003-05-13 | 2005-08-30 | Eastman Kodak Company | Cascaded organic electroluminescent device having connecting units with N-type and P-type organic layers |
JP2004357791A (ja) | 2003-06-02 | 2004-12-24 | Sea Shell:Kk | 履物 |
DE10338550A1 (de) | 2003-08-19 | 2005-03-31 | Basf Ag | Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs) |
DE10339772B4 (de) | 2003-08-27 | 2006-07-13 | Novaled Gmbh | Licht emittierendes Bauelement und Verfahren zu seiner Herstellung |
JP4243237B2 (ja) | 2003-11-10 | 2009-03-25 | 淳二 城戸 | 有機素子、有機el素子、有機太陽電池、及び、有機fet構造、並びに、有機素子の製造方法 |
JP5137292B2 (ja) | 2003-12-26 | 2013-02-06 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置および電気器具 |
JP2005223048A (ja) * | 2004-02-04 | 2005-08-18 | Ricoh Co Ltd | 半導体装置、半導体装置の製造方法、および表示装置 |
KR20070116888A (ko) | 2004-03-12 | 2007-12-11 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | 아몰퍼스 산화물 및 박막 트랜지스터 |
US7297977B2 (en) * | 2004-03-12 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
JP2006121029A (ja) | 2004-09-27 | 2006-05-11 | Tokyo Institute Of Technology | 固体電子装置 |
JP5138163B2 (ja) | 2004-11-10 | 2013-02-06 | キヤノン株式会社 | 電界効果型トランジスタ |
KR100998527B1 (ko) | 2004-11-10 | 2010-12-07 | 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 | 비정질 산화물 및 전계 효과 트랜지스터 |
US7872259B2 (en) | 2004-11-10 | 2011-01-18 | Canon Kabushiki Kaisha | Light-emitting device |
US7705268B2 (en) * | 2004-11-11 | 2010-04-27 | Gsi Group Corporation | Method and system for laser soft marking |
KR100613294B1 (ko) | 2004-12-30 | 2006-08-21 | 동부일렉트로닉스 주식회사 | 단채널 효과가 개선되는 모스 전계효과 트랜지스터 및 그제조 방법 |
JP4399429B2 (ja) | 2005-03-16 | 2010-01-13 | 富士フイルム株式会社 | 有機電界発光素子 |
JP4399382B2 (ja) | 2005-03-16 | 2010-01-13 | 富士フイルム株式会社 | 有機電界発光素子 |
JP5046548B2 (ja) | 2005-04-25 | 2012-10-10 | 富士フイルム株式会社 | 有機電界発光素子 |
US7402506B2 (en) | 2005-06-16 | 2008-07-22 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
JP4981283B2 (ja) * | 2005-09-06 | 2012-07-18 | キヤノン株式会社 | アモルファス酸化物層を用いた薄膜トランジスタ |
JP5006598B2 (ja) * | 2005-09-16 | 2012-08-22 | キヤノン株式会社 | 電界効果型トランジスタ |
JP2007084635A (ja) | 2005-09-21 | 2007-04-05 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
CN101309864B (zh) * | 2005-11-18 | 2012-06-27 | 出光兴产株式会社 | 半导体薄膜及其制造方法以及薄膜晶体管 |
US7576394B2 (en) * | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
JP2007250987A (ja) * | 2006-03-17 | 2007-09-27 | Tokyo Institute Of Technology | 固体電子装置およびその作製方法 |
JP5110803B2 (ja) * | 2006-03-17 | 2012-12-26 | キヤノン株式会社 | 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法 |
JP5489445B2 (ja) * | 2007-11-15 | 2014-05-14 | 富士フイルム株式会社 | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 |
-
2008
- 2008-11-12 US US12/292,070 patent/US8319214B2/en active Active
- 2008-11-12 JP JP2008289855A patent/JP5489446B2/ja active Active
- 2008-11-13 KR KR1020080112963A patent/KR101421304B1/ko active Active
- 2008-11-14 EP EP08019923.5A patent/EP2061087B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US8319214B2 (en) | 2012-11-27 |
EP2061087B1 (en) | 2015-09-23 |
KR20090050971A (ko) | 2009-05-20 |
US20090127551A1 (en) | 2009-05-21 |
EP2061087A2 (en) | 2009-05-20 |
EP2061087A3 (en) | 2009-06-17 |
JP2009141342A (ja) | 2009-06-25 |
KR101421304B1 (ko) | 2014-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5489446B2 (ja) | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 | |
JP5489445B2 (ja) | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 | |
JP5430248B2 (ja) | 薄膜電界効果型トランジスタおよび表示装置 | |
JP4555358B2 (ja) | 薄膜電界効果型トランジスタおよび表示装置 | |
KR101495371B1 (ko) | 유기 전계발광 표시 장치 | |
JP2009031750A (ja) | 有機el表示装置およびその製造方法 | |
JP5330739B2 (ja) | 有機el表示装置およびその製造方法 | |
US20090001881A1 (en) | Organic el display and manufacturing method thereof | |
JP4833106B2 (ja) | 有機発光素子 | |
US20090001360A1 (en) | Organic el display and method for producing the same | |
JP2010182449A (ja) | 有機el表示装置 | |
JP2008276212A (ja) | 有機電界発光表示装置 | |
JP5489410B2 (ja) | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 | |
JP2010015092A (ja) | 表示装置及びその製造方法 | |
JP5191247B2 (ja) | 薄膜電界効果型トランジスタおよびそれを用いた表示装置 | |
JP2011054747A (ja) | 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130618 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130813 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5489446 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |