ES2660749T3 - Un procedimiento para producir un anticuerpo que comprende una región variable humana y una región constante de roedor - Google Patents
Un procedimiento para producir un anticuerpo que comprende una región variable humana y una región constante de roedor Download PDFInfo
- Publication number
- ES2660749T3 ES2660749T3 ES14172437.7T ES14172437T ES2660749T3 ES 2660749 T3 ES2660749 T3 ES 2660749T3 ES 14172437 T ES14172437 T ES 14172437T ES 2660749 T3 ES2660749 T3 ES 2660749T3
- Authority
- ES
- Spain
- Prior art keywords
- locus
- human
- rodent
- antibody
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 241000283984 Rodentia Species 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 252
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims abstract description 19
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims abstract description 19
- 230000007503 antigenic stimulation Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 139
- 210000004027 cell Anatomy 0.000 claims description 106
- 108020004414 DNA Proteins 0.000 claims description 85
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 claims description 26
- 108060003951 Immunoglobulin Proteins 0.000 claims description 25
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 claims description 25
- 102000018358 immunoglobulin Human genes 0.000 claims description 25
- 101150097493 D gene Proteins 0.000 claims description 10
- 101150008942 J gene Proteins 0.000 claims description 10
- 239000000427 antigen Substances 0.000 claims description 9
- 108091007433 antigens Proteins 0.000 claims description 9
- 102000036639 antigens Human genes 0.000 claims description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 241000282412 Homo Species 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 3
- 210000004408 hybridoma Anatomy 0.000 claims description 3
- 230000001225 therapeutic effect Effects 0.000 claims description 3
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 claims 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 claims 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 132
- 210000003527 eukaryotic cell Anatomy 0.000 description 109
- 230000004048 modification Effects 0.000 description 104
- 238000012986 modification Methods 0.000 description 104
- 239000013598 vector Substances 0.000 description 70
- 230000006801 homologous recombination Effects 0.000 description 60
- 238000002744 homologous recombination Methods 0.000 description 60
- 230000002759 chromosomal effect Effects 0.000 description 57
- 239000012634 fragment Substances 0.000 description 55
- 108700028369 Alleles Proteins 0.000 description 53
- 210000001671 embryonic stem cell Anatomy 0.000 description 49
- 230000001580 bacterial effect Effects 0.000 description 48
- 230000006798 recombination Effects 0.000 description 46
- 238000005215 recombination Methods 0.000 description 46
- 238000011144 upstream manufacturing Methods 0.000 description 32
- 238000013459 approach Methods 0.000 description 29
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 29
- 238000005516 engineering process Methods 0.000 description 28
- 239000003550 marker Substances 0.000 description 27
- 238000001514 detection method Methods 0.000 description 24
- 238000012207 quantitative assay Methods 0.000 description 24
- 241000699670 Mus sp. Species 0.000 description 23
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 20
- 239000000523 sample Substances 0.000 description 20
- 101150117115 V gene Proteins 0.000 description 19
- 238000012217 deletion Methods 0.000 description 19
- 230000037430 deletion Effects 0.000 description 19
- 108091026890 Coding region Proteins 0.000 description 17
- 210000003719 b-lymphocyte Anatomy 0.000 description 16
- 238000003780 insertion Methods 0.000 description 16
- 230000037431 insertion Effects 0.000 description 16
- 238000003753 real-time PCR Methods 0.000 description 16
- 230000008901 benefit Effects 0.000 description 15
- 208000024191 minimally invasive lung adenocarcinoma Diseases 0.000 description 15
- 150000007523 nucleic acids Chemical class 0.000 description 15
- 210000002459 blastocyst Anatomy 0.000 description 14
- 238000012239 gene modification Methods 0.000 description 13
- 230000005017 genetic modification Effects 0.000 description 13
- 235000013617 genetically modified food Nutrition 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 13
- 238000006467 substitution reaction Methods 0.000 description 13
- 230000004927 fusion Effects 0.000 description 11
- 239000002773 nucleotide Substances 0.000 description 11
- 125000003729 nucleotide group Chemical group 0.000 description 11
- 238000011830 transgenic mouse model Methods 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 241001529936 Murinae Species 0.000 description 10
- 241000700159 Rattus Species 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 10
- 229950010131 puromycin Drugs 0.000 description 10
- 230000001105 regulatory effect Effects 0.000 description 9
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 238000010630 lipid peroxidation (MDA) assay Methods 0.000 description 8
- 229960004927 neomycin Drugs 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 108010051219 Cre recombinase Proteins 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 6
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000010369 molecular cloning Methods 0.000 description 6
- 230000035935 pregnancy Effects 0.000 description 6
- 230000008521 reorganization Effects 0.000 description 6
- 229930193140 Neomycin Natural products 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 210000000287 oocyte Anatomy 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000009261 transgenic effect Effects 0.000 description 5
- 108091081024 Start codon Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 230000035800 maturation Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 210000001938 protoplast Anatomy 0.000 description 4
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 4
- 229960000268 spectinomycin Drugs 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 230000004544 DNA amplification Effects 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 3
- 101100356230 Escherichia coli (strain K12) recT gene Proteins 0.000 description 3
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 description 3
- 108010025815 Kanamycin Kinase Proteins 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 101100355997 Bacillus subtilis (strain 168) recA gene Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 101100301301 Escherichia coli (strain K12) recE gene Proteins 0.000 description 2
- 108060002716 Exonuclease Proteins 0.000 description 2
- 101001103039 Homo sapiens Inactive tyrosine-protein kinase transmembrane receptor ROR1 Proteins 0.000 description 2
- 238000012450 HuMAb Mouse Methods 0.000 description 2
- 102100039615 Inactive tyrosine-protein kinase transmembrane receptor ROR1 Human genes 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 108020005038 Terminator Codon Proteins 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 102000013165 exonuclease Human genes 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011331 genomic analysis Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 101150066555 lacZ gene Proteins 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 101150047627 pgk gene Proteins 0.000 description 2
- 238000003906 pulsed field gel electrophoresis Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 108091008875 B cell receptors Proteins 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- 101001091269 Escherichia coli Hygromycin-B 4-O-kinase Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101001103033 Homo sapiens Tyrosine-protein kinase transmembrane receptor ROR2 Proteins 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010068052 Mosaicism Diseases 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 101001091268 Streptomyces hygroscopicus Hygromycin-B 7''-O-kinase Proteins 0.000 description 1
- 208000035199 Tetraploidy Diseases 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 102100039616 Tyrosine-protein kinase transmembrane receptor ROR2 Human genes 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000209149 Zea Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000003578 bacterial chromosome Anatomy 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 1
- 229940097277 hygromycin b Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003426 interchromosomal effect Effects 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000013493 large scale plasmid preparation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000021121 meiosis Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000005212 secondary lymphoid organ Anatomy 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 210000003765 sex chromosome Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 108010040614 terminase Proteins 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0278—Knock-in vertebrates, e.g. humanised vertebrates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
- C07K16/462—Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/15—Humanized animals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/01—Animal expressing industrially exogenous proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/51—Complete heavy chain or Fd fragment, i.e. VH + CH1
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/515—Complete light chain, i.e. VL + CL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/20—Pseudochromosomes, minichrosomosomes
- C12N2800/204—Pseudochromosomes, minichrosomosomes of bacterial origin, e.g. BAC
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Environmental Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Un procedimiento para producir un anticuerpo que comprende una región variable humana y una región constante de roedor, que comprende exponer a estimulación antigénica a un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce dicho anticuerpo, donde dicho locus híbrido comprende segmentos génicos V, D y J humanos unidos operablemente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
Description
5
10
15
20
25
30
35
40
45
50
55
60
65
DESCRIPCION
Un procedimiento para producir un anticuerpo que comprende una región variable humana y una región constante de roedor
Campo de la invención
El campo de la presente invención es un roedor que produce anticuerpos que contienen regiones variables humanas y regiones constantes de roedor. La presente divulgación también se refiere a un procedimiento para realizar y usar vectores de ADN grandes mediante recombinación homóloga y modificar, de cualquier modo deseado, los genes endógenos y loci cromosómico en células eucarióticas. Estos grandes vectores dirigidos de ADN para células eucariotas, denominados LYVEC, dervan d efragmentos de ADN genómico clonado más grande que los usados habitualmente por otros abordajes destinados a realizar la dirección homóloga en células eucariotas. La presente divulgación proporciona además un procedimiento rápido y cómodo de detectar células eucariotas en las que el LTVEC ha llegado correctamente y ha modificado los genes endógenos o locu(loci) cromosómicos deseados. La presente divulgación también se refiere al uso de estas células para generar organismos portadores de la modificación genética, los propios organismos y los procedimientos de uso de los mismos.
Introducción
El uso de LTVEC proporciona ventajas sustanciales sobre los procedimientos actuales. Por ejemplo, dado que derivan de fragmentos de ADN más grandes que los actualmente usados para generar vectores dirigidos, los MTVEC pueden generarse con mayor rapidez y convenientemente a partir de bibiliotecas disponibles de fragmentos grandes de ADN genómico (tales como bibliotecas de BAC y PAC) que los vectores dirigidos fabricados usando las tecnologías actuales. Además, modificaciones más grandes además de modificaciones que abarcan regiones genómicas más grandes se pueden generar más convenientemente que usando las tecnologías actuales. Además, la presente divulgación aprovecha las regiones de homología largas para incrementar la frecuencia para dirigir a los loci "difíciles de llegar" y, también, disminuye los beneficios, si existen, de usar ADN isogénico en estos vectores dirigidos.
Por tanto, la presente divulgación proporciona un procedimiento rápido, conveniente y simplificado para modificar sistemáticamente casi todos los genes endógenos y loci cromosómicos de un organismo dado.
Antecedentes de la invención
Se ha demostrado que apuntar a genes por medio de recombinación homóloga entre ADN exógeno homólogo y secuencias cromosómicas endógenas es un modo extremadamente valioso para crear deleciones, inserciones, diseñar mutaciones, corregir mutaciones génicas, introducir transgenes o realizar otras modificaciones genéticas en ratones. Los procedimientos actuales implican el uso de vectores dirigidos estándar, con regiones de homología con ADN endógeno que sunam normalmente menos de 10-20 kn, para introducir la modificación genética deseada en las células madre embrionarias (ES) de ratón, seguiodo de la inyección de las c'leulas ES alteradas en embriones de ratones para transmitir estas modificaciones genéticas de ingeniería en la línea germinal del ratón (Smithies y col., Nature, 317:230-234,1985; Thomas y col., Cell, 51 :503-512,1987; Koller y col., Proc Natl Acad Sci USA, 86:89278931, 1989; Kuhn y col., Science, 254:707-710,1991; Thomas y col., Nature, 346:847-850,1990; Schwartzberg y col., Science, 246:799-803, 1989; Doetschman y col., Nature, 330:576-578, 1987; Thomson y col., Cell, 5:313-321, 1989; DeChiara y col., Nature, 345:78-80,1990; patente de EE.UU. n° 5,789,215, presentado el 4 de agosto de1998 en representación de GenPharm International). En estos procedimientos actuales, la detección de las células ES raras en las que los vectores dirigidos estándar se han dirigido correctamente y han modificado los gen(es) endógenos o locus(ci) cromosómicos deseados require información sobre la secuencia fuera de las secuencias homólogas dirigidos contenidas dentro del vector dirigido. Los ensayos para una dirección con éxito implican transferencia Southern estándar o una PCR larga (Cheng, y col., Nature, 369:684-5,1994; Foord y Rose, PCR Methods Appl, 3:S149-61, 1994; Ponce y Micol, Nucleic Acids Res, 20:623,1992; patente de EE.UU. n° 5,436,149 de Takara Shuzo Co., Ltd.) de las secuencias fuera del vector dirigido y abarcan un brazo de homología completo (véase Definiciones); por tanto, dado las grandes consideraciones que limitan estos procedimientos, el tamaño de los brazos de homología está restringido a menos de 10-20 kb en total (Joyner, The Practical Approach Series, 293, 1999).
La capacidad para usar vectores dirigidos como brazos de homología mayores que los usados en los procedimientos actuales sería extremadamente valiosa. Por ejemplo, dichos vectores dirigidos podrían generarse más rápida y convenientemente a partir de las bibliotecas disponibles que contienen insertos genómicos grandes (p. ej., bibliotecas BAC o PAC) que los vectores dirigidos fabricados usando las tecnologías actuales en las que los insertos genómicos tienen que caracterizarse extensamente y recortarse antes de usar. Además, modificaciones más grandes además de modificaciones que abarcan regiones genómicas más grandes se podrían generar más convenientemente y en menos etapas que usando las tecnologías actuales. Además, el uso de regiones largas de homología podría aumentar la frecuencia de dirección de los loci “difíciles de apuntar” en células eucariotas, ya que apuntar a la recombinación homóloga en células eucariotas parece que está relacionada con la homología total
5
10
15
20
25
30
35
40
45
50
55
60
65
contenida en el vector dirigido (Deng y Capecchi, Mol Cell Biol, 12: 3365-71, 1992). Además, la mayor frecuencia de la dirección obtenida usando brazos largos de homología podría disminuir cualquier posible beneficio que se pueda obtener del uso de ADN isogénico en estos vectores dirigidos.
El problema de las modificaciones precisas mediante ingeniería en fragmentos genómicos muy grandes, como los clonados en las bibliotecas BAC, se ha resuelto en gran medida mediante el uso de recombinación homóloga en bacterias (Zhang, y col., Nat Genet, 20:123-8, 1998; Yang, y col., Nat Biotechnol, 15:859-65, 1997; Angrand, y col., Nucleic Acids Res, 27:e16,1999; Muyrers, y col., Nucleic Acids Res, 27:1555-7,1999; Narayanan, y col., Gene Ther, 6:442-7,1999), que permite la construcción de vectores que contienen regiones grandes de homología con los genes endógenos o loci cromosómicos eucariotas. No obstante, una vez fabricados, estos vectores no han sido en general útiles para modificar genes endógenos o loci cromosómicos mediante recombinación homóloga por la dificultad en la detección de acontecimientos dirigidos correctos cuando los brazos de homología son más grandes que 10-20 kb (Joyner, The Practical Approach Series, 293,1999). En consecuencia, los vectores generados usando recombinación homóloga bacteriana de fragmentos genómicos de BC debe recortarse extensamente antes de usar como vectores dirigidos (Hill y col., Genomics, 64:111-3, 2000). Por tanto, existe la necesidad de una metodología rápida y conveniente que hace posible el uso de vectores dirigidos que contienen regiones grandes de homología de modo que se modifican los genes endógenos o los loci cromosómicos en células eucariotas.
Los documentos WO 97/13852 y US 5770429A describen animales no humanos transgénicos capaces de producir anticuerpos heterólogos. El documento US 5939598A describe un procedimiento para producir ratones transgénicos que carezcan de cadenas pesadas endógenas. El documento WO 99/45962 describe animales no humanos transgénicos capaces de producir anticuerpos heterólogos.
Se describen en este documento procedimientos nuevos que permiten el uso de vectores dirigidos que contienen regiones grandes de homología de modo que se modifican los genes endógenos o los loci cromosómicos en células eucariotas mediante recombinación homóloga. Dichos procedimientos superan las limitaciones descritas anteriormente de las tecnologías anteriores. Además, el experto en la técnica reconocerá fácilmente que los procedimientos se adaptan fácilmente para usar con cualquier ADN genómico de cualquier organismo eucariota incluidos, entre otros, animales tales como ratones, ratas, otros roedores o seres humanos, así como plantas tales como soja, maíz y trigo.
Sumario de la invención
La invención proporciona un procedimiento para producir un anticuepro que comprende una región variable humana y una región constante de roedor, que comprende exponer a estimulación antigénica a un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce dicho anticuerpo, donde dicho locus híbrido comprende los segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
La invención proporciona además un procedimiento para producir un anticuerpo, que comprende una región variable humana y una región constante humana, que comprende exponer a estimulación antigénica a un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpo que tiene una región variable humana y una región constante de roedor, unir operativamente el ADN que codifica la región variable humana de dicho anticuerpo al ADN que codifica una región constante humana y expresar un anticuerpo que comprende una región variable humana y una región constante humana de dicho ADN unido operativamente, donde dicho locus híbrido comprende los segmentos génicos V, D y J humanos unidos operativamente a regiones constantes de cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
La invención proporciona adicionalmente un uso de un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpo que comprende una región variable humana y una región constante de roedor, para producir un anticuerpo frente a un antígeno, donde dicho locus híbrido comprende segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos. La invención también proporciona el uso de un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpo que comprende una región variable humana y una región constante de roedor, para producir un anticuerpo frente a un antígeno, donde dicho locus híbrido comprende segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
La invención proporciona además un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpo que comprende una región variable humana y una región constante de roedor, donde dicho locus híbrido comprende los segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
De acuerdo con la presente divulgación, los solicitantes han desarrollado un nuevo procedimiento rápido, simple y eficiente para crear y detectar células eucariotas que contienen genes endógenos o loci cromosómicos modificados. Este nuevo procedimiento combina por primera vez:
5
10
15
20
25
30
35
40
45
50
55
60
65
1. Recombinación homóloga bacteriana para realizar una modificación genérica deseada mediante ingeniería en un fragmento genómico clonado grande, de modo que se crea un vector dirigido grande para usar en células eucariotas (LTVEC);
2. Introducción directa de estos LTEVC en las células eucariotas para modificar el locus cromosómico endógeno de interés en estas células; y
3. Un análisis para determinar las células eucariotas raras en las que el alelo diana se ha modificado según se desea, que implica un ensayo para la modificación de alelos (MDA) del alelo parental que no requiere información sobre la secuencia fuera de la secuencia de acceso, tal como, por ejemplo PCR cuantitativa.
Se describe en este documento un procedimiento para modificar genómicamente un gen o locus cromosómico endógeno en células eucariotas, que comprende: a) obtener un fragmento genómico clonado grande que contiene una secuencia de ADN de interés; b) usar recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado grande para (a) crear un vector dirigido grande para usar en las células eucariotas (LTVEC); c) introducir el LTVEC de (b) en las células eucariotas para modificar el gen o locus endógeno en las células; y (d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en las células eucariotas de (c) para identificar las células eucariotas en las que el gen o locus cromosómico endógeno se ha modificado genéticamente.
También se describe en este documento un procedimiento en el que la modificación genética del gen o locus cromosómico endógeno comprende deleción de una secuencia de codificación, segmento génico o elemento regulador; alteración de una secuencia de codificación, segmento génico o elemento regulador; inserción de una nueva secuencia de codificación, segmento génico o elemento regulador; creación de un alelo condicional; o sustitución de una secuencia de codificación o segmento génico de una especie con una secuencia de codificación homóloga u ortóloga de una especie diferente.
Además se describe en este documento un procedimiento en el que la alteración de una secuencia de codificación, segmento génico o elemento regulador comprende una sustitución, adición o fusión, en las que la fusión comprende un marcador epítopo o una proteína bifuncional.
También se describe en este documento un procedimiento en el que el ensayo cuantitativo comprende PCR cuantitativa, hibridación genómica comparativa, amplificación de ADN isotérmica o hibridación cuantitativa con una sonda inmovilizada, en la que la PCR cuantitativa comprende tecnología TaqMan® o PCR cuantitativa que usa balizas moleculares.
Adicionalmente se describe en este documento un procedimiento en el que la célula eucariota es una célula madre embrionaria de mamífero y, en particular, en el que la célula madre embrionaria es una célula madre embrionaria de ratón, rata u otro roedor.
Además se describe en este documento un procedimiento en el que el gen o locus cromosómico endógeno es un gen o locus cromosómico de mamífero, preferentemente un gen o locus cromosómico humano o un gen o locus cromosómico de ratón, de rata o de otro roedor.
Adicionalmente se describe en este documento una en el que el LTVEC es capaz de acomodar fragmentos de ADN grandes de tamaño superior a 20 kb y, en particular, fragmentos de ADN grandes de tamaño superior a 100 kb.
Además se describe en este documento un de gen o locus cromosómico endógeno modificado genéticamente que se produce mediante el procedimiento descrito en este documento.
También se describe en este documento una célula eucariota modificada genéticamente que se produce mediante el procedimiento descrito en este documento.
Además se describe en este documento es un organismo no humano que contiene el gen o locus cromosómico endógeno modificado genéticamente producido mediante el procedimiento descrito en este documento.
También se describe un organismo no humano producido a partir de las células eucariotas genéticamente modificadas o las células madre embrionarias producidas mediante el procedimiento descrito en este documento.
Se describe en este documento un organismo no humano que contiene un gen o locus cromosómico endógeno modificado genéticamente producido mediante un procedimiento que comprende las etapas de: a) obtener un fragmento genómico clonado grande que contiene una secuencia de ADN de interés; b) usar recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado grande para (a) crear un vector dirigido grande para usar en las células eucariotas (LTVEC) para usar en células madre embrionarias; c) introducir el LTVEC de (b) en las células madre embrionarias para modificar el gen o locus endógeno en las células; (d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en las células eucariotas de (c) para identificar las células madre embrionarias en las que el gen o locus cromosómico endógeno se ha modificado genéticamente; e) introducir la célula madre embrionaria de (d) en un blastocisto y f) introducir el blastocisto de € en una madre
5
10
15
20
25
30
35
40
45
50
55
60
65
sustituta para la gestación.
Adicionalmente se describe en este documento un organismo no humano que contiene un gen o locus cromosómico endógeno modificado genéticamente producido mediante un procedimiento que comprende las etapas de: a) obtener un fragmento genómico clonado grande que contiene una secuencia de ADN de interés; b) usar recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado grande (a) para crear un vector dirigido grande para usar en las células eucariotas (LTVEC); c) introducir el LTVEC de (b) en las células eucariotas para modificar el gen o locus cromosómico endógeno en las células; (d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en las células eucariotas de (c) para identificar las células eucarióticas en las que el gen o locus cromosómico endógeno se ha modificado genéticamente; e) eliminar el núcleo de la célula eucariótica de (d); f) introducir el núcleo de (e) en un oocito y (g) introducir el oocito de (f) en una madre sustituta para la gestación.
Además se describe en este documento un organismo no humano que contiene un gen o locus cromosómico endógeno modificado genéticamente producido mediante un procedimiento que comprende las etapas de: a) obtener un fragmento genómico clonado grande que contiene una secuencia de ADN de interés; b) usar recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado grande (a) para crear un vector dirigido grande para usar en las células eucariotas (LTVEC); c) introducir el LTVEC de (b) en las células eucariotas para modificar el gen o locus cromosómico endógeno en las células; (d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en las células eucariotas de (c) para identificar las células eucarióticas en las que el gen o locus cromosómico endógeno se ha modificado genéticamente; e) fusionar la célula eucariótica de (d) con otra célula eucariota; f) introducir la célula eucariota fusionada de (e) en una madre sustituta para la gestación.
Preferiblemente el organismo no humano es un ratón, rata u otro roedor; el blastocisto es un blastocisto de ratón, rata u otro roedor; el oocito es un oocito de ratón, rata u otro roedor; y la madre sustituta es un ratón, rata u otro roedor.
Preferiblemente la célula madre embrionaria es una célula madre embrionaria de mamífero, preferentemente una célula madre embrionaria de ratón, rata u otro roedor.
También se describe en este documento el uso de las células eucariotas modificadas genéticamente de la invención para la producción de un organismo no humano y, en concreto, el uso de la célula madre embrionaria modificada genéticamente descrito en este documento para la producción de un organismo no humano.
Adicionalmente se describe en este documento es un procedimiento para modificar genómicamente un gen o locus cromosómico endógeno de interés en células madre embrionarias de ratón, que comprende: a) obtener un fragmento genómico clonado grande de más de 20 kb que contiene una secuencia de ADN de interés, en el que el fragmento de ADN grande clonado es homólogo al gen o locus cromosómico endógeno; b) usar recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado grande de (a) para crear un vector dirigido grande para usar en las células madre embrionarias de ratón, en el que la modificación genética es la deleción de una secuencia de codificación, segmento génico o elemento regulador; c) introducir el vector dirigido grande de (b) en las células madre embrionarias de ratón para modificar el gen o locus cromosómico endógeno en las células; y (d) usar un ensayo cuantitativo para detectar la modificación de alelo (MDA) en las células madre embrionarias de ratón de (c) para identificar las células madre embrionarias de ratón en las que el gen o locus cromosómico endógeno se ha modificado genéticamente, en el que el ensayo cuantitativo es PCR cuantitativa. También se prefiere una célula madre embrionaria de ratón modificada genéticamente producida mediante este procedimiento; un ratón que contiene un gen o locus cromosómico endógeno modificado genéticamente producido por este procedimiento; y un ratón producir a partir de las células madre embrionarias modificadas genéticamente.
Además se describe en este documento es un ratón que contiene un gen o locus cromosómico endógeno modificado genéticamente de interés, producido mediante un procedimiento que comprende las etapas de: a) obtener un fragmento genómico clonado grande de más de 20 kb que contiene una secuencia de ADN de interés, en el que el fragmento de ADN grande clonado es homólogo al gen o locus cromosómico endógeno; b) usar recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado grande de (a) para crear un vector dirigido grande para usar en las células madre embrionarias de ratón, en el que la modificación genética es la deleción de una secuencia de codificación, segmento génico o elemento regulador; c) introducir el vector dirigido grande de (b) en las células madre embrionarias de ratón para modificar el gen o locus cromosómico endógeno en las células; y (d) usar un ensayo cuantitativo para detectar la modificación de alelo (MDA) en las células madre embrionarias de ratón de (c) para identificar las células madre embrionarias de ratón en las que el gen o locus cromosómico endógeno se ha modificado genéticamente, en el que el ensayo cuantitativo es PCR cuantitativa; e) introducir la célula madre embrionaria de ratón de (d) en un blastocisto; y f) introducir el blastocisto de (e) en una madre sustituta para la gestación.
También se describe en este documento el uso de la célula madre embrionaria de ratón modificada genéticamente descrita anteriormente para la producción de un ratón.
5
10
15
20
25
30
35
40
45
50
55
60
65
Adicionalmente se describe en este documento un procedimiento de sustituir, totalmente o en parte, en una célula eucariota no humana, un locus génico endógeno de la región variable de la inmunoglobulina con un locus génico humano homólogo u ortólogo que comprende:
a) obtener un fragmento genómico grande clonado que contiene, todo o parte, el locus génico humano homólogo u ortólogo;
b) usar la recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado de (a) para crear un vector dirigido para usar en células eucariotas (LTVEC);
c) introducir el LTVEC de (b) en las células eucariotas para sustituir, todo o en parte, el locus génico endógeno variable de inmunoglobulina; y
d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en las células eucariotas de (c) para identificar las células eucariotas en las que el locus génico de la región variable de inmunoglobulina se ha sustituido, todo o en parte, con el locus génico endógeno humano homólogo u ortólogo.
Además se describe en este documento un procedimiento de sustituir, totalmente o en parte, en una célula eucariota no humana, un locus génico endógeno de la región variable de la inmunoglobulina con un locus génico humano homólogo u ortólogo que además comprende las etapas de:
e) obtener un fragmento genómico grande clonado que contiene una parte, el locus génico humano homólogo u ortólogo que difiere del fragmento de (a);
f) usar la recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado de (e) para crear un segundo LTVEC;
g) introducir el segundo LTVEC de (f) en las células eucariotas identificadas en la etapa (d) para sustituir, todo o en parte, el locus génico endógeno variable de inmunoglobulina; y
h) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en las células eucariotas de (g) para identificar las células eucariotas en las que el locus génico de la región variable de inmunoglobulina se ha sustituido, todo o en parte, con el locus génico endógeno humano homólogo u ortólogo.
Otro aspecto del procedimiento anterior es un procedimiento en el que las etapas (e) a (h) se repiten hasta que el locus génico endógeno de la región variable de la inmunoglobulina se sustituye totalmente o en parte con un locus génico humano homólogo u ortólogo.
Otra realización del procedimiento es uno en el que el locus génico variable de la inmunoglobulina es un locus seleccionado del grupo que consiste en:
a) un locus génico variable de la cadena ligera kappa;
b) un locus génico variable de la cadena ligera lambda; y
c) un locus génico variable de la cadena pesada.
Es preferido un procedimiento en el que el ensayo cuantitativo comprende PCR cuantitativa, FISH, hibridación genómica comparativa, amplificación de ADN isotérmica o hibridación cuantitativa con una sonda inmovilizada y, en concreto, en la que la PCR cuantitativa comprende tecnología TaqMan® o PCR cuantitativa que usa balizas moleculares.
Además se describe en este documento un procedimiento de sustituir, totalmente o en parte, en una célula madre embrionaria, un locus génico endógeno de la región variable de la inmunoglobulina con su locus génico humano homólogo u ortólogo, que comprende:
a) obtener un fragmento genómico grande clonado que contiene, todo o parte, el locus génico humano homólogo u ortólogo;
b) usar la recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado grande de (a) para crear un vector dirigido para usar en células madre embrionarias;
c) introducir el vector dirigido grande de (b) en las células madre embrionarias de ratón para sustituir, todo o en parte, el locus génico endógeno variable de inmunoglobulina en las células; y
d) usar un ensayo de PCR cuantitativa para detectar modificación de alelo (MDA) en las células madre embrionarias de ratón (d) para identificar las células madre embrionarias de ratón en las que el locus génico endógeno variable se ha sustituido, todo o en parte, con el locus génico humano homólogo u ortólogo.
En otro aspecto descrito en este documento, el procedimiento comprende además:
e) obtener un fragmento genómico grande clonado que contiene una parte, el locus génico humano homólogo u ortólogo que difiere del fragmento de (a);
f) usar la recombinación homóloga bacteriana para modificar genéticamente el fragmento genómico clonado de (e) para crear un vector dirigido grande para usar en células madre embrionarias;
g) introducir el vector dirigido grande de (f) en las células madre embrionarias de ratón identificadas en la etapa (d) para sustituir, todo o en parte, el locus génico endógeno variable de inmunoglobulina; y
5
10
15
20
25
30
35
40
45
50
55
60
65
h) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en las células madre embrionarias de ratón de (g) para identificar las células madre embrionarias de ratón en las que el locus génico endógeno de la región variable de inmunoglobulina se ha sustituido, todo o en parte, con el locus génico humano homólogo u ortólogo.
Otro aspecto más preferido es un procedimiento en el que las etapas (e) a (h) anteriores se repiten locus génico endógeno de la región variable de la inmunoglobulina se sustituye totalmente con un humano homólogo u ortólogo.
También se prefiere un procedimiento en el que el locus génico variable de la inmunoglobulina seleccionado del grupo que consiste en:
a) un locus génico variable de la cadena ligera kappa;
b) un locus génico variable de la cadena ligera lambda; y
c) un locus génico variable de la cadena pesada.
También se describe en este documento un locus génico de la región variable de inmunoglobulina modificado genéticamente producido por los procedimientos descritos anteriormente; una célula eucariota modificada genéticamente que comprende un locus génico de la región variable de inmunoglobulina modificado genéticamente producido mediante los procedimientos descritos anteriormente; un organismo no humano que comprende un locus génico de la región variable de inmunoglobulina modificado genéticamente producido mediante los procedimientos descritos anteriormente; y una célula madre embrionaria de ratón que contiene un locus génico de la región variable de inmunoglobulina modificado genéticamente producido mediante los procedimientos descritos anteriormente.
También se describe en este documento una célula madre embrionaria en la que el locus de la región variable de la cadena pesada de ratón se ha sustituido, totalmente o en parte, con un locus génico variable de la cadena pesada humana; una célula madre embrionaria de la reivindicación en la que el locus de la región variable de la cadena ligera kappa de ratón se ha sustituido, todo o parte, con un locus de la región variable de la cadena ligera kappa humana; una célula madre embrionaria en la que el locus de la región variable de la cadena ligera lambda de ratón se ha sustituido, totalmente o en parte, con un locus de la región variable de la cadena ligera lambda humana; y una célula madre embrionaria en la que los locus génicos de la región variable de las cadenas ligera y pesada se han sustituido, totalmente o en parte, con sus homólogos u ortólogos humanos.
Adicionalmente se describe en este documento un ratón producido a partir de las células madre embrionarias descritas anteriormente.
Además se describe en este documento un anticuerpo que comprende una región variable humana codificada por el locus génico variable genéticamente modificado descrito anteriormente; un anticuerpo que además comprende una región constante no humana; y un anticuerpo que además comprende una región constante humana.
Adicionalmente se describe en este documento un ratón transgénico que tiene un genoma que comprende los loci de la región variable de las cadenas pesada y ligera completamente humanas unidos operablemente a los loci de la región constante de ratón completamente endógenos, de un modo tal que el ratón produce un suero que contiene un anticuerpo que comprende una región variable humana y una región constante de ratón en respuesta a estimulación antigénica; un ratón transgénico que tiene un genoma que comprende los loci de la región variable de las cadenas pesada y/o ligera humanas unidos operablemente a los loci de la región constante de ratón endógenos de un modo tal que el ratón produce un suero que contiene un anticuerpo que comprende una región variable humana y una región constante de ratón en respuesta a estimulación antigénica; un ratón transgénico que contiene un locus de la región variable endógena que se ha sustituido con un locus variable humano homólogo u ortólogo, produciéndose dicho ratón mediante un procedimiento que comprende:
a) obtener uno o más fragmentos genómicos grandes clonados que contienen, todo o parte, el locus génico de la región variable humana homólogo u ortólogo;
b) usar la recombinación homóloga bacteriana para modificar genéticamente el(los) fragmento(s) genómico(s) clonado(s) de (a) para crear un vector(es) dirigido(s) grande(s) para usar en células madre embrionarias de ratón;
c) introducir vector(es) dirigido(s) grande(s) de (b) en las células madre embrionarias de ratón para sustituir, todo el locus endógeno de la región variable en las células; y
d) usar un ensayo de PCR cuantitativa para detectar modificación de alelo (MDA) en las células madre embrionarias de ratón de (c) para identificar las células madre embrionarias de ratón en las que el locus endógeno de la región variable se ha sustituido con el locus de la región variable humana homólogo u ortólogo;
e) introducir la célula madre embrionaria de ratón de (d) en un blastocisto; y
f) introducir el blastocisto de (e) en una madre sustituta para la gestación.
También se describe en este documento un ratón transgénico descrito anteriormente en el que el locus locus génico de la región variable de la inmunoglobulina comprende uno o más loci seleccionados del grupo que consiste en:
hasta que el locus génico
es un locus
5
10
15
20
25
30
35
40
45
50
55
60
65
a) un locus génico variable de la cadena ligera kappa;
b) un locus génico variable de la cadena ligera lambda; y
c) un locus génico variable de la cadena pesada.
También se prefieren los procedimientos descritos anteriormente en los que la célula madre embrionaria deriva de un ratón transgénico producido por los procedimientos.
Adicionalmente se describe en este documento un procedimiento de fabricar un anticuerpo humano que comprende:
a) exponer el ratón descrito anteriormente a estimulación antigénica, de un modo tal que el ratón produce un anticuerpo contra el antígeno;
b) aislar el ADN que codifica las regiones variables de las cadenas pesada y ligera del anticuerpo;
c) unir operablemente el ADN que codifica las regiones variables de (b) a ADN que codifica las regiones constantes de las cadenas pesada y ligera en una célula capaz de expresar anticuerpos activos;
d) cultivar la célula en condiciones tales que expresen el anticuerpo humano; y
e) recuperar el anticuerpo.
Preferiblemente, la célula descrita anteriormente es una célula CHO.
También se prefiere un procedimiento donde el ADN de la etapa (b) descrito anteriormente se aísla de un hibridoma creado a partir del bazo del ratón expuesto a estimulación antigénica en la etapa (a) descrita anteriormente.
También se prefiere el procedimiento descrito anteriormente en el que el ADN se aísla mediante PCR.
Además se describe en este documento un procedimiento de sustituir, todo o parte, de un locus génico endógeno de la región variable de inmunoglobulina con un locus génico homólogo u ortólogo, que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena abajo que contiene la región inmediatamente adyacente, pero sin incluir, a los segmentos J del locus génico de la región variable de inmunoglobulina y un brazo de homología cadena arriba dentro del locus génico variable;
b) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena arriba que contiene la región adyacente al segmento génico V más distal, pero no contiene ninguno de los segmentos génicos V del locus génico de la región variable de inmunoglobulina y un brazo de homología cadena abajo dentro del locus génico variable;
c) introducir los LTVEC de (a) y (b) en la célula eucariota;
d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico variable para identificar las células eucariotas en (c) en las que los sitios de recombinación específicos de sitio flanquean al locus génico de la región variable endógena.
e) crear un vector que contiene secuencias de recombinación específicas de sitio que flanquean todo o parte del locus génico ortólogo u homólogo; y
f) introducir el vector de (e) en las células eucariotas identificadas en la etapa (d) tal como mediante recombinación, el locus génico endógeno de la región variable de inmunoglobulina está sustituido, todo o en parte, con el locus génico homólogo u ortólogo.
También se describe en este documento un ratón transgénico que contiene un locus endógeno de la región variable de inmunoglobulina que se ha sustituido con un locus de la región variable de inmunoglobulina humana homólogo y ortólogo, produciéndose dicho ratón mediante un procedimiento que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena abajo que contiene la región inmediatamente adyacente, pero sin incluir, a los segmentos J del locus génico de la región variable de inmunoglobulina de ratón;
b) crear un LTVEC que comprende un sitio de recombinación específico de sitio y un brazo de homología cadena arriba que contiene la región adyacente al segmento génico V de ratón más distal, pero no contiene ninguno de los segmentos génicos V del locus génico de la región variable de inmunoglobulina de ratón;
c) introducir el LTVEC de (a) y (b) en la célula eucariota; usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico variable para identificar las células eucariotas en (c) en las que los sitios de recombinación específicos de sitio flanquean al locus génico endógeno de la región variable.
d) crear un vector que contiene secuencias de recombinación específicas de sitio que flanquean todo o parte del locus génico ortólogo u homólogo;
e) introducir el vector de (e) en las células eucariotas identificadas en la etapa (d) tal como mediante recombinación, el locus génico endógeno de la región variable de inmunoglobulina está sustituido, todo o en parte, con el locus génico homólogo u ortólogo;
f) introducir la célula madre embrionaria de ratón de (d) en un blastocisto; e f) introducir el blastocisto de (e) en una madre sustituta para la gestación.
5
10
15
20
25
30
35
40
45
50
55
60
65
Adicionalmente se describe en este documento un procedimiento de crear, en una célula eucariota, un locus génico endógeno flanqueado cadena abajo por un sitio de recombinación específico de sitio, que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena abajo que contiene una región que flanquea al extremo 3' de la región del locus génico endógeno y un brazo de homología cadena arriba dentro del locus;
b) introducir los LTVEC de (a) en la célula eucariota; y
c) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico endógeno para identificar las células eucariotas en (b) en las que el locus génico endógeno está flanqueado cadena abajo por el sitio de recombinación específico de sitio.
Además se describe en este documento un procedimiento de crear, en una célula eucariota, un locus génico endógeno flanqueado cadena arriba por un sitio de recombinación específico de sitio, que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena arriba que contiene una región que flanquea al extremo 5' de la región del locus génico endógeno y un brazo de homología cadena abajo dentro del locus;
b) introducir los LTVEC de (a) en la célula eucariota; y
c) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico endógeno para identificar las células eucariotas en (b) en las que el locus génico endógeno está flanqueado cadena arriba por el sitio de recombinación específico de sitio.
También se describe en este documento un procedimiento de crear, en una célula eucariota, un locus génico endógeno flanqueado por un sitio de recombinación específico de sitio, que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena abajo que contiene una región que flanquea al extremo 3' de la región del locus génico endógeno y un brazo de homología cadena arriba dentro del locus;
b) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena arriba que contiene una región que flanquea al extremo 5' de la región del locus génico endógeno y un brazo de homología cadena abajo dentro del locus;
c) introducir los LTVEC de (a) y (b) en la célula eucariota; y
d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico endógeno para identificar las células eucariotas en (c) en las que los sitios de recombinación específicos de sitio flanquean al locus génico endógeno.
Además se describe en este documento un procedimiento de crear, en una célula eucariota, un locus génico endógeno variable de inmunoglobulina flanqueado por un sitio de recombinación específico de sitio, que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena abajo que contiene la región inmediatamente adyacente, pero sin incluir, a los segmentos J del locus génico de la región variable de inmunoglobulina y un brazo de homología cadena arriba dentro del locus génico variable;
b) introducir los LTVEC de (a) en la célula eucariota; y
c) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico variable para identificar las células eucariotas en (b) en las que el sitio de recombinación específico de sitio flanquea al extremo cadena abajo del locus génico variable inmunovariable endógeno.
También se describe en este documento un procedimiento de crear, en una célula eucariota, un locus génico endógeno variable de inmunoglobulina flanqueado por sitios de recombinación específicos de sitio, que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena arriba que contiene la región adyacente al segmento génico V más distal, pero no contiene ninguno de los segmentos génicos V del locus génico de la región variable de inmunoglobulina y un brazo de homología cadena abajo dentro del locus;
b) introducir el LTVEC de (a) en la célula eucariota; y
c) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico variable para identificar las células eucariotas en (c) en las que los sitios de recombinación específicos de sitio flanquean al extremo cadena arriba del locus génico endógeno de la región variable.
Además se describe en este documento un procedimiento de crear, en una célula eucariota, un locus génico endógeno variable de inmunoglobulina flanqueado por sitios de recombinación específicos de sitio, que comprende:
a) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena abajo que contiene la región inmediatamente adyacente, pero sin incluir, a los segmentos J del locus génico de la región variable de inmunoglobulina y un brazo de homología cadena arriba dentro del locus;
b) crear un LTVEC que comprende un sitio de recombinación específico de sitio, un brazo de homología cadena
5
10
15
20
25
30
35
40
45
50
55
60
65
arriba que contiene la región adyacente al segmento génico V más distal, pero no contiene ninguno de los segmentos génicos V del locus génico de la región variable de inmunoglobulina y un brazo cadena abajo dentro del locus;
c) introducir los LTVEC de (a) y (b) en la célula eucariota; y
d) usar un ensayo cuantitativo para detectar modificación de alelo (MDA) en el locus génico variable para identificar las células eucariotas en (c) en las que los sitios de recombinación específicos de sitio flanquean al locus génico endógeno de la región variable de inmunoglobulina.
Breve descripción de las figuras
Figura 1: Diagrama esquemático de la generación de un LTEVC típico usando recombinación homóloga bacteriana. (hb1 = caja de homología 1; hb2 = caja de homología 2; RE =sitio para enzimas de restricción).
Figura 2: Diagrama esquemática de un fragmento donante y LTVEC para OCR10 de ratón.
(hb1 =caja de homología 1; lacZ =ORF de la B-galactosidasa; SV40 poliA = fragmento de ADN derivado del virus simio 40 que contiene un sitio de poliadenilación y una señal; PGKp = promotor de la fosfoglicerato quinasa (PGK) de ratón; EM7= un promotor bacteriano; neo= neomicina fosfotransferasa; PGK poliA) región no traducida en 3' derivada del gen de la PGK y que contiene un sitio de poliadenilación y una señal; hb2 = caja de homología 2).
Figura 3A-3D: Secuencia del ADNc de OCR10 de ratón, caja de homología 1 (hb1), caja de homología 2 (hb2) y sondas TaqMan® y cebadores usados en el ensayo de PCR cuantitativa para detectar modificación de alelo (MDA) en células E diana usando el ÑTVEC de mcOR10.
hb1: Pares de bases 1 a 211 hb2: pares de bases 1586 a 1801
Sonda TaqMan® y el correspondiente conjunto de cebadores para PCR derivados del exón 3 de Mocr10:
sonda TaqMan®: nucleótidos 413 a 439- hebra superior Cebador ex 3-5': nucleótidos 390 a 410- hebra superior Cebador ex 3-3': nucleótidos 445 a 461- hebra inferior
Sonda TaqMan® y el correspondiente conjunto de cebadores para PCR derivados del exón 4 de mOCR10:
sonda TaqMan®: nucleótidos 608 a 639- hebra superior Cebador ex 4-5': nucleótidos 586 a 605- hebra superior Cebador ex 4-3': nucleótidos 642 a 662- hebra inferior
Figura 4A-4D: Diagrama esquemático de los dos LTVEC construidos para sustituir la región VDJ de ratón con la región VDJ humana.
Figura 4A: Se aíslan clones de inserto grande (BAC) que abarcan la región VDJ completa del locus de la cadena pesada humana
Figura 4B: En este ejemplo se aíslan clones de insertos grandes (BAC) de los extremos de la región VDJ de ratón como fuente de brazos de homología que se usan para dirigir la integración mediante recombinación homóloga de las secuencias VDJ humanas en un procedimiento de dos etapas:
Figura 4C-4D: En la primera etapa, el LTVEC1 (Figura 4D) está construido mediante recombinación homóloga en el LTVEC1 de E. coli. El LTVEC1 contiene, en orden: Un brazo de homología grande de ratón derivado de la región cadena arriba de la región DJ de ratón, pero cuyos criterios de valoración absolutos no son importantes; un casete que codifica un marcador seleccionable funcional en las células ES (resistentes a PGK-neomicina en este ejemplo); un sitio loxP; un inserto humano grande que abarca varios segmentos génicos V a través de toda la región DJ; y un brazo de homología de ratón que contiene la región inmediatamente adyacente a, entre otros, los segmentos J de ratón. En la segunda etapa, el LTVEC2 (Figura 4C) está construido mediante recombinación homóloga bacteriana en el LTVEC2 de E. coli, en orden: Un brazo grande de homología de ratón que contiene la región adyacente al segmento génico V de ratón más distal, pero no contiene ningún segmento génico V de ratón; un inserto grande que contiene un número grande de segmentos génicos V humanos distales; un sitio loxP mutante denominado lox511 en orientación opuesta a la de los sitios loxP de tipo silvestre en LTVEC2 y LTVEC1(este sitio no se recombinará con los sitios loxP silvestres, pero se recombinarán fácilmente con otros sitios lox511); un sitio loxP silvestre; un segundo marcador seleccionable (PGK-higromicinaR en este ejemplo); y un brazo de homología de ratón derivado de la región V, pero cuyos criterios de valoración absolutos no son importantes.
Definiciones
Un “vector dirigido” es una construcción de ADN que contiene secuencias "homólogas" a las secuencias de ácido nucleico cromosómico endógeno que flanquean una(s) modificación(es) genética(s) deseada(s). Las secuencias de
5
10
15
20
25
30
35
40
45
50
55
60
65
homología flanqueantes, denominadas “brazos de homología”, dirigen el vector dirigido a una localización cromosómica específica dentro del genoma en virtud de la homología que existe entre los brazos de homología y la correspondiente secuencia endógena e introducen la modificación genética deseada mediante un procedimiento denominado “recombinación homóloga”.
“Homólogo” significa dos o más secuencias de ácido nucleico que son idénticas o lo bastante similares como para ser capaces de hibridar entre sí o sufrir intercambio intermolecular.
“Direccionalidad génica” es la modificación de un locus cromosómico endógeno mediante la inserción, deleción o sustitución de la secuencia endógena mediante recombinación homóloga usando un vector dirigido.
Una “inactivación de gen" es una modificación genética resultante de la alteración de la información genética codificada en un locus cromosómico.
Una “activación de gen" es una modificación genética resultante de la sustitución de la información genética codificada en un locus cromosómico con una secuencia de ADN diferente.
Un "organismo inactivado” es un organismo en el que una proporción significativa de las células del organismo aloja una inactivación génica.
Un "organismo activado” es un organismo en el que una proporción significativa de las células del organismo aloja una activación génica.
Un "marcador" o un "marcador seleccionable" es un marcador de selección que permite el aislamiento de células transfectadas raras que expresan el marcador a partir de la mayoría de las células tratadas en la población. Dichos marcadores génicos incluyen, entre otros, la neomicina fosfotransferasa y la higromicina B fosfotransferasa o proteínas fluorescentes tales como GFP.
Una "célula ES” es una célula madre embrionaria. Esta célula normalmente deriva de la masa de células internas de un embrión en la etapa de blastocisto.
Un “clon de células ES” es una subpoblación de células derivadas de una única célula de la población de células ES tras la introducción de ADN y la posterior selección.
Un “ADN flanqueante” es un segmento de ADN que es colineal y adyacente a un punto de referencia concreto.
“LTVEC” son vectores grandes dirigidos a células eucariotas derivados de fragmentos de ADN genómico clonado más grandes que los habitualmente usados por otros abordajes destinados a la direccionalidad homóloga en células eucariotas.
Un “organismo no humano” es un organismo que normalmente no es aceptado por el público como humano.
“Modificación de alelo” (MDA) se refiere a la modificación de la secuencia de ADN exacta de un alelo de un(os) gen(es) o locus (loci) cromosómico(s) en un genoma.
Esta modificación de alelo” (MDA) incluye, entre otras, deleciones, sustituciones o inserciones de tan poco como un único nucleótido o deleciones de muchas kilobases que abarcan un(os) gen(es) o locus (loci) cromosómico(s) de interés, así como cualquier y todas las modificaciones posibles entre estos dos extremos.
Secuencia “ortóloga” se refiere a una secuencia de una especie que es el equivalente funcional de dicha secuencia en otra especie.
La descripción y los ejemplos que se presentan más adelante se proporcionan para ilustrar la invención sujeto. Un experto en la técnica reconocerá que estos ejemplos se proporcionan a modo de ilustración únicamente y no están incluidos con el fin de limitar la invención.
Descripción detallada de la invención
Los solicitantes han desarrollado un nuevo procedimiento rápido, simple y eficiente para crear y detectar células eucariotas que contienen genes endógenos o loci cromosómicos modificados. En estas células, la modificación puede ser inactivación y activación de gen(es), mutaciones puntuales o grandes inserciones o deleciones genómicos u otras modificaciones. A modo de ejemplo no limitante, estas células pueden ser células madre embrionarias que son útiles para crear organismos inactivos o activos y, en particular, ratones inactivos o activos, con el fin de determinar la función del o los gen(es) que se han alterado, delecionado y/o insertado.
5
10
15
20
25
30
35
40
45
50
55
60
65
Los nuevos procedimientos descritos en el presente documento combinan por primera vez:
1. Recombinación homóloga bacteriana para realizar una modificación genérica deseada mediante ingeniería en un fragmento genómico de ADN clonado grande, de modo que se crea un vector dirigido grande para usar en células eucariotas (LTVEC);
2. Introducción directa de estos LTEVC en las células eucariotas para modificar el correspondiente gen(es) o locus (loci) cromosómico(s) endógeno(s) de interés en estas células; y
3. Un análisis para determinar las células eucariotas raras en las que el alelo diana se ha modificado según se desea, que implica un ensayo cuantitativo para la modificación de alelos (MDA) del alelo parental.
Cabe destacar que los procedimientos anteriores para detectar recombinación homóloga satisfactoria en células eucariotas no se pueden usar junto con los LTVEC de la divulgación de los solicitantes porque los brazos largos de homología presente en los LTVEC. Usando un LTVEC para modificar deliberadamente genes o loci cromosómicos endógenos en células eucariotas mediante recombinación homóloga se hace posible mediante la nueva aplicación de un ensayo para determinar las células eucariotas raras en las que el alelo dirigido se ha modificado según se desee, en el que dicho ensayo implica un ensayo cuantitativo para la modificación de alelo (MDA) de un alelo parental, usando, por ejemplo, PCR cuantitativa u otros ensayos cuantitativos adecuados para MDA.
La capacidad para usar vectores dirigidos como brazos de homología mayores que los usados en los procedimientos actuales es extremadamente valiosa por los motivos siguientes:
1. Los vectores dirigidos se pueden generar más rápida y convenientemente a partir de las bibliotecas disponibles que contienen insertos genómicos grandes (p. ej., bibliotecas BAC o PAC) que los vectores dirigidos fabricados usando las tecnologías actuales en las que los insertos genómicos tienen que caracterizarse extensamente y “recortarse” antes de usar (explicado con detalle más adelante). Además, tiene que conocerse, la información mínima de la secuencia sobre el locus de interés, es decir solo es necesario conocer los aproximadamente 80-100 nucleótidos que se requieren para generar las cajas de homología (descritas con detalle más adelante) y para generar sondas que se puedan usar en ensayos cuantitativos para MDA (descrito con detalle más adelante).
2. Modificaciones más grandes además de modificaciones que abarcan regiones genómicas más grandes se generan más convenientemente y en menos etapas que usando las tecnologías anteriores. Por ejemplo, el procedimiento descrito en este documento posibilita la modificación precisa de loci grandes que no se pueden acomodar mediante vectores dirigidos basados en plásmidos tradicionales por sus limitaciones de tamaño. También posibilita la modificación de cualquier locus dado en múltiples puntos (p. ej., la introducción de mutaciones específicas en diferentes exones de un gen multiexón) en una etapa, de modo que se alivia la necesidad de realizar ingeniería de múltiples vectores diana para realizar ciclos de direccionalidad y detección selectiva de recombinación homóloga en células ES.
3. El uso de regiones largas de homología (brazos de homología largos) aumenta la frecuencia de dirección de los loci “difíciles de apuntar” en células eucariotas, coherente con los hallazgos previos de que dirigir la recombinación homóloga en células eucariotas parece estar relacionada con la homología total contenida en el vector dirigido.
4. La mayor frecuencia de la dirección obtenida usando brazos largos de homología aparentemente disminuye el beneficio, si existe alguno, que se pueda obtener del uso de ADN isogénico en estos vectores dirigidos.
5. La aplicación de ensayos de MDA cuantitativos para la detección selectiva de células eucariotas para recombinación homóloga no solo refuerza el uso de LTVEC como vectores dirigidos (ventajas indicadas anteriormente) sino que también reduce el tiempo para identificar las células eucariotas modificadas correctamente desde los típicos varios días a unas pocas horas. Además, la aplicación de MDA cuantitativo no requiere el uso de sondas localizadas fuera del gen(es) o locus (loci) cromosómico(s) endógeno(s) que se están modificando, de modo que se obvia la necesidad de conocer la secuencia que flanquea el(los) gen(es) o locus (loci) modificado(s). Esta es una mejora significativa del modo en el que se ha realizado la detección selectiva en el pasado y lo convierte en un abordaje hace menos trabajoso y mucho más rentable para la detección selectiva de acontecimientos de recombinación homóloga en células eucariotas.
Procedimientos
Muchas de las técnicas usadas para construir vectores de ADN descritos en el presente documento son técnicas de biología molecular estándar bien conocidas para el experto en la técnica (p. ej., Sambrook, J., E. F. Fritsch y T. Maniatis. Molecular Cloning: A Laboratory Manual, Segunda Edición, Vol. 1, 2 y 3, 1989; Current Protocols in Molecular Biology, Eds. Ausubel, y col., Greene Publ. Assoc., Wiley-Interscience, NY). Toda la secuenciación del ADN se realiza mediante técnicas estándar usando un secuenciador ABI 373A y kit de secuenciación y Taq Dideoxy Terminator (Applied Biosystems, Inc., Foster City, CA).
Etapa 1. Obtención de un clon grande de ADN genómico que contiene el(los) gen(es) o locus (loci) cromosómico(s) de interés.
Un gen(es) o locus (loci) de interés se puede seleccionar en base a criterios específicos, tal como datos
5
10
15
20
25
30
35
40
45
50
55
60
65
estructurales o funcionales detallados, o se puede seleccionar en ausencia de dicha información detallada ya que los potenciales genes o fragmentos génicos se predicen mediante los esfuerzos de los diversos proyectos de secuenciación genómica. Es importante que cabe destacar que no es necesario conocer la secuencia completa y la estructura génica de un gen(es) de interés para aplicar el procedimiento descrito en este documento para producir LTVEC. De hecho, la única información de secuencia que se requiere es aproximadamente 80.100 nucleótidos para obtener el clon genómico de interés, así como para generar las cajas de homología usadas en la fabricación del LTEVC (descrito con detalle más adelante) y para fabricar sondas para usar en ensayos de MDA cuantitativos.
Una vez que se ha seleccionado un(os) gen(es) o locus (loci) de interés se obtiene un clon(es) genómico(s) grande(s) que contiene(n) este(os) gen(es) o locus (loci). Este(os) clon(es) se pueden obtener de uno cualquiera de varios modos, incluidos, entre otros, detección selectiva de bibliotecas de ADN adecuadas (p. ej., BAC, PAC, YAC o cósmicos) mediante técnicas hibridación estándar o PCR o mediante cualquier otro procedimiento familiar para el experto en la técnica.
Etapa 2. Fijación de las cajas de homología 1 y 2 a un casete y generación de LTVEC.
Las cajas de homología marcan los sitios de recombinación homóloga bacteriana que se usan para generar LTVEC a partir de fragmentos genómicos clonados grandes (Figura 1). Las cajas de homología son segmentos cortos de aDn, generalmente bicatenarios y de al menos 40 nucleótidos, que son homólogos a regiones dentro del fragmento genómico clonado grande que flanquea la “región que se va a modificar". Las cajas de homología se unen al casete de modificación de modo que tras la recombinación homóloga en bacterias, el casete de modificación sustituye a la región que se va a modificar (Figura 1). La técnica de crear un vector dirigido usando recombinación homóloga bacteriana se puede realizar en diversos sistemas (Yang y col., Nat Biotechnol, 15:859-65, 1997; Muyrers y col., Nucleic Acids Res, 27:1555-7,1999; Angrand y col., Nucleic Acids Res, 27:e16, 1999; Narayanan y col., Gene Ther, 6:442-7, 1999; Yu, y col., Proc Natl Acad Sci USA, 97:5978-83, 2000). Un ejemplo de una tecnología favorecida actualmente en uso en la clonación de ET (Zhang y col., Nat Genet, 20:123-8,1998; Narayanan y col., Gene Ther, 6:442-7,1999) y variaciones de esta tecnología (Yu, y col., Proc Natl Acad Sci USA, 97:5978-83, 2000). ET se refiere al recE (Hall y Kolodner, Proc Natl Acad Sci USA, 91 :3205-9,1994) y las proteínas recT (Kusano y col., Gene, 138:17-25,1994) que portan la reacción de recombinación homóloga. RecE es una exonucleasa que recorta una hebra de ADN bicatenaria lineal (esencialmente el fragmento de ADN donante descrito más adelante) de 5' a 3', dejando detrás un fragmento bicatenario lineal con un saliente monocatenario en 3'. Este saliente monocatenario está recubierto por la proteína recT, que tiene actividad de unión de ADN monocatenario (ssADN) (Kovall y Matthews, Science, 277: 1824-7,1997). La clonación de ET se realiza usando E. coli que expresa de forma transitoria productos génicos de E. coli de recE y recT (Hall y Kolodner, Proc Natl Acad Sci USA, 91 :3205-9,1994; Clark y col., Cold Spring Harb Symp Quant Biol, 49: 453-62,1984; Noirot y Kolodner, J Bioi Chem, 273:12274- 80,1998; Thresher y col., J Mol Bioi, 254:364-71,1995; Kolodner y col., Mol Microbiol, 11 :23-30,1994; Hall y col., J Bacteriol, 175:277-87,1993) y la proteína Agam del bacteriófago lambda (A) (Murphy, J Bacteriol, 173:5808-21, 1991; Poteete y col., J Bacteriol, 170:2012-21, 1988). La proteína Agam se requiere para proteger el fragmento de ADN donante de la degradación por el sistema de exonucleasas recBC (Myers y Stahl, Annu Rev Genet, 28:49-70,1994) y se requiere para una eficiente clonación de ET en huéspedes recBC+ tal como la cepa DH10b de E. coli.
La región que se va a modificar y sustituir usando recombinación homóloga bacteriana puede variar de cero nucleótidos de longitud (creando una inserción en el locus original) a muchas decenas de kilobases (creando una deleción y/o sustitución del locus original). Dependiendo del casete de modificación, la modificación puede tener como resultado lo siguiente:
(a) deleción de secuencias de codificación, segmentos génicos o elementos reguladores;
(b) alteración(es) de las secuencias de codificación, segmentos génicos o elementos reguladores, incluidas sustituciones, adiciones y fusiones (p. ej., marcadores epítopos o creación de proteínas bifuncionales como las que tiene GFP);
(c) inserción de nuevas secuencias de codificación, segmentos génicos o elementos reguladores, como aquéllas para genes marcadores seleccionables o genes indicadores o colocación de genes nuevos bajo control de la transcripción endógeno;
(d) creación de alelos condicionales mediante, por ejemplo, la introducción de sitios loxP que flanquean a la región que se va a escindir por la Cre recombinasa (Abremski y Hoess, J Bioi Chem, 259:1509-14, 1984), o sitios FRT que flanquean a la región va a escindir la Flp recombinasa (Andrews y col., Cell, 40:795-803, 1985; Meyer-Leon y col., Cold Spring Harb Symp Quant Bioi, 49:797-804,1984; Cox, Proc Natl Acad Sci USA, 80:4223-7,1983); o
(e) sustitución de secuencias de codificación o segmentos génicos de una especie con secuencias de codificación ortólogas de una especie diferente, por ejemplo sustituyendo un locus genético murino con el locus genético humano ortólogo para someter a ingeniería a un ratón en el que el locus concreto se ha “humanizado”.
Cualquiera o todas estas modificaciones se puede incorporar en un LTVEC. Más adelante, en el Ejemplo 1, se proporciona un ejemplo específico no limitante en el que una secuencia de codificación endógena está completamente delecionada y sustituida simultáneamente con un gen indicador así como un marcador seleccionable, además de las ventajas del procedimiento descrito en este documento en comparación con las
5
10
15
20
25
30
35
40
45
50
55
60
65
tecnologías anteriores.
Etapa 3 (opcional). Verificar que cada LTVEC se ha sometido a ingeniería correctamente.
Verificar que cada LTVEC se ha sometido a ingeniería correctamente mediante:
a. PCR diagnóstico para verificar las nuevas uniones creadas mediante la introducción del fragmento donante en el o los genes o locus (loci) cromosómicos de interés, Los fragmentos de PCR obtenidos de este modo se pueden secuenciar para verificar adicionalmente las nuevas uniones creadas mediante la introducción del fragmento donante en el o los genes o locus (loci) cromosómicos de interés,
b. Digestión diagnóstica con enzimas de restricción para garantizar que solo las modificaciones deseadas se han introducido en el LTEVC durante el proceso de recombinación homóloga bacteriana.
c. Secuenciación directa de los LTVEC, en concreto las regiones que abarcan el sitio de modificación para verificar las nuevas uniones creadas mediante la introducción del fragmento donante en el o los genes o locus (loci) cromosómicos de interés.
Etapa 4. Purificación, preparación y linealización del ADN de LTVEC para introducción en células eucariotas.
a. Preparación de ADN de LTVEC:
Preparar ADN miniprep. (Sambrook, J., E. F. Fritsch y T. Maniatis. Molecular Cloning: A Laboratory Manual, Segunda Edición, Vols 1,2 y 3, 1989; Tillett and Neilan, Biotechniques, 24:568-70, 572, 1998;
http://www.qiagen.com/ literature/handbooks/plkmini/ plm_399.pdf) del LTVEC seleccionada y retransformar el ADN miniprep de LTVEC en E. coli usando electroporación (Sambrook, J., E. F. Fritsch y T. Maniatis, Molecular Cloning: A Laboratory Manual, Segunda edición, Vols 1, 2, and 3,1989). Esta etapa es necesaria para deshacerse del plásmido que codifica las proteínas recombinogénicas que se usan para la etapa de recombinación homóloga bacteriana (Zhang y col., Nat Genet, 20:123-8, 1998; Narayanan y col., Gene Ther, 6:442-7,1999). Es útil deshacerse de este plásmido (a) porque es un plásmido de un número elevado de copias y puede reducir los rendimientos obtenidos en las preparaciones de LTVEC a gran escala; (b) eliminar la posibilidad de inducir la expresión de las proteínas recombinogénicas y (c) porque puede enmascarar el mapeo físico del LTVEC. Antes de introducir el LTEVC en las células eucariotas se preparan cantidades más grandes de ADN de LTEVC mediante metodología estándar (
http://www.qiagen.com/literature/handbooks/plk/plklow.pdf; Sambrook, J., E. F. Fritsch And 1. Maniatis. Molecular Cloning: A Laboratory Manual, Segunda Edición, Vols 1,2 y 3,1989; Tillett and Neilan, Biotechniques, 24:568-70, 572,1998). No obstante, esta etapa se puede sortear si se usa un procedimiento de recombinación homóloga bacteriana que usa un profago recombinogénico, es decir donde los genes que codifican las proteínas recombinogénicas se integran en el cromosoma bacteriano (Yu, y col., Proc Natl Acad Sci USA, 97:5978-83, 2000).
http://www.qiagen.com/ literature/handbooks/plkmini/ plm_399.pdf) del LTVEC seleccionada y retransformar el ADN miniprep de LTVEC en E. coli usando electroporación (Sambrook, J., E. F. Fritsch y T. Maniatis, Molecular Cloning: A Laboratory Manual, Segunda edición, Vols 1, 2, and 3,1989). Esta etapa es necesaria para deshacerse del plásmido que codifica las proteínas recombinogénicas que se usan para la etapa de recombinación homóloga bacteriana (Zhang y col., Nat Genet, 20:123-8, 1998; Narayanan y col., Gene Ther, 6:442-7,1999). Es útil deshacerse de este plásmido (a) porque es un plásmido de un número elevado de copias y puede reducir los rendimientos obtenidos en las preparaciones de LTVEC a gran escala; (b) eliminar la posibilidad de inducir la expresión de las proteínas recombinogénicas y (c) porque puede enmascarar el mapeo físico del LTVEC. Antes de introducir el LTEVC en las células eucariotas se preparan cantidades más grandes de ADN de LTEVC mediante metodología estándar (
http://www.qiagen.com/literature/handbooks/plk/plklow.pdf; Sambrook, J., E. F. Fritsch And 1. Maniatis. Molecular Cloning: A Laboratory Manual, Segunda Edición, Vols 1,2 y 3,1989; Tillett and Neilan, Biotechniques, 24:568-70, 572,1998). No obstante, esta etapa se puede sortear si se usa un procedimiento de recombinación homóloga bacteriana que usa un profago recombinogénico, es decir donde los genes que codifican las proteínas recombinogénicas se integran en el cromosoma bacteriano (Yu, y col., Proc Natl Acad Sci USA, 97:5978-83, 2000).
b. Linealización del ADN de LTVEC:
Para preparar el LTVEC para la introducción en células eucariotas, el LTVEC se linealiza preferentemente de un modo que deja el ADN del (los) gen(es) endógeno(s) modificado(s) o el locus (loci) cromosómico flanqueado por brazos largos de homología. Esto se puede conseguir linealizando el LTEVC, preferentemente en la estructura del vector, con cualquier enzima de restricción que solo digiere rara vez. Ejemplos de enzimas de restricción adecuadas incluyen Notl, Pacl, Sfil, Srfl, Swal, Fsel, etc. La elección de la enzima de restricción se puede determinar experimentalmente (es decir, analizando varias cortadoras raras candidatas diferentes) o, si la secuencia del LTVEC se conoce, analizando la secuencia y eligiendo una enzima de restricción adecuada en base al análisis. En situaciones en las que el LTVEC tiene una estructura del vector que contiene sitios ratos tales como CosN, después se puede escindir con enzimas que reconocen dichos sitios, por ejemplo X terminasa (Shizuya y col., Proc Natl Acad Sci USA, 89: 8794-7,1992; Becker y Gold, Proc Natl Acad Sci USA, 75:4199-203,1978; Rackwitz y col. Gene, 40:259-66,1985).
Etapa 5. Introducción del LTVEC en las células eucariotas y selección de células en las que ha tenido lugar la introducción satisfactoria del LTVEC.
El ADN del LTVEC se puede introducir en células eucariotas usando metodología estándar, tal como transfección mediada por fosfato cálcico, lípidos o electroporación (Sambrook, J., E. F. Fritsch y T. Maniatis. Molecular Cloning: A Laboratory Manual, Segunda edición, Vols 1,2, y 3,1989). Las células en las que se ha introducido con éxito el LTVEC se pueden seleccionar mediante exposición a agentes de selección, dependiendo del gen del marcador seleccionable que se ha sometido a ingeniería en el LTVEC. Como ejemplo no limitante, si el marcador seleccionable es el gen de la neomicina fosfotransferasa (neo) Beck, y col., Gene, 19:327-36,1982), las células que han captado el LTVEC se pueden seleccionar en medio que contiene G418; las células que no tienen LTVEC morirán, mientras que las células que han captado el LTVEC sobrevivirán (Santerre, y col., Gene, 30:147-56,1984). Otros marcadores seleccionables adecuados incluyen cualquier fármaco que tenga actividad en células eucariotas (Joyner, The Practical Approach Series, 293,1999), tal como higromicina B (Santerre, y col., Gene, 30:147-56,1984; Bernard, y col., Exp Cell Res, 158:237-43, 1985; Giordano y McAllister, Gene, 88:285-8,1990), Blasticidina S (Izumi, y col., Exp Cell Res, 197:229-33, 1991), y otros que son familiares para los expertos en la técnica.
5
10
15
20
25
30
35
40
45
50
55
60
65
Etapa 6. Detección selectiva de acontecimientos de recombinación homóloga en células eucariotas usando ensayo cuantitativo para la modificación de alelo (MDA).
Las células eucariotas que se han modificado con éxito dirigiendo el LTVEC en el locus de interés se pueden identificar usando diversos abordajes que pueden detectar la modificación de alelo dentro del locus de interés y que no dependen de ensayos que abarcan la totalidad del brazo o brazos de homología. Dichos abordajes pueden incluir, entre otros:
(a) PCR cuantitativa usando TaqMan® (Lie y Petropoulos, Curr Opin Biotechnol, 9:43-8, 1998);
(b) Ensayo de MDA cuantitativo usando balizas moleculares (Tan, y col., Chemistry, 6:1107-11,2000)
(c) Hibridación de fluorescencia in situ FISH (Laan, y col., Hum Genet, 96:275-80,1995) o hibridación genómica comparativa (CGH) (Forozan, y col. Trends Genet, 13:405-9, 1997; Thompson y Gray, J Cell Biochem Suppl, 139-43,1993; Houldsworth y Chaganti, Am J Pathol, 145:1253-60, 1994);
(d) Amplificación de ADN isotérmica (Lizardi, y col., Nat Genet, 19:225-32, 1998; Mitra y Church, Nucleic Acids Res, 27:e34, 1999); y
(e) Hibridación cuantitativa con una sonda(s) inmovilizada (s) (Southern, J. Mol. BioI., 98: 503,1975; Kafatos FC; Jones CW; Efstratiadis A, Nucleic Acids Res 7(6):1541-52,1979).
Los solicitantes proporcionan en el presente documento un ejemplo en el que se usa PCR cuantitativa TaqMan® para la detección selectiva con éxito de células eucariotas diana. En este ejemplo no limitante, se usa TaqMan® para identificar células eucariotas que han sufrido recombinación homóloga en la que una porción de uno de dos alelos endógenos en un genoma diploide se ha sustituido por otra secuencia. En contraste con los procedimientos tradicionales en los que una diferencia en la longitud del fragmento de restricción que abarca la totalidad del brazo o brazos de homología indica la modificación de uno de dos alelos, el procedimiento TaqMan® cuantitativo detectará la modificación de un alelo midiendo la reducción del número de copias (por la mitad) del alelo no modificado. Específicamente, la sonda detecta el alelo no modificado y no el alelo modificado. Por tanto, el procedimiento es independiente de la naturaleza exacta de la modificación y no está limitado a la sustitución de secuencia descrita en este ejemplo. TaqMan se usa para cuantificar el número de copias de un molde de ADN en una muestra de ADN genómico, especialmente por comparación con un gen de referencia (Lie y Petropoulos, Curr Opin Biotechnol, 9:43- 8, 1998). El gen de referencia se cuantifica en la muestra de ADN genómico como el(los) gen(es) o locus (loci) diana. Por tanto se realizan dos amplificaciones TaqMan® (cada uno con su correspondiente sonda). Una sonda TaqMan® determina el "Ct" (ciclo umbral) del gen de referencia, mientras que la otra sonda determina el Ct de la región del (los) gen(es) o locus (loci) diana que se sustituye al funcionar como diana con éxito. El Ct es una cantidad que refleja la cantidad de ADN de partida para cada una de las sondas TaqMan®, es decir una secuencia menos abundante requiere más ciclos de PCR para alcanzar el ciclo umbral. Disminuyendo a la mitad el número de copias de la secuencia molde para una reacción TaqMan® tendrá como resultado un incremento de aproximadamente una unidad Ct. Las reacciones TaqMan® en las células en las que un alelo del gen(es) o locus (loci) diana se ha sustituido mediante recombinación homóloga tendrá como resultado un incremento de un Ct para la reacción TaqMan® diana sin un incremento del Ct para el gen de referencia cuando se compara con el aDn de células no diana. Esto permite la fácil detección de la modificación de un alelo del o los genes de interés en células eucariotas usando LTVEC.
Como se ha indicado antes, la detección selectiva de la modificación de alelo (MDA) es el uso de cualquier procedimiento que detecta la modificación de un alelo para identificar las células que han sufrido recombinación homóloga. No es un requisito que los alelos diana sean idénticos (homólogos) entre sí y, de hecho, pueden contener polimorfismos, como es el caso en la progenie resultante de cruzar dos cepas diferentes de ratones. Además, Una situación especial que también está cubierta por la detección selectiva de MDA es apuntar a los genes que normalmente están presentes como una única copia en las células, tales como algunos de los localizados en los cromosomas sexuales y, en particular, en el cromosoma Y. En este caso, los procedimientos que detectarán la modificación del único alelo diana, tal como PCR cuantitativa, transferencias Southern, etc., se pueden usar para detectar el acontecimiento diana. Está claro que el procedimiento descrito en este documento se puede usar para generar células eucariotas modificadas incluso cuando los alelos son polimórficos o cuando están presentes en una única copia en las células diana.
Etapa 8. Usos de células eucariotas genéticamente modificadas.
(a) Las células eucariotas genéticamente modificadas generadas mediante los procedimientos descritos en las etapas 1 a 7 se pueden usar en cualquier ensayo in vitro o in vivo, en las que cambiar el fenotipo de la célula es deseable.
(b) La célula eucariota modificada genéticamente generada mediante los procedimientos descritos en las etapas 1 a 7 también se pueden usar para generar un organismo portador de la modificación genética. Los organismos genéticamente modificados se pueden generar mediante varias técnicas diferentes, incluidas, entre otras:
1. Células madre embrionarias (ES) modificadas tales como las células ES de rata y de ratón de uso frecuente. Las células ES se pueden usar para crear ratas o ratones modificadas genéticamente mediante
5
10
15
20
25
30
35
40
45
50
55
60
tecnología de inyección de blastocistos estándar o técnicas de agregación (Robertson, Practical Approach Series, 254, 1987; Wood, y col., Nature, 365:87-9, 1993; Joyner, The Practical Approach Series, 293, 1999), inyección de blastocistos tetraploides (Wang, y col., Mech Dev, 62: 137-45,1997),o clonación y transferencia nuclear (Wakayama,y col., ProcNatlAcadSci USA,96:14984-9,1999). Las células ES derivadas de otros organismos, como conejos (Wang, y col., Mech Dev, 62: 137-45, 1997; Schoonjans, y col., Mol Reprod Dev, 45:439-43, 1996) o pollos (Pain, y col., Development, 122:2339-48,1996) u otras especies deberán poder sufrir modificación(es) genéticas usando los procedimientos descritos en este documento.
2. Se pueden usar protoplastos modificados para generar plantas modificadas genéticamente (por ejemplo, véase la patente de EE.UU. 5,350,689 "Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells", y la patente de EE.UU. 5,508,189 "Regeneration of plants from cultured guard cell protoplasts" y referencias en las mismas).
3. Transferencia nuclear de células eucariotas modificadas a oocitos para generar organismos clonados con alelos modificados (Wakayama, y col., Proc Natl Acad Sci USA, 96:14984-9,1999; Baguisi, y col., Nat Biotechnol, 17:456-61, 1999; Wilmut, y col., Reprod Fertil Dev, 10:639-43, 1998; Wilmut, y col., Nature, 385:810-3,1997; Wakayama, y col., Nat Genet, 24:108-9,2000; Wakayama, y col., Nature, 394:369-74, 1998; Rideout, y col., Nat Genet, 24: 109-10, 2000; Campbell, y col., Nature, 380:64-6,1996).
4. La fusión de células para transferir el alelo modificado a otra célula, incluida la transferencia de cromosoma(s) sometidos a ingeniería y usos de dichas células para generar organismos portadores del alelo modificado o cromosoma(s) sometidos a ingeniería (Kuroiwa, y col., Nat Biotechnol, 18: 1086-1 090, 2000).
5. Los procedimientos descritos en este documento son también susceptible a cualquier otro abordaje que se ha usado o que todavía está pendiente de descubrir.
Aunque muchas de las técnicas usadas en la práctica de las etapas individuales de los procedimientos descritos en este documento son familiares para el experto en la técnica, los solicitantes compiten con la novedad del procedimiento descrito en este documento reside en la combinación única de las etapas y técnicas acopladas con el procedimiento nunca antes descrito de introducir un LTVEC directamente en células eucariotas para modificar un locus cromosómico, y el uso de ensayos MDA cuantitativos para identificar las células eucariotas que se han modificado adecuadamente. Esta nueva combinación representa una mejora significativa sobre las tecnologías previas para crear organismos que poseen modificaciones de genes o loci cromosómicos endógenos.
Ejemplos
Ejemplo 1: Ingeniería de células ES portadoras de una deleción del gen OCR10.
a. Selección de un clon de ADN genómico grande que contiene mOCR10.
Un clon de cromosoma artificial bacteriano (BAC) portador de un fragmento de ADN genómico grande que contenía la secuencia de codificación del gen de OCR10 de ratón (mOCR10) se obtuvo mediante detección selectiva de una biblioteca BAC de ADN genómico de ratón en matriz (Incyte Genomics) usando PCR. Los cebadores usados para la detección selectiva de esta biblioteca derivaron de la secuencia de ADNc del gen mOCR10.
Se usaron dos pares de cebadores:
(a) OCR10.RAA (5'-AGCTACCAGCTGCAGATGCGGGCAG -3') y OCR10.PVlrc (5'-CTCCCCAGCCTGGGTCT GAAAGATGACG3') que amplifica un ADN de 102 pb; y
(b) OCR10.TDY (5'-GACCTCACTIGCTACACTGACTAC-3') y OCR10.QETrc (5'-ACTIGTGTAGGC TGCAGAAGGTCTCTIG3'que amplifica un ADN de 1.500.
Este mOCR10 de BAC contenía aproximadamente 180 kb de ADN genómico, incluida la secuencia de codificación de mOCR10 completa. Este clon de BAC se usó para generar un LTVEC que después se usó para delecionar una porción de la región de codificación de mOCR10 al tiempo que introduce de forma simultánea un gen indicador cuyo codón de iniciación sustituyó con precisión al codón de iniciación de OCR10, así como la inserción de un gen de un marcador seleccionable útil para la selección tanto en E. coli como en células de mamífero tras el gen indicador (Figura 2). El gen indicador (en este ejemplo no limitante LacZ, cuya secuencia está disponible fácilmente para el experto en la técnica) codifica la enzima p-galactosidasa de E. coli. Dada la posición de la inserción de LacZ (su codón de iniciación está en la misma posición que el codón de iniciación de mOCR10), la expresión de LacZ deberá imitar la de Mcor10, como se ha observado en otros ejemplos en los que se realizaron sustituciones similares con LacZ usando tecnologías previas (véase, "Gene trap strategies in ES cells", de W Wurst y A. Gossler, in Joyner, The Practical Approach Series, 293, 1999). El gen LacZ permite realizar un simple ensayo enzimático estándar que pueda revelar sus patrones de expresión in situ, de modo que se proporciona un ensayo sustituto que refleja los patrones de expresión normal del gen(es) o locus (loci) cromosómico(s) reemplazado(s).
5
10
15
20
25
30
35
40
45
50
55
60
65
b. Construcción del fragmento donante y generación de LTVEC.
El casete de modificación usado en la construcción del LTEVC de mOCR10 es el casete lacZ-SV40 polyA-PGKp- EM7neo-PGK poliA en el que lacZ es un gen marcador como se ha descrito antes, poli A de SV40 es un fragmento derivado del virus de simios 40 (Subramanian, y col. Prog Nucleic Acid Res Mol Biol, 19:157-64,1976; Thimmappaya, y col. J Bioi Chem, 253:1613-8,1978; Dhar, y col. Proc Natl Acad Sci USA, 71 :371-5,1974; Reddy, y col. Science, 200:494-502, 1978) y que contiene un sitio de poliadenilación y una señal (Subramanian, y col., Prog Nucleic Acid Res Mol Biol, 19: 157-64,1976; Thimmappaya, y col., J Bioi Chem, 253: 1613-8, 1978; Dhar, y col., Proc Natl Acad Sci USA, 71 :371-5, 1974; Reddy, y col., Science, 200:494-502,1978), PGKp es el promotor de la fosfoglicerato quinasa (PGK) de ratón (Adra, y col., Gene, 60:65-74,1987) (que se ha usado ampliamente para dirigir la expresión de genes de resistencia a fármacos en células de mamífero), EM7 es un fuerte promotor bacteriano que tiene la ventaja de permitir la selección positiva en bacterias de la construcción de LTVEC completada dirigiendo la expresión del gen de la neomicina transferasa (neo, neo es un marcador seleccionable que confiere resistencia a kanamicina en células procariotas y resistencia a G418 en células eucariotas (Beck, y col., Gene, 19:327-36, 1982), y PGK poliA es una región no traducida en 3' derivada del gen de PGK y que contiene un sitio de poliadenilación y una señal (Boer, y col., Biochem Genet, 28:299-308, 1990).
Para construir el LTVEC de mOCR10, en primer lugar se generó un fragmento donante consistente en una caja de homología 1 de mOCR10 (hb1) unida cadena arriba desde el gen de LacZ en el casete de modificación y una caja de homología 2 de mOCR10 (hb2) cadena debajo de la secuencia de neo-PGK poliA en el casete de modificación (Figura 2) usando tecnología de ingeniería genética recombinante estándar. La caja de homología 1 (hb1) consiste en 211 pb de la secuencia no traducida inmediatamente cadena arriba de la metionina de iniciación del marco de lectura abierto de mOCR10 (ORF de mOCR10) (Figura 3A-3D). La caja de homología 2 (hb2) consiste en 216 pb del ORF de mOCR10, que finaliza en el codón de terminación (Figura 3A-3D).
Posteriormente, usando recombinación bacteriana homóloga (Zhang, y col., Nat Genet, 20:123-8,1998; Angrand, y col., Nucleic Acids Res, 27:e16, 1999; Muyrers, y col., Nucleic Acids Res, 27:1555-7,1999; Narayanan, y col., Gene Ther, 6:442-7, 1999; Yu, y col., Proc Natl Acad Sci USA, 97:5978-83, 2000), este fragmento donante se usó para reemplazar con precisión la región de codificación de mOCR10 (desde la metionina de iniciación al codón de terminación) con el casete de inserción, que tiene como resultado la construcción del LTEVEC de mOCR10 (Figura 2). Por tanto, en este LTVEC de mOCR10, la secuencia de codificación de mOCR10 se sustituyó mediante el casete de inserción creando una deleción de aproximadamente 20 kb en el locus de mOCR10 dejando aproximadamente 130 kb de homología cadena arriba (brazo de homología cadena arriba) y 32 kb de homología cadena abajo (brazo de de homología cadena abajo).
Es importante observar que los LTEVEC pueden generarse más rápido y convenientemente a partir de bibliotecas BAC disponibles que dirigiendo vectores fabricados usando las tecnologías previas porque solo se requiere una única etapa de recombinación homóloga bacteriana y la única información de secuencia requerida es la necesaria para generar las cajas de homología. En contraste con ello, abordajes previos para generar vectores dirigidos usando recombinación homóloga bacteriana requieren que se "recorten” vectores dirigidos grandes antes de su introducción en células ES (Hill y col., Genomics, 64: 111-3, 2000). Este recorte es necesario por la necesidad de generar brazos de homología lo bastante cortos para acomodar los procedimientos de detección selectiva usados mediante los abordajes anteriores. Una desventaja principal en el procedimiento de Hill y col. es que se requieren dos etapas de recombinación homóloga adicionales simplemente para recortar (uno para recortar la región cadena arriba del locus modificado y uno para recortar la región cadena abajo del locus modificado). Para ello se necesita sustancialmente más información de secuencia, incluida la información de secuencia que abarca los sitios de recorte.
Además, otra ventaja obvia, ilustrada mediante el ejemplo anterior, es que una deleción muy grande que abarca el gen mOCR10 (aproximadamente 20 kb) se puede generar fácilmente en una única etapa. En contraste con ello, usando tecnologías previas, para conseguir la misma tarea pueden ser necesarias varias etapas y puede implicar marcar las regiones cadena arriba y cadena abajo de las secuencias de codificación con sitios loxP con el fin de usar la Cre recombinasa para eliminar la secuencia flanqueada por estos sitios tras la introducción del locus modificado en células eucariotas. Esto se puede conseguir en una etapa y, por tanto, puede requerir la construcción de dos vectores dirigidos usando diferentes marcadores de selección y dos acontecimientos dirigidos secuenciales en células ES, uno para introducir el sitio loxP en la región cadena arriba de la secuencia de codificación y otro para introducir el sitio loxP en la región cadena debajo de la secuencia de codificación. También debe observarse que la creación de deleciones grandes suele producirse con una eficiencia baja usando las tecnologías de dirección anteriores en células eucariotas, porque la frecuencia de conseguir una recombinación homóloga puede ser baja cuando se usan vectores dirigidos que contienen una deleción grande flanqueada por brazos de homología relativamente cortos. La elevada eficiencia obtenida usando el procedimiento descrito en este documento (véase más adelante) se debe a los brazos de homología muy largos presentes en el LTVEC que incrementan la tasa de recombinación homóloga en células eucariotas.
5
10
15
20
25
30
35
40
45
50
55
60
65
c. Verificación preparación e introducción del ADN de LTVEC de Mocr10 en células ES.
La secuencia que rodea la unión del casete de inserción y la secuencia de homología se verificaron mediante secuenciación del ADN. El tamaño del LTVEC de mOCR10 se verificó mediante análisis de restricción seguido de electroforesis en gel de campo pulsado ((PFGE) (Cantor, y col., Annu Rev Biophys Biophys Chem, 17:287-304,1988; Schwartz y Cantor, Cell, 37:67-75,1984). Se realizó una preparación estándar de plásmidos a gran escala del MTVEC de mOCR10, el ADN del plásmido se digirió con la enzima de restricción Notl, que corta en la estructura del vector del LTVEC de mOCR10 para generar ADN lineal. Después, el ADN linealizado se introdujo en células ES de ratón mediante electroporación (Robertson, Practical Approach Series, 254, 1987; Joyner, The Practical Approach Series, 293,1999; Sambrook y col., Sambrook, J., E. F. Fritsch y T. Maniatis. Molecular Cloning: A Laboratory Manual, Segunda edición, Vols 1, 2, and 3,1989). Las células ES transfectadas con éxito con el LTVEC de mOCR10 se seleccionaron en medio que contiene G418 usando procedimientos de selección estándar (Robertson, Practical Approach Series, 254, 1987; Joyner, The Practical Approach Series, 293,1999).
d. Identificación de clones de células ES diana usando una modificación cuantitativa del ensayo de alelo (MDA).
Para identificar las células ES en las que uno de los dos genes mOCR10 endógenos se han sustituido mediante secuencia de casete de modificación, el ADN de clones de células ES individuales se analizó mediante PCR cuantitativa usando metodología TaqMan® estándar como se ha descrito (Applied Biosystems, TaqMan® Universal PCR Master Mix, número de catálogo PIN 4304437; véase también
http://www.pebiodocs.com/pebiodocs/04304449.pdf). Los cebadores y las sondas TaqMan® usados son como se ha descrito en la Figura 3A-3D. Se realizó detección selectiva de un total de 69 células ES independientes y 3 se identificaron como positivas, es decir como clones en los que una de la secuencia de codificación de mOCR10 endógeno se ha sustituido mediante el casete de modificación descrito anteriormente.
http://www.pebiodocs.com/pebiodocs/04304449.pdf). Los cebadores y las sondas TaqMan® usados son como se ha descrito en la Figura 3A-3D. Se realizó detección selectiva de un total de 69 células ES independientes y 3 se identificaron como positivas, es decir como clones en los que una de la secuencia de codificación de mOCR10 endógeno se ha sustituido mediante el casete de modificación descrito anteriormente.
Son evidentes varias ventajas del abordaje MDA:
(i) no requiere el uso de una sonda fuera del locus que se está modificando, de modo que se obvia la necesidad de saber la secuencia que flanquea el locus modificado.
(ii) requiere muy poco tiempo en comparación con la metodología de trasferencia Southern convencional que ha sido el procedimiento de elección anterior ((Robertson, Practical Approach Series, 254,1987, Joyner, The Practical Approach Series, 293, 1999), de modo que se reduce el tiempo para identificar las células modificadas correctamente desde varios días a solo unas pocas horas.
Esta es una mejora significativa del modo en el que se ha realizado la detección selectiva en el pasado y lo convierte en un abordaje hace menos trabajoso y más rentable para la detección selectiva de acontecimientos de recombinación homóloga en células eucariotas.
Otra ventaja del procedimiento descrito en este documento es que también es superior a las tecnologías anteriores por su capacidad para apuntar a loci diferentes. Usando las tecnologías anteriores se ha demostrado que para ciertos loci, la frecuencia de apuntar a un objetivo con éxito puede ser tan baja como de 1 en 2.000 acontecimientos de integración, quizá incluso menor. Usando el procedimiento descrito en este documento, los solicitantes han demostrado que estos difíciles loci pueden ser las dianas mucho más eficientemente usando LTVEC que contienen brazos de homología largos (es decir, mayores que los permitidos por las tecnologías previas). Como demuestra el ejemplo no limitante descrito anteriormente, los solicitantes han apuntado al locus OCR10, un locus que anteriormente se ha demostrado que es recalcitrante a ser diana usando tecnología convencional. Usando el procedimiento descrito en este documento, los solicitantes han demostrado que han conseguido con éxito llegar a las diana en 3 de 69 clones de células ES en las que se había integrado el LTVEC de mOCR10 (que contienen más de 160 kb de brazos de homología e introduciendo una deleción de 20 kb), mientras que usando la tecnología anterior para apuntar a las células ES (Joyner, The Practical Approach Series, 293,1999) usando un vector basado en plásmidos con brazos de homología más cortos que 10-20 kb al tiempo que también se introduce una deleción inferior a 15 kb, no se identificaron acontecimientos diana entre más de 600 integrantes del vector. Estos datos demuestran claramente la superioridad del procedimiento descrito en este documento sobre las tecnologías previas.
Ejemplo 2: El incremento de la frecuencia de diana y la anulación de la necesidad de usar ADN isogénico cuando se usan LTVEC como los vectores diana.
Como se ha indicado anteriormente, el incremento de la frecuencia de diana obtenido usando brazos de homología largos deberá disminuir el beneficio, si hay alguno, derivado del uso de ADN genómico en la construcción de LTVEC que es isogénico (es decir, de secuencia idéntica) con el ADN de la célula eucariota diana. Para probar esta hipótesis, los solicitantes han construido numerosos LTVEC usando ADN genómico derivado de la misma subcepa de ratón que la célula eucariota que va a ser la diana (probablemente isogénica) y otros numerosos LTVEC usando ADN genómico derivado de las subcepas de ratón que difieren del de la célula eucariota que va a ser la diana (probablemente no isogénico). Los dos conjuntos de LTVEC exhibieron similares frecuencias de diana, que varían de 1-13 % (Tabla 1), lo que indica que la tasa de apuntar a dianas con éxito usando LTVEC no depende de la isogenicidad.
5
10
15
20
25
30
35
TABLA 1
RESUMEN DE LOS GENES DIANA USANDO VECTORES DE CLONES BAC
NO
ISOGÉNICO ___________Aprox. (Kb)
- Gen diana
- Descripción Origen Célula Tamañ Brazo 1 Brazo 2 Del +clones %
- de A ES o del de dianas
- DN LTVEC
- OGH
- Fusión LacZ-ATG Svl CJ7 147 50 90 5 4 4
- OCR10(A)
- Fusión LacZ-ATG SvJ CJ7 150 135 8 20 1,4
- OCR10(B)
- Fusión LacZ-ATG Svl CJ7 169 130 32 20 3 4,3
- MA61
- Fusión LacZ-ATG SvJ CJ7 95 N/D N/D 30 3 4,6
- MA16
- Fusión LacZ-ATG SvJ CJ7 120 N/D N/D 8 8 13
- ISOGÉNICO
- ROR1
- Fusión LacZ intracel. CJ7 CJ7 55 14 14 20 5 5
- ROR1
- Fusión 3xmyc intracel. CJ7 CJ7 55 14 14 20 2 2
- ROR2
- Mutación CJ7 CJ7 45 11 24 0,5 2 2
braquidactili
a y
marcador
Myc
En resumen, el abordaje de crear LTVEC y usarlos directamente como vectores dirigidos combinado con detección selectiva de MDA para acontecimientos de recombinación homóloga en células ES crea un procedimiento nuevo para loci modificados genéticamente mediante ingeniería que es rápido, económico y representa una mejora significativa sobre los tediosos y laboriosos procedimientos que se usaban anteriormente. Por tanto, abre la posibilidad de un rápido análisis genómico funcional in vivo a escala grande de esencialmente todos y cada uno de los genes en el genoma de un organismo en una fracción del tiempo y de los costes requeridos por las metodologías anteriores.
Ejemplo 3: Uso de LTVEC para producir anticuerpos quiméricos y humanos a. Introducción
Los anticuerpos están compuestos por dos cadenas, las cadenas ligera y pesada, cada una de las cuales está formada por dos dominios, los dominios variable y constante. La región variable de la proteína del anticuerpo es la porción en N-terminal del anticuerpo que se une al antígeno. El dominio variable de la cadena pesada está codificado por el ADN del locus génico variable de la cadena pesada, que está compuesto por los segmentos génicos variable (V), de diversidad (D) y de unión (J), Los dominios variables de la cadena ligera están codificados por el ADN de los loci génicos variables de la cadena ligera, kappa y lambda, que están compuestos por los segmentos génicos variable (V) y de unión (J).
La reorganización de los genes de la región variable (VDJ/VJ) durante el desarrollo inicial de las células B es el mecanismo principal por el cual el sistema inmunitario produce anticuerpos capaces de reconocer el enorme número de antígenos con los que se puede encontrar. Esencialmente, mediante reorganizaciones de ADN durante el desarrollo de las células B, se ensambla un enorme repertorio de secuencias de la región variable (VDJ/VJ) que después se unen a una región constante (C) para producir cadenas ligera y pesada completas que se ensamblan para formar un anticuerpo. Una vez montados los anticuerpos funcionales, la hipermutación somática que se produce en los órganos linfoides secundarios introduce diversidad adicional que permite que el organismo seleccione y optimice la afinidad del anticuerpo.
La producción de anticuerpos frente a varios antígenos en especies no humanas supuso inicialmente una gran promesa para la producción a gran escala de anticuerpos que podrían usarse como terapéuticos humanos. No obstante, las diferencias de especies conducen a la producción de anticuerpos en los seres humanos que inactivan los anticuerpos extraños y producen reacciones alérgicas. Posteriormente se hicieron intentos para “humanizar” los anticuerpos, de modo que es menos probable que sean reconocidos como extraños en los seres humanos. Inicialmente, este procedimiento implicó combinar las porciones de unión a antígeno de los anticuerpos derivados de
5
10
15
20
25
30
35
40
45
50
55
60
65
ratones con la región constante de anticuerpos humanos, de modo que se crean anticuerpos recombinantes que eran menos inmunogénicos en seres humanos.
Un segundo abordaje que se desarrolló fue la expresión en fagos, de modo que las regiones V humanas se clonan en una biblioteca de expresión en fagos y las regiones con las adecuadas características de unión se unen a las regiones constantes humanas para crear anticuerpos humanos. No obstante, esta tecnología está limitada por la ausencia de desarrollo de anticuerpos y la maduración de la afinidad que se produce de forma natural en las células B.
Más recientemente se han inactivado genes endógenos de ratones y se han sustituido genes con sus homólogos humanos para producir anticuerpos completamente humanos. Por desgracia, el uso de estas construcciones ha destacado la importancia de una región constante endógena en el desarrollo y optimización de los anticuerpos en las células B. Los ratones que producen anticuerpos completamente humanos tienen respuestas inmunitarias reducidas. Esto puede ser porque los anticuerpos humanos producidos por los ratones transgénicos con construcciones completamente humanas tienen una afinidad menor en comparación con sus homólogos de ratón. La menor afinidad podría efectuar maduración y supervivencia de las células B. De acuerdo con esto, los muy elogiados procedimientos de producir anticuerpos humanizados en ratones y otros organismos, en los que las regiones endógenas variables y constantes de los ratones se inactivan y sustituyen con sus homólogos humanos, no ha tenido como resultado anticuerpos óptimos.
Se ha sugerido el uso de anticuerpos quiméricos que usan regiones variables humanas (VDJ/VJ) con las regiones constantes de ratón a través de la maduración de células B, seguido de la posterior ingeniería de los anticuerpos para sustituir las regiones constantes de ratón con sus homólogos humanos (patente de EE.UU. n° 5,770,429 emitida el 23 de junio de 1998). No obstante, la única metodología que ha existido hasta la fecha para elaborar dichas quimeras ha sido el trans-intercambio, en el que la formación de las quimeras es únicamente un acontecimiento raro que solo se produce en las cadenas pesadas. Hasta la fecha no ha habido ningún mecanismo que produjera, en animales transgénicos, sustitución a gran escala de la totalidad de los segmentos de codificación génica variables con genes humanos, de modo que se producen quimeras en las cadenas tanto pesadas como ligeras. Usando la tecnología de los solicitantes, como se ha divulgado en el presente documento, se generan anticuerpos quiméricos que se pueden alterar después mediante tecnología estándar para crear anticuerpos humanos de alta afinidad.
b. Breve descripción
Se crea un ratón transgénico que produce anticuerpos híbridos que contienen regiones variables humanas (VDJ/VJ) y regiones constantes de ratón. Esto se consigue mediante una sustitución directa in situ de los genes de la región variable de ratón (NDJ/VJ) con sus homólogos humanos. Los loci de inmunoglobulina híbrida resultantes sufrirán el proceso natural de reorganizaciones durante el desarrollo de las células B para producir los anticuerpos híbridos.
Después, los anticuerpos completamente humanos se elaboran reemplazando las regiones constantes del ratón con los homólogos humanos deseados. Este abordaje dará lugar a anticuerpos terapéuticos con mucha mayor eficiencia que los procedimientos anteriores, por ejemplo la “humanización” de los anticuerpos monoclonales de ratón o la generación de anticuerpos completamente humanos en ratones HuMAb. Además, este procedimiento tendrá éxito en la producción de anticuerpos terapéuticos para muchos antígenos para los que los procedimientos anteriores han fallado. Este ratón creará anticuerpos que son una región constante de ratón-humano (VDJ/VJ), que tendrá los beneficios siguientes sobre los ratones HuMAb disponibles anteriormente que producen anticuerpos completamente humanos. Los anticuerpos generados por el nuevo ratón conservarán las regiones Fc murinas que interaccionarán con mayor eficiencia con los otros componentes del complejo del receptor de las células B de ratón, incluidos los componentes de señalización requeridos para la diferenciación adecuada de las células B (tal como Iga e Igb). Adicionalmente, las regiones Fc murinas serán más específicas que las regiones Fc humanas en sus interacciones con los receptores de Fc en las células de ratón, moléculas del complemento etc. Estas Interacciones son importantes para una respuesta inmunitaria fuerte y específica, para la proliferación y maduración de las células B y para la maduración de la afinidad de los anticuerpos.
Dado que existe una sustitución directa de las regiones V-D-J/V-J para las regiones equivalentes de los loci de ratón, todas las secuencias necesarias para la transcripción, recombinación y/o intercambio de vlase adecuadas permanecerán intactas. Por ejemplo, se ha demostrado que el potenciador intrónico de la cadena pesada de la inmunoglobulina murina, Em, es crucial para la recombinación V-D-J así como la expresión génica de la cadena pesada durante las primeras etapas del desarrollo de células B [Ronai, D. Berru, M., y Shulman, M. J. Mol Cell Bioi 19:7031-7040 (1999)], mientras que la región potenciadora en 3' de la cadena pesada de inmunoglobulina parece ser cicla para el intercambio de clase [Pan, Q., Petit-Frere, C., Stavnezer, J., y Hammarstrom, L. Eur J Immunol 30:1019-1029 (2000)] así como la expresión génica de la cadena pesada en estadios posteriores de la diferenciación de las células B [Ong, J., Stevens, S., Roeder, R. G. y Eckhardt, L. A. J Immunol 160:4896-4903 (1998)]. Dadas estas diversas, aunque cruciales, funciones de los elementos de control de la transcripción, es deseable mantener estas secuencias intactas.
5
10
15
20
25
30
35
40
45
50
55
60
65
Los acontecimientos de recombinación requeridos que se producen en los loci de inmunoglobulina durante el curso normal de la diferenciación de las células B pueden aumentar la frecuencia de las reorganizaciones de inmunoglobulina no productoras cuando estos loci se insertan en localizaciones cromosómicas inadecuadas o en múltiples copias, como en los ratones actualmente disponibles. Con las reducciones en la reorganización de inmunoglobulina productora y, por tanto, la señalización adecuada en etapas específicas del desarrollo de las células B se eliminan las células aberrantes, Las reducciones del número de células B en estadios precoces del desarrollo disminuyen significativamente la población global final de células B y limita considerablemente las respuestas inmunitarias de los ratones. Dado que solo habrá un locus quimérico de la cadena pesada o ligera (frente a los loci mutados de inmunoglobulina y con loci transgénicos humanos integrados en distintas localizaciones cromosómicas para las cadenas pesada y ligera en los ratones disponibles actualmente), no debería haber trans-corte y empalme o trans-reorganizaciones de los loci que podría tener como resultado reorganizaciones no productoras o anticuerpos quiméricos terapéuticamente irrelevantes ((Willers, J., Kolb, C. y Weiler, E. Immunobiology 200:150-164 (2000); Fujieda, S., Lin, Y. Q., Saxon, A. y Zhang, K. J Immunol 157:3450-3459 (1996)).
Las sustituciones de las regiones V-D-J o V-J humanas en los loci cromosómicos genuinos de inmunoglobulina murina será sustancialmente más estables con mayores tasas de transmisión a la progenie y disminución del mosaicismo de los genotipos de las células B en comparación con los ratones disponibles actualmente (Tomizuka, K., Shinohara, T., Yoshida, H., Uejima, H., Ohguma, A., Tanaka, S., Sato, K., Oshimura, M., e Ishida, I. Proc Natl Acad Sci (USA) 97:722-727 (2000)). Además, la introducción de las regiones variables humanas (VDJ/VJ) en los loci murinos genuinos in vivo mantendrá la regulación global adecuada de la accesibilidad a la cromatina que previamente se había demostrado importante para los acontecimientos de recombinación en el momento adecuado (Haines, B. B., y Brodeur, P. H. Eur J Immunol. 28:4228-4235 (1998)).
Aproximadamente 1/3 de los anticuerpos humanos contiene cadenas ligera lambda en comparación con los ratones en los que solo 1/20 de los anticuerpos murinos contienen cadenas ligera lambda. Por tanto, la sustitución de las secuencias V-J de la cadena ligera lambda murina con las secuencias -J de la cadena ligera lambda derivadas del locus humano servirá para aumentar el repertorio de los anticuerpos, así como concordar más estrechamente la respuesta inmunitaria humana genuina, de modo que se incrementa la probabilidad de obtener anticuerpos terapéuticamente útiles.
Un beneficio adicional de integrar las secuencias humanas en los loci de inmunoglobulina murina genuina es que no se introducen sitios de integración nuevos que podrían dar lugar a alteraciones mutagénicas en el sitio de inserción e impedir el aislamiento de los ratones homocigotos viables. Esto simplifica considerablemente la producción y mantenimiento de una colonia de ratón de cría.
Lo siguiente proporciona un nuevo procedimiento para producir anticuerpos con todas las ventajas adicionales. Un experto en la técnica reconocerá que el procedimiento general descrito en le presente documento se puede modificar para producir resultados equivalentes.
c. Materiales y procedimientos:
La sustitución precisa de la región variable en el locus de la cadena pesada de ratón (VDJ) con su homólogo humano se ejemplifica usando una combinación de recombinación homóloga o específica de sitio en el ejemplo siguiente, que usa un procedimiento de dos etapas. Un experto en la técnica reconocerá que la sustitución del locus de ratón con el locus humano homólogo u ortólogo se puede conseguir en una o más etapas. De acuerdo con esto, la presente divulgación_contempla la sustitución del locus murino, todo o parte, con cada integración mediante recombinación homóloga.
Se aíslan clones de inserto grande (BAC) que abarcan la región VDJ completa del locus de la cadena pesada humana (Figura 4A). La secuencia de la totalidad de esta región está disponible en los siguientes archivos de GenBank (AB019437, AB019438, AB019439, AB019440, AB019441, X97051 y X54713). En este ejemplo se aíslan clones de insertos grandes (BAC) de los extremos de la región VDJ de ratón como fuente de brazos de homología (Figura 4B) que se usan para dirigir la integración mediante recombinación homóloga de las secuencias VDJ humanas en un procedimiento de dos etapas:
En la primera etapa, el LTVEC1 (Figura 4D) está construido mediante recombinación homóloga en el LTVEC1 de E. coli. El LTVEC1 contiene, en orden: Un brazo de homología grande de ratón derivado de la región cadena arriba de la región DJ de ratón, pero cuyos criterios de valoración absolutos no son importantes; un casete que codifica un marcador seleccionable funcional en las células ES (resistentes a PGK-neomicina en este ejemplo); un sitio loxP; un inserto humano grande que abarca varios segmentos génicos V a través de toda la región DJ; y un brazo de homología de ratón que contiene la región inmediatamente adyacente a, entre otros, los segmentos J de ratón. El extremo 5' del brazo cadena abajo y la colocación de los sitios loxP definen el extremo 3' de la región que se va a reemplazar en el locus. Las células ES de ratón se transformarán mediante técnicas estándar, por ejemplo electroporación, con LTVEC1 linealizado. Dado que la introducción directa de LTVEC1 tiene como resultado una modificación del locus génico variable endógeno, las colinas resistentes a neomicina se pueden someter a detección selectiva para una diana correcta usando un ensayo de MDA. Estas células ES diana pueden dar lugar a ratones
5
10
15
20
25
30
35
40
45
50
55
60
65
que producen anticuerpos con cadenas pesadas híbridas. No obstante, será preferible proceder con las posteriores etapas que eliminarán el resto de los segmentos variables del ratón.
En la segunda etapa, el LTVEC2 (Figura 4C) está construido mediante recombinación homóloga bacteriana en el LTVEC2 de E. coli, en orden: Un brazo de homología de ratón grande que contiene la región adyacente al segmento génico V de ratón más distal, pero que no contiene ningún segmento génico V de ratón; un inserto grande que contiene un número elevado de segmentos génicos V humanos distales; un sitio loxP mutante denominado lox511 [Hoess, R.H., Wierzbicki,A. y Abremski,K. Nucleic Acids Res. 14: 2287-2300 (1986)] en la orientación opuesta a la de los sitios loxP silvestre en LTVEC2 y LTVEC1 (este sitio no se recombinará con los sitios loxP silvestres, pero recombinarán fácilmente con otros sitios lox511); y un sitio loxP silvestre; un segundo marcador seleccionable (PGK- higromicina R en este ejemplo); y un brazo de homología de ratón derivado de la región V, pero cuyos criterios de valoración absolutos no son importantes. El extremo 3' del brazo de homología cadena arriba y la colocación de los sitios loxP definen el extremo 5' de la región que se va a reemplazar en el locus. Las células Es de ratón a las que se dirigió correctamente el LTVEC1 se transformarán después mediante técnicas estándar con LTVEC2 linealizado y colonias resistentes a higromicina se someterán a detección selectiva para apuntar correctamente usando un ensayo de MDA para las modificaciones en el locus génico variable endógeno. Las células ES dianas correctas resultantes de esta transformación se denominarán a continuación “células ES doble diana”.
La posterior expresión transitoria de la CRE recombinasa en las células ES doble diana tendrá como resultado la deleción del resto de la región V de ratón. Como alternativa, las células doble diana se pueden inyectar en los blastocistos huésped para la producción de ratones quiméricos. La cría de los ratones quiméricos resultantes con ratones que expresan la CRE recombinasa al principio del desarrollo tendrá como resultado la deleción del resto de la región V de ratón en la progenie F1. Esta última alternativa aumenta la probabilidad de que el locus de la cadena pesada híbrida se pasará a través de la línea germinal porque implica cultivar las células ES para menos generaciones.
La inclusión d elox511 en LTVEC1 permitirá la inserción de segmentos génicos V humanos adicionales en el locus híbrido. Un abordaje sería usar la recombinación homóloga bacteriana para flanquear un clon de ADN genómico grande que contiene muchos segmentos génicos V humanos adicionales con sitios lox511 y loxP. La cotransformación de dicho clon de ADN genómico grande modificado en las células ES doble diana con un plásmido que expresa transitoriamente CRE recombinasa tendrá como resultado la introducción de segmentos génicos V adicionales mediante intercambio de casete (Bethke, B. y Sauer, B. Nucleic Acids Res. 25:2828-2834 (1997)).
Un segundo abordaje a la incorporación de segmentos génicos V adicionales es apuntar de forma independiente a un clon de ADN genómico diana que contiene muchos segmentos génicos V humanos adicionales en el locus de ratón usando, por ejemplo, los mismos brazos de homología de ratón incluidos en LTVEC2. En este caso, los segmentos génicos V humanos adicionales estarían flanqueados por sitios lox y loxP y las células ES diana se usarían para crear un ratón. Los ratones derivados de las células ES doble diana y los ratones derivados de las células ES que contienen los segmentos génicos V adicionales se criarían con un tercer ratón que dirige la expresión de la CRE recombinasa durante la meiosis. La estrecha proximidad de los dos loci recombinantes durante el apareamiento meiótico tendría como resultado una frecuencia elevada de recombinación intercromosómica inducida por CRE como se ha visto en otros sistemas (Herault, Y., Rassoulzadegan, M., Cuzin, F. y Duboule, D. Nature Genetics 20: 381-384 (1998)).
Otro abordaje es similar al indicado anteriormente, pero, en lugar de introducir los sitios loxP y lox511 con LTVEC 1 y 2 humanos, se introducen en LTVEC de ratón y, después, se usa CRE para apuntar específicamente a los loci humanos mediante intercambio de casete a través de los sitios loxP y lox511 flanqueantes. Ka metodología indicada más adelante demuestra cómo la tecnología de LTVEC se puede usar para colocar el sitio flanqueante sitios de recombinación específicos en los extremos de cualquier gen endógeno de interés en cualquier animal no humano,
El LTVEC1 de ratón contiene un casete insertado mediante recombinación bacteriana cadena abajo, y adyacente, de la región J. Este casete contiene un sitio loxP y un marcador seleccionable bacteriano/de mamífero, tal como resistencia a higromicina. El LTVEC1 contiene, en orden: un brazo de homología grande derivado de la región cadena arriba de la región DJ de ratón (pero dentro del locus génico variable) pero cuyos criterios de valoración absolutos no son importantes; un casete que codifica un marcador seleccionable funcional en las células ES (resistentes a PGK-higromicina en este ejemplo); un sitio loxP; y un brazo de homología de ratón que contiene la región inmediatamente adyacente a, entre otros, los segmentos J de ratón. El extremo 5' del brazo de homología cadena abajo y la colocación de los sitios loxP definen el extremo 3' de la región que se va a reemplazar en el locus. La modificación del extremo 3' del gen variable endógeno en el sitio de la inserción del casete permite la detección de LTVEC1 correctamente insertado en las células ES mediante un ensayo MDA. Los marcadores de resistencia farmacológica están flanqueados por sitios FRT. La introducción de sitios FRT permite la eliminación de cualquier marcador de resistencia farmacológica mediante FLPe en células Es o cruzando los ratones resultantes con un ratón que expresa FLPe en células que tienen potencial de línea germinal.
El LEVRC2 se construye mediante recombinación bacteriana para insertar un casete cadena arriba de la región V más distal de los loci. Este casete contiene un sitio lox511 y un marcador seleccionable bacteriano/de mamífero, tal
5
10
15
20
25
30
35
40
45
50
55
60
65
como resistencia a neomicina. El LTVEC2 contiene, en orden: un brazo grande de homología que contiene la región adyacente al segmento génico V de ratón más distal, pero no contiene ningún segmento génico V de ratón; un sitio lox511 en orientación opuesta a la de los sitios loxP de tipo silvestre en LTVEC2 y LTVEC1; un sitio loxP silvestre; un segundo marcador seleccionable (PGK-neomicinaR en este ejemplo); y un brazo de homología de ratón derivado de la región V (y, por tanto, dentro del locus génico variable), pero cuyos criterios de valoración absolutos no son importantes. El extremo 3' del brazo de homología cadena arriba y la colocación de los sitios loxP definen el extremo 5' de la región que se va a reemplazar en el locus. La modificación del extremo 5' del gen variable endógeno en el sitio de la inserción del casete permite la detección de LTVEC2 correctamente insertado en las células ES mediante un ensayo MDA. Estos LTVEC se introducen juntos o secuencialmente en las células ES usando técnicas estándar y sometidos a detección selectiva para la diana correcta usando un ensayo MDA.
Un BAC humano que contiene la región VDJ/VJ, parte o toda, se modifica mediante recombinación bacteriana para insertar casetes que flanquean las secuencias humanas con los sitios lox511 y loxP. El casete cadena arriba se inserta justo cadena arriba de la región que sustituirá a la región variable de ratón y contiene, en orden, un sitio lox511 seguido de un marcador seleccionable de bacterias/mamífero, tal como resistencia a puromicina. El casete cadena abajo se inserta cadena abajo, y adyacente a, de la región J y contiene, en orden, un sitio loxP seguido de un marcador seleccionable de bacterias, tal como resistencia a espectinomicina.
Se pueden usar varios procedimientos para insertar una pieza grande de la región variable humana que se produce en un único BAC aislado de una biblioteca. Unos pocos de estos se describen a continuación.
Los sitios loxP y lox511 se pueden insertar por separado mediante recombinación bacteriana sobre BAC solapantes que se recombinan entre sí cuando se transforman en células ES. En este caso, el BAC cadena arriba tiene un casete recombinado justo cadena arriba de la región que sustituirá a la región variable de ratón, que tiene un sitio lox511 seguido de un marcador seleccionable de bacterias/mamífero, tal como resistencia a neomicina. El BAC cadena abajo tiene un casete recombinado justo cadena abajo, y adyacente a, de la región J, que contiene un marcador seleccionable bacteriano/de mamífero, tal como resistencia a puromicina seguida de un sitio loxP. Si estos dos BAC no son solapantes, BAC adicionales que unen los BAC de cadena arriba y cadena abajo mediante homología solapante se incorporan en el esquema. Estos se modifican mediante recombinación bacteriana para contener marcadores seleccionables de bacteria/mamífero, tal como resistencia a puromicina, y las BAC cadena arriba y cadena abajo se modifican para contener casetes loxP y lox511 portadores de marcadores de resistencia a neomicina e higromicina.
Los BAC(s) humanos se co-transforman con CRE recombinasa en la línea de células Es que contiene los sitios de recombinación lox511 y loxP flanqueantes de la región variable. Si se usan BAC solapantes, la recombinación homóloga se produce entre ellos para crear un fragmento de ADN más grande y los sitios loxP y lox511 flanqueantes apuntan a este fragmento grande en el locus de ratón. Las células se seleccionan según la resistencia a puromicina y se someten a detección selectiva para la sustitución de la región variable de ratón. Como alternativa, las secuencias de ratón se pueden delecionar primero mediante los dos sitios loxP y, después, las secuencias humanas se pueden introducir mediante los sitios loxP y lox511 restantes.
Un cuarto BAC se puede insertar su el LTVEC1 también contiene un tercer sitio de recombinación específico de sitio, por ejemplo lox2272 (Anal Biochem 2001 Mar 15; 290(2):260-71) justo cadena abajo del gen de resistencia bacteriana/de mamífero, tal como resistencia a puromicina, creando un LTVEC con, en orden, el gen de resistencia a puromicina, un sitio loxP y un sitio lox2272, seguido de las secuencias humanas. Después, el BAC se integra en el locus de inmunoglobulina de ratón, los sitios lox511/lox2272 pueden servir como receptor en una segunda ronda de intercambio de casete, en el que el gen de resistencia a puromicina está sustituido por una porción cadena arriba adicional de la región variable del locus de la inmunoglobulina humana y un gen diferente de resistencia bacteriana/de mamífero flanqueado por los sitios lox511 y lox2272.
Otro procedimiento para insertar una tira más grande de la región variable humana es combinar las secuencias de múltiples BAC in vitro usando sitios de escisión de endonucleasas de restricción raras. Esto se consigue usando recombinación homóloga bacteriana para insertar un sitio loxP y un gen de resistencia a espectinomicina justo cadena abajo del último J del BAC más cadena abajo e insertar un segundo marcador seleccionable bacteriano y un sitio 1-Ceu1 raro en el extremo cadena arriba de las secuencias humanas del BAC cadena abajo. Un sitio lox511 y un marcador seleccionable bacteriano/de mamífero, por ejemplo resistencia a puromicina, se inserta en el extremo cadena arriba de un segundo BAC que contiene una región de la región variable humana cadena arriba de las secuencias en el primer BAC. Un sitio 1-Ceu1 se inserta en el extremo cadena abajo del segundo BAC. Tras la digestión de ambos BAC con 1-Ceu1 y Not1, que es única en la porción de vector de ambos BAC modificados, los dos BAC se unen y se selecciona un recombinante en bacterias para resistencia a puromicina y espectinomicina. El BAC más grande resultante contiene, en orden, un sitio lox511, secuencias humanas cadena arriba, un sitio 1-Ceu1, secuencias humanas cadena abajo, un sitio loxP y un gen de resistencia a espectinomicina. La región entre el sitio lox511 y el sitio loxP se inserta en el locus de la inmunoglobulina de ratón mediante intercambio de casete y selección de puromicina como se ha descrito anteriormente.
5
10
15
20
25
30
35
Un tercer procedimiento para insertar una tira más grande de la región variable humana es combinar las secuencias de múltiples BAC como se ha descrito anteriormente, pero usando recombinación homóloga bacteriana en lugar de digestión de restricción/unión. La misma selección para BAC recombinantes se aplica en bacterias, excepto que solo uno de los dos BAC se digeriría, sus extremos tras la digestión se diseñarían para ser homólogos del otro BAC "receptor" y el BAC receptor estaría en una cepa bacteriana modificada para ser permisiva para la recombinación homóloga bacteriana.
Las últimas etapas en la creación del ratón productor de anticuerpos monoclonales constantes de ratón variables humanos serán realizando las sustituciones equivalentes de la región variable sobre los loci de la cadena ligera lambda y kappa y criar los tres loci híbridos con homocigosidad juntos en el mismo ratón. El ratón transgénico resultante tendrá un genoma que comprende los loci génicos variables de la cadena ligera y pesada completamente humanas unidos operablemente a una región constante de ratón completamente endógena de un modo tal que el ratón produce un suero que contiene un anticuerpo que comprende una región variable humana y una región constante de ratón en respuesta a la estimulación antigénica. Dicho ratón se puede usar después como fuente de ADN que codifica las regiones variables de anticuerpos humanos. Usando tecnología recombinante estándar, el ADN que codifica las regiones variables de las cadenas pesada y ligera del anticuerpo está unido operablemente al ADN que codifica las regiones constantes de las cadenas pesada y ligera humanas en células tal como las células CHO, que son capaces de expresar anticuerpos activos; Las células se cultivan en las condiciones adecuadas para expresar los anticuerpos completamente humanos, que después se recuperan. Las secuencias que codifican regiones variables se pueden aislar mediante, por ejemplo, amplificación por PCR o clonación de ADNc. En una realización preferente, los hibridomas hechos de ratones transgénicos que comprenden algunos o todos los loci de la región variable de inmunoglobulina humana (Kohler y Milstein, Eur. J. Immunol., 6:511-519 (1976) pueden ser usados como fuente de ADN que codifica las regiones variables humanas.
En resumen, el abordaje de crear LTVEC y usarlos directamente como vectores dirigidos combinado con detección selectiva de MDA para acontecimientos de recombinación homóloga en células ES crea un procedimiento nuevo para loci modificados genéticamente mediante ingeniería que es rápido, económico y representa una mejora significativa sobre los tediosos y laboriosos procedimientos que se usaban anteriormente. Por tanto, abre la posibilidad de un rápido análisis genómico funcional in vivo a escala grande de esencialmente todos y cada uno de los genes en el genoma de un organismo en una fracción del tiempo y de los costes requeridos por las metodologías anteriores.
Aunque la invención anterior se ha descrito con algún detalle a modo de ilustración y ejemplos, es fácilmente evidente para los expertos en la técnica que se pueden realizar ciertos cambios y modificaciones en las enseñanzas de la invención.
Claims (15)
- 5101520253035404550556065REIVINDICACIONES1. Un procedimiento para producir un anticuerpo que comprende una región variable humana y una región constante de roedor, que comprende exponer a estimulación antigénica a un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce dicho anticuerpo, donde dicho locus híbrido comprende segmentos génicos V, D y J humanos unidos operablemente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
- 2. Un procedimiento para producir un anticuerpo, que comprende una región variable humana y una región constante humana, que comprende exponer a estimulación antigénica a un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpo que tiene una región variable humana y una región constante de roedor, unir operativamente el ADN que codifica la región variable humana de dicho anticuerpo al ADN que codifica una región constante humana y expresar un anticuerpo que comprende una región variable humana y una región constante humana de dicho ADN unido operativamente, donde dicho locus híbrido comprende los segmentos génicos V, D y J humanos unidos operativamente a regiones constantes de cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
- 3. El procedimiento de la reivindicación 1 o 2, donde dicho locus de cadena pesada de inmunoglobulina híbrido comprende los segmentos génicos V, D y J humanos unidos operativamente a un locus de región constante de cadena pesada de inmunoglobulina de roedor.
- 4. El procedimiento de la reivindicación 3, donde dicho locus de cadena pesada de inmunoglobulina híbrido comprende un locus de región variable de inmunoglobulina humana unido operativamente a un locus de región constante de cadena pesada de inmunoglobulina de roedor.
- 5. El procedimiento de una cualquiera de las reivindicaciones precedentes, donde dicho roedor comprende dicho locus de inmunoglobulina de cadena pesada híbrido y un locus de inmunoglobulina de cadena ligera híbrido, donde dicho locus de inmunoglobulina de cadena ligera híbrido comprende los segmentos génicos V y J humanos unidos operativamente a las regiones constantes de cadena ligera de roedor.
- 6. El procedimiento de la reivindicación 5, donde dicho locus de cadena ligera de inmunoglobulina híbrido es un locus de cadena ligera kappa o un locus de cadena ligera lambda.
- 7. El procedimiento de una cualquiera de las reivindicaciones precedentes, donde dicho locus de cadena pesada de de inmunoglobulina híbrido experimenta intercambio de clase para producir un anticuerpo que comprende una región variable humana y una región constante de roedor.
- 8. El procedimiento de una cualquiera de las reivindicaciones precedentes, donde dicho roedor es un ratón, y dicho ratón comprende un locus de cadena pesada de inmunoglobulina híbrido que comprende los segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de cadena pesada de ratón.
- 9. El procedimiento de una cualquiera de las reivindicaciones 2 a 8, donde el ADN que codifica las regiones variables humanas está unido operativamente al ADN que codifica una región constante humana en una célula capaz de expresar anticuerpos activos.
- 10. El procedimiento de la reivindicación 5, donde dicho roedor comprende dicho locus de inmunoglobulina de cadena pesada híbrido y dicho locus de cadena ligera de inmunoglobulina híbrido, que comprende proporcionar secuencias de ADN que codifican las regiones variables de las cadenas pesada y ligera del anticuerpo unidas operativamente al ADN que codifica las regiones constantes de cadena ligera humana en una célula capaz de expresar un anticuerpo, cultivar la célula en condiciones tales como para expresar el anticuerpo y recuperar el anticuerpo.
- 11. El procedimiento de una cualquiera de las reivindicaciones precedentes, donde un hibridoma que comprende ADN que codifica regiones variables humanas se prepara a partir de dicho roedor.
- 12. El procedimiento de acuerdo con una cualquiera de las reivindicaciones 2 a 11, donde dicho anticuerpo que comprende una región variable humana y una región constante humana es un anticuerpo terapéutico.
- 13. El uso de un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpo que comprende una región variable humana y una región constante de roedor, para producir un anticuerpo frente a un antígeno, donde dicho locus híbrido comprende segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.
- 14. El uso de un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpo que comprende una región variable humana y una región constante de roedor, para crear un anticuerpoque comprende una región variable humana y una región constante humana, donde dicho locus híbrido comprende los segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de la cadena pesada de roedor, donde dicho roedor no produce anticuerpos completamente humanos y donde dicho uso comprende unir operativamente el ADN que codifica la región variable humana de dicho anticuerpo producido en el roedor al ADN 5 que codifica las regiones constantes humanas.
- 15. El procedimiento de una cualquiera de las reivindicaciones 1 a 12, o el uso de acuerdo con la reivindicación 13 o 14, donde dicho roedor es una rata.10 16. Un roedor que comprende un locus de cadena pesada de inmunoglobulina híbrido que produce un anticuerpoque comprende una región variable humana y una región constante de roedor, donde dicho locus híbrido comprende segmentos génicos V, D y J humanos unidos operativamente a las regiones constantes de la cadena pesada de roedor y donde dicho roedor no produce anticuerpos completamente humanos.Figura 1
imagen1
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/784,859 US6596541B2 (en) | 2000-10-31 | 2001-02-16 | Methods of modifying eukaryotic cells |
US784859 | 2001-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2660749T3 true ES2660749T3 (es) | 2018-03-26 |
Family
ID=25133744
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES02709544T Expired - Lifetime ES2391391T5 (es) | 2001-02-16 | 2002-02-15 | Procedimientos de modificar células eucariotas |
ES16171561T Expired - Lifetime ES2744220T3 (es) | 2001-02-16 | 2002-02-15 | Producción de anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de roedor |
ES16171559T Expired - Lifetime ES2725712T5 (es) | 2001-02-16 | 2002-02-15 | Procedimiento de modificar células eucariotas |
ES14172420T Expired - Lifetime ES2608362T5 (es) | 2001-02-16 | 2002-02-15 | Roedor capaz de producir anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de roedor |
ES14163642T Expired - Lifetime ES2827482T3 (es) | 2001-02-16 | 2002-02-15 | Uso de un ratón para producir anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de ratón como fuente de ADN que codifica una región variable humana de dicho anticuerpo |
ES10010741.6T Expired - Lifetime ES2556767T3 (es) | 2001-02-16 | 2002-02-15 | Procedimientos de modificar células eucariotas |
ES14172437.7T Expired - Lifetime ES2660749T3 (es) | 2001-02-16 | 2002-02-15 | Un procedimiento para producir un anticuerpo que comprende una región variable humana y una región constante de roedor |
ES19203913T Expired - Lifetime ES2869225T3 (es) | 2001-02-16 | 2002-02-15 | Ratón transgénico que produce anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de ratón |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES02709544T Expired - Lifetime ES2391391T5 (es) | 2001-02-16 | 2002-02-15 | Procedimientos de modificar células eucariotas |
ES16171561T Expired - Lifetime ES2744220T3 (es) | 2001-02-16 | 2002-02-15 | Producción de anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de roedor |
ES16171559T Expired - Lifetime ES2725712T5 (es) | 2001-02-16 | 2002-02-15 | Procedimiento de modificar células eucariotas |
ES14172420T Expired - Lifetime ES2608362T5 (es) | 2001-02-16 | 2002-02-15 | Roedor capaz de producir anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de roedor |
ES14163642T Expired - Lifetime ES2827482T3 (es) | 2001-02-16 | 2002-02-15 | Uso de un ratón para producir anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de ratón como fuente de ADN que codifica una región variable humana de dicho anticuerpo |
ES10010741.6T Expired - Lifetime ES2556767T3 (es) | 2001-02-16 | 2002-02-15 | Procedimientos de modificar células eucariotas |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES19203913T Expired - Lifetime ES2869225T3 (es) | 2001-02-16 | 2002-02-15 | Ratón transgénico que produce anticuerpos híbridos que contienen regiones variables humanas y regiones constantes de ratón |
Country Status (19)
Country | Link |
---|---|
US (21) | US6596541B2 (es) |
EP (9) | EP2787075B2 (es) |
JP (7) | JP4412900B2 (es) |
AU (1) | AU2002244023B2 (es) |
CA (1) | CA2438390C (es) |
CY (8) | CY1113964T1 (es) |
CZ (1) | CZ305619B6 (es) |
DE (6) | DE10010741T1 (es) |
DK (9) | DK1360287T4 (es) |
ES (8) | ES2391391T5 (es) |
HK (4) | HK1057058A1 (es) |
HU (1) | HU231221B1 (es) |
MX (2) | MXPA03007325A (es) |
NZ (1) | NZ527629A (es) |
PL (1) | PL217086B1 (es) |
PT (8) | PT3085779T (es) |
TR (2) | TR201907641T4 (es) |
WO (1) | WO2002066630A1 (es) |
ZA (1) | ZA200306275B (es) |
Families Citing this family (1035)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6908744B1 (en) * | 2000-03-14 | 2005-06-21 | Regeneron Pharmaceuticals, Inc. | Methods of stimulating cartilage formation |
US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US20050144655A1 (en) | 2000-10-31 | 2005-06-30 | Economides Aris N. | Methods of modifying eukaryotic cells |
GB0115256D0 (en) | 2001-06-21 | 2001-08-15 | Babraham Inst | Mouse light chain locus |
EP3269235B1 (en) | 2001-11-30 | 2022-01-26 | Amgen Fremont Inc. | Transgenic mice bearing human ig lambda light chain genes |
EP1463512B1 (en) | 2002-01-11 | 2014-05-28 | biOasis Technologies Inc. | Use of p97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes |
EP1474522B1 (en) * | 2002-01-18 | 2012-03-07 | Morphotek, Inc. | A method for generating engineered cells for locus specific gene regulation and analysis |
USRE47770E1 (en) | 2002-07-18 | 2019-12-17 | Merus N.V. | Recombinant production of mixtures of antibodies |
CA2965865C (en) | 2002-07-18 | 2021-10-19 | Merus N.V. | Recombinant production of mixtures of antibodies |
WO2004022738A1 (en) * | 2002-09-09 | 2004-03-18 | California Institute Of Technology | Methods and compositions for the generation of humanized mice |
US20100069614A1 (en) * | 2008-06-27 | 2010-03-18 | Merus B.V. | Antibody producing non-human mammals |
EP2395016A3 (en) | 2003-05-30 | 2012-12-19 | Merus B.V. | Design and use of paired variable regions of specific binding molecules |
GB2408980B (en) * | 2003-12-09 | 2006-06-07 | Nat Biolog Standards Board | Genetic reference materials |
JP2008512987A (ja) | 2004-07-22 | 2008-05-01 | エラスムス・ユニヴァーシティ・メディカル・センター・ロッテルダム | 結合分子 |
EP2505058A1 (en) | 2006-03-31 | 2012-10-03 | Medarex, Inc. | Transgenic animals expressing chimeric antibodies for use in preparing human antibodies |
PL2041177T3 (pl) | 2006-06-02 | 2012-09-28 | Regeneron Pharma | Przeciwciała o wysokim powinowactwie przeciw ludzkiemu receptorowi IL 6 |
WO2007147167A2 (en) * | 2006-06-16 | 2007-12-21 | Porous Power Technologies, Llc | Optimized microporous structure of electrochemical cells |
DK2769992T3 (da) | 2006-10-02 | 2021-03-22 | Regeneron Pharma | Humane antistoffer med høj affinitet for human IL-4-receptor |
US7608693B2 (en) | 2006-10-02 | 2009-10-27 | Regeneron Pharmaceuticals, Inc. | High affinity human antibodies to human IL-4 receptor |
NO347649B1 (no) * | 2006-12-14 | 2024-02-12 | Regeneron Pharma | Humant antistoff eller antistoff fragment som spesifikt binder human deltaliknende ligand 4 (hDII4), nukleinsyremolekyl som koder for slike og vektor og vert-vektorsystemer, samt fremgangsmåte for fremstilling, sammensetning og anvendelse. |
EA019636B1 (ru) | 2007-03-22 | 2014-05-30 | Байоджен Айдек Ма Инк. | Связывающие белки, включающие антитела, производные антител и фрагменты антител, которые специфически связываются с cd154, и их применения |
AU2008259939B2 (en) * | 2007-06-01 | 2014-03-13 | Open Monoclonal Technology, Inc. | Compositions and methods for inhibiting endogenous immunoglobulin genes and producing transgenic human idiotype antibodies |
RU2473564C2 (ru) | 2007-08-10 | 2013-01-27 | Ридженерон Фармасьютикалз, Инк. | Антитела человека с высокой аффинностью к фактору роста нервов человека |
EP3255144A1 (en) * | 2007-08-10 | 2017-12-13 | E. R. Squibb & Sons, L.L.C. | Recombineering construct for preparing transgenic mice capable of producing human immunoglobulin |
GB0718029D0 (en) * | 2007-09-14 | 2007-10-24 | Iti Scotland Ltd | Two step cluster deletion and humanisation |
WO2009041613A1 (ja) | 2007-09-26 | 2009-04-02 | Chugai Seiyaku Kabushiki Kaisha | 抗体定常領域改変体 |
NZ586149A (en) | 2007-12-10 | 2012-05-25 | Ablexis Llc | Methods for sequential replacement of targeted region by homologous recombination |
WO2009103082A2 (en) * | 2008-02-17 | 2009-08-20 | Porous Power Technologies, Llc | Lamination configurations for battery applications using pvdf highly porous film |
US20090227163A1 (en) * | 2008-03-05 | 2009-09-10 | Bernard Perry | Protective Apparel with Porous Material Layer |
US20090226683A1 (en) * | 2008-03-05 | 2009-09-10 | Bernard Perry | Porous Material Uses in Furniture |
EP2098536A1 (en) | 2008-03-05 | 2009-09-09 | 4-Antibody AG | Isolation and identification of antigen- or ligand-specific binding proteins |
US20090223155A1 (en) * | 2008-03-05 | 2009-09-10 | Bernard Perry | Building Construction Applications for Porous Material |
US20090222995A1 (en) * | 2008-03-05 | 2009-09-10 | Bernard Perry | Bedding Applications for Porous Material |
EP2631302A3 (en) * | 2008-03-31 | 2014-01-08 | Genentech, Inc. | Compositions and methods for treating and diagnosing asthma |
KR20110020860A (ko) * | 2008-05-23 | 2011-03-03 | 알리바 바이오파마수티컬스, 아이엔씨. | 유전자 삽입동물에서 단일 vl 도메인 항체를 생산하는 방법 |
US20100122358A1 (en) * | 2008-06-06 | 2010-05-13 | Crescendo Biologics Limited | H-Chain-only antibodies |
US20090328240A1 (en) * | 2008-06-24 | 2009-12-31 | Sing George L | Genetically modified mice as predictors of immune response |
AU2014203150C1 (en) * | 2008-06-27 | 2018-10-18 | Merus N.V. | Antibody producing non-human mammals |
ES2906344T3 (es) * | 2008-06-27 | 2022-04-18 | Merus Nv | Animal murino transgénico productor de anticuerpos |
LT2346994T (lt) | 2008-09-30 | 2022-03-10 | Ablexis, Llc | Knock-in pelė, skirta chimerinių antikūnų gamybai |
JO3672B1 (ar) | 2008-12-15 | 2020-08-27 | Regeneron Pharma | أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9). |
US20130064834A1 (en) | 2008-12-15 | 2013-03-14 | Regeneron Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia using antibodies to pcsk9 |
RU2011129459A (ru) | 2008-12-18 | 2013-01-27 | Эрасмус Юниверсити Медикал Сентр Роттердам | Трансгенные животные (не человек), экспрессирующие гуманизированные антитела, и их применение |
US20100178567A1 (en) * | 2008-12-24 | 2010-07-15 | Porous Power Technologies, Llc | Mat Forming Spacers in Microporous Membrane Matrix |
GB0905023D0 (en) | 2009-03-24 | 2009-05-06 | Univ Erasmus Medical Ct | Binding molecules |
MX2011010012A (es) | 2009-03-25 | 2011-12-06 | Genentech Inc | NUEVOS ANTICUERPOS ANTI-A5ß1 Y SUS USOS. |
US9276246B2 (en) | 2009-05-20 | 2016-03-01 | Samsung Electronics Co., Ltd. | Treatment and adhesive for microporous membranes |
TWI513465B (zh) | 2009-06-25 | 2015-12-21 | Regeneron Pharma | 以dll4拮抗劑與化學治療劑治療癌症之方法 |
JP2012531212A (ja) | 2009-07-03 | 2012-12-10 | アビペップ ピーティーワイ リミテッド | イムノコンジュゲート及びその作製方法 |
CN102638971B (zh) * | 2009-07-08 | 2015-10-07 | 科马布有限公司 | 动物模型及治疗分子 |
US9445581B2 (en) | 2012-03-28 | 2016-09-20 | Kymab Limited | Animal models and therapeutic molecules |
DK3056082T3 (en) | 2009-10-06 | 2018-12-17 | Regeneron Pharma | RE-MODIFIED MICE AND INPUT |
KR101553244B1 (ko) * | 2009-12-10 | 2015-09-15 | 리제너론 파마슈티칼스 인코포레이티드 | 중쇄 항체를 만드는 마우스 |
WO2011072266A2 (en) | 2009-12-11 | 2011-06-16 | Atyr Pharma, Inc. | Aminoacyl trna synthetases for modulating hematopoiesis |
SG10201408415PA (en) | 2009-12-21 | 2015-01-29 | Regeneron Pharma | HUMANIZED FCγ R MICE |
KR101961495B1 (ko) | 2009-12-23 | 2019-03-22 | 아비펩 피티와이 리미티트 | 면역-컨쥬게이트 및 그 제조방법 2 |
US20130045492A1 (en) * | 2010-02-08 | 2013-02-21 | Regeneron Pharmaceuticals, Inc. | Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain |
US20130185821A1 (en) * | 2010-02-08 | 2013-07-18 | Regeneron Pharmaceuticals, Inc. | Common Light Chain Mouse |
US20120021409A1 (en) | 2010-02-08 | 2012-01-26 | Regeneron Pharmaceuticals, Inc. | Common Light Chain Mouse |
US9796788B2 (en) | 2010-02-08 | 2017-10-24 | Regeneron Pharmaceuticals, Inc. | Mice expressing a limited immunoglobulin light chain repertoire |
RU2724663C2 (ru) | 2010-02-08 | 2020-06-25 | Ридженерон Фармасьютикалз, Инк. | Мышь с общей легкой цепью |
US20110200595A1 (en) | 2010-02-18 | 2011-08-18 | Roche Glycart | TREATMENT WITH A HUMANIZED IgG CLASS ANTI EGFR ANTIBODY AND AN ANTIBODY AGAINST INSULIN LIKE GROWTH FACTOR 1 RECEPTOR |
SI2536748T1 (sl) | 2010-02-18 | 2014-12-31 | Genentech, Inc. | Nevrogulinski antagonisti in njihova uporaba pri zdravljenju raka |
KR101899835B1 (ko) | 2010-03-24 | 2018-09-19 | 제넨테크, 인크. | 항-lrp6 항체 |
US9580491B2 (en) | 2010-03-31 | 2017-02-28 | Ablexis, Llc | Genetic engineering of non-human animals for the production of chimeric antibodies |
EP2563380B1 (en) | 2010-04-26 | 2018-05-30 | aTyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-trna synthetase |
JP6294074B2 (ja) | 2010-04-27 | 2018-03-14 | エータイアー ファーマ, インコーポレイテッド | イソロイシルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
US8993723B2 (en) | 2010-04-28 | 2015-03-31 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl-tRNA synthetases |
US9068177B2 (en) | 2010-04-29 | 2015-06-30 | Atyr Pharma, Inc | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-tRNA synthetases |
CA2797393C (en) | 2010-04-29 | 2020-03-10 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl trna synthetases |
AU2011248490B2 (en) | 2010-04-29 | 2016-11-10 | Pangu Biopharma Limited | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases |
WO2011140132A2 (en) | 2010-05-03 | 2011-11-10 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases |
CN103140233B (zh) | 2010-05-03 | 2017-04-05 | Atyr 医药公司 | 与甲硫氨酰‑tRNA合成酶的蛋白片段相关的治疗、诊断和抗体组合物的发现 |
WO2011139986A2 (en) | 2010-05-03 | 2011-11-10 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of arginyl-trna synthetases |
JP6008844B2 (ja) | 2010-05-04 | 2016-10-19 | エータイアー ファーマ, インコーポレイテッド | p38MULTI−tRNA合成酵素複合体のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
JP6396656B2 (ja) | 2010-05-14 | 2018-09-26 | エータイアー ファーマ, インコーポレイテッド | フェニルアラニルβtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
CN104711218B (zh) | 2010-06-11 | 2018-09-25 | 瑞泽恩制药公司 | 由xy es细胞制备能育的xy雌性动物 |
US9242014B2 (en) | 2010-06-15 | 2016-01-26 | The Regents Of The University Of California | Receptor tyrosine kinase-like orphan receptor 1 (ROR1) single chain Fv antibody fragment conjugates and methods of use thereof |
CN103228130B (zh) * | 2010-06-17 | 2016-03-16 | 科马布有限公司 | 动物模型及治疗分子 |
TW201204388A (en) | 2010-06-18 | 2012-02-01 | Genentech Inc | Anti-Axl antibodies and methods of use |
JP6009441B2 (ja) | 2010-06-22 | 2016-10-19 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | ハイブリッド軽鎖マウス |
CN103097418A (zh) | 2010-07-09 | 2013-05-08 | 霍夫曼-拉罗奇有限公司 | 抗神经毡蛋白抗体及使用方法 |
JP6116479B2 (ja) | 2010-07-12 | 2017-04-19 | エータイアー ファーマ, インコーポレイテッド | グリシルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
US20120100166A1 (en) | 2010-07-15 | 2012-04-26 | Zyngenia, Inc. | Ang-2 Binding Complexes and Uses Thereof |
WO2012010582A1 (en) | 2010-07-21 | 2012-01-26 | Roche Glycart Ag | Anti-cxcr5 antibodies and methods of use |
US10662256B2 (en) | 2010-07-26 | 2020-05-26 | Trianni, Inc. | Transgenic mammals and methods of use thereof |
CA2806233C (en) | 2010-07-26 | 2021-12-07 | Trianni, Inc. | Transgenic animals and methods of use |
US10793829B2 (en) | 2010-07-26 | 2020-10-06 | Trianni, Inc. | Transgenic mammals and methods of use thereof |
NZ606824A (en) | 2010-08-02 | 2015-05-29 | Regeneron Pharma | Mice that make binding proteins comprising vl domains |
EP2600895A1 (en) | 2010-08-03 | 2013-06-12 | Hoffmann-La Roche AG | Chronic lymphocytic leukemia (cll) biomarkers |
WO2012017003A1 (en) | 2010-08-05 | 2012-02-09 | F. Hoffmann-La Roche Ag | Anti-mhc antibody anti-viral cytokine fusion protein |
PT2603530T (pt) | 2010-08-13 | 2018-01-09 | Roche Glycart Ag | Anticorpos anti-fap e métodos de utilização |
CN103168049B (zh) | 2010-08-13 | 2015-10-07 | 罗切格利卡特公司 | 抗生腱蛋白-c a2抗体及使用方法 |
KR20130100125A (ko) | 2010-08-13 | 2013-09-09 | 제넨테크, 인크. | 질환의 치료를 위한, IL-1β 및 IL-18에 대한 항체 |
CA2808539C (en) | 2010-08-25 | 2021-05-25 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of tyrosyl-trna synthetases |
SG187886A1 (en) | 2010-08-31 | 2013-04-30 | Genentech Inc | Biomarkers and methods of treatment |
NZ609567A (en) | 2010-11-05 | 2015-05-29 | Transbio Ltd | Markers of endothelial progenitor cells and uses thereof |
ES2607086T3 (es) | 2010-11-10 | 2017-03-29 | F. Hoffmann-La Roche Ag | Métodos y composiciones para la inmunoterapia de enfermedades neuronales |
US8771696B2 (en) | 2010-11-23 | 2014-07-08 | Regeneron Pharmaceuticals, Inc. | Method of reducing the severity of stress hyperglycemia with human antibodies to the glucagon receptor |
JO3756B1 (ar) * | 2010-11-23 | 2021-01-31 | Regeneron Pharma | اجسام مضادة بشرية لمستقبلات الجلوكاجون |
CA2817380C (en) | 2010-12-16 | 2019-06-04 | Genentech, Inc. | Diagnosis and treatments relating to th2 inhibition |
TWI589589B (zh) | 2010-12-20 | 2017-07-01 | 建南德克公司 | 抗間皮素(mesothelin)抗體及免疫接合物 |
KR20130118925A (ko) | 2010-12-22 | 2013-10-30 | 제넨테크, 인크. | 항-pcsk9 항체 및 사용 방법 |
JP2014502607A (ja) | 2011-01-03 | 2014-02-03 | エフ.ホフマン−ラ ロシュ アーゲー | 抗dig抗体およびペプチドと結合体化しているジゴキシゲニンの複合体の薬学的組成物 |
EP2663579B1 (en) | 2011-01-14 | 2017-04-26 | The Regents of the University of California | Therapeutic antibodies against ror-1 protein and methods for use of same |
EP2650016A1 (en) | 2011-01-28 | 2013-10-16 | Sanofi | Human antibodies to PSCK9 for use in methods of treatment based on particular dosage regimens (11565) |
MX367075B (es) | 2011-01-28 | 2019-08-05 | Sanofi Biotechnology | Anticuerpos humanos frente a pcsk9 para su uso en metodos de tratamiento de grupos concretos de pacientes. |
SG10201600899PA (en) | 2011-02-08 | 2016-03-30 | Medimmune Llc | Antibodies that specifically bind staphylococcus aureus alpha toxin and methods of use |
ES2948210T3 (es) | 2011-02-15 | 2023-09-06 | Regeneron Pharma | Ratones humanizados con M-CSF y uso de los mismos |
PL2578688T5 (pl) | 2011-02-25 | 2023-05-29 | Regeneron Pharmaceuticals, Inc. | Myszy adam6 |
US9624294B2 (en) | 2011-03-14 | 2017-04-18 | Cellmid Limited | Antibody recognizing N-domain of midkine |
HUE041335T2 (hu) | 2011-03-29 | 2019-05-28 | Roche Glycart Ag | Antitest FC-variánsok |
TW201249867A (en) | 2011-04-01 | 2012-12-16 | Astellas Pharma Inc | Novel anti-human il-23 receptor antibody |
CN103596983B (zh) | 2011-04-07 | 2016-10-26 | 霍夫曼-拉罗奇有限公司 | 抗fgfr4抗体及使用方法 |
CA2833404A1 (en) | 2011-04-21 | 2012-10-26 | Garvan Institute Of Medical Research | Modified variable domain molecules and methods for producing and using them b |
AR088782A1 (es) | 2011-04-29 | 2014-07-10 | Sanofi Sa | Sistemas de ensayo y metodos para identificar y caracterizar farmacos hipolipemiantes |
ES2541535T3 (es) | 2011-05-12 | 2015-07-21 | Regeneron Pharmaceuticals, Inc. | Ensayo de liberación de neuropéptido para canales de sodio |
WO2012155019A1 (en) | 2011-05-12 | 2012-11-15 | Genentech, Inc. | Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature pepides |
PT2710035T (pt) | 2011-05-16 | 2017-06-05 | Hoffmann La Roche | Agonistas do fgfr1 e métodos de utilização |
CN106432506A (zh) | 2011-05-24 | 2017-02-22 | 泽恩格尼亚股份有限公司 | 多价和单价多特异性复合物及其用途 |
ES2828482T3 (es) | 2011-06-13 | 2021-05-26 | Csl Ltd | Anticuerpos contra el g-csfr y su uso |
US8623666B2 (en) | 2011-06-15 | 2014-01-07 | Hoffmann-La Roche Inc. | Method for detecting erythropoietin (EPO) receptor using anti-human EPO receptor antibodies |
KR20140045440A (ko) | 2011-06-30 | 2014-04-16 | 제넨테크, 인크. | 항-c-met 항체 제제 |
WO2013006706A1 (en) | 2011-07-05 | 2013-01-10 | Bioasis Technologies Inc. | P97-antibody conjugates and methods of use |
AU2012279018B2 (en) | 2011-07-05 | 2017-06-08 | Children's Medical Center Corporation | N-terminal deleted GP120 immunogens |
WO2013015821A1 (en) | 2011-07-22 | 2013-01-31 | The Research Foundation Of State University Of New York | Antibodies to the b12-transcobalamin receptor |
US9120858B2 (en) | 2011-07-22 | 2015-09-01 | The Research Foundation Of State University Of New York | Antibodies to the B12-transcobalamin receptor |
AR087305A1 (es) | 2011-07-28 | 2014-03-12 | Regeneron Pharma | Formulaciones estabilizadas que contienen anticuerpos anti-pcsk9, metodo de preparacion y kit |
US8722019B2 (en) | 2011-08-05 | 2014-05-13 | Bioasis Technologies, Inc. | P97 fragments with transfer activity |
MY172718A (en) * | 2011-08-05 | 2019-12-11 | Regeneron Pharma | Humanized universal light chain mice |
US8986952B2 (en) | 2011-08-11 | 2015-03-24 | Astellas Pharma Inc. | Anti-human NGF antibody |
KR20140057326A (ko) | 2011-08-17 | 2014-05-12 | 제넨테크, 인크. | 뉴레귤린 항체 및 그의 용도 |
EP2744825A1 (en) | 2011-08-17 | 2014-06-25 | F.Hoffmann-La Roche Ag | Inhibition of angiogenesis in refractory tumors |
KR20140054303A (ko) | 2011-08-19 | 2014-05-08 | 리제너론 파아마슈티컬스, 인크. | 항-Tie2 항체 및 이의 용도 |
CA2844141A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Anti-mcsp antibodies |
KR101886983B1 (ko) | 2011-08-23 | 2018-08-08 | 로슈 글리카트 아게 | 2 개의 fab 단편을 포함하는 fc-부재 항체 및 이용 방법 |
EP2747781B1 (en) | 2011-08-23 | 2017-11-15 | Roche Glycart AG | Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use |
CA2846083A1 (en) | 2011-09-15 | 2013-03-21 | Genentech, Inc. | Methods of promoting differentiation |
CA2848201C (en) | 2011-09-16 | 2020-10-27 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipoprotein(a) levels by administering an inhibitor of proprotein convertase subtilisin kexin-9 (pcsk9) |
AU2012312515A1 (en) | 2011-09-19 | 2014-03-13 | Genentech, Inc. | Combination treatments comprising c-met antagonists and B-raf antagonists |
JP2014533930A (ja) * | 2011-09-19 | 2014-12-18 | カイマブ・リミテッド | 免疫グロブリン遺伝子多様性の操作およびマルチ抗体治療薬 |
WO2013041845A2 (en) | 2011-09-19 | 2013-03-28 | Kymab Limited | Animals, repertoires & methods |
CA2791109C (en) | 2011-09-26 | 2021-02-16 | Merus B.V. | Generation of binding molecules |
EP2761008A1 (en) | 2011-09-26 | 2014-08-06 | Kymab Limited | Chimaeric surrogate light chains (slc) comprising human vpreb |
WO2013052095A2 (en) | 2011-10-03 | 2013-04-11 | Duke University | Vaccine |
BR112014008212A2 (pt) | 2011-10-05 | 2017-06-13 | Genentech Inc | método para tratar uma condição hepática, método de indução por diferenciação hepática e método de redução de proliferação anormal do ducto biliar |
TW201321414A (zh) | 2011-10-14 | 2013-06-01 | Genentech Inc | 抗-HtrA1抗體及其使用方法 |
CA2850836A1 (en) | 2011-10-15 | 2013-04-18 | Genentech, Inc. | Methods of using scd1 antagonists |
SG10202010120XA (en) * | 2011-10-17 | 2020-11-27 | Regeneron Pharma | Restricted immunoglobulin heavy chain mice |
WO2013059531A1 (en) | 2011-10-20 | 2013-04-25 | Genentech, Inc. | Anti-gcgr antibodies and uses thereof |
PL3262932T3 (pl) | 2011-10-28 | 2019-10-31 | Regeneron Pharma | Genetycznie zmodyfikowany główny układ zgodności tkankowej myszy |
US9591835B2 (en) | 2011-10-28 | 2017-03-14 | Regeneron Pharmaceuticals, Inc. | Genetically modified major histocompatibility complex animals |
PL3424947T3 (pl) * | 2011-10-28 | 2021-06-14 | Regeneron Pharmaceuticals, Inc. | Myszy z genetycznie zmodyfikowanym receptorem komórek t |
WO2013063391A2 (en) | 2011-10-28 | 2013-05-02 | Trianni, Inc. | Transgenic animals and methods of use |
KR101926442B1 (ko) | 2011-10-28 | 2018-12-12 | 리제너론 파아마슈티컬스, 인크. | 키메라 주요 조직적합성 복합체 (mhc) ii 분자들을 발현하는 유전자 변형된 마우스 |
US9043996B2 (en) | 2011-10-28 | 2015-06-02 | Regeneron Pharmaceuticals, Inc. | Genetically modified major histocompatibility complex animals |
GB2496375A (en) * | 2011-10-28 | 2013-05-15 | Kymab Ltd | A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof |
CA2852709A1 (en) | 2011-10-28 | 2013-05-02 | Patrys Limited | Pat-lm1 epitopes and methods for using same |
MX2014004991A (es) | 2011-10-28 | 2014-05-22 | Genentech Inc | Combinaciones terapeuticas y metodos para tratar el melanoma. |
TW201326193A (zh) | 2011-11-21 | 2013-07-01 | Genentech Inc | 抗-c-met抗體之純化 |
US9253965B2 (en) * | 2012-03-28 | 2016-02-09 | Kymab Limited | Animal models and therapeutic molecules |
GB201122047D0 (en) * | 2011-12-21 | 2012-02-01 | Kymab Ltd | Transgenic animals |
WO2013083497A1 (en) | 2011-12-06 | 2013-06-13 | F. Hoffmann-La Roche Ag | Antibody formulation |
CA2859408C (en) | 2011-12-20 | 2020-06-16 | Regeneron Pharmaceuticals, Inc. | Humanized light chain mice |
JP2015503907A (ja) | 2011-12-22 | 2015-02-05 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 真核細胞のための全長抗体提示システムおよびその使用 |
CN113896787A (zh) | 2011-12-22 | 2022-01-07 | 弗·哈夫曼-拉罗切有限公司 | 表达载体元件组合、新的生产用细胞产生方法及其在重组产生多肽中的用途 |
EP3816284A1 (en) | 2011-12-22 | 2021-05-05 | F. Hoffmann-La Roche AG | Expression vector for antibody production in eukaryotic cells |
AR089425A1 (es) * | 2011-12-22 | 2014-08-20 | Astellas Pharma Inc | Anticuerpo ctgf (factor de crecimiento de tejido conectivo) antihumano |
WO2013096791A1 (en) | 2011-12-23 | 2013-06-27 | Genentech, Inc. | Process for making high concentration protein formulations |
SG11201404198TA (en) | 2012-01-18 | 2014-08-28 | Genentech Inc | Anti-lrp5 antibodies and methods of use |
CN104168920A (zh) | 2012-01-18 | 2014-11-26 | 霍夫曼-拉罗奇有限公司 | 使用fgf19调控剂的方法 |
PL2809150T3 (pl) | 2012-02-01 | 2020-04-30 | Regeneron Pharmaceuticals, Inc. | Humanizowane myszy wykazujące ekspresję łańcuchów ciężkich zawierających domeny VL |
AU2013216753B2 (en) | 2012-02-11 | 2017-09-21 | Genentech, Inc. | R-spondin translocations and methods using the same |
ES2676031T3 (es) | 2012-02-15 | 2018-07-16 | F. Hoffmann-La Roche Ag | Cromatografía de afinidad basada en el receptor Fc |
EP2814514B1 (en) | 2012-02-16 | 2017-09-13 | Atyr Pharma, Inc. | Histidyl-trna synthetases for treating autoimmune and inflammatory diseases |
US9371391B2 (en) | 2012-02-28 | 2016-06-21 | Astellas Pharma Inc. | Anti-human IL-23 receptor antibody and encoding polynucleotides |
CN108101983A (zh) | 2012-03-02 | 2018-06-01 | 瑞泽恩制药公司 | 艰难梭状芽孢杆菌毒素的人源抗体 |
EP3165086A1 (en) | 2012-03-06 | 2017-05-10 | Regeneron Pharmaceuticals, Inc. | Common light chain mouse |
SI2825558T1 (sl) | 2012-03-13 | 2019-08-30 | F. Hoffmann-La Roche Ag | Kombinirana terapija za zdravljenje raka jajčnikov |
PT2825037T (pt) | 2012-03-16 | 2019-08-07 | Regeneron Pharma | Animais não humanos que expressam sequências de imunoglobulinas sensíveis ao ph |
US20140013456A1 (en) | 2012-03-16 | 2014-01-09 | Regeneron Pharmaceuticals, Inc. | Histidine Engineered Light Chain Antibodies and Genetically Modified Non-Human Animals for Generating the Same |
HUE053310T2 (hu) | 2012-03-16 | 2021-06-28 | Regeneron Pharma | Hisztidinmódosított könnyûlánc antitestek és genetikailag módosított rágcsálók ugyanennek az elõállítására |
SG10201607727PA (en) | 2012-03-16 | 2016-11-29 | Regeneron Pharma | Mice that produce antigen-binding proteins with ph-dependent binding characteristics |
BR112014024017A8 (pt) | 2012-03-27 | 2017-07-25 | Genentech Inc | Métodos de tratamento de um tipo de câncer, de tratamento do carcinoma, para selecionar uma terapia e para quantificação e inibidor de her3 |
GB2502127A (en) * | 2012-05-17 | 2013-11-20 | Kymab Ltd | Multivalent antibodies and in vivo methods for their production |
US10251377B2 (en) | 2012-03-28 | 2019-04-09 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
JP2015512635A (ja) | 2012-03-28 | 2015-04-30 | カイマブ・リミテッド | クラススイッチした完全ヒト抗体の発現のためのトランスジェニック非−ヒト脊椎動物 |
AR090549A1 (es) | 2012-03-30 | 2014-11-19 | Genentech Inc | Anticuerpos anti-lgr5 e inmunoconjugados |
TWI619729B (zh) | 2012-04-02 | 2018-04-01 | 再生元醫藥公司 | 抗-hla-b*27抗體及其用途 |
AU2013249985B2 (en) | 2012-04-20 | 2017-11-23 | Merus N.V. | Methods and means for the production of Ig-like molecules |
ES2683071T3 (es) | 2012-04-25 | 2018-09-24 | Regeneron Pharmaceuticals, Inc. | Direccionamiento mediado por nucleasas con grandes vectores de direccionamiento |
AU2013256596A1 (en) | 2012-05-01 | 2014-10-09 | Genentech, Inc. | Anti-PMEL17 antibodies and immunoconjugates |
JO3820B1 (ar) | 2012-05-03 | 2021-01-31 | Regeneron Pharma | أجسام مضادة بشرية لـ fel d1وطرق لاستخدامها |
WO2013170191A1 (en) | 2012-05-11 | 2013-11-14 | Genentech, Inc. | Methods of using antagonists of nad biosynthesis from nicotinamide |
CA2870876C (en) | 2012-05-23 | 2019-10-01 | Genentech, Inc. | Selection method for therapeutic agents |
AR092325A1 (es) | 2012-05-31 | 2015-04-15 | Regeneron Pharma | Formulaciones estabilizadas que contienen anticuerpos anti-dll4 y kit |
JP2015525071A (ja) * | 2012-06-05 | 2015-09-03 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | 共通の軽鎖を用いて完全ヒト型二重特異性抗体を作製するための方法 |
KR102436654B1 (ko) * | 2012-06-12 | 2022-08-26 | 리제너론 파마슈티칼스 인코포레이티드 | 제한된 면역글로불린 중쇄 유전자좌를 가지는 인간화된 비-인간 동물 |
MX2014014830A (es) | 2012-06-15 | 2015-05-11 | Genentech Inc | Anticuerpos anti-pcsk9, formulaciones, dosificacion y metodos de uso. |
WO2014006124A1 (en) | 2012-07-04 | 2014-01-09 | F. Hoffmann-La Roche Ag | Covalently linked antigen-antibody conjugates |
EP3339328A1 (en) | 2012-07-04 | 2018-06-27 | F. Hoffmann-La Roche AG | Anti-biotin antibodies and methods of use |
MX353951B (es) | 2012-07-04 | 2018-02-07 | Hoffmann La Roche | Anticuerpos de anti-teofilina y metodos de uso. |
CN110042114B (zh) | 2012-07-05 | 2024-09-10 | 弗·哈夫曼-拉罗切有限公司 | 表达和分泌系统 |
SG11201500087VA (en) | 2012-07-09 | 2015-02-27 | Genentech Inc | Immunoconjugates comprising anti-cd22 antibodies |
AU2013288932A1 (en) | 2012-07-09 | 2014-12-11 | Genentech, Inc. | Immunoconjugates comprising anti - CD79b antibodies |
MX2015000315A (es) | 2012-07-09 | 2015-07-06 | Genentech Inc | Anticuerpos anti-cd22 e inmunoconjugados. |
JP2015523380A (ja) | 2012-07-09 | 2015-08-13 | ジェネンテック, インコーポレイテッド | 抗cd79b抗体を含む免疫複合体 |
PL2872157T3 (pl) | 2012-07-12 | 2020-07-13 | Hangzhou Dac Biotech Co., Ltd | Koniugaty wiążących komórkę cząsteczek ze środkami cytotoksycznymi |
PE20150361A1 (es) | 2012-07-13 | 2015-03-14 | Roche Glycart Ag | Anticuerpos biespecificos anti-vegf/anti-ang-2 y su utilizacion en el tratamiento de enfermedades vasculares oculares |
WO2014018375A1 (en) | 2012-07-23 | 2014-01-30 | Xenon Pharmaceuticals Inc. | Cyp8b1 and uses thereof in therapeutic and diagnostic methods |
AU2013296557B2 (en) | 2012-07-31 | 2019-04-18 | Bioasis Technologies Inc. | Dephosphorylated lysosomal storage disease proteins and methods of use thereof |
JP6464085B2 (ja) | 2012-08-07 | 2019-02-06 | ジェネンテック, インコーポレイテッド | 神経膠芽腫の治療のための併用療法 |
CN110624107A (zh) | 2012-08-21 | 2019-12-31 | 赛诺菲生物技术公司 | 通过施用il-4r拮抗剂治疗或预防哮喘的方法 |
IL282082B (en) | 2012-08-23 | 2022-08-01 | Seagen Inc | Antibody-drug conjugates (adc) binding to 158p1d7 proteins |
CN104662044B (zh) | 2012-08-24 | 2018-10-30 | 加利福尼亚大学董事会 | 用于治疗ror1癌症并抑制转移的抗体和疫苗 |
EP2703009A1 (en) | 2012-08-31 | 2014-03-05 | Sanofi | Combination treatments involving antibodies to human PCSK9 |
EP2703008A1 (en) | 2012-08-31 | 2014-03-05 | Sanofi | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
EP2706070A1 (en) | 2012-09-06 | 2014-03-12 | Sanofi | Combination treatments involving antibodies to human PCSK9 |
RS57520B1 (sr) | 2012-09-07 | 2018-10-31 | Regeneron Pharma | Postupci za lečenje atopijskog dermatitisa primenom antagonista il-4r |
KR20240045263A (ko) | 2012-09-07 | 2024-04-05 | 예일 유니버시티 | 유전적으로 변형된 비-인간 동물 및 이것들의 사용 방법 |
WO2014056783A1 (en) | 2012-10-08 | 2014-04-17 | Roche Glycart Ag | Fc-free antibodies comprising two fab-fragments and methods of use |
CA2887133C (en) * | 2012-10-12 | 2022-05-03 | Glycovaxyn Ag | Methods of host cell modification |
EP2914621B1 (en) | 2012-11-05 | 2023-06-07 | Foundation Medicine, Inc. | Novel ntrk1 fusion molecules and uses thereof |
EP4389764A3 (en) | 2012-11-05 | 2024-08-14 | Regeneron Pharmaceuticals, Inc. | Genetically modified non-human animals and methods of use thereof |
AU2013341361A1 (en) | 2012-11-06 | 2015-06-04 | Medimmune, Llc | Antibodies to S. aureus surface determinants |
CA2884431A1 (en) | 2012-11-08 | 2014-05-15 | F. Hoffmann-La Roche Ag | Her3 antigen binding proteins binding to the beta-hairpin of her3 |
CN104968367B (zh) | 2012-11-13 | 2018-04-13 | 弗·哈夫曼-拉罗切有限公司 | 抗血凝素抗体和使用方法 |
TW201438736A (zh) | 2012-11-14 | 2014-10-16 | Regeneron Pharma | 以dll4拮抗劑治療卵巢癌之方法 |
WO2014080251A1 (en) | 2012-11-24 | 2014-05-30 | Hangzhou Dac Biotech Co., Ltd. | Hydrophilic linkers and their uses for conjugation of drugs to cell binding molecules |
PT2931030T (pt) | 2012-12-14 | 2020-08-03 | Open Monoclonal Tech Inc | Polinucleótidos que codificam anticorpos de roedores com idiótipos humanos e animais que os compreendem |
WO2014107739A1 (en) | 2013-01-07 | 2014-07-10 | Eleven Biotherapeutics, Inc. | Antibodies against pcsk9 |
US10980804B2 (en) | 2013-01-18 | 2021-04-20 | Foundation Medicine, Inc. | Methods of treating cholangiocarcinoma |
WO2014116749A1 (en) | 2013-01-23 | 2014-07-31 | Genentech, Inc. | Anti-hcv antibodies and methods of using thereof |
EP2953452A1 (en) | 2013-02-06 | 2015-12-16 | Regeneron Pharmaceuticals, Inc. | B cell lineage based immunogen design with humanized animals |
CA2898618A1 (en) | 2013-02-07 | 2014-08-14 | Csl Limited | Il-11r binding proteins and uses thereof |
KR102313047B1 (ko) * | 2013-02-20 | 2021-10-19 | 리제너론 파아마슈티컬스, 인크. | 사람화된 t-세포 보조-수용체를 발현하는 마우스 |
LT2840892T (lt) | 2013-02-20 | 2018-07-25 | Regeneron Pharmaceuticals, Inc. | Nežmogaus tipo gyvūnai su modifikuotomis imunoglobulino sunkiųjų grandinių sekomis |
JP6475172B2 (ja) | 2013-02-20 | 2019-02-27 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | ラットの遺伝子組換え |
US20150342163A1 (en) | 2013-02-22 | 2015-12-03 | Regeneron Pharmaceuticals, Inc. | Genetically modified major histocompatibility complex mice |
CA2900097A1 (en) | 2013-02-22 | 2014-08-28 | F. Hoffmann-La Roche Ag | Methods of treating cancer and preventing drug resistance |
CN105164154B (zh) | 2013-02-22 | 2019-06-07 | 瑞泽恩制药公司 | 表达人源化主要组织相容性复合物的小鼠 |
EP2961772A1 (en) | 2013-02-26 | 2016-01-06 | Roche Glycart AG | Anti-mcsp antibodies |
KR20150123250A (ko) | 2013-03-06 | 2015-11-03 | 제넨테크, 인크. | 암 약물 내성의 치료 및 예방 방법 |
KR102309653B1 (ko) * | 2013-03-11 | 2021-10-08 | 리제너론 파아마슈티컬스, 인크. | 키메라 주요 조직적합성 복합체 (mhc) 제ii부류 분자를 발현하는 유전자전이 마우스 |
KR20150126863A (ko) | 2013-03-13 | 2015-11-13 | 리제너론 파마슈티칼스 인코포레이티드 | 공통 경쇄 마우스 |
RU2689664C2 (ru) | 2013-03-13 | 2019-05-28 | Регенерон Фарматютикалз, Инк. | Мыши, экспрессирующие ограниченный репертуар легких цепей иммуноглобулина |
EP2970433B1 (en) | 2013-03-13 | 2019-09-18 | Bioasis Technologies Inc. | Fragments of p97 and uses thereof |
US9562099B2 (en) | 2013-03-14 | 2017-02-07 | Genentech, Inc. | Anti-B7-H4 antibodies and immunoconjugates |
WO2014152358A2 (en) | 2013-03-14 | 2014-09-25 | Genentech, Inc. | Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use |
RU2015139054A (ru) | 2013-03-14 | 2017-04-19 | Дженентек, Инк. | Способы лечения рака и профилактики лекарственной резистентности рака |
EP2967012B1 (en) | 2013-03-14 | 2020-09-16 | Erasmus University Medical Center Rotterdam | Transgenic non-human mammal for antibody production |
US10377817B2 (en) | 2013-03-14 | 2019-08-13 | Regeneron Pharmaceuticals, Inc. | Human antibodies to GREM1 |
JP6436965B2 (ja) | 2013-03-14 | 2018-12-12 | ジェネンテック, インコーポレイテッド | 抗b7−h4抗体及びイムノコンジュゲート |
NZ712314A (en) | 2013-03-15 | 2021-07-30 | Genentech Inc | Biomarkers and methods of treating pd-1 and pd-l1 related conditions |
SG10201706210WA (en) | 2013-03-15 | 2017-09-28 | Genentech Inc | Compositions and methods for diagnosis and treatment of hepatic cancers |
EP3424530A1 (en) | 2013-03-15 | 2019-01-09 | Zyngenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
WO2014144292A2 (en) * | 2013-03-15 | 2014-09-18 | Sanofi Pasteur Biologics , Llc | Antibodies against clostridium difficile toxins and methods of using the same |
EP2970471A2 (en) | 2013-03-15 | 2016-01-20 | F. Hoffmann-La Roche AG | Anti-crth2 antibodies and their use |
US10993420B2 (en) | 2013-03-15 | 2021-05-04 | Erasmus University Medical Center | Production of heavy chain only antibodies in transgenic mammals |
CN105188766B (zh) | 2013-03-15 | 2019-07-12 | 瑞泽恩制药公司 | 生物活性分子、其偶联物及治疗用途 |
US9598485B2 (en) | 2013-03-15 | 2017-03-21 | Ac Immune S.A. | Anti-tau antibodies and methods of use |
CA2905123A1 (en) | 2013-03-15 | 2014-09-18 | Genentech, Inc. | Methods of treating cancer and preventing cancer drug resistance |
US9788534B2 (en) | 2013-03-18 | 2017-10-17 | Kymab Limited | Animal models and therapeutic molecules |
RS62263B1 (sr) | 2013-04-16 | 2021-09-30 | Regeneron Pharma | Ciljana modifikacija genoma pacova |
AU2014261631B2 (en) | 2013-04-29 | 2019-02-14 | F. Hoffmann-La Roche Ag | FcRn-binding abolished anti-IGF-1R antibodies and their use in the treatment of vascular eye diseases |
JP6618893B2 (ja) | 2013-04-29 | 2019-12-11 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Fc受容体結合が変更された非対称抗体および使用方法 |
SG10201800492PA (en) | 2013-04-29 | 2018-03-28 | Hoffmann La Roche | Human fcrn-binding modified antibodies and methods of use |
US9783618B2 (en) | 2013-05-01 | 2017-10-10 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
US11707056B2 (en) * | 2013-05-02 | 2023-07-25 | Kymab Limited | Animals, repertoires and methods |
US9783593B2 (en) | 2013-05-02 | 2017-10-10 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
US20140331339A1 (en) * | 2013-05-03 | 2014-11-06 | Kymab Limited | Transgenic Non-Human Assay Vertebrates, Assays and Kits |
PE20151926A1 (es) | 2013-05-20 | 2016-01-07 | Genentech Inc | Anticuerpos de receptores de antitransferrina y metodos de uso |
TWI682780B (zh) | 2013-05-30 | 2020-01-21 | 美商再生元醫藥公司 | 醫藥組成物用於製造治療與pcsk9功能獲得性突變有關之體染色體顯性高膽固醇血症的藥物之用途 |
US10111953B2 (en) | 2013-05-30 | 2018-10-30 | Regeneron Pharmaceuticals, Inc. | Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9) |
EP2810955A1 (en) | 2013-06-07 | 2014-12-10 | Sanofi | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
KR20160024906A (ko) | 2013-06-07 | 2016-03-07 | 사노피 바이오테크놀로지 | Pcsk9의 억제제를 투여함에 의한 죽상경화증의 억제 방법 |
EP2862877A1 (en) | 2013-10-18 | 2015-04-22 | Sanofi | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
KR20230066127A (ko) | 2013-06-21 | 2023-05-12 | 사노피 바이오테크놀로지 | Il-4r 길항제를 투여함에 의한 비용종증의 치료 방법 |
JP6510518B2 (ja) | 2013-08-01 | 2019-05-08 | アジェンシス,インコーポレイテッド | Cd37タンパク質に結合する抗体薬物結合体(adc) |
IL294443A (en) | 2013-08-07 | 2022-09-01 | Regeneron Pharma | Lincrna-free nonhuman animals |
PT3031913T (pt) | 2013-08-09 | 2019-05-31 | Astellas Pharma Inc | Novo anticorpo anti-receptor de tslp humana |
US10935554B2 (en) | 2013-08-23 | 2021-03-02 | Regeneron Pharmaceuticals, Inc. | Diagnostic tests and methods for assessing safety, efficacy or outcome of allergen-specific immunotherapy (SIT) |
BR112016004023A2 (pt) | 2013-08-26 | 2022-11-16 | Regeneron Pharma | Composição, métodos para preparar uma composição e para tratar uma doença, e, composto |
US20150093399A1 (en) | 2013-08-28 | 2015-04-02 | Bioasis Technologies, Inc. | Cns-targeted conjugates having modified fc regions and methods of use thereof |
US10456470B2 (en) | 2013-08-30 | 2019-10-29 | Genentech, Inc. | Diagnostic methods and compositions for treatment of glioblastoma |
US10617755B2 (en) | 2013-08-30 | 2020-04-14 | Genentech, Inc. | Combination therapy for the treatment of glioblastoma |
CN107074879B (zh) | 2013-09-02 | 2022-04-15 | 杭州多禧生物科技有限公司 | 应用于细胞结合分子-药物共轭体的新型细胞毒性分子 |
CN105518027A (zh) | 2013-09-17 | 2016-04-20 | 豪夫迈·罗氏有限公司 | 使用抗lgr5抗体的方法 |
DE202014010413U1 (de) | 2013-09-18 | 2015-12-08 | Kymab Limited | Zellen und Organismen |
TR201909967T4 (tr) | 2013-09-18 | 2019-07-22 | Regeneron Pharma | Histidin ile işlenmiş hafif zincirli antikorlar ve bunu üretmeye yönelik genetik olarak modifiye edilmiş insan olmayan hayvanlar. |
SG10201802295XA (en) | 2013-10-01 | 2018-04-27 | Kymab Ltd | Animal Models and Therapeutic Molecules |
CN105814078A (zh) | 2013-10-11 | 2016-07-27 | 豪夫迈·罗氏有限公司 | Nsp4抑制剂及其使用方法 |
CN105814085A (zh) | 2013-10-11 | 2016-07-27 | 赛诺菲生物技术公司 | Pcsk9抑制剂用于治疗高血脂症的用途 |
CN105744954B (zh) | 2013-10-18 | 2021-03-05 | 豪夫迈·罗氏有限公司 | 抗rspo2和/或抗rspo3抗体及其用途 |
KR20160068802A (ko) | 2013-10-23 | 2016-06-15 | 제넨테크, 인크. | 호산구성 장애를 진단 및 치료하는 방법 |
PL3065774T3 (pl) | 2013-11-06 | 2021-12-13 | Janssen Biotech, Inc | Przeciwciała anty-ccl17 |
US10428157B2 (en) | 2013-11-12 | 2019-10-01 | Sanofi Biotechnology | Dosing regimens for use with PCSK9 inhibitors |
EP3071597B1 (en) | 2013-11-21 | 2020-07-29 | F.Hoffmann-La Roche Ag | Anti-alpha-synuclein antibodies and methods of use |
EP3460063B1 (en) | 2013-12-11 | 2024-03-13 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
RU2725520C2 (ru) | 2013-12-11 | 2020-07-02 | Регенерон Фармасьютикалс, Инк. | Способы и композиции для направленной модификации генома |
PE20160712A1 (es) | 2013-12-13 | 2016-07-26 | Genentech Inc | Anticuerpos e inmunoconjugados anti-cd33 |
KR20160089531A (ko) | 2013-12-17 | 2016-07-27 | 제넨테크, 인크. | Pd-1 축 결합 길항제 및 항-her2 항체를 사용하여 her2-양성 암을 치료하는 방법 |
RU2016128726A (ru) | 2013-12-17 | 2018-01-23 | Дженентек, Инк. | Способы лечения злокачественных опухолей с использованием антагонистов связывания по оси pd-1 и антитела против cd20 |
CN106102774A (zh) | 2013-12-17 | 2016-11-09 | 豪夫迈·罗氏有限公司 | 包含ox40结合激动剂和pd‑1轴结合拮抗剂的组合疗法 |
DK3736292T3 (da) | 2013-12-17 | 2024-07-22 | Genentech Inc | Anti-CD3-antistoffer og fremgangsmåder til anvendelse |
TWI670283B (zh) | 2013-12-23 | 2019-09-01 | 美商建南德克公司 | 抗體及使用方法 |
US10294301B2 (en) | 2013-12-24 | 2019-05-21 | Astellas Pharma Inc. | Anti-human BDCA-2 antibody |
BR112016014945A2 (pt) | 2014-01-03 | 2018-01-23 | F. Hoffmann-La Roche Ag | conjugado, formulação farmacêutica e uso |
CA2933384A1 (en) | 2014-01-03 | 2015-07-09 | F. Hoffmann-La Roche Ag | Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles |
CA2930154A1 (en) | 2014-01-03 | 2015-07-09 | F. Hoffmann-La Roche Ag | Covalently linked helicar-anti-helicar antibody conjugates and uses thereof |
WO2015103549A1 (en) | 2014-01-03 | 2015-07-09 | The United States Of America, As Represented By The Secretary Department Of Health And Human Services | Neutralizing antibodies to hiv-1 env and their use |
CN105899534B (zh) | 2014-01-15 | 2020-01-07 | 豪夫迈·罗氏有限公司 | 具有修饰的FCRN和保持的蛋白A结合性质的Fc区变体 |
TWI681969B (zh) | 2014-01-23 | 2020-01-11 | 美商再生元醫藥公司 | 針對pd-1的人類抗體 |
TWI680138B (zh) | 2014-01-23 | 2019-12-21 | 美商再生元醫藥公司 | 抗pd-l1之人類抗體 |
CA2935393A1 (en) | 2014-01-24 | 2015-07-30 | Genentech, Inc. | Methods of using anti-steap1 antibodies and immunoconjugates |
WO2015116852A1 (en) | 2014-01-29 | 2015-08-06 | Regeneron Pharmaceuticals, Inc. | Methods for treating rheumatoid arthritis by administering an il-6r antibody |
EP3102608B1 (en) | 2014-02-03 | 2019-09-18 | Bioasis Technologies Inc. | P97 fusion proteins |
SG10201901076WA (en) | 2014-02-08 | 2019-03-28 | Genentech Inc | Methods of treating alzheimer's disease |
TWI705824B (zh) | 2014-02-08 | 2020-10-01 | 美商建南德克公司 | 治療阿茲海默症之方法 |
EP3825332A1 (en) | 2014-02-12 | 2021-05-26 | F. Hoffmann-La Roche AG | Anti-jagged1 antibodies and methods of use |
US20150231236A1 (en) | 2014-02-14 | 2015-08-20 | Regeneron Pharmaceuticals, Inc. | Methods for treating patients with hypercholesterolemia that is not adequately controlled by moderate-dose statin therapy |
US10392605B2 (en) | 2014-02-19 | 2019-08-27 | Bioasis Technologies Inc. | P97-IDS fusion proteins |
KR20160124165A (ko) | 2014-02-21 | 2016-10-26 | 제넨테크, 인크. | 항-il-13/il-17 이중특이적 항체 및 그의 용도 |
IL315136A (en) | 2014-02-21 | 2024-10-01 | Sanofi Biotechnology | Methods for treating or preventing asthma by adding an IL-4R antagonist |
ES2960619T3 (es) | 2014-02-28 | 2024-03-05 | Hangzhou Dac Biotech Co Ltd | Enlazadores cargados y sus usos para la conjugación |
JP6644717B2 (ja) | 2014-03-14 | 2020-02-12 | ジェネンテック, インコーポレイテッド | 異種ポリペプチドを分泌させるための方法及び組成物 |
CN114642661A (zh) | 2014-03-17 | 2022-06-21 | 赛诺菲生物技术公司 | 用于降低心血管风险的方法 |
AU2015231025A1 (en) | 2014-03-21 | 2016-09-15 | Regeneron Pharmaceuticals, Inc. | Vl antigen binding proteins exhibiting distinct binding characteristics |
WO2015140591A1 (en) | 2014-03-21 | 2015-09-24 | Nordlandssykehuset Hf | Anti-cd14 antibodies and uses thereof |
KR102601491B1 (ko) | 2014-03-21 | 2023-11-13 | 리제너론 파마슈티칼스 인코포레이티드 | 단일 도메인 결합 단백질을 생산하는 비-인간 동물 |
JP2017516458A (ja) | 2014-03-24 | 2017-06-22 | ジェネンテック, インコーポレイテッド | c−met拮抗剤による癌治療及びc−met拮抗剤のHGF発現との相関 |
PE20161571A1 (es) | 2014-03-31 | 2017-02-07 | Genentech Inc | Anticuerpos anti-ox40 y metodos de uso |
EP3126386A1 (en) | 2014-03-31 | 2017-02-08 | F. Hoffmann-La Roche AG | Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists |
JP6666262B2 (ja) | 2014-04-02 | 2020-03-13 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 多重特異性抗体の軽鎖誤対合を検出するための方法 |
WO2015153912A1 (en) | 2014-04-03 | 2015-10-08 | Igm Biosciences, Inc. | Modified j-chain |
AP2016009549A0 (en) | 2014-04-18 | 2016-11-30 | Acceleron Pharma Inc | Methods for increasing red blood cell levels and treating sickle-cell disease |
WO2015164615A1 (en) | 2014-04-24 | 2015-10-29 | University Of Oslo | Anti-gluten antibodies and uses thereof |
CN106413757B (zh) | 2014-05-01 | 2022-01-14 | 比奥阿赛斯技术有限公司 | p97-多核苷酸结合物 |
RU2711744C1 (ru) | 2014-05-19 | 2020-01-21 | Ридженерон Фармасьютикалз, Инк. | Генетически модифицированные животные, отличные от человека, экспрессирующие epo человека |
CN106414499A (zh) | 2014-05-22 | 2017-02-15 | 基因泰克公司 | 抗gpc3抗体和免疫偶联物 |
WO2015179835A2 (en) | 2014-05-23 | 2015-11-26 | Genentech, Inc. | Mit biomarkers and methods using the same |
MX2016015609A (es) * | 2014-05-30 | 2017-08-02 | Regeneron Pharma | Animales con dipeptidil peptidasa iv (dpp4) humanizada. |
EP3708671A1 (en) * | 2014-06-06 | 2020-09-16 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
MX2016016233A (es) | 2014-06-11 | 2017-03-31 | Genentech Inc | Anticuerpos anti-lgr5 y sus usos. |
US20230190750A1 (en) | 2014-06-13 | 2023-06-22 | Genentech, Inc. | Methods of treating and preventing cancer drug resistance |
EP3154566B1 (en) | 2014-06-13 | 2022-08-03 | Acceleron Pharma Inc. | Actrii antagonist for the treatment or prevention of a cutaneous ulcer in a subject that has anemia |
CA2953499C (en) | 2014-06-23 | 2023-10-24 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated dna assembly |
TWI713453B (zh) | 2014-06-23 | 2020-12-21 | 美商健生生物科技公司 | 干擾素α及ω抗體拮抗劑 |
US9902971B2 (en) | 2014-06-26 | 2018-02-27 | Regeneron Pharmaceuticals, Inc. | Methods for producing a mouse XY embryonic (ES) cell line capable of producing a fertile XY female mouse in an F0 generation |
TW201623329A (zh) | 2014-06-30 | 2016-07-01 | 亞佛瑞司股份有限公司 | 針對骨調素截斷變異體的疫苗及單株抗體暨其用途 |
RU2021100991A (ru) | 2014-07-10 | 2021-03-01 | Аффирис Аг | Вещества и способы для применения при предупреждении и/или лечении болезни гентингтона |
JP2017526641A (ja) | 2014-07-11 | 2017-09-14 | ジェネンテック, インコーポレイテッド | Notch経路阻害 |
WO2016011052A1 (en) | 2014-07-14 | 2016-01-21 | Genentech, Inc. | Diagnostic methods and compositions for treatment of glioblastoma |
CN114306592A (zh) | 2014-07-16 | 2022-04-12 | 赛诺菲生物技术公司 | 用于治疗患有高胆固醇血症的高心血管风险患者的方法 |
AU2015289613B2 (en) | 2014-07-16 | 2021-07-01 | Regeneron Pharmaceuticals, Inc. | Methods for treating patients with heterozygous familial hypercholesterolemia (heFH) |
CA2957250A1 (en) | 2014-08-15 | 2016-02-18 | Adynxx, Inc. | Oligonucleotide decoys for the treatment of pain |
EP3191518B1 (en) | 2014-09-12 | 2020-01-15 | Genentech, Inc. | Anti-b7-h4 antibodies and immunoconjugates |
AR101846A1 (es) | 2014-09-12 | 2017-01-18 | Genentech Inc | Anticuerpos anti-cll-1 e inmunoconjugados |
PT3191135T (pt) | 2014-09-12 | 2020-11-12 | Genentech Inc | Anticorpos anti-her2 e imunoconjugados |
US9657099B2 (en) | 2014-09-16 | 2017-05-23 | Regeneron Pharmaceuticals, Inc. | Anti-glucagon antibodies |
JP6730261B2 (ja) | 2014-09-17 | 2020-07-29 | ジェネンテック, インコーポレイテッド | 抗her2抗体を含む免疫複合体 |
CA2959428A1 (en) | 2014-09-19 | 2016-03-24 | Regeneron Pharmaceuticals, Inc. | Chimeric antigen receptors |
EP3689910A3 (en) | 2014-09-23 | 2020-12-02 | F. Hoffmann-La Roche AG | Method of using anti-cd79b immunoconjugates |
EA036658B1 (ru) | 2014-09-23 | 2020-12-04 | Регенерон Фармасьютикалз, Инк. | Антитела к il-25 и их применения |
ES2741387T3 (es) | 2014-10-15 | 2020-02-10 | Regeneron Pharma | Métodos y composiciones para generar o mantener células pluripotentes |
CN107074938A (zh) | 2014-10-16 | 2017-08-18 | 豪夫迈·罗氏有限公司 | 抗‑α‑突触核蛋白抗体和使用方法 |
AU2015336946A1 (en) | 2014-10-23 | 2017-04-13 | La Trobe University | Fn14-binding proteins and uses thereof |
US10626176B2 (en) | 2014-10-31 | 2020-04-21 | Jounce Therapeutics, Inc. | Methods of treating conditions with antibodies that bind B7-H4 |
MX2017005751A (es) | 2014-11-03 | 2018-04-10 | Genentech Inc | Métodos y biomarcadores para predecir la eficacia y evaluación de un tratamiento con agonista de ox40. |
SG11201703448QA (en) | 2014-11-03 | 2017-05-30 | Genentech Inc | Assays for detecting t cell immune subsets and methods of use thereof |
RU2017119428A (ru) | 2014-11-06 | 2018-12-06 | Дженентек, Инк. | Комбинированная терапия, включающая применение агонистов, связывающихся с ох40, и ингибиторов tigit |
KR20170076697A (ko) | 2014-11-06 | 2017-07-04 | 에프. 호프만-라 로슈 아게 | 개질된 FCRN-결합 특성 및 단백질 A-결합 특성을 가진 Fc-영역 변이체 |
ES2749383T3 (es) | 2014-11-06 | 2020-03-20 | Hoffmann La Roche | Variantes de la región Fc con unión al FcRn modificada y procedimientos de uso |
EA201791029A1 (ru) | 2014-11-10 | 2017-12-29 | Дженентек, Инк. | Антитела против интерлейкина-33 и их применение |
EP3217787B1 (en) | 2014-11-10 | 2019-04-17 | F.Hoffmann-La Roche Ag | Animal model for nephropathy and agents for treating the same |
MX2017006286A (es) | 2014-11-14 | 2018-01-23 | Sanofi Biotechnology | Metodos para tratar sinusitis cronica con polipos nasales por administracion de un antagonista de il-4r. |
EP3875481A1 (en) | 2014-11-14 | 2021-09-08 | The U.S.A. as represented by the Secretary, Department of Health and Human Services | Neutralizing antibodies to ebola virus glycoprotein and their use |
WO2016077666A1 (en) | 2014-11-14 | 2016-05-19 | Regeneron Pharmaceuticals, Inc. | Method for generating high affinity antibodies |
BR112017010198A2 (pt) | 2014-11-17 | 2017-12-26 | Genentech Inc | terapia de combinação compreendendo agonistas de ligação a ox40 e antagonistas de ligação ao eixo de pd-1 |
EP3221362B1 (en) | 2014-11-19 | 2019-07-24 | F.Hoffmann-La Roche Ag | Anti-transferrin receptor antibodies and methods of use |
EP3221364B1 (en) | 2014-11-19 | 2020-12-16 | Genentech, Inc. | Antibodies against bace1 and use thereof for neural disease immunotherapy |
EP3221361B1 (en) | 2014-11-19 | 2021-04-21 | Genentech, Inc. | Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use |
DK3789402T3 (da) | 2014-11-20 | 2022-09-19 | Hoffmann La Roche | Kombinationsbehandling med T-celleaktiverende bispecifikke antigenbindende molekyler og PD-1-aksebindende antagonister |
SI3221457T1 (sl) | 2014-11-21 | 2019-08-30 | Regeneron Pharmaceuticals, Inc. | Postopki in sestavki za ciljno genetsko modifikacijo z uporabo vodilnih RNK v parih |
CN113016720B (zh) | 2014-11-24 | 2023-02-21 | 瑞泽恩制药公司 | 表达人源化cd3复合物的非人类动物 |
JP6554280B2 (ja) * | 2014-11-28 | 2019-07-31 | 株式会社デンソーテン | データ処理装置、画像処理方法、及び、プログラム |
MA41119A (fr) | 2014-12-03 | 2017-10-10 | Acceleron Pharma Inc | Méthodes de traitement de syndromes myélodysplasiques et d'anémie sidéroblastique |
AR102918A1 (es) | 2014-12-05 | 2017-04-05 | Genentech Inc | Anticuerpos anti-cd79b y métodos de uso |
MX2017007491A (es) | 2014-12-10 | 2018-05-04 | Genentech Inc | Anticuerpos del receptor de la barrera hematoencefálica y métodos para su uso. |
SG11201700841QA (en) | 2014-12-19 | 2017-03-30 | Chugai Pharmaceutical Co Ltd | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
MY183415A (en) | 2014-12-19 | 2021-02-18 | Chugai Pharmaceutical Co Ltd | Anti-c5 antibodies and methods of use |
TWI701258B (zh) | 2014-12-19 | 2020-08-11 | 美商再生元醫藥公司 | 流行性感冒病毒血球凝集素之人類抗體 |
WO2016100819A1 (en) | 2014-12-19 | 2016-06-23 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
WO2016094962A1 (en) | 2014-12-19 | 2016-06-23 | Monash University | Il-21 antibodies |
US20160200815A1 (en) | 2015-01-05 | 2016-07-14 | Jounce Therapeutics, Inc. | Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof |
WO2016117346A1 (en) | 2015-01-22 | 2016-07-28 | Chugai Seiyaku Kabushiki Kaisha | A combination of two or more anti-c5 antibodies and methods of use |
TWI710573B (zh) | 2015-01-26 | 2020-11-21 | 美商再生元醫藥公司 | 抗伊波拉病毒醣蛋白之人類抗體 |
KR102605798B1 (ko) | 2015-02-05 | 2023-11-23 | 추가이 세이야쿠 가부시키가이샤 | 이온 농도 의존적 항원 결합 도메인을 포함하는 항체, Fc 영역 개변체, IL-8에 결합하는 항체, 및 그들의 사용 |
AU2016219534B2 (en) | 2015-02-09 | 2021-07-01 | Massachusetts Institute Of Technology | Multi-specific antibodies with affinity for human A33 antigen and dota metal complex and uses thereof |
CA2975899A1 (en) | 2015-02-13 | 2016-08-18 | Biommune Technologies Inc. | Antibodies to l-type voltage gated channels and related methods |
SG11201707195SA (en) | 2015-03-09 | 2017-10-30 | Agensys Inc | Antibody drug conjugates (adc) that bind to flt3 proteins |
ES2830173T3 (es) | 2015-03-16 | 2021-06-03 | Regeneron Pharma | Animal no humano que presenta función de las neuronas motoras superiores e inferiores y percepción sensorial disminuidas |
MX2017011486A (es) | 2015-03-16 | 2018-06-15 | Genentech Inc | Métodos de detección y cuantificación de il-13 y sus usos en el diagnóstico y tratamiento de enfermedades asociadas a th2. |
WO2016146833A1 (en) | 2015-03-19 | 2016-09-22 | F. Hoffmann-La Roche Ag | Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance |
CN107438622A (zh) | 2015-03-19 | 2017-12-05 | 瑞泽恩制药公司 | 选择结合抗原的轻链可变区的非人动物 |
HUE049081T2 (hu) | 2015-03-20 | 2020-09-28 | The United States Of America As | GP120 elleni neutralizáló antitestek és alkalmazásuk |
CN107530428B (zh) | 2015-03-23 | 2022-05-13 | 震动疗法股份有限公司 | Icos的抗体 |
EP3273998B1 (en) | 2015-03-27 | 2019-09-04 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
AU2016246698B2 (en) | 2015-04-06 | 2022-06-02 | Regeneron Pharmaceuticals, Inc. | Humanized T cell mediated immune responses in non-human animals |
MA54328A (fr) | 2015-04-06 | 2021-10-06 | Acceleron Pharma Inc | Hétéromultimères de récepteur de type i et de type ii de la superfamille de tgf-bêta et leurs utilisations |
MA41919A (fr) | 2015-04-06 | 2018-02-13 | Acceleron Pharma Inc | Hétéromultimères alk4:actriib et leurs utilisations |
WO2016164637A1 (en) | 2015-04-07 | 2016-10-13 | Alector Llc | Anti-sortilin antibodies and methods of use thereof |
AU2016246695A1 (en) | 2015-04-07 | 2017-10-26 | Genentech, Inc. | Antigen binding complex having agonistic activity and methods of use |
FI3282835T3 (fi) | 2015-04-13 | 2023-07-20 | Regeneron Pharma | Humanisoituja sirpa-il15-poistogeenisiä hiiriä ja niiden käyttömenetelmiä |
EP3913052A1 (en) | 2015-04-24 | 2021-11-24 | F. Hoffmann-La Roche AG | Methods of identifying bacteria comprising binding polypeptides |
JP2018520642A (ja) | 2015-05-01 | 2018-08-02 | ジェネンテック, インコーポレイテッド | マスク抗cd3抗体及びその使用方法 |
WO2016179194A1 (en) | 2015-05-04 | 2016-11-10 | Jounce Therapeutics, Inc. | Lilra3 and method of using the same |
EP3936524A3 (en) | 2015-05-11 | 2022-06-15 | F. Hoffmann-La Roche AG | Compositions and methods of treating lupus nephritis |
LT3294770T (lt) | 2015-05-12 | 2020-12-28 | F. Hoffmann-La Roche Ag | Vėžio gydymo ir diagnostikos būdai |
US10395759B2 (en) | 2015-05-18 | 2019-08-27 | Regeneron Pharmaceuticals, Inc. | Methods and systems for copy number variant detection |
US10285388B2 (en) | 2015-05-29 | 2019-05-14 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a C9ORF72 locus |
ES2789500T5 (es) | 2015-05-29 | 2023-09-20 | Hoffmann La Roche | Procedimientos terapéuticos y de diagnóstico para el cáncer |
CN107771182A (zh) | 2015-05-29 | 2018-03-06 | 豪夫迈·罗氏有限公司 | 人源化抗埃博拉病毒糖蛋白抗体和使用方法 |
EP3302552A1 (en) | 2015-06-02 | 2018-04-11 | H. Hoffnabb-La Roche Ag | Compositions and methods for using anti-il-34 antibodies to treat neurological diseases |
WO2016196975A1 (en) | 2015-06-03 | 2016-12-08 | The United States Of America, As Represented By The Secretary Department Of Health & Human Services | Neutralizing antibodies to hiv-1 env and their use |
RU2732122C2 (ru) | 2015-06-05 | 2020-09-11 | Дженентек, Инк. | Антитела против тау-белка и способы их применения |
MX2017015937A (es) | 2015-06-08 | 2018-12-11 | Genentech Inc | Métodos de tratamiento del cáncer con anticuerpos anti-ox40 y antagonistas de unión al eje de pd-1. |
MX2017014740A (es) | 2015-06-08 | 2018-08-15 | Genentech Inc | Métodos de tratamiento del cáncer con anticuerpos anti-ox40. |
JP7497953B2 (ja) | 2015-06-12 | 2024-06-11 | アレクトル エルエルシー | 抗cd33抗体及びその使用方法 |
US11136390B2 (en) | 2015-06-12 | 2021-10-05 | Alector Llc | Anti-CD33 antibodies and methods of use thereof |
US10017577B2 (en) | 2015-06-15 | 2018-07-10 | Genentech, Inc. | Antibodies and immunoconjugates |
EP3916018A1 (en) | 2015-06-16 | 2021-12-01 | Genentech, Inc. | Anti-cd3 antibodies and methods of use |
US10501545B2 (en) | 2015-06-16 | 2019-12-10 | Genentech, Inc. | Anti-CLL-1 antibodies and methods of use |
AR105026A1 (es) | 2015-06-16 | 2017-08-30 | Genentech Inc | ANTICUERPOS MADURADOS POR AFINIDAD Y HUMANIZADOS PARA FcRH5 Y MÉTODOS PARA SU USO |
CA2986263A1 (en) | 2015-06-17 | 2016-12-22 | Genentech, Inc. | Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes |
KR20180012859A (ko) | 2015-06-17 | 2018-02-06 | 제넨테크, 인크. | 항-her2 항체 및 이용 방법 |
HUE057952T2 (hu) | 2015-06-24 | 2022-06-28 | Hoffmann La Roche | Anti-transzferrin receptor antitestek testreszabott affinitással |
JP2018520153A (ja) | 2015-06-29 | 2018-07-26 | ジェネンテック, インコーポレイテッド | 臓器移植における使用のためのii型抗cd20抗体 |
CA2991973C (en) | 2015-07-12 | 2021-12-07 | Suzhou M-Conj Biotech Co., Ltd. | Bridge linkers for conjugation of a cell-binding molecule |
US9839687B2 (en) | 2015-07-15 | 2017-12-12 | Suzhou M-Conj Biotech Co., Ltd. | Acetylenedicarboxyl linkers and their uses in specific conjugation of a cell-binding molecule |
EP3331550B1 (en) | 2015-08-04 | 2022-11-02 | Acceleron Pharma Inc. | Composition for treating myeloproliferative disorders |
WO2017024146A1 (en) | 2015-08-05 | 2017-02-09 | Janssen Biotech, Inc. | Anti-cd154 antibodies and methods of using them |
TW201713690A (zh) | 2015-08-07 | 2017-04-16 | 再生元醫藥公司 | 抗angptl8抗體及其用途 |
CN105384825B (zh) | 2015-08-11 | 2018-06-01 | 南京传奇生物科技有限公司 | 一种基于单域抗体的双特异性嵌合抗原受体及其应用 |
CN107922507B (zh) | 2015-08-18 | 2022-04-05 | 瑞泽恩制药公司 | 抗pcsk9抑制性抗体用来治疗接受脂蛋白单采的高脂血症患者 |
WO2017035241A1 (en) | 2015-08-24 | 2017-03-02 | Trianni, Inc. | Enhanced production of immunoglobulins |
US9862760B2 (en) | 2015-09-16 | 2018-01-09 | Novartis Ag | Polyomavirus neutralizing antibodies |
PE20181336A1 (es) | 2015-09-18 | 2018-08-21 | Chugai Pharmaceutical Co Ltd | Anticuerpos que se unen a interleucina 8 (il-8) y sus usos |
JP6959912B2 (ja) | 2015-09-23 | 2021-11-05 | ジェネンテック, インコーポレイテッド | 抗vegf抗体の最適化変異体 |
MX2018003533A (es) | 2015-09-24 | 2019-04-25 | Abvitro Llc | Composiciones de anticuerpo de virus de inmunodeficiencia humana (vih) y metodos de uso. |
TWI811892B (zh) | 2015-09-25 | 2023-08-11 | 美商建南德克公司 | 抗tigit抗體及使用方法 |
CN108368510B (zh) | 2015-09-30 | 2023-09-01 | 詹森生物科技公司 | 特异性结合人cd40的激动性抗体和使用方法 |
US10618978B2 (en) | 2015-09-30 | 2020-04-14 | Igm Biosciences, Inc. | Binding molecules with modified J-chain |
WO2017059387A1 (en) | 2015-09-30 | 2017-04-06 | Igm Biosciences, Inc. | Binding molecules with modified j-chain |
JP6657392B2 (ja) | 2015-10-02 | 2020-03-04 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | 二重特異性抗ヒトcd20/ヒトトランスフェリン受容体抗体及び使用方法 |
AR106189A1 (es) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | ANTICUERPOS BIESPECÍFICOS CONTRA EL A-b HUMANO Y EL RECEPTOR DE TRANSFERRINA HUMANO Y MÉTODOS DE USO |
MA43345A (fr) | 2015-10-02 | 2018-08-08 | Hoffmann La Roche | Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation |
SI3356404T1 (sl) | 2015-10-02 | 2021-11-30 | F. Hoffmann-La Roche Ag | Protitelesa proti PD1 in postopki uporabe |
TWI756187B (zh) | 2015-10-09 | 2022-03-01 | 美商再生元醫藥公司 | 抗lag3抗體及其用途 |
MA43354A (fr) | 2015-10-16 | 2018-08-22 | Genentech Inc | Conjugués médicamenteux à pont disulfure encombré |
MA45326A (fr) | 2015-10-20 | 2018-08-29 | Genentech Inc | Conjugués calichéamicine-anticorps-médicament et procédés d'utilisation |
AU2016342269A1 (en) | 2015-10-22 | 2018-03-29 | Jounce Therapeutics, Inc. | Gene signatures for determining icos expression |
EP3184547A1 (en) | 2015-10-29 | 2017-06-28 | F. Hoffmann-La Roche AG | Anti-tpbg antibodies and methods of use |
WO2017075173A2 (en) | 2015-10-30 | 2017-05-04 | Genentech, Inc. | Anti-factor d antibodies and conjugates |
CA3001362C (en) | 2015-10-30 | 2020-10-13 | Genentech, Inc. | Anti-htra1 antibodies and methods of use thereof |
SG11201803520PA (en) | 2015-11-03 | 2018-05-30 | Janssen Biotech Inc | Antibodies specifically binding pd-1 and their uses |
EP3370754A4 (en) | 2015-11-04 | 2019-10-23 | Acceleron Pharma Inc. | METHODS FOR INCREASING ERYTHROCYTE RATES AND TREATING INEFFECTIVE ERYTHROPOISIS |
WO2017079768A1 (en) | 2015-11-08 | 2017-05-11 | Genentech, Inc. | Methods of screening for multispecific antibodies |
KR20180096645A (ko) | 2015-11-23 | 2018-08-29 | 악셀레론 파마 인코포레이티드 | 눈 질환의 치료 방법 |
US10813346B2 (en) | 2015-12-03 | 2020-10-27 | Trianni, Inc. | Enhanced immunoglobulin diversity |
EP3178848A1 (en) | 2015-12-09 | 2017-06-14 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies |
AU2016368469B2 (en) | 2015-12-09 | 2023-11-02 | F. Hoffmann-La Roche Ag | Type II anti-CD20 antibody for reducing formation of anti-drug antibodies |
AU2016371034A1 (en) | 2015-12-17 | 2018-05-31 | Janssen Biotech, Inc. | Antibodies specifically binding HLA-DR and their uses |
CA3005592C (en) | 2015-12-18 | 2024-01-23 | Chugai Seiyaku Kabushiki Kaisha | Anti-c5 antibodies and methods of use |
WO2017112775A1 (en) | 2015-12-22 | 2017-06-29 | Regeneron Pharmaceuticals, Inc. | Combination of anti-pd-1 antibodies and bispecific anti-cd20/anti-cd3 antibodies to treat cancer |
AR107303A1 (es) | 2016-01-08 | 2018-04-18 | Hoffmann La Roche | Métodos de tratamiento de cánceres positivos para ace utilizando antagonistas de unión a eje pd-1 y anticuerpos biespecíficos anti-ace / anti-cd3, uso, composición, kit |
CA3011359A1 (en) | 2016-01-13 | 2017-07-20 | Regeneron Pharmaceuticals, Inc. | Rodents having an engineered heavy chain diversity region |
CA3011739A1 (en) | 2016-01-20 | 2017-07-27 | Genentech, Inc. | High dose treatments for alzheimer's disease |
MA43094B1 (fr) | 2016-01-25 | 2020-10-28 | Regeneron Pharma | Dérivés de maytansinoïde, leurs conjugués, et procédés d'utilisation |
DK3411476T3 (da) | 2016-02-04 | 2024-07-15 | Trianni Inc | Forøget produktion af immunoglobuliner |
NZ745249A (en) | 2016-02-12 | 2021-07-30 | Regeneron Pharma | Methods and systems for detection of abnormal karyotypes |
AU2017221425A1 (en) * | 2016-02-16 | 2018-08-23 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a mutant kynureninase gene |
US20170233466A1 (en) | 2016-02-17 | 2017-08-17 | Regeneron Pharmaceuticals, Inc. | Methods for Treating or Preventing Atherosclerosis by Administering an Inhibitor of ANGPTL3 |
WO2017151502A1 (en) | 2016-02-29 | 2017-09-08 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
MA43734A (fr) | 2016-03-03 | 2018-11-28 | Regeneron Pharma | Procédés de traitement de patients atteints d'hyperlipidémie par administration d'un inhibiteur de pcsk9 en combinaison avec un inhibiteur d'angptl3 |
CA3016552A1 (en) | 2016-03-15 | 2017-09-21 | Genentech, Inc. | Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies |
JP6943872B2 (ja) | 2016-03-25 | 2021-10-06 | ジェネンテック, インコーポレイテッド | 多重全抗体及び抗体複合体化薬物定量化アッセイ |
JP2019515369A (ja) | 2016-03-29 | 2019-06-06 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | 遺伝的バリアント−表現型解析システムおよび使用方法 |
EP3228630A1 (en) | 2016-04-07 | 2017-10-11 | IMBA-Institut für Molekulare Biotechnologie GmbH | Combination of an apelin antagonist and an angiogenesis inhibitor for the treatment of cancer |
EP3439689B1 (en) | 2016-04-08 | 2021-10-13 | Regeneron Pharmaceuticals, Inc. | Methods for treating hyperlipidemia with an angptl8 inhibitor and an angptl3 inhibitor |
WO2017180864A1 (en) | 2016-04-14 | 2017-10-19 | Genentech, Inc. | Anti-rspo3 antibodies and methods of use |
WO2017181111A2 (en) | 2016-04-15 | 2017-10-19 | Genentech, Inc. | Methods for monitoring and treating cancer |
AU2017248766A1 (en) | 2016-04-15 | 2018-11-01 | Genentech, Inc. | Methods for monitoring and treating cancer |
CA3021884A1 (en) | 2016-04-28 | 2017-11-02 | Regeneron Pharmaceuticals, Inc. | Methods for treating patients with familial hypercholesterolemia |
SG11201809620UA (en) | 2016-05-02 | 2018-11-29 | Hoffmann La Roche | The contorsbody - a single chain target binder |
CN109071640B (zh) | 2016-05-11 | 2022-10-18 | 豪夫迈·罗氏有限公司 | 经修饰抗生腱蛋白抗体及使用方法 |
TW202408578A (zh) | 2016-05-13 | 2024-03-01 | 美商再生元醫藥公司 | 藉由投予pd-1抑制劑治療皮膚癌之方法 |
WO2017201449A1 (en) | 2016-05-20 | 2017-11-23 | Genentech, Inc. | Protac antibody conjugates and methods of use |
AU2017268458B2 (en) | 2016-05-20 | 2022-07-21 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide RNAS |
CN109313200B (zh) | 2016-05-27 | 2022-10-04 | 豪夫迈·罗氏有限公司 | 用于表征位点特异性抗体-药物缀合物的生物分析性方法 |
CN110603266A (zh) | 2016-06-02 | 2019-12-20 | 豪夫迈·罗氏有限公司 | 用于治疗癌症的ii型抗cd20抗体和抗cd20/cd3双特异性抗体 |
EP3252078A1 (en) | 2016-06-02 | 2017-12-06 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer |
CA3026088A1 (en) | 2016-06-03 | 2017-12-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing exogenous terminal deoxynucleotidyltransferase |
IL262996B2 (en) | 2016-06-06 | 2024-03-01 | Hoffmann La Roche | Fusion proteins for ophthalmology with increased grip in the eye |
US10639378B2 (en) | 2016-06-06 | 2020-05-05 | Genentech, Inc. | Silvestrol antibody-drug conjugates and methods of use |
WO2017214089A1 (en) | 2016-06-06 | 2017-12-14 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing antibodies with human lambda light chains |
GB201610162D0 (en) | 2016-06-10 | 2016-07-27 | Imp Innovations Ltd And Inst Pasteur | Methods |
UA124734C2 (uk) | 2016-06-14 | 2021-11-10 | Рідженерон Фармасьютікалз, Інк. | Антитіло проти с5 і його застосування |
WO2017223405A1 (en) | 2016-06-24 | 2017-12-28 | Genentech, Inc. | Anti-polyubiquitin multispecific antibodies |
IL299099A (en) | 2016-06-27 | 2023-02-01 | Univ California | Combinations of cancer treatments |
EP3478717B1 (en) | 2016-07-04 | 2022-01-05 | F. Hoffmann-La Roche AG | Novel antibody format |
SI3496739T1 (sl) | 2016-07-15 | 2021-06-30 | Acceleron Pharma Inc. | Sestave, ki zajemajo polipeptide actriia, za uporabo pri zdravljenju pljučne hipertenzije |
TW201815821A (zh) | 2016-07-18 | 2018-05-01 | 美商再生元醫藥公司 | 抗茲卡病毒抗體及使用方法 |
WO2018014260A1 (en) | 2016-07-20 | 2018-01-25 | Nanjing Legend Biotech Co., Ltd. | Multispecific antigen binding proteins and methods of use thereof |
FI3490582T3 (fi) | 2016-07-27 | 2024-08-01 | Acceleron Pharma Inc | Koostumuksia käytettäväksi myelofibroosin hoitamisessa |
AU2017302657A1 (en) | 2016-07-29 | 2019-02-14 | Regeneron Pharmaceuticals, Inc. | Mice comprising mutations resulting in expression of c-truncated fibrillin-1 |
CN117986372A (zh) | 2016-07-29 | 2024-05-07 | 中外制药株式会社 | 显示增加的备选fviii辅因子功能活性的双特异性抗体 |
JP2019530434A (ja) | 2016-08-05 | 2019-10-24 | ジェネンテック, インコーポレイテッド | アゴニスト活性を有する多価及び多重エピトープ抗体ならびに使用方法 |
MX2019001448A (es) | 2016-08-05 | 2019-09-13 | Chugai Pharmaceutical Co Ltd | Composicion para profilaxis o tratamiento de enfermedades relacionadas con interleucina 8 (il-8). |
EP3497129A1 (en) | 2016-08-08 | 2019-06-19 | H. Hoffnabb-La Roche Ag | Therapeutic and diagnostic methods for cancer |
EP3282019A1 (en) | 2016-08-09 | 2018-02-14 | Medizinische Universität Wien | Genotyping and treatment of cancer, in particular chronic lymphocytic leukemia |
WO2018031662A1 (en) | 2016-08-11 | 2018-02-15 | Genentech, Inc. | Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof |
EP3497126A4 (en) | 2016-08-12 | 2020-04-08 | Janssen Biotech, Inc. | ANTIBODIES OF FC MODIFIED ANTI-TNFR SUPERFAMILY HAVING IMPROVED AGONIST ACTIVITY AND METHODS OF USE THEREOF |
CN109863170B (zh) | 2016-08-12 | 2024-08-16 | 詹森生物科技公司 | 具有增强的激动作用和效应子功能的工程化抗体及其他含Fc结构域分子 |
CA3031783A1 (en) | 2016-08-29 | 2018-03-08 | Regeneron Pharmaceuticals, Inc. | Anti-gremlin-1 (grem1) antibodies and methods of use thereof for treating pulmonary arterial hypertension |
SG10201607778XA (en) | 2016-09-16 | 2018-04-27 | Chugai Pharmaceutical Co Ltd | Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use |
EP3515932B1 (en) | 2016-09-19 | 2023-11-22 | F. Hoffmann-La Roche AG | Complement factor based affinity chromatography |
AU2017331739A1 (en) | 2016-09-23 | 2019-03-07 | Csl Limited | Coagulation factor binding proteins and uses thereof |
RS64550B1 (sr) | 2016-09-23 | 2023-09-29 | Hoffmann La Roche | Upotreba il-13 antagonista za lečenje atopičnog dermatitisa |
CA3038548A1 (en) | 2016-09-30 | 2018-04-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus |
CA3039074A1 (en) | 2016-10-05 | 2018-04-12 | Acceleron Pharma Inc. | Compositions and method for treating kidney disease |
CN110139674B (zh) | 2016-10-05 | 2023-05-16 | 豪夫迈·罗氏有限公司 | 制备抗体药物缀合物的方法 |
CA3038712A1 (en) | 2016-10-06 | 2018-04-12 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
WO2018068201A1 (en) | 2016-10-11 | 2018-04-19 | Nanjing Legend Biotech Co., Ltd. | Single-domain antibodies and variants thereof against ctla-4 |
AU2017345786B2 (en) | 2016-10-21 | 2024-08-01 | Adimab, Llc | Anti-respiratory syncytial virus antibodies, and methods of their generation and use |
US11479600B2 (en) | 2016-10-21 | 2022-10-25 | Adimab, Llc | Anti-respiratory syncytial virus antibodies, and methods of their generation and use |
BR112019008063A2 (pt) | 2016-10-21 | 2019-07-02 | Adimab Llc | anticorpos contra o vírus sincicial anti-respiratório e métodos de sua geração e uso |
EP3532091A2 (en) | 2016-10-29 | 2019-09-04 | H. Hoffnabb-La Roche Ag | Anti-mic antibidies and methods of use |
JP6868250B2 (ja) | 2016-10-31 | 2021-05-12 | 国立大学法人鳥取大学 | ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法 |
CA3039992A1 (en) | 2016-11-02 | 2018-05-11 | Jounce Therapeutics, Inc. | Antibodies to pd-1 and uses thereof |
MX2019005256A (es) | 2016-11-04 | 2019-08-05 | Regeneron Pharma | Animales no humanos que tienen un locus de la cadena ligera lambda de inmunoglobulina modificado geneticamente. |
US10711032B2 (en) | 2016-11-08 | 2020-07-14 | Regeneron Pharmaceuticals, Inc. | Steroids and protein-conjugates thereof |
CN110099682B (zh) | 2016-11-14 | 2023-03-31 | 杭州多禧生物科技有限公司 | 偶联连接体,含有此连接体的细胞结合分子-药物偶联物及其制备和应用 |
AU2017363143B2 (en) | 2016-11-17 | 2022-07-28 | Regeneron Pharmaceuticals, Inc. | Methods of treating obesity with anti-ANGPTL8 antibodies |
TW201829463A (zh) | 2016-11-18 | 2018-08-16 | 瑞士商赫孚孟拉羅股份公司 | 抗hla-g抗體及其用途 |
WO2018091720A1 (en) | 2016-11-21 | 2018-05-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the prophylactic treatment of metastases |
JP7071975B2 (ja) | 2016-11-29 | 2022-05-19 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | オピオイド嗜癖を避けるための医薬組成物 |
WO2018102152A1 (en) | 2016-11-30 | 2018-06-07 | Croda International Plc | An aqueous binder system, a coating composition & a coating |
MX2019006334A (es) | 2016-12-07 | 2019-08-01 | Genentech Inc | Anticuerpos antitau y métodos de uso. |
CA3045294A1 (en) | 2016-12-07 | 2018-06-14 | Genentech, Inc. | Anti-tau antibodies and methods of use |
JP6996516B2 (ja) | 2016-12-13 | 2022-01-17 | アステラス製薬株式会社 | 抗ヒトcd73抗体 |
KR102293106B1 (ko) | 2016-12-21 | 2021-08-24 | 에프. 호프만-라 로슈 아게 | 항체의 시험관 내 당조작 방법 |
CA3044920C (en) | 2016-12-21 | 2022-06-28 | Roberto Falkenstein | In vitro glycoengineering of antibodies |
CA3043158A1 (en) | 2016-12-21 | 2018-06-28 | F. Hoffmann-La Roche Ag | Re-use of enzymes in in vitro glycoengineering of antibodies |
US11352417B2 (en) | 2016-12-22 | 2022-06-07 | Regeneron Pharmaceuticals, Inc. | Method of treating an allergy with allergen-specific monoclonal antibodies |
US11464216B2 (en) | 2016-12-27 | 2022-10-11 | National University Corporation Gunma University | Production method for conditional knockout animal |
TW202311284A (zh) | 2017-01-03 | 2023-03-16 | 美商再生元醫藥公司 | 抗金黃色葡萄球菌溶血素a毒素之人類抗體 |
WO2018136823A1 (en) | 2017-01-19 | 2018-07-26 | Open Monoclonal Technology, Inc. | Human antibodies from transgenic rodents with multiple heavy chain immunoglobulin loci |
KR102619197B1 (ko) | 2017-01-23 | 2024-01-03 | 리제너론 파마슈티칼스 인코포레이티드 | Hsd17b13 변종 및 이것의 용도 |
US10713373B2 (en) * | 2017-02-09 | 2020-07-14 | Lifesite, Inc. | Computing system with information storage mechanism and method of operation thereof |
CN118557758A (zh) | 2017-02-10 | 2024-08-30 | 瑞泽恩制药公司 | 用于免疫-pet成像的放射性标记的抗-lag3抗体 |
JP6995127B2 (ja) | 2017-02-10 | 2022-02-04 | ジェネンテック, インコーポレイテッド | 抗トリプターゼ抗体、その組成物、及びその使用 |
EP3580235B1 (en) | 2017-02-10 | 2024-05-01 | The United States of America, as represented by the Secretary, Department of Health and Human Services | Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use |
AU2018228873A1 (en) | 2017-03-01 | 2019-08-29 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
PE20191758A1 (es) | 2017-03-22 | 2019-12-12 | Genentech Inc | Composiciones de anticuerpo optimizadas para el tratamiento de trastornos oculares |
CN110382525B (zh) | 2017-04-03 | 2023-10-20 | 豪夫迈·罗氏有限公司 | 免疫缀合物 |
JP7247101B2 (ja) | 2017-04-03 | 2023-03-28 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Steap-1に結合する抗体 |
PE20191494A1 (es) | 2017-04-03 | 2019-10-21 | Hoffmann La Roche | Inmunoconjugados de un anticuerpo anti-pd-1 con un il-2 mutante o con il-15 |
CA3053360A1 (en) | 2017-04-05 | 2018-10-11 | F. Hoffmann-La Roche Ag | Anti-lag3 antibodies |
US11603407B2 (en) | 2017-04-06 | 2023-03-14 | Regeneron Pharmaceuticals, Inc. | Stable antibody formulation |
US11767520B2 (en) | 2017-04-20 | 2023-09-26 | Atyr Pharma, Inc. | Compositions and methods for treating lung inflammation |
CR20190480A (es) | 2017-04-21 | 2019-11-20 | Genentech Inc | Uso de antagonistas de klk5 para el tratamiento de una enfermedad |
EP3615572A1 (en) | 2017-04-27 | 2020-03-04 | Tesaro Inc. | Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof |
WO2018213097A1 (en) | 2017-05-15 | 2018-11-22 | University Of Rochester | Broadly neutralizing anti-influenza monoclonal antibody and uses thereof |
AU2018270784B2 (en) | 2017-05-18 | 2024-05-16 | Regeneron Pharmaceuticals, Inc. | Cyclodextrin protein drug conjugates |
KR20240096746A (ko) | 2017-06-01 | 2024-06-26 | 리제너론 파마슈티칼스 인코포레이티드 | Bet v 1에 대한 인간 항체 및 이것의 사용 방법 |
MA52459A (fr) | 2017-06-05 | 2021-03-10 | Janssen Biotech Inc | Anticorps se liant spécifiquement à pd-1 et leurs méthodes d'utilisation |
CA3065171A1 (en) | 2017-06-05 | 2018-12-13 | Janssen Biotech, Inc. | Engineered multispecific antibodies and other multimeric proteins with asymmetrical ch2-ch3 region mutations |
US20190031774A1 (en) | 2017-06-09 | 2019-01-31 | Sanofi Biotechnology | Methods for treating hyperlipidemia in diabetic patients by administering a pcsk9 inhibitor |
JP7401312B2 (ja) | 2017-06-28 | 2023-12-19 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 抗ヒトパピローマウイルス(hpv)抗原結合性タンパク質およびその使用方法 |
CN111065650A (zh) | 2017-07-21 | 2020-04-24 | 特里安尼公司 | 单链VH-L1-Cκ-L2-CH1-抗体 |
MX2020000604A (es) | 2017-07-21 | 2020-09-10 | Genentech Inc | Métodos terapéuticos y de diagnóstico para el cáncer. |
JP7304846B2 (ja) | 2017-07-24 | 2023-07-07 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 抗cd8抗体およびその使用 |
WO2019020480A1 (en) | 2017-07-24 | 2019-01-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | ANTIBODIES AND PEPTIDES FOR TREATING HCMV RELATED DISEASES |
TWI799432B (zh) | 2017-07-27 | 2023-04-21 | 美商再生元醫藥公司 | 抗ctla-4抗體及其用途 |
CN117700548A (zh) | 2017-08-03 | 2024-03-15 | 艾利妥 | 抗cd33抗体及其使用方法 |
WO2019051164A1 (en) | 2017-09-07 | 2019-03-14 | Augusta University Research Institute, Inc. | ANTIBODIES AGAINST PROTEIN 1 OF PROGRAMMED CELL DEATH |
BR112020004977A2 (pt) | 2017-09-29 | 2020-10-06 | Regeneron Pharmaceuticals, Inc. | moléculas de ligação de antígenos biespecíficas que ligam antígeno alvo de staphyocococcus e componente de complemento e usos dos mesmos |
JP6496095B1 (ja) | 2017-09-29 | 2019-04-03 | 中外製薬株式会社 | 血液凝固第viii因子(fviii)補因子機能代替活性を有する多重特異性抗原結合分子および当該分子を有効成分として含有する薬学的製剤 |
DK3476942T3 (da) | 2017-10-27 | 2022-04-19 | Trianni Inc | Lange kimlinje-dh-gener og antistoffer med lang hcdr3 |
AU2018359219A1 (en) | 2017-10-30 | 2020-04-23 | Regeneron Pharmaceuticals, Inc. | Methods for treating or preventing asthma by administering an IL-4R antagonist |
WO2019086394A1 (en) | 2017-11-01 | 2019-05-09 | F. Hoffmann-La Roche Ag | The compbody - a multivalent target binder |
AU2018358904A1 (en) | 2017-11-01 | 2020-04-16 | F. Hoffmann-La Roche Ag | TriFab-contorsbody |
WO2019090263A1 (en) | 2017-11-06 | 2019-05-09 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
SG11202002665UA (en) | 2017-11-30 | 2020-04-29 | Regeneron Pharma | Anti-trkb monoclonal antibodies and methods of use |
JP7430636B2 (ja) * | 2017-12-05 | 2024-02-13 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 操作された免疫グロブリンラムダ軽鎖を有する非ヒト動物及びその使用 |
EP3724226A1 (en) | 2017-12-13 | 2020-10-21 | Regeneron Pharmaceuticals, Inc. | Anti-c5 antibody combinations and uses thereof |
WO2019126194A1 (en) | 2017-12-18 | 2019-06-27 | Regeneron Pharmaceuticals, Inc. | Angptl8 assay and uses thereof |
MX2020006119A (es) | 2017-12-21 | 2020-08-24 | Hoffmann La Roche | Anticuerpos de union a hla-a2/wt1. |
KR20200103706A (ko) | 2017-12-22 | 2020-09-02 | 조운스 테라퓨틱스, 인크. | Lilrb2에 대한 항체 |
WO2019126472A1 (en) | 2017-12-22 | 2019-06-27 | Genentech, Inc. | Use of pilra binding agents for treatment of a disease |
TW201930350A (zh) | 2017-12-28 | 2019-08-01 | 大陸商南京傳奇生物科技有限公司 | 針對pd-l1之抗體及其變異體 |
CA3082280A1 (en) | 2017-12-28 | 2019-07-04 | Nanjing Legend Biotech Co., Ltd. | Single-domain antibodies and variants thereof against tigit |
CN111886246A (zh) | 2017-12-29 | 2020-11-03 | 艾莱克特有限责任公司 | 抗tmem106b抗体及其使用方法 |
SG11202006510XA (en) | 2018-01-08 | 2020-08-28 | Regeneron Pharma | Steroids and antibody-conjugates thereof |
EP3740507A4 (en) | 2018-01-15 | 2022-08-24 | Nanjing Legend Biotech Co., Ltd. | SINGLE DOMAIN ANTIBODIES AND VARIANTS THEREOF AGAINST PD-1 |
WO2019143636A1 (en) | 2018-01-16 | 2019-07-25 | Lakepharma, Inc. | Bispecific antibody that binds cd3 and another target |
US20190225689A1 (en) | 2018-01-22 | 2019-07-25 | Janssen Biotech, Inc. | Methods of treating cancers with antagonistic anti-pd-1 antibodies |
CA3088194A1 (en) | 2018-01-26 | 2019-08-01 | Regeneron Pharmaceuticals, Inc. | Human antibodies to influenza hemagglutinin |
PL3638698T3 (pl) | 2018-01-26 | 2021-09-06 | Regeneron Pharmaceuticals, Inc. | Przeciwciała i fragmenty wiążące antygen anty-TMPRSS2 |
WO2019152715A1 (en) | 2018-01-31 | 2019-08-08 | Alector Llc | Anti-ms4a4a antibodies and methods of use thereof |
AR115360A1 (es) | 2018-02-08 | 2021-01-13 | Genentech Inc | Moléculas de unión al antígeno y métodos de uso |
TWI829667B (zh) | 2018-02-09 | 2024-01-21 | 瑞士商赫孚孟拉羅股份公司 | 結合gprc5d之抗體 |
JP7418337B2 (ja) | 2018-02-09 | 2024-01-19 | ジェネンテック, インコーポレイテッド | マスト細胞媒介性炎症性疾患の治療法及び診断法 |
WO2019165434A1 (en) | 2018-02-26 | 2019-08-29 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
JP7426940B2 (ja) | 2018-03-06 | 2024-02-02 | サノフィ・バイオテクノロジー | 心血管リスクを低減するためのpcsk9阻害剤の使用 |
US20200040103A1 (en) | 2018-03-14 | 2020-02-06 | Genentech, Inc. | Anti-klk5 antibodies and methods of use |
MX2020009296A (es) | 2018-03-15 | 2020-11-13 | Chugai Pharmaceutical Co Ltd | Anticuerpos anti-virus del dengue que tienen reactividad cruzada con el virus zika y metodos de uso. |
EP3940382B1 (en) | 2018-03-24 | 2024-07-03 | Regeneron Pharmaceuticals, Inc. | Methods for identifying hla-associated tumor peptides |
WO2019190922A1 (en) | 2018-03-24 | 2019-10-03 | Regeneron Pharmaceuticals, Inc. | Genetically modified non-human animals for generating therapeutic antibodies against peptide-mhc complexes, methods of making and uses thereof |
JP7328243B2 (ja) | 2018-03-26 | 2023-08-16 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 治療薬を試験するためのヒト化げっ歯類 |
KR20200135435A (ko) | 2018-03-26 | 2020-12-02 | 리제너론 파아마슈티컬스, 인크. | 항-PfRH5 항체 및 이의 항원 결합 단편 |
JP2021519073A (ja) | 2018-03-29 | 2021-08-10 | ジェネンテック, インコーポレイテッド | 哺乳動物細胞におけるラクトジェニック活性の制御 |
TW202003567A (zh) | 2018-03-30 | 2020-01-16 | 大陸商南京傳奇生物科技有限公司 | 針對lag-3之單一結構域抗體及其用途 |
WO2019192432A1 (zh) | 2018-04-02 | 2019-10-10 | 上海博威生物医药有限公司 | 结合淋巴细胞活化基因-3(lag-3)的抗体及其用途 |
TW202011029A (zh) | 2018-04-04 | 2020-03-16 | 美商建南德克公司 | 偵測及定量fgf21之方法 |
AR115052A1 (es) | 2018-04-18 | 2020-11-25 | Hoffmann La Roche | Anticuerpos multiespecíficos y utilización de los mismos |
AR114789A1 (es) | 2018-04-18 | 2020-10-14 | Hoffmann La Roche | Anticuerpos anti-hla-g y uso de los mismos |
CA3096703A1 (en) | 2018-05-03 | 2019-11-07 | University Of Rochester | Anti-influenza neuraminidase monoclonal antibodies and uses thereof |
KR20210008008A (ko) | 2018-05-09 | 2021-01-20 | 리제너론 파마슈티칼스 인코포레이티드 | 항-msr1 항체 및 이의 사용 방법 |
JP2021524255A (ja) | 2018-05-24 | 2021-09-13 | ヤンセン バイオテツク,インコーポレーテツド | 単一特異性及び二重特異性抗体抗−tmeff2抗体並びにそれらの使用 |
CR20200568A (es) | 2018-05-24 | 2021-02-26 | Janssen Biotech Inc | Antcuerpos anti-cd3 y usos de estos |
JP7361727B2 (ja) | 2018-05-24 | 2023-10-16 | ヤンセン バイオテツク,インコーポレーテツド | Psma結合剤及びその使用 |
CR20200566A (es) | 2018-05-25 | 2021-02-19 | Alector Llc | Anticuerpos anti-sirpa y metodos de utilización de los mismos |
EP3802604A1 (en) | 2018-05-31 | 2021-04-14 | Glyconex Inc. | Therapeutic antibodies binding to biantennary lewis b and lewis y antigens |
CN117442717A (zh) | 2018-06-01 | 2024-01-26 | 大有华夏生物医药集团有限公司 | 治疗疾病或病况的组合物及其用途 |
SG11202011778QA (en) | 2018-06-01 | 2020-12-30 | Regeneron Pharma | Methods and systems for sparse vector-based matrix transformations |
IL305557A (en) | 2018-06-14 | 2023-10-01 | Regeneron Pharma | Non-human animals with transgenic DH–DH rearrangement capacity, and their uses |
EA202190056A1 (ru) | 2018-06-19 | 2021-05-28 | Ридженерон Фармасьютикалз, Инк. | АНТИТЕЛА ПРОТИВ ФАКТОРА XII/XIIa И ИХ ПРИМЕНЕНИЕ |
TWI819011B (zh) | 2018-06-23 | 2023-10-21 | 美商建南德克公司 | 以pd-1 軸結合拮抗劑、鉑劑及拓撲異構酶ii 抑制劑治療肺癌之方法 |
AU2019293589A1 (en) | 2018-06-29 | 2021-01-21 | Alector Llc | Anti-SIRP-beta1 antibodies and methods of use thereof |
TW202428612A (zh) | 2018-07-10 | 2024-07-16 | 美商雷傑納榮製藥公司 | 修飾結合分子以最小化已存在的交互作用 |
SI3618928T1 (sl) | 2018-07-13 | 2023-04-28 | Alector Llc | Protitelesa proti sortilinu in postopki za uporabo le-teh |
JP7386224B2 (ja) | 2018-07-16 | 2023-11-24 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 抗il36r抗体 |
BR112021000772A2 (pt) | 2018-07-17 | 2021-04-13 | Humabs Biomed Sa | Anticorpos contra espécies de campilobacter |
KR20210034622A (ko) | 2018-07-18 | 2021-03-30 | 제넨테크, 인크. | Pd-1 축 결합 길항제, 항 대사제, 및 백금 제제를 이용한 폐암 치료 방법 |
WO2020023644A2 (en) | 2018-07-24 | 2020-01-30 | Medimmune, Llc | Antibody directed against s. aureus clumping factor a (clfa) |
WO2020033872A1 (en) | 2018-08-10 | 2020-02-13 | Regeneron Pharmaceuticals, Inc. | A pharmaceutical composition for safe and effective treatment of knee and/or hip pain |
BR112021002037A2 (pt) | 2018-08-10 | 2021-05-04 | Chugai Seiyaku Kabushiki Kaisha | molécula de ligação de antígeno anti-cd137 e uso da mesma |
TW202021618A (zh) | 2018-08-17 | 2020-06-16 | 美商23與我有限公司 | 抗il1rap抗體及其使用方法 |
MX2021002422A (es) | 2018-08-29 | 2021-07-15 | Regeneron Pharma | Métodos y composiciones para el tratamiento de sujetos que padecen artritis reumatoide. |
SG11202101552SA (en) | 2018-08-31 | 2021-03-30 | Alector Llc | Anti-cd33 antibodies and methods of use thereof |
GB201814281D0 (en) | 2018-09-03 | 2018-10-17 | Femtogenix Ltd | Cytotoxic agents |
US12097219B2 (en) | 2018-09-10 | 2024-09-24 | Legend Biotech Ireland Limited | Single-domain antibodies against CLL1 and constructs thereof |
CA3112612C (en) | 2018-09-13 | 2024-02-27 | Regeneron Pharmaceuticals, Inc. | Complement factor h gene knockout rat as a model of c3 glomerulopathy |
JP2022501332A (ja) | 2018-09-19 | 2022-01-06 | ジェネンテック, インコーポレイテッド | 膀胱がんの治療方法および診断方法 |
AU2019342133A1 (en) | 2018-09-21 | 2021-04-22 | Genentech, Inc. | Diagnostic methods for triple-negative breast cancer |
US20200109200A1 (en) | 2018-10-09 | 2020-04-09 | Genentech, Inc. | Methods and systems for determining synapse formation |
TW202035443A (zh) | 2018-10-09 | 2020-10-01 | 美商麥迪紐有限責任公司 | 抗金黃色葡萄球菌抗體的組合 |
CN113196061A (zh) | 2018-10-18 | 2021-07-30 | 豪夫迈·罗氏有限公司 | 肉瘤样肾癌的诊断和治疗方法 |
SG11202101037QA (en) | 2018-10-23 | 2021-02-25 | Regeneron Pharma | Anti-npr1 antibodies and uses thereof |
WO2020086858A1 (en) | 2018-10-24 | 2020-04-30 | Genentech, Inc. | Conjugated chemical inducers of degradation and methods of use |
SG11202104463YA (en) | 2018-10-31 | 2021-05-28 | Astellas Pharma Inc | Anti-human fn14 antibody |
US20220025058A1 (en) | 2018-11-06 | 2022-01-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of acute myeloid leukemia by eradicating leukemic stem cells |
US12024556B2 (en) | 2018-11-21 | 2024-07-02 | Regeneron Pharmaceuticals, Inc. | Anti-Staphylococcus antibodies and uses thereof |
AU2018451747A1 (en) | 2018-12-06 | 2021-06-17 | F. Hoffmann-La Roche Ag | Combination therapy of diffuse large B-cell lymphoma comprising an anti-CD79b immunoconjugates, an alkylating agent and an anti-CD20 antibody |
WO2020123275A1 (en) | 2018-12-10 | 2020-06-18 | Genentech, Inc. | Photocrosslinking peptides for site specific conjugation to fc-containing proteins |
EP3894543A1 (en) | 2018-12-14 | 2021-10-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Isolated mhc-derived human peptides and uses thereof for stimulating and activating the suppressive function of cd8cd45rc low tregs |
GB201820547D0 (en) | 2018-12-17 | 2019-01-30 | Oxford Univ Innovation | Modified antibodies |
GB201820554D0 (en) | 2018-12-17 | 2019-01-30 | Univ Oxford Innovation Ltd | BTLA antibodies |
JP2022514290A (ja) | 2018-12-20 | 2022-02-10 | ジェネンテック, インコーポレイテッド | 改変抗体fcおよび使用方法 |
AR117327A1 (es) | 2018-12-20 | 2021-07-28 | 23Andme Inc | Anticuerpos anti-cd96 y métodos de uso de estos |
US20220089694A1 (en) | 2018-12-20 | 2022-03-24 | The U.S.A., As Represented By The Secretary, Department Of Health And Human Services | Ebola virus glycoprotein-specific monoclonal antibodies and uses thereof |
CA3120799A1 (en) | 2018-12-20 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
CA3120474A1 (en) | 2018-12-21 | 2020-06-25 | 23Andme, Inc. | Anti-il-36 antibodies and methods of use thereof |
JOP20210186A1 (ar) | 2019-01-10 | 2023-01-30 | Janssen Biotech Inc | مستضدات البروستاتا المستحدثة واستخداماتها |
KR20210116525A (ko) | 2019-01-14 | 2021-09-27 | 제넨테크, 인크. | Pd-1 축 결합 길항제 및 rna 백신으로 암을 치료하는 방법 |
EP3914291A2 (en) | 2019-01-22 | 2021-12-01 | F. Hoffmann-La Roche AG | Immunoglobulin a antibodies and methods of production and use |
CN113329770A (zh) | 2019-01-24 | 2021-08-31 | 中外制药株式会社 | 新型癌抗原及所述抗原的抗体 |
GB201901197D0 (en) | 2019-01-29 | 2019-03-20 | Femtogenix Ltd | G-A Crosslinking cytotoxic agents |
SG11202107272SA (en) | 2019-02-01 | 2021-07-29 | Regeneron Pharma | Anti-il2 receptor gamma antigen-binding proteins |
AU2020223205A1 (en) | 2019-02-12 | 2021-08-05 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for using bispecific antibodies to bind complement and a target antigen |
US11478553B2 (en) | 2019-02-15 | 2022-10-25 | Wuxi Biologies Ireland Limited | Process for preparing antibody-drug conjugates with improved homogeneity |
US12109273B2 (en) | 2019-02-15 | 2024-10-08 | Wuxi Xdc Singapore Private Limited | Process for preparing antibody-drug conjugates with improved homogeneity |
WO2020169472A2 (en) | 2019-02-18 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of inducing phenotypic changes in macrophages |
CA3125380A1 (en) | 2019-02-18 | 2020-08-27 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animals with humanized immunoglobulin locus |
BR112021016173A2 (pt) | 2019-02-22 | 2021-11-03 | Regeneron Pharma | Roedor geneticamente modificado, métodos de produção de um roedor geneticamente modificado e de produção de um anticorpo anti-nav1.7, célula ou tecido isolado de roedor, linhagem celular imortalizada, embrião de roedor, construto de ácido nucleico de direcionamento, e, hibridoma |
CA3130695A1 (en) | 2019-02-27 | 2020-09-03 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies |
TW202045547A (zh) | 2019-03-01 | 2020-12-16 | 美商艾洛基因醫療公司 | 靶向dll3的嵌合抗原受體和結合劑 |
CN113474653A (zh) | 2019-03-08 | 2021-10-01 | 豪夫迈·罗氏有限公司 | 用于检测和定量细胞外囊泡上的膜相关蛋白的方法 |
SG11202108454RA (en) | 2019-04-04 | 2021-09-29 | Regeneron Pharma | Non-human animals comprising a humanized coagulation factor 12 locus |
CA3133359C (en) | 2019-04-04 | 2023-04-11 | Regeneron Pharmaceuticals, Inc. | Methods for scarless introduction of targeted modifications into targeting vectors |
KR20210150509A (ko) | 2019-04-10 | 2021-12-10 | 리제너론 파마슈티칼스 인코포레이티드 | Ret에 결합하는 인간 항체 및 그것의 사용 방법 |
CA3136602A1 (en) | 2019-04-15 | 2020-10-22 | Qwixel Therapeutics Llc | Fusion protein composition(s) comprising targeted masked type i interferons (ifna and ifnb) and an antibody against tumor antigen, for use in the treatment of cancer |
JP2022529985A (ja) | 2019-04-19 | 2022-06-27 | ヤンセン バイオテツク,インコーポレーテツド | 抗psma/cd3抗体で前立腺癌を治療する方法 |
KR20220002967A (ko) | 2019-04-19 | 2022-01-07 | 제넨테크, 인크. | 항 mertk 항체 및 이의 사용 방법 |
AU2020261411A1 (en) | 2019-04-26 | 2021-10-14 | Allogene Therapeutics, Inc. | Methods of manufacturing allogeneic car T cells |
TW202106334A (zh) | 2019-05-01 | 2021-02-16 | 法商賽諾菲生物技術公司 | 藉由投予il-33拮抗劑治療或預防哮喘之方法 |
AU2020270376A1 (en) | 2019-05-03 | 2021-10-07 | Genentech, Inc. | Methods of treating cancer with an anti-PD-L1 antibody |
US20220227853A1 (en) | 2019-05-03 | 2022-07-21 | The United States Of America,As Represented By The Secretary,Department Of Health And Human Services | Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use |
AU2020275415A1 (en) | 2019-05-14 | 2021-11-25 | Genentech, Inc. | Methods of using anti-CD79B immunoconjugates to treat follicular lymphoma |
US20230085439A1 (en) | 2019-05-21 | 2023-03-16 | University Of Georgia Research Foundation, Inc. | Antibodies that bind human metapneumovirus fusion protein and their use |
JP2022534867A (ja) | 2019-06-04 | 2022-08-04 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | ベータスリップ変異を有するヒト化ttr遺伝子座を含む非ヒト動物と使用方法 |
MA56117A (fr) | 2019-06-05 | 2022-04-13 | Regeneron Pharma | Animaux non humains ayant un répertoire de chaînes légères lambda limité exprimé à partir du locus kappa et leurs utilisations |
CN113939595A (zh) | 2019-06-07 | 2022-01-14 | 瑞泽恩制药公司 | 包括人源化白蛋白基因座的非人动物 |
KR20220019755A (ko) | 2019-06-11 | 2022-02-17 | 리제너론 파마슈티칼스 인코포레이티드 | PcrV에 결합하는 항-PcrV 항체, 항-PcrV 항체를 포함하는 조성물, 및 이의 사용 방법 |
CN114423450A (zh) | 2019-06-11 | 2022-04-29 | 艾利妥有限责任公司 | 用于疗法中的抗分拣蛋白抗体 |
CA3141266A1 (en) | 2019-06-12 | 2020-12-17 | Sarah J. Hatsell | Human antibodies to bone morphogenetic protein 6 |
JP2022537269A (ja) | 2019-06-21 | 2022-08-25 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Muc16およびcd3に結合する二重特異性抗原結合分子の4-1bb共刺激と組み合わせての使用 |
WO2020257681A1 (en) | 2019-06-21 | 2020-12-24 | Regeneron Pharmaceuticals, Inc. | Use of bispecific antigen-binding molecules that bind psma and cd3 in combination with 4-1bb co-stimulation |
US20230025327A1 (en) | 2019-06-29 | 2023-01-26 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of tubulysin derivatives and cell binding molecules and methods of making |
US20220369609A1 (en) | 2019-07-01 | 2022-11-24 | Trianni, Inc. | Transgenic mammals and methods of use thereof |
WO2021003149A1 (en) | 2019-07-01 | 2021-01-07 | Trianni, Inc. | Transgenic mammals and methods of use |
WO2021001289A1 (en) | 2019-07-02 | 2021-01-07 | F. Hoffmann-La Roche Ag | Immunoconjugates comprising a mutant interleukin-2 and an anti-cd8 antibody |
AR119393A1 (es) | 2019-07-15 | 2021-12-15 | Hoffmann La Roche | Anticuerpos que se unen a nkg2d |
BR112022000740A2 (pt) | 2019-07-16 | 2022-07-05 | Sanofi Biotechnology | Métodos para tratamento ou prevenção de asma por administração de um antagonista de il-4r |
CR20220025A (es) | 2019-07-26 | 2022-05-04 | Janssen Biotech Inc | Proteínas que comprenden dominios de unión al antígeno de la peptidasa 2 relacionada con la calicreína y sus usos |
MX2022001156A (es) | 2019-07-31 | 2022-02-22 | Hoffmann La Roche | Anticuerpos que se fijan a gprc5d. |
EP4004045A1 (en) | 2019-07-31 | 2022-06-01 | F. Hoffmann-La Roche AG | Antibodies binding to gprc5d |
CN114341181A (zh) | 2019-07-31 | 2022-04-12 | 艾莱克特有限责任公司 | 抗ms4a4a抗体及其使用方法 |
KR20220044563A (ko) | 2019-08-05 | 2022-04-08 | 리제너론 파아마슈티컬스, 인크. | Il-4r 길항제를 투여함에 의해 아토피 피부염을 치료하기 위한 방법 |
US11504426B2 (en) | 2019-08-05 | 2022-11-22 | Regeneron Pharmaceuticals, Inc. | Methods for treating allergy and enhancing allergen-specific immunotherapy by administering an IL-4R antagonist |
CA3149494A1 (en) | 2019-08-12 | 2021-02-18 | Purinomia Biotech, Inc. | Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells |
MX2022001799A (es) | 2019-08-15 | 2022-03-11 | Janssen Biotech Inc | Materiales y metodos para fragmentos variables de cadena unica mejorados. |
DK3785536T3 (da) | 2019-08-28 | 2022-03-28 | Trianni Inc | Adam6-knockin-mus |
TW202118512A (zh) | 2019-09-12 | 2021-05-16 | 美商建南德克公司 | 治療狼瘡性腎炎之組成物及方法 |
AU2020349509A1 (en) | 2019-09-18 | 2022-03-31 | Genentech, Inc. | Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use |
MX2022003266A (es) | 2019-09-20 | 2022-04-11 | Genentech Inc | Dosis para anticuerpos anti-triptasa. |
EP4034160A1 (en) | 2019-09-27 | 2022-08-03 | Janssen Biotech, Inc. | Anti-ceacam antibodies and uses thereof |
WO2021057978A1 (zh) | 2019-09-27 | 2021-04-01 | 南京金斯瑞生物科技有限公司 | 抗vhh域抗体及其用途 |
MX2022003610A (es) | 2019-09-27 | 2022-04-20 | Genentech Inc | Administracion de dosis para tratamiento con anticuerpos antagonistas anti-tigit y anti-pd-l1. |
WO2021058729A1 (en) | 2019-09-27 | 2021-04-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof |
US20220324962A1 (en) | 2019-09-27 | 2022-10-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-müllerian inhibiting substance antibodies and uses thereof |
AU2020357550A1 (en) | 2019-10-04 | 2022-05-05 | Tae Life Sciences, Llc | Antibody compositions comprising Fc mutations and site-specific conjugation properties |
MX2022004443A (es) | 2019-10-18 | 2022-05-02 | Genentech Inc | Metodos para usar inmunoconjugados anti-cd79b para tratar linfoma difuso de linfocitos b grandes. |
BR112022007923A2 (pt) | 2019-10-28 | 2022-07-26 | Regeneron Pharma | Anticorpo recombinante isolado ou fragmento de ligação ao antígeno deste, composição farmacêutica, molécula de polinucleotídeo, vetor, célula, e, método para prevenir, tratar ou melhorar pelo menos um sintoma da infecção por influenza |
WO2021092171A1 (en) | 2019-11-06 | 2021-05-14 | Genentech, Inc. | Diagnostic and therapeutic methods for treatment of hematologic cancers |
EP4057980A1 (en) | 2019-11-15 | 2022-09-21 | F. Hoffmann-La Roche AG | Prevention of visible particle formation in aqueous protein solutions |
US12018289B2 (en) | 2019-11-18 | 2024-06-25 | Janssen Biotech, Inc. | Vaccines based on mutant CALR and JAK2 and their uses |
WO2021099600A1 (en) | 2019-11-22 | 2021-05-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Inhibitors of adrenomedullin for the treatment of acute myeloid leukemia by eradicating leukemic stem cells |
WO2021108363A1 (en) | 2019-11-25 | 2021-06-03 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-mediated upregulation of humanized ttr allele |
IL293282A (en) | 2019-11-25 | 2022-07-01 | Mabloc Llc | Yellow fever antiviral antibodies and methods of making and using them |
JP2023504172A (ja) | 2019-12-02 | 2023-02-01 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | ペプチド-mhc iiタンパク質構築物およびそれらの使用 |
AU2020398168A1 (en) | 2019-12-06 | 2022-07-28 | Regeneron Pharmaceuticals, Inc. | Methods for treating COPD by administering an IL-33 antagonist |
CA3161037A1 (en) | 2019-12-09 | 2021-06-17 | Sanofi Biotechnology | Methods for treating digitally-identified il-4/il-13 related disorders |
EP3992974A1 (en) | 2020-11-02 | 2022-05-04 | Sanofi Biotechnology | Methods for treating digitally-identified il-4/il-13 related disorders |
CA3161347A1 (en) | 2019-12-10 | 2021-06-17 | Shazia ALI | Use of a pcsk9 inhibitor to treat homozygous familial hypercholesterolemia |
KR20220127252A (ko) | 2019-12-13 | 2022-09-19 | 알렉터 엘엘씨 | 항-mertk 항체 및 이의 사용 방법 |
TW202128767A (zh) | 2019-12-13 | 2021-08-01 | 美商建南德克公司 | 抗ly6g6d抗體及其使用方法 |
PE20221282A1 (es) | 2019-12-18 | 2022-09-05 | Hoffmann La Roche | Anticuerpos que se unen a hla-a2/mage-a4 |
WO2021119761A1 (en) | 2019-12-20 | 2021-06-24 | Hudson Institute of Medical Research | Cxcl10 binding proteins and uses thereof |
MX2022007958A (es) | 2019-12-23 | 2022-10-07 | Sanofi Biotechnology | Metodos para tratar o prevenir el asma alergica mediante la administracion de un antagonista de il-33 y/o un antagonista de il-4r. |
IL294226A (en) | 2019-12-27 | 2022-08-01 | Chugai Pharmaceutical Co Ltd | Anti-ctla-4 antibodies and their use |
JP2023509759A (ja) | 2020-01-08 | 2023-03-09 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 質量スペクトル分析においてシグナルを増強するためのアミノ酸の使用 |
CN110818795B (zh) | 2020-01-10 | 2020-04-24 | 上海复宏汉霖生物技术股份有限公司 | 抗tigit抗体和使用方法 |
CN115348874A (zh) | 2020-01-24 | 2022-11-15 | 里珍纳龙药品有限公司 | 蛋白质-抗病毒化合物偶联物 |
WO2021194481A1 (en) | 2020-03-24 | 2021-09-30 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
KR20220132597A (ko) | 2020-01-27 | 2022-09-30 | 리제너론 파아마슈티컬스, 인크. | 단백질의 번역 후 변형에 대한 탠덤 질량 태그 다중화 정량화 |
WO2022050954A1 (en) | 2020-09-04 | 2022-03-10 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
EP4096396A1 (en) | 2020-01-28 | 2022-12-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized pnpla3 locus and methods of use |
US11598756B2 (en) | 2020-01-30 | 2023-03-07 | Regeneron Pharmaceuticals, Inc. | Platform for native liquid chromatography-mass spectrometry |
CA3164559A1 (en) | 2020-01-31 | 2021-08-05 | Lars Mueller | Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine |
CA3166241A1 (en) | 2020-01-31 | 2021-08-05 | Jikang WU | High confidence compound identification by liquid chromatography-mass spectrometry |
BR112022015374A2 (pt) | 2020-02-03 | 2022-10-11 | Vir Biotechnology Inc | Anticorpos contra sars-cov-2 e métodos de uso dos mesmos |
EP3862023A1 (en) | 2020-02-05 | 2021-08-11 | Hangzhou DAC Biotech Co, Ltd | Conjugates of cell-binding molecules with cytotoxic agents |
WO2021158883A1 (en) | 2020-02-07 | 2021-08-12 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized klkb1 locus and methods of use |
CN115427457A (zh) | 2020-02-10 | 2022-12-02 | 瑞泽恩制药公司 | 抗tmprss2抗体和抗原结合片段 |
KR20220140786A (ko) | 2020-02-10 | 2022-10-18 | 상하이 에스쿠겐 바이오테크놀로지 컴퍼니 리미티드 | 클라우딘18.2 항체 및 그것의 사용 |
KR20220139357A (ko) | 2020-02-10 | 2022-10-14 | 상하이 에스쿠겐 바이오테크놀로지 컴퍼니 리미티드 | Cldn18.2 항체 및 그의 사용 |
MX2022009769A (es) | 2020-02-11 | 2022-11-09 | Regeneron Pharma | Anticuerpos anti-acvr1 y usos de los mismos. |
TW202140012A (zh) | 2020-02-12 | 2021-11-01 | 比利時商健生藥品公司 | 用於治療尿路上皮癌的fgfr酪胺酸激酶抑制劑和抗pd1藥劑 |
TW202144395A (zh) | 2020-02-12 | 2021-12-01 | 日商中外製藥股份有限公司 | 用於癌症之治療的抗cd137抗原結合分子 |
CN117964757A (zh) | 2020-02-14 | 2024-05-03 | 吉利德科学公司 | 与ccr8结合的抗体和融合蛋白及其用途 |
TW202144389A (zh) | 2020-02-14 | 2021-12-01 | 美商健生生物科技公司 | 在多發性骨髓瘤中表現之新抗原及其用途 |
TW202144388A (zh) | 2020-02-14 | 2021-12-01 | 美商健生生物科技公司 | 在卵巢癌中表現之新抗原及其用途 |
AU2021227687B2 (en) | 2020-02-26 | 2023-02-23 | Vir Biotechnology, Inc. | Antibodies against SARS-CoV-2 and methods of using the same |
KR20220145859A (ko) | 2020-02-28 | 2022-10-31 | 상하이 헨리우스 바이오테크, 인크. | 항cd137 작제물, 다중 특이적 항체 및 그 용도 |
AU2021225920A1 (en) | 2020-02-28 | 2022-09-15 | Shanghai Henlius Biotech, Inc. | Anti-CD137 construct and use thereof |
IL296256A (en) | 2020-03-13 | 2022-11-01 | Genentech Inc | Antibodies against interleukin-33 and uses thereof |
IL302351A (en) | 2020-03-13 | 2023-06-01 | Janssen Biotech Inc | Materials and methods for binding SIGLEC-3/CD33 |
KR20220156575A (ko) | 2020-03-19 | 2022-11-25 | 제넨테크, 인크. | 동종형 선택적 항-tgf-베타 항체 및 이용 방법 |
US20230102342A1 (en) | 2020-03-23 | 2023-03-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use |
JP2023519213A (ja) | 2020-03-24 | 2023-05-10 | ジェネンテック, インコーポレイテッド | Tie2結合剤および使用方法 |
TW202202620A (zh) | 2020-03-26 | 2022-01-16 | 美商建南德克公司 | 經修飾之哺乳動物細胞 |
CN115427450A (zh) | 2020-03-27 | 2022-12-02 | 瑞泽恩制药公司 | 通过施用il-4r拮抗剂治疗特应性皮炎的方法 |
CN116075525A (zh) | 2020-03-31 | 2023-05-05 | 艾莱克特有限责任公司 | 抗mertk抗体及其使用方法 |
US20230107644A1 (en) | 2020-04-01 | 2023-04-06 | University Of Rochester | Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses |
AU2020340881A1 (en) | 2020-04-02 | 2021-10-21 | Regeneron Pharmaceuticals, Inc. | Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments |
EP4127724A1 (en) | 2020-04-03 | 2023-02-08 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
WO2021203053A1 (en) | 2020-04-03 | 2021-10-07 | Vir Biotechnology, Inc. | Immunotherapy targeting a conserved region in sars coronaviruses |
EP4135846A1 (en) | 2020-04-14 | 2023-02-22 | VIR Biotechnology, Inc. | Antibodies against sars-cov-2 and methods of using the same |
US11885779B2 (en) | 2020-04-14 | 2024-01-30 | Regeneron Pharmaceuticals, Inc. | Ultraviolet monitoring of chromatography performance by orthogonal partial least squares |
CR20220512A (es) | 2020-04-15 | 2022-11-07 | Hoffmann La Roche | Inmunoconjugados |
WO2021211984A1 (en) | 2020-04-16 | 2021-10-21 | Regeneron Pharmaceuticals, Inc. | Diels-alder conjugation methods |
CR20220531A (es) | 2020-04-24 | 2022-11-28 | Hoffmann La Roche | Modulacion de enzimas y vías con compuestos de sulfhidrilo y sus derivados |
CN115916822A (zh) | 2020-04-24 | 2023-04-04 | 基因泰克公司 | 使用抗CD79b免疫缀合物的方法 |
MX2021015024A (es) | 2020-04-28 | 2022-01-18 | Univ Rockefeller | Anticuerpos anti-sars-cov-2 ampliamente neutralizantes y métodos de uso de los mismos. |
WO2021222167A1 (en) | 2020-04-28 | 2021-11-04 | Genentech, Inc. | Methods and compositions for non-small cell lung cancer immunotherapy |
KR20230087414A (ko) | 2020-05-03 | 2023-06-16 | 레베나 (쑤저우) 바이오파마 컴퍼니 리미티드 | 항-Trop-2 항체를 포함하는 항체-약물 접합체 (ADCS), 상기 ADCS를 포함하는 조성물, 및 이의 제조 및 사용 방법 |
CA3177169A1 (en) | 2020-05-08 | 2021-11-11 | Vir Biotechnology, Inc. | Antibodies against sars-cov-2 |
CN115551553A (zh) | 2020-05-12 | 2022-12-30 | Inserm(法国国家健康医学研究院) | 治疗皮肤t细胞淋巴瘤和tfh起源淋巴瘤的新方法 |
IL298099A (en) | 2020-05-12 | 2023-01-01 | Regeneron Pharma | Antibodies against glp1r agonist and methods of using them |
CN115605184A (zh) | 2020-05-15 | 2023-01-13 | 豪夫迈·罗氏有限公司(Ch) | 防止胃肠外蛋白质溶液中的可见颗粒形成 |
EP4153130A1 (en) | 2020-05-19 | 2023-03-29 | F. Hoffmann-La Roche AG | The use of chelators for the prevention of visible particle formation in parenteral protein solutions |
AU2021277398A1 (en) | 2020-05-22 | 2023-02-02 | Regeneron Pharmaceuticals, Inc. | Methods for treating eosinophilic esophagitis by administering an IL-4R inhibitor |
AU2021282179A1 (en) | 2020-05-26 | 2023-01-19 | Regeneron Pharmaceuticals, Inc. | Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments |
TW202210510A (zh) | 2020-05-27 | 2022-03-16 | 美商健生生物科技公司 | 包含cd3抗原結合域之蛋白質及其用途 |
CN116323665A (zh) | 2020-05-29 | 2023-06-23 | 23和我公司 | 抗cd200r1抗体及其使用方法 |
JP2023529842A (ja) | 2020-06-02 | 2023-07-12 | ダイナミキュア バイオテクノロジー エルエルシー | 抗cd93構築物およびその使用 |
EP4158034A4 (en) * | 2020-06-02 | 2024-07-03 | Biocytogen Pharmaceuticals Beijing Co Ltd | GENETICALLY MODIFIED NON-HUMAN ANIMALS HAVING A LIGHT-CHAIN IMMUNOGLOBULIN LOCUS |
CN116529260A (zh) | 2020-06-02 | 2023-08-01 | 当康生物技术有限责任公司 | 抗cd93构建体及其用途 |
WO2021247925A1 (en) | 2020-06-03 | 2021-12-09 | Vir Biotechnology, Inc. | Structure-guided immunotherapy against sars-cov-2 |
MX2022015206A (es) | 2020-06-08 | 2023-01-05 | Hoffmann La Roche | Anticuerpos anti-hbv y metodos de uso. |
RU2751237C1 (ru) * | 2020-06-10 | 2021-07-12 | Регенерон Фармасьютикалс, Инк. | Способы и композиции для направленной модификации генома |
GB202008860D0 (en) | 2020-06-11 | 2020-07-29 | Univ Oxford Innovation Ltd | BTLA antibodies |
JP2023529206A (ja) | 2020-06-12 | 2023-07-07 | ジェネンテック, インコーポレイテッド | がん免疫療法のための方法及び組成物 |
JP2023530274A (ja) | 2020-06-12 | 2023-07-14 | ヴィア・バイオテクノロジー・インコーポレイテッド | SARS-CoV-2感染の抗体療法 |
CA3181820A1 (en) | 2020-06-16 | 2021-12-23 | Genentech, Inc. | Methods and compositions for treating triple-negative breast cancer |
IL299103A (en) | 2020-06-18 | 2023-02-01 | Regeneron Pharma | Formulations of activin A antibody and methods of its use |
TW202200616A (zh) | 2020-06-18 | 2022-01-01 | 美商建南德克公司 | 使用抗tigit抗體及pd-1軸結合拮抗劑之治療 |
WO2021259880A1 (en) | 2020-06-22 | 2021-12-30 | Almirall, S.A. | Anti-il-36 antibodies and methods of use thereof |
MX2022016453A (es) | 2020-06-24 | 2023-02-01 | Genentech Inc | Lineas celulares resistentes a la apoptosis. |
CN115988960A (zh) | 2020-06-25 | 2023-04-18 | 株式会社湖美宝 | 杂合转基因动物 |
JP2023531968A (ja) | 2020-07-01 | 2023-07-26 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 抗bet v 1抗体を使用してアレルギーを治療する方法 |
CN116133689A (zh) | 2020-07-07 | 2023-05-16 | 豪夫迈·罗氏有限公司 | 作为治疗性蛋白质制剂的稳定剂的替代表面活性剂 |
WO2022015656A1 (en) | 2020-07-13 | 2022-01-20 | Regeneron Pharmaceuticals, Inc. | Camptothecin analogs conjugated to a glutamine residue in a protein, and their use |
JP2023534458A (ja) | 2020-07-17 | 2023-08-09 | ジェネンテック, インコーポレイテッド | 抗Notch2抗体及び使用方法 |
MX2023000888A (es) | 2020-07-21 | 2023-02-22 | Genentech Inc | Inductores quimicos de degradacion conjugados con anticuerpo de brm y metodos de estos. |
GB2597532A (en) | 2020-07-28 | 2022-02-02 | Femtogenix Ltd | Cytotoxic compounds |
KR20230133832A (ko) | 2020-07-29 | 2023-09-19 | 다이내믹큐어 바이오테크놀로지 엘엘씨 | 항-cd93 구축물 및 그의 용도 |
CA3190307A1 (en) | 2020-07-29 | 2022-02-03 | Janssen Biotech, Inc. | Proteins comprising hla-g antigen binding domains and their uses |
WO2022032137A1 (en) | 2020-08-07 | 2022-02-10 | Regeneron Pharmaceuticals, Inc. | Methods for treating refractory hypercholesterolemia involving an angptl3 inhibitor |
EP3954393A1 (en) | 2020-08-13 | 2022-02-16 | Bioasis Technologies Inc. | Combination therapies for delivery across the blood brain barrier |
WO2022046925A1 (en) | 2020-08-26 | 2022-03-03 | Regeneron Pharmaceuticals, Inc. | Method of treating an allergy with allergen-specific monoclonal antibodies |
EP4204558A2 (en) | 2020-08-28 | 2023-07-05 | Genentech, Inc. | Crispr/cas9 multiplex knockout of host cell proteins |
EP4211155A1 (en) | 2020-09-11 | 2023-07-19 | Regeneron Pharmaceuticals, Inc. | Identification and production of antigen-specific antibodies |
MX2023002974A (es) | 2020-09-14 | 2023-05-25 | Regeneron Pharma | Conjugados de anticuerpo-farmaco que comprenden peptidomimeticos glp1 y usos de los mismos. |
MX2023002901A (es) | 2020-09-14 | 2023-06-01 | Ichnos Sciences SA | Anticuerpos que se unen a la proteína auxiliar del receptor de interleucina-1 (il1rap) y usos de estos. |
EP4217385A2 (en) | 2020-09-28 | 2023-08-02 | VIR Biotechnology, Inc. | Antibodies against sars-cov-2 |
WO2022076289A1 (en) | 2020-10-05 | 2022-04-14 | Sanofi Biotechnology | Methods for treating asthma in pediatric subjects by administering an il-4r antagonist |
KR20230082632A (ko) | 2020-10-05 | 2023-06-08 | 제넨테크, 인크. | 항-fcrh5/항-cd3 이중특이성 항체를 사용한 치료를 위한 투약 |
KR20230084157A (ko) | 2020-10-08 | 2023-06-12 | 주식회사 휴맵 | 인간화 면역글로불린 유전자좌를 포함하는 게놈을 가지는 형질전환 비인간-동물 제조방법 |
KR20230086765A (ko) | 2020-10-13 | 2023-06-15 | 얀센 바이오테크 인코포레이티드 | 분화 클러스터 iv 및/또는 viii을 조절하기 위한 바이오-조작된 t 세포 매개 면역, 물질 및 기타 방법 |
WO2022081718A1 (en) | 2020-10-14 | 2022-04-21 | Five Prime Therapeutics, Inc. | Anti-c-c chemokine receptor 8 (ccr8) antibodies and methods of use thereof |
JP2023545566A (ja) | 2020-10-20 | 2023-10-30 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Pd-1軸結合アンタゴニストとlrrk2阻害剤との併用療法 |
CA3190569A1 (en) | 2020-10-22 | 2022-04-28 | Christopher Daly | Anti-fgfr2 antibodies and methods of use thereof |
IL302277A (en) | 2020-10-22 | 2023-06-01 | Janssen Biotech Inc | Proteins containing delta-like ligand antigen binding domains (DLL3) and uses thereof |
WO2022093981A1 (en) | 2020-10-28 | 2022-05-05 | Genentech, Inc. | Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists |
CA3196539A1 (en) | 2020-11-04 | 2022-05-12 | Chi-Chung Li | Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies |
KR20230100732A (ko) | 2020-11-04 | 2023-07-05 | 제넨테크, 인크. | 항-cd20/항-cd3 이중특이성 항체의 피하 투여 |
TW202227481A (zh) | 2020-11-04 | 2022-07-16 | 美國洛克菲勒大學 | 中和抗sars-cov-2抗體 |
KR20230095113A (ko) | 2020-11-04 | 2023-06-28 | 제넨테크, 인크. | 항-cd20/항-cd3 이중특이적 항체들과 항-cd79b 항체 약물 접합체들을 이용한 치료를 위한 투약 |
AR124063A1 (es) | 2020-11-16 | 2023-02-08 | Astellas Pharma Inc | Anticuerpo biespecífico anti-tspan8 / anti-cd3 y anticuerpo anti-tspan8 |
MX2023005581A (es) | 2020-11-16 | 2023-05-29 | Hoffmann La Roche | Glucoformas de fab ricas en manosa. |
JP2023551666A (ja) | 2020-11-23 | 2023-12-12 | ヴィア・バイオテクノロジー・インコーポレイテッド | A型インフルエンザウイルスに対する抗体 |
EP4247845A1 (en) | 2020-11-23 | 2023-09-27 | VIR Biotechnology, Inc. | Anti-influenza antibodies and combinations thereof |
EP4247495A1 (en) | 2020-11-23 | 2023-09-27 | VIR Biotechnology, Inc. | Broadly neutralizing antibodies against influenza neuraminidase |
EP4251279A1 (en) | 2020-11-25 | 2023-10-04 | VIR Biotechnology, Inc. | Antibodies that bind to multiple betacoronaviruses |
US20240101681A1 (en) | 2020-12-02 | 2024-03-28 | Alector Llc | Methods of use of anti-sortilin antibodies |
WO2022126113A1 (en) | 2020-12-09 | 2022-06-16 | Trianni, Inc. | Heavy chain-only antibodies |
IL303626A (en) | 2020-12-16 | 2023-08-01 | Regeneron Pharma | Mice expressing human FC alpha receptors |
WO2022132904A1 (en) | 2020-12-17 | 2022-06-23 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Human monoclonal antibodies targeting sars-cov-2 |
AU2021399841A1 (en) | 2020-12-17 | 2023-07-06 | F. Hoffmann-La Roche Ag | Anti-hla-g antibodies and use thereof |
IL303542A (en) | 2020-12-18 | 2023-08-01 | Regeneron Pharma | Immunoglobulin proteins that bind to NPR1 agonists |
IL303371A (en) | 2020-12-20 | 2023-08-01 | Regeneron Pharma | Methods for the identification of degraded disulfides in biocompounds |
US20240317849A1 (en) | 2020-12-23 | 2024-09-26 | Regeneron Pharmaceuticals, Inc. | Nucleic acids encoding anchor modified antibodies and uses thereof |
BR112023011689A2 (pt) | 2020-12-23 | 2023-10-31 | Regeneron Pharma | Método para obter uma célula produtora de anticorpos, anticorpo, e, célula hospedeira de mamífero |
CA3204515A1 (en) | 2021-01-08 | 2022-07-14 | Jamie M. Orengo | Methods for treating peanut allergy and enhancing peanut allergen-specific immunotherapy by administering an il-4r antagonist |
WO2022148853A1 (en) | 2021-01-11 | 2022-07-14 | F. Hoffmann-La Roche Ag | Immunoconjugates |
EP4279594A1 (en) | 2021-01-13 | 2023-11-22 | Astellas Pharma Inc. | Multispecific antibody bonding to actriia, actriib, and fn14 |
US12060411B2 (en) | 2021-01-15 | 2024-08-13 | The Rockefeller University | Neutralizing anti-SARS-CoV-2 antibodies |
WO2022159875A1 (en) | 2021-01-25 | 2022-07-28 | Regeneron Pharmaceuticals, Inc. | Anti-pdgf-b antibodies and mehods of use for treating pulmonary arterial hypertension (pah) |
WO2022159842A1 (en) | 2021-01-25 | 2022-07-28 | Vir Biotechnology, Inc. | Antibody combination therapies for sars-cov-2 infection |
MX2023008909A (es) | 2021-01-28 | 2023-10-23 | Janssen Biotech Inc | Proteínas de unión a psma y usos de estas. |
CA3210753A1 (en) | 2021-02-09 | 2022-08-18 | University Of Georgia Research Foundation, Inc. | Human monoclonal antibodies against pneumococcal antigens |
JP2024506315A (ja) | 2021-02-09 | 2024-02-13 | ザ ユナイテッド ステイツ オブ アメリカ アズ リプリゼンテッド バイ ザ セクレタリー、デパートメント オブ ヘルス アンド ヒューマン サービシーズ | コロナウイルスのスパイクタンパク質を標的とする抗体 |
WO2022173745A1 (en) | 2021-02-09 | 2022-08-18 | Humabs Biomed Sa | Antibodies against respiratory syncytial virus, human metapneumovirus and pneumonia virus of mice and methods of using the same |
EP4301418A1 (en) | 2021-03-03 | 2024-01-10 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates comprising an anti-bcma antibody |
WO2022187863A1 (en) | 2021-03-05 | 2022-09-09 | Dynamicure Biotechnology Llc | Anti-vista constructs and uses thereof |
WO2022187626A1 (en) | 2021-03-05 | 2022-09-09 | Regeneron Pharmaceuticals, Inc. | Anti-sars-cov-2-variant-spike glycoprotein antibodies and antigen-binding fragments |
EP4304732A1 (en) | 2021-03-12 | 2024-01-17 | Genentech, Inc. | Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use |
MX2023010812A (es) | 2021-03-15 | 2023-09-27 | Genentech Inc | Composiciones y metodos para tratar la nefritis lupica. |
JP2024512002A (ja) | 2021-03-18 | 2024-03-18 | アレクトル エルエルシー | 抗tmem106b抗体、及び、その使用方法 |
WO2022197877A1 (en) | 2021-03-19 | 2022-09-22 | Genentech, Inc. | Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents |
WO2022204274A1 (en) | 2021-03-23 | 2022-09-29 | Alector Llc | Anti-tmem106b antibodies for treating and preventing coronavirus infections |
WO2022204202A1 (en) | 2021-03-23 | 2022-09-29 | Vir Biotechnology, Inc. | Antibodies that bind to multiple sarbecoviruses |
IL306103A (en) | 2021-03-24 | 2023-11-01 | Janssen Biotech Inc | The antibody targets CD22 and CD79B |
AU2022242125A1 (en) | 2021-03-24 | 2023-11-09 | Janssen Biotech, Inc. | Proteins comprising cd3 antigen binding domains and uses thereof |
WO2022204724A1 (en) | 2021-03-25 | 2022-09-29 | Dynamicure Biotechnology Llc | Anti-igfbp7 constructs and uses thereof |
AR125255A1 (es) | 2021-04-02 | 2023-06-28 | Regeneron Pharma | Métodos de predicción y modulación de la glicación de una proteína |
AR125344A1 (es) | 2021-04-15 | 2023-07-05 | Chugai Pharmaceutical Co Ltd | Anticuerpo anti-c1s |
WO2022220603A1 (ko) | 2021-04-16 | 2022-10-20 | 고려대학교 산학협력단 | 코로나-19 바이러스 표적 인간 항체 |
CA3215965A1 (en) | 2021-04-19 | 2022-10-27 | Amy Shen | Modified mammalian cells |
US11926661B2 (en) | 2021-04-20 | 2024-03-12 | Regeneron Pharmaceuticals, Inc. | Human antibodies to artemin and methods of use thereof |
BR112023021950A2 (pt) | 2021-04-22 | 2023-12-19 | Astellas Pharma Inc | Anticorpo bispecífico anti-cldn4/anti-cd137 |
AU2021443318A1 (en) | 2021-04-30 | 2023-09-07 | F. Hoffmann-La Roche Ag | Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate |
JP2024509664A (ja) | 2021-04-30 | 2024-03-05 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 抗cd20/抗cd3二重特異性抗体による治療のための投薬 |
MX2023012974A (es) | 2021-05-04 | 2023-11-15 | Regeneron Pharma | Agonistas multiespecificos de receptores del fgf21 y sus usos. |
JP2024516996A (ja) | 2021-05-05 | 2024-04-18 | トリアニ・インコーポレイテッド | トランスジェニック哺乳動物およびその使用方法 |
EP4334343A2 (en) | 2021-05-06 | 2024-03-13 | The Rockefeller University | Neutralizing anti-sars- cov-2 antibodies and methods of use thereof |
EP4337695A1 (en) | 2021-05-11 | 2024-03-20 | Regeneron Pharmaceuticals, Inc. | Anti-tmprss6 antibodies and uses thereof |
IL308351A (en) | 2021-05-12 | 2024-01-01 | Genentech Inc | Methods for using anti-CD79B immunoconjugates to treat diffuse large B-cell lymphoma |
JP2024521107A (ja) | 2021-05-21 | 2024-05-28 | ジェネンテック, インコーポレイテッド | 目的の組換え産物を産生するための修飾細胞 |
EP4347642A2 (en) | 2021-05-24 | 2024-04-10 | VIR Biotechnology, Inc. | Engineered polypeptides |
CN113278071B (zh) | 2021-05-27 | 2021-12-21 | 江苏荃信生物医药股份有限公司 | 抗人干扰素α受体1单克隆抗体及其应用 |
CN117480184A (zh) | 2021-06-04 | 2024-01-30 | 中外制药株式会社 | 抗ddr2抗体及其用途 |
TW202313045A (zh) | 2021-06-09 | 2023-04-01 | 瑞士商赫孚孟拉羅股份公司 | 用於癌症治療之組合療法 |
EP4355786A1 (en) | 2021-06-16 | 2024-04-24 | Alector LLC | Bispecific anti-mertk and anti-pdl1 antibodies and methods of use thereof |
JP2024527493A (ja) | 2021-06-16 | 2024-07-25 | アレクトル エルエルシー | 一価の抗MerTK抗体及びその使用方法 |
EP4355785A1 (en) | 2021-06-17 | 2024-04-24 | Amberstone Biosciences, Inc. | Anti-cd3 constructs and uses thereof |
KR20240021943A (ko) | 2021-06-18 | 2024-02-19 | 남미 테라퓨틱스, 인크. | 암의 치료에 사용하기 위한 마스킹된 유형 I 인터페론 (IFNα 및 IFNβ)을 포함하는 융합 단백질 조성물(들) 및 그의 방법 |
CA3221833A1 (en) | 2021-06-25 | 2022-12-29 | Chugai Seiyaku Kabushiki Kaisha | Anti-ctla-4 antibody |
CA3220353A1 (en) | 2021-06-25 | 2022-12-29 | Chugai Seiyaku Kabushiki Kaisha | Use of anti-ctla-4 antibody |
JP2024527344A (ja) | 2021-07-05 | 2024-07-24 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 抗体応答を抗原に適合させるための抗体の利用 |
CA3225575A1 (en) | 2021-07-14 | 2023-01-19 | Regeneron Pharmaceuticals, Inc. | Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments |
JP2024527606A (ja) | 2021-07-14 | 2024-07-25 | ジェネンテック, インコーポレイテッド | 抗c-cモチーフケモカイン受容体8(ccr8)抗体及び使用方法 |
WO2023004386A1 (en) | 2021-07-22 | 2023-01-26 | Genentech, Inc. | Brain targeting compositions and methods of use thereof |
EP4373859A1 (en) | 2021-07-22 | 2024-05-29 | F. Hoffmann-La Roche AG | Heterodimeric fc domain antibodies |
EP4377345A1 (en) | 2021-07-26 | 2024-06-05 | Sanofi Biotechnology | Methods for treating chronic spontaneous urticaria by administering an il-4r antagonist |
EP4376895A2 (en) | 2021-07-28 | 2024-06-05 | Regeneron Pharmaceuticals, Inc. | Protein-antiviral compound conjugates |
EP4380980A1 (en) | 2021-08-03 | 2024-06-12 | F. Hoffmann-La Roche AG | Bispecific antibodies and methods of use |
CN117897409A (zh) | 2021-08-13 | 2024-04-16 | 基因泰克公司 | 抗类胰蛋白酶抗体的给药 |
JP2024532263A (ja) | 2021-08-23 | 2024-09-05 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Il-4rアンタゴニストを投与することによってアトピー性皮膚炎を治療する方法 |
JP2024535712A (ja) | 2021-08-27 | 2024-10-02 | ヤンセン バイオテツク,インコーポレーテツド | 抗psma抗体及びその使用 |
EP4396223A1 (en) | 2021-08-30 | 2024-07-10 | Genentech, Inc. | Anti-polyubiquitin multispecific antibodies |
WO2023034871A1 (en) | 2021-09-01 | 2023-03-09 | Vir Biotechnology, Inc. | High concentration antibody therapies for sars-cov-2 infection |
WO2023034866A1 (en) | 2021-09-01 | 2023-03-09 | Vir Biotechnology, Inc. | Antibody therapies for sars-cov-2 infection in pediatric subjects |
CN113603775B (zh) | 2021-09-03 | 2022-05-20 | 江苏荃信生物医药股份有限公司 | 抗人白介素-33单克隆抗体及其应用 |
CN113683694B (zh) | 2021-09-03 | 2022-05-13 | 江苏荃信生物医药股份有限公司 | 一种抗人tslp单克隆抗体及其应用 |
WO2023039442A1 (en) | 2021-09-08 | 2023-03-16 | Vir Biotechnology, Inc. | Broadly neutralizing antibody combination therapies for sars-cov-2 infection |
EP4405392A1 (en) | 2021-09-24 | 2024-07-31 | Janssen Biotech, Inc. | Proteins comprising cd20 binding domains, and uses thereof |
TW202321308A (zh) | 2021-09-30 | 2023-06-01 | 美商建南德克公司 | 使用抗tigit抗體、抗cd38抗體及pd—1軸結合拮抗劑治療血液癌症的方法 |
CA3232212A1 (en) | 2021-10-01 | 2023-04-06 | Ping XIANG | Transgenic rodents for cell line identification and enrichment |
AR127269A1 (es) | 2021-10-08 | 2024-01-03 | Chugai Pharmaceutical Co Ltd | Formulación de anticuerpo anti-hla-dq2.5 |
CN118139648A (zh) | 2021-10-14 | 2024-06-04 | 豪夫迈·罗氏有限公司 | 用于治疗癌症的替代的PD1-IL7v免疫缀合物 |
CA3234731A1 (en) | 2021-10-14 | 2023-04-20 | F. Hoffmann-La Roche Ag | New interleukin-7 immunoconjugates |
EP4419558A1 (en) | 2021-10-19 | 2024-08-28 | Alector LLC | Anti-cd300lb antibodies and methods of use thereof |
EP4419557A1 (en) | 2021-10-20 | 2024-08-28 | Sanofi Biotechnology | Methods for treating prurigo nodularis by administering an il-4r antagonist |
CN118414168A (zh) | 2021-10-22 | 2024-07-30 | 里珍纳龙药品有限公司 | 因子xi a2结构域结合抗体和其使用方法 |
CN118251491A (zh) | 2021-10-28 | 2024-06-25 | 瑞泽恩制药公司 | 用于敲除C5的CRISPR/Cas相关方法及组合物 |
EP4429456A1 (en) | 2021-11-10 | 2024-09-18 | Trianni, Inc. | Transgenic mammals and methods of use thereof |
EP4430072A1 (en) | 2021-11-10 | 2024-09-18 | Genentech, Inc. | Anti-interleukin-33 antibodies and uses thereof |
EP4433506A1 (en) | 2021-11-16 | 2024-09-25 | Genentech, Inc. | Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab |
EP4433500A1 (en) | 2021-11-19 | 2024-09-25 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for reducing centralized pain |
MX2024006205A (es) | 2021-11-22 | 2024-08-19 | Janssen Biotech Inc | Composiciones que comprenden agentes de unión multiespecíficos potenciados para una respuesta inmunitaria. |
EP4442274A1 (en) | 2021-12-01 | 2024-10-09 | Chugai Seiyaku Kabushiki Kaisha | Method for preparing antibody-containing formulation |
EP4444416A1 (en) | 2021-12-06 | 2024-10-16 | Regeneron Pharmaceuticals, Inc. | Antagonist anti-npr1 antibodies and methods of use thereof |
KR20240117571A (ko) | 2021-12-08 | 2024-08-01 | 리제너론 파마슈티칼스 인코포레이티드 | 돌연변이 마이오실린 질환 모델 및 이의 용도 |
AU2022411573A1 (en) | 2021-12-17 | 2024-06-27 | Shanghai Henlius Biologics Co., Ltd. | Anti-ox40 antibodies and methods of use |
EP4448578A1 (en) | 2021-12-17 | 2024-10-23 | Shanghai Henlius Biotech, Inc. | Anti-ox40 antibodies, multispecific antibodies and methods of use |
KR20240135618A (ko) | 2021-12-30 | 2024-09-11 | 리제너론 파아마슈티컬스, 인크. | Il-4/il-13 길항제를 투여하여 아토피 행진을 약화시키는 방법 |
US20230287138A1 (en) | 2022-01-12 | 2023-09-14 | Regneron Pharmaceuticals, Inc. | Protein-drug conjugates comprising camptothecin analogs and methods of use thereof |
US20230277682A1 (en) | 2022-01-14 | 2023-09-07 | Regeneron Pharmaceuticals, Inc. | Verrucarin a derivatives and antibody drug conjugates thereof |
TW202340251A (zh) | 2022-01-19 | 2023-10-16 | 美商建南德克公司 | 抗notch2抗體及結合物及其使用方法 |
WO2023147399A1 (en) | 2022-01-27 | 2023-08-03 | The Rockefeller University | Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof |
WO2023150620A1 (en) | 2022-02-02 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Crispr-mediated transgene insertion in neonatal cells |
WO2023150798A1 (en) | 2022-02-07 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for defining optimal treatment timeframes in lysosomal disease |
WO2023152581A1 (en) | 2022-02-09 | 2023-08-17 | Janssen Biotech, Inc. | Method of treating cancer with psmaxcd3 antibody |
KR20240142563A (ko) | 2022-02-10 | 2024-09-30 | 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 | 코로나바이러스를 광범위하게 표적으로 하는 인간 모노클로날 항체 |
US20230257432A1 (en) | 2022-02-11 | 2023-08-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for screening 4r tau targeting agents |
TW202337497A (zh) | 2022-02-18 | 2023-10-01 | 中國大陸商重慶明道浩悅生物科技有限公司 | 鼻內調配物及抗sars-cov-2棘蛋白抗體 |
WO2023173026A1 (en) | 2022-03-10 | 2023-09-14 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
WO2023180353A1 (en) | 2022-03-23 | 2023-09-28 | F. Hoffmann-La Roche Ag | Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy |
WO2023179740A1 (en) | 2022-03-25 | 2023-09-28 | Shanghai Henlius Biotech , Inc. | Anti-msln antibodies and methods of use |
AU2022450448A1 (en) | 2022-04-01 | 2024-10-10 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2023201256A1 (en) | 2022-04-12 | 2023-10-19 | Vir Biotechnology, Inc. | High dose antibody therapies for sars-cov-2 infection |
TW202404637A (zh) | 2022-04-13 | 2024-02-01 | 瑞士商赫孚孟拉羅股份公司 | 抗cd20/抗cd3雙特異性抗體之醫藥組成物及使用方法 |
WO2023212586A1 (en) | 2022-04-27 | 2023-11-02 | Regeneron Pharmaceuticals, Inc. | Methods for selecting patients for treatment with an ngf antagonist |
WO2023215737A1 (en) | 2022-05-03 | 2023-11-09 | Genentech, Inc. | Anti-ly6e antibodies, immunoconjugates, and uses thereof |
WO2023219613A1 (en) | 2022-05-11 | 2023-11-16 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
TW202411247A (zh) | 2022-05-23 | 2024-03-16 | 瑞士商休曼生物醫藥股份公司 | 針對流感神經胺酸酶的廣泛中和抗體 |
WO2023230448A1 (en) | 2022-05-23 | 2023-11-30 | Vir Biotechnology, Inc. | Combination immunotherapy for influenza |
WO2023235699A1 (en) | 2022-05-31 | 2023-12-07 | Jounce Therapeutics, Inc. | Antibodies to lilrb4 and uses thereof |
WO2023240058A2 (en) | 2022-06-07 | 2023-12-14 | Genentech, Inc. | Prognostic and therapeutic methods for cancer |
WO2023245078A1 (en) | 2022-06-15 | 2023-12-21 | Humabs Biomed Sa | Anti-parvovirus antibodies and uses thereof |
WO2024006472A1 (en) | 2022-06-30 | 2024-01-04 | Vir Biotechnology, Inc. | Antibodies that bind to multiple sarbecoviruses |
WO2024011251A1 (en) | 2022-07-08 | 2024-01-11 | Regeneron Pharmaceuticals, Inc. | Methods for treating eosinophilic esophagitis in pediatric by administering an il-4r antagonist |
WO2024015816A1 (en) | 2022-07-12 | 2024-01-18 | Regeneron Pharmaceuticals, Inc. | Antibodies to ciliary neurotrophic factor receptor (cntfr) and methods of use thereof |
TW202417042A (zh) | 2022-07-13 | 2024-05-01 | 美商建南德克公司 | 用抗fcrh5/抗cd3雙特異性抗體進行治療之給藥 |
WO2024020432A1 (en) | 2022-07-19 | 2024-01-25 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2024020057A1 (en) | 2022-07-19 | 2024-01-25 | Regeneron Pharmaceuticals, Inc. | Genetically modified animal model and its use to model the human immune system |
WO2024020564A1 (en) | 2022-07-22 | 2024-01-25 | Genentech, Inc. | Anti-steap1 antigen-binding molecules and uses thereof |
TW202423963A (zh) | 2022-07-27 | 2024-06-16 | 瑞士商休曼斯生物醫藥公司 | 針對rsv及mpv副黏液病毒之廣效中和抗體 |
WO2024026471A1 (en) | 2022-07-29 | 2024-02-01 | Alector Llc | Cd98hc antigen-binding domains and uses therefor |
WO2024026474A1 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle |
TW202415679A (zh) | 2022-07-29 | 2024-04-16 | 美商阿列克特有限責任公司 | 抗gpnmb抗體及其使用方法 |
WO2024026472A2 (en) | 2022-07-29 | 2024-02-01 | Alector Llc | Transferrin receptor antigen-binding domains and uses therefor |
US20240052051A1 (en) | 2022-07-29 | 2024-02-15 | Regeneron Pharmaceuticals, Inc. | Anti-tfr:payload fusions and methods of use thereof |
WO2024030829A1 (en) | 2022-08-01 | 2024-02-08 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Monoclonal antibodies that bind to the underside of influenza viral neuraminidase |
WO2024044770A1 (en) | 2022-08-26 | 2024-02-29 | Core Biotherapeutics, Inc. | Oligonucleotides for the treatment of breast cancer |
WO2024047021A1 (en) | 2022-08-29 | 2024-03-07 | Sanofi | Methods for treating chronic inducible cold urticaria by administering an il-4r antagonist |
WO2024049949A1 (en) | 2022-09-01 | 2024-03-07 | Genentech, Inc. | Therapeutic and diagnostic methods for bladder cancer |
WO2024054929A1 (en) | 2022-09-07 | 2024-03-14 | Dynamicure Biotechnology Llc | Anti-vista constructs and uses thereof |
WO2024054822A1 (en) | 2022-09-07 | 2024-03-14 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Engineered sars-cov-2 antibodies with increased neutralization breadth |
WO2024073606A1 (en) | 2022-09-28 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Antibody resistant modified receptors to enhance cell-based therapies |
US20240224964A9 (en) | 2022-09-29 | 2024-07-11 | Regeneron Pharmaceuticals, Inc. | Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes |
TW202421664A (zh) | 2022-10-07 | 2024-06-01 | 美商建南德克公司 | 用抗c—c模體趨化因子受體8(ccr8)抗體治療癌症之方法 |
WO2024086796A1 (en) | 2022-10-20 | 2024-04-25 | Alector Llc | Anti-ms4a4a antibodies with amyloid-beta therapies |
TW202426505A (zh) | 2022-10-25 | 2024-07-01 | 美商建南德克公司 | 癌症之治療及診斷方法 |
US20240150474A1 (en) | 2022-10-27 | 2024-05-09 | Regeneron Pharmaceuticals, Inc. | Anti-acvri antibodies and their use in the treatment of trauma-induced heterotopic ossification |
WO2024097714A1 (en) | 2022-11-01 | 2024-05-10 | Regeneron Pharmaceuticals, Inc. | Methods for treating hand and foot dermatitis by administering an il-4r antagonist |
WO2024097741A1 (en) | 2022-11-04 | 2024-05-10 | Gilead Sciences, Inc. | Anticancer therapies using anti-ccr8 antibody, chemo and immunotherapy combinations |
WO2024098002A1 (en) | 2022-11-04 | 2024-05-10 | Regeneron Pharmaceuticals, Inc. | Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle |
WO2024102369A1 (en) | 2022-11-07 | 2024-05-16 | Regeneron Pharmaceuticals, Inc. | Factor xi catalytic domain-binding antibodies and methods of use thereof |
WO2024102734A1 (en) | 2022-11-08 | 2024-05-16 | Genentech, Inc. | Compositions and methods of treating childhood onset idiopathic nephrotic syndrome |
WO2024100170A1 (en) | 2022-11-11 | 2024-05-16 | F. Hoffmann-La Roche Ag | Antibodies binding to hla-a*02/foxp3 |
WO2024107765A2 (en) | 2022-11-14 | 2024-05-23 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes |
US20240158515A1 (en) | 2022-11-14 | 2024-05-16 | Regeneron Pharmaceuticals, Inc. | Anti-fgfr3 antibodies and antigen-binding fragments and methods of use thereof |
WO2024112818A1 (en) | 2022-11-22 | 2024-05-30 | Humabs Biomed Sa | Engineered anti-sars-cov-2 antibodies and uses thereof |
WO2024112935A1 (en) | 2022-11-23 | 2024-05-30 | Regeneron Pharmaceuticals, Inc. | Methods for improving bone growth by administering an il-4r antagonist |
WO2024118593A1 (en) | 2022-11-28 | 2024-06-06 | Allogene Therapeutics Inc. | Claudin 18.2 targeting chimeric antigen receptors and binding agents and uses thereof |
WO2024118998A2 (en) | 2022-12-01 | 2024-06-06 | Vir Biotechnology, Inc. | Engineered anti-sars-cov-2 antibodies and methods of using the same |
WO2024129594A1 (en) | 2022-12-12 | 2024-06-20 | Genentech, Inc. | Optimizing polypeptide sialic acid content |
WO2024137381A1 (en) | 2022-12-19 | 2024-06-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Monoclonal antibodies for treating sars-cov-2 infection |
WO2024137731A2 (en) | 2022-12-21 | 2024-06-27 | Genzyme Corporation | Anti‑pd‑1×4‑1bb binding proteins |
US20240269308A1 (en) | 2022-12-21 | 2024-08-15 | Regeneron Pharmaceuticals, Inc. | Prodrugs of topoisomerase i inhibitor for adc conjugations and methods of use thereof |
WO2024138155A1 (en) | 2022-12-22 | 2024-06-27 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Ebolavirus (sudan and zaire) antibodies from non-human primates and human vaccinees |
WO2024148232A2 (en) | 2023-01-06 | 2024-07-11 | Alector Llc | Anti-il18 binding protein antibodies and methods of use thereof |
WO2024148240A1 (en) | 2023-01-06 | 2024-07-11 | Lassen Therapeutics 1, Inc. | ANTI-IL-11Rα ANTIBODIES FOR TREATING THYROID EYE DISEASE |
WO2024148241A1 (en) | 2023-01-06 | 2024-07-11 | Lassen Therapeutics 1, Inc. | Anti-il-18bp antibodies |
US20240247069A1 (en) | 2023-01-13 | 2024-07-25 | Regeneron Pharmaceuticals, Inc. | Fgfr3 binding molecules and methods of use thereof |
WO2024155807A1 (en) | 2023-01-18 | 2024-07-25 | Genentech, Inc. | Multispecific antibodies and uses thereof |
WO2024155604A1 (en) | 2023-01-18 | 2024-07-25 | Gilead Sciences, Inc. | Chimeric transgenic immunoglobulin mice with an altered heavy chain locus and methods of making and using same |
WO2024153722A1 (en) | 2023-01-20 | 2024-07-25 | F. Hoffmann-La Roche Ag | Immunoconjugates |
US20240279350A1 (en) | 2023-02-16 | 2024-08-22 | Sanofi | CD40-Binding Proteins |
US20240299601A1 (en) | 2023-02-17 | 2024-09-12 | Regeneron Pharmaceuticals, Inc. | Radiolabeled anti-lag3 antibodies for immuno-pet imaging |
WO2024191785A1 (en) | 2023-03-10 | 2024-09-19 | Genentech, Inc. | Fusions with proteases and uses thereof |
US20240345083A1 (en) | 2023-03-15 | 2024-10-17 | Regeneron Pharmaceuticals, Inc. | Methods for obtaining antibody molecules with high affinity |
WO2024197119A1 (en) | 2023-03-22 | 2024-09-26 | Sanofi Biotechnology | Methods for treating chronic obstructive pulmonary disease (copd) by administering an il-4r antagonist |
WO2024206341A1 (en) | 2023-03-27 | 2024-10-03 | Regeneron Pharmaceuticals, Inc. | Methods for treating eosinophilic gastroenteritis by administering an il-4r antagonist |
US20240327522A1 (en) | 2023-03-31 | 2024-10-03 | Genentech, Inc. | Anti-alpha v beta 8 integrin antibodies and methods of use |
WO2024211211A1 (en) | 2023-04-03 | 2024-10-10 | Regeneron Pharmaceuticals, Inc. | Methods of improving transplant survival using il-2 receptor gamma chain antibodies |
WO2024211236A2 (en) | 2023-04-05 | 2024-10-10 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
WO2024211234A1 (en) | 2023-04-05 | 2024-10-10 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
WO2024211235A1 (en) | 2023-04-05 | 2024-10-10 | Sorrento Therapeutics, Inc. | Antibody-drug conjugates and uses thereof |
Family Cites Families (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5350689A (en) | 1987-05-20 | 1994-09-27 | Ciba-Geigy Corporation | Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells |
US5202238A (en) | 1987-10-27 | 1993-04-13 | Oncogen | Production of chimeric antibodies by homologous recombination |
GB8823869D0 (en) * | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
FR2646438B1 (fr) | 1989-03-20 | 2007-11-02 | Pasteur Institut | Procede de remplacement specifique d'une copie d'un gene present dans le genome receveur par l'integration d'un gene different de celui ou se fait l'integration |
WO1991000906A1 (en) | 1989-07-12 | 1991-01-24 | Genetics Institute, Inc. | Chimeric and transgenic animals capable of producing human antibodies |
JP3068180B2 (ja) | 1990-01-12 | 2000-07-24 | アブジェニックス インコーポレイテッド | 異種抗体の生成 |
US6657103B1 (en) | 1990-01-12 | 2003-12-02 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6713610B1 (en) | 1990-01-12 | 2004-03-30 | Raju Kucherlapati | Human antibodies derived from immunized xenomice |
US6673986B1 (en) | 1990-01-12 | 2004-01-06 | Abgenix, Inc. | Generation of xenogeneic antibodies |
US5614396A (en) * | 1990-06-14 | 1997-03-25 | Baylor College Of Medicine | Methods for the genetic modification of endogenous genes in animal cells by homologous recombination |
US5877397A (en) * | 1990-08-29 | 1999-03-02 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US7041871B1 (en) * | 1995-10-10 | 2006-05-09 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US6255458B1 (en) * | 1990-08-29 | 2001-07-03 | Genpharm International | High affinity human antibodies and human antibodies against digoxin |
US5625126A (en) * | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5770429A (en) * | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
AU2515992A (en) | 1991-08-20 | 1993-03-16 | Genpharm International, Inc. | Gene targeting in animal cells using isogenic dna constructs |
JPH07503132A (ja) | 1991-12-17 | 1995-04-06 | ジェンファーム インターナショナル,インコーポレイティド | 異種抗体を産生することができるトランスジェニック非ヒト動物 |
ES2301158T3 (es) * | 1992-07-24 | 2008-06-16 | Amgen Fremont Inc. | Produccion de anticuerpos xenogenicos. |
DE4228162C1 (de) | 1992-08-25 | 1994-01-13 | Rajewsky Klaus Dr | Verfahren zum Ersetzen homologer Genabschnitte aus Säugern in der Keimbahn von nicht-menschlichen Säugern |
US5436149A (en) | 1993-02-19 | 1995-07-25 | Barnes; Wayne M. | Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension |
JPH08509612A (ja) * | 1993-04-26 | 1996-10-15 | ジェンファーム インターナショナル インコーポレイテッド | 異種抗体を産生することができるトランスジェニック非ヒト動物 |
US6096878A (en) | 1993-05-10 | 2000-08-01 | Japan Tobacco Inc. | Human immunoglobulin VH gene segments and DNA fragments containing the same |
US5523226A (en) | 1993-05-14 | 1996-06-04 | Biotechnology Research And Development Corp. | Transgenic swine compositions and methods |
US5508189A (en) | 1994-04-26 | 1996-04-16 | Pepperdine University | Regeneration of plants from cultured guard cell protoplasts |
US6130364A (en) | 1995-03-29 | 2000-10-10 | Abgenix, Inc. | Production of antibodies using Cre-mediated site-specific recombination |
US6069010A (en) * | 1995-09-11 | 2000-05-30 | Axys Pharmaceuticals, Inc. | High throughput gene inactivation with large scale gene targeting |
US5928914A (en) * | 1996-06-14 | 1999-07-27 | Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University | Methods and compositions for transforming cells |
US5763715A (en) | 1996-10-08 | 1998-06-09 | Stone & Webster Engineering Corp. | Butadiene removal system for ethylene plants with front end hydrogenation systems |
KR20080059467A (ko) | 1996-12-03 | 2008-06-27 | 아브게닉스, 인크. | 복수의 vh 및 vk 부위를 함유하는 사람 면역글로불린유전자좌를 갖는 형질전환된 포유류 및 이로부터 생성된항체 |
US6075859A (en) | 1997-03-11 | 2000-06-13 | Qualcomm Incorporated | Method and apparatus for encrypting data in a wireless communication system |
GB9823930D0 (en) * | 1998-11-03 | 1998-12-30 | Babraham Inst | Murine expression of human ig\ locus |
DK1151010T3 (da) | 1999-02-05 | 2006-01-09 | Therapeutic Human Polyclonals | Humane polyklonale antistoffer fra antigene ikke-humane dyr |
US6833268B1 (en) | 1999-06-10 | 2004-12-21 | Abgenix, Inc. | Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions |
US6355412B1 (en) | 1999-07-09 | 2002-03-12 | The European Molecular Biology Laboratory | Methods and compositions for directed cloning and subcloning using homologous recombination |
AU7491800A (en) | 1999-09-15 | 2001-04-17 | Therapeutic Human Polyclonals, Inc. | Immunotherapy with substantially human polyclonal antibody preparations purifiedfrom genetically engineered birds |
GB2356897B (en) | 1999-12-01 | 2003-05-14 | Secr Defence | Improved nozzle |
US20020028488A1 (en) | 2000-06-19 | 2002-03-07 | Sujay Singh | Transgenic avian species for making human and chimeric antibodies |
AU2001284703B2 (en) | 2000-08-03 | 2007-03-22 | Therapeutic Human Polyclonals Inc. | Production of humanized antibodies in transgenic animals |
US20050144655A1 (en) | 2000-10-31 | 2005-06-30 | Economides Aris N. | Methods of modifying eukaryotic cells |
US6586251B2 (en) | 2000-10-31 | 2003-07-01 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US7105348B2 (en) | 2000-10-31 | 2006-09-12 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
EP3269235B1 (en) | 2001-11-30 | 2022-01-26 | Amgen Fremont Inc. | Transgenic mice bearing human ig lambda light chain genes |
US20050246782A1 (en) | 2002-03-22 | 2005-11-03 | Origen Therapeutics | Transgenic aves producing human polyclonal antibodies |
US20030182675A1 (en) | 2002-03-22 | 2003-09-25 | Origen Therapeutics | Functional disruption of avian immunoglobulin genes |
WO2004072115A2 (en) | 2003-02-05 | 2004-08-26 | Therapeutic Human Polyclonals, Inc. | Suppression of endogenous immunoglobulin expression in transgenic non-human animals expressing humanized or human antibodies |
MXPA06000562A (es) | 2003-07-15 | 2006-03-30 | Therapeutic Human Polyclonals | Loci de inmunoglobulina humanizada. |
WO2005019463A1 (en) | 2003-08-11 | 2005-03-03 | Therapeutic Human Polyclonals, Inc. | Improved transgenesis with humanized immunoglobulin loci |
US7618403B2 (en) | 2004-05-14 | 2009-11-17 | Mcneil-Ppc, Inc. | Fluid management device with fluid transport element for use within a body |
RS52036B (en) | 2004-12-21 | 2012-04-30 | Medimmune Limited | ANGIOPOETIN-2 ANTIBODIES AND ITS USES |
CA2603081C (en) * | 2005-04-04 | 2013-09-03 | Sinexus, Inc. | Device and methods for treating paranasal sinus conditions |
KR101232139B1 (ko) | 2005-12-13 | 2013-02-12 | 엘지디스플레이 주식회사 | 액정 표시 장치 |
PL2041177T3 (pl) | 2006-06-02 | 2012-09-28 | Regeneron Pharma | Przeciwciała o wysokim powinowactwie przeciw ludzkiemu receptorowi IL 6 |
DK2769992T3 (da) | 2006-10-02 | 2021-03-22 | Regeneron Pharma | Humane antistoffer med høj affinitet for human IL-4-receptor |
NO347649B1 (no) | 2006-12-14 | 2024-02-12 | Regeneron Pharma | Humant antistoff eller antistoff fragment som spesifikt binder human deltaliknende ligand 4 (hDII4), nukleinsyremolekyl som koder for slike og vektor og vert-vektorsystemer, samt fremgangsmåte for fremstilling, sammensetning og anvendelse. |
MY147651A (en) | 2007-07-31 | 2012-12-31 | Regeneron Pharma | Human antibodies to human cd20 and method of using thereof |
RU2473564C2 (ru) | 2007-08-10 | 2013-01-27 | Ридженерон Фармасьютикалз, Инк. | Антитела человека с высокой аффинностью к фактору роста нервов человека |
US8321568B2 (en) | 2008-03-31 | 2012-11-27 | Amazon Technologies, Inc. | Content management |
US8194152B2 (en) | 2008-09-05 | 2012-06-05 | CSR Technology, Inc. | Image processing under flickering lighting conditions using estimated illumination parameters |
CN102638971B (zh) | 2009-07-08 | 2015-10-07 | 科马布有限公司 | 动物模型及治疗分子 |
JO3182B1 (ar) | 2009-07-29 | 2018-03-08 | Regeneron Pharma | مضادات حيوية بشرية عالية الالفة مع تولد الاوعية البشرية - 2 |
RU2724663C2 (ru) | 2010-02-08 | 2020-06-25 | Ридженерон Фармасьютикалз, Инк. | Мышь с общей легкой цепью |
US20120021409A1 (en) | 2010-02-08 | 2012-01-26 | Regeneron Pharmaceuticals, Inc. | Common Light Chain Mouse |
JP6009441B2 (ja) | 2010-06-22 | 2016-10-19 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | ハイブリッド軽鎖マウス |
PL2578688T5 (pl) | 2011-02-25 | 2023-05-29 | Regeneron Pharmaceuticals, Inc. | Myszy adam6 |
EP4389764A3 (en) | 2012-11-05 | 2024-08-14 | Regeneron Pharmaceuticals, Inc. | Genetically modified non-human animals and methods of use thereof |
RU2725520C2 (ru) | 2013-12-11 | 2020-07-02 | Регенерон Фармасьютикалс, Инк. | Способы и композиции для направленной модификации генома |
SI3221457T1 (sl) | 2014-11-21 | 2019-08-30 | Regeneron Pharmaceuticals, Inc. | Postopki in sestavki za ciljno genetsko modifikacijo z uporabo vodilnih RNK v parih |
-
2001
- 2001-02-16 US US09/784,859 patent/US6596541B2/en not_active Expired - Lifetime
-
2002
- 2002-02-15 DK DK02709544.7T patent/DK1360287T4/da active
- 2002-02-15 DE DE10010741.6T patent/DE10010741T1/de active Pending
- 2002-02-15 ES ES02709544T patent/ES2391391T5/es not_active Expired - Lifetime
- 2002-02-15 PT PT16171559T patent/PT3085779T/pt unknown
- 2002-02-15 EP EP14172420.3A patent/EP2787075B2/en not_active Expired - Lifetime
- 2002-02-15 EP EP19172361.8A patent/EP3572508B1/en not_active Expired - Lifetime
- 2002-02-15 DE DE19203913.9T patent/DE19203913T1/de active Pending
- 2002-02-15 ES ES16171561T patent/ES2744220T3/es not_active Expired - Lifetime
- 2002-02-15 DK DK19203913.9T patent/DK3626819T3/da active
- 2002-02-15 WO PCT/US2002/004500 patent/WO2002066630A1/en active Application Filing
- 2002-02-15 EP EP16171561.0A patent/EP3085780B2/en not_active Expired - Lifetime
- 2002-02-15 ES ES16171559T patent/ES2725712T5/es not_active Expired - Lifetime
- 2002-02-15 DK DK10010741.6T patent/DK2264163T3/en active
- 2002-02-15 PT PT100107416T patent/PT2264163E/pt unknown
- 2002-02-15 NZ NZ527629A patent/NZ527629A/en not_active IP Right Cessation
- 2002-02-15 MX MXPA03007325A patent/MXPA03007325A/es active IP Right Grant
- 2002-02-15 PT PT141636423T patent/PT2767588T/pt unknown
- 2002-02-15 DK DK14163642.3T patent/DK2767588T3/da active
- 2002-02-15 CZ CZ2003-2192A patent/CZ305619B6/cs not_active IP Right Cessation
- 2002-02-15 EP EP14163642.3A patent/EP2767588B1/en not_active Expired - Lifetime
- 2002-02-15 CA CA2438390A patent/CA2438390C/en not_active Expired - Lifetime
- 2002-02-15 EP EP19203913.9A patent/EP3626819B1/en not_active Expired - Lifetime
- 2002-02-15 PT PT192039139T patent/PT3626819T/pt unknown
- 2002-02-15 ES ES14172420T patent/ES2608362T5/es not_active Expired - Lifetime
- 2002-02-15 TR TR2019/07641T patent/TR201907641T4/tr unknown
- 2002-02-15 PL PL364281A patent/PL217086B1/pl unknown
- 2002-02-15 DE DE19172361.8T patent/DE19172361T1/de active Pending
- 2002-02-15 TR TR2018/02443T patent/TR201802443T4/tr unknown
- 2002-02-15 AU AU2002244023A patent/AU2002244023B2/en not_active Expired
- 2002-02-15 PT PT16171561T patent/PT3085780T/pt unknown
- 2002-02-15 DE DE14172437.7T patent/DE14172437T1/de active Pending
- 2002-02-15 ES ES14163642T patent/ES2827482T3/es not_active Expired - Lifetime
- 2002-02-15 DE DE14172420.3T patent/DE14172420T1/de active Pending
- 2002-02-15 ES ES10010741.6T patent/ES2556767T3/es not_active Expired - Lifetime
- 2002-02-15 DK DK14172420.3T patent/DK2787075T3/en active
- 2002-02-15 EP EP16171559.4A patent/EP3085779B2/en not_active Expired - Lifetime
- 2002-02-15 PT PT141724203T patent/PT2787075T/pt unknown
- 2002-02-15 EP EP10010741.6A patent/EP2264163B1/en not_active Expired - Lifetime
- 2002-02-15 EP EP14172437.7A patent/EP2786657B1/en not_active Revoked
- 2002-02-15 DK DK14172437.7T patent/DK2786657T3/en active
- 2002-02-15 ES ES14172437.7T patent/ES2660749T3/es not_active Expired - Lifetime
- 2002-02-15 JP JP2002566337A patent/JP4412900B2/ja not_active Expired - Lifetime
- 2002-02-15 ES ES19203913T patent/ES2869225T3/es not_active Expired - Lifetime
- 2002-02-15 DK DK16171559.4T patent/DK3085779T3/da active
- 2002-02-15 PT PT2709544T patent/PT1360287E/pt unknown
- 2002-02-15 PT PT141724377T patent/PT2786657T/pt unknown
- 2002-02-15 EP EP02709544.7A patent/EP1360287B2/en not_active Expired - Lifetime
- 2002-02-15 DE DE14163642.3T patent/DE14163642T1/de active Pending
- 2002-02-15 HU HU0303187A patent/HU231221B1/hu unknown
- 2002-02-15 DK DK19172361.8T patent/DK3572508T3/da active
- 2002-02-15 DK DK16171561.0T patent/DK3085780T3/da active
-
2003
- 2003-07-21 US US10/624,044 patent/US20040018626A1/en not_active Abandoned
- 2003-08-13 ZA ZA200306275A patent/ZA200306275B/en unknown
- 2003-08-15 MX MX2013012216A patent/MX343591B/es unknown
- 2003-12-18 HK HK03109205.9A patent/HK1057058A1/xx not_active IP Right Cessation
- 2003-12-18 HK HK11100421.6A patent/HK1146298A1/xx not_active IP Right Cessation
-
2006
- 2006-11-09 US US11/595,427 patent/US8791323B2/en not_active Expired - Fee Related
-
2009
- 2009-07-29 JP JP2009177054A patent/JP5345463B2/ja not_active Expired - Lifetime
-
2011
- 2011-06-07 US US13/154,976 patent/US9376699B2/en not_active Expired - Fee Related
- 2011-06-20 US US13/164,176 patent/US8502018B2/en not_active Expired - Lifetime
-
2012
- 2012-02-17 JP JP2012032592A patent/JP5692863B2/ja not_active Expired - Lifetime
- 2012-12-10 CY CY20121101202T patent/CY1113964T1/el unknown
- 2012-12-10 JP JP2012269458A patent/JP5805056B2/ja not_active Expired - Lifetime
- 2012-12-19 US US13/719,842 patent/US10227625B2/en not_active Expired - Fee Related
- 2012-12-19 US US13/719,819 patent/US9708635B2/en not_active Expired - Fee Related
-
2013
- 2013-09-24 US US14/035,432 patent/US10378037B2/en not_active Expired - Fee Related
- 2013-09-25 US US14/036,784 patent/US10378040B2/en not_active Expired - Fee Related
- 2013-09-25 US US14/036,530 patent/US9382567B2/en not_active Expired - Fee Related
- 2013-09-25 US US14/036,774 patent/US10378039B2/en not_active Expired - Fee Related
- 2013-09-25 US US14/036,514 patent/US9388446B2/en not_active Expired - Fee Related
- 2013-09-25 US US14/036,518 patent/US10378038B2/en not_active Expired - Fee Related
- 2013-09-25 US US14/036,778 patent/US20140020124A1/en not_active Abandoned
- 2013-09-25 US US14/036,892 patent/US9528136B2/en not_active Expired - Lifetime
- 2013-09-25 US US14/036,865 patent/US20140017782A1/en not_active Abandoned
- 2013-10-04 US US14/046,279 patent/US9371553B2/en not_active Expired - Fee Related
- 2013-10-04 US US14/046,285 patent/US10584364B2/en not_active Expired - Fee Related
- 2013-10-04 US US14/046,291 patent/US10526630B2/en not_active Expired - Fee Related
- 2013-11-14 US US14/080,114 patent/US9353394B2/en not_active Expired - Fee Related
-
2014
- 2014-06-16 JP JP2014123104A patent/JP2014176391A/ja not_active Withdrawn
- 2014-10-22 HK HK14110567.6A patent/HK1198259A1/xx not_active IP Right Cessation
- 2014-10-22 HK HK14110568.5A patent/HK1198260A1/xx not_active IP Right Cessation
-
2015
- 2015-12-22 CY CY20151101177T patent/CY1117254T1/el unknown
-
2016
- 2016-07-19 US US15/213,947 patent/US10640800B2/en not_active Expired - Fee Related
- 2016-08-19 JP JP2016161032A patent/JP6426670B2/ja not_active Expired - Lifetime
-
2017
- 2017-01-20 CY CY20171100087T patent/CY1118500T1/el unknown
-
2018
- 2018-04-03 JP JP2018071505A patent/JP6402368B2/ja not_active Expired - Lifetime
- 2018-04-26 CY CY20181100437T patent/CY1120265T1/el unknown
-
2019
- 2019-06-05 CY CY20191100592T patent/CY1122059T1/el unknown
- 2019-09-17 CY CY20191100968T patent/CY1122039T1/el unknown
-
2020
- 2020-11-11 CY CY20201101065T patent/CY1123912T1/el unknown
-
2021
- 2021-06-14 CY CY20211100526T patent/CY1124458T1/el unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2660749T3 (es) | Un procedimiento para producir un anticuerpo que comprende una región variable humana y una región constante de roedor | |
US7105348B2 (en) | Methods of modifying eukaryotic cells | |
AU2002244023A1 (en) | Methods of modifying eukaryotic cells |