US20120100166A1 - Ang-2 Binding Complexes and Uses Thereof - Google Patents
Ang-2 Binding Complexes and Uses Thereof Download PDFInfo
- Publication number
- US20120100166A1 US20120100166A1 US13/184,485 US201113184485A US2012100166A1 US 20120100166 A1 US20120100166 A1 US 20120100166A1 US 201113184485 A US201113184485 A US 201113184485A US 2012100166 A1 US2012100166 A1 US 2012100166A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- mrd
- binding
- target
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000027455 binding Effects 0.000 title claims description 401
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 102100034608 Angiopoietin-2 Human genes 0.000 claims description 132
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 129
- 150000001413 amino acids Chemical class 0.000 claims description 126
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 claims description 117
- 238000000034 method Methods 0.000 claims description 80
- 102000006495 integrins Human genes 0.000 claims description 76
- 108010044426 integrins Proteins 0.000 claims description 76
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 69
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 69
- 230000004927 fusion Effects 0.000 claims description 64
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 63
- 108090000623 proteins and genes Proteins 0.000 claims description 56
- 229910052721 tungsten Inorganic materials 0.000 claims description 53
- -1 S1PR Proteins 0.000 claims description 51
- 229910052698 phosphorus Inorganic materials 0.000 claims description 51
- 102000004169 proteins and genes Human genes 0.000 claims description 51
- 229910052740 iodine Inorganic materials 0.000 claims description 43
- 229910052720 vanadium Inorganic materials 0.000 claims description 43
- 229910052731 fluorine Inorganic materials 0.000 claims description 41
- 229920001184 polypeptide Polymers 0.000 claims description 33
- 125000000539 amino acid group Chemical group 0.000 claims description 32
- 229910052727 yttrium Inorganic materials 0.000 claims description 27
- 102100040247 Tumor necrosis factor Human genes 0.000 claims description 25
- 102000004889 Interleukin-6 Human genes 0.000 claims description 24
- 108090001005 Interleukin-6 Proteins 0.000 claims description 24
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 claims description 20
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 19
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 19
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 claims description 19
- 229910052700 potassium Inorganic materials 0.000 claims description 18
- 229960000575 trastuzumab Drugs 0.000 claims description 18
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 17
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 claims description 16
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 15
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 15
- 108091033319 polynucleotide Proteins 0.000 claims description 15
- 102000040430 polynucleotide Human genes 0.000 claims description 15
- 239000002157 polynucleotide Substances 0.000 claims description 15
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 claims description 14
- 102100037852 Insulin-like growth factor I Human genes 0.000 claims description 14
- 229960000397 bevacizumab Drugs 0.000 claims description 14
- 108090000176 Interleukin-13 Proteins 0.000 claims description 13
- 102000003816 Interleukin-13 Human genes 0.000 claims description 13
- 108010074108 interleukin-21 Proteins 0.000 claims description 13
- 229960002087 pertuzumab Drugs 0.000 claims description 13
- 108010065805 Interleukin-12 Proteins 0.000 claims description 12
- 102000013462 Interleukin-12 Human genes 0.000 claims description 12
- 229960001972 panitumumab Drugs 0.000 claims description 12
- 108010002616 Interleukin-5 Proteins 0.000 claims description 11
- 208000023275 Autoimmune disease Diseases 0.000 claims description 10
- 101000851018 Homo sapiens Vascular endothelial growth factor receptor 1 Proteins 0.000 claims description 10
- 108090000172 Interleukin-15 Proteins 0.000 claims description 10
- 102000003812 Interleukin-15 Human genes 0.000 claims description 10
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 claims description 10
- 229960002964 adalimumab Drugs 0.000 claims description 10
- 108040006859 interleukin-5 receptor activity proteins Proteins 0.000 claims description 10
- 102000006992 Interferon-alpha Human genes 0.000 claims description 9
- 108010047761 Interferon-alpha Proteins 0.000 claims description 9
- 102000003996 Interferon-beta Human genes 0.000 claims description 9
- 108090000467 Interferon-beta Proteins 0.000 claims description 9
- 108010065637 Interleukin-23 Proteins 0.000 claims description 9
- 102000013264 Interleukin-23 Human genes 0.000 claims description 9
- 229960001388 interferon-beta Drugs 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims description 8
- 108090000978 Interleukin-4 Proteins 0.000 claims description 8
- 102000004388 Interleukin-4 Human genes 0.000 claims description 8
- 229950008085 figitumumab Drugs 0.000 claims description 8
- 239000013598 vector Substances 0.000 claims description 8
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 claims description 7
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 claims description 7
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims description 7
- 102000003810 Interleukin-18 Human genes 0.000 claims description 7
- 108090000171 Interleukin-18 Proteins 0.000 claims description 7
- 108010002350 Interleukin-2 Proteins 0.000 claims description 7
- 102000000588 Interleukin-2 Human genes 0.000 claims description 7
- 108010002335 Interleukin-9 Proteins 0.000 claims description 7
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 claims description 7
- 108040006858 interleukin-6 receptor activity proteins Proteins 0.000 claims description 7
- 229950008001 matuzumab Drugs 0.000 claims description 7
- ZEOWTGPWHLSLOG-UHFFFAOYSA-N Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F Chemical compound Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F ZEOWTGPWHLSLOG-UHFFFAOYSA-N 0.000 claims description 6
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 claims description 6
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 claims description 6
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 claims description 6
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 claims description 6
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 claims description 6
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 claims description 6
- 108010002586 Interleukin-7 Proteins 0.000 claims description 6
- 102000000704 Interleukin-7 Human genes 0.000 claims description 6
- 102000004890 Interleukin-8 Human genes 0.000 claims description 6
- 108090001007 Interleukin-8 Proteins 0.000 claims description 6
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 claims description 6
- 229950006647 cixutumumab Drugs 0.000 claims description 6
- 108040006870 interleukin-10 receptor activity proteins Proteins 0.000 claims description 6
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 claims description 5
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 claims description 5
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 claims description 5
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 claims description 5
- 101001060280 Homo sapiens Fibroblast growth factor 3 Proteins 0.000 claims description 5
- 101001060274 Homo sapiens Fibroblast growth factor 4 Proteins 0.000 claims description 5
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 claims description 5
- 102100039065 Interleukin-1 beta Human genes 0.000 claims description 5
- 108090000177 Interleukin-11 Proteins 0.000 claims description 5
- 102000003815 Interleukin-11 Human genes 0.000 claims description 5
- 102100030704 Interleukin-21 Human genes 0.000 claims description 5
- 102000000585 Interleukin-9 Human genes 0.000 claims description 5
- 102100026244 Interleukin-9 receptor Human genes 0.000 claims description 5
- 229960000598 infliximab Drugs 0.000 claims description 5
- 108040006852 interleukin-4 receptor activity proteins Proteins 0.000 claims description 5
- 229950010203 nimotuzumab Drugs 0.000 claims description 5
- 239000002773 nucleotide Substances 0.000 claims description 5
- 125000003729 nucleotide group Chemical group 0.000 claims description 5
- 229950008250 zalutumumab Drugs 0.000 claims description 5
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 4
- 108010086140 Interferon alpha-beta Receptor Proteins 0.000 claims description 4
- 102000007438 Interferon alpha-beta Receptor Human genes 0.000 claims description 4
- 102000000743 Interleukin-5 Human genes 0.000 claims description 4
- 101710098940 Pro-epidermal growth factor Proteins 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 108010085650 interferon gamma receptor Proteins 0.000 claims description 4
- 108040006862 interleukin-9 receptor activity proteins Proteins 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052722 tritium Inorganic materials 0.000 claims description 4
- 206010003246 arthritis Diseases 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 229960005395 cetuximab Drugs 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 208000011231 Crohn disease Diseases 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229960002482 dalotuzumab Drugs 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims 7
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims 7
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims 7
- 108010048036 Angiopoietin-2 Proteins 0.000 claims 4
- 101001034652 Homo sapiens Insulin-like growth factor 1 receptor Proteins 0.000 claims 3
- 102000009024 Epidermal Growth Factor Human genes 0.000 claims 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims 2
- 208000003456 Juvenile Arthritis Diseases 0.000 claims 2
- 208000027866 inflammatory disease Diseases 0.000 claims 2
- 229910052760 oxygen Inorganic materials 0.000 claims 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 claims 1
- 208000020410 Psoriasis-related juvenile idiopathic arthritis Diseases 0.000 claims 1
- 108091008605 VEGF receptors Proteins 0.000 claims 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 claims 1
- 208000037765 diseases and disorders Diseases 0.000 abstract description 3
- 101000924533 Homo sapiens Angiopoietin-2 Proteins 0.000 description 128
- 235000001014 amino acid Nutrition 0.000 description 125
- 229940024606 amino acid Drugs 0.000 description 119
- 101710184277 Insulin-like growth factor 1 receptor Proteins 0.000 description 105
- 206010028980 Neoplasm Diseases 0.000 description 89
- 210000004027 cell Anatomy 0.000 description 72
- 241000282414 Homo sapiens Species 0.000 description 70
- 239000000427 antigen Substances 0.000 description 70
- 102000036639 antigens Human genes 0.000 description 70
- 108091007433 antigens Proteins 0.000 description 70
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 65
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 57
- 230000008685 targeting Effects 0.000 description 45
- 102000001301 EGF receptor Human genes 0.000 description 42
- 108060006698 EGF receptor Proteins 0.000 description 42
- 108060003951 Immunoglobulin Proteins 0.000 description 41
- 102000018358 immunoglobulin Human genes 0.000 description 41
- 235000018102 proteins Nutrition 0.000 description 41
- 201000011510 cancer Diseases 0.000 description 39
- 239000003814 drug Substances 0.000 description 35
- 239000003446 ligand Substances 0.000 description 33
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 32
- 230000000875 corresponding effect Effects 0.000 description 31
- 230000000694 effects Effects 0.000 description 31
- 201000010099 disease Diseases 0.000 description 30
- 229940022353 herceptin Drugs 0.000 description 30
- 230000004048 modification Effects 0.000 description 28
- 238000012986 modification Methods 0.000 description 28
- 208000035475 disorder Diseases 0.000 description 27
- 239000002870 angiogenesis inducing agent Substances 0.000 description 26
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 25
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 22
- 238000002965 ELISA Methods 0.000 description 21
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 21
- 230000033115 angiogenesis Effects 0.000 description 21
- 102000005962 receptors Human genes 0.000 description 21
- 108020003175 receptors Proteins 0.000 description 21
- 102000004127 Cytokines Human genes 0.000 description 20
- 108090000695 Cytokines Proteins 0.000 description 20
- 102100032937 CD40 ligand Human genes 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 19
- 230000003197 catalytic effect Effects 0.000 description 18
- 208000026310 Breast neoplasm Diseases 0.000 description 17
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 17
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 17
- 206010006187 Breast cancer Diseases 0.000 description 16
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 16
- 230000002491 angiogenic effect Effects 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- 108010029697 CD40 Ligand Proteins 0.000 description 15
- 230000007423 decrease Effects 0.000 description 15
- 229940079593 drug Drugs 0.000 description 15
- 230000005764 inhibitory process Effects 0.000 description 15
- 238000006467 substitution reaction Methods 0.000 description 15
- 229950001212 volociximab Drugs 0.000 description 15
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 14
- 206010061218 Inflammation Diseases 0.000 description 14
- 102100024584 Tumor necrosis factor ligand superfamily member 12 Human genes 0.000 description 14
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 14
- 239000005557 antagonist Substances 0.000 description 14
- 238000013459 approach Methods 0.000 description 14
- 230000004071 biological effect Effects 0.000 description 14
- 238000010494 dissociation reaction Methods 0.000 description 14
- 230000005593 dissociations Effects 0.000 description 14
- 230000004054 inflammatory process Effects 0.000 description 14
- 238000002823 phage display Methods 0.000 description 14
- 230000001225 therapeutic effect Effects 0.000 description 14
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 13
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 13
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 12
- 102100025221 CD70 antigen Human genes 0.000 description 12
- 101000599048 Homo sapiens Interleukin-6 receptor subunit alpha Proteins 0.000 description 12
- 101000610604 Homo sapiens Tumor necrosis factor receptor superfamily member 10B Proteins 0.000 description 12
- 241001465754 Metazoa Species 0.000 description 12
- 102100040112 Tumor necrosis factor receptor superfamily member 10B Human genes 0.000 description 12
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 12
- 210000004899 c-terminal region Anatomy 0.000 description 12
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 12
- 229940082789 erbitux Drugs 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 description 11
- 102100030703 Interleukin-22 Human genes 0.000 description 11
- 102100024568 Tumor necrosis factor ligand superfamily member 11 Human genes 0.000 description 11
- 101710097155 Tumor necrosis factor ligand superfamily member 12 Proteins 0.000 description 11
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 11
- 229940120638 avastin Drugs 0.000 description 11
- 230000001413 cellular effect Effects 0.000 description 11
- 230000028993 immune response Effects 0.000 description 11
- 229940072221 immunoglobulins Drugs 0.000 description 11
- 229960005386 ipilimumab Drugs 0.000 description 11
- 239000000651 prodrug Substances 0.000 description 11
- 229940002612 prodrug Drugs 0.000 description 11
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 10
- 101000679903 Homo sapiens Tumor necrosis factor receptor superfamily member 25 Proteins 0.000 description 10
- 102100026890 Tumor necrosis factor ligand superfamily member 4 Human genes 0.000 description 10
- 102100022203 Tumor necrosis factor receptor superfamily member 25 Human genes 0.000 description 10
- 239000000556 agonist Substances 0.000 description 10
- 210000000987 immune system Anatomy 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000035755 proliferation Effects 0.000 description 10
- 210000004881 tumor cell Anatomy 0.000 description 10
- 102100026882 Alpha-synuclein Human genes 0.000 description 9
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 9
- 206010009944 Colon cancer Diseases 0.000 description 9
- 102000012804 EPCAM Human genes 0.000 description 9
- 101150084967 EPCAM gene Proteins 0.000 description 9
- 108010031794 IGF Type 1 Receptor Proteins 0.000 description 9
- 108010047852 Integrin alphaVbeta3 Proteins 0.000 description 9
- 102100020881 Interleukin-1 alpha Human genes 0.000 description 9
- 206010027476 Metastases Diseases 0.000 description 9
- 108010025020 Nerve Growth Factor Proteins 0.000 description 9
- 101150057140 TACSTD1 gene Proteins 0.000 description 9
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 229960005027 natalizumab Drugs 0.000 description 9
- 229960003347 obinutuzumab Drugs 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 8
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 8
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 101100537522 Homo sapiens TNFSF13B gene Proteins 0.000 description 8
- 101000801227 Homo sapiens Tumor necrosis factor receptor superfamily member 19 Proteins 0.000 description 8
- 102000008070 Interferon-gamma Human genes 0.000 description 8
- 108010074328 Interferon-gamma Proteins 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 8
- 102100036922 Tumor necrosis factor ligand superfamily member 13B Human genes 0.000 description 8
- 102100033760 Tumor necrosis factor receptor superfamily member 19 Human genes 0.000 description 8
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 8
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 8
- 238000010171 animal model Methods 0.000 description 8
- 229960000455 brentuximab vedotin Drugs 0.000 description 8
- 230000004663 cell proliferation Effects 0.000 description 8
- 210000004408 hybridoma Anatomy 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 229960003130 interferon gamma Drugs 0.000 description 8
- 230000009401 metastasis Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 229950008160 tanezumab Drugs 0.000 description 8
- 230000004614 tumor growth Effects 0.000 description 8
- 102100034594 Angiopoietin-1 Human genes 0.000 description 7
- 108010067306 Fibronectins Proteins 0.000 description 7
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 7
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 7
- 102000003814 Interleukin-10 Human genes 0.000 description 7
- 108090000174 Interleukin-10 Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 206010060862 Prostate cancer Diseases 0.000 description 7
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 7
- 108010025832 RANK Ligand Proteins 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- 239000002246 antineoplastic agent Substances 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 239000012636 effector Substances 0.000 description 7
- 229960001743 golimumab Drugs 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 208000014674 injury Diseases 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 239000003053 toxin Substances 0.000 description 7
- 231100000765 toxin Toxicity 0.000 description 7
- 108700012359 toxins Proteins 0.000 description 7
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 6
- 101710149863 C-C chemokine receptor type 4 Proteins 0.000 description 6
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 6
- 102100032976 CCR4-NOT transcription complex subunit 6 Human genes 0.000 description 6
- 102000000844 Cell Surface Receptors Human genes 0.000 description 6
- 108010001857 Cell Surface Receptors Proteins 0.000 description 6
- 241000272190 Falco peregrinus Species 0.000 description 6
- 102100037362 Fibronectin Human genes 0.000 description 6
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 6
- 102000006354 HLA-DR Antigens Human genes 0.000 description 6
- 108010058597 HLA-DR Antigens Proteins 0.000 description 6
- 101000924552 Homo sapiens Angiopoietin-1 Proteins 0.000 description 6
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 6
- 101000801234 Homo sapiens Tumor necrosis factor receptor superfamily member 18 Proteins 0.000 description 6
- 101000679921 Homo sapiens Tumor necrosis factor receptor superfamily member 21 Proteins 0.000 description 6
- 101000955962 Homo sapiens Vacuolar protein sorting-associated protein 51 homolog Proteins 0.000 description 6
- 102100034980 ICOS ligand Human genes 0.000 description 6
- 108010041012 Integrin alpha4 Proteins 0.000 description 6
- 108010042215 OX40 Ligand Proteins 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 102100040113 Tumor necrosis factor receptor superfamily member 10A Human genes 0.000 description 6
- 102100033728 Tumor necrosis factor receptor superfamily member 18 Human genes 0.000 description 6
- 102100022205 Tumor necrosis factor receptor superfamily member 21 Human genes 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 231100000599 cytotoxic agent Toxicity 0.000 description 6
- 239000002619 cytotoxin Substances 0.000 description 6
- 229960002806 daclizumab Drugs 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 229950001109 galiximab Drugs 0.000 description 6
- 229950010245 ibalizumab Drugs 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- FWZLYKYJQSQEPN-SKLAJPBESA-N peregrine Chemical compound OC1[C@H]2[C@@H]3C4([C@@H]5C6OC(C)=O)C(OC)CC[C@@]5(C)CN(CC)[C@H]4C6[C@@]2(OC)C[C@H](OC)[C@H]1C3 FWZLYKYJQSQEPN-SKLAJPBESA-N 0.000 description 6
- FWZLYKYJQSQEPN-UHFFFAOYSA-N peregrine Natural products OC1C2C3C4(C5C6OC(C)=O)C(OC)CCC5(C)CN(CC)C4C6C2(OC)CC(OC)C1C3 FWZLYKYJQSQEPN-UHFFFAOYSA-N 0.000 description 6
- 229960002633 ramucirumab Drugs 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 229950007217 tremelimumab Drugs 0.000 description 6
- 230000002792 vascular Effects 0.000 description 6
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 101710112752 Cytotoxin Proteins 0.000 description 5
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 5
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 5
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 5
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 5
- 102100035290 Fibroblast growth factor 13 Human genes 0.000 description 5
- 102000010451 Folate receptor alpha Human genes 0.000 description 5
- 108050001931 Folate receptor alpha Proteins 0.000 description 5
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 5
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 5
- 101001098352 Homo sapiens OX-2 membrane glycoprotein Proteins 0.000 description 5
- 101000611185 Homo sapiens Tumor necrosis factor receptor superfamily member 5 Proteins 0.000 description 5
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 5
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 5
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 5
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 5
- 102100034256 Mucin-1 Human genes 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 5
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 5
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 description 5
- 102100037589 OX-2 membrane glycoprotein Human genes 0.000 description 5
- 102000004264 Osteopontin Human genes 0.000 description 5
- 108010081689 Osteopontin Proteins 0.000 description 5
- 102000008022 Proto-Oncogene Proteins c-met Human genes 0.000 description 5
- 108010089836 Proto-Oncogene Proteins c-met Proteins 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- 102100024587 Tumor necrosis factor ligand superfamily member 15 Human genes 0.000 description 5
- 108090000138 Tumor necrosis factor ligand superfamily member 15 Proteins 0.000 description 5
- 102100032100 Tumor necrosis factor ligand superfamily member 8 Human genes 0.000 description 5
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 5
- 229960002833 aflibercept Drugs 0.000 description 5
- 108010081667 aflibercept Proteins 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 208000029742 colonic neoplasm Diseases 0.000 description 5
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000006471 dimerization reaction Methods 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 239000000833 heterodimer Substances 0.000 description 5
- 108090000681 interleukin 20 Proteins 0.000 description 5
- 102000004114 interleukin 20 Human genes 0.000 description 5
- 201000001441 melanoma Diseases 0.000 description 5
- 230000001394 metastastic effect Effects 0.000 description 5
- 206010061289 metastatic neoplasm Diseases 0.000 description 5
- 229960002450 ofatumumab Drugs 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 229960004641 rituximab Drugs 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 229960003323 siltuximab Drugs 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- MJZJYWCQPMNPRM-UHFFFAOYSA-N 6,6-dimethyl-1-[3-(2,4,5-trichlorophenoxy)propoxy]-1,6-dihydro-1,3,5-triazine-2,4-diamine Chemical compound CC1(C)N=C(N)N=C(N)N1OCCCOC1=CC(Cl)=C(Cl)C=C1Cl MJZJYWCQPMNPRM-UHFFFAOYSA-N 0.000 description 4
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 4
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 4
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 4
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 4
- 102100032912 CD44 antigen Human genes 0.000 description 4
- 108010065524 CD52 Antigen Proteins 0.000 description 4
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 4
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 4
- 241000699800 Cricetinae Species 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 101150029707 ERBB2 gene Proteins 0.000 description 4
- 102100023688 Eotaxin Human genes 0.000 description 4
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 102100039939 Growth/differentiation factor 8 Human genes 0.000 description 4
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 4
- 101000868215 Homo sapiens CD40 ligand Proteins 0.000 description 4
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 4
- 101001019455 Homo sapiens ICOS ligand Proteins 0.000 description 4
- 101001076418 Homo sapiens Interleukin-1 receptor type 1 Proteins 0.000 description 4
- 101000633784 Homo sapiens SLAM family member 7 Proteins 0.000 description 4
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 4
- 101000830603 Homo sapiens Tumor necrosis factor ligand superfamily member 11 Proteins 0.000 description 4
- 101000764263 Homo sapiens Tumor necrosis factor ligand superfamily member 4 Proteins 0.000 description 4
- 101000638251 Homo sapiens Tumor necrosis factor ligand superfamily member 9 Proteins 0.000 description 4
- 101000795167 Homo sapiens Tumor necrosis factor receptor superfamily member 13B Proteins 0.000 description 4
- 101000795169 Homo sapiens Tumor necrosis factor receptor superfamily member 13C Proteins 0.000 description 4
- 101000762805 Homo sapiens Tumor necrosis factor receptor superfamily member 19L Proteins 0.000 description 4
- 101000801232 Homo sapiens Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 4
- 101000679851 Homo sapiens Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 4
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 4
- 101000597785 Homo sapiens Tumor necrosis factor receptor superfamily member 6B Proteins 0.000 description 4
- 102000000589 Interleukin-1 Human genes 0.000 description 4
- 108010002352 Interleukin-1 Proteins 0.000 description 4
- 102100026016 Interleukin-1 receptor type 1 Human genes 0.000 description 4
- 108050003558 Interleukin-17 Proteins 0.000 description 4
- 102000013691 Interleukin-17 Human genes 0.000 description 4
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 4
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 4
- 101710127797 Macrophage colony-stimulating factor 1 Proteins 0.000 description 4
- 102000003735 Mesothelin Human genes 0.000 description 4
- 108090000015 Mesothelin Proteins 0.000 description 4
- 101100490437 Mus musculus Acvrl1 gene Proteins 0.000 description 4
- 101150038994 PDGFRA gene Proteins 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- 108010067902 Peptide Library Proteins 0.000 description 4
- 108010052562 RELT Proteins 0.000 description 4
- 102000018795 RELT Human genes 0.000 description 4
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 102000000395 SH3 domains Human genes 0.000 description 4
- 108050008861 SH3 domains Proteins 0.000 description 4
- 102100029198 SLAM family member 7 Human genes 0.000 description 4
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 4
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 4
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 4
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 4
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 description 4
- 102100029675 Tumor necrosis factor receptor superfamily member 13B Human genes 0.000 description 4
- 102100029690 Tumor necrosis factor receptor superfamily member 13C Human genes 0.000 description 4
- 102100033726 Tumor necrosis factor receptor superfamily member 17 Human genes 0.000 description 4
- 102100026716 Tumor necrosis factor receptor superfamily member 19L Human genes 0.000 description 4
- 101710187743 Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 4
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 4
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 4
- 102100035284 Tumor necrosis factor receptor superfamily member 6B Human genes 0.000 description 4
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 4
- 229950009084 adecatumumab Drugs 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001772 anti-angiogenic effect Effects 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 238000004166 bioassay Methods 0.000 description 4
- 229960003008 blinatumomab Drugs 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 229960001838 canakinumab Drugs 0.000 description 4
- 230000005754 cellular signaling Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 229960001251 denosumab Drugs 0.000 description 4
- 229960004137 elotuzumab Drugs 0.000 description 4
- 229950009760 epratuzumab Drugs 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 4
- 229940048921 humira Drugs 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 229950004101 inotuzumab ozogamicin Drugs 0.000 description 4
- 229950010939 iratumumab Drugs 0.000 description 4
- 229950000518 labetuzumab Drugs 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 229950004563 lucatumumab Drugs 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 229950001869 mapatumumab Drugs 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 229960005570 pemtumomab Drugs 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 4
- 230000006916 protein interaction Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229950003804 siplizumab Drugs 0.000 description 4
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 4
- 229960003989 tocilizumab Drugs 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 229960003824 ustekinumab Drugs 0.000 description 4
- 108010047303 von Willebrand Factor Proteins 0.000 description 4
- 102100036537 von Willebrand factor Human genes 0.000 description 4
- 229960001134 von willebrand factor Drugs 0.000 description 4
- 102100022014 Angiopoietin-1 receptor Human genes 0.000 description 3
- 102100033402 Angiopoietin-4 Human genes 0.000 description 3
- 102100022718 Atypical chemokine receptor 2 Human genes 0.000 description 3
- 241000193738 Bacillus anthracis Species 0.000 description 3
- 206010055113 Breast cancer metastatic Diseases 0.000 description 3
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 3
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 3
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 3
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 3
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 description 3
- 108010058905 CD44v6 antigen Proteins 0.000 description 3
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 3
- 229940045513 CTLA4 antagonist Drugs 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 108090000625 Cathepsin K Proteins 0.000 description 3
- 102000004171 Cathepsin K Human genes 0.000 description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 3
- 208000035473 Communicable disease Diseases 0.000 description 3
- 102100038083 Endosialin Human genes 0.000 description 3
- 108010087819 Fc receptors Proteins 0.000 description 3
- 102000009109 Fc receptors Human genes 0.000 description 3
- 108010049003 Fibrinogen Proteins 0.000 description 3
- 102000008946 Fibrinogen Human genes 0.000 description 3
- 241000724791 Filamentous phage Species 0.000 description 3
- 206010017533 Fungal infection Diseases 0.000 description 3
- 206010018338 Glioma Diseases 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 102100030595 HLA class II histocompatibility antigen gamma chain Human genes 0.000 description 3
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 3
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 3
- 101000753291 Homo sapiens Angiopoietin-1 receptor Proteins 0.000 description 3
- 101000678892 Homo sapiens Atypical chemokine receptor 2 Proteins 0.000 description 3
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 3
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 3
- 101000884275 Homo sapiens Endosialin Proteins 0.000 description 3
- 101001082627 Homo sapiens HLA class II histocompatibility antigen gamma chain Proteins 0.000 description 3
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 3
- 101001076292 Homo sapiens Insulin-like growth factor II Proteins 0.000 description 3
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 3
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 3
- 101001083151 Homo sapiens Interleukin-10 receptor subunit alpha Proteins 0.000 description 3
- 101000960936 Homo sapiens Interleukin-5 receptor subunit alpha Proteins 0.000 description 3
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 3
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 3
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 3
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 3
- 101000652359 Homo sapiens Spermatogenesis-associated protein 2 Proteins 0.000 description 3
- 101000845170 Homo sapiens Thymic stromal lymphopoietin Proteins 0.000 description 3
- 101000830598 Homo sapiens Tumor necrosis factor ligand superfamily member 12 Proteins 0.000 description 3
- 101000830600 Homo sapiens Tumor necrosis factor ligand superfamily member 13 Proteins 0.000 description 3
- 101000638255 Homo sapiens Tumor necrosis factor ligand superfamily member 8 Proteins 0.000 description 3
- 101000648507 Homo sapiens Tumor necrosis factor receptor superfamily member 14 Proteins 0.000 description 3
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 3
- 108090000144 Human Proteins Proteins 0.000 description 3
- 102000003839 Human Proteins Human genes 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 102100025947 Insulin-like growth factor II Human genes 0.000 description 3
- 102100025390 Integrin beta-2 Human genes 0.000 description 3
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 3
- 102100030236 Interleukin-10 receptor subunit alpha Human genes 0.000 description 3
- 102100035012 Interleukin-17 receptor C Human genes 0.000 description 3
- 101710186068 Interleukin-17 receptor C Proteins 0.000 description 3
- 102100021596 Interleukin-31 Human genes 0.000 description 3
- 101710181613 Interleukin-31 Proteins 0.000 description 3
- 102100039881 Interleukin-5 receptor subunit alpha Human genes 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 3
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 3
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 3
- 108010063954 Mucins Proteins 0.000 description 3
- 101000597780 Mus musculus Tumor necrosis factor ligand superfamily member 18 Proteins 0.000 description 3
- 208000023178 Musculoskeletal disease Diseases 0.000 description 3
- 108010056852 Myostatin Proteins 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 3
- 101710094000 Programmed cell death 1 ligand 1 Proteins 0.000 description 3
- 102100032420 Protein S100-A9 Human genes 0.000 description 3
- 102100034201 Sclerostin Human genes 0.000 description 3
- 108050006698 Sclerostin Proteins 0.000 description 3
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 3
- 102100031294 Thymic stromal lymphopoietin Human genes 0.000 description 3
- 102000012883 Tumor Necrosis Factor Ligand Superfamily Member 14 Human genes 0.000 description 3
- 108010065158 Tumor Necrosis Factor Ligand Superfamily Member 14 Proteins 0.000 description 3
- 102100024585 Tumor necrosis factor ligand superfamily member 13 Human genes 0.000 description 3
- 108010079206 V-Set Domain-Containing T-Cell Activation Inhibitor 1 Proteins 0.000 description 3
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 3
- 102100035140 Vitronectin Human genes 0.000 description 3
- 108010031318 Vitronectin Proteins 0.000 description 3
- 229960000446 abciximab Drugs 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 229950001863 bapineuzumab Drugs 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 229960003115 certolizumab pegol Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 229960002027 evolocumab Drugs 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 229940012952 fibrinogen Drugs 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 229950002508 gantenerumab Drugs 0.000 description 3
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 3
- 239000000710 homodimer Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000008611 intercellular interaction Effects 0.000 description 3
- 102000008616 interleukin-15 receptor activity proteins Human genes 0.000 description 3
- 108040002039 interleukin-15 receptor activity proteins Proteins 0.000 description 3
- 108040001304 interleukin-17 receptor activity proteins Proteins 0.000 description 3
- 102000053460 interleukin-17 receptor activity proteins Human genes 0.000 description 3
- 108010074109 interleukin-22 Proteins 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 230000009826 neoplastic cell growth Effects 0.000 description 3
- 229940053128 nerve growth factor Drugs 0.000 description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 3
- 229950005751 ocrelizumab Drugs 0.000 description 3
- 230000003285 pharmacodynamic effect Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000009520 phase I clinical trial Methods 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 238000010837 poor prognosis Methods 0.000 description 3
- 230000001023 pro-angiogenic effect Effects 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 3
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 3
- 229950001808 robatumumab Drugs 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229950008834 seribantumab Drugs 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 229950002549 stamulumab Drugs 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 229950001072 tadocizumab Drugs 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 102000035160 transmembrane proteins Human genes 0.000 description 3
- 108091005703 transmembrane proteins Proteins 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 229940079023 tysabri Drugs 0.000 description 3
- 210000005166 vasculature Anatomy 0.000 description 3
- 229950000815 veltuzumab Drugs 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- BXTJCSYMGFJEID-XMTADJHZSA-N (2s)-2-[[(2r,3r)-3-[(2s)-1-[(3r,4s,5s)-4-[[(2s)-2-[[(2s)-2-[6-[3-[(2r)-2-amino-2-carboxyethyl]sulfanyl-2,5-dioxopyrrolidin-1-yl]hexanoyl-methylamino]-3-methylbutanoyl]amino]-3-methylbutanoyl]-methylamino]-3-methoxy-5-methylheptanoyl]pyrrolidin-2-yl]-3-met Chemical compound C([C@H](NC(=O)[C@H](C)[C@@H](OC)[C@@H]1CCCN1C(=O)C[C@H]([C@H]([C@@H](C)CC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)CCCCCN1C(C(SC[C@H](N)C(O)=O)CC1=O)=O)C(C)C)OC)C(O)=O)C1=CC=CC=C1 BXTJCSYMGFJEID-XMTADJHZSA-N 0.000 description 2
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 description 2
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-n-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-n,1-n-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- 101100208110 Arabidopsis thaliana TRX4 gene Proteins 0.000 description 2
- CJLHTKGWEUGORV-UHFFFAOYSA-N Artemin Chemical compound C1CC2(C)C(O)CCC(=C)C2(O)C2C1C(C)C(=O)O2 CJLHTKGWEUGORV-UHFFFAOYSA-N 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 2
- 102100031172 C-C chemokine receptor type 1 Human genes 0.000 description 2
- 101710149814 C-C chemokine receptor type 1 Proteins 0.000 description 2
- 102100024167 C-C chemokine receptor type 3 Human genes 0.000 description 2
- 101710149862 C-C chemokine receptor type 3 Proteins 0.000 description 2
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 2
- 102100036305 C-C chemokine receptor type 8 Human genes 0.000 description 2
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 2
- 102100028989 C-X-C chemokine receptor type 2 Human genes 0.000 description 2
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 2
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 2
- 102100024210 CD166 antigen Human genes 0.000 description 2
- 108010046080 CD27 Ligand Proteins 0.000 description 2
- 102100027207 CD27 antigen Human genes 0.000 description 2
- 108010017987 CD30 Ligand Proteins 0.000 description 2
- 102000000905 Cadherin Human genes 0.000 description 2
- 108050007957 Cadherin Proteins 0.000 description 2
- 102100024155 Cadherin-11 Human genes 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 206010052358 Colorectal cancer metastatic Diseases 0.000 description 2
- 108010025905 Cystine-Knot Miniproteins Proteins 0.000 description 2
- 101100317380 Danio rerio wnt4a gene Proteins 0.000 description 2
- 108700022150 Designed Ankyrin Repeat Proteins Proteins 0.000 description 2
- 102100030074 Dickkopf-related protein 1 Human genes 0.000 description 2
- 101100425276 Dictyostelium discoideum trxD gene Proteins 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 101710139422 Eotaxin Proteins 0.000 description 2
- 108010008165 Etanercept Proteins 0.000 description 2
- 108010054218 Factor VIII Proteins 0.000 description 2
- 102000001690 Factor VIII Human genes 0.000 description 2
- 101710140958 Formimidoyltetrahydrofolate cyclodeaminase Proteins 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000693093 Homo sapiens Angiopoietin-related protein 1 Proteins 0.000 description 2
- 101000777558 Homo sapiens C-C chemokine receptor type 10 Proteins 0.000 description 2
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 2
- 101000716063 Homo sapiens C-C chemokine receptor type 8 Proteins 0.000 description 2
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 2
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 2
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 description 2
- 101000947177 Homo sapiens C-X-C motif chemokine 6 Proteins 0.000 description 2
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 2
- 101000996823 Homo sapiens Cell surface A33 antigen Proteins 0.000 description 2
- 101000864646 Homo sapiens Dickkopf-related protein 1 Proteins 0.000 description 2
- 101000978392 Homo sapiens Eotaxin Proteins 0.000 description 2
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 2
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 2
- 101001098868 Homo sapiens Proprotein convertase subtilisin/kexin type 9 Proteins 0.000 description 2
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 description 2
- 101000597779 Homo sapiens Tumor necrosis factor ligand superfamily member 18 Proteins 0.000 description 2
- 101000638161 Homo sapiens Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 2
- 101000801255 Homo sapiens Tumor necrosis factor receptor superfamily member 17 Proteins 0.000 description 2
- 101000801228 Homo sapiens Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 2
- 101000679857 Homo sapiens Tumor necrosis factor receptor superfamily member 3 Proteins 0.000 description 2
- 101710093458 ICOS ligand Proteins 0.000 description 2
- 101150106931 IFNG gene Proteins 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102100025323 Integrin alpha-1 Human genes 0.000 description 2
- 102100032818 Integrin alpha-4 Human genes 0.000 description 2
- 102100032817 Integrin alpha-5 Human genes 0.000 description 2
- 102000003777 Interleukin-1 beta Human genes 0.000 description 2
- 108090000193 Interleukin-1 beta Proteins 0.000 description 2
- 102100039879 Interleukin-19 Human genes 0.000 description 2
- 102100036672 Interleukin-23 receptor Human genes 0.000 description 2
- 108010018951 Interleukin-8B Receptors Proteins 0.000 description 2
- 102100020880 Kit ligand Human genes 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 102000003680 Leukotriene B4 receptors Human genes 0.000 description 2
- 108090000093 Leukotriene B4 receptors Proteins 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108060004872 MIF Proteins 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 101100216078 Mus musculus Ang4 gene Proteins 0.000 description 2
- 101100154863 Mus musculus Txndc2 gene Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 2
- 206010029113 Neovascularisation Diseases 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 102100024964 Neural cell adhesion molecule L1 Human genes 0.000 description 2
- 102100028762 Neuropilin-1 Human genes 0.000 description 2
- 108090000772 Neuropilin-1 Proteins 0.000 description 2
- 102100028492 Neuropilin-2 Human genes 0.000 description 2
- 108090000770 Neuropilin-2 Proteins 0.000 description 2
- 241000526636 Nipah henipavirus Species 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 102000012850 Patched-1 Receptor Human genes 0.000 description 2
- 108010065129 Patched-1 Receptor Proteins 0.000 description 2
- 208000037273 Pathologic Processes Diseases 0.000 description 2
- 101710178358 Peptidoglycan-associated lipoprotein Proteins 0.000 description 2
- 102000029797 Prion Human genes 0.000 description 2
- 108091000054 Prion Proteins 0.000 description 2
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 102100038955 Proprotein convertase subtilisin/kexin type 9 Human genes 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 108010038036 Receptor Activator of Nuclear Factor-kappa B Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 102000019361 Syndecan Human genes 0.000 description 2
- 108050006774 Syndecan Proteins 0.000 description 2
- 108700012920 TNF Proteins 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 102100035283 Tumor necrosis factor ligand superfamily member 18 Human genes 0.000 description 2
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 2
- 102100028787 Tumor necrosis factor receptor superfamily member 11A Human genes 0.000 description 2
- 102100033725 Tumor necrosis factor receptor superfamily member 16 Human genes 0.000 description 2
- 102100022156 Tumor necrosis factor receptor superfamily member 3 Human genes 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000009824 affinity maturation Effects 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229960000548 alemtuzumab Drugs 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000009175 antibody therapy Methods 0.000 description 2
- 229950003145 apolizumab Drugs 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 2
- 229950002882 aselizumab Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 229950000103 atorolimumab Drugs 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- 108010086186 avian pancreatic polypeptide Proteins 0.000 description 2
- 229960004669 basiliximab Drugs 0.000 description 2
- 229950007843 bavituximab Drugs 0.000 description 2
- 229960005347 belatacept Drugs 0.000 description 2
- 229960003270 belimumab Drugs 0.000 description 2
- 229940022836 benlysta Drugs 0.000 description 2
- 229950010015 bertilimumab Drugs 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001815 biotherapy Methods 0.000 description 2
- 229960005522 bivatuzumab mertansine Drugs 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 229960002874 briakinumab Drugs 0.000 description 2
- 229960003735 brodalumab Drugs 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229940112129 campath Drugs 0.000 description 2
- 229950007296 cantuzumab mertansine Drugs 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229960000419 catumaxomab Drugs 0.000 description 2
- 229950006754 cedelizumab Drugs 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229940044683 chemotherapy drug Drugs 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229950009003 cilengitide Drugs 0.000 description 2
- AMLYAMJWYAIXIA-VWNVYAMZSA-N cilengitide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](C(C)C)N(C)C(=O)[C@H]1CC1=CC=CC=C1 AMLYAMJWYAIXIA-VWNVYAMZSA-N 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 230000009137 competitive binding Effects 0.000 description 2
- 108010047295 complement receptors Proteins 0.000 description 2
- 102000006834 complement receptors Human genes 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229950007276 conatumumab Drugs 0.000 description 2
- 108010045325 cyclic arginine-glycine-aspartic acid peptide Proteins 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 229950007409 dacetuzumab Drugs 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 230000007783 downstream signaling Effects 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229950000006 ecromeximab Drugs 0.000 description 2
- 229960002224 eculizumab Drugs 0.000 description 2
- 229950011109 edobacomab Drugs 0.000 description 2
- 229960001776 edrecolomab Drugs 0.000 description 2
- 229960000284 efalizumab Drugs 0.000 description 2
- 229950002209 efungumab Drugs 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 229950009569 etaracizumab Drugs 0.000 description 2
- 229960000301 factor viii Drugs 0.000 description 2
- 229950001563 felvizumab Drugs 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 208000029824 high grade glioma Diseases 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 102000054366 human GPA33 Human genes 0.000 description 2
- 229940071829 ilaris Drugs 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229940050282 inebilizumab-cdon Drugs 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229960004768 irinotecan Drugs 0.000 description 2
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 229950010828 keliximab Drugs 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 229950002183 lebrikizumab Drugs 0.000 description 2
- 229950010470 lerdelimumab Drugs 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 229950002884 lexatumumab Drugs 0.000 description 2
- 229950002950 lintuzumab Drugs 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 201000011614 malignant glioma Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960005108 mepolizumab Drugs 0.000 description 2
- 229950005555 metelimumab Drugs 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229950003734 milatuzumab Drugs 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 108010093470 monomethyl auristatin E Proteins 0.000 description 2
- 108010059074 monomethylauristatin F Proteins 0.000 description 2
- 229950008897 morolimumab Drugs 0.000 description 2
- 229960001521 motavizumab Drugs 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 229960003816 muromonab-cd3 Drugs 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 229960002915 nebacumab Drugs 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229950008516 olaratumab Drugs 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 229960000470 omalizumab Drugs 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 229950009057 oportuzumab monatox Drugs 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 108010000953 osteoblast cadherin Proteins 0.000 description 2
- 229950002610 otelixizumab Drugs 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 108010071584 oxidized low density lipoprotein Proteins 0.000 description 2
- 229950010626 pagibaximab Drugs 0.000 description 2
- 229960000402 palivizumab Drugs 0.000 description 2
- 229950003570 panobacumab Drugs 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 229950011485 pascolizumab Drugs 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000009054 pathological process Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 108010017992 platelet-derived growth factor C Proteins 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229950003700 priliximab Drugs 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000013930 proline Nutrition 0.000 description 2
- 108020003519 protein disulfide isomerase Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- JFINOWIINSTUNY-UHFFFAOYSA-N pyrrolidin-3-ylmethanesulfonamide Chemical compound NS(=O)(=O)CC1CCNC1 JFINOWIINSTUNY-UHFFFAOYSA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 229960003254 reslizumab Drugs 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229950005374 ruplizumab Drugs 0.000 description 2
- 229950008684 sibrotuzumab Drugs 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 229940115586 simulect Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229940055944 soliris Drugs 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 229950004218 talizumab Drugs 0.000 description 2
- 229950001788 tefibazumab Drugs 0.000 description 2
- 229950010127 teplizumab Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229950004742 tigatuzumab Drugs 0.000 description 2
- 229950001802 toralizumab Drugs 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 230000005747 tumor angiogenesis Effects 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 229950005972 urelumab Drugs 0.000 description 2
- 229950004362 urtoxazumab Drugs 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 229950000386 vapaliximab Drugs 0.000 description 2
- 229960004914 vedolizumab Drugs 0.000 description 2
- 229950004393 visilizumab Drugs 0.000 description 2
- 229940099073 xolair Drugs 0.000 description 2
- 229950009002 zanolimumab Drugs 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- MMHDBUJXLOFTLC-WOYTXXSLSA-N (2s)-2-[[(2r)-2-[[(2s)-2-[[(2s)-2-[[(2s)-1-acetylpyrrolidine-2-carbonyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-3-sulfanylpropanoyl]amino]butanediamide Chemical compound CC(=O)N1CCC[C@H]1C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(N)=O)CC1=CN=CN1 MMHDBUJXLOFTLC-WOYTXXSLSA-N 0.000 description 1
- IEUUDEWWMRQUDS-UHFFFAOYSA-N (6-azaniumylidene-1,6-dimethoxyhexylidene)azanium;dichloride Chemical compound Cl.Cl.COC(=N)CCCCC(=N)OC IEUUDEWWMRQUDS-UHFFFAOYSA-N 0.000 description 1
- VILFTWLXLYIEMV-UHFFFAOYSA-N 1,5-difluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(F)C=C1F VILFTWLXLYIEMV-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- YBBNVCVOACOHIG-UHFFFAOYSA-N 2,2-diamino-1,4-bis(4-azidophenyl)-3-butylbutane-1,4-dione Chemical compound C=1C=C(N=[N+]=[N-])C=CC=1C(=O)C(N)(N)C(CCCC)C(=O)C1=CC=C(N=[N+]=[N-])C=C1 YBBNVCVOACOHIG-UHFFFAOYSA-N 0.000 description 1
- FBUTXZSKZCQABC-UHFFFAOYSA-N 2-amino-1-methyl-7h-purine-6-thione Chemical compound S=C1N(C)C(N)=NC2=C1NC=N2 FBUTXZSKZCQABC-UHFFFAOYSA-N 0.000 description 1
- ZGFJFBOLVLFLLN-ZNLRHDTNSA-N 4-(4-chlorophenyl)-1-[(3e)-3-[9-(2-hydroxypropan-2-yl)-5h-[1]benzoxepino[3,4-b]pyridin-11-ylidene]propyl]-3,3-dimethylpiperidin-4-ol Chemical compound C12=CC(C(C)(O)C)=CC=C2OCC2=NC=CC=C2\C1=C/CCN(CC1(C)C)CCC1(O)C1=CC=C(Cl)C=C1 ZGFJFBOLVLFLLN-ZNLRHDTNSA-N 0.000 description 1
- LKDMKWNDBAVNQZ-UHFFFAOYSA-N 4-[[1-[[1-[2-[[1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)NC(C)C(=O)NC(C)C(=O)N1CCCC1C(=O)NC(C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 1
- 108010005465 AC133 Antigen Proteins 0.000 description 1
- 102000005908 AC133 Antigen Human genes 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 1
- 102100021501 ATP-binding cassette sub-family B member 5 Human genes 0.000 description 1
- 102100028162 ATP-binding cassette sub-family C member 3 Human genes 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 108010075348 Activated-Leukocyte Cell Adhesion Molecule Proteins 0.000 description 1
- 102100034135 Activin receptor type-1C Human genes 0.000 description 1
- 108010059616 Activins Proteins 0.000 description 1
- 230000007730 Akt signaling Effects 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102100040069 Aldehyde dehydrogenase 1A1 Human genes 0.000 description 1
- 101710150756 Aldehyde dehydrogenase, mitochondrial Proteins 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 108010048154 Angiopoietin-1 Proteins 0.000 description 1
- 102100025665 Angiopoietin-related protein 1 Human genes 0.000 description 1
- 108010049777 Ankyrins Proteins 0.000 description 1
- 102000008102 Ankyrins Human genes 0.000 description 1
- 244000303258 Annona diversifolia Species 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 101100325788 Arabidopsis thaliana BCA1 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 102100026376 Artemin Human genes 0.000 description 1
- 101710205806 Artemin Proteins 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 102100022716 Atypical chemokine receptor 3 Human genes 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 1
- 108010028006 B-Cell Activating Factor Proteins 0.000 description 1
- 102000016605 B-Cell Activating Factor Human genes 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 102000052609 BRCA2 Human genes 0.000 description 1
- 108700020462 BRCA2 Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102100028239 Basal cell adhesion molecule Human genes 0.000 description 1
- 102100032412 Basigin Human genes 0.000 description 1
- 101800001382 Betacellulin Proteins 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 102100037086 Bone marrow stromal antigen 2 Human genes 0.000 description 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 1
- 102100022526 Bone morphogenetic protein 5 Human genes 0.000 description 1
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000003508 Botulism Diseases 0.000 description 1
- 101150008921 Brca2 gene Proteins 0.000 description 1
- 102100025401 Breast cancer type 1 susceptibility protein Human genes 0.000 description 1
- 102100023702 C-C motif chemokine 13 Human genes 0.000 description 1
- 102100023701 C-C motif chemokine 18 Human genes 0.000 description 1
- 102100036842 C-C motif chemokine 19 Human genes 0.000 description 1
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 1
- 102100036846 C-C motif chemokine 21 Human genes 0.000 description 1
- 102100036849 C-C motif chemokine 24 Human genes 0.000 description 1
- 102100021933 C-C motif chemokine 25 Human genes 0.000 description 1
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 1
- 102100021936 C-C motif chemokine 27 Human genes 0.000 description 1
- 102100036166 C-X-C chemokine receptor type 1 Human genes 0.000 description 1
- 102100039396 C-X-C motif chemokine 16 Human genes 0.000 description 1
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 1
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 1
- 102100021703 C3a anaphylatoxin chemotactic receptor Human genes 0.000 description 1
- 101710102078 C3a anaphylatoxin chemotactic receptor Proteins 0.000 description 1
- 101150009981 C5AR1 gene Proteins 0.000 description 1
- 102100032957 C5a anaphylatoxin chemotactic receptor 1 Human genes 0.000 description 1
- 102100038078 CD276 antigen Human genes 0.000 description 1
- 101710185679 CD276 antigen Proteins 0.000 description 1
- 102000049320 CD36 Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- 108010038940 CD48 Antigen Proteins 0.000 description 1
- 102100036008 CD48 antigen Human genes 0.000 description 1
- 102100035350 CUB domain-containing protein 1 Human genes 0.000 description 1
- 102400000113 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 101710158575 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 108090000712 Cathepsin B Proteins 0.000 description 1
- 102000004225 Cathepsin B Human genes 0.000 description 1
- 102000003908 Cathepsin D Human genes 0.000 description 1
- 108090000258 Cathepsin D Proteins 0.000 description 1
- 108090000617 Cathepsin G Proteins 0.000 description 1
- 102000004173 Cathepsin G Human genes 0.000 description 1
- 108090000619 Cathepsin H Proteins 0.000 description 1
- 102400001330 Cathepsin H Human genes 0.000 description 1
- 108090000624 Cathepsin L Proteins 0.000 description 1
- 102400001321 Cathepsin L Human genes 0.000 description 1
- 102100035654 Cathepsin S Human genes 0.000 description 1
- 108090000613 Cathepsin S Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 102100021396 Cell surface glycoprotein CD200 receptor 1 Human genes 0.000 description 1
- 102100023126 Cell surface glycoprotein MUC18 Human genes 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 102100040836 Claudin-1 Human genes 0.000 description 1
- 108090000600 Claudin-1 Proteins 0.000 description 1
- 108090000580 Claudin-2 Proteins 0.000 description 1
- 102100038445 Claudin-2 Human genes 0.000 description 1
- 108090000599 Claudin-3 Proteins 0.000 description 1
- 102100038423 Claudin-3 Human genes 0.000 description 1
- 102000004161 Claudin-4 Human genes 0.000 description 1
- 108090000601 Claudin-4 Proteins 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102100025680 Complement decay-accelerating factor Human genes 0.000 description 1
- 102100035436 Complement factor D Human genes 0.000 description 1
- 108090000059 Complement factor D Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102100038497 Cytokine receptor-like factor 2 Human genes 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101000994439 Danio rerio Protein jagged-1a Proteins 0.000 description 1
- 101000994438 Danio rerio Protein jagged-1b Proteins 0.000 description 1
- 102100033553 Delta-like protein 4 Human genes 0.000 description 1
- 102100036496 Desert hedgehog protein Human genes 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102100029722 Ectonucleoside triphosphate diphosphohydrolase 1 Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102100021860 Endothelial cell-specific molecule 1 Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102100023721 Ephrin-B2 Human genes 0.000 description 1
- 108010044090 Ephrin-B2 Proteins 0.000 description 1
- 102100032031 Epidermal growth factor-like protein 7 Human genes 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 102100021655 Extracellular sulfatase Sulf-1 Human genes 0.000 description 1
- 102100021654 Extracellular sulfatase Sulf-2 Human genes 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 102000010449 Folate receptor beta Human genes 0.000 description 1
- 108050001930 Folate receptor beta Proteins 0.000 description 1
- 102100035144 Folate receptor beta Human genes 0.000 description 1
- 102100021259 Frizzled-1 Human genes 0.000 description 1
- 102100021265 Frizzled-2 Human genes 0.000 description 1
- 102100039820 Frizzled-4 Human genes 0.000 description 1
- 102100039818 Frizzled-5 Human genes 0.000 description 1
- 102100039799 Frizzled-6 Human genes 0.000 description 1
- 102100039676 Frizzled-7 Human genes 0.000 description 1
- 102100028466 Frizzled-8 Human genes 0.000 description 1
- 102100032518 Gamma-crystallin B Human genes 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 1
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 102100039622 Granulocyte colony-stimulating factor receptor Human genes 0.000 description 1
- 102100035364 Growth/differentiation factor 3 Human genes 0.000 description 1
- 102100035970 Growth/differentiation factor 9 Human genes 0.000 description 1
- 101150054472 HER2 gene Proteins 0.000 description 1
- 102100034459 Hepatitis A virus cellular receptor 1 Human genes 0.000 description 1
- 101710185991 Hepatitis A virus cellular receptor 1 homolog Proteins 0.000 description 1
- 241000836430 Hilda Species 0.000 description 1
- 101000627872 Homo sapiens 72 kDa type IV collagenase Proteins 0.000 description 1
- 101000779641 Homo sapiens ALK tyrosine kinase receptor Proteins 0.000 description 1
- 101100108860 Homo sapiens ANGPT4 gene Proteins 0.000 description 1
- 101000677872 Homo sapiens ATP-binding cassette sub-family B member 5 Proteins 0.000 description 1
- 101000986633 Homo sapiens ATP-binding cassette sub-family C member 3 Proteins 0.000 description 1
- 101000799193 Homo sapiens Activin receptor type-1C Proteins 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000678890 Homo sapiens Atypical chemokine receptor 3 Proteins 0.000 description 1
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 1
- 101000935638 Homo sapiens Basal cell adhesion molecule Proteins 0.000 description 1
- 101000740785 Homo sapiens Bone marrow stromal antigen 2 Proteins 0.000 description 1
- 101000762366 Homo sapiens Bone morphogenetic protein 2 Proteins 0.000 description 1
- 101000899388 Homo sapiens Bone morphogenetic protein 5 Proteins 0.000 description 1
- 101000899390 Homo sapiens Bone morphogenetic protein 6 Proteins 0.000 description 1
- 101000766294 Homo sapiens Branched-chain-amino-acid aminotransferase, mitochondrial Proteins 0.000 description 1
- 101000716070 Homo sapiens C-C chemokine receptor type 9 Proteins 0.000 description 1
- 101000978379 Homo sapiens C-C motif chemokine 13 Proteins 0.000 description 1
- 101000978371 Homo sapiens C-C motif chemokine 18 Proteins 0.000 description 1
- 101000713106 Homo sapiens C-C motif chemokine 19 Proteins 0.000 description 1
- 101000713099 Homo sapiens C-C motif chemokine 20 Proteins 0.000 description 1
- 101000713085 Homo sapiens C-C motif chemokine 21 Proteins 0.000 description 1
- 101000713078 Homo sapiens C-C motif chemokine 24 Proteins 0.000 description 1
- 101000897486 Homo sapiens C-C motif chemokine 25 Proteins 0.000 description 1
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 1
- 101000897494 Homo sapiens C-C motif chemokine 27 Proteins 0.000 description 1
- 101000947174 Homo sapiens C-X-C chemokine receptor type 1 Proteins 0.000 description 1
- 101000889133 Homo sapiens C-X-C motif chemokine 16 Proteins 0.000 description 1
- 101000889128 Homo sapiens C-X-C motif chemokine 2 Proteins 0.000 description 1
- 101000947186 Homo sapiens C-X-C motif chemokine 5 Proteins 0.000 description 1
- 101000737742 Homo sapiens CUB domain-containing protein 1 Proteins 0.000 description 1
- 101100222383 Homo sapiens CXCL13 gene Proteins 0.000 description 1
- 101000969553 Homo sapiens Cell surface glycoprotein CD200 receptor 1 Proteins 0.000 description 1
- 101000623903 Homo sapiens Cell surface glycoprotein MUC18 Proteins 0.000 description 1
- 101000856022 Homo sapiens Complement decay-accelerating factor Proteins 0.000 description 1
- 101000956427 Homo sapiens Cytokine receptor-like factor 2 Proteins 0.000 description 1
- 101001056901 Homo sapiens Delta(14)-sterol reductase TM7SF2 Proteins 0.000 description 1
- 101000872077 Homo sapiens Delta-like protein 4 Proteins 0.000 description 1
- 101000902850 Homo sapiens Deoxyribonuclease-2-alpha Proteins 0.000 description 1
- 101001012447 Homo sapiens Ectonucleoside triphosphate diphosphohydrolase 1 Proteins 0.000 description 1
- 101000897959 Homo sapiens Endothelial cell-specific molecule 1 Proteins 0.000 description 1
- 101000921195 Homo sapiens Epidermal growth factor-like protein 7 Proteins 0.000 description 1
- 101000820630 Homo sapiens Extracellular sulfatase Sulf-1 Proteins 0.000 description 1
- 101000820626 Homo sapiens Extracellular sulfatase Sulf-2 Proteins 0.000 description 1
- 101100066427 Homo sapiens FCGR1A gene Proteins 0.000 description 1
- 101001023204 Homo sapiens Folate receptor beta Proteins 0.000 description 1
- 101000819438 Homo sapiens Frizzled-1 Proteins 0.000 description 1
- 101000819477 Homo sapiens Frizzled-2 Proteins 0.000 description 1
- 101000885581 Homo sapiens Frizzled-4 Proteins 0.000 description 1
- 101000885585 Homo sapiens Frizzled-5 Proteins 0.000 description 1
- 101000885673 Homo sapiens Frizzled-6 Proteins 0.000 description 1
- 101000885797 Homo sapiens Frizzled-7 Proteins 0.000 description 1
- 101001061408 Homo sapiens Frizzled-8 Proteins 0.000 description 1
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 1
- 101000746364 Homo sapiens Granulocyte colony-stimulating factor receptor Proteins 0.000 description 1
- 101001023986 Homo sapiens Growth/differentiation factor 3 Proteins 0.000 description 1
- 101000886562 Homo sapiens Growth/differentiation factor 8 Proteins 0.000 description 1
- 101001075110 Homo sapiens Growth/differentiation factor 9 Proteins 0.000 description 1
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 description 1
- 101100232351 Homo sapiens IL12RB1 gene Proteins 0.000 description 1
- 101100232357 Homo sapiens IL13RA1 gene Proteins 0.000 description 1
- 101100232360 Homo sapiens IL13RA2 gene Proteins 0.000 description 1
- 101001078158 Homo sapiens Integrin alpha-1 Proteins 0.000 description 1
- 101000994369 Homo sapiens Integrin alpha-5 Proteins 0.000 description 1
- 101001076422 Homo sapiens Interleukin-1 receptor type 2 Proteins 0.000 description 1
- 101000960946 Homo sapiens Interleukin-19 Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000853012 Homo sapiens Interleukin-23 receptor Proteins 0.000 description 1
- 101000853002 Homo sapiens Interleukin-25 Proteins 0.000 description 1
- 101000998139 Homo sapiens Interleukin-32 Proteins 0.000 description 1
- 101001033312 Homo sapiens Interleukin-4 receptor subunit alpha Proteins 0.000 description 1
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 1
- 101001055219 Homo sapiens Interleukin-9 receptor Proteins 0.000 description 1
- 101000966742 Homo sapiens Leucine-rich PPR motif-containing protein, mitochondrial Proteins 0.000 description 1
- 101000981680 Homo sapiens Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 1
- 101001043594 Homo sapiens Low-density lipoprotein receptor-related protein 5 Proteins 0.000 description 1
- 101001039199 Homo sapiens Low-density lipoprotein receptor-related protein 6 Proteins 0.000 description 1
- 101000764535 Homo sapiens Lymphotoxin-alpha Proteins 0.000 description 1
- 101000764294 Homo sapiens Lymphotoxin-beta Proteins 0.000 description 1
- 101000577881 Homo sapiens Macrophage metalloelastase Proteins 0.000 description 1
- 101001008874 Homo sapiens Mast/stem cell growth factor receptor Kit Proteins 0.000 description 1
- 101000990912 Homo sapiens Matrilysin Proteins 0.000 description 1
- 101001011906 Homo sapiens Matrix metalloproteinase-14 Proteins 0.000 description 1
- 101000627854 Homo sapiens Matrix metalloproteinase-26 Proteins 0.000 description 1
- 101000990902 Homo sapiens Matrix metalloproteinase-9 Proteins 0.000 description 1
- 101000694615 Homo sapiens Membrane primary amine oxidase Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101001128431 Homo sapiens Myeloid-derived growth factor Proteins 0.000 description 1
- 101000721757 Homo sapiens Olfactory receptor 51E2 Proteins 0.000 description 1
- 101001117312 Homo sapiens Programmed cell death 1 ligand 2 Proteins 0.000 description 1
- 101001043564 Homo sapiens Prolow-density lipoprotein receptor-related protein 1 Proteins 0.000 description 1
- 101000814371 Homo sapiens Protein Wnt-10a Proteins 0.000 description 1
- 101000770799 Homo sapiens Protein Wnt-10b Proteins 0.000 description 1
- 101000804728 Homo sapiens Protein Wnt-2b Proteins 0.000 description 1
- 101000804792 Homo sapiens Protein Wnt-5a Proteins 0.000 description 1
- 101000804804 Homo sapiens Protein Wnt-5b Proteins 0.000 description 1
- 101000814380 Homo sapiens Protein Wnt-7b Proteins 0.000 description 1
- 101000814350 Homo sapiens Protein Wnt-8a Proteins 0.000 description 1
- 101000781955 Homo sapiens Proto-oncogene Wnt-1 Proteins 0.000 description 1
- 101000650590 Homo sapiens Roundabout homolog 4 Proteins 0.000 description 1
- 101000633778 Homo sapiens SLAM family member 5 Proteins 0.000 description 1
- 101000633786 Homo sapiens SLAM family member 6 Proteins 0.000 description 1
- 101001133085 Homo sapiens Sialomucin core protein 24 Proteins 0.000 description 1
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 1
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 1
- 101000799466 Homo sapiens Thrombopoietin receptor Proteins 0.000 description 1
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 description 1
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 description 1
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 1
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 1
- 101000834948 Homo sapiens Tomoregulin-2 Proteins 0.000 description 1
- 101000658574 Homo sapiens Transmembrane 4 L6 family member 1 Proteins 0.000 description 1
- 101000795107 Homo sapiens Triggering receptor expressed on myeloid cells 1 Proteins 0.000 description 1
- 101000795117 Homo sapiens Triggering receptor expressed on myeloid cells 2 Proteins 0.000 description 1
- 101000801433 Homo sapiens Trophoblast glycoprotein Proteins 0.000 description 1
- 101000801254 Homo sapiens Tumor necrosis factor receptor superfamily member 16 Proteins 0.000 description 1
- 101000753253 Homo sapiens Tyrosine-protein kinase receptor Tie-1 Proteins 0.000 description 1
- 101000955999 Homo sapiens V-set domain-containing T-cell activation inhibitor 1 Proteins 0.000 description 1
- 101000742596 Homo sapiens Vascular endothelial growth factor C Proteins 0.000 description 1
- 101000742599 Homo sapiens Vascular endothelial growth factor D Proteins 0.000 description 1
- 101000851030 Homo sapiens Vascular endothelial growth factor receptor 3 Proteins 0.000 description 1
- 101000665937 Homo sapiens Wnt inhibitory factor 1 Proteins 0.000 description 1
- 102000038460 IGF Type 2 Receptor Human genes 0.000 description 1
- 108010031792 IGF Type 2 Receptor Proteins 0.000 description 1
- 108091058560 IL8 Proteins 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 102000016844 Immunoglobulin-like domains Human genes 0.000 description 1
- 108050006430 Immunoglobulin-like domains Proteins 0.000 description 1
- 102100026214 Indian hedgehog protein Human genes 0.000 description 1
- 102100026818 Inhibin beta E chain Human genes 0.000 description 1
- 108010041341 Integrin alpha1 Proteins 0.000 description 1
- 108010041014 Integrin alpha5 Proteins 0.000 description 1
- 102000017345 Integrin beta-7 subunit Human genes 0.000 description 1
- 102000002227 Interferon Type I Human genes 0.000 description 1
- 108010014726 Interferon Type I Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102100026017 Interleukin-1 receptor type 2 Human genes 0.000 description 1
- 102100020790 Interleukin-12 receptor subunit beta-1 Human genes 0.000 description 1
- 102100020791 Interleukin-13 receptor subunit alpha-1 Human genes 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 108050009288 Interleukin-19 Proteins 0.000 description 1
- 108010082786 Interleukin-1alpha Proteins 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 108010017411 Interleukin-21 Receptors Proteins 0.000 description 1
- 102100030699 Interleukin-21 receptor Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 102100033501 Interleukin-32 Human genes 0.000 description 1
- 108010067003 Interleukin-33 Proteins 0.000 description 1
- 102000017761 Interleukin-33 Human genes 0.000 description 1
- 102100039078 Interleukin-4 receptor subunit alpha Human genes 0.000 description 1
- 102100037795 Interleukin-6 receptor subunit beta Human genes 0.000 description 1
- 102100026236 Interleukin-8 Human genes 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 101710177504 Kit ligand Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 101150073396 LTA gene Proteins 0.000 description 1
- 108010054278 Lac Repressors Proteins 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100024102 Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 Human genes 0.000 description 1
- 102000019298 Lipocalin Human genes 0.000 description 1
- 108050006654 Lipocalin Proteins 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 102100029205 Low affinity immunoglobulin gamma Fc region receptor II-b Human genes 0.000 description 1
- 102100021926 Low-density lipoprotein receptor-related protein 5 Human genes 0.000 description 1
- 102100040704 Low-density lipoprotein receptor-related protein 6 Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 102100026238 Lymphotoxin-alpha Human genes 0.000 description 1
- 102100026894 Lymphotoxin-beta Human genes 0.000 description 1
- 241000721701 Lynx Species 0.000 description 1
- 101150058224 MIF gene Proteins 0.000 description 1
- 102100027998 Macrophage metalloelastase Human genes 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 1
- 102100030417 Matrilysin Human genes 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 102100030216 Matrix metalloproteinase-14 Human genes 0.000 description 1
- 102100024128 Matrix metalloproteinase-26 Human genes 0.000 description 1
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 1
- 102100027159 Membrane primary amine oxidase Human genes 0.000 description 1
- 206010027452 Metastases to bone Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 206010050513 Metastatic renal cell carcinoma Diseases 0.000 description 1
- 244000302512 Momordica charantia Species 0.000 description 1
- 235000009811 Momordica charantia Nutrition 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 101100219349 Mus musculus Cdh11 gene Proteins 0.000 description 1
- 101100341510 Mus musculus Itgal gene Proteins 0.000 description 1
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 1
- 102100031789 Myeloid-derived growth factor Human genes 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 108050000637 N-cadherin Proteins 0.000 description 1
- 102100038082 Natural killer cell receptor 2B4 Human genes 0.000 description 1
- 101710141230 Natural killer cell receptor 2B4 Proteins 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 description 1
- 108010012255 Neural Cell Adhesion Molecule L1 Proteins 0.000 description 1
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- 102000014413 Neuregulin Human genes 0.000 description 1
- 108050003475 Neuregulin Proteins 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102400001103 Neurotensin Human genes 0.000 description 1
- 101800001814 Neurotensin Proteins 0.000 description 1
- 102000005650 Notch Receptors Human genes 0.000 description 1
- 108010070047 Notch Receptors Proteins 0.000 description 1
- 102000001759 Notch1 Receptor Human genes 0.000 description 1
- 108010029755 Notch1 Receptor Proteins 0.000 description 1
- 102000001760 Notch3 Receptor Human genes 0.000 description 1
- 108010029756 Notch3 Receptor Proteins 0.000 description 1
- 102000001753 Notch4 Receptor Human genes 0.000 description 1
- 108010029741 Notch4 Receptor Proteins 0.000 description 1
- 102100025128 Olfactory receptor 51E2 Human genes 0.000 description 1
- 108090000630 Oncostatin M Proteins 0.000 description 1
- 102000004140 Oncostatin M Human genes 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 102000000470 PDZ domains Human genes 0.000 description 1
- 108050008994 PDZ domains Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229940083963 Peptide antagonist Drugs 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 1
- 108010051742 Platelet-Derived Growth Factor beta Receptor Proteins 0.000 description 1
- 102000018967 Platelet-Derived Growth Factor beta Receptor Human genes 0.000 description 1
- 102100040681 Platelet-derived growth factor C Human genes 0.000 description 1
- 102100040682 Platelet-derived growth factor D Human genes 0.000 description 1
- 101710170209 Platelet-derived growth factor D Proteins 0.000 description 1
- 102100037596 Platelet-derived growth factor subunit A Human genes 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100029837 Probetacellulin Human genes 0.000 description 1
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 1
- 102100021923 Prolow-density lipoprotein receptor-related protein 1 Human genes 0.000 description 1
- 102100040120 Prominin-1 Human genes 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102100032442 Protein S100-A8 Human genes 0.000 description 1
- 102100039461 Protein Wnt-10a Human genes 0.000 description 1
- 102100029062 Protein Wnt-10b Human genes 0.000 description 1
- 102100035289 Protein Wnt-2b Human genes 0.000 description 1
- 102100035331 Protein Wnt-5b Human genes 0.000 description 1
- 102100039470 Protein Wnt-7b Human genes 0.000 description 1
- 102100039453 Protein Wnt-8a Human genes 0.000 description 1
- 102100032702 Protein jagged-1 Human genes 0.000 description 1
- 102100032733 Protein jagged-2 Human genes 0.000 description 1
- 101710170213 Protein jagged-2 Proteins 0.000 description 1
- 108700012370 REG4 Proteins 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 102100027701 Roundabout homolog 4 Human genes 0.000 description 1
- 108010084054 SBI-087 Proteins 0.000 description 1
- 102100029216 SLAM family member 5 Human genes 0.000 description 1
- 102100029197 SLAM family member 6 Human genes 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 102100034258 Sialomucin core protein 24 Human genes 0.000 description 1
- 102000008115 Signaling Lymphocytic Activation Molecule Family Member 1 Human genes 0.000 description 1
- 108010074687 Signaling Lymphocytic Activation Molecule Family Member 1 Proteins 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 102100021796 Sonic hedgehog protein Human genes 0.000 description 1
- 108010088160 Staphylococcal Protein A Proteins 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 101000844753 Sulfolobus acidocaldarius (strain ATCC 33909 / DSM 639 / JCM 8929 / NBRC 15157 / NCIMB 11770) DNA-binding protein 7d Proteins 0.000 description 1
- 102100033447 T-lymphocyte surface antigen Ly-9 Human genes 0.000 description 1
- 101710114141 T-lymphocyte surface antigen Ly-9 Proteins 0.000 description 1
- 108700002718 TACI receptor-IgG Fc fragment fusion Proteins 0.000 description 1
- 102100033456 TGF-beta receptor type-1 Human genes 0.000 description 1
- 108010090091 TIE-2 Receptor Proteins 0.000 description 1
- 102000012753 TIE-2 Receptor Human genes 0.000 description 1
- 108091007178 TNFRSF10A Proteins 0.000 description 1
- 102000007000 Tenascin Human genes 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 102100036407 Thioredoxin Human genes 0.000 description 1
- 102100034196 Thrombopoietin receptor Human genes 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 102100024333 Toll-like receptor 2 Human genes 0.000 description 1
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 102100039357 Toll-like receptor 5 Human genes 0.000 description 1
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 1
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 1
- 102100033117 Toll-like receptor 9 Human genes 0.000 description 1
- 102100026160 Tomoregulin-2 Human genes 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 108010011702 Transforming Growth Factor-beta Type I Receptor Proteins 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 1
- 102100034902 Transmembrane 4 L6 family member 1 Human genes 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- 102100029681 Triggering receptor expressed on myeloid cells 1 Human genes 0.000 description 1
- 102100029678 Triggering receptor expressed on myeloid cells 2 Human genes 0.000 description 1
- 102100033579 Trophoblast glycoprotein Human genes 0.000 description 1
- 102100022007 Tyrosine-protein kinase receptor Tie-1 Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102400000757 Ubiquitin Human genes 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 102000008790 VE-cadherin Human genes 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 102100038232 Vascular endothelial growth factor C Human genes 0.000 description 1
- 102100038234 Vascular endothelial growth factor D Human genes 0.000 description 1
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 1
- 102100021164 Vasodilator-stimulated phosphoprotein Human genes 0.000 description 1
- 240000001866 Vernicia fordii Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 101150010310 WNT-4 gene Proteins 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 102100038258 Wnt inhibitory factor 1 Human genes 0.000 description 1
- 102000052547 Wnt-1 Human genes 0.000 description 1
- 102000052548 Wnt-4 Human genes 0.000 description 1
- 108700020984 Wnt-4 Proteins 0.000 description 1
- 102000043366 Wnt-5a Human genes 0.000 description 1
- 102000044880 Wnt3A Human genes 0.000 description 1
- 108700013515 Wnt3A Proteins 0.000 description 1
- 238000012452 Xenomouse strains Methods 0.000 description 1
- 229960003697 abatacept Drugs 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 108010011755 acetyl-prolyl-histidyl-seryl-cysteinyl-asparaginamide Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000488 activin Substances 0.000 description 1
- 208000005298 acute pain Diseases 0.000 description 1
- 102000019997 adhesion receptor Human genes 0.000 description 1
- 108010013985 adhesion receptor Proteins 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 238000006668 aldol addition reaction Methods 0.000 description 1
- 229960002459 alefacept Drugs 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 108010001818 alpha-sarcin Proteins 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 230000006481 angiogenic pathway Effects 0.000 description 1
- 108010069801 angiopoietin 4 Proteins 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 229940125644 antibody drug Drugs 0.000 description 1
- 229940094361 arcalyst Drugs 0.000 description 1
- 241000617156 archaeon Species 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229950009925 atacicept Drugs 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229950000321 benralizumab Drugs 0.000 description 1
- CXQCLLQQYTUUKJ-ALWAHNIESA-N beta-D-GalpNAc-(1->4)-[alpha-Neup5Ac-(2->8)-alpha-Neup5Ac-(2->3)]-beta-D-Galp-(1->4)-beta-D-Glcp-(1<->1')-Cer(d18:1/18:0) Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@@H](CO)O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 CXQCLLQQYTUUKJ-ALWAHNIESA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229940126587 biotherapeutics Drugs 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 230000004097 bone metabolism Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 108010018828 cadherin 5 Proteins 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- 229930195731 calicheamicin Natural products 0.000 description 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000004956 cell adhesive effect Effects 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 1
- 229940090100 cimzia Drugs 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 229960002204 daratumumab Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229930191339 dianthin Natural products 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 238000000375 direct analysis in real time Methods 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000012063 dual-affinity re-targeting Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 108060002566 ephrin Proteins 0.000 description 1
- 102000012803 ephrin Human genes 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 108700020302 erbB-2 Genes Proteins 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229950005562 exbivirumab Drugs 0.000 description 1
- 229950009929 farletuzumab Drugs 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 102000006815 folate receptor Human genes 0.000 description 1
- 108020005243 folate receptor Proteins 0.000 description 1
- 229950011078 foravirumab Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 108010083914 gammaB crystallin Proteins 0.000 description 1
- GIVLTTJNORAZON-HDBOBKCLSA-N ganglioside GM2 (18:0) Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 GIVLTTJNORAZON-HDBOBKCLSA-N 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000052216 human VPS51 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000003259 immunoinhibitory effect Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 108010021315 integrin beta7 Proteins 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 108040006849 interleukin-2 receptor activity proteins Proteins 0.000 description 1
- 108040001844 interleukin-23 receptor activity proteins Proteins 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 208000030776 invasive breast carcinoma Diseases 0.000 description 1
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229940121292 leronlimab Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229950005173 libivirumab Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 238000002824 mRNA display Methods 0.000 description 1
- 239000001115 mace Substances 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 229950003135 margetuximab Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000003519 mature b lymphocyte Anatomy 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 1
- 108010010621 modeccin Proteins 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000032147 negative regulation of DNA repair Effects 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 230000023837 negative regulation of proteolysis Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 208000016359 neuroblastic tumor Diseases 0.000 description 1
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 1
- 231100001221 nontumorigenic Toxicity 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 229940035567 orencia Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 201000002628 peritoneum cancer Diseases 0.000 description 1
- 229950003203 pexelizumab Drugs 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 1
- 238000011518 platinum-based chemotherapy Methods 0.000 description 1
- 108010087782 poly(glycyl-alanyl) Proteins 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000232 polyglycine polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 238000002818 protein evolution Methods 0.000 description 1
- 238000001814 protein method Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 230000003331 prothrombotic effect Effects 0.000 description 1
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011363 radioimmunotherapy Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229950002786 rafivirumab Drugs 0.000 description 1
- 229960004910 raxibacumab Drugs 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229950005854 regavirumab Drugs 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 229940107685 reopro Drugs 0.000 description 1
- 231100000205 reproductive and developmental toxicity Toxicity 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- 229960001886 rilonacept Drugs 0.000 description 1
- 108010046141 rilonacept Proteins 0.000 description 1
- 108700002783 roundabout Proteins 0.000 description 1
- 201000003804 salivary gland carcinoma Diseases 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 229950004951 sevirumab Drugs 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 229950007874 solanezumab Drugs 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940071598 stelara Drugs 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 230000004654 survival pathway Effects 0.000 description 1
- 229940036185 synagis Drugs 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 229950001790 tendamistat Drugs 0.000 description 1
- 108010037401 tendamistate Proteins 0.000 description 1
- 229940124598 therapeutic candidate Drugs 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000007888 toxin activity Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 229950005082 tuvirumab Drugs 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000012991 uterine carcinoma Diseases 0.000 description 1
- 208000024719 uterine cervix neoplasm Diseases 0.000 description 1
- 108010054220 vasodilator-stimulated phosphoprotein Proteins 0.000 description 1
- 230000007486 viral budding Effects 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 101150068520 wnt3a gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/6811—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/6811—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
- A61K47/6813—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin the drug being a peptidic cytokine, e.g. an interleukin or interferon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6843—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a material from animals or humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6845—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a cytokine, e.g. growth factors, VEGF, TNF, a lymphokine or an interferon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6849—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6851—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6851—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
- A61K47/6855—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6875—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody being a hybrid immunoglobulin
- A61K47/6879—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody being a hybrid immunoglobulin the immunoglobulin having two or more different antigen-binding sites, e.g. bispecific or multispecific immunoglobulin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2866—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3046—Stomach, Intestines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0002—Antibodies with enzymatic activity, e.g. abzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/77—Internalization into the cell
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Definitions
- the invention relates generally to complexes containing one or more modular recognition domains and includes complexes containing a scaffold such as an antibody.
- the invention also relates to methods of making these complexes and methods of treatment and diagnosis using these complexes.
- bispecific or multi-specific molecules that target two or more targets simultaneously and/or activate prodrugs offers a novel and promising solution to attacking cancer and other diseases.
- Such molecules can be based, inter alia, on immunoglobulin-like domains or subdomains as exemplified in FIG. 1 .
- tumor-associated antigens e.g., growth factor receptors
- bispecific antibodies have been prepared by chemically linking two different monoclonal antibodies or by fusing two hybridoma cell lines to produce a hybrid-hybridoma.
- dAbs include dAbs, diabodies, TandAbs, nanobodies, BiTEs, SMIPs, DARPins, DNLs, affibodies, Duocalins, adnectins, fynomers, Kunitz Domains Albu-dabs, DARTs, DVD-IG, Covx-bodies, peptibodies, scFv-Igs, SVD-Igs, dAb-Igs, Knob-in-Holes, and triomAbs.
- Ig function e.g., half-life, effector function
- production e.g., yield, purity
- valency e.g., valency
- simultaneous target recognition e.g., valency, and simultaneous target recognition.
- Ig subdomain- and non-Ig-domain-based multi-specific molecules may possess some advantages over the full-length or larger IgG-like molecules for certain clinical applications, such as for tumor radio-imaging and targeting, because of better tissue penetration and faster clearance from the circulation.
- IgG-like molecules may prove to be preferred over smaller fragments for other in vivo applications, specifically for oncology indications, by providing the Fc domain that confers long serum half-life and supports secondary immune function, such as antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity.
- Peptibodies are essentially peptide fusions with antibody Fc regions. Given the success of studies using random peptide libraries to find high-affinity peptide ligands for a wide variety of targets, fusion of such peptides to antibody Fc regions provides a means of making peptides into therapeutic candidates by increasing their circulatory half-life and activity through increased valency.
- Protein interactions with other molecules are basic to biochemistry. Protein interactions include receptor-ligand interactions, antibody-antigen interactions, cell-cell contact and pathogen interactions with target tissues. Protein interactions can involve contact with other proteins, with carbohydrates, oligosaccharides, lipids, metal ions and like materials.
- the basic unit of protein interaction is the region of the protein involved in contact and recognition, and is referred to as the binding site or target site. Such units may be linear sequence(s) of amino acids or discontinuous amino acids that collectively form the binding site or target site.
- Peptides derived from phage display libraries typically retain their binding characteristics when linked to other molecules.
- Specific peptides of this type can be treated as modular specificity blocks or molecular recognition domains (MRDs) that can, independently, or in combination with other protein scaffolds, create a single protein with binding specificities for several defined targets.
- MRDs molecular recognition domains
- Integrins are a family of transmembrane cell adhesion receptors that are composed of ⁇ and ⁇ subunits and mediate cell attachment to proteins within the extracellular matrix. At present, eighteen ⁇ and eight ⁇ subunits are known; these form 24 different ⁇ heterodimers with different specificities for various extracellular matrix (ECM) cell-adhesive proteins.
- ECM extracellular matrix
- Ligands for various integrins include fibronectin, collagen, laminin, von Willebrand factor, osteopontin, thrombospondin, and vitronectin, which are all components of the ECM.
- Integrins can also bind to soluble ligands such as fibrinogen or to other adhesion molecules on adjacent cells. Integrins are known to exist in distinct activation states that exhibit different affinities for ligand. Recognition of soluble ligands by integrins strictly depends on specific changes in receptor conformation. This provides a molecular switch that controls the ability of cells to aggregate in an integrin dependent manner and to arrest under the dynamic flow conditions of the vasculature. This mechanism is well established for leukocytes and platelets that circulate within the blood stream in a resting state while expressing non-activated integrins.
- these cell types Upon stimulation through proinflammatory or prothrombotic agonists, these cell types promptly respond with a number of molecular changes including the switch of key integrins, ⁇ 2 integrins for leukocytes and ⁇ v ⁇ 3 for platelets, from “resting” to “activated” conformations. This enables these cell types to arrest within the vasculature, promoting cell cohesion and leading to thrombus formation.
- ⁇ v ⁇ 3 integrin ⁇ v ⁇ 3 in a constitutively activated form.
- This aberrant expression of ⁇ v ⁇ 3 plays a role in metastasis of breast cancer as well as prostate cancer, melanoma, and neuroblastic tumors.
- the activated receptor strongly promotes cancer cell migration and enables the cells to arrest under blood flow conditions.
- activation of ⁇ v ⁇ 3 endows metastatic cells with key properties likely to be critical for successful dissemination and colonization of target organs.
- Tumor cells that have successfully entered a target organ may further utilize ⁇ v ⁇ 3 to thrive in the new environment, as ⁇ v ⁇ 3 matrix interactions can promote cell survival and proliferation.
- ⁇ v ⁇ 3 binding to osteopontin promotes malignancy and elevated levels of osteopontin correlate with a poor prognosis in breast cancer.
- the ⁇ v ⁇ 3 integrin is one of the most widely studied integrins. Antagonists of this molecule have significant potential for use in targeted drug delivery.
- One approach that has been used to target ⁇ v ⁇ 3 integrin uses the high binding specificity to ⁇ v ⁇ 3 of peptides containing the Arg-Gly-Asp (RGD) sequence. This tripeptide, naturally present in extracellular matrix proteins, is the primary binding site of the ⁇ v ⁇ 3 integrin.
- RGD based reporter probes are problematic due to fast blood clearance, high kidney and liver uptake, and fast tumor washout. Chemical modification of cyclized RGD peptides has been shown to increase their stability and valency. These modified peptides are then coupled to radio-isotopes and used either for tumor imaging or to inhibit tumor growth.
- Integrin ⁇ v ⁇ 3 is one of the most well characterized integrin heterodimers and is one of several heterodimers that have been implicated in tumor-induced angiogenesis. While sparingly expressed in mature blood vessels, ⁇ v ⁇ 3 is significantly up-regulated during angiogenesis in vivo. The expression of ⁇ v ⁇ 3 correlates with aggressiveness of disease in breast and cervical cancer as well as in malignant melanoma. Recent studies suggest that ⁇ v ⁇ 3 may be useful as a diagnostic or prognostic indicator for some tumors. Integrin ⁇ v ⁇ 3 is particularly attractive as a therapeutic target due to its relatively limited cellular distribution. Integrin ⁇ v ⁇ 3 is not generally expressed on epithelial cells, and minimally expressed on other cell types. Furthermore, ⁇ v ⁇ 3 antagonists, including both cyclic RGD peptides and monoclonal antibodies, significantly inhibit cytokine-induced angiogenesis and the growth of solid tumor on the chick chorioallantoic membrane.
- ⁇ v ⁇ 5 Another integrin heterodimer, ⁇ v ⁇ 5, is more widely expressed on malignant tumor cells and is likely involved in VEGF-mediated angiogenesis. It has been shown that ⁇ v ⁇ 3 and ⁇ v ⁇ 5 promote angiogenesis via distinct pathways: ⁇ v ⁇ 3 through bFGF and TNF- ⁇ , and ⁇ v ⁇ 5 through VEGF and TGF- ⁇ . It has also been shown that inhibition of Src kinase can block VEGF-induced, but not FGF2-induced, angiogenesis. These results strongly imply that FGF2 and VEGF activate different angiogenic pathways that require ⁇ v ⁇ 3 and ⁇ v ⁇ 5, respectively.
- Integrins have also been implicated in tumor metastasis. Metastasis is the primary cause of morbidity and mortality in cancer. Malignant progression of melanoma, glioma, ovarian, and breast cancer have all been strongly linked with the expression of the integrin ⁇ v ⁇ 3 and in some cases with ⁇ v ⁇ 5. More recently, it has been shown that activation of integrin ⁇ v ⁇ 3 plays a significant role in metastasis in human breast cancer. A very strong correlation between expression of ⁇ v ⁇ 3 and breast cancer metastasis has been noted where normal breast epithelia are ⁇ v ⁇ 3 negative and approximately 50% of invasive lobular carcinomas and nearly all bone metastases in breast cancer express ⁇ v ⁇ 3. Antagonism of ⁇ v ⁇ 3 with a cyclic peptide has been shown to synergize with radioimmunotherapy in studies involving breast cancer xenografts.
- Angiogenesis the formation of new blood vessels from existing ones, is essential to many physiological and pathological processes. Normally, angiogenesis is tightly regulated by pro- and anti-angiogenic factors, but in the case of diseases such as cancer, ocular neovascular disease, arthritis and psoriasis, the process can go awry.
- the association of angiogenesis with disease has made the discovery of anti-angiogenic compounds attractive.
- phage-derived anti-angiogenic peptides described to date are those that neutralize vascular endothelial growth factor (VEGF), and cytokine Ang2. See e.g., U.S. Pat. Nos. 6,660,843 and 7,138,370, respectively.
- Tie2 is a receptor tyrosine kinase with four known ligands, angiopoietin-1 (Ang1) through angiopoietin-4 (Ang4), the best studied being Ang1 and Ang2.
- Ang1 stimulates phosphorylation of Tie2 and the Ang2 interaction with Tie2 has been shown to both antagonize and agonize Tie2 receptor phosphorylation. Elevated Ang2 expression at sites of normal and pathological postnatal angiogenesis circumstantially implies a proangiogenic role for Ang2. Vessel-selective Ang2 induction associated with angiogenesis has been demonstrated in diseases including cancer. In patients with colon carcinoma, Ang2 is expressed ubiquitously in tumor epithelium, whereas expression of Ang1 in tumor epithelium has been shown to be rare. The net gain of Ang2 activity has been suggested to be an initiating factor for tumor angiogenesis.
- HERCEPTIN® (Trastuzumab), developed by Genentech, is a recombinant humanized monoclonal antibody directed against the extracellular domain of the human epidermal tyrosine kinase receptor 2 (HER2 or ErbB2).
- HER2 human epidermal tyrosine kinase receptor 2
- the HER2 gene is overexpressed in 25% of invasive breast cancers, and is associated with poor prognosis and altered sensitivity to chemotherapeutic agents.
- HERCEPTIN® blocks the proliferation of ErbB2-overexpressing breast cancers, and is currently the only ErbB2 targeted antibody therapy approved by the FDA for the treatment of ErbB2 over-expressing metastatic breast cancer (MBC).
- ErbB2 In normal adult cells, few ErbB2 molecules exist at the cell surface ⁇ 20,000 per cell thereby limiting their signaling capacity and the likelihood of forming homo- and hetero-receptor complexes on the cell surface.
- ErbB2 When ErbB2 is overexpressed on the cell surface, ⁇ 500,000 per cell, multiple ErbB2 homo- and hetero-complexes are formed and cell signaling is stronger, resulting in enhanced responsiveness to growth factors and malignant growth. This explains why ErbB2 overexpression is an indicator of poor prognosis in breast tumors and may be predictive of response to treatment.
- ErbB2 is a promising and validated target for breast cancer, where it is found both in primary tumor and metastatic sites.
- HERCEPTIN® induces rapid removal of ErbB2 from the cell surface, thereby reducing its availability to multimerize and ability to promote growth.
- Mechanisms of action of HERCEPTIN® observed in experimental in vitro and in vivo models include inhibition of proteolysis of ErbB2's extracellular domain, disruption of downstream signaling pathways such as phosphatidylinositiol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) cascades, GI cell-cycle arrest, inhibition of DNA repair, suppression of angiogenesis and induction of antibody dependent cellular cytotoxicity (ADCC).
- PI3K phosphatidylinositiol 3-kinase
- MAK mitogen-activated protein kinase
- ADCC antibody dependent cellular cytotoxicity
- IGF1R insulin-like growth factor-1 receptor
- IGF1R is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation.
- the IGF system is frequently deregulated in cancer cells by the establishment of autocrine loops involving IGF-I or IGF-II and/or IGF1R overexpression.
- epidemiological studies have suggested a link between elevated IGF levels and the development of major human cancers, such as breast, colon, lung and prostate cancer. Expression of IGFs and their cognate receptors has been correlated with disease stage, reduced survival, development of metastases and tumor de-differentiation.
- epidermal growth factor receptor EGFR
- EGFR epidermal growth factor receptor
- IGF1R epidermal growth factor receptor
- a recent study has shown that malignant glioma cell lines expressing equivalent EGFR had significantly different sensitivity to EGFR inhibition depending on their capability to activate IGF1R and its downstream signaling pathways.
- EGFR is a receptor tyrosine kinase that is expressed on many normal tissues as well as neoplastic lesions of most organs. Overexpression of EGFR or expression of mutant forms of EGFR has been observed in many tumors, particularly epithelial tumors, and is associated with poor clinical prognosis. Inhibition of signaling through EGFR induces an anti-tumor effect.
- cetuximab also known as ERBITUX® (a mouse/human chimeric antibody) in February of 2004, EGFR became an approved antibody drug target for the treatment of metastatic colorectal cancer.
- ERBITUX® also received FDA approval for the treatment of squamous cell carcinoma of the head and neck (SCCHN).
- panitumumab also known as VECTIBIX®, a fully human antibody directed against EGFR, was approved for metastatic colorectal cancer.
- VECTIBIX® a fully human antibody directed against EGFR
- ERBITUX® or VECTIBIX® are stand-alone agent in colorectal cancer—they were approved as add-ons to existing colorectal regimens.
- ERBITUX® is given in combination with the drug irinotecan and VECTIBIX® is administered after disease progression on, or following fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens.
- ERBITUX® has been approved as a single agent in recurrent or metastatic SCCHN only where prior platinum-based chemotherapy has failed. Advanced clinical trials which use these drugs to target non-small cell lung carcinoma are ongoing.
- the sequence of the heavy and light chains of ERBITUX® are well known in the art (see for example, Goldstein, et al., Clin. Cancer Res. 1:1311 (1995); U.S. Pat. No. 6,217,866, which are herein incorporated by reference).
- An obstacle in the utilization of a catalytic antibody for selective prodrug activation in cancer therapy has been systemic tumor targeting.
- An efficient alternative would be using the catalytic antibody fused to a targeting peptide located outside the antibody combining site, thereby leaving the active site available for the prodrug activation as described herein.
- the fusion of Ab 38C2 to an integrin ⁇ v ⁇ 3-binding peptide would selectively localize the antibody to the tumor and/or the tumor vasculature and trigger prodrug activation at that site.
- the potential therapy of this approach is supported by preclinical and clinical data suggesting that peptides can be converted into viable drugs through attachment to the isolated Fc domain of an immunoglobulin.
- the present invention describes an approach based on the adaptation of target binding peptides, or modular recognition domains (MRDs), which are fused to full-length antibodies that effectively target tumor cells or soluble molecules while retaining the prodrug activation capability of the catalytic antibody.
- MRDs modular recognition domains
- the current invention calls for the fusion of MRDs to the N- and/or C-termini of an antibody. So as not to significantly mitigate binding to the antibody's traditional binding site, the antibody's specificity remains intact after MRD addition thereby resulting in a multi-specific antibody.
- MRDs can be appended on any of the termini of either heavy or light chains of a typical IgG antibody.
- the first schematic represents a simple peptibody with a peptide fused to the C-terminus of an Fc. This approach provides for the preparation of bi-, tri-, tetra-, and penta-specific antibodies. Display of a single MRD at each N- and C-termini of an IgG provides for octavalent display of the MRD.
- high-affinity peptides selected from, for example, phage display libraries or derived from natural ligands, may offer a highly versatile and modular approach to the construction of multifunctional antibodies that retain both the binding and half-life advantages of traditional antibodies.
- MRDs can also extend the binding capacity of non-catalytic antibodies, providing for an effective approach to extend the binding functionality of antibodies, particularly for therapeutic purposes.
- Therapeutic antibodies represent the most rapidly growing sector of the pharmaceutical industry. Treatment with bispecific antibodies and defined combinations of monoclonal antibodies are expected to show therapeutic advantages over established and emerging antibody monotherapy regimens. However, the cost of developing and producing such therapies has limited their consideration as viable treatments for most indications. There is, therefore, a great need for developing multispecific and multivalent antibodies or other scaffolds having superior drug properties with substantially reduced production costs as compared to conventional bispecific antibodies and combinations of monoclonal antibodies.
- the present invention is directed towards a full-length antibody comprising at least one modular recognition domain (MRD).
- the full-length antibody comprises multiple MRDs.
- the full-length antibody comprises more than one type of MRD (i.e., multiple MRDs having the same or different specificities).
- variants and derivatives of such antibodies comprising a MRD are also encompassed by the invention.
- the MRDs of the MRD containing antibodies can be attached to the antibodies at any location on the antibody.
- the MRD is operably linked to the C-terminal end of the heavy chain of the antibody.
- the MRD is operably linked to the N-terminal end of the heavy chain of the antibody.
- the MRD is operably linked to the C-terminal end of the light chain of the antibody.
- the MRD is operably linked to the N-terminal end of the light chain of the antibody.
- two or more MRDs are operably linked to the same antibody location, e.g., any terminal end of the antibody.
- MRDs are operably linked to at least two different antibody locations, e.g., two or more different terminal ends of the antibody.
- MRDs may possess activities in addition to antigen binding such as catalytic activity, carriers of therapeutic agents, prodrugs, or other modifications that do not prevent the antibody from binding to an antigen.
- the antibodies of the MRD containing antibodies can be any immunoglobulin molecule that binds to an antigen and can be of any type, class, or subclass.
- the antibody is an IgG.
- the antibody is a polyclonal, monoclonal, multispecific, human, humanized, primatized or chimeric antibody.
- the antibody is chimeric or humanized.
- the antibody is human.
- the antibodies also include modifications that do not interfere with their ability to bind antigen.
- the MRD-containing antibodies include modifications that increase ADCC, decrease ADCC, increase CDC, or decrease CDC compared to the antibody without the modification.
- the MRD containing antibodies include modifications that increase antibody half life, or decrease antibody half-life compared to the antibody without the modification.
- the antibodies of the MRD-containing antibodies of the invention can be any antibody that binds to a target of therapeutic or diagnostic value.
- the antibodies corresponding to the MRD containing antibodies are marketed.
- the antibodies corresponding to the MRD containing antibodies are in clinical trials for regulatory approval.
- the antibody of the MRD-containing antibody binds to a validated target. In one embodiment, the antibody binds to a cell surface antigen. In another embodiment, the antibody binds to an angiogenic factor. In a further embodiment, the antibody binds to an angiogenic receptor.
- the antibody binds to a target that is selected from the group consisting of EGFR, ErbB2, ErbB3, ErbB4, CD20, insulin-like growth factor-I receptor, VEGF, VEGF-R and prostate specific membrane antigen.
- the antibody the antibody of the MRD-containing antibody binds to EGFR. In another specific embodiment, the antibody binds to the same epitope as Erbitux® antibody or competitively inhibits binding of the Erbitux® antibody to EGFR. In a further specific embodiment, the antibody is the Erbitux® antibody. In another specific embodiment, the antibody binds to the same epitope as zalutumumab (e.g., Genmab) antibody or competitively inhibits binding of the zalutumumab antibody to EGFR. In a further specific embodiment, the antibody is zalutumumab.
- zalutumumab e.g., Genmab
- the antibody binds to the same epitope as nimotuzumab (e.g., BIOMAB® EGFR, YM Biosciences) antibody or competitively inhibits binding of the nimotuzumab antibody to EGFR.
- the antibody is nimotuzumab.
- the antibody binds to the same epitope as matuzumab (e.g., EMD 72000, Merck Serono) antibody or competitively inhibits binding of the matuzumab antibody to EGFR.
- the antibody is matuzumab.
- the antibody of the MRD-containing antibody binds to ErbB2.
- the antibody binds to the same epitope as HERCEPTIN® (trastuzumab) antibody or competitively inhibits HERCEPTIN® (trastuzumab) antibody.
- the antibody is an antibody that comprises the CDR sequences of SEQ ID NOs: 59-64.
- the antibody is the HERCEPTIN® (trastuzumab) antibody.
- the antibody binds to VEGF. In another specific embodiment, the antibody binds to the same epitope as AVASTIN® (bevacizumab) antibody or competitively inhibits AVASTIN® antibody. In a further specific embodiment, the antibody is the AVASTIN® antibody.
- the antibody binds to a target that is associated with a disease or disorder of the immune system. In one embodiment, the antibody binds to TNF. In another specific embodiment, the antibody binds to the same epitope as HUMIRA® (adalimumab) antibody or competitively inhibits HUMIRA® antibody. In a further specific embodiment, the antibody is the HUMIRA® antibody. In one embodiment, the antibody binds to TNF. In another specific embodiment, the antibody binds to the same epitope as SIMPONITM (golimumab) antibody or competitively inhibits SIMPONITM antibody. In a further specific embodiment, the antibody is the SIMPONITM antibody.
- the antibody component of the MRD containing antibody binds to a target that is associated with a disease or disorder of the metabolic, cardiovascular, musculoskeletal, neurological, or skeletal system.
- the antibody component of the MRD containing antibody binds to a target that is associated with a yeast, fungal, viral or bacterial infections or disease.
- MRDs can be linked to an antibody or other MRDs directly or through a linker.
- a linker can be any chemical structure that allows for the MRD that has been linked to an antibody to bind its target.
- the linker is a chemical linker described herein or otherwise known in the art.
- the linker is a polypeptide linker described herein or otherwise known in the art.
- the antibody and the MRD are operably linked through a linker peptide.
- the linker peptide is between 2 to 20 peptides long, or between 4 to 10 or about 4 to 15 peptides long.
- the linker peptide comprises the sequence GGGS (SEQ ID NO:1), the sequence SSGGGGSGGGGGGSS (SEQ ID NO:2), or the sequence SSGGGGSGGGGGGSSRSS (SEQ ID NO:19).
- Other linkers containing a core sequence of GGGS as shown in SEQ ID NO:1 are also included herein wherein the linker peptide is from about 4-20 amino acids.
- the MRDs can be any target binding peptide.
- the MRD target is a soluble factor.
- the MRD target is a transmembrane protein such as a cell surface receptor.
- the MRD target is selected from the group consisting of an angiogenic cytokine and an integrin.
- the MRD comprises the sequence of SEQ ID NO:8.
- the MRD comprises the sequence of SEQ ID NO:14.
- the MRD comprises the sequence of SEQ ID NO:69.
- the MRD is about 2 to 150 amino acids. In another embodiment, the MRD is about 2 to 60 amino acids.
- the MRD-containing antibody comprises an MRD containing a sequence selected from the group consisting of SEQ ID NO:8, SEQ ID NO:14, and SEQ ID NO:70.
- the target of the MRD is a cellular antigen. In a specific embodiment of the present invention, the target of the MRD is CD20.
- the target of the MRD is an integrin.
- the peptide sequence of the integrin targeting MRD is YCRGDCT (SEQ ID NO:3).
- the peptide sequence of the integrin targeting MRD is PCRGDCL (SEQ ID NO:4).
- the peptide sequence of the integrin targeting MRD is TCRGDCY (SEQ ID NO:5).
- the peptide sequence of the integrin targeting MRD is LCRGDCF (SEQ ID NO:6).
- the target of the MRD is an angiogenic cytokine.
- the peptide sequence of the angiogenic cytokine targeting (i.e., binding) MRD is MGAQTNFMPMDDLEQRLYEQFILQQGLE (SEQ ID NO:7).
- the peptide sequence of the angiogenic cytokine targeting MRD is MGAQTNFMPMDNDELLLYEQFIL QQGLE (SEQ ID NO:8).
- the peptide sequence of the angiogenic cytokine targeting MRD is MGAQTNFMPMDATETRLYEQFILQQGLE (SEQ ID NO:9).
- the peptide sequence of the angiogenic cytokine targeting MRD is AQQEECEWDPWTCEHMGSGSATG GSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10).
- the peptide sequence of the angiogenic cytokine targeting MRD is MGAQTNFM PMDNDELLNYEQFILQQGLE (SEQ ID NO:11).
- the peptide sequence of the angiogenic cytokine targeting MRD is PXDNDXLLNY (SEQ ID NO:12), where X is one of the 20 naturally-occurring amino acids.
- the targeting MRD peptide has the core sequence MGAQTNFMPMDXn (SEQ ID NO:56), wherein X is any amino acid and n is from about 0 to 15.
- the targeting MRD peptide contains a core sequence selected from:
- XnEFAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:22); XnELAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:25); XnEFSPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:28); XnELEPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:31); and XnAQQEECEX 1 X 2 PWTCEHMXn where n is from about 0 to 50 amino acid residues and X, X 1 and X 2 are any amino acid (SEQ ID NO:57).
- Exemplary peptides containing such core peptides encompassed by the invention include for example: AQQEECEFAPWTCEHM (SEQ ID NO:21); AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFAPWTCEHMLE (SEQ ID NO:23); AQQEECELAPWTCEHM (SEQ ID NO:24); AQQEECELAPWTCEHM GSGSATG GSGSTASSGSGSATHQEECELAPWTCEHMLE (SEQ ID NO:26); AQQEECEFAPWTCEHM (SEQ ID NO:27); AQQEECEFSPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSPW TCEHMLE 2 ⁇ ConFS (SEQ ID NO:29); AQQEECELEPWTCEHM (SEQ ID NO:30); AQQEEC ELEPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELEPWTCEHMLE
- the target of the MRD is ErbB2. In another embodiment, the target to which the MRD binds is ErbB3. In an additional embodiment, the target to which the MRD binds is tumor-associated surface antigen or an epithelial cell adhesion molecule (Ep-CAM).
- Ep-CAM epithelial cell adhesion molecule
- the target to which the MRD binds is VEGF.
- the peptide sequence of the VEGF targeting MRD is VEPNCDIHVMWEWECFERL (SEQ ID NO:13).
- the target to which the MRD binds is an insulin-like growth factor-I receptor (IGF1R).
- IGF1R insulin-like growth factor-I receptor
- the peptide sequence of the insulin-like growth factor-I receptor targeting MRD comprises SFYSCLESLVNGPAEKSRGQWDGCRKK (SEQ ID NO:14).
- Other illustrative IGF1R targeting MRDs include, for example, a peptide sequence having the formula NFYQCIX 1 X 2 LX 3 X 4 X 5 PAEKSRGQWQECRTGG (SEQ ID NO:58), wherein X 1 is E or D; X 2 is any amino acid; X 3 is any amino acid; X 4 is any amino acid; and X 5 is any amino acid.
- IGF1R targeting MRDs include, for example, a peptide sequence having the formula of XXXXCXEXXXXXPAEKSRGQWXXCXXX (SEQ ID NO:101), wherein X is any amino acid.
- Illustrative peptides that contain such formula include:
- NFYQCIEHLSGSPAEKSRGQWQECRTG SEQ ID NO:42
- NFYQCIEMLSLPPAEKSRGQWQECRTG SEQ ID NO:45
- NFYQCIEALARTPAEKSRGQWVECRAP (SEQ ID NO:49);
- NFYQCIESLVNGPAEKSRGQWQECRTG (SEQ ID NO:70) (Rm2-2-319).
- Another IGF1R targeting MRDs contains the sequence NFYQCIDLLMAYPAEKSRGQWQECRTGG (SEQ ID NO:37).
- the target of the MRD is a tumor antigen.
- the target of the MRD is an epidermal growth factor receptor (EGFR).
- EGFR epidermal growth factor receptor
- the target of the MRD is an angiogenic factor.
- the target of the MRD is an angiogenic receptor.
- the MRD is a vascular homing peptide.
- the peptide sequence of the vascular homing peptide MRD comprises the sequence ACDCRGDCFCG (SEQ ID NO:15).
- the target of the MRD is a nerve growth factor.
- the antibody and/or MRD binds to EGFR, ErbB2, ErbB3, ErbB4, CD20, insulin-like growth factor-I receptor, or prostate specific membrane antigen.
- the peptide sequence of the EGFR targeting (binding) MRD is VDNKFNKELEICAYNEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:16). In one aspect, the peptide sequence of the EGFR targeting MRD is VDNKFNKEMWIAWEEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKINDAQAPK (SEQ ID NO:17). In another aspect, the peptide sequence of the ErbB2 targeting MRD is VDNKFNKEMRNAYWEIALLPNLNNQQKRAFIRSLYDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:18).
- the present invention also relates to an isolated polynucleotide comprising a nucleotide sequence encoding an MRD containing antibody.
- a vector comprises a polynucleotide sequence encoding an MRD containing antibody.
- the polynucleotide sequence encoding an MRD containing antibody is operatively linked with a regulatory sequence that controls expression on the polynucleotide.
- a host cell comprises the polynucleotide sequence encoding an MRD containing antibody.
- MRD-antibody fusions i.e., MRD-containing antibodies
- the present invention also relates to methods of designing and making MRD-containing antibodies having a full-length antibody comprising a MRD.
- the MRD is derived from a phage display library.
- the MRD is derived from natural ligands.
- the MRD is derived from yeast display or RNA display technology.
- the present invention also relates to a method of treating or preventing a disease or disorder in a subject in need thereof, comprising administering an antibody comprising an MRD to the subject.
- the disease is cancer.
- undesired angiogenesis in inhibited.
- angiogenesis is modulated.
- tumor growth is inhibited.
- Certain embodiments provide for methods of treating or preventing a disease, disorder, or injury comprising administering a therapeutically effective amount of an antibody comprising an MRD (i.e., MRD-containing antibodies) to a subject in need thereof.
- the disease, disorder or injury is cancer.
- the disease, disorder or injury is a disorder of the immune system.
- the disorder of the immune system is inflammation.
- the disorder of the immune system is an autoimmune disease.
- the disorder of the immune system is selected from the group consisting of: rheumatoid arthritis, Crohn's disease, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, diabetes, ulcerative colitis, and multiple sclerosis.
- the disease, disorder or injury is a metabolic disease.
- the disease, disorder, or injury is an infectious disease.
- the infectious disease is human immunodeficiency virus (HIV) infection or AIDS, botulism, anthrax, or clostridium difficile .
- the disease, disorder, or injury is neurological.
- the neurological disease, disorder or injury is pain.
- the pain is, acute pain or chronic pain.
- a method of treatment or prevention comprising administering an additional therapeutic agent along with an antibody comprising an MRD is provided.
- the methods of treatment or prevention comprise administering an antibody comprising more than one type of MRD.
- FIG. 1 shows the schematic representation of different designs of multi-specific and multi-valent molecules. MRDs are depicted as triangles, circles, diamonds, and squares.
- FIG. 2A shows a typical peptibody as a C-terminal fusion with the heavy chain of Fc.
- FIG. 2B shows an MRD containing antibody with a C-terminal MRD fusion with the light chain of the antibody.
- FIG. 2C shows an MRD containing antibody with an N-terminal MRD fusion with the light chain of the antibody.
- FIG. 2D shows an MRD containing antibody with unique MRD peptides fused to each terminus of the antibody.
- FIG. 3 depicts the results of an enzyme linked immunosorbent assay (ELISA) in which integrin and Ang2 were bound by an anti-integrin antibody (JC7U) fused to a Ang2 targeting MRD (2 ⁇ Con4).
- ELISA enzyme linked immunosorbent assay
- FIG. 4 depicts the results of an ELISA in which integrin and Ang2 were bound by an anti-integrin antibody (JC7U) fused to a Ang2 targeting MRD (2 ⁇ Con4).
- JC7U anti-integrin antibody
- FIG. 5 depicts the results of an ELISA in which an anti-ErbB2 antibody was fused to an MRD which targets Ang2.
- FIG. 6 depicts the results of an ELISA in which an Ang2 targeting MRD was fused to a hepatocyte growth factor receptor (cMET) binding antibody.
- cMET hepatocyte growth factor receptor
- FIG. 7 depicts the results of an ELISA in which an integrin targeting MRD was fused to an ErbB2 binding antibody.
- FIG. 8 depicts the results of an ELISA in which an integrin targeting MRD was fused to an hepatocyte growth factor receptor binding antibody.
- FIG. 9 depicts the results of an ELISA in which an insulin-like growth factor-I receptor targeting MRD was fused to an ErbB2 binding antibody.
- FIG. 10 depicts the results of an ELISA in which a VEGF-targeting MRD was fused to an ErbB2 binding antibody.
- FIG. 11 depicts the results of an ELISA in which an integrin targeting MRD was fused to a catalytic antibody.
- FIG. 12 depicts the results of an ELISA in which an Ang2-targeting MRD was fused to a catalytic antibody.
- FIG. 13 depicts the results of an ELISA in which an integrin targeting MRD and an Ang2 targeting MRD were fused to an ErbB2 binding antibody.
- FIG. 14 depicts the results of an ELISA in which an integrin targeting MRD was fused to an ErbB2 binding antibody.
- FIG. 15 depicts the results of an ELISA in which an integrin, Ang2, or insulin-like growth factor-I receptor-targeting MRD was fused to an ErbB2 or hepatocyte growth factor receptor-binding antibody with a short linker peptide.
- FIG. 16 depicts the results of an ELISA in which an integrin, Ang2, or insulin-like growth factor-I receptor-targeting MRD was fused to an ErbB2 or hepatocyte growth factor receptor-binding antibody with a long linker peptide.
- FIG. 17A depicts the dose response curves of MRD-maltose binding protein (MBP) fusions assayed for direct binding to Ang2.
- MRP MRD-maltose binding protein
- FIG. 17B indicates MRD-MBP fusion proteins tested, the amino acid sequence of the MRD, and the EC50 values (calculated using a 4 parameter fit).
- the MXD sequence motif in the MRD components of the MRD-MBP fusions is underlined and mutated residues are in bold and italics.
- FIG. 18A depicts the results of an assay for direct binding of a HERCEPTIN® based zybody (i.e., an MRD containing HERCEPTIN® antibody sequences) antibody-MRDs and a HERCEPTIN® antibody to Her2 (ErbB2) Fc in the presence of biotinylated Ang2. Binding was detected with HRP-conjugated anti-human kappa chain mAb.
- a HERCEPTIN® based zybody i.e., an MRD containing HERCEPTIN® antibody sequences
- Her2 (ErbB2) Fc Her2
- FIG. 18B depicts the results of an assay for direct binding of a HERCEPTIN® based zybody (i.e., an MRD containing HERCEPTIN® antibody sequences) and a HERCEPTIN® antibody to Her2 Fc in the presence of biotinylated Ang2. Binding was detected with horseradish peroxidase (HRP)-conjugated streptavidin.
- HRP horseradish peroxidase
- FIG. 19A depicts the results of an assay for direct binding of antibody-MRDs and an AVASTIN® antibody to VEGF in the presence of biotinylated Ang2. Binding was detected with HRP-conjugated anti-human kappa chain mAb.
- FIG. 19B depicts the results of an assay for direct binding of antibody-MRDs and an AVASTIN® antibody to VEGF in the presence of biotinylated Ang2. Binding was detected with HRP-conjugated streptavidin.
- FIG. 20A depicts the results of a flow cytometry assay which demonstrates that antibody-MRDs simultaneously bind Her2 and Ang2 on BT-474 breast cancer cells.
- FIG. 20B depicts binding of antibody-MRDs to HER2 on BT-474 breast cancer cells.
- FIG. 21 depicts the results of an ELISA assay that demonstrates the inhibitory effect of antibody-MRDs on TIE-2 binding to plate immobilized Ang2.
- FIG. 22 depicts the results of a competitive binding assay that demonstrates the inhibition of binding of biotinylated antibody by antibody-MRD and unlabeled antibody.
- FIG. 23 depicts the results of a competitive binding assay that illustrates the inhibition of labeled antibody binding to BT-474 cells by antibody-MRDs and unlabeled antibody.
- FIG. 24A depicts the fitted dose curves illustrating the inhibition of BT-474 cell proliferation by HERCEPTIN® with the lm32 MRD (SEQ ID NO:8) fused to the heavy chain and HERCEPTIN®.
- FIG. 24B depicts the fitted dose curves illustrating the inhibition of BT-474 cell proliferation by HERCEPTIN® with the lm32 MRD fused to the light chain and HERCEPTIN®.
- FIG. 24C depicts the fitted dose curves illustrating the inhibition of BT-474 cell proliferation by HERCEPTIN® with the 2 ⁇ con4 MRD fused to the heavy chain and HERCEPTIN®.
- FIG. 25A depicts the results of a cytotoxicity assay illustrating ADCC-mediated killing of BT-474 cells by HERCEPTIN® with the lm32 MRD fused to the heavy chain, HERCEPTIN® with the lm32 MRD fused to the light chain, and HERCEPTIN®.
- FIG. 25B depicts the results of a cytotoxicity assay illustrating ADCC-mediated killing of BT-474 cells by HERCEPTIN® with the 2 ⁇ con4 MRD fused to the heavy chain, and HERCEPTIN®.
- FIG. 26A depicts the inhibition of HUVEC proliferation by AVASTIN® with the lm32 MRD fused to the heavy chain and AVASTIN® using HUVECs obtained from GlycoTech (Gaithersburg, Md.).
- FIG. 26B depicts the inhibition of HUVEC proliferation by AVASTIN® with the lm32 MRD fused to the heavy chain and AVASTIN® using HUVECs obtained from Lonza.
- FIG. 27 depicts the effect of RITUXIMAB®, HERCEPTIN®, and an MRD-containing antibody on tumor volume in vivo.
- the following provides a description of antibodies containing at least one modular recognition domain (MRD).
- MRD modular recognition domain
- the linkage of one or more MRDs to an antibody results in a multi-specific molecule of the invention that retains structural and functional properties of traditional antibodies or Fc optimized antibodies and can readily be synthesized using conventional antibody expression systems and techniques.
- the antibody can be any suitable antigen-binding immunoglobulin, and the MRDs can be any suitable target-binding peptide.
- the MRDs can be operably linked to any location on the antibody, and the attachment can be direct or indirect (e.g., through a chemical or polypeptide linker).
- Compositions of antibodies comprising an MRD, methods of manufacturing antibodies comprising an MRD, and methods of using antibodies comprising MRDs are also described in the sections below.
- Standard techniques may be used for recombinant DNA molecule, protein, and antibody production, as well as for tissue culture and cell transformation. Enzymatic reactions and purification techniques are typically performed according to the manufacturer's specifications or as commonly accomplished in the art using conventional procedures such as those set forth in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) and Sambrook et al. (Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)) (both herein incorporated by reference), or as described herein.
- MRD-containing antibodies “antibody-MRD molecules,” “MRD-antibody molecules,” “antibodies comprising an MRD” and “Zybodies” are used interchangeably herein and do not encompass a peptibody. Each of these terms may also be used herein to refer to a “complex” of the invention.
- an antibody is used herein to refer to immunoglobulin molecules that are able to bind antigens through an antigen binding domain (i.e., antibody combining site).
- the term “antibody” includes polyclonal, oligoclonal (mixtures of antibodies), and monoclonal antibodies, chimeric, single chain, and humanized antibodies.
- the term “antibody” also includes human antibodies.
- an antibody comprises at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds.
- Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.
- the heavy chain constant region is comprised of three domains: CH1, CH2, and CH3.
- Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region.
- the light chain constant region is comprised of one domain, CL.
- the VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
- CDR complementarity determining regions
- FR framework regions
- Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxyl-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- the antibody is a homomeric heavy chain antibody (e.g., camelid antibodies) which lacks the first constant region domain (CH1) but retains an otherwise intact heavy chain and is able to bind antigens through an antigen binding domain.
- the variable regions of the heavy and light chains in the antibody-MRD fusions of the invention contain a functional binding domain that interacts with an antigen.
- the term “monoclonal antibody” typically refers to a population of antibody molecules that contain only one species of antibody combining site capable of immunoreacting with a particular epitope. A monoclonal antibody thus typically displays a single binding affinity for any epitope with which it immunoreacts.
- a “monoclonal antibody” may also contain an antibody molecule having a plurality of antibody combining sites (i.e., a plurality of variable domains), each immunospecific for a different epitope, e.g., a bispecific monoclonal antibody.
- a “monoclonal antibody” refers to a homogeneous antibody population involved in the highly specific recognition and binding of one or two (in the case of a bispecific monoclonal antibody) antigenic determinants, or epitopes. This is in contrast to polyclonal antibodies that typically include different antibodies directed against different antigenic determinants.
- the term “monoclonal antibody” refers to such antibodies made in any number of manners including but not limited to by hybridoma, phage selection, recombinant expression, yeast, and transgenic animals.
- a “dual-specific antibody” is used herein to refer to an immunoglobulin molecule that contains dual-variable-domain immunoglobulins, where the dual-variable-domain can be engineered from any two monoclonal antibodies.
- chimeric antibodies refers to antibodies wherein the amino acid sequence of the immunoglobulin molecule is derived from two or more species.
- the variable region of both light and heavy chains corresponds to the variable region of antibodies derived from one species of mammals (e.g., mouse, rat, rabbit, etc.) with the desired specificity and/or affinity while the constant regions are homologous to the sequences in antibodies derived from another species (usually human) to avoid eliciting an immune response in that species.
- humanized antibody refers to forms of non-human (e.g., murine) antibodies that are specific immunoglobulin chains, chimeric immunoglobulins, or fragments thereof that contain minimal non-human (e.g., murine) sequences.
- humanized antibodies are human immunoglobulins in which residues from the complementarity determining region (CDR) are replaced by residues from the CDR of a non-human species (e.g., mouse, rat, rabbit, hamster) that have the desired specificity and/or affinity (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)).
- the Fv framework region (FR) residues of a human immunoglobulin are replaced with the corresponding residues in an antibody from a non-human species that has the desired specificity and/or affinity.
- the humanized antibody can be further modified by the substitution of additional residues either in the Fv framework region and/or within the replaced non-human residues to refine and optimize antibody specificity, affinity, and/or capability.
- the humanized antibody will comprise substantially all of at least one, and typically two or three, variable domains containing all or substantially all of the CDR regions that correspond to the non-human immunoglobulin whereas all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
- the humanized antibody can also comprise an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin. Examples of methods used to generate humanized antibodies are described in U.S. Pat. No. 5,225,539, U.S. Pat. No.
- human antibodies include antibodies having the amino acid sequence of a human immunoglobulin or one or more human germlines and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulins and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Pat. No. 5,939,598 by Kucherlapati et al. A human antibody may still be considered “human” even if amino acid substitutions are made in the antibody. Examples of methods used to generate human antibodies are described in: PCT publications WO 98/24893, WO 92/01047, WO 96/34096, and WO 96/33735; European Patent No.
- an “antibody combining site” is that structural portion of an antibody molecule comprised of heavy and light chain variable and hypervariable regions that specifically binds (immunoreacts with) an antigen.
- the term “immunoreact” in its various forms means specific binding between an antigenic determinant-containing molecule and a molecule containing an antibody combining site such as a whole antibody molecule or a portion thereof.
- each antigen binding domain is short, non-contiguous sequences of amino acids that are specifically positioned to form the antigen binding domain as the antibody assumes its three dimensional configuration in an aqueous environment.
- the remainder of the amino acids in the antigen binding domains referred to as “framework” regions, show less inter-molecular variability.
- the framework regions largely adopt a ⁇ -sheet conformation and the CDRs form loops which connect, and in some cases form part of, the ⁇ -sheet structure.
- framework regions act to form a scaffold that provides for positioning the CDRs in correct orientation by inter-chain, non-covalent interactions.
- the antigen binding domain (i.e., antibody combining site) formed by the positioned CDRs defines a surface complementary to the epitope on the immunoreactive antigen. This complementary surface promotes the non-covalent binding of the antibody to its cognate epitope.
- the amino acids comprising the CDRs and the framework regions, respectively, can be readily identified for any given heavy or light chain variable region by one of ordinary skill in the art, since they have been precisely defined (see, “Sequences of Proteins of Immunological Interest,” Kabat, E., et al., U.S. Department of Health and Human Services, (1983); and Chothia and Lesk, J. Mol. Biol., 196:901-917 (1987), which are herein incorporated by reference).
- “Humanized antibody” or “chimeric antibody” includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- peptibody refers to a peptide or polypeptide which comprises less than a complete, intact antibody.
- a peptibody can be an antibody Fc domain attached to at least one peptide.
- a peptibody does not include antibody variable regions, an antibody combining site, CH1 domains, or Ig light chain constant region domains.
- Naturally occurring when used in connection with biological materials such as a nucleic acid molecules, polypeptides, host cells, and the like refers to those which are found in nature and not modified by a human being.
- domain refers to a part of a molecule or structure that shares common physical or chemical features, for example hydrophobic, polar, globular, helical domains or properties, e.g., a protein binding domain, a DNA binding domain or an ATP binding domain. Domains can be identified by their homology to conserved structural or functional motifs.
- a “conservative amino acid substitution” is one in which one amino acid residue is replaced with another amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- basic side chains e
- substitution of a phenylalanine for a tyrosine is a conservative substitution.
- conservative substitutions in the sequences of the polypeptides and antibodies of the invention do not abrogate the binding of the polypeptide or antibody containing the amino acid sequence to the antigen(s) to which the polypeptide or antibody binds.
- Methods of identifying nucleotide and amino acid conservative substitutions and non-conservative substitutions which do not eliminate polypeptide or antigen binding are well-known in the art (see, e.g., Brummell et al., Biochem. 32:1180-1187 (1993); Kobayashi et al., Protein Eng. 12(10):879-884 (1999); and Burks et al., Proc. Natl. Acad. Sci. USA 94:412-417 (1997)).
- a “modular recognition domain” (MRD) or “target binding peptide” is a molecule, such as a protein, glycoprotein and the like, that can specifically (non-randomly) bind to a target molecule.
- the amino acid sequence of a MRD can typically tolerate some degree of variability and still retain a degree of capacity to bind the target molecule. Furthermore, changes in the sequence can result in changes in the binding specificity and in the binding constant between a preselected target molecule and the binding site.
- the MRD is an agonist of the target it binds.
- An MRD agonist refers to a MRD that in some way increases or enhances the biological activity of the MRD's target protein or has biological activity comparable to a known agonist of the MRD's target protein.
- the MRD is an antagonist of the target it binds.
- An MRD antagonist refers to an MRD that blocks or in some way interferes with the biological activity of the MRD's target protein or has biological activity comparable to a known antagonist or inhibitor of the MRD's target protein.
- Cell surface receptor refers to molecules and complexes of molecules capable of receiving a signal and the transmission of such a signal across the plasma membrane of a cell.
- An example of a cell surface receptor of the present invention is an activated integrin receptor, for example, an activated ⁇ v ⁇ 3 integrin receptor on a metastatic cell.
- cell surface receptor also includes a molecule expressed on a cell surface that is capable of being bound by an MRD containing antibody of the invention.
- a “target binding site” or “target site” is any known, or yet to be defined, amino acid sequence having the ability to selectively bind a preselected agent.
- exemplary reference target sites are derived from the RGD-dependent integrin ligands, namely fibronectin, fibrinogen, vitronectin, von Willebrand factor and the like, from cellular receptors such as ErbB2, VEGF, vascular homing peptide or angiogenic cytokines, from protein hormones receptors such as insulin-like growth factor-1 receptor, epidermal growth factor receptor and the like, and from tumor antigens.
- epitopes or “antigenic determinant” are used interchangeably herein and refer to that portion of any molecule capable of being recognized and specifically bound by a particular binding agent (e.g., an antibody or an MRD).
- a particular binding agent e.g., an antibody or an MRD.
- epitopes can be formed from contiguous amino acids and noncontiguous amino acids and/or other chemically active surface groups of molecules (such as carbohydrates) juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained upon protein denaturing, whereas epitopes formed by tertiary folding are typically lost upon protein denaturing.
- An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.
- An antibody, MRD, antibody-containing MRD, or other molecule is said to “competitively inhibit” binding of a reference molecule to a given epitope if it binds to that epitope to the extent that it blocks, to some degree, binding of the reference molecule to the epitope.
- Competitive inhibition may be determined by any method known in the art, for example, competition ELISA assays.
- an antibody, MRD, antibody-containing MRD, or other molecule may be said to competitively inhibit binding of the reference molecule to a given epitope, for example, by at least 90%, at least 80%, at least 70%, at least 60%, or at least 50%.
- protein is defined as a biological polymer comprising units derived from amino acids linked via peptide bonds; a protein can be composed of two or more chains.
- a “fusion polypeptide” is a polypeptide comprised of at least two polypeptides and optionally a linking sequence to operatively link the two polypeptides into one continuous polypeptide.
- the two polypeptides linked in a fusion polypeptide are typically derived from two independent sources, and therefore a fusion polypeptide comprises two linked polypeptides not normally found linked in nature.
- the two polypeptides may be operably attached directly by a peptide bond or may be linked indirectly through a linker described herein or otherwise known in the art.
- operably linked indicates that two molecules are attached so as to each retain functional activity. Two molecules are “operably linked” whether they are attached directly (e.g., a fusion protein) or indirectly (e.g., via a linker).
- linker refers to a peptide located between the antibody and the MRD or between two MRDs.
- Linkers can have from about 1 to 20 amino acids, about 2 to 20 amino acids, or about 4 to 15 amino acids. One or more of these amino acids may be glycosylated, as is well understood by those in the art.
- the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine.
- a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine.
- the linker is selected from polyglycines (such as (Gly) 5 , and (Gly) 8 ), poly(Gly-Ala), and polyalanines.
- the linker can also be a non-peptide linker such as an alkyl linker, or a PEG linker.
- alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C 1 -C 6 ) lower acyl, halogen (e.g., Cl, Br), CN, NH 2 , phenyl, etc.
- An exemplary non-peptide linker is a PEG linker.
- the PEG linker has a molecular weight of about 100 to 5000 kDa, or about 100 to 500 kDa.
- the peptide linkers may be altered to form derivatives.
- Target cell refers to any cell in a subject (e.g., a human or animal) that can be targeted by an antibody-containing MRD or MRD of the invention.
- the target cell can be a cell expressing or overexpressing the target binding site, such as an activated integrin receptor.
- “Patient,” “subject,” “animal” or “mammal” are used interchangeably and refer to mammals such as human patients and non-human primates, as well as experimental animals such as rabbits, rats, and mice, and other animals. Animals include all vertebrates, e.g., mammals and non-mammals, such as sheep, dogs, cows, chickens, amphibians, and reptiles. In some embodiments, the patient is a human.
- Treating” or “treatment” includes the administration of the antibody comprising an MRD of the present invention to prevent or delay the onset of the symptoms, complications, or biochemical indicia of a disease, condition, or disorder, alleviating the symptoms or arresting or inhibiting further development of the disease, condition, or disorder.
- Treatment can be prophylactic (to prevent or delay the onset of the disease, or to prevent the manifestation of clinical or subclinical symptoms thereof) or therapeutic suppression or alleviation of symptoms after the manifestation of the disease, condition, or disorder.
- Treatment can be with the antibody-MRD composition alone, the MRD alone, or in combination of either with an additional therapeutic agent.
- compositions, carriers, diluents and reagents are used interchangeably and represent that the materials are capable of administration to or upon a human without the production of therapeutically prohibitive undesirable physiological effects such as nausea, dizziness, gastric upset and the like.
- Modulate means adjustment or regulation of amplitude, frequency, degree, or activity.
- modulation may be positively modulated (e.g., an increase in frequency, degree, or activity) or negatively modulated (e.g., a decrease in frequency, degree, or activity).
- Cancer “tumor,” or “malignancy” are used as synonymous terms and refer to any of a number of diseases that are characterized by uncontrolled, abnormal proliferation of cells, the ability of affected cells to spread locally or through the bloodstream and lymphatic system to other parts of the body (metastasize) as well as any of a number of characteristic structural and/or molecular features.
- a “cancerous tumor,” or “malignant cell” is understood as a cell having specific structural properties, lacking differentiation and being capable of invasion and metastasis. Examples of cancers that may be treated using the antibody-MRD fusions of the invention include solid tumors and hematologic cancers.
- MRD-containing antibodies include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia.
- cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancers.
- Other types of cancer and tumors that may be treated using MRD-containing antibodies are described herein or otherwise known in the art.
- an “effective amount” of an antibody, MRD, or MRD-containing antibody as disclosed herein is an amount sufficient to carry out a specifically stated purpose such as to bring about an observable change in the level of one or more biological activities related to the target to which the antibody, MRD, or MRD-containing antibody binds.
- the change increases the level of target activity.
- the change decreases the level of target activity.
- An “effective amount” can be determined empirically and in a routine manner, in relation to the stated purpose.
- therapeutically effective amount refers to an amount of an antibody, MRD, MRD-containing antibody, or other drug effective to “treat” a disease or disorder in a subject or mammal.
- the therapeutically effective amount of the drug can reduce angiogenesis and neovascularization; reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent or stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent or stop) tumor metastasis; inhibit, to some extent, tumor growth or tumor incidence; stimulate immune responses against cancer cells and/or relieve to some extent one or more of the symptoms associated with the cancer. See the definition herein of “treating”.
- prophylactically effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
- the present invention describes an approach based on the adaptation of target binding peptides or modular recognition domains (MRDs) as fusions to catalytic or non-catalytic antibodies.
- MRDs modular recognition domains
- the MRD-antibody fusions provide for effective targeting to tumor cells or soluble molecules while leaving the prodrug activation capability of the catalytic antibody intact.
- MRDs can also extend the binding capacity of non-catalytic antibodies providing for an effective approach to extend the binding functionality of antibodies, particularly for therapeutic purposes.
- a full-length antibody comprising at least one modular recognition domain (MRD).
- the full-length antibody comprises more than one MRD, wherein the MRDs have the same or different specificities.
- a single MRD may be comprised of a tandem repeat of the same or different amino acid sequence that can allow for the binding of a single MRD to multiple targets and/or to a repeating epitope on a given target.
- the interaction between a protein ligand and its target receptor site often takes place at a relatively large interface. However, only a few key residues at the interface contribute to most of the binding.
- the MRDs can mimic ligand binding. In certain embodiments, the MRD can mimic the biological activity of a ligand (an agonist MRD) or through competitive binding inhibit the bioactivity of the ligand (an antagonist MRD). MRDs in MRD-containing antibodies can also affect targets in other ways, e.g., by neutralizing, blocking, stabilizing, aggregating, or crosslinking the MRD target.
- MRDs of the present invention will generally contain a peptide sequence that binds to target sites of interests and have a length of about 2 to 150 amino acids, about 2 to 125 amino acids, about 2 to 100 amino acids, about 2 to 90 amino acids, about 2 to 80 amino acids, about 2 to 70 amino acids, about 2 to 60 amino acids, about 2 to 50 amino acids, about 2 to 40 amino acids, about 2 to 30 amino acids, or about 2 to 20 amino acids.
- MRDs have a length of about 10 to 150 amino acids, about 10 to 125 amino acids, about 10 to 100 amino acids, about 10 to 90 amino acids, about 10 to 80 amino acids, about 10 to 70 amino acids, about 10 to 60 amino acids, about 10 to 50 amino acids, about 10 to 40 amino acids, about 10 to 30 amino acids, or about 10 to 20 amino acids. It is further contemplated that MRDs have a length of about 20 to 150 amino acids, about 20 to 125 amino acids, about 20 to 100 amino acids, about 20 to 90 amino acids, about 20 to 80 amino acids, about 20 to 70 amino acids, about 20 to 60 amino acids, about 20 to 50 amino acids, about 20 to 40 amino acids, or about 20 to 30 amino acids.
- the MRDs have a length of about 2 to 60 amino acids. In other embodiments, the MRDs have a length of about 10 to 60 amino acids. In other embodiments, the MRDs have a length of about 10 to 50 amino acids. In additional embodiments, the MRDs have a length of about 10 to 40 amino acids. In additional embodiments, the MRDs have a length of about 10 to 30 amino acids.
- one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 3 M, 10 ⁇ 3 M, 5 ⁇ 10 ⁇ 4 M, 10 ⁇ 4 M, 5 ⁇ 10 ⁇ 5 M, 10 ⁇ 5 M, 5 ⁇ 10 ⁇ 6 M, 10 ⁇ 6 M, 5 ⁇ 10 ⁇ 7 M, 10 ⁇ 7 M, 5 ⁇ 10 ⁇ 8 M, 10 ⁇ 8 M, 5 ⁇ 10 ⁇ 9 M, 10 ⁇ 9 M, 5 ⁇ 10 ⁇ 10 M, 10 ⁇ 10 M, 5 ⁇ 10 ⁇ 11 M, 10 ⁇ 11 M, 5 ⁇ 10 ⁇ 12 M, 10 ⁇ 12 M, 5 ⁇ 10 ⁇ 13 M, 10 ⁇ 13 M, 5 ⁇ 10 ⁇ 14 M, 10 ⁇ 14 M, 5 ⁇ 10 ⁇ 15 M, or 10 ⁇ 15 M.
- one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 5 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 8 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 9 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 10 M.
- one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 11 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 12 M.
- one or more of the MRD components of the MRD-containing antibodies bind their targets with an off rate (k off ) of less than 5 ⁇ 10 ⁇ 2 sec ⁇ 1 , 10 ⁇ 2 sec ⁇ 1 , 5 ⁇ 10 ⁇ 3 sec ⁇ 1 , or 10 ⁇ 3 sec ⁇ 1 .
- one or more of the MRD components of the MRD-containing antibodies bind their targets with an off rate (k off ) of less than 5 ⁇ 10 ⁇ 4 sec ⁇ 1 , 10 ⁇ 4 sec ⁇ 1 , 5 ⁇ 10 ⁇ 5 sec ⁇ 1 , or 10 ⁇ 5 sec ⁇ 1 , 5 ⁇ 10 ⁇ 6 sec ⁇ 1 , 10 ⁇ 6 sec ⁇ 1 , 5 ⁇ 10 ⁇ 7 sec ⁇ 1 , or 10 ⁇ 7 sec ⁇ 1 .
- one or more of the MRD components of the MRD-containing antibodies bind their targets with an on rate (k on ) of greater than 10 3 M ⁇ 1 sec ⁇ 1 , 5 ⁇ 10 3 M ⁇ 1 sec ⁇ 1 , 10 4 M ⁇ 1 sec ⁇ 1 , or 5 ⁇ 10 4 M ⁇ 1 sec ⁇ 1 . More preferably, one or more of the MRD components of the MRD-containing antibodies bind their targets with an on rate (k on ) of greater than 10 5 M ⁇ 1 sec ⁇ 1 , 5 ⁇ 10 5 M ⁇ 1 sec ⁇ 1 , 10 6 M ⁇ 1 sec ⁇ 1 , or 5 ⁇ 10 6 M ⁇ 1 sec ⁇ 1 , or 10 7 M ⁇ 1 sec ⁇ 1 .
- the MRDs are affibodies.
- Affibodies represent a class of affinity proteins based on a 58-amino acid residue protein domain derived from one of the IgG-binding domains of staphylococcal protein A. This three helix bundle domain has been used as a scaffold for the construction of combinatorial phagemid libraries, from which affibody variants that bind a desired target molecule, such as one or more of the targets disclosed herein, can routinely be selected using phage display technology (see, e.g., Nord et al., Nat Biotechnol 15:772-7 (1997), and Ronmark et al., Eur J Biochem 269:2647-55 (2002)). Further details of Affibodies and methods of production thereof are provided by reference to U.S. Pat. No. 5,831,012, which is herein incorporated by reference in its entirety.
- the MRDs are fynomers or another SH3 domain based binding polypeptide.
- Fynomers like other SH3 domain derived affinity peptides share a compact barrel conformation that is formed by two anti-parallel beta sheets.
- the Fyn SH3 domain is 63 residues in length and contains 2 flexible loops that have been modified using combinatorial protein design to create display libraries.
- Fynomers that bind a target of interest can routinely be selected using recombinant technology as described for example, in Grbulovski et al., J. Biol. Chem. 282(5) 3196-3204 (2007) and International Publication WO 2008/022759, which is herein incorporated by reference in its entirety.
- the MRDs comprise one or more amino acid residues or sequences of amino acid residues (including derivatives, analogs, and mimetics thereof), that are preferentially targeted by chemistries or other processes that covalently or non-covalently link a molecular entity to the MRD, as compared to the antibody component of the MRD-containing antibody.
- the amino acid sequence of the MRD contains one or more residues having reactive side chains (e.g., cysteine or lysine) that allow for selective or preferential linkage of the MRD to drug conjugates, imaging agents or bioactive ligands.
- the use of these “linking” MRDs to arm an MRD-comprising antibody with a “payload” overcomes many of the issues associated with antibody destabilization and reduction in antibody activity that have frequently been observed using conventional methods for generating immunotoxins.
- the “payload” component of an MRD-comprising antibody complex of the invention can be any composition that confers a beneficial therapeutic, diagnostic, or prognostic effect, or that provide an advantage in manufacturing, purifying or formulating an MRD-containing antibody.
- the payload is a cytotoxin.
- the payload is another MRD, a toxin, a chemotherapeutic drug, a catalytic enzyme, a prodrug, a radioactive nuclide, or a chelator (e.g., for the attachment of lanthanides).
- the payload is a chemotherapeutic drug, or a prodrug, such as, doxorubicin or a maytansinoid-like drug.
- the payloads can be designed to be released from the MRD-comprising antibody complex using techniques known in the art.
- the payloads are released from the MRD-comprising antibody by cleavage of the MRD upon binding of the MRD-comprising-payload complex to a cell or other biomolecule. In other embodiments, the payloads of the MRD-comprising-antibody complex are released upon internalization of the complex into a cell.
- the MRD does not contain an antigen binding domain, or another antibody domain such as a constant region, a variable region, a complementarity determining region (CDR), a framework region, an Fc domain, or a hinge region. In one non-exclusive embodiment, the MRD does not contain an antigen binding domain. In another non-exclusive embodiment, the MRD does not contain three CDRs. In another non-exclusive embodiment, the MRD does not contain CDR1 and CDR2. In yet another non-exclusive embodiment, the MRD does not contain CDR1. In one nonexclusive embodiment, the MRD is not derived from a natural cellular ligand.
- the MRD is not a naturally occurring protein or functionally active (i.e., able to bind its natural target) fragment thereof.
- the MRD is not a radioisotope.
- the MRD is not a protein expression marker such as glutathione S-transferase (GST), His-tag, Flag, hemagglutinin (HA), MYC or a fluorescent protein (e.g., GFP or RFP).
- GST glutathione S-transferase
- His-tag His-tag
- Flag hemagglutinin
- MYC hemagglutinin
- the MRD does not bind serum albumin.
- the MRD is not a small molecule that is a cytotoxin. It yet another nonexclusive embodiment, the MRD does not have enzymatic activity.
- the MRD has a therapeutic effect when administered alone and/or when fused to an Fc in a patient or animal model. In another non-exclusive embodiment, the MRD has a therapeutic effect when repeatedly administered alone and/or when fused to an Fc in a patient or animal model (e.g., 3 or more times over the course of at least six months).
- the MRD is conformationally constrained. In other embodiments, the MRD is not conformationally constrained. In some embodiments, the MRD contains at least two cysteine residues. Cysteine residues in the MRDs may produce either or both, intrachain or interchain disulfide bonds. In some embodiments, the MRD contains two cysteine residues outside the core target-binding domain.
- core binding domain means a region corresponding the minimal number of amino acids making up a portion of a binding protein that are required to competitively inhibit the binding of the full-length protein to a binding target.
- the core binding domain can conveniently be benchmarked as the minimum number of amino acids in a portion of a binding protein that retains greater than or equal to 80% of the biologic activity (e.g., binding) of the full-length protein.
- biologic activity e.g., binding
- the MRD contains two cysteine residues located within the core target-binding domain at each end of the target-binding domain.
- a first cysteine is located near the terminus of the molecule (i.e., at the C-terminus of an MRD on the C-terminus of a linker or antibody chain or at the N-terminus of an MRD on the N-terminus of a linker or antibody chain).
- a first cysteine is located within one amino acid, within two amino acids, within three amino acids, within four amino acids, within five amino acids, or within six amino acids of the terminus of the molecule.
- a second cysteine is located near the MRD fusion location (i.e., at the N-terminus of an MRD on the C-terminus of a linker or antibody chain or at the C-terminus of an MRD on the N-terminus of a linker or antibody chain).
- a second cysteine is located within one amino acid, within two amino acids, within three amino acids, within four amino acids, within five amino acids, within 10 amino acids, or within 15 amino acids from the MRD fusion.
- the MRD one or two cysteine residues located outside of the core target-binding domain.
- the MRD has a particular hydrophobicity.
- the hydrophobicity of MRDs can be compared on the basis of retention times determined using hydrophobic interaction chromatography or reverse phase liquid chromatography.
- the MRD target can be any molecule that it is desirable for an MRD-containing antibody to interact with.
- the MRD target can be a soluble factor or a transmembrane protein, such as a cell surface receptor.
- the MRD target can also be an extracellular component or an intracellular component.
- the MRD target is a factor that regulates cell proliferation, differentiation, or survival.
- the MRD target is a cytokine.
- the MRD target is a factor that regulates angiogenesis.
- the MRD target is a factor that regulates cellular adhesion and/or cell-cell interaction.
- the MRD target is a cell signaling molecule.
- the MRD target is a factor that regulates one or more immune responses, such as, autoimmunity, inflammation and immune responses against cancer cells.
- the MRD target is a factor that regulates cellular adhesion and/or cell-cell interaction.
- the MRD target is a cell signaling molecule.
- an MRD can bind a target that is itself an MRD. The ability of MRDs to bind a target and block, increase, or interfere with the biological activity of the MRD target can be determined using or routinely modifying assays, bioassays, and/or animal models known in the art for evaluating such activity.
- the MRDs are able to bind their respective target when the MRDs are attached to an antibody. In some embodiments, the MRD is able to bind its target when not attached to an antibody. In some embodiments, the MRD is a target agonist. In other embodiments, the MRD is a target antagonist. In certain embodiments, the MRD can be used to localize an MRD-containing antibody to an area where the MRD target is located.
- MRD sequences can be derived from natural ligands or known sequences that bind to a specific target binding site.
- phage display technologies have emerged as a powerful method in identifying peptides which bind to target receptors and ligands.
- naturally occurring and non-naturally occurring (e.g., random peptide) sequences can be displayed by fusion with coat proteins of filamentous phage.
- the methods for elucidating binding sites on polypeptides using phage display vectors has been previously described, in particular in WO 94/18221, which is herein incorporated by reference.
- the methods generally involve the use of a filamentous phage (phagemid) surface expression vector system for cloning and expressing polypeptides that bind to the pre-selected target site of interest.
- the methods of the present invention for preparing MRDs include the use of phage display vectors for their particular advantage of providing a means to screen a very large population of expressed display proteins and thereby locate one or more specific clones that code for a desired target binding reactivity.
- the ability of the polypeptides encoded by the clones to bind a target and/or alter the biological activity of the target can be determined using or routinely modifying assays and other methodologies described herein or otherwise known in the art.
- phage display technology can be used to identify and improve the binding properties of MRDs. See, for example, Scott et al., Science 249: 386 (1990); Devlin et al., Science 249: 404 (1990); U.S. Pat. Nos. 5,223,409, 5,733,731, 5,498,530, 5,432,018, 5,338,665, 5,922,545; WO 96/40987, and WO 98/15833, which are herein incorporated by reference.
- natural and/or non-naturally occurring peptide sequences can be displayed by fusion with coat proteins of filamentous phage.
- the displayed peptides can be affinity-eluted against a target of interest if desired.
- the retained phage may be enriched by successive rounds of affinity purification and repropagation.
- the best binding peptides may be sequenced to identify key residues within one or more structurally related families of peptides. See, e.g., Cwirla et al., Science 276: 1696-9 (1997), in which two distinct families were identified.
- the peptide sequences may also suggest which residues may be safely replaced by alanine scanning or by mutagenesis at the DNA level. Mutagenesis libraries may be created and screened to further optimize the sequence of the best binders. Lowman, Ann. Rev. Biophys. Biomol. Struct. 26: 401-24 (1997).
- Structural analysis of protein-protein interaction may also be used to suggest peptides that mimic the binding activity of large protein ligands.
- the crystal structure may suggest the identity and relative orientation of critical residues of the large protein ligand, from which a peptide such as an MRD may be designed. See, e.g., Takasaki et al., Nature Biotech 15: 1266-70 (1997).
- These analytical methods may also be used to investigate the interaction between a target and an MRD selected by phage display, which can suggest further modification of the MRDs to increase binding affinity.
- a peptide library can be fused to the carboxyl terminus of the lac repressor and expressed in E. coli .
- Another E. coli -based method allows display on the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). These and related methods are collectively referred to as “ E. coli display.”
- PAL peptidoglycan-associated lipoprotein
- translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. This and related methods are collectively referred to as “ribosome display.”
- Other known methods employ chemical linkage of peptides to RNA.
- RNA-peptide screening RNA display and mRNA display.
- Chemically derived peptide libraries have been developed in which peptides are immobilized on stable, non-biological materials, such as polyethylene rods or solvent-permeable resins.
- Another chemically derived peptide library uses photolithography to scan peptides immobilized on glass slides. These and related methods are collectively referred to as “chemical-peptide screening.” Chemical-peptide screening may be advantageous in that it allows use of D-amino acids and other unnatural analogues, as well as non-peptide elements.
- An improved MRD that specifically binds a desired target can also be prepared based on a known MRD sequence. For example, at least one, two, three, four, five, or more amino acid mutations (e.g., conservative or non-conservative substitutions), deletions or insertions can be introduced into a known MRD sequence and the resulting MRD can be screened for binding to the desired target and biological activity, such as the ability to antagonize target biological activity or agonize target biological activity.
- amino acid mutations e.g., conservative or non-conservative substitutions
- MRDs can be identified based on their effects in assays that measure particular pathways or activities. For example, assays that measure signaling pathways (e.g., phosphorylation studies or multimerization), ion channel fluxes, intracellular cAMP levels, cellular activities such as migration, adherence, proliferation, or apoptosis, and viral entry, replication, budding, or integration can be used to identify, characterize, and improve MRDs.
- signaling pathways e.g., phosphorylation studies or multimerization
- ion channel fluxes e.g., phosphorylation studies or multimerization
- intracellular cAMP levels e.g., phosphorylation studies or multimerization
- cellular activities such as migration, adherence, proliferation, or apoptosis
- viral entry, replication, budding, or integration can be used to identify, characterize, and improve MRDs.
- variants and derivatives of the MRDs that retain the ability to bind the target antigen are included within the scope of the present invention. Included within variants are insertional, deletional, and substitutional variants, as well as variants that include MRDs presented herein with additional amino acids at the N- and/or C-terminus, including from about 0 to 50, 0 to 40, 0 to 30, 0 to 20 amino acids and the like. It is understood that a particular MRD of the present invention may be modified to contain one, two, or all three types of variants. Insertional and substitutional variants may contain natural amino acids, unconventional amino acids, or both.
- the MRD contains a sequence with no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 amino acid differences when compared to an MRD sequence described herein.
- the amino acid differences are substitutions. These substitutions can be conservative or non-conservative in nature and can include unconventional or non-natural amino acids.
- the MRD contains a sequence that competitively inhibits the ability of an MRD-containing sequence described herein to bind with a target molecule. The ability of an MRD to competitively inhibit another MRD-containing sequence can be determined using techniques known in the art, including ELISA and BIAcore analysis.
- MRD-target interaction can be assayed as described in the Examples below or alternatively, using in vitro or in vivo binding assays such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, fluorescent immunoassays, protein A immunoassays, and immunohistochemistry (IHC).
- Assays evaluating the ability of an MRD to functionally affect its target e.g., assays to measure signaling, proliferation, migration etc.
- the peptides may be prepared by any of the methods known in the art.
- the MRD peptides can be chemically synthesized and operably attached to the antibody or can be synthesized using recombinant technology.
- MRDs can be synthesized in solution or on a solid support using known techniques.
- Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Tam et al., J. Am. Chem.
- MRDs can be synthesized with covalently attached molecules that are not amino acids but aid in the purification, identification, and/or tracking of an MRD in vitro or in vivo. (e.g., biotin for reacting with avidin or avidin-labeled molecules).
- the MRD targets an integrin.
- integrins such as ⁇ v ⁇ 3 and ⁇ v ⁇ 5 as tumor-associated markers has been well documented.
- a recent study of 25 permanent human cell lines established from advanced ovarian cancer demonstrated that all lines were positive for ⁇ v ⁇ 5 expression and many were positive for ⁇ v ⁇ 3 expression.
- integrin ⁇ v ⁇ 3 and ⁇ v ⁇ 5 antagonists are in clinical development. These include cyclic RGD peptides and synthetic small molecule RGD mimetics.
- Two antibody-based integrin antagonists are currently in clinical trials for the treatment of cancer. The first is VITAXIN® (MEDI-522, Abegrein), the humanized form of the murine anti-human ⁇ v ⁇ 3 antibody LM609.
- VITAXIN® Another antibody in clinical trials is CNT095, a fully human Ab that recognizes ⁇ v integrins.
- CNT095 a fully human Ab that recognizes ⁇ v integrins.
- a Phase I study of CNT095 in patients with a variety of solid tumors has shown that it is well tolerated.
- Cilengitide (EMD 121974), a peptide antagonist of ⁇ v ⁇ 3 and ⁇ v ⁇ 5, has also proven safe in phase I trials. Furthermore, there have been numerous drug targeting and imaging studies based on the use of ligands for these receptors. These preclinical and clinical observations demonstrate the importance of targeting ⁇ v ⁇ 3 and ⁇ v ⁇ 5 and studies involving the use of antibodies in this strategy have consistently reported that targeting through these integrins is safe.
- Integrin-binding MRDs containing one or more RGD tripeptide sequence motifs represent an example of MRDs of the invention.
- Ligands having the RGD motif as a minimum recognition domain and from which MRDs of the invention can be derived are well known, a partial list of which includes, with the corresponding integrin target in parenthesis, fibronectin ( ⁇ 3 ⁇ 1, ⁇ 5 ⁇ 1, ⁇ v ⁇ 1, ⁇ 11b ⁇ 3, ⁇ v ⁇ 3, and ⁇ 3 ⁇ 1) fibrinogen ( ⁇ M ⁇ 2 and ⁇ 11b ⁇ 1) von Willebrand factor ( ⁇ 11b ⁇ 3 and ⁇ v ⁇ 3), and vitronectin ( ⁇ 11b ⁇ 3, ⁇ v ⁇ 3 and ⁇ v ⁇ 5).
- the RGD containing targeting MRD is a member selected from the group consisting of: YCRGDCT (SEQ ID NO:3); PCRGDCL (SEQ ID NO:4); TCRGDCY (SEQ ID NO:5); and LCRGDCF (SEQ ID NO:6).
- a MRD that mimics a non-RGD-dependent binding site on an integrin receptor and having the target binding specificity of a high affinity ligand that recognizes the selected integrin is also contemplated in the present invention.
- MRDs that bind to an integrin receptor and disrupt binding and/or signaling activity of the integrin are also contemplated.
- the MRD targets an angiogenic molecule.
- Angiogenesis is essential to many physiological and pathological processes.
- Ang2 has been shown to act as a proangiogenic molecule.
- Administration of Ang2-selective inhibitors is sufficient to suppress both tumor angiogenesis and corneal angiogenesis. Therefore, Ang2 inhibition alone or in combination with inhibition of other angiogenic factors, such as VEGF, can represent an effective antiangiogenic strategy for treating patients with solid tumors.
- MRDs useful in the present invention include those that bind to angiogenic receptors, angiogenic factors, and/or Ang2.
- an MRD of the invention binds Ang2.
- the angiogenic cytokine targeting MRD sequences or MRD-containing sequences contain a sequence selected from the group: MGAQTNFMPMDDLEQRLYEQFILQQGLE (SEQ ID NO:7); MGAQTNFMPMDNDELLLYEQFILQQGLE (SEQ ID NO:8); MGAQTNFMPMDATETRLYEQFILQQGLE (SEQ ID NO:9); AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10) (2 ⁇ Con4); MGAQTNFMPMDNDELLNYEQFILQQGLE (SEQ ID NO:11); and PXDNDXLLNY (SEQ ID NO:12) where X is
- the angiogenic cytokine targeting MRD sequences or MRD-containing sequences contain a sequence selected from the group: MGAQTNFMPMDNDELLLYEQFILQQGLEGGSGSTASSGSGSSLGAQTNFMPMDNDELLLY (SEQ ID NO:20); AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10); AQQEE CEFAPWTCEHM (SEQ ID NO:21) (ConFA); core nEFAPWTn (SEQ ID NO:22) where n is from about 0 to 50 amino acid residues; AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFAPWTCEHMLE (SEQ ID NO:23) (2 ⁇ ConFA); and AQQEECELAPWTCEHM (SEQ ID NO:24) (ConLA).
- SEQ ID NO:20 MGAQTNFMPMDNDELLLYEQFILQ
- the Ang2 binding MRD contains the sequence AQTNFMPM DQEEALLYEEFI (SEQ ID NO:108). In another embodiment, the Ang2 binding MRD contains the sequence AQTNFMPMDQDEALLYEEFI (SEQ ID NO:109). In a further embodiment, the Ang2 binding MRD contains the sequence AQTNFMPM DQDEALLYEQFI (SEQ ID NO:110). In an additional embodiment, the Ang2 binding MRD contains the sequence AQTNFMPM DQDELLLYEEF1 (SEQ ID NO:111).
- the Ang2 binding MRD contains a sequence selected from:
- the Ang2 binding MRD contains an amino acid sequence of the formula: X 1 AQTNFMPMDX 11 X 12 EX 14 LLYEX 19 FI (SEQ ID NO:122) and wherein X 1 is 1-10 amino acid residues.
- X 11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H
- X 12 is A, D, E, N, Q, G, S, T, Y, P, W, K, R, or H
- X 14 is A, D, N, G, S, T, Y, V, P, I, W, F, M, K, R, or H
- X 19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H.
- X 11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H
- X 12 is D, E, N, Q, G, S, T, Y, V, K, R, or H
- X 14 is A, D, N, G, S, T, Y, V, P, 1, W, F, M, K, R, or H
- X 19 is E, N, D, G, S, T, Y, L, V, P, 1, W, F, M, K, R, or H (SEQ ID NO:123).
- X 11 is Q
- X 12 is D, E, N, Q, or G
- X 14 is A A, D, N, G, S, T, Y, V, P, I, W, F, M, K, R, or H
- X 19 is E, N, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H (SEQ ID NO:124).
- the Ang2 binding MRD contains a sequence having the formula X 1 X 2 X 3 X 4 X 5 X 6 MPMDX 11 X 12 EX 14 X 15 LYEX 19 X 20 X 21 X 22 (SEQ ID NO:125) and wherein:
- X 1 is 1-10 amino acid residues
- X 2 is L, A, V, P, I, W, F, M, S, N, E, G, T, H, Y, or C;
- X 3 is N, Q, G, S, T, E, D, Y, M, V, L, or I;
- X 4 is N, Q, G, S, T, Y, F, E, P, A, or H;
- X 5 is N, Q, G, S, T, Y, E, H, L, A, V, P, I, W, F, or M;
- X 6 is V, M, A, F, L, P, 1, W, or Y;
- X 11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
- X 12 is D, E, N, Q, G, S, T, Y, P, W, K, R, or H;
- X 14 is A, D, N, G, S, T, Y, V, P, I, W, F, M, K, R, or H;
- X 15 is V, M, A, F, L, P, I, W, Y, D, E, T, H, or Norleucine;
- X 19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
- X 20 is E, D, V, M, A, F, L, P, I, W, Y, K, R, H, or Norleucine;
- X 21 is V, M, A, F, L, P, I, W, C, Y, or Norleucine
- X 22 is 1-10 amino acid residues.
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 2 is any amino acid (SEQ ID NO:126).
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 2 is any amino acid, X 5 is Q, E, or N (SEQ ID NO:127).
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 2 is any amino acid, X 11 is Q or N, and X 12 is not L or C (SEQ ID NO:128).
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 2 is any amino acid, X 11 is Q, and X 12 is not L or C, and X 12 is D, E, S, K, or R (SEQ ID NO:129). In other embodiment, the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 2 is any amino acid, X 11 is Q, and X 12 is not L or C, and X 12 is D, E, S, K, or R (SEQ ID NO:130).
- the Ang2 binding MRD contains a sequence having the formula: X 1 X 2 X 3 X 4 X 5 X 6 MPMDX 11 X 12 EX 14 X 15 LYEX 19 X 20 X 21 X 22 (SEQ ID NO:131) and wherein:
- X 1 is 1-10 amino acid residues
- X 2 is A, V, I, or C
- X 3 is D, N, or Q
- X 4 is S, or T
- X 5 is Q, E, or N;
- X 6 is L, A, V, P, I, W, F, or M;
- X 11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
- X 12 is D, E, S, K, or R;
- X 14 is A, D, G, V, P, I, W, F, M, K, R, or H, and
- X 15 is L, I, or Norleucine
- X 19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
- X 20 is L, V, Norleucine, or F;
- X 21 is L, A, V, I, or Norleucine
- X 22 is 1-10 amino acid residues.
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q (SEQ ID NO:132).
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q and X 12 is D (SEQ ID NO:133).
- the Ang2 binding MRD contains a sequence having the formula X 1 AQTNFMPMDX 11 X 12 EX 14 LLYEX 19 X 20 FI (SEQ ID NO:134) wherein:
- X 1 is 1-10 amino acid residues
- X 11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
- X 12 is D, E, N, Q, G, S, T, Y, P, W, K, R, or H;
- X 14 is A, D, G, V, P, I, W, F, M, K, R, or H;
- X 19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
- X 20 is E, D, V, M, A, F, L, P, I, W, Y, K, R, H, or Norleucine.
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q (SEQ ID NO:135).
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q, and the amino acid at X 12 is any amino acid other than L or C (SEQ ID NO:136).
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q, and X 12 is D, E, S, K, or R (SEQ ID NO:137). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q and X 12 is D (SEQ ID NO:138).
- the Ang2 binding MRD contains a sequence having the formula X 1 AQTNFMPMDX 11 X 12 EX 14 LLYEX 19 X 20 FI (SEQ ID NO:139)) wherein:
- X 1 is 1-10 amino acid residues
- X 11 is Q, Y, V, P, W, F, K, or R;
- X 12 is D, E, N, Q, or G;
- X 14 is A, D, N, G, S, T, Y, V, P, I, W, F, M, K, R, or H;
- X 19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
- X 20 is L, V, Norleucine, or F.
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q (SEQ ID NO:140).
- the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X 11 is Q and X 12 is D (SEQ ID NO:141).
- the angiogenic cytokine targeting MRD sequences or MRD-containing sequences contain a sequence selected from the group: XnELAPWTXn where n is from about 0 to 50 amino acid residues and X is any amino acid (SEQ ID NO:25); AQQEECELAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELAPWTCEHMLE (SEQ ID NO:26) (2 ⁇ ConLA); AQQEECEFSPWTCEHM (SEQ ID NO:27) (ConFS); XnEFSPWTXn where n is from about 0 to 50 amino acid residues and X is any amino acid (SEQ ID NO:28); AQQEECEFSPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSPWTCEHMLE (SEQ ID NO:29) (2 ⁇ ConFS); AQQEECELEPWTCEHM (SEQ ID NO:30) (ConLE); XnELEPWTXn where n is from
- MRDs of the invention can be present in tandem dimers, trimers or other multimers either homologous or heterologous in nature.
- Another heterodimer of the invention is ConFA combined with ConFS to create ConFA-FS with the sequence:
- the invention also includes human Ang2 MRDs having a core sequence selected from: XnEFAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:22); XnELAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:25); XnEFSPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:28); XnELEPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:31); and XnAQQEECEX 1 X 2 PWTCEHMXn where n is from about 0 to 50 amino acid residues and X represents any natural amino acid (SEQ ID NO:57).
- the MRD targets vascular endothelial growth factor (VEGF).
- VEGF vascular endothelial growth factor
- Phage display selections and structural studies of VEGF neutralizing peptides in complex with VEGF have been reported. These studies have revealed that peptide vl 14 (VEPNCDIHVM WEWECFERL) (SEQ ID NO:13) is VEGF specific, binds VEGF with 0.2 ⁇ M affinity, and neutralizes VEGF-induced proliferation of Human Umbilical Vein Endothelial Cells (HUVEC). Since VEGF is a homodimer, the peptide occupies two identical sites at either end of the VEGF homodimer.
- the antibody-MRD fusion of the invention comprises vl14.
- the antibody-MRD fusion comprises variants/derivatives that competitively inhibit the ability of the antibody-vl14 fusion to bind to VEGF.
- the antibody-MRD fusion comprises an MRD with the sequence ATWLPPP (SEQ ID NO:71), which inhibits VEGF-mediated angiogenesis. Binetruy-Tournaire, R. et. al., EMBO 19:1525-1533 (2000).
- an anti-VEGF antibody containing an MRD that targets VEGF is contemplated in the present invention.
- Anti-VEGF antibodies can be found for example in Presta et al., Cancer Research 57:4593-4599 (1997); and Fuh et al., J Biol Chem 281:10 6625 (2006), which are herein incorporated by reference.
- Insulin-like growth factor-I receptor-specific MRDs can also be used in the present invention.
- the MRD sequence that targets the insulin-like growth factor-I receptor is SFYSCLESLVNGPAEKSRGQWDGCRKK (SEQ ID NO:14).
- the invention includes an IGF1R binding MRD having the sequence: NFYQC1X1X2LX3X4X5PAEKSRGQWQECRTGG (SEQ ID NO:58), wherein X 1 is E or D; X 2 is any amino acid; X 3 is any amino acid; X 4 is any amino acid and X 5 is any amino acid.
- the IGF1R binding MRD contains a sequence selected from the group: NFYQCIEMLASHPAEKSRGQWQECRTGG (SEQ ID NO:35); NFYQCIEQLALRPAEKSRGQWQECRTGG (SEQ ID NO:36); NFYQCEDLLMAYPAEKS RGQWQECRTGG (SEQ ID NO:37); NFYQCIERLVTGPAEKSRGQWQECRTGG (SEQ ID NO:38); NFYQCIEYLAMKPAEKSRGQWQECRTGG (SEQ ID NO:39); and NFYQCIEALQSRPAEKSRGQWQECR TGG (SEQ ID NO:40).
- the IGF1R binding MRD contains a sequence selected from the group: NFYQCIEALSRSPAEKSRGQWQECRTGG (SEQ ID NO:41); NFYQCIEHLSGSPAEKSRGQWQECRTG (SEQ ID NO:42); NFYQCIESLAGGPAEKSRGQWQECRTG (SEQ ID NO:43); NFYQCIEALVGVPAEKSRGQWQECRTG (SEQ ID NO:44); and NFYQCIEMLSLPPAEKSRGQWQECRTG (SEQ ID NO:45).
- the IGF1R binding MRD contains a sequence selected from the group: NFYQCIEVFWGRPAEKSRGQWQECRTG (SEQ ID NO:46); NFYQCIEQLSSGPAEKSRGQWQECRTG (SEQ ID NO:47); NFYQCIELLSARPAEKSRGQWAECRAG (SEQ ID NO:48); and NFYQCIEALARTPAEKSRGQWVECRAP (SEQ ID NO:49).
- Vascular homing-specific MRDs are also contemplated for use in the present invention.
- a number of studies have characterized the efficacy of linking the vascular homing peptide to other proteins like IL-12 or drugs to direct their delivery in live animals.
- An MRD sequence that is a vascular homing peptide that is envisioned to be included within an antibody-MRD fusion of the invention is ACDCRGDCFCG (SEQ ID NO:15).
- target binding sites are contemplated as being the target of the antibody-MRD fusions of the present invention, including for example, epidermal growth factor receptor (EGFR), CD20, tumor antigens, ErbB2, ErbB3, ErbB4, insulin-like growth factor-I receptor, nerve growth factor (NGR), hepatocyte growth factor receptor, and tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM).
- EGFR epidermal growth factor receptor
- CD20 tumor antigens
- ErbB2, ErbB3, ErbB4 insulin-like growth factor-I receptor
- NGR nerve growth factor
- hepatocyte growth factor receptor hepatocyte growth factor receptor
- Ep-CAM tumor-associated surface antigen epithelial cell adhesion molecule
- the MRD binds to IL6. In one embodiment, the MRD binds to IL6R.
- the MRD binds to HER2/3.
- the MRD sequence that binds to EGFR and that is envisioned to be included within an antibody-MRD fusion is selected from the group: VDNKFNKELEKAYNEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:16); and VDNKFNKEMWIAWEEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:17).
- the MRD binds ErbB2 and has the sequence:
- the MRD binds to a human protein. In some embodiments, the MRD binds to both a human protein and its ortholog in mouse, rat, rabbit, or hamster.
- MRD modular recognition domain
- the MRD is part of a fusion protein, with for example an immunoglobulin heavy chain or an immunoglobulin light chain.
- the antibody and MRD (“the first MRD) bind to the same target.
- the antibody and the MRD bind to different targets.
- the MRD and antibody complex also contains at least a second MRD that is capable of binding to a different epitope or target than the first MRD.
- scaffolds comprising an MRD having or associated with alternative scaffolds (e.g., plaforms that confer or can be used in creating multispecific and/or multivalent compositions) are also encompassed by the invention.
- alternative scaffolds include, but are not limited to, scaffolds based on, VASP polypeptides, Avian pancreatic polypeptides (aPP), tetranectins (based on CTLD3), affitins (based on Sac7d from the hyperthermophilic archaeon), affilins (based on ⁇ B-crystallin/ubiquitin), knottins, SH3 domains (e.g., fynomers, see e.g., PCT publications WO 2008/022759 and WO 2011/02368, which are herein incorporated by reference), PDZ domains, tendamistat, transferrin, an ankyrin repeat consensus domains (e.g., DARPins), lipocalin protein folds (e.g., anticalins am
- Polynucleotides encoding MRDs, vectors comprising these polynucleotides and host cells containing these vectors are also encompassed by the invention, as are pharmaceutical compositions containing these complexes.
- Methods of making and using these complexes to for example, inhibit cell growth or to inhibit cellular activity, or to treat cancer, diseases or disorder of the immune system (e.g., inflammation and autoimmune disease), infectious disease, or other diseases or disorders described herein or otherwise known in the art are also encompassed by the invention.
- a method for producing an MRD capable of binding a target comprises culturing a host cell containing a vector that encodes the MRD under conditions wherein the nucleotide sequence encoding the MRD is expressed as a protein and recovering said protein.
- the MRD is contained in a complex with an antibody that binds to a target selected from: VEGF, EGF, IGF-1, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, VEGFR1, EGFR, PDGFR, ErbB2, ErbB3, IGF-IR, cMET, CD19, and CD20.
- a target selected from: VEGF, EGF, IGF-1, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, VEGFR1, EGFR, PDGFR, ErbB2, ErbB3, IGF-IR, cMET, CD19, and CD20.
- the antibody competitively inhibits: (a) binding of trastuzumab to ErbB2; binding of pertuzumab to ErbB2; binding of bevacizumab to VEGF; binding of cetuximab to EGFR; binding of panituinumab to EGFR; binding of zalutumumab to EGFR; binding of nimotuzumab to EGFR; or binding of matuzumab to EGFR; binding of figitumumab to IGF1R; binding of AMG 479 to IGF1R; binding of cixutumumab to IGF1R; binding of dalotuzumab to IGF1; binding of BIIB022 to IGF1; or binding of MEDI-573 to IGF1.
- the antibody binds a target selected from: interferon-alpha, interferon alpha receptor, interferon beta, interferon beta receptor, interferon-gamma, S1PR, integrin avb3, IL-1B, IL-2, IL-4, IL-4R, IL-5, IL-5R, IL-6, IL-6R, IL-7, IL-8, IL-9, IL-9R, IL-10R, IL-11, IL-12, IL-13, IL-23, IL-15, IL-18, IL-21, ICOS, PD1, and LIF.
- the antibody in the complex binds TNF.
- the antibody competitively inhibits binding of adalimumab, golumimab, or infliximab to TNF.
- the complex contains two or more MRDs that bind to a target selected from, for example: ANG2, VEGF, EGF, IGF-1, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, VEGFR1, EGFR, PDGFR, ErbB2, ErbB3, IGF-IR, cMET, CD19, CD20, TNF alpha, IL-6, interferon-alpha, interferon alpha receptor, interferon beta, interferon beta receptor, interferon-gamma, S1PR, integrin avb3, IL-1B, IL-2, IL-4, IL-4R, IL-5, IL-5R, IL-6, IL-6R, IL-7, IL-8, IL-9, IL-9R, IL-10R, IL-11, IL-12, IL-13, IL-23, IL-15, IL-18, IL-21, ICOS, PD1, and LIF.
- a target selected from
- the antibody in the MRD-containing antibodies described herein can be any suitable antigen-binding immunoglobulin.
- the MRD-containing antibody molecules described herein retain the structural and functional properties of traditional monoclonal antibodies.
- the antibodies retain their epitope binding properties, but advantageously also incorporate one or more additional target-binding specificities.
- Antibodies that can be used in the MRD-containing antibodies include, but are not limited to, monoclonal, multispecific, human, humanized, primatized, and chimeric antibodies.
- Immunoglobulin or antibody molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule.
- the antibodies are IgG1.
- the antibodies are IgG3.
- Antibodies that can be used as part of the MRD-containing antibodies can be naturally derived or the result of recombinant engineering (e.g., phage display, xenomouse, and synthetic).
- the antibodies can include modifications, for example, to enhance half-life or to increase or decrease antibody dependent cellular cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) activity.
- ADCC antibody dependent cellular cytotoxicity
- CDC complement dependent cytotoxicity
- Antibodies can be from or derived from any animal origin including birds and mammals or generated synthetically.
- the antibodies are human, murine, donkey, rabbit, goat, guinea pig, camel, llama, horse, or chicken antibodies.
- the antibodies are human.
- the heavy chain portions of one polypeptide chain of a multimer are identical to those on a second polypeptide chain of the multimer.
- the heavy chain portion-containing monomers of the invention are not identical.
- each monomer may comprise a different target binding site, forming, for example, a bispecific antibody.
- Bispecific, bivalent antibodies, and methods of making them are described, for instance in U.S. Pat. Nos. 5,731,168; 5,807,706; 5,821,333; and U.S. Appl. Publ. Nos. 2003/020734 and 2002/0155537, which are herein incorporated by reference.
- Bispecific tetravalent antibodies, and methods of making them are described, for instance, in WO 02/096948 and WO 00/44788, the disclosures of both of which are herein incorporated by reference. See generally, PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt et al., J. Immunol.
- the heavy chain portions of the antibody component of the MRD-antibody fusions for use in the methods disclosed herein may be derived from different immunoglobulin molecules.
- a heavy chain portion of a polypeptide may comprise a CH1 domain derived from an IgG1 molecule and a hinge region derived from an IgG3 molecule.
- a heavy chain portion can comprise a hinge region derived, in part, from an IgG1 molecule and, in part, from an IgG3 molecule.
- a heavy chain portion can comprise a chimeric hinge region derived, in part, from an IgG1 molecule and, in part, from an IgG4 molecule.
- the antigen binding domains of the antibody component of the MRD-containing antibodies bind to their target with a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 3 M, 10 ⁇ 3 M, 5 ⁇ 10 ⁇ 4 M, 10 ⁇ 4 M, 5 ⁇ 10 ⁇ 5 M, 10 ⁇ 5 M, 5 ⁇ 10 ⁇ 6 M, 10 6 M, 5 ⁇ 10 ⁇ 7 M, 10 ⁇ 7 M, 5 ⁇ 10 ⁇ 8 M, 10 ⁇ 8 M, 5 ⁇ 10 ⁇ 9 M, 10 ⁇ 9 M, 5 ⁇ 10 ⁇ 10 M, 10 ⁇ 10 M, 5 ⁇ 10 ⁇ 11 M, 10 ⁇ 11 M, 5 ⁇ 10 ⁇ 12 M, 10 ⁇ 12 M, 5 ⁇ 10 ⁇ 13 M, 10 ⁇ 13 M, 5 ⁇ 10 ⁇ 14 M, 10 ⁇ 14 M, 5 ⁇ 10 ⁇ 15 M, or 10 ⁇ 15 M.
- a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 3 M, 10 ⁇ 3 M, 5 ⁇ 10 ⁇ 4 M, 10
- the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 5 M. In another embodiment, antigen binding of the antibody component of the MRD-containing antibodies has a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 8 M. In another embodiment, antigen binding of the antibody component of the MRD-containing antibodies has a dissociation constant or Kd of less than less than 5 ⁇ 10 ⁇ 9 M. In another embodiment, the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 10 M In another embodiment, the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 11 M. In another embodiment, the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5 ⁇ 10 ⁇ 12 M.
- the antibody component of the MRD-containing antibody binds its target with an off rate (k off ) of less than 5 ⁇ 10 ⁇ 2 sec ⁇ 1 , 10 ⁇ 2 sec ⁇ 1 , 5 ⁇ 10 ⁇ 3 sec ⁇ 1 , or 10 ⁇ 3 sec ⁇ 1 .
- the antibody component of the MRD-containing antibody binds its target with an off rate (k off ) of less than 5 ⁇ 10 ⁇ 4 sec ⁇ 1 , 10 ⁇ 4 sec ⁇ 1 , 5 ⁇ 10 ⁇ 5 sec ⁇ 1 , or 10 ⁇ 5 sec ⁇ 1 , 5 ⁇ 10 ⁇ 6 sec ⁇ , 10 ⁇ 6 sec ⁇ 1 , 5 ⁇ 10 ⁇ 7 sec ⁇ 1 , or 10 ⁇ 7 sec ⁇ 1 .
- the antibody component of the MRD-containing antibody binds its target with an on rate (k on ) of greater than 10 3 M ⁇ 1 sec ⁇ 1 , 5 ⁇ 10 3 M ⁇ 1 sec ⁇ 1 , 10 4 M ⁇ 1 sec ⁇ 1 , or 5 ⁇ 10 4 M ⁇ 1 sec ⁇ 1 . More preferably, the antibody component of the MRD-containing antibody binds its target with an on rate (k on ) of greater than 10 5 M ⁇ 1 sec ⁇ 1 , 5 ⁇ 10 5 M ⁇ 1 sec ⁇ 1 , 10 6 M ⁇ 1 sec ⁇ 1 , or 5 ⁇ 10 6 M ⁇ 1 sec ⁇ 1 , or 10 7 M ⁇ 1 sec ⁇ 1 .
- Affinity maturation strategies and chain shuffling strategies are known in the art and can be employed to generate high affinity antibodies that can be used in the MRD-containing antibodies described herein.
- the antibodies of the MRD-containing antibodies can also include variants and derivatives that improve antibody function and/or desirable pharmacodynamic properties.
- certain embodiments of the invention include an antibody-MRD fusion, in which at least a fraction of one or more of the constant region domains has been altered so as to provide desired biochemical characteristics such as reduced or increased effector functions, the ability to non-covalently dimerize, increased ability to localize at the site of a tumor, reduced serum half-life, or increased serum half-life when compared with an unaltered antibody of approximately the same immunoreactivity.
- the alterations of the constant region domains can be amino acid substitutions, insertions, or deletions.
- a complex of the invention comprises an antibody and at least one MRD, wherein the antibody has an altered effector function.
- the complex can comprise MRDs that bind to at least 3 different targets.
- the complex can be a complex wherein the effector function of the antibody has been modified to: increased ADCC, decreased ADCC, increased CDC, decreased CDC, increased half-life, or decreased half-life.
- a method for producing the complex comprises culturing a host cell transformed with polynucleotides encoding antibodies and MRDs of the complex under conditions wherein the nucleotide sequence encoding the MRDs and the antibody heavy and light chains are expressed as two or more proteins, and recovering the proteins.
- a method of treating or preventing a disease or disorder in a subject in need thereof comprises administering a therapeutically acceptable amount of the complex to the subject.
- the antibody component of the antibody-MRD fusion has been modified to increase antibody dependent cellular cytotoxicity (ADCC) (see, e.g., Bruhns et al., Blood 113:3716-3725 (2009); Shields et al., J. Biol. Chem. 276:6591-6604 (2001); Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005-4010 (2006); Stavenhagen et al., Cancer Res., 67:8882-8890 (2007); Horton et al., Cancer Res.
- ADCC antibody dependent cellular cytotoxicity
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases ADCC include one or more modifications corresponding to: IgG1-S298A, E333A, K334A; IgG1-S239D, 1332E; IgG1-S239D, A330L, 1332E; IgG1-P2471, A339D or Q; IgG1-D280H, K290S with or without S298D or V; IgG1-F243L, R292P, Y300L; IgG1-F243L, R292P, Y300L, P396L; and IgG1-F243L, R292P, Y300L, V305I, P396L; wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
- the antibody component of the antibody-MRD fusion has been modified to decrease ADCC (see, e.g., Idusogie et al., J. Immunol. 166:2571-2575 (2001); Sazinsky et al., Proc. Natl. Acad. Sci. USA 105:20167-20172 (2008); Davis et al., J. Rheumatol. 34:2204-2210 (2007); Bolt et al., Eur. J. Immunol. 23:403-411 (1993); Alegre et al., Transplantation 57:1537-1543 (1994); Xu et al., Cell Immunol.
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decreases ADCC include one or more modifications corresponding to: IgG1-K326W, E333S; IgG2-E333S; IgG1-N297A; IgG1-L234A, L235A; IgG2-V234A, G237A; IgG4-L235A, G237A, E318A; IgG4-S228P, L236E; IgG2-EU sequence 118-260; IgG4-EU sequence 261-447; IgG2-H268Q, V309L, A330S, A331S; IgG1-C220S, C226S, C229S, P238S; IgG1-C226S, C229S, E233P, L234V, L235A; and IgG1-L2
- the antibody component of the antibody-MRD fusion has been modified to increase antibody-dependent cell phagocytosis (ADCP); (see, e.g., Shields et al., J. Biol. Chem. 276:6591-6604 (2001); Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005-4010 (2006); Stavenhagen et al., Cancer Res., 67:8882-8890 (2007); Richards et al., Mol. Cancer. Ther. 7:2517-2527 (2008); Horton et al., Cancer Res.
- ADCP antibody-dependent cell phagocytosis
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases ADCP include one or more modifications corresponding to: IgG1-S298A, E333A, K334A; IgG1-S239D, I332E; IgG1-S239D, A330L, I332E; IgG1-P2471, A339D or Q; IgG1-D280H, K290S with or without S298D or V; IgG1-F243L, R292P, Y300L; IgG1-F243L, R292P, Y300L, P396L; IgG1-F243L, R292P, Y300L, V3051, P396L; IgG1-G236A, S239D, I332E.
- the antibody component of the antibody-MRD fusion has been modified to decrease ADCP (see, e.g., Sazinsky et al., Proc. Natl. Acad. Sci. USA 105:20167-20172 (2008); Davis et al., J. Rheumatol. 34:2204-2210 (2007); Bolt et al., Eur. J. Immunol. 23:403-411 (1993); Alegre et al., Transplantation 57:1537-1543 (1994); Xu et al., Cell Immunol. 200:16-20 (2000); Cole et al., Transplantation 68:563-571 (1999); Hutchins et al., Proc. Natl.
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decreases ADCC include one or more modifications corresponding to: IgG1-N297A; IgG1-L234A, L235A; IgG2-V234A, G237A; IgG4-L235A, G237A, E318A; IgG4-S228P, L236E; IgG2 EU sequence 118-260; IgG4-EU sequence 261-447; IgG2-H268Q, V309L, A330S, A331S; IgG1-C220S, C226S, C229S, P238S; IgG1-C226S, C229S, E233P, L234V, L235A; and IgG1-L234F, L235E, P331S.
- the antibody component of the antibody-MRD fusions have been modified to increase complement-dependent cytotoxicity (CDC) (see, e.g., (see, e.g., Idusogie et al., J. Immunol. 166:2571-2575 (2001); Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Natsume et al., Cancer Res. 68:3863-3872 (2008), each of which is herein incorporated by reference).
- CDC complement-dependent cytotoxicity
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases CDC include one or more modifications corresponding to: IgG1-K326A, E333A; IgG1-K326W, E333S, IgG2-E333S; and IgG1/IgG3 fusion versions ‘1133’ and ‘113F’.
- the antibody component of the antibody-MRD fusions have been modified to increase inhibitory binding to FcgammaRIIb receptor (see, e.g., Chu et al., Mol. Immunol. 45:3926-3933 (2008)).
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases binding to inhibitory FcgammaRIIb receptor is IgG1-S267E, L328F.
- the antibody component of the antibody-MRD fusions have been modified to decrease CDC (see, e.g., Mueller et al., WO 1997/11971; Bell et al., WO 2007/106585; Strohl et al., US 2007/0148167A1; McEarchern et al., Blood 109:1185-1192 (2007); Hayden-Ledbetter et al., Clin. Cancer 15:2739-2746 (2009); Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005-4010 (2006); Bruckheimer et al., Neoplasia 11:509-517 (2009); Strohl, Curr. Op.
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decreases CDC include one or more modifications corresponding to: IgG1-S239D, A330L, I332E; IgG2 EU sequence 118-260; IgG4-EU sequence 261-447; IgG2-H268Q, V309L, A330S, A331S; IgG1-C226S, C229S, E233P, L234V, L235A; IgG1-L234F, L235E, P331S; and IgG1-C226S, P230S.
- the half-life on an IgG is mediated by its pH-dependent binding to the neonatal receptor FcRn.
- the antibody component of the antibody-MRD fusion has been modified to enhance binding to FcRn (see, e.g., Petkova et al., Int. Immunol. 18:1759-1769 (2006); Dall'Acqua et al., J. Immunol. 169:5171-5180 (2002); Oganesyan et al., Mol. Immunol. 46:1750-1755 (2009); Dall'Acqua et al., J. Biol. Chem. 281:23514-23524 (2006), Hinton et al., J. Immunol.
- the antibody of the antibody-MRD fusion has been modified to selectively bind Fan at pH 6.0, but not pH 7.4.
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases half-life include one or more modifications corresponding to: IgG1-M252Y, S254T, T256E; IgG1-T250Q, M428L; IgG1-H433K, N434Y; IgG1-N434A; and IgG1-T307A, E380A, N434A.
- the antibody component of the antibody-MRD fusion has been modified to decrease binding to FcRn (see, e.g., Petkova et al., Int. Immunol. 18:1759-1769 (2006); Datta-Mannan et al., Drug Metab. Dispos. 35:86-94 (2007); Datta-Mannan et al., J. Biol. Chem. 282:1709-1717 (2007); Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Vaccaro et al., Nat. Biotechnol. 23:1283-1288 (2005), each of which is herein incorporated by reference).
- Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decrease half-life include one or more modifications corresponding to: IgG1-M252Y, S254T, T256E; H433K, N434F, 436H; IgG1-1253A; and IgG1-P2571, N434H or D376V, N434H.
- the antibody-MRD fusions have been glyocoengineered or the Fc portion of the MRD-containing antibody has been mutated to increase effector function using techniques known in the art.
- the inactivation (through point mutations or other means) of a constant region domain may reduce Fc receptor binding of the circulating modified antibody thereby increasing tumor localization.
- constant region modifications consistent with the instant invention moderate complement binding and thus reduce the serum half-life and nonspecific association of a conjugated cytotoxin.
- modifications of the constant region may be used to modify disulfide linkages or oligosaccharide moieties that allow for enhanced localization due to increased antigen specificity or antibody flexibility.
- the resulting physiological profile, bioavailability and other biochemical effects of the modifications, such as tumor localization, biodistribution and serum half-life, can easily be measured and quantified using well know immunological techniques without undue experimentation.
- MRD-containing antibodies used according to the methods of the invention also include derivatives that are modified, e.g., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from specifically binding to its cognate epitope.
- the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, or derivatization by known protecting/blocking groups. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to acetylation, formylation, etc. Additionally, the derivative may contain one or more non-classical amino acids.
- the MRD-containing antibodies have been modified so as to not elicit a deleterious immune response in the animal to be treated, e.g., in a human.
- the antibody is modified to reduce immunogenicity using art-recognized techniques.
- antibody components of the MRD-containing antibodies can be humanized, primatized, deimmunized, or chimerized. These types of antibodies are derived from a non-human antibody, typically a murine or primate antibody, that retains or substantially retains the antigen-binding properties of the parent antibody, but which is less immunogenic in humans.
- CDRs complementarity determining regions
- De-immunization can also be used to decrease the immunogenicity of an MRD-containing antibody.
- the term “de-immunization” includes alteration of an MRD-containing antibody to modify T cell epitopes (see, e.g., WO9852976A1, and WO0034317A2, which are herein incorporated by reference). For example, VH and VL sequences from the starting antibody are analyzed and a human T cell epitope “map” is generated from each V region showing the location of epitopes in relation to complementarity-determining regions (CDRs) and other key residues within the sequence.
- CDRs complementarity-determining regions
- T cell epitopes from the T cell epitope map are analyzed in order to identify alternative amino acid substitutions with a low risk of altering activity of the final antibody.
- a range of alternative VH and VL sequences are designed comprising combinations of amino acid substitutions and these sequences are subsequently incorporated into a range of antibodies for use in the diagnostic and treatment methods disclosed herein, which are then tested for function.
- Typically, between 12 and 24 variant antibodies are generated and tested.
- Complete heavy and light chain genes comprising modified V and human C regions are then cloned into expression vectors and the subsequent plasmids introduced into cell lines for the production of whole antibody. The antibodies are then compared in appropriate biochemical and biological assays, and the optimal variant is identified.
- Antibody 38C2 is an antibody-secreting hybridoma and has been previously described in WO 97/21803. 38C2 contains an antibody combining site that catalyzes the aldol addition reaction between an aliphatic donor and an aldehyde acceptor. In a syngeneic mouse model of neuroblastoma, systemic administration of an etoposide prodrug and intra-tumor injection of Ab 38C2 inhibited tumor growth.
- the antibody target of the MRD-containing antibody can be any molecule that it is desirable for a MRD-antibody fusion to interact with.
- the antibody target can be a soluble factor or the antibody target can be a transmembrane protein, such as a cell surface receptor.
- the antibody target can also be an extracellular component or an intracellular component.
- the antibody target is a factor that regulates cell proliferation, differentiation, or survival.
- the antibody target is a cytokine.
- the antibody target is a factor that regulates angiogenesis.
- the antibody target is a factor that regulates one or more immune responses, such as, autoimmunity, inflammation and immune responses against cancer cells.
- the antibody target is a factor that regulates cellular adhesion and/or cell-cell interaction.
- the antibody target is a cell signaling molecule. The ability of an antibody to bind to a target and to block, increase, or interfere with the biological activity of the antibody target can be determined using or routinely modifying assays, bioassays, and/or animal models known in the art for evaluating such activity.
- the antibody target of the MRD-containing antibody is a disease-related antigen.
- the antigen can be an antigen characteristic of a particular cancer, and/or of a particular cell type (e.g., a hyperproliferative cell), and/or of a particular pathogen (e.g., a bacterial cell (e.g., tuberculosis, smallpox, anthrax), a virus (e.g., HIV), a parasite (e.g., malaria, leichmaniasis), a fungal infection, a mold, a mycoplasm, a prion antigen, or an antigen associated with a disorder of the immune system.
- a particular pathogen e.g., a bacterial cell (e.g., tuberculosis, smallpox, anthrax), a virus (e.g., HIV), a parasite (e.g., malaria, leichmaniasis), a fungal infection, a mold, a mycoplasm,
- the antibody target of the MRD-containing antibody is a target that has been validated in an animal model or clinical setting.
- the antibody target of the MRD-containing antibody is a cancer antigen.
- the antibody target of the MRD-containing antibody is: PDGFRa, PDGFRb, PDGF-A, PDGF-B, PDGF-CC, PDGF-C, PDGF-D, VEGFR1, VEGFR2, VEGFR3, VEGFC, VEGFD, neuropilin 2 (NRP2), betacellulin, P1GF, RET (rearranged during transfection), TIE1, TIE2 (TEK), CA125, CD3, CD4, CD7, CD10, CD13, CD25, CD32, CD32b, CD44, CD49e (integrin alpha 5), CD55, CD64, CD90 (THY1), CD133 (prominin 1), CD147, CD166, CD200, ALDH1, ESA, SHH, DHH, IHH, patched1 (PTCH1), smoothened (SMO), WNT1, WNT2B, WNT3A, WNT4, WNT4A, WNT5A, WNT5B, WNT7B, WNT8A, W
- MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the above antibody and MRD targets and those otherwise described herein are intended to be illustrative and not limiting.
- the antibody target of the MRD-containing antibody is CD19, CD22, CD30, CD33, CD38, CD44v6, TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), CD52, CD54 (ICAM), CD74, CD80, CD200, EPCAM (EGP2), neuropilin 1 (NRP1), TEM1, mesothelin, TGFbeta 1, TGFBRII, phosphatidlyserine, folate receptor alpha (FOLR1), TNFRSF10A (TRAIL R1 DR4), TNFRSF10B (TRAIL R2 DR5), CXCR4, CCR4, CCL2, HGF, CRYPTO, VLA5, TNFSF9 (41BB Ligand), TNFRSF9 (41BB, CD137), CTLA4, HLA-DR, IL6, TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), MUC1, MUC18, mucin CanAg, ganglioside GD
- MRD that binds to one of the above targets are encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the antibody of the MRD-containing antibody competes for target binding with an antibody selected from: siplizumab CD2 (e.g., MEDI-507, MedImmune), blinatumomab CD19 CD3 (e.g., MT103, Micromet/MedImmune); XMAB®5574 CD19 (Xencor), SGN-19A CD19 (Seattle Genetics), ASG-5ME (Agenesys and Seattle Genetics), MEDI-551 CD19 (MedImmune), epratuzumab CD22 (e.g., hLL2, Immunomedics/UCB), inotuzumab ozogamicin CD22 (Pfizer), iratumumab CD30 (e.g., SGN-30 (Seattle Genetics) and MDX-060 (Medarex)), XMAB®2513 CD30 (Xencor), brentuximab vedotin CD30 (e.g.,
- the antibody of the MRD-containing antibody is an antibody selected from: siplizumab CD2 (e.g., MEDI-507, MedImmune), blinatumomab CD19 CD3 (e.g., MT103, Micromet/MedImmune); XMAB®5574 CD19, (Xencor), SGN-19A CD19 (Seattle Genetics), ASG-5ME (Agenesys and Seattle Genetics), MEDI-551 CD19 (MedImmune), epratuzumab CD22 (e.g., hLL2, Immunomedics/UCB), inotuzumab ozogamicin CD22, iratumumab CD30 (e.g., SGN-30 (Seattle Genetics) and MDX-060 (Medarex)), XMAB®02513 CD30 (Xencor), brentuximab vedotin CD30 (e.g., SGN-35, Seattle Genetic
- the antibody target of the MRD-containing antibody is ALK1.
- the antibody is PF-3,446,962 (Pfizer).
- the antibody binds to the same epitope as PF-3,446,962.
- the antibody competitively inhibits binding of PF-3,446,962 to ALK1.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for ALK1 binding with PF-3,446,962 are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is CD22.
- the antibody is inotuzumab (e.g., inotuzumab ozogamicin CMC-544, PF-5,208,773; Pfizer).
- the antibody binds to the same epitope as inotuzumab.
- the antibody competitively inhibits binding of inotuzumab to CD22.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD22 binding with inotuzumab are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is CRYPTO.
- the antibody is the Biogen CRYPTO antibody that has advanced to phase I clinical trials (Biogen Idec).
- Biogen Idec Biogen Idec
- the antibody binds to the same epitope as the Biogen CRYPTO antibody.
- the antibody competitively inhibits binding of the Biogen CRYPTO antibody to CRYPTO.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CRYPTO binding with the Biogen CRYPTO antibody are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is CD40L.
- the antibody is the Biogen CD40L antibody that has advanced to phase I clinical trials (Biogen Idec).
- the antibody binds to the same epitope as the Biogen CD40L antibody.
- the antibody competitively inhibits binding of the Biogen CD40L antibody to CD40L.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD40L binding with the Biogen CD40L antibody are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is CD80.
- the antibody is galiximab (Biogen Idec).
- the antibody binds to the same epitope as galiximab.
- the antibody competitively inhibits binding of galiximab to CD80.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD80 binding with galiximab are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is MCSF.
- the antibody is PD-360,324 (Pfizer).
- the antibody binds to the same epitope as PD-360,324.
- the antibody competitively inhibits binding of PD-360,324 to MCSF.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for MCSF binding with PD-360,324 are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is CD44.
- the antibody is PF-3,475,952 (Pfizer).
- the antibody binds to the same epitope as PF-3,475,952.
- the antibody competitively inhibits binding of PF-3,475,952 to CD44.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD44 binding with PF-3,475,952 are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is p-cadherin (CDH3).
- the antibody is PF-3,732,010 (Pfizer).
- the antibody binds to the same epitope as PF-3,732,010.
- the antibody competitively inhibits binding of PF-3,732,010 to p-cadherin.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for p-cadherin binding with PF-3,732,010 are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is: ANG2 (ANGPT2).
- the antibody is MEDI3617 (MedImmune).
- the antibody binds to the same epitope as MEDI3617.
- the antibody competitively inhibits binding of MEDI3617 to ANG2.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for ANG2 binding with MEDI3617 are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is EGFR, ErbB2, ErbB3, ErbB4, CD20, insulin-like growth factor-I receptor, prostate specific membrane antigen, an integrin, or cMet.
- the antibody in the MRD-containing antibody specifically binds EGFR.
- the antibody is ERBITUX® (IMC-C225).
- the antibody binds to the same epitope as ERBITUX®.
- the antibody competitively inhibits binding of ERBITUX® to EGFR.
- the antibody in the MRD-containing antibody inhibits EGFR dimerization.
- the antibody is matuzimab (e.g., EMD 72000, Merck Serono) or panitumumab (e.g., VECTIBIX®, Amgen).
- the antibody binds to the same epitope as matuzimab or panitumumab. In another embodiment, the antibody competitively inhibits binding of matuzimab or panitumumab to EGFR. In another embodiment, the antibody is ABX-EGF (Immunex) or MDX-214 (Medarex). In another embodiment, the antibody binds to the same epitope as ABX-EGF or MDX-214. In another embodiment, the antibody competitively inhibits binding of ABX-EGF or MDX-214 to EGFR.
- the MRD-containing antibody specifically binds ErbB2 (Her2).
- the antibody is trastuzumab (e.g., HERCEPTIN®, Genentech/Roche).
- the antibody binds to the same epitope as trastuzumab.
- the antibody competitively inhibits binding of trastuzumab to ErbB2.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds to ErbB2.
- the antibody in the MRD-containing antibody is an antibody that specifically binds to the same epitope as the anti-ErbB2 antibody trastuzumab (e.g, HERCEPTIN®, Genentech).
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits ErbB2 binding by the anti-ErbB2 antibody trastuzumab.
- the antibody in the MRD-containing antibody is the anti-ErbB2 antibody trastuzumab.
- the antibody in the MRD-containing antibody inhibits HER2 dimerization.
- the antibody in the MRD-containing antibody inhibits HER2 heterodimerization with HER3 (ErbB3).
- the antibody is pertuzumab (e.g, OMNITARG® and phrMab2C4, Genentech).
- the antibody specifically binds to the same epitope as pertuzumab.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of ErbB2 by pertuzumab.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention. Accordingly, in one embodiment the antibody in the MRD-containing antibody is trastuzumab and 1, 2, 3, 4, 5, 6, or more MRDs in the MRD-containing antibody competitively inhibit binding of ErbB2 by pertuzumab.
- the antibody in the MRD-containing antibody is an ErbB2 binding antibody selected from the group: MDX-210 (Medarex), tgDCC-E1A (Targeted Genetics), MGAH22 (MacroGenics), and pertuzumab (OMNITARGTM, 2C4; Genentech).
- MDX-210 Medarex
- tgDCC-E1A Tumetics
- MGAH22 MicroGenics
- OMNITARGTM 2C4; Genentech
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, or 4 of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody comprises the CDRs of the anti-ErbB2 antibody trastuzumab.
- the CDR, VH, and VL sequences of trastuzumab are provided in Table 1.
- VL-CDR1 RAS QDVNTAVAW (SEQ ID NO: 59) VL-CDR2 S AS FLYS (SEQ ID NO: 60) VL-CDR3 QQ HYTTPP T (SEQ ID NO: 61) VH-CDR1 GRNIKDTYIH (SEQ ID NO: 62) VH-CDR2 RI YPTN GYTRYADSVKG (SEQ ID NO: 63) VH-CDR3 W GGDGFYAMD Y (SEQ ID NO: 64) VL DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKP GKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQP EDFATYYCQQHYTTPPTFGQGTKVEIKRT (SEQ ID NO: 65) VH EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQA PGKGLEWVARIY
- the MRD-containing antibody specifically binds ErbB3 (Her3).
- the antibody is MM121 (Merrimack Pharmaceuticals) or AMG888 (Amgen).
- the antibody binds to the same epitope as MM121 or AMG888.
- the antibody competitively inhibits binding of MM121 or AMG888 to ErbB3.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1 or both of the above antibodies are also encompassed by the invention
- the MRD-containing antibody specifically binds VEGFA.
- the antibody is bevacizumab (e.g., AVASTIN®, Genentech/Roche). In one embodiment, the antibody binds to the same epitope as bevacizumab. In another embodiment, the antibody competitively inhibits binding of bevacizumab to VEGFA.
- the MRD-containing antibody is AT001 (Affitech). In one embodiment, the antibody binds to the same epitope as AT001. In another embodiment, the antibody competitively inhibits binding of AT001 to VEGFA.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1 or both of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody comprises the CDRs of the anti-VEGF antibody bevacizumab.
- the CDR, VH, and VL sequences of bevacizumab are provided in Table 2.
- VL-CDR1 SASQDISNYLN (SEQ ID NO: 72) VL-CDR2 FTSSLHS (SEQ ID NO: 73) VL-CDR3 QQYSTVPWT (SEQ ID NO: 74) VH-CDR1 GYTFTNYGMN (SEQ ID NO: 75) VH-CDR2 WINTYTGEPTYAADFKR (SEQ ID NO: 76) VH-CDR3 YPHYYGSSHWYFDV (SEQ ID NO: 77) VL DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKP GKAPKVLIYFTSSLHSGVPSRFSGSGSGTDFILTISSLQP EDFATYYCQQYSTVPWTFGQGTKVEIKR (SEQ ID NO: 78) VH EVQLVESGGGLVQPGGSLRLSCAASGYTFTNYGMNWVRQA PGKGLEWVGWINTY
- the MRD-containing antibody specifically binds VEGFR1. In one embodiment, the antibody competitively inhibits binding of Aflibercept (Regeneron) to VEGFR1. In another embodiment, the antibody in the MRD-containing antibody inhibits VEGFR1 dimerization.
- An MRD that competes for target binding with Aflibercept is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with Aflibercept are also encompassed by the invention.
- the MRD-containing antibody specifically binds VEGFR2.
- the antibody is ramucirumab (e.g., IMC1121B and IMC1C11, ImClone).
- the antibody in the MRD-containing antibody inhibits VEGFR2 dimerization.
- the antibody binds to the same epitope as ramucirumab.
- the antibody competitively inhibits binding of ramucirumab to VEGFR2.
- the antibody competitively inhibits binding of Aflibercept to VEGFR2.
- An MRD that competes for target binding with ramucirumab is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with ramucirumab or Aflibercept are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds CD20.
- the antibody is rituximab (e.g., RITUXAN®/MABTHERA®, Genentech/Roche/Biogen Idec).
- the antibody binds to the same epitope as rituximab.
- the antibody competitively inhibits binding of rituximab to CD20.
- the antibody is GA101 (Biogen Idec/Roche/Glycart).
- the antibody binds to the same epitope as GA 101.
- the antibody competitively inhibits binding of GA101 to CD20.
- the antibody is PF-5,230,895 (SBI-087; Pfizer). In one embodiment, the antibody binds to the same epitope as PF-5,230,895. In another embodiment, the antibody competitively inhibits binding of PF-5,230,895 to CD20. In another specific embodiment, the antibody is ocrelizumab (e.g., 2H7; Genentech/Roche/Biogen Idec). In one embodiment, the antibody binds to the same epitope as ocrelizumab. In another embodiment, the antibody competitively inhibits binding of ocrelizumab to CD20.
- PF-5,230,895 SBI-087; Pfizer
- the antibody binds to the same epitope as PF-5,230,895.
- the antibody competitively inhibits binding of PF-5,230,895 to CD20.
- the antibody is ocrelizumab (e.g., 2H7; Genentech/Roche/Biogen Idec). In
- the MRD-containing antibody is selected from: obinutuzumab (e.g., GA101; Biogen Idec/Roche/Glycart), ofatumumab (e.g., ARZERRA® and HuMax-CD20 Genmab), veltuzumab (e.g., IMMU-160, Immunomedics), AME-133 (Applied Molecular Evolution), SGN35 (Millennium), TG-20 (GTC Biotherapeutics), afutuzumab (Hoffman-La Roche), and PRO131921 (Genentech).
- obinutuzumab e.g., GA101; Biogen Idec/Roche/Glycart
- ofatumumab e.g., ARZERRA® and HuMax-CD20 Genmab
- veltuzumab e.g., IMMU-160, Immunomedics
- AME-133 Applied Molecular Evolution
- SGN35 Stemt
- the antibody binds to the same epitope as an antibody selected from: obinutuzumab, ofatumumab, veltuzumab, AME-133, SGN35, TG-20 and PRO131921.
- the antibody competitively inhibits CD20 binding by an antibody selected from: obinutuzumab, ofatumumab, veltuzumab, AME-133, SGN35, TG-20, afutuzumab, and PRO131921.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- the MRD-containing antibody specifically binds IGF1R.
- the antibody is selected from: cixutumumab (e.g., IMC-A12, Imclone), figitumumab (e.g., CP-751,871, Pfizer), AMG479 (Amgen), BIIB022 (Biogen Idec), SCH 717454 (Schering-Pough), and R1507 (Hoffman La-Roche).
- the antibody binds to the same epitope as an antibody selected from: cixutumumab, figitumumab, AMG479, BIIB022, SCH 717454, and R1507.
- the antibody competitively inhibits IGF1R binding by an antibody selected from: cixutumumab, figitumumab, AMG479, BIIB022, SCH 717454, and R1507.
- the antibody is figitumumab.
- the antibody binds to the same epitope as figitumumab.
- the antibody competitively inhibits IGF1R binding by figitumumab.
- the antibody is BIIB022.
- the antibody binds to the same epitope as BIIB022.
- the antibody competitively inhibits IGF1R binding by BIIB022.
- the antibody in the MRD-containing antibody inhibits IGF1R dimerization.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for IGF1R binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds integrin.
- the antibody is selected from: MEDI-522 avb3 (VITAXIN®, MedImmune), CNTO 95 a5b3 (Centocor), JC7U ⁇ v ⁇ 3, and volociximab a5b1 (e.g, M200, PDL and Biogen Idec).
- the antibody binds to the same epitope as an antibody selected from: MEDI-522, CNTO 95, JC7U ⁇ v ⁇ 3, and volociximab.
- the antibody competitively inhibits integrin binding by an antibody selected from: MEDI-522, CNTO 95, JC7U, and M200.
- the antibody is natalizumab (e.g., TSABRI®, Biogen Idec).
- the antibody binds to the same epitope as natalizumab.
- the antibody competitively inhibits integrin binding by natalizumab.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds cMet.
- the antibody is selected from: MetMab (OA-5D5, Genentech), AMG-102 (Amgen) and DN30.
- the antibody binds to the same epitope as an antibody selected from: MetMab (OA-5D5), AMG-102 and DN30.
- the antibody competitively inhibits cMET binding by an antibody selected from: MetMab (OA-5D5), AMG-102 and DN30.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, or 3 of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds a5b1 integrin (VLA5).
- the antibody is volociximab (e.g., M200 Biogen Idec).
- the antibody binds to the same epitope as volociximab.
- the antibody competitively inhibits a5b1 integrin binding by volociximab.
- An MRD that competes for a5b1 integrin binding with volociximab is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for a5b1 integrin binding with volociximab are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds VEGF.
- the antibody is bevacizumab (e.g., AVASTIN®, Genentech).
- the antibody binds to the same epitope as bevacizumab.
- the antibody competitively inhibits binding of bevacizumab to VEGF.
- the antibody is r84 (Peregrine) or 2C3 (Peregrine).
- the antibody binds to the same epitope as r84 or 2C3.
- the antibody competitively inhibits VEGF binding by r84 or 2C3.
- MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, or 3 of the above antibodies are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is an antigen associated with an autoimmune disorder, inflammatory or other disorder of the immune system or is associated with regulating an immune response.
- the antibody target of the MRD-containing antibody is an immunoinhibitory target selected from: IL-1, IL-1B, IL-1Ra, L-5, IL6, IL-6R, CD26L, CD28, CD80, FcRn, or FcGamma RIIB.
- An MRD that binds to one of the above targets is encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is an immunostimulatory target selected from: CD25, CD28, CTLA-4, PD1, PD11, B7-H1, B7-H4, IL-10, TGFbeta, TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), TNFSF9 (41BB Ligand), TNFRSF9 (41BB, CD137), TNFSF14 (LIGHT, HVEM Ligand), TNFRSF14 (HVEM), TNFSF15 (TL1A), TNFRSF25 (DR3), TNFSF 18 (GITR Ligand), and TNFRSF18 (GITR).
- TNFSF4 OX40 Ligand
- TNFRSF4 OF40
- TNFSF5 CD40 Ligand
- TNFRSF5 CD40
- TNFSF9 41BB Ligand
- TNFRSF9 41BB, CD137
- TNFSF14 LIGHT, HVEM
- MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is cytokine selected from: IL-1 alpha, IL-1 beta, IL-18, TNFSF2 (TNFa), LTalpha, LT beta, TNFSF11 (RANKL), TNFSF13B (BLYS), TNFSF13 (APRIL), IL-6, IL-7, IL-10, IL-12, IL-15, IL-17A, IL-23, OncoStatinM, TGFbeta, BMP2-15, PDGF, an FGF family member, VEGF, MIF, and a type I interferon.
- the antibody target of the MRD-containing antibody is a member selected from: interferon-gamma, TNFSF15 (TL1A), IL-21, IL-13, IL-4, IL-5, IL-2, IL-8, IL-11, and LIF (HILDA):
- TNFSF15 TNFSF15
- IL-21 IL-13
- IL-4 IL-5
- IL-2 IL-8
- IL-11 LIF
- LIF LIF
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is cytokine selected from: TNF-alpha (TNFSF1A), CD25, CD28, CTLA-4, PD1, PD11, B7-H1, B7-H4, IL-10, TGFbeta, TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), TNFSF9 (41BB Ligand), TNFRSF9 (41BB, CD137), TNFSF14 (LIGHT, HVEM Ligand), TNFRSF14 (HVEM), TNFSF15 (TL1A), TNFRSF25 (DR3), TNFSF18 (GITR Ligand), and TNFRSF18 (GITR).
- MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the antibody target of the MRD-containing antibody is IL1Ra, IL1Rb, IL-2, IL-3, IL-4, IL-7, IL-10, IL-11, IL-15, IL-16, IL-17, IL-17A, IL-17F, IL-18, IL-19, IL-25, IL-32, IL-33, interferon beta, SCF, BCA1/CXCL13, CXCL1, CXCL2, CXCL6, CXCL13, CXCL16, C3AR, C5AR, CXCR1, CXCR2, CCR1, CCR3, CCR7, CCR8, CCR9, CCR10, ChemR23, CCL3, CCL5, CCL11, CCL13, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, MPL, GP130, TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, T
- MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the above antibody and MRD targets and those otherwise described herein are intended to be illustrative and not limiting.
- the antibody target of the MRD-containing antibody is TNFSF1A (TNF-alpha), TNFRSF1A (TNFR1, p55, p60), TNFRSF1B (TNFR2), TNFSF7 (CD27 Ligand, CD70), TNFRSF7 (CD27), TNFSF13B (BLYS), TNFSF13 (APRIL), TNFRSF13B (TACI), TNFRSF13C (BAFFR), TNFRSF17 (BCMA), TNFSF15 (TL1A), TNFRSF25 (DR3), TNFSF12 (TWEAK), TNFRSF12 (TWEAKR), TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), IL-1, IL-1 beta, IL1R, IL-2R, IL4-Ra, IL-5, IL-5R, IL-6, IL6R, IL9, IL
- MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the antibody target of the MRD-containing antibody competes for target binding with: SGN-70 CD70 (Seattle Genetics), SGN-75 CD70 (Seattle Genetics), Belimumab BLYS (e.g., BENLYSTA®, Human Genome Sciences/GlaxoSmithKline), Atacicept BLYS/APRIL (Merck/Serono), TWEAK (e.g., Biogen mAb), TL1a antibodies of CoGenesys/Teva (e.g., hum11D8, hum25B9, and hum1B4 (U.S.
- Patent Application Publication 2009/0280116 OX40 mAb, humAb OX40L (Genentech), rilonacept IL1 trap (e.g., ARCALYST®, Regeneron), catumaxomab IL1 beta (e.g., REMOVAB®, Fresenius Biotech GmbH), Xoma052 IL1 beta (Lilly), canakinumab IL1 beta (e.g., ILARIS® (Novartis) and ACZ885 (Novartis)), AMG108 IL1R (Amgen), daclizumab IL2Ra (e.g., ZENAPAX®, Hoffman-La Roche), basiliximab IL2Ra (e.g., SIMULECT®, Novartis), AMGN-317 IL-4-a (Amgen), pascolizumab IL-4 (PDL), mepolizumab IL5 (e.g., BOSATRIA®, GlaxoSmithKline), re
- MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- the antibody of the MRD-containing antibody is: SGN-70 CD70 (Seattle Genetics), SGN-75 CD70 (Seattle Genetics), Belimumab BLYS (e.g., BENLYSTA®, Human Genome Sciences/GlaxoSmithKline), BIIB023 TWEAK (Biogen Idec), TL1a antibodies of CoGenesys/Teva (e.g., 11D8, 25B9, and 1B4 (U.S.
- OX40 mAb OX40L
- catumaxomab IL1 beta e.g., REMOVAB®, Fresenius Biotech GmbH
- canakinumab IL1 beta e.g., ILARIS® (Novartis) and ACZ885 (Novartis)
- AMG108 IL1R Amgen
- daclizumab IL2Ra e.g., ZENAPAX®, Hoffman-La Roche
- basiliximab IL2Ra e.g., SIMULECT®, Novartis
- AMGN-317 IL-4-a Amgen
- mepolizumab IL5 e.g., BOSATRIA®, GlaxoSmithKline
- reslizumab IL5 e.g., SCH55700, Ception Therapeutics
- MEDI-563 IL-5R MedImmune
- the antibody in the MRD-containing antibody specifically binds CTLA4.
- the antibody is tremelimumab (e.g., CP-675,206, Pfizer).
- the antibody binds to the same epitope as tremelimumab.
- the antibody competitively inhibits binding of tremelimumab to CTLA4.
- the antibody is ipilimumab (e.g., MDX010, Bristol-Myers Squibb/Medarex). In one embodiment, the antibody binds to the same epitope as ipilimumab.
- the antibody competitively inhibits binding of ipilimumab to CTLA4.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CTLA4 binding with tremelimumab or ipilimumab are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds TWEAK (TNFSF12).
- TWEAK TWEAK
- the antibody is the TWEAK antibody of Biogen that has advanced to Phase I clinical trials.
- the antibody binds to the same epitope as the Biogen TWEAK antibody.
- the antibody competitively inhibits binding of the Biogen TWEAK antibody to TWEAK.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for TWEAK binding with the Biogen TWEAK antibody are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds IL2Ra (CD25).
- the antibody is daclizumab (e.g., ZENAPAX®).
- the antibody binds to the same epitope as daclizumab.
- the antibody competitively inhibits binding of daclizumab to IL2Ra (CD25).
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for IL2Ra (CD25) binding with daclizumab are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds CD40 (TNFRSF5).
- the antibody is CP-870893 CD40 (Pfizer).
- the antibody binds to the same epitope as CP-870893.
- the antibody competitively inhibits binding of CP-870893 to CD40.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD40 binding with CP-870893 are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds Alpha4 integrin.
- the antibody is natalizumab (e.g., TYSABRI®; Biogen Idec/Elan).
- the antibody binds to the same epitope as natalizumab.
- the antibody competitively inhibits binding of natalizumab to Alpha4 integrin.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for Alpha4 integrin binding with natalizumab are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds IL-22.
- the antibody is PF-5,212,367 (ILV-094) (Pfizer).
- the antibody binds to the same epitope as PF-5,212,367.
- the antibody competitively inhibits binding of PF-5,212,367 to IL-22.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for IL-22 binding with PF-5,212,367 are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds MAdCAM.
- the antibody is PF-547,659 (Pfizer).
- the antibody binds to the same epitope as PF-547,659.
- the antibody competitively inhibits binding of PF-547,659 to MAdCAM.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for MAdCAM binding with PF-547,659 are also encompassed by the invention.
- the antibody in the MRD-containing antibody specifically binds TNF.
- the antibody is adalimumab (e.g., HUMIRA®/TRUDEXA®, Abbott).
- the antibody binds to the same epitope as adalimumab.
- the antibody competitively inhibits binding of adalimumab to TNF.
- the antibody is ATN-103 (Pfizer).
- the antibody binds to the same epitope as ATN-103.
- the antibody competitively inhibits binding of ATN-103 to TNF.
- the antibody is infliximab.
- the antibody binds to the same epitope as infliximab. In another embodiment, the antibody competitively inhibits binding of infliximab to TNF. In another specific embodiment, the antibody is selected from: certolizumab (e.g., CIMZIA®, UCB), golimumab (e.g., SIMPONITM, Centocor), or AME-527 (Applied Molecular Evolution). In one embodiment, the antibody binds to the same epitope as certolizumab, golimumab, or AME-527. In another embodiment, the antibody competitively inhibits binding of certolizumab, golimumab, or AME-527, to TNF.
- certolizumab e.g., CIMZIA®, UCB
- golimumab e.g., SIMPONITM, Centocor
- AME-527 Applied Molecular Evolution
- MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, or 5, of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody comprises the CDRs of the anti-TNF antibody adalimumab.
- the CDR, VH, and VL sequences of adaliumumab are provided in Table 3.
- VL-CDR1 RASQGIRNYLA (SEQ ID NO: 80) VL-CDR2 AASTLQS (SEQ ID NO: 81) VL-CDR3 QRYNRAPYT (SEQ ID NO: 82) VH-CDR1 DYAMH (SEQ ID NO: 83) VH-CDR2 AITWNSGHIDYADSVEG (SEQ ID NO: 84) VH-CDR3 VSYLSTASSLDY (SEQ ID NO: 85) VL DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKP GKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQP EDVATYYCQRYNRAPYTFGQGTKVEIKR (SEQ ID NO: 86) VH EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQA PGKGLEWVSAITWNSGHIDYADSVEGRFTISR
- the target of the antibody of the MRD-containing antibody is IL6.
- the antibody of the MRD-containing antibody is siltuximab (CNT0328, Centocor), CNTO-136 (Centocor), CDP-6038 (UCB), or AMGN-220 (Amgen).
- the antibody of the MRD-containing antibody competes with siltuximab (CNT0328, Centocor), CNTO-136 (Centocor), CDP-6038 (UCB), or AMGN-220 (Amgen) for binding to IL6.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, or more of the above antibodies are also encompassed by the invention.
- the target of the antibody of the MRD-containing antibody is IL6R.
- the antibody of the MRD-containing antibody is REGN-88 (Regeneron) or tocilizumab (ACTEMRATM/ROACTEMRATM, Chugai/Roche).
- the antibody of the MRD-containing antibody competes with siltuximab REGN-88 (Regeneron) or tocilizumab (ACTEMRATM/ROACTEMRATM, Chugai/Roche) for binding to IL6R.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1 or both of the above antibodies are also encompassed by the invention.
- an MRD-containing antibody binds to 2, 3, 4, 5 or more targets associated with abnormalities of the immune system including inflammation and autoimmune disease that include IL6, IL6R, TNF alpha (TNFSF1A), IL-1, cadherin 11, fibronectin, BLYS (TNFSF13B), Ang-2, VEGF, VEGFR1, integrin avb3, CD80/CD86, TL1a (TNFSF15), S1PR, CD19, CD20, CD22, CD70, CD32b, CD40, CD4, INF gamma, IL-10R, IL-10, CD80, CD86, ILTs, ICOS, PD1, CD4, IL-4R, IL5R, and IL19R.
- MRD-containing antibodies have applications in treating, ameliorating diseases and disorders of the immune system, including inflammation and autoimmune disease.
- an MRD-containing antibody binds to 2, 3, 4, 5 or more targets selected from IL6, IL6R, TNF alpha (TNFSF1A), IL-1, cadherin 11, fibronectin, BLyS (TNFSF13B), Ang-2, VEGF, VEGFR1, integrin avb3, and CD80/CD86.
- targets selected from IL6, IL6R, TNF alpha (TNFSF1A), IL-1, cadherin 11, fibronectin, BLyS (TNFSF13B), Ang-2, VEGF, VEGFR1, integrin avb3, and CD80/CD86.
- an MRD-containing antibody binds to 1, 2, 3, or more targets selected from BLYS (TNFSF13B), S1pr, IFNbR, and IFNaR.
- BLYS TNFSF13B
- S1pr S1pr
- IFNbR IFNaR
- MRD-containing antibodies have applications in treating, preventing, or ameliorating inflammation, such as autoimmune related inflammation associated with systemic lupus erythematosus.
- an MRD-containing antibody binds to 1, 2, or 3 targets selected from TNF alpha (TNFSF1A), TL1a (TNFSF15), and Ang-2.
- TNFSF1A TNF alpha
- TNFSF15 TNF alpha
- Ang-2 Ang-2
- an MRD-containing antibody binds to 1, 2, 3, 4, 5 or more targets selected from CD19, CD20, CD22, CD70, CD32b, CD40, CD4, IFNg, IL10R, and IL-10R.
- targets selected from CD19, CD20, CD22, CD70, CD32b, CD40, CD4, IFNg, IL10R, and IL-10R.
- Members of this group are associated with cancer, hematologic disorders, inflammation and autoimmune disease, and B cell related diseases and disorders and these MRD-containing antibodies have applications in treating, preventing, or ameliorating such disorders.
- an MRD-containing antibody binds to 1, 2, 3 or more targets selected from CD4, IFNg, IL10R, and IL10(R).
- targets selected from CD4, IFNg, IL10R, and IL10(R).
- Members of this group are associated with TH1 mediated immune responses and these MRD-containing antibodies have applications in treating, preventing, or ameliorating B cell associated autoimmune diseases and B cell associated diseases.
- an MRD-containing antibody binds to 1, 2, or 3 targets selected from CD4, IL4R, IL5R, and IL9R.
- targets selected from CD4, IL4R, IL5R, and IL9R.
- Members of this group are associated with TH2 mediated immune responses and these MRD-containing antibodies have applications in treating, preventing, or ameliorating for example, autoimmune disease and inflammation.
- an MRD-containing antibody binds to 1, 2, 3, 4, 5 or more targets selected from CD80/86, ILTs, ICOS, and PD1.
- targets selected from CD80/86, ILTs, ICOS, and PD1.
- Members of this group are associated with stimulation of the immune response and these MRD-containing antibodies have applications in for example, in treating, preventing immune disorders such as those associated with autoimmune disease.
- the target of the antibody of the MRD-containing antibody is: amyloid beta (Abeta), beta amyloid, complement factor D, PLP, ROBO4, ROBO, GDNF, NGF, LINGO, or myostatin.
- the antibody in the MRD-containing antibody is gantenerumab (e.g., R1450, Hoffman La-Roche), bapineuzumab beta amyloid 9 (Elan and Wyeth), solanezumab beta amyloid 9 (Lilly), tanezumab NGF (e.g, RN624, Pfizer), BIIB033 LINGO (Biogen Idec), PF-3,446,879 myostatin (Pfizer), or stamulumab myostatin (Wyeth).
- gantenerumab e.g., R1450, Hoffman La-Roche
- bapineuzumab beta amyloid 9 Elan and Wyeth
- solanezumab beta amyloid 9 Lily
- tanezumab NGF e.g, RN624, Pfizer
- BIIB033 LINGO Biogen Idec
- PF-3,446,879 myostatin Pfizer
- the antibody specifically binds to the same epitope as gantenerumab, bapineuzumab, solarezumab, tanezumab, the Biogen LINGO antibody, or stamulumab.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits target binding by gantenerumab, bapineuzumab, solarezumab, tanezumab, BIIB033, or stamulumab.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- the target of the antibody of the MRD-containing antibody is beta amyloid.
- the antibody in the MRD-containing antibody is RN1219 (PF-4,360,365; Pfizer).
- the antibody specifically binds to the same epitope as RN1219.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits beta amyloid binding by RN1219.
- An MRD that competes for beta amyloid binding with RN1219 is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for beta amyloid binding with RN1219 are also encompassed by the invention.
- the target of the antibody of the MRD-containing antibody is NGF.
- the antibody in the MRD-containing antibody is tanezumab (e.g., RN624, Pfizer).
- the antibody specifically binds to the same epitope as tanezumab.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits NGF binding by tanezumab.
- An MRD that competes for NGF binding with tanezumab is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for NGF binding with tanezumab are also encompassed by the invention.
- the target of the antibody of the MRD-containing antibody is LINGO (e.g., LINGO1).
- the antibody in the MRD-containing antibody is BIIB033 (Biogen Idec).
- the antibody specifically binds to the same epitope as BIIB033.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits LINGO binding by BIIB033.
- An MRD that competes for LINGO binding with BIIB033 is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for LINGO binding with BIIB033 are also encompassed by the invention.
- the MRD-containing antibody binds to LINGO and DR6 (TNFRSF21). These MRD-containing antibodies are expected to have applications in treating multiple sclerosis.
- the target of the antibody of the MRD-containing antibody is: oxidized LDL, gpIIB, gpIIIa, PCSK9, Factor VIII, integrin a2bB3, AOC3, or mesothelin.
- the antibody in the MRD-containing antibody is BI-204 oxidized LDL (BioInvent), abciximab gpIIB, gpIIIa (e.g., REOPRO, Eli Lilly), AMG-145 PCSK9 (Amgen), TB-402 Factor VIII (BioInvent), vapaliximab, or tadocizumab integrin a2bB3 (Yamonochi Pharma).
- the antibody specifically binds to the same epitope as BI-204, abciximab, AMG-145, TB-402, or tadocizumab.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of BI-204, abciximab, AMG-145, TB-402, vapaliximab, or tadocizumab.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- the antibody of the MRD-containing antibody is associated with bone growth and/or metabolism.
- the antibody target of the MRD-containing antibody is RANKL.
- the antibody target of the MRD-containing antibody is: DKK1, osteopontin, cathepsin K, TNFRSF19L (RELT), TNFRSF19 (TROY), or sclerostin (CDP-7851 UCB Celltech).
- antibody target of the MRD-containing antibody is RANKL.
- the antibody in the MRD-containing antibody is denosumab (e.g., AMG-162, Amgen).
- the antibody specifically binds to the same epitope as denosumab.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of RANKL by denosumab.
- the antibody is AMG617 or AMG785 (e.g., CDP7851, Amgen).
- the antibody specifically binds to the same epitope as AMG617 or AMG785.
- the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of sclerostin by AMG617 or AMG785.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- an MRD-containing antibody binds to 2, 3, 4, 5, 6, or more targets selected from TNFSF11 (RANKL), TNF-alpha (TNFSF1A), integrin avB3, Cad 11, fibronectin, DKK1, osteopontin, cathepsin K, TNFRSF19L (RELT), TNFRSF19 (TROY), and sclerostin.
- TNFSF11 RNFSF11
- TNF-alpha TNF-alpha
- integrin avB3 Cad 11
- fibronectin DKK1
- osteopontin cathepsin K
- TNFRSF19L RELT
- TNFRSF19 TNFRSF19
- TROY TNFRSF19
- the antibody target of the MRD-containing antibody is a bacterial antigen, a viral antigen, a mycoplasm antigen, a prion antigen, or a parasite antigen (e.g., one infecting a mammal).
- the target of the antibody of the MRD-containing antibody is a viral antigen.
- the target of the antibody of the MRD-containing antibody is anthrax, hepatitis b, rabies, Nipah virus, west nile virus, a mengititis virus, or CMV.
- the antibody of the MRD-containing antibody competes with antigen binding with ABTHRAX® (Human Genome Sciences), exbivirumab, foravirumab, libivirumab, rafivirumab, regavirumab, sevirumab (e.g., MSL-109, Protovir), tuvirumab, raxibacumab, Nipah virus M102.4, or MGAWN1® (MacroGenics) for target binding.
- ABTHRAX® Human Genome Sciences
- exbivirumab foravirumab
- libivirumab libivirumab
- rafivirumab regavirumab
- regavirumab e.g., MSL-109, Protovir
- tuvirumab e.g., MSL-109, Protovir
- tuvirumab e.g., raxibacumab
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- the target of the antibody of the MRD-containing antibody is RSV.
- the antibody of the MRD-containing antibody is motavizumab (e.g., NUMAX®, MEDI-577; MedImmune) or palivizumab RSV fusion f protein (e.g., SYNAGIS®, MedImmune).
- the antibody of the MRD-containing antibody competes with motavizumab or palivizumab RSV fusion f protein, for target binding.
- the antibody of the MRD-containing antibody is felvizumab.
- the antibody of the MRD-containing antibody competes with felvizumab for target binding.
- MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- the target of the antibody of the MRD-containing antibody is a bacterial or fungal antigen.
- the antibody of the MRD-containing antibody competes for antigen binding with nebacumab, edobacomab (e.g., E5), tefibazumab (Inhibitex), panobacumab (e.g., KBPA101, Kenta), pagibaximab (e.g., BSYX-A110, Biosynexus), urtoxazumab, or efungumab (e.g., MYCOGRAB®, Novartis).
- nebacumab edobacomab
- tefibazumab Inhibitex
- panobacumab e.g., KBPA101, Kenta
- pagibaximab e.g., BSYX-A110, Biosynexus
- the antibody of the MRD-containing antibody is nebacumab, edobacomab, tefibazumab (Inhibitex), panobacumab, pagibaximab, urtoxazumab, or efungumab.
- An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- the antibody in the MRD-containing antibody is the catalytic antibody 38C2.
- the antibody binds to the same epitope as 38C2.
- the antibody competitively inhibits 38C2.
- Human A33 antigen is a transmembrane glycoprotein of the Ig superfamily. The function of the human A33 antigen in normal and malignant colon tissue is not yet known. However, several properties of the A33 antigen suggest that it is a promising target for immunotherapy of colon cancer.
- These properties include (i) the highly restricted expression pattern of the A33 antigen, (ii) the expression of large amounts of the A33 antigen on colon cancer cells, (iii) the absence of secreted or shed A33 antigen, (iv) the fact that upon binding of antibody A33 to the A33 antigen, antibody A33 is internalized and sequestered in vesicles, and (v) the targeting of antibody A33 to A33 antigen expressing colon cancer in preliminary clinical studies. Fusion of a MRD directed toward A33 to a catalytic or non-catalytic antibody would increase the therapeutic efficacy of A33 targeting antibodies.
- the antibody in the MRD-containing antibody binds to a human target protein. In some embodiments, the MRD binds to both a human protein and its ortholog in mouse, rat, rabbit, or hamster.
- the antibodies in the MRD-containing antibodies are able to bind their respective targets when the MRDs are attached to the antibody.
- the antibody binds its target independently.
- the antibody is a target agonist.
- the antibody is a target antagonist.
- the antibody can be used to localize an MRD-containing antibody to an area where the antibody target is located.
- antibodies used in the present invention may be prepared by any method known in the art.
- antibody molecules and MRD-containing antibodies can be “recombinantly produced,” i.e., produced using recombinant DNA technology.
- Monoclonal antibodies that can be used as the antibody component of the MRD-containing antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature 256:495 (1975).
- hybridoma methods such as those described by Kohler and Milstein, Nature 256:495 (1975).
- a mouse, hamster, or other appropriate host animal is immunized as described above to elicit the production by lymphocytes of antibodies that will specifically bind to an immunizing antigen.
- Lymphocytes can also be immunized in vitro. Following immunization, the lymphocytes are isolated and fused with a suitable myeloma cell line using, for example, polyethylene glycol, to form hybridoma cells that can then be selected away from unfused lymphocytes and myeloma cells.
- Hybridomas that produce monoclonal antibodies directed specifically against a chosen antigen as determined by immunoprecipitation, immunoblotting, or by an in vitro binding assay e.g., radioimmunoassay (RIA); enzyme-linked immunosorbent assay (ELISA)
- an in vitro binding assay e.g., radioimmunoassay (RIA); enzyme-linked immunosorbent assay (ELISA)
- RIA radioimmunoassay
- ELISA enzyme-linked immunosorbent assay
- the monoclonal antibodies can then be purified from the culture medium or ascites fluid as described for polyclonal antibodies above.
- monoclonal antibodies can also be made using recombinant DNA methods, for example, as described in U.S. Pat. No. 4,816,567.
- polynucleotides encoding a monoclonal antibody are isolated from mature B-cells or hybridoma cell, such as by RT-PCR using oligonucleotide primers that specifically amplify the genes encoding the heavy and light chains of the antibody, and their sequence is determined using conventional procedures.
- the isolated polynucleotides encoding the heavy and light chains are then cloned into suitable expression vectors, which when transfected into host cells such as E.
- monoclonal antibodies are generated by the host cells.
- recombinant monoclonal antibodies or antibody fragments having the desired immunoreactivity can be isolated from phage display libraries expressing CDRs of the desired species using techniques known in the art (McCafferty et al., Nature 348:552-554 (1990); Clackson et al., Nature 352:624-628 (1991); and Marks et al., J. Mol. Biol. 222:581-597 (1991)).
- polynucleotide(s) encoding a monoclonal antibody can further be modified in a number of different manners, using recombinant DNA technology to generate alternative antibodies.
- polynucleotide sequences that encode one or more MRDs and optionally linkers can be operably fused, for example, to the 5′ or 3′ end of sequence encoding monoclonal antibody sequences.
- the constant domains of the light and heavy chains of, for example, a mouse monoclonal antibody can be substituted (1) for those regions of, for example, a human antibody to generate a chimeric antibody or (2) for a non-immunoglobulin polypeptide to generate a fusion antibody.
- Techniques for site-directed and high-density mutagenesis of the variable region are known in the art and can be used to optimize specificity, affinity, etc. of a monoclonal antibody.
- the antibody of the MRD-containing antibody is a human antibody.
- human antibodies can be directly prepared using various techniques known in the art. Immortalized human B lymphocytes immunized in vitro or isolated from an immunized individual that produce an antibody directed against a target antigen can be generated (See, e.g., Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boerner et al., J. Immunol. 147 (1):86-95 (1991); and U.S. Pat. Nos. 5,750,373 and 6,787,637).
- the human antibody can be derived from the “minilocus approach” in which an exogenous Ig locus is mimicked through inclusion of individual genes from the Ig locus (see e.g., U.S. Pat. No. 5,545,807).
- Methods of preparing a human antibody from a phage library, and optionally optimizing binding affinity are known in the art and described, for example, in Vaughan et al., Nat. Biotech. 14:309-314 (1996); Sheets et al., Proc. Nat'l. Acad. Sci. 95:6157-6162 (1998); Hoogenboom Nat. Biotechnology 23:1105-1116 (2005); Hoogenboom and Winter, J. Mol. Biol.
- Antibodies can also be made in mice that are transgenic for human immunoglobulin genes or fragments of these genes and that are capable, upon immunization, of producing a broad repertoire of human antibodies in the absence of endogenous immunoglobulin production.
- This approach is described in: Lonberg, Nat. Biotechnol 23:1117-1125 (2005), Green, Nature Genet. 7:13-21 (1994), and Lonberg, Nature 368:856-859 (1994); U.S. Pat. Nos. 5,545,807, 5,545,806, 5,569,825, 5,625,126, 5,633,425, 5,661,016, 6,596,541, 7,105,348, and 7,368,334 (each of which is herein incorporated by reference).
- MRD-containing antibodies can contain a single linker, multiple linkers, or no linker.
- a MRD may be operably attached (linked) to the antibody directly, or operably attached through an optional linker peptide.
- a MRD may be operably attached to one or more MRD(s) directly, or operably attached to one or more MRD(s) through one or more optional linker peptide(s).
- Linkers can be of any size or composition so long as they are able to operably attach an MRD and an antibody such that the MRD enables the MRD containing antibody to bind the MRD target.
- linkers have about 1 to 20 amino acids, about 1 to 15 amino acids, about 1 to 10 amino acids, about 1 to 5 amino acids, about 2 to 20 amino acids, about 2 to 15 amino acids, about 2 to 10 amino acids, or about 2 to 5 amino acids.
- the linker can also have about 4 to 15 amino acids.
- the linker peptide contains a short linker peptide with the sequence GGGS (SEQ ID NO:1), a medium linker peptide with the sequence SSGGGGSGGGGGGSS (SEQ ID NO:2), or a long linker peptide with the sequence SSGGGGSGGGGGGSSRSS (SEQ ID NO:19).
- the MRD is inserted into the fourth loop in the light chain constant region.
- the MRD can be inserted between the underlined letters in the following amino acid sequence: RTVAAPSVFIFPPSDEQL KSGTASVVCLLNNFYPREAKVQWKVDK L GTNSQESVTEQDSKDSTYSLSSTLTLSK ADY EKHKVYACEVTHQGLSLPVTKSFNRGEC (SEQ ID NO:102).
- the linker can also be a non-peptide linker such as an alkyl linker, or a PEG linker.
- These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C 1 C 6 ) lower acyl, halogen (e.g., Cl, Br), CN, NH 2 , phenyl, etc.
- An exemplary non-peptide linker is a PEG linker.
- the PEG linker has a molecular weight of about 100 to 5000 kDa, or about 100 to 500 kDa.
- Linker optimization can be evaluated using the techniques described in Examples 1-18 and techniques otherwise known in the art. Linkers preferably should not disrupt the ability of an MRD and/or an antibody to bind target molecules.
- multi-specificity and greater multi-valency can be achieved through the fusion of MRDs to antibodies.
- the MRDs of the MRD-containing antibodies prepared according to the present invention may be operably linked to an antibody through the peptide's N-terminus or C-terminus.
- the MRD may be operably linked to the antibody at the C-terminal end of the heavy chain of the antibody, the N-terminal end of the heavy chain of the antibody, the C-terminal end of the light chain of the antibody, or the N-terminal end of the light chain of the antibody.
- Optimization of the MRD composition, MRD-antibody attachment location and linker composition can be performed using the binding assays described in Examples 1-18 and bioassays and other assays known in the art for the appropriate target related biological activity.
- MRD-containing antibodies contain an MRD operably linked to either the antibody heavy chain, the antibody light chain, or both the heavy and the light chain. In one embodiment an MRD-containing antibody contains at least one MRD linked to one of the antibody chain terminals. In another embodiment, an MRD-containing antibody of the invention contains at least one MRD operably linked to two of the antibody chain terminals. In another embodiment, an MRD-containing antibody contains at least one MRD operably linked to three of the antibody chain terminals. In another embodiment, an MRD-containing antibody contains at least one MRD operably attached to each of the four antibody chain terminals (i.e., the N and C terminals of the light chain and the N and C terminals of the heavy chain).
- the MRD-containing antibody has at least one MRD operably attached to the N-terminus of the light chain. In another specific embodiment, the MRD-containing antibody has at least one MRD operably attached to the N-terminus of the heavy chain. In another specific embodiment, the MRD-containing antibody has at least one MRD operably attached to the C-terminus of the light chain. In another specific embodiment, the MRD-containing antibody has at least one MRD operably attached to the C-terminus of the heavy chain.
- An MRD-containing antibody can be “multispecific” (e.g., bispecific, trispecific tetraspecific, pentaspecific or of greater multispecificity), meaning that it recognizes and binds to two or more different epitopes present on one or more different antigens (e.g., proteins).
- multispecific e.g., bispecific, trispecific tetraspecific, pentaspecific or of greater multispecificity
- an MRD-containing antibody is “monospecific” or “multispecific,” (e.g., bispecific, trispecific, and tetraspecific) refers to the number of different epitopes that the MRD-containing antibody binds.
- Multispecific antibodies may be specific for different epitopes of a target polypeptide (e.g., as described herein) or may be specific for a target polypeptide as well as for a heterologous epitope, such as a heterologous polypeptide target or solid support material.
- the present invention contemplates the preparation of mono-, bi-, tri-, tetra-, and penta-specific antibodies as well as antibodies of greater multispecificity.
- the MRD-containing antibody binds two different epitopes.
- the MRD-containing antibody binds two different epitopes simultaneously.
- the MRD-containing antibody binds three different epitopes.
- the MRD-containing antibody binds three different epitopes simultaneously. In another embodiment, the MRD-containing antibody binds four different epitopes. In an additional embodiment the MRD-containing antibody binds four different epitopes simultaneously. In another embodiment, the MRD-containing antibody binds five different epitopes (see, e.g., FIG. 2D ). In an additional embodiment the MRD-containing antibody binds five different epitopes simultaneously.
- two MRDs of the MRD-containing antibody bind the same antigen. In other embodiments three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments at least two MRDs of the MRD-containing antibody bind the same antigen. In other embodiments at least three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments two MRDs of the MRD-containing antibody bind the same epitope. In other embodiments three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope.
- At least two MRDs of the MRD-containing antibody bind the same epitope. In other embodiments at least three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope.
- the antibody and one MRD of the MRD-containing antibody bind the same antigen. In other embodiments the antibody and two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments, the antibody and at least one MRD of the MRD-containing antibody bind the same antigen. In other embodiments the antibody and at least two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments, the antibody and one MRD of the MRD-containing antibody bind the same epitope.
- the antibody and two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope. In other embodiments, the antibody and at least one MRD of the MRD-containing antibody bind the same epitope. In other embodiments the antibody and at least two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope.
- the present invention also provides for two or more MRDs which are linked to any terminal end of the antibody.
- two, three, four, or more MRDs are operably linked to the N-terminal of the heavy chain.
- two, three, four, or more MRDs are operably linked to the N-terminal of the light chain.
- two, three, four, or more MRDs are operably linked to the C-terminal of the heavy chain.
- two, three, four, or more MRDs are operably linked to the C-terminal of the light chain. It is envisioned that these MRDs can be the same or different. In addition, any combination of MRD number and linkages can be used.
- two MRDs can be operably linked to the N-terminal of the heavy chain of an antibody which contains one MRD linked to the C-terminal of the light chain.
- three MRDs can be operably linked to the C-terminal of the light chain and two MRDs can be operably linked to the N-terminal of the light chain.
- MRD-containing antibodies can contain one, two, three, four, five, six, seven, eight, nine, ten or more than ten MRDs.
- the MRD-containing antibody contains one MRD (see, e.g., FIGS. 2B and 2C ). In another embodiment, the MRD-containing antibody contains two MRDs. In another embodiment, the MRD-containing antibody contains three MRDs. In another embodiment, the MRD-containing antibody contains four MRDs (see, e.g., FIGS. 2B and 2C ). In another embodiment, the MRD-containing antibody contains five MRDs. In another embodiment, the MRD-containing antibody contains six MRDs. In an additional embodiment, the MRD-containing antibody contains between two and ten MRDs.
- the MRD-containing antibody contains at least one MRD. In another embodiment, the MRD-containing antibody contains at least two MRDs. In another embodiment, the MRD-containing antibody contains at least three MRDs. In another embodiment, the MRD-containing antibody contains at least four MRDs. In another embodiment, the MRD-containing antibody contains at least five MRDs. In another embodiment, the MRD-containing antibody contains at least six MRDs.
- the MRD-containing antibody contains two different MRDs. In another embodiment, the MRD-containing antibody contains three different MRDs. In another embodiment, the MRD-containing antibody contains four different MRDs. In another embodiment, the MRD-containing antibody contains five different MRDs. In another embodiment, the MRD-containing antibody contains six different MRDs. In an additional embodiment, the MRD-containing antibody contains between two and ten different MRDs.
- the MRD-containing antibody contains at least two different MRDs. In another embodiment, the MRD-containing antibody contains at least three different MRDs. In another embodiment, the MRD-containing antibody contains at least four different MRDs. In another embodiment, the MRD-containing antibody contains at least five different MRDs. In another embodiment, the MRD-containing antibody contains at least six different MRDs.
- the MRD-containing antibodies can be MRD monomeric (i.e., containing one MRD at the terminus of a peptide chain optionally connected by a linker) or MRD multimeric (i.e., containing more than one MRD in tandem optionally connected by a linker).
- the multimeric MRD-containing antibodies can be homo-multimeric (i.e., containing more than one of the same MRD in tandem optionally connected by linker(s) (e.g., homodimers, homotrimers, homotetramers etc.)) or hetero-multimeric (i.e., containing two or more MRDs in which there are at least two different MRDs optionally connected by linker(s) where all or some of the MRDs linked to a particular terminus are different (e.g., heterodimer, heterotrimer, heterotetramer etc.)).
- the MRD-containing antibody contains two different monomeric MRDs located at different immunoglobulin termini.
- the MRD-containing antibody contains three different monomeric MRDs located at different immunoglobulin termini. In another embodiment, the MRD-containing antibody contains four different monomeric MRDs located at different immunoglobulin termini. In another embodiment, the MRD-containing antibody contains five different monomeric MRDs located at different immunoglobulin termini. In another embodiment, the MRD-containing antibody contains six different monomeric MRDs located at different immunoglobulin termini.
- the MRD-containing antibody contains at least one dimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homodimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heterodimeric and one monomeric MRD located at different immunoglobulin termini.
- the MRD-containing antibody contains at least one multimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homomultimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heteromultimeric and one monomeric MRD located at different immunoglobulin termini.
- the MRD-containing antibody contains MRDs operably linked to at least two different immunoglobulin termini.
- the MRDs fused to at least one of the immunoglobulins is a multimer.
- the MRDs fused to a least one of the immunoglobulins is a homomultimer (i.e., more than one of the same MRD operably linked in tandem, optionally linked via a linker),
- the MRDs fused to at least one of the immunoglobulins is a heteromultimer (i.e., two or more different MRDs operably linked in tandem, optionally linked via a linker).
- the MRDs fused to at least one of the immunoglobulins is a dimer. In another embodiment, the MRDs fused to a least one of the immunoglobulins is a homodimer. In another embodiment, the MRDs fused to at least one of the immunoglobulins is a heterodimer.
- the multiple MRDs can target the same target binding site, or two or more different target binding sites. Where the MRDs bind to different target binding sites, the binding sites may be on the same or different target molecules.
- the antibody and the MRD in a MRD-containing antibody may bind to the same target molecule or to different target molecules.
- At least one MRD and the antibody in the MRD-containing antibody can bind to their targets simultaneously.
- each MRD in the MRD-containing antibody and the antibody can bind to its target simultaneously. Therefore, in some embodiments, the MRD-containing antibody binds two, three, four, five, six, seven, eight, nine, ten or more target molecules simultaneously.
- MRD-containing antibody ability of a MRD-containing antibody to bind to multiple targets simultaneously can be assayed using methods known in the art, including, for example, those methods described in the examples below.
- the MRD(s) and the antibody in the MRD-containing antibody are antagonists of their respective target molecules. In other embodiments, the MRD(s) and the antibody in the MRD-containing antibody are agonists of their respective target molecules. In yet other embodiments, at least one of the MRDs in the MRD-containing antibody is an antagonist of its target molecule and the antibody is an agonist of its target molecule. In yet another embodiment, at least one of the MRDs in the MRD-containing antibody is an agonist of its target molecule, and the antibody is an antagonist of its target molecule.
- both the MRD(s) and the antibody in the MRD-containing antibody bind to soluble factors. In some embodiments, both the MRD(s) and the antibody in the MRD-containing antibody bind to cell surface molecules. In some embodiments, at least one MRD in the MRD-containing antibody binds to a cell surface molecule and the antibody in the MRD-containing antibody binds to a soluble factor. In some embodiments, at least one MRD in the MRD-containing antibody binds to a soluble factor and the antibody in the MRD-containing antibody binds to a cell surface molecule.
- An improved MRD-containing antibody that specifically binds a desired target or targets can also be prepared based on a previously known MRD or MRD-containing antibody.
- a previously known MRD or MRD-containing antibody For example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10-20, 20-30, 30-50, 50-100, 100-150 or more than 150 amino acid substitutions, deletions or insertions can be introduced into an MRD or MRD-containing antibody sequence and the resulting MRD or MRD-containing antibody can be screened for binding to the desired target or targets, for antagonizing target activity, or for agonizing target activity as described in the examples or using techniques known in the art.
- Additional peptide sequences may be added, for example, to enhance the in vivo stability of the MRD or affinity of the MRD for its target.
- the MRD-containing antibody retains particular activities of the parent antibody.
- the MRD-containing antibody is capable of inducing complement dependent cytotoxicity.
- the MRD-containing antibody is capable of inducing antibody dependent cell mediated cytotoxicity (ADCC).
- the MRD-containing antibody is capable of inducing apoptosis.
- the MRD-containing antibody is capable of reducing tumor volume.
- the MRD-containing antibodies are capable of inhibiting tumor growth.
- the MRD-containing antibody shows improved activity or pharmacodynamic properties compared to the corresponding antibody without the attached MRD.
- the MRD-containing antibody has greater avidity than the corresponding antibody without the attached MRD.
- the MRD-containing antibody results in increased receptor aggregation compared to the corresponding antibody without the attached MRD.
- the MRD-containing antibody antagonizes target activity to a greater extent than the corresponding antibody without the attached MRD.
- the MRD-containing antibody agonizes target activity to a greater extent than the corresponding antibody without the attached MRD.
- the MRD-containing antibody has an improved pharmacodynamic profile than the corresponding antibody without the attached MRD.
- the MRD-containing antibody has a greater therapeutic efficacy than the corresponding antibody without the attached MRD.
- the MRD-containing antibodies have one or more of the following effects: inhibit proliferation of tumor cells, reduce the tumorigenicity of a tumor, inhibit tumor growth, increase subject survival, trigger cell death of tumor cells, differentiate tumorigenic cells to a non-tumorigenic state, or prevent metastasis of tumor cells.
- the MRD-containing antibody is at least as stable as the corresponding antibody without the attached MRD. In certain embodiments, the MRD-containing antibody is more stable than the corresponding antibody without the attached MRD. MRD-antibody stability can be measured using methods known to those in the art, including, for example, ELISA techniques. In some embodiments, the MRD-containing antibody is stable in whole blood at 37° C.
- the MRD-containing antibody has at least the same affinity for Fc receptors as the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has at least the same affinity for complement receptors as the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has at least the same half-life as the corresponding parent antibody. In other embodiments, the MRD-containing antibody can be expressed at levels commensurate with the corresponding parent antibody.
- the MRD-containing antibody has an increased affinity for Fc receptors compared to the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has an increased affinity for complement receptors compared to the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has an increased half-life compared to the corresponding parent antibody. In other embodiments, the MRD-containing antibody can be expressed at increased levels compared to that of the corresponding parent antibody.
- the MRD-containing antibody is conjugated to a cytotoxin.
- Cytotoxins include chemotherapeutic agents, growth inhibitory agents, toxins (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), radioactive isotopes (i.e., a radioconjugate), etc.
- Chemotherapeutic agents useful in the generation of such immunoconjugates include, for example, methotrexate, adriamicin, doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents.
- Chemotherapeutic agents useful in the generation of such immunoconjugates also include antitubulin drugs, such as auristatins, including monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF).
- auristatins including monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF).
- Enzymatically active toxins and fragments thereof that can be used according to the invention include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain, ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, pheno
- the heteromultimeric molecules can be conjugated to radioisotopes, such as 90 Y, 125 I, 131 I, 123 I, 111 In, 105 Rh, 153 Sm. 67 Cu, 67 Ga, 166 Ho, 177 Lu, 186 Re and 188 Re using anyone of a number of well known chelators or direct labeling.
- the MRD-containing antibody is coupled to drugs, prodrugs or lymphokines such as interferon.
- Conjugates of the MRD-containing antibody and cytotoxin can routinely be made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis(p-azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene).
- SPDP N-succin
- the toxin is conjugate to an MRD-containing antibody through an enzyme-cleavable linker system (e.g., such as that present in SGN-35).
- an enzyme-cleavable linker system e.g., such as that present in SGN-35.
- Conjugates of an MRD-containing antibody and one or more small molecule toxins such as a calicheamicin, maytansinoids, a trichothene, and CC1065, and the derivatives of these toxins that have toxin activity, can also be used.
- the MRD-containing antibody can be complexed, or have MRDs that bind with other immunologically active ligands (e.g., chemokines, cytokines, and antibodies or fragments thereof) wherein the resulting molecule binds to both the neoplastic cell or other target as well as the chemokine, cytokine, or an effector cell such as a T cell.
- immunologically active ligands e.g., chemokines, cytokines, and antibodies or fragments thereof
- the N-terminus or C-terminus of the antibody to which the MRD is operably linked in the MRD-antibody fusions is truncated. In preferred embodiments, this truncation does not prevent or reduce the ability of the antibody to bind to its target antigen via its antigen binding domain. In other embodiments, the truncation does not prevent or reduce Fc effector function, half-life and/or ADCC activity.
- MRDs are attached in the terminal region of the antibody chain. More particularly, in certain embodiments, the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the C-terminal amino acid of the heavy chain.
- the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the C-terminal amino acid of the light chain. In additional embodiments, the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the N-terminal amino acid of the heavy chain. In other embodiments, the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the N-terminal amino acid of the light chain.
- a MRD that is linked to the N-terminal end of the heavy chain can be linked to the first, second, third, fourth, fifth, or tenth amino acid of the N-terminal chain of the heavy chain.
- an MRD-antibody fusion containing an MRD linked to the N-terminal of the heavy chain may contain amino acids 1-3 of the heavy chain sequence linked to the MRD, which is linked to amino acid 4 of the heavy chain sequence.
- one or more MRDs are attached to the antibody at locations other than the termini of the antibody light and heavy chains.
- the MRD can be attached to any portion of the antibody that does not prevent the ability of the antibody to bind its target.
- the MRD is located outside the antibody combining site.
- the MRD can be located within a heavy chain sequence or within a light chain sequence.
- the MRD can be located between the Fc domain and the hinge region, between the hinge region and the CH1 domain of the heavy chain, between the CH1 domain and the variable region of the heavy chain, or between the constant region and the variable region of the light chain.
- the MRD-containing antibody targets ErbB2 and an angiogenic factor. In specific embodiments, the MRD-containing antibody targets ErbB2 and IGF1R. In another embodiment, the antibody targets ErbB2, and at least one MRD targets an angiogenic factor and/or IGF 1R. In one embodiment, an antibody that binds to the same ErbB2 epitope as trastuzumab is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In an additional embodiment, an antibody that competitively inhibits trastuzumab binding is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- an antibody that comprises the sequences of SEQ ID NOS:59-64 is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- the trastuzumab antibody is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- an antibody that binds to ErbB2 is operably linked to an MRD that targets Ang2.
- the antibody that binds to ErbB2 is linked to an Ang2 binding MRD that binds to the same Ang2 epitope as an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to ErbB2 is linked to an Ang2 binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to ErbB2 is linked to an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to ErbB2 is linked to an MRD comprising the sequence of SEQ ID NO:XXX.
- At least one Ang2 binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to ErbB2. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to ErbB2.
- At least one Ang2 binding MRD is operably linked directly to an antibody that binds to ErbB2. In additional embodiments, at least one Ang2 binding MRD is operably linked to an antibody that binds to ErbB2 via a linker.
- an antibody that binds to ErbB2 is operably linked to an MRD that targets IGF1R.
- the antibody that binds to ErbB2 is linked to an IGF1R binding MRD that binds to the same IGF1R epitope as an MRD comprising the sequence of SEQ ID NO:14.
- the antibody that binds to ErbB2 is linked to an IGF1R binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:14.
- the antibody that binds to ErbB2 is linked to an MRD comprising the sequence of SEQ ID NO:14.
- the antibody that binds ErbB2 is linked to an MRD encoding the sequence SLFVPRPERK (SEQ ID NO:103). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence ESDVLHFTST (SEQ ID NO:104). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence LRKYADGTL (SEQ ID NO:105).
- At least one IGF1R binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one IGF1R binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one IGF1R binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to ErbB2. In some embodiments, at least one IGF1R binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to ErbB2.
- At least one IGF1R binding MRD is operably linked directly to an antibody that binds to ErbB2. In additional embodiments, at least one IGF1R binding MRD is operably linked to an antibody that binds to ErbB2 via a linker.
- an MRD-containing antibody targets ErbB2 and HER2/3. In some embodiments, an MRD-containing antibody can bind to ErbB2 and HER2/3 simultaneously. In some embodiments, an antibody that binds to ErbB2 is operably linked to an MRD that targets HER2/3. In additional embodiments, at least one HER2/3-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to ErbB2. In further embodiments, at least one HER2/3-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to ErbB2.
- At least one HER2/3-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to ErbB2. In additional embodiments, at least one HER2/3-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to ErbB2.
- At least one HER2/3-binding MRD is operably linked directly to an antibody that binds to ErbB2. In additional embodiments, at least one HER2/3-binding MRD is operably linked to an antibody that binds to ErbB2 via a linker.
- an MRD-containing antibody targets ErbB2 and HER2/3. In some embodiments, an MRD-containing antibody can bind to ErbB2 and HER2/3 simultaneously. In some embodiments, an antibody that binds to HER2/3 is operably linked to an MRD that targets ErbB2. In additional embodiments, at least one ErbB2-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to HER2/3. In further embodiments, at least one ErbB2-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to HER2/3.
- At least one ErbB2-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to HER2/3. In additional embodiments, at least one ErbB2-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to HER2/3.
- the MRD-containing antibody targets ErbB2, Ang2, and IGF1R.
- the MRD-containing antibody comprises an antibody that targets ErbB2, an MRD that targets Ang2, and an MRD that targets IGF1R.
- the Ang2 and IGF1R MRDs are attached to the same location on the anti-ErbB2 antibody.
- the Ang2 and IGF1R MRDs are attached to different locations on the anti-ErbB2 antibody.
- the Ang2 and IGF1R MRDs are on the light chain of the anti-ErbB2 antibody.
- the Ang2 and IGF1R MRDs are on the heavy chain of the anti-ErbB2 antibody.
- the Ang2 MRD is on the light chain of the ErbB2 antibody
- the IGF1R MRD is on the heavy chain of the anti-ErbB2 antibody.
- the Ang2 MRD is on the heavy chain of the ErbB2 antibody
- the IGF1R MRD is on the light chain of the anti-ErbB2 antibody.
- the Ang2 MRD is on the N-terminus of the heavy chain of the ErbB2 antibody
- the IGF1R MRD is on the C-terminus of the light chain of the anti-ErbB2 antibody.
- the IGF1R MRD is on the N-terminus of the heavy chain of the ErbB2 antibody
- the Ang2 MRD is on the C-terminus of the light chain of the anti-ErbB2 antibody.
- MRD-containing antibodies comprising an antibody that targets Ang2, an MRD that targets ErbB2, and an MRD that targets IGF1R; and MRD-containing antibodies comprising an antibody that targets IGF1R, an MRD that targets ErbB2, and an MRD that targets Ang2 are also encompassed by the invention.
- the anti-ErbB2 antibody operably linked to an Ang2 binding MRD binds to both ErbB2 and Ang2 simultaneously. In some embodiments, the anti-ErbB2 antibody operably linked to an IGF1R binding MRD binds to both ErbB2 and IGF1R simultaneously. In some embodiments, the anti-ErbB2 antibody operably linked to an Ang2 MRD and an IGF1R MRD binds to ErbB2, Ang2, and IGF1R simultaneously. In some embodiments, the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) exhibits ADCC activity.
- the anti-ErbB2 antibody operably linked to an Ang2 and/or, IGF1R binding MRD(s) down-regulates Akt signaling.
- the anti-ErbB2 antibody operably linked to an Ang2 binding MRD inhibits Ang2 binding to Tie2.
- the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) down-regulates IGF1R signaling.
- the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits cell proliferation.
- the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits tumor growth.
- the MRD-containing antibody binds 2, 3, 4, 5 or more targets selected from the group: EGFR, ErbB2, ErbB3, cMet, IGF1R, PDGFR, FGFR1, FGFR2, FGFR3, VEGFR1, and Ang2.
- MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- the MRD-containing antibody is an anti-ErbB2 antibody operably linked to MRDs that bind Her3, EGFR, IGF1R, Ang2, and PDGFR.
- an anti-EGFR antibody is operably linked to MRDs that bind Her3, ErbB2, VEGR, IGF1R, Ang2, and PDGFR.
- MRD containing antibodies are expected to have particular use in treating cancers including solid tumors and an treating disorders associated with neovascularization, such as those indications described herein or otherwise known in the art.
- these MRD-containing antibodies contain an MRD or antibody that binds MACE, Meloe-1 and/or CD20.
- Such MRD-containing antibodies have applications in, for example treating cancers such as, melanoma.
- these MRD-containing antibody additionally contain an MRD or antibody that binds PSMA.
- Such MRD-containing antibodies have applications in, for example treating prostate cancer and other disorders associated with the prostate.
- these MRD-containing antibodies contain an MRD or antibody that binds PMSA. Such MRD-containing antibodies have applications in, for example treating prostate cancer and other disorders associated with the protstate. In additional embodiments these MRD-containing antibody additionally contain an MRD or antibody that binds PMSA. Such MRD-containing antibodies have applications in, for example treating prostate cancer and other disorders associated with the protstate.
- the MRD-containing antibody targets VEGF and an angiogenic factor. In specific embodiments, the MRD-containing antibody targets VEGF and IGF1R. In another embodiment, the antibody targets VEGF, and at least one MRD targets an angiogenic factor and/or IGF1R. In one embodiment, an antibody that binds to the same VEGF epitope as bevacizumab is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In an additional embodiment, an antibody that competitively inhibits bevacizumab binding is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- an antibody that comprises the sequences of SEQ ID NOS:78-79 is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- the bevacizumab antibody is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- an antibody that binds to VEGF is operably linked to an MRD that targets Ang2.
- the antibody that binds to VEGF is linked to an Ang2 binding MRD that binds to the same Ang2 epitope as an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to VEGF is linked to an Ang2 binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to VEGF is linked to an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to VEGF is linked to an MRD comprising the sequence of SEQ ID NO:XXX.
- At least one Ang2 binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to VEGF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to VEGF.
- At least one Ang2 binding MRD is operably linked directly to an antibody that binds to VEGF. In additional embodiments, at least one Ang2 binding MRD is operably linked to an antibody that binds to VEGF via a linker.
- an antibody that binds to VEGF is operably linked to an MRD that targets IGF1R.
- the antibody that binds to VEGF is linked to an IGF1R binding MRD that binds to the same IGF1R epitope as an MRD comprising the sequence of SEQ ID NO:14.
- the antibody that binds to VEGF is linked to an IGF1R binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:14.
- the antibody that binds to VEGF is linked to an MRD comprising the sequence of SEQ ID NO:14.
- the antibody that binds ErbB2 is linked to an MRD encoding the sequence SLFVPRPERK (SEQ ID NO:103). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence ESDVLHFTST (SEQ ID NO:104). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence LRKYADGTL (SEQ ID NO:105).
- At least one IGF1R binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one IGF1R binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one IGF1R binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to VEGF. In some embodiments, at least one IGF I R binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to VEGF.
- At least one IGF1R binding MRD is operably linked directly to an antibody that binds to VEGF. In additional embodiments, at least one IGF1R binding MRD is operably linked to an antibody that binds to VEGF via a linker.
- the MRD-containing antibody targets VEGF, Ang2, and IGF1R.
- the MRD-containing antibody comprises an antibody that targets VEGF, an MRD that targets Ang2, and an MRD that targets IGF1R.
- the Ang2 and IGF1R MRDs are attached to the same location on the anti-VEGF antibody.
- the Ang2 and IGF1R MRDs are attached to different locations on the anti-VEGF antibody.
- the Ang2 and IGF1R MRDs are on the light chain of the anti-VEGF antibody.
- the Ang2 and IGF1R MRDs are on the heavy chain of the anti-VEGF antibody.
- the Ang2 MRD is on the light chain of the anti-VEGF antibody, and the IGF1R MRD is on the heavy chain of the anti-VEGF antibody. In some embodiments, the Ang2 MRD is on the heavy chain of the anti-VEGF antibody, and the IGF1R MRD is on the light chain of the anti-VEGF antibody. In some embodiments, the Ang2 MRD is on the N-terminus of the heavy chain of the anti-VEGF antibody, and the IGF1R MRD is on the C-terminus of the light chain of the anti-VEGF antibody. In some embodiments, the IGF1R MRD is on the N-terminus of the heavy chain of the anti-VEGF antibody, and the Ang2 MRD is on the C-terminus of the light chain of the anti-VEGF antibody.
- the anti-VEGF antibody operably linked to an Ang2 binding MRD binds to both anti-VEGF and Ang2 simultaneously. In some embodiments, the anti-VEGF antibody operably linked to an IGF1R binding MRD binds to both anti-VEGF and IGFR1 simultaneously. In some embodiments, the anti-VEGF antibody operably linked to an Ang2 binding MRD and an IGF1R binding MRD binds to VEGF, Ang2, and IGF1R simultaneously. In some embodiments, the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) exhibits ADCC activity.
- the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) down-regulates VEGF signaling.
- the anti-VEGF antibody operably linked to an Ang2 binding MRD inhibits Ang2 binding to Tie2.
- the anti-VEGF antibody operably linked to an IGF1R binding MRD inhibits IGF1R signaling.
- the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits cell proliferation.
- the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits tumor growth.
- the anti-ErbB2 antibody or the VEGF antibody contains and MRD that inhibits the binding of pertuzumab to ErbB2.
- an anti-ErbB2 antibody contains at least one'MRD that binds to Ang2 or IGF1R and one MRD that inhibits the binding of pertuzumab to ErbB2.
- an anti-VEGF antibody contains at least one MRD that binds to Ang2 or IGF1R and one MRD that inhibits the binding of pertuzumab to ErbB2.
- an anti-ErbB2 antibody contains an MRD that binds Ang2, an MRD that binds IGF1R, and an MRD that inhibits the binding of pertuzumab to ErbB2.
- an anti-VEGF antibody contains an MRD that binds Ang2, an MRD that binds IGF1R, and an MRD that inhibits the binding of pertuzumab to ErbB2.
- the MRD-containing antibody targets TNF and an angiogenic factor.
- the antibody targets TNF (i.e., TNF-alpha (TNFSF1A)), and at least one MRD targets an angiogenic factor.
- TNF i.e., TNF-alpha (TNFSF1A)
- TNFSF1A TNF-alpha
- an antibody that binds to the same TNF epitope as adalimumab is operably linked to at least one MRD that targets an angiogenic factor.
- an antibody that competitively inhibits adalimumab binding is operably linked to at least one MRD that targets an angiogenic factor.
- an antibody that comprises the sequences of SEQ ID NOS:80-85 is operably linked to at least one MRD that targets an angiogenic factor.
- the adalimumab antibody is operably linked to at least one MRD that targets an angiogenic factor.
- an antibody that binds to the same TNF epitope as golimumab is operably linked to at least one MRD that targets an angiogenic factor.
- an antibody that competitively inhibits golimumab binding is operably linked to at least one MRD that targets an angiogenic factor.
- the golimumab antibody is operably linked to at least one MRD that targets an angiogenic factor.
- an antibody that binds to TNF is operably linked to an MRD that targets Ang2.
- the antibody that binds to TNF is linked to an Ang2 binding MRD that binds to the same Ang2 epitope as an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to TNF is linked to an Ang2 binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to TNF is linked to an MRD comprising the sequence of SEQ ID NO:8.
- the antibody that binds to TNF is linked to an MRD comprising the sequence of SEQ ID NO:XXX.
- At least one Ang2 binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- At least one Ang2 binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one Ang2 binding MRD is operably linked to an antibody that binds to TNF via a linker.
- the anti-TNF antibody operably linked to an Ang2 binding MRD binds to both TNF and Ang2 simultaneously. In some embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD exhibits ADCC activity. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD inhibits binding of TNF to the p55 and p75 cell surface TNF receptors. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD lyses surface TNF-expressing cells in vitro in the presence of complement. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD inhibits Ang2 binding to Tie2. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD reduces the signs and symptoms of arthritis.
- the MRD-containing antibody targets TNF and IL6. In some embodiments, the MRD-containing antibody is capable of binding TNF and IL6 simultaneously. Thus, in some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets IL6. In other embodiments, an antibody that binds to IL6 is operably linked to an MRD that targets TNF.
- At least one IL6-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one IL6-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one IL6-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one IL6-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- At least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds IL6. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to IL6. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to IL6. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to IL6.
- At least one IL6-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one IL6-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- At least one TNF-binding MRD is operably linked directly to an antibody that binds to IL6. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL6 via a linker.
- At least one IL-1 beta-binding MRD is operably linked directly to an antibody that binds to IL-6. In additional embodiments, at least one IL6-binding MRD is operably linked to an antibody that binds to IL-1 beta via a linker.
- At least one TNF-binding MRD is operably linked directly to an antibody that binds to IL6. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL6 via a linker.
- the MRD-containing antibody targets TNF and IL-17 (e.g., IL-17A).
- the MRD-containing antibody is capable of binding TNF and IL-17 simultaneously.
- an antibody that binds to TNF is operably linked to an MRD that targets IL17.
- an antibody that binds to IL-17 is operably linked to an MRD that targets TNF.
- At least one IL-17-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one IL-17-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one IL-17-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one IL-17-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- At least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds IL-17. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to IL-17. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to IL-17. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to IL17.
- At least one IL-17-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one IL-17-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- At least one TNF-binding MRD is operably linked directly to an antibody that binds to IL-17. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL-17 via a linker.
- the MRD-containing antibody targets TNF and IL-1 beta. In some embodiments, the MRD-containing antibody is capable of binding TNF and IL-1 beta simultaneously. Thus, in some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets IL-1 beta. In other embodiments, an antibody that binds to IL-1 beta is operably linked to an MRD that targets TNF.
- At least one IL-1 beta-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one IL-1 beta-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one IL-1 beta-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one IL-1 beta-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- At least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds IL-1 beta. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to IL-1 beta. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to IL-1 beta. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to IL-1 beta.
- At least one IL-1 beta-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one IL-1 beta-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- At least one TNF-binding MRD is operably linked directly to an antibody that binds to IL-1 beta. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL-1 beta via a linker.
- At least one IL-17 (e.g., IL-17A)-binding MRD and at least one IL1 beta binding MRD are operably linked directly to the same or different termini of an antibody that binds to TNF.
- at least one IL-17-binding MRD and at least one IL1 beta binding MRD are operably linked to the same or different termini of an antibody that binds to TNF via a linker.
- At least one IL-17 (e.g., IL-17A)-binding MRD and at least one TNF-binding MRD are operably linked directly to the same or different termini of an antibody that binds to IL-1 beta.
- at least one IL-17-binding MRD and at least one TNF-binding MRD are operably linked to the same or different termini of an antibody that binds to IL-1 beta via a linker.
- At least one IL-1 beta-binding MRD and at least one TNF-binding MRD are operably linked directly to the same or different termini of an antibody that binds to IL-17 (e.g., IL-17A). In additional embodiments, at least one IL-1 beta-binding MRD and at least one TNF-binding MRD are operably linked to the same or different termini of an antibody that binds to IL-17 via a linker.
- the MRD-containing antibody targets TNF and BLyS. In some embodiments, the MRD-containing antibody is capable of binding TNF and BLyS simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets BLyS. In other embodiments, an antibody that binds to BLyS is operably linked to an MRD that targets TNF.
- At least one BLyS-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one BLyS-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one BLyS-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one BLyS-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- At least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds BLyS. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to BLyS. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to BLyS. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to BLyS.
- At least one BLyS-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one BLyS-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- At least one TNF-binding MRD is operably linked directly to an antibody that binds to BLyS. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to BLyS via a linker.
- the MRD-containing antibody targets Ang2, TNF, and IL6. In some embodiments, the MRD-containing antibody is capable of binding Ang2, TNF, and IL6 simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets Ang2 and an MRD that targets IL6. In some embodiments, the Ang2- and IL6-binding MRDs are located on the same antibody chain. In some embodiments, the Ang2- and IL6-binding MRDs are located on the same antibody terminus. In some embodiments, the Ang2- and IL6-binding MRDs are located on different antibody chains. In some embodiments, the Ang2- and IL6-binding MRDs are located on different antibody termini.
- an antibody that binds to Ang2 is operably linked to an MRD that targets TNF and an MRD that targets IL6.
- the TNF- and IL6-binding MRDs are located on the same antibody chain. In some embodiments, the TNF- and IL6-binding MRDs are located on the same antibody terminus. In some embodiments, the TNF- and IL6-binding MRDs are located on different antibody chains. In some embodiments, the TNF- and IL6-binding MRDs are located on different antibody termini.
- an antibody that binds to IL6 is operably linked to an MRD that targets Ang2 and an MRD that targets TNF.
- the Ang2- and TNF-binding MRDs are located on the same antibody chain.
- the Ang2- and TNF-binding MRDs are located on the same antibody terminus.
- the Ang2- and TNF-binding MRDs are located on different antibody chains.
- the Ang2- and TNF-binding MRDs are located on different antibody termini.
- the MRD-containing antibody targets Ang2, TNF, and BLyS. In some embodiments, the MRD-containing antibody is capable of binding Ang2, TNF, and BLyS simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets Ang2 and an MRD that targets BLyS. In other embodiments, an antibody that binds to BLyS is operably linked to an MRD that targets TNF and an MRD that targets Ang2. In other embodiments, an antibody that binds to Ang2 is operably linked to an MRD that targets TNF and an MRD that targets BLyS.
- the Ang2-, BLyS, and/or TNF-binding MRDs are located on the same antibody chain. In some embodiments, Ang2-, BLyS, and/or TNF-binding MRDs are located on the same antibody terminus. In some embodiments, the Ang2-, BLyS, and/or TNF-binding MRDs are located on different antibody chains. In some embodiments, the Ang2-, BLyS, and/or TNF-binding MRDs are located on different antibody termini.
- the MRD-containing antibody targets Ang2, TNF, IL6, and BLyS. In some embodiments, the MRD-containing antibody is capable of binding Ang2, TNF, IL6 and BLyS simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets Ang2, an MRD that targets IL6, and an MRD that targets BLyS. In some embodiments, an antibody that binds to Ang2 is operably linked to an MRD that targets TNF, an MRD that targets IL6, and an MRD that targets BLyS.
- an antibody that binds to IL6 is operably linked to an MRD that targets Ang2, an MRD that targets TNF, and an MRD that targets BLyS.
- an antibody that binds to BLyS is operably linked to an MRD that targets Ang2, an MRD that targets IL6, and an MRD that targets TNF.
- the TNF-, Ang2-, IL6-, and/or BLyS-binding MRDs are located on the same antibody chain.
- the TNF-, Ang2-, IL6- and/or BLyS-binding MRDs are located on the same antibody terminus.
- the TNF-, Ang2-, IL6-, and/or BLyS-binding MRDs are located on different antibody chains. In some embodiments, the TNF-, Ang2-, IL6- and/or BLyS-binding MRDs are located on different antibody termini.
- the antibody-MRD fusion molecules can be encoded by a polynucleotide comprising a nucleotide sequence.
- the polynucleotides described herein can encode an MRD, an antibody heavy chain, an antibody light chain, a fusion protein comprising an antibody heavy chain and at least one MRD, and/or a fusion protein comprising an antibody light chain and at least one MRD.
- an expression vector and/or a host cell that comprises one or more of the polynucleotides.
- methods of producing an MRD-containing antibody comprising: culturing a host cell comprising one or more polynucleotides or an expression vector comprising one or more isolated polynucleotides in a medium under conditions allowing the expression of said one or more polynucleotide, wherein said one or more polynucleotides encodes one or more polypeptides that form part of MRD-containing antibody; and recovering said MRD-containing antibody.
- any type of cultured cell line can be used to express the MRD-containing antibody of the present invention.
- CHO cells, BHK cells, NS0 cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, other mammalian cells, avian cells, yeast cells, insect cells, or plant cells are used as the background cell line to generate the engineered host cells of the invention.
- one or several polynucleotides encoding an MRD-containing antibody can be expressed under the control of a constitutive promoter or, alternately, a regulated expression system.
- Suitable regulated expression systems include, but are not limited to, a tetracycline-regulated expression system, an ecdysone inducible expression system, a lac-switch expression system, a glucocorticoid-inducible expression system, a temperature-inducible promoter system, and a metallothionein metal-inducible expression system.
- nucleic acids encoding an MRD-containing antibody are comprised within the host cell system, some of them can be expressed under the control of a constitutive promoter, while others are expressed under the control of a regulated promoter.
- the maximal expression level is considered to be the highest possible level of stable polypeptide expression that does not have a significant adverse effect on cell growth rate, and will be determined using routine experimentation. Expression levels are determined by methods generally known in the art, including Western blot analysis and Northern blot analysis.
- the polynucleotide may be operatively linked to a reporter gene; the expression levels of an MRD-containing antibody disclosed herein are determined by measuring a signal correlated with the expression level of the reporter gene.
- the reporter gene may be transcribed together with the nucleic acid(s) encoding said MRD-containing antibody as a single mRNA molecule; their respective coding sequences may be linked either by an internal ribosome entry site (IRES) or by a cap-independent translation enhancer.
- the nucleic acids encoding an MRD-containing antibody can be operatively linked to the reporter gene under the control of a single promoter, such that the nucleic acid encoding the MRD-containing antibody and the reporter gene are transcribed into an RNA molecule which is alternatively spliced into two separate messenger RNA (mRNA) molecules; one of the resulting mRNAs is translated into said reporter protein, and the other is translated into the MRD-containing antibody.
- mRNA messenger RNA
- the vectors used are pCEP4 (Invitrogen®) vectors.
- the vectors used are pcDNA3 (Invitrogen®) vectors.
- a variety of host-expression vector systems may be utilized to express the coding sequence an MRD-containing antibody.
- Mammalian cells can be used as host cell systems transfected with recombinant plasmid DNA or cosmid DNA expression vectors containing the coding sequence of the protein of interest and the coding sequence of the fusion polypeptide.
- Cells such as 293 cells (e.g., 293T and 293F), CHO cells, BHK (cells, NS0 cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, other mammalian cells, yeast cells, insect cells, or plant cells are used as host cell system.
- yeast cells transformed with recombinant yeast expression vectors containing the coding sequence of an MRD-containing antibody of the present invention such as the expression systems taught in U.S. Pat. Appl. No.
- WO 03/056914 methods for producing human-like glycoprotein in a non-human eukaryotic host cell (the contents of each of which are incorporated by reference in their entirety); insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the coding sequence of an MRD-containing antibody; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the coding sequence of an MRD-containing antibody, including, but not limited to, the expression systems taught in U.S. Pat. No.
- recombinant virus expression vectors e.g., baculovirus
- plant cell systems infected with recombinant virus expression vectors e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV
- the vector comprising the polynucleotide(s) encoding the MRD-containing antibody of the invention is polycistronic.
- Stable expression typically achieves more reproducible results than transient expression and also is more amenable to large-scale production; however, it is within the skill of one in the art to determine whether transient expression is better for a particular situation.
- host cells can be transformed with the respective coding nucleic acids controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker.
- appropriate expression control elements e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.
- engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media.
- the selectable marker in the recombinant plasmid confers resistance to the selection and allows selection of cells which have stably integrated the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
- a number of selection systems may be used, including, but not limited to, the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:2026 (1962)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 (1980)) genes, which can be employed in tk ⁇ , hgprt ⁇ or apt ⁇ cells, respectively.
- antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:3567 (1989); O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin et al., J. Mol. Biol.
- trpB which allows cells to utilize indole in place of tryptophan
- hisD which allows cells to utilize histinol in place of histidine
- the MRD-containing antibodies are expressed at levels (titers) comparable to those of antibodies. In some embodiments, the MRD-containing antibodies are expressed at least about 10 ⁇ g/ml, at least about 20 ⁇ g/ml, or at least about 30 ⁇ g/ml. In some embodiments, the MRD-containing antibodies are expressed at least about 40 ⁇ g/ml or at least about 50 ⁇ g/ml.
- the MRD-containing antibodies are expressed at least about 60 ⁇ g/ml, at least about 70 ⁇ g/ml, at least about 80 ⁇ g/ml, at least about 90 ⁇ g/ml, at least about 95 ⁇ g/ml, at least about 100 ⁇ g/ml, at least about 110 ⁇ g/ml, at least about 120 ⁇ g/ml, at least about 130 ⁇ g/ml, at least about 140 ⁇ g/ml, at least about 150 ⁇ g/ml, at least about 160 ⁇ g/ml, at least about 170 ⁇ g/ml, at least about 180 ⁇ g/ml, at least about 190 ⁇ g/ml, or at least about 200 ⁇ g/ml.
- the present invention is further directed to a method for modifying the glycosylation profile of an MRD-containing antibody that is produced by a host cell, comprising expressing in said host cell a nucleic acid encoding an MRD-containing antibody and a nucleic acid encoding a polypeptide with a glycosyltransferase activity, or a vector comprising such nucleic acids.
- Genes with glycosyltransferase activity include ⁇ (1,4)-N-acetylglucosaminyltansferase III (GnTII), ⁇ -mannosidase II (Mann), ⁇ (1,4)-galactosyltransferase (GalT), ⁇ (1,2)-N-acetylglucosaminyltransferase I (GnTI), and ⁇ (1,2)-N-acetylglucosaminyltransferase II (GnTII).
- a combination of genes with glycosyltransferase activity are expressed in the host cell (e.g., GnTIII and Man II).
- the method also encompasses expression of one or more polynucleotide(s) encoding the MRD-containing antibody in a host cell in which a glycosyltransferase gene has been disrupted or otherwise deactivated (e.g., a host cell in which the activity of the gene encoding ⁇ 1-6 core fucosyltransferase has been knocked out).
- the MRD-containing antibody can be produced in a host cell that further expresses a polynucleotide encoding a polypeptide having GnTIII activity to modify the glycosylation pattern.
- the polypeptide having GnTIII activity is a fusion polypeptide comprising the Golgi localization domain of a Golgi resident polypeptide.
- the expression of the MRD-containing antibody in a host cell that expresses a polynucleotide encoding a polypeptide having GnTIII activity results in an MRD-containing antibody with increased Fc receptor binding affinity and increased effector function.
- the present invention is directed to a host cell comprising (a) an isolated nucleic acid comprising a sequence encoding a polypeptide having GnTIII activity; and (b) an isolated polynucleotide encoding an MRD-containing antibody of the present invention, such as a chimeric, primatized or humanized antibody.
- the polypeptide having GnTIII activity is a fusion polypeptide comprising the catalytic domain of GnTIII and the Golgi localization domain is the localization domain of mannosidase II.
- the MRD-containing antibodies with altered glycosylation produced by the host cells of the invention typically exhibit increased Fc receptor binding affinity and/or increased effector function as a result of the modification of the host cell (e.g., by expression of a glycosyltransferase gene).
- the increased Fc receptor binding affinity can be increased binding to a Fey activating receptor, such as the Fc ⁇ RIIIa receptor.
- the increased effector function can be an increase in one or more of the following: increased antibody-dependent cellular cytotoxicity, increased antibody-dependent cellular phagocytosis (ADCP), increased cytokine secretion, increased immune-complex-mediated antigen uptake by antigen-presenting cells, increased Fc-mediated cellular cytotoxicity, increased binding to NK cells, increased binding to macrophages, increased binding to polymorphonuclear cells (PMNs), increased binding to monocytes, increased crosslinking of target-bound antibodies, increased direct signaling inducing apoptosis, increased dendritic cell maturation, and increased T cell priming.
- ADCP antibody-dependent cellular cytotoxicity
- ADCP antibody-dependent cellular phagocytosis
- cytokine secretion increased immune-complex-mediated antigen uptake by antigen-presenting cells
- Fc-mediated cellular cytotoxicity increased binding to NK cells
- macrophages increased binding to macrophages
- PMNs polymorphonuclear cells
- the MRD-containing antibodies described herein are useful in a variety of applications including, but not limited to, therapeutic treatment methods, such as the treatment of cancer.
- the MRD-containing antibodies are useful for inhibiting tumor growth, reducing neovascularization, reducing angiogenesis, inducing differentiation, reducing tumor volume, and/or reducing the tumorigenicity of a tumor.
- the methods of use may be in vitro, ex vivo, or in vivo methods.
- the MRD-containing antibodies are useful for detecting the presence of a factor or multiple factors (e.g., antigens or organisms) in a biological sample.
- detecting encompasses quantitative or qualitative detection.
- a biological sample comprises a cell or tissue.
- such tissues include normal and/or cancerous tissues.
- therapeutic compositions of the present invention contemplates therapeutic compositions useful for practicing the therapeutic methods described herein.
- therapeutic compositions of the present invention contain a physiologically tolerable carrier together with at least one species of antibody comprising an MRD as described herein, dissolved or dispersed therein as an active ingredient.
- therapeutic compositions of the present invention contain a physiologically tolerable carrier together with at least one species of an MRD as described herein, dissolved or dispersed therein as an active ingredient.
- the therapeutic composition is not immunogenic when administered to a human patient for therapeutic purposes.
- compositions that contains active ingredients dissolved or dispersed therein are well understood in the art.
- compositions are prepared as sterile injectables either as liquid solutions or suspensions, aqueous or nonaqueous.
- solid forms suitable for solution, or suspensions, in liquid prior to use can also be prepared.
- the preparation can also be emulsified.
- an antibody-MRD containing composition can take the form of solutions, suspensions, tablets, capsules, sustained release formulations or powders, or other compositional forms.
- the active ingredient can be mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient and in amounts suitable for use in the therapeutic methods described herein.
- Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol or the like and combinations thereof.
- the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like which enhance the effectiveness of the active ingredient.
- the therapeutic composition of the present invention can include pharmaceutically acceptable salts of the components therein.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide) that are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, tartaric, mandelic and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like.
- Physiologically tolerable carriers are well known in the art.
- Exemplary of liquid carriers are sterile aqueous solutions that contain no materials in addition to the active ingredients and water, or contain a buffer such as sodium phosphate at physiological pH value, physiological saline or both, such as phosphate-buffered saline.
- aqueous carriers can contain more than one buffer salt, as well as salts such as sodium and potassium chlorides, dextrose, propylene glycol, polyethylene glycol, and other solutes.
- Liquid compositions can also contain liquid phases in addition to and to the exclusion of water.
- Exemplary of such additional liquid phases are glycerin, vegetable oils such as cottonseed oil, organic esters such as ethyl oleate, and water-oil emulsions.
- a therapeutic composition contains an antibody comprising a MRD of the present invention, typically in an amount of at least 0.1 weight percent of antibody per weight of total therapeutic composition.
- a weight percent is a ratio by weight of antibody total composition.
- 0.1 weight percent is 0.1 grams of antibody-MRD per 100 grams of total composition.
- An antibody-containing therapeutic composition typically contains about 10 micrograms ( ⁇ g) per milliliter (ml) to about 100 milligrams (mg) per ml of antibody as active ingredient per volume of composition, and more preferably contains about 1 mg/ml to about 10 mg/ml (i.e., about 0.1 to 1 weight percent).
- a therapeutic composition in another embodiment contains a polypeptide of the present invention, typically in an amount of at least 0.1 weight percent of polypeptide per weight of total therapeutic composition.
- a weight percent is a ratio by weight of polypeptide total composition.
- 0.1 weight percent is 0.1 grams of polypeptide per 100 grams of total composition.
- a polypeptide-containing therapeutic composition typically contains about 10 micrograms (ug) per milliliter (ml) to about 100 milligrams (mg) per ml of polypeptide as active ingredient per volume of composition, and more preferably contains about 1 mg/ml to about 10 mg/ml (i.e., about 0.1 to 1 weight percent).
- the presently described antibody-MRD molecules are particularly well suited for in vivo use as a therapeutic reagent.
- the method comprises administering to the patient a therapeutically effective amount of a physiologically tolerable composition containing an antibody-MRD molecule of the invention.
- the dosage ranges for the administration of the antibody-MRD molecule of the invention are those large enough to produce the desired effect in which the disease symptoms mediated by the target molecule are ameliorated.
- the dosage should not be so large as to cause adverse side effects, such as hyperviscosity syndromes, pulmonary edema, congestive heart failure, and the like.
- the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by one of skill in the art.
- the dosage can be adjusted by the individual physician in the event of any complication.
- an antibody-MRD molecule can have a similar PK profile to the corresponding antibody.
- an antibody-MRD is administered in a dosing concentration and regimen that is the same as the antibody component of the antibody-MRD molecule alone (e.g., a commercial antibody, biosimilar, or a biobetter thereof).
- an antibody-MRD is administered in a dosing concentration and regimen that is similar, or substantially the same as the antibody component of the antibody-MRD molecule alone.
- a therapeutically effective amount of an antibody-MRD molecule of the invention is typically an amount of antibody such that when administered in a physiologically tolerable composition is sufficient to achieve a plasma concentration of from about 0.1 microgram ( ⁇ g) per milliliter (ml) to about 100 ⁇ g/ml, preferably from about 1 ⁇ g/ml to about 5 ⁇ g/ml, and usually about 5 ⁇ g/ml.
- the dosage can vary from about 0.1 mg/kg to about 300 mg/kg, preferably from about 0.2 mg/kg to about 200 mg/kg, most preferably from about 0.5 mg/kg to about 20 mg/kg, in one or more dose administrations daily, for one or several days.
- the antibody-MRD molecule is administered at about 1 mg/kg to about 50 mg/kg, about 1 mg/kg to about 25 mg/kg, about 1 mg/kg to about 20 mg/kg, about 1 mg/kg to about 15 mg/kg, about 1 mg/kg to about 10 mg/kg, or about 1 mg/kg to about 5 mg/kg.
- the interval between doses is about twice a week, about every week, about every other week, or about every three weeks.
- the antibody-MRD is administered first at a higher loading dose and subsequently at a lower maintenance dose.
- the antibody-MRD molecule of the invention can be administered parenterally by injection or by gradual infusion over time.
- the target molecule can typically be accessed in the body by systemic administration and therefore most often treated by intravenous administration of therapeutic compositions, other tissues and delivery means are contemplated where there is a likelihood that the tissue targeted contains the target molecule.
- antibody-MRD molecules of the invention can be administered intravenously, intraperitoneally, intramuscularly, subcutaneously, intracavity, transdermally, and can be delivered by peristaltic means.
- MRD-containing antibodies can also be delivered by aerosol to airways and lungs.
- the antibody-MRD molecule is administered by intravenous infusion.
- the antibody-MRD molecule is administered by subcutaneous injection.
- the therapeutic compositions containing an antibody-MRD molecule of this invention are conventionally administered intravenously, as by injection of a unit dose, for example.
- unit dose when used in reference to a therapeutic composition of the present invention refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.
- the therapeutic compositions containing a human monoclonal antibody or a polypeptide are administered subcutaneously.
- compositions of the invention are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount.
- quantity to be administered depends on the subject to be treated, capacity of the subject's system to utilize the active ingredient, and degree of therapeutic effect desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each individual.
- suitable dosage ranges for systemic application are disclosed herein and depend on the route of administration. Suitable regimes for administration are also variable, but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration. Alternatively, continuous intravenous infusion sufficient to maintain concentrations in the blood in the ranges specified for in vivo therapies are contemplated.
- the invention provides a method for treating or preventing a disease, disorder, or injury comprising administering a therapeutically effective amount or prophylactically effective amount of antibody-MRD molecule to a subject in need thereof.
- the disease, disorder or injury is cancer.
- the disease, disorder or injury is a disease or disorder of the immune system, such as inflammation or an autoimmune disease.
- MRD-containing antibodies are expected to have at least the same therapeutic efficacy as the antibody contained in the MRD antibody containing antibody when administered alone. Accordingly, it is envisioned that the MRD-containing antibodies can be administered to treat or prevent a disease, disorder, or injury for which the antibody contained in the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, demonstrates a reasonably correlated beneficial activity in treating or preventing such disease, disorder or injury. This beneficial activity can be demonstrated in vitro, in an in vivo animal model, or in human clinical trials.
- an MRD-containing antibody is administered to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, demonstrates therapeutic or prophylactic efficacy in vitro or in an animal model.
- an MRD-containing antibody is administered to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, demonstrates therapeutic or prophylactic efficacy in humans.
- an MRD-containing antibody is administered to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, has been approved by a regulatory authority for use in such treatment or prevention.
- an MRD-containing antibody is administered in combination with another therapeutic to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD antibody, in combination with the therapeutic, or a different therapeutic that functions in the same way as the therapeutic in the combination, demonstrates therapeutic or prophylactic efficacy in vitro or in an animal model.
- an MRD-containing antibody is administered in combination with another therapeutic to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD antibody, in combination with the therapeutic, or a different therapeutic that functions in the same way as the therapeutic in the combination, demonstrates therapeutic or prophylactic efficacy in humans.
- an MRD-containing antibody is administered in combination with another therapeutic to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD antibody, in combination with the therapeutic, or a different therapeutic that functions in the same way as the therapeutic in the combination, has been approved by a regulatory authority for use in such treatment or prevention.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating colorectal cancer by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having colorectal cancer.
- the invention provides a method of treating breast cancer by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having breast cancer.
- the invention provides a method of treating non-small cell lung carcinoma by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having non-small cell lung carcinoma.
- therapeutic effective amounts of bevacizumab comprising at least one MRD are administered to treat a patient having metastatic colorectal cancer, metastatic breast cancer, metastatic pancreatic cancer, or metastatic non-small cell lung carcinoma.
- the invention provides a method of treating cancer by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having renal cell carcinoma, glioblastoma muliforme, ovarian cancer, prostate cancer, liver cancer or pancreatic cancer.
- compositions of the invention are administered alone or in combination with one or more additional therapeutic agents.
- Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially.
- This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual.
- Administration “in combination” further includes the separate administration of one of the therapeutic compounds or agents given first, followed by the second.
- a VEGFA or VEGFR binding MRD-containing antibody is administered in combination with 5-fluorouracil, carboplatin, paclitaxel, or interferon alpha.
- bevacizumab comprising at least one MRD is administered in combination with 5-fluorouracil, carboplatin, paclitaxel, or interferon alpha.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of ranibizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a ErbB2 (HER2) binding MRD-containing antibody to a patient in need thereof.
- the ErbB2-binding MRD-containing antibodies are administered to patients who have been previously shown to respond to another ErbB2-based therapy (e.g., HERCEPTIN, chemotherapy and/or radiation) or are predicted to respond to another ErbB2-based therapy.
- the ErbB2-binding MRD-containing antibodies are administered to patients who have previously failed to respond to another ErbB2-based therapy or are predicted to fail to respond to another ErbB2-based therapy.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of trastuzumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating breast cancer by administering a therapeutically effective amount of trastuzumab comprising at least one MRD to a patient having breast cancer.
- therapeutic effective amounts of trastuzumab comprising at least one MRD are administered to treat a patient having metastatic breast cancer.
- an ErbB2 (HER2) binding MRD-containing antibody is administered in combination with cyclophosphamide, paclitaxel, docetaxel, carboplatin, anthracycline, or a maytansinoid.
- trastuzumab comprising at least one MRD is administered in combination with cyclophosphamide, paclitaxel, docetaxel, carboplatin, anthracycline, or a maytansinoid.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a CD20-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating a hematologic cancer comprising administering a therapeutically effective amount of rituximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating CD20 positive NHL by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having CD20 positive NHL.
- the invention provides a method of treating CD20 positive CLL by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having CD20 positive CLL.
- a therapeutically effective amount of a CD20-binding MRD-containing antibody is administered in combination with: ludarabine, cyclophosphamide, FC (fludarabine and cyclophosphamide), anthracycline based chemotherapy regimen (e.g., CHOP (cyclophosphamide, adriamycin, vincristine and prednisone)), or CVP (cyclophosphamide, prednisone, and vincristine) chemotherapy.
- anthracycline based chemotherapy regimen e.g., CHOP (cyclophosphamide, adriamycin, vincristine and prednisone)
- CVP cyclophosphamide, prednisone, and vincristine
- a therapeutically effective amount of bevacizumab comprising at least one MRD is administered in combination with: ludarabine, cyclophosphamide, FC (fludarabine and cyclophosphamide), anthracycline based chemotherapy regimen (e.g., CHOP (cyclophosphamide, adriamycin, vincristine and prednisone)), or CVP (cyclophosphamide, prednisone, and vincristine) chemotherapy.
- anthracycline based chemotherapy regimen e.g., CHOP (cyclophosphamide, adriamycin, vincristine and prednisone)
- CVP cyclophosphamide, prednisone, and vincristine
- any of the antibody-MRD fusions containing antibodies and/or MRDs that bind CD20 can be used according to the methods of treating a disorder associated with CD20, or that can be treated by targeting cells that express CD20 (e.g., hematological cancers and autoimmune disease).
- the antibody component of the antibody-MRD-fusion is a member selected from rituximab, ocrelizumab, GA101, and PF-5,230,895.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a CD20-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a CD20-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a TNF-binding MRD-containing antibody to a patient in need thereof.
- the TNF-binding MRD-containing antibodies are administered to patients who have been previously shown to respond to another TNF-based therapy or are predicted to respond to another TNF-based therapy (e.g, TNF antagonists such as Anti-TNFs (e.g., HUMIRA), EMBREL, CD28 antagonists, CD-20 antagonists, and IL6/IL6R antagonists).
- TNF-binding MRD-containing antibodies are administered to patients who have previously failed to respond to another TNF-based therapy or are predicted to fail to respond to another TNF-based therapy.
- the TNF-binding MRD-containing antibodies are administered to patients who have been previously shown to respond to an autoimmune disease based therapy or are predicted to respond to other autoimmune disease based therapies (e.g, TNF antagonists such as anti-TNFs (e.g., HUMIRA), EMBREL, CD28 antagonists, CD-20 antagonists, BLyS antagonists, and IL6/IL6R antagonists).
- TNF antagonists such as anti-TNFs (e.g., HUMIRA), EMBREL, CD28 antagonists, CD-20 antagonists, BLyS antagonists, and IL6/IL6R antagonists.
- the TNF-binding MRD-containing antibodies are administered to patients who have previously failed to respond to another autoimmune disease based therapy or are predicted to fail to respond to another autoimmune disease based therapy.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a IL22-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of PF5,212,367 (ILV-094) comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a alpha4 integrin-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a natalizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a natalizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a CD40L-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a CDP7657-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a CDP7657-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a TWEAK-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of the Biogen TWEAK antibody (that has entered phase 1 clinical trials) comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a CD25-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a daclizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a daclizumab-MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- Antibody-MRD fusion proteins having antibodies and/or MRDs that bind cancer antigens or other targets associated with cancer establishment, progression, and/or metastasis are described herein or otherwise known in the art and may be used according to the methods of the invention to treat cancer.
- the antibody-MRD fusion proteins comprise an antibody and/or MRD that bind to a target identified in paragraphs [227]-[286] herein.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a EGFR-binding MRD-containing antibody to a patient in need thereof.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of cetuximab comprising at least one MRD to a patient in need thereof.
- the invention provides a method of treating cancer by administering a therapeutically effective amount of cetuximab comprising at least one MRD to a patient having colorectal cancer.
- therapeutic effective amounts of cetuximab comprising at least one MRD are administered to treat a patient having metastatic colorectal cancer, metastatic breast cancer, metastatic pancreatic cancer, or metastatic non-small cell lung carcinoma.
- the invention provides a method of treating cancer by administering a therapeutically effective amount of cetuximab comprising at least one MRD to a patient having squamous cell carcinoma of the head and neck.
- a therapeutically effective amount of an EGFR-binding MRD-containing antibody is administered in combination with irinotecan, FOLFIRI, platinum-based chemotherapy, or radiation therapy.
- a therapeutically effective amount of cetuximab comprising at least one MRD is administered in combination with irinotecan, FOLFIRI, platinum-based chemotherapy, or radiation therapy
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of an MRD-antibody described herein (e.g., at paragraphs [227]-[286]) to a patient in need thereof.
- the invention provides a method of treating a solid cancer by administering a therapeutically effective amount of a solid cancer binding MRD-antibody described herein (e.g., an MRD-antibody that binds a validated solid tumor associated target as described in paragraphs [227]-[286] herein), to a patient in need thereof.
- a solid cancer binding MRD-antibody described herein e.g., an MRD-antibody that binds a validated solid tumor associated target as described in paragraphs [227]-[286] herein
- the invention provides a method of treating a solid cancer by administering a therapeutically effective amount of an MRD-antibody that binds to a member selected from the group consisting of IGFR1, ALK1, p-cadherin, CRYPTO, and alpha5 b1 integrin,
- the antibody component of the administered MRD-antibody is a member selected from the group: figitumumab, CP-870893, PF-3,732,010, PF-3,446,962, volociximab, BIIB022, and the Biogen CRYPTO antibody.
- the MRD-containing antibodies described herein are useful for treating cancer.
- the invention provides methods of treating cancer comprise administering a therapeutically effective amount of a MRD-containing antibody to a subject (e.g., a subject in need of treatment).
- the cancer is a cancer selected from the group consisting of colorectal cancer, pancreatic cancer, lung cancer, ovarian cancer, liver cancer, breast cancer, brain cancer, kidney cancer, prostate cancer, gastrointestinal cancer, melanoma, cervical cancer, bladder cancer, glioblastoma, and head and neck cancer.
- the cancer is breast cancer.
- the subject is a human.
- cancers or malignancies that may be treated with MRD containing antibodies and MRDs include, but are not limited to: Acute Childhood Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphocytic Leukemia, Acute Myeloid Leukemia, Adrenocortical Carcinoma, Adult (Primary) Hepatocellular Cancer, Adult (Primary) Liver Cancer, Adult Acute Lymphocytic Leukemia, Adult Acute Myeloid Leukemia, Adult Hodgkin's Disease, Adult Hodgkin's Lymphoma, Adult Lymphocytic Leukemia, Adult Non-Hodgkin's Lymphoma, Adult Primary Liver Cancer, Adult Soft Tissue Sarcoma, AIDS-Related Lymphoma, AIDS-Related Malignancies, Anal Cancer, Astrocytoma, Bile Duct Cancer, Bladder Cancer, Bone Cancer, Brain Stem Glioma, Brain Tumors, Breast Cancer, Cancer of the
- MRD-containing antibodies are useful for inhibiting tumor growth.
- the method of inhibiting the tumor growth comprises contacting the cell with a MRD-containing antibody in vitro.
- a MRD-containing antibody in vitro.
- an immortalized cell line or a cancer cell line that expresses an MRD target and/or an antibody target is cultured in medium to which is added the MRD-containing antibody to inhibit tumor growth.
- tumor cells are isolated from a patient sample such as, for example, a tissue biopsy, pleural effusion, or blood sample and cultured in medium to which is added a MRD-containing antibody to inhibit tumor growth.
- the method of inhibiting tumor growth comprises contacting the tumor or tumor cells with a therapeutically effective amount of the MRD-containing antibody in vivo.
- contacting a tumor or tumor cell is undertaken in an animal model.
- MRD-containing antibodies can be administered to xenografts in immunocompromised mice (e.g., NOD/SCID mice) to inhibit tumor growth.
- cancer stem cells are isolated from a patient sample such as, for example, a tissue biopsy, pleural effusion, or blood sample and injected into immunocompromised mice that are then administered a MRD-containing antibody to inhibit tumor cell growth.
- the MRD-containing antibody is administered at the same time or shortly after introduction of tumorigenic cells into the animal to prevent tumor growth. In some embodiments, the MRD-containing antibody is administered as a therapeutic after the tumorigenic cells have grown to a specified size.
- the method of inhibiting tumor growth comprises administering to a subject a therapeutically effective amount of a MRD-containing antibody.
- the subject is a human.
- the subject has a tumor or has had a tumor removed.
- the tumor expresses an antibody target.
- the tumor overexpresses the MRD target and/or the antibody target.
- the inhibited tumor growth is selected from the group consisting of brain tumor, colorectal tumor, pancreatic tumor, lung tumor, ovarian tumor, liver tumor, breast tumor, kidney tumor, prostate tumor, gastrointestinal tumor, melanoma, cervical tumor, bladder tumor, glioblastoma, and head and neck tumor.
- the tumor is a breast tumor.
- MRD-containing antibodies are useful for reducing tumorigenicity.
- the method of reducing the tumorigenicity of a tumor in a subject comprises administering a therapeutically effective amount of a MRD-containing antibody to the subject.
- the tumor comprises cancer stem cells.
- the frequency of cancer stem cells in the tumor is reduced by administration of the agent.
- MRD-containing antibodies are useful for diagnosing, treating or preventing a disorder of the immune system.
- the disorder of the immune system is inflammation or an inflammatory disorder.
- the inflammatory disorder is selected from the group consisting of asthma, allergic disorders, and rheumatoid arthritis.
- the disorder of the immune system is an autoimmune disease.
- Autoimmune disorders, diseases, or conditions that may be diagnosed, treated or prevented using MRD-containing antibodies include, but are not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmune neutiopenia, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, gluten-sensitive enteropathy, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g., IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polyendocrinopathies, Purpura (e.g., Henloch-Scoenlein purpura), Reiter's Disease, Stiff-Man Syndrome, Autoimmune Pulmonary Inflammation, myocarditis
- the disorder of the immune system diagnosed, treated or prevented using MRD-containing antibodies is selected from the group consisting of: Crohn's disease, Systemic lupus erythematosus (SLE), inflammatory bowel disease, psoriasis, diabetes, ulcerative colitis, multiple sclerosis, and rheumatoid arthritis.
- the autoimmune disease is rheumatoid arthritis.
- MRD-containing antibodies are useful for treating or preventing a metabolic disease or disorder.
- the MRD-containing antibodies are useful for treating or preventing a cardiovascular disease or disorder. In one embodiment, the MRD-containing antibodies are useful for treating or preventing thrombosis, atherosclerosis, heart attack, or stroke.
- the MRD-containing antibodies are useful for treating or preventing a musculoskeletal disease or disorder.
- the MRD-containing antibodies are useful for treating or preventing a skeletal disease or disorder. In one embodiment, the MRD-containing antibodies are useful for treating or preventing osteoporosis.
- the disease, disorder, or injury treated or prevented with an MRD-containing antibody or MRD of the invention is neurological.
- the neurological disease, disorder or injury in pain such as, acute pain or chronic pain.
- the invention provides a method of treating or ameliorating pain by administering a therapeutically effective amount of a pain target binding MRD-antibody, to a patient in need thereof.
- the invention provides a method of treating or ameliorating pain by administering a therapeutically effective amount of an NGF binding MRD-antibody, to a patient in need thereof.
- the invention provides a method of treating or ameliorating pain by administering a therapeutically effective amount of tanezumumab (e.g., Pfizer) comprising an MRD, to a patient in need thereof.
- tanezumumab e.g., Pfizer
- an MRD-containing antibody binds to 2, 3, 4, or 5 targets selected from NGF, IL6R, IL6, CB2, SCN9A (Nav1.7). These MRD-containing antibodies have applications in treating an ameliorating pain.
- the invention provides a method of treating or ameliorating Alzheimer's by administering a therapeutically effective amount of an Alzheimer's target binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating Alzheimer's by administering a therapeutically effective amount of a beta amyloid binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating Alzheimer's by administering a therapeutically effective amount of RN1219 (PF-4,360,365; Pfizer) comprising an MRD, to a patient in need thereof.
- RN1219 PF-4,360,365; Pfizer
- an MRD-containing antibody binds to 1, 2, or 3 targets selected from NGF, beta amyloid and IGF1R.
- MRD-containing antibodies have applications in treating, ameliorating and delaying the onset of pre-dementia and dementia, including Alzheimer's.
- the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of an multiple sclerosis target binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of a LINGO binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of the Biogen LINGO antibody comprising an MRD, to a patient in need thereof.
- the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of the natalizumab (e.g., TYSABRI®; Biogen) comprising an MRD, to a patient in need thereof.
- a therapeutically effective amount of the Biogen LINGO antibody comprising an MRD to a patient in need thereof.
- the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of a CD20 binding MRD-antibody, to a patient in need thereof.
- the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of the ocrelizumab (Biogen Idec) comprising an MRD, to a patient in need thereof.
- MRD-containing antibodies are useful for treating or preventing an infectious disease.
- Infectious diseases that may be treated or prevented with MRD-containing antibodies include diseases associated with yeast, fungal, viral and bacterial infections.
- Viruses causing viral infections which can be treated or prevented with MRD-containing antibodies include, but are not limited to, retroviruses (e.g., human T-cell lymphotrophic virus (HTLV) types I and II and human immunodeficiency virus (HIV)), herpes viruses (e.g., herpes simplex virus (HSV) types I and II, Epstein-Barr virus, HHV6-HHV8, and cytomegalovirus), adrenoviruses (e.g., lassa fever virus), paramyxoviruses (e.g., morbilbivirus virus, human respiratory syncytial virus, mumps, and pneumovirus), adrenoviruses, bunyaviruses (e.g., hantavirus), corn
- Microbial pathogens causing bacterial infections include, but are not limited to, Streptococcus pyogenes, Streptococcus pneumoniae, Neisseria gonorrhoea, Neissetia meningitidis, Corynebacterium diphtheriae, Clostridium botulinum, Clostridium pefringens, Clostridium tetani, Haemophilus influenzae, Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromotis, Staphylococcus aureus, Vibrio cholerae, Escherichia coli, Pseudomonas aeruginosa, Campylobacter ( Vibrio ) fetus, Campylobacter jejuni, Aeromonas hydrophila, Bacillus cereus, Edwardsiella tarda, Yersinia enterocolitica, Yersinia pestis,
- the he MRD-containing antibodies are administered to treat or prevent human immunodeficiency virus (HIV) infection or AIDS, botulism, anthrax, or clostridium difficile.
- HIV human immunodeficiency virus
- one or more MRDs of the invention are operably linked to the amino and/or carboxyl terminus of an immunoglobulin fragment, such as Fab, Fab′, F(ab′)2, pFc′, or Fc.
- MRDs are operably linked to a Fab or Fc polypeptide containing an additional Ig domain.
- MRDs are operably linked to the amino and/or carboxyl terminus of an immunoglobulin fragment that is also operably linked to an scFv.
- the MRDs of the invention are operably linked to an Fc-fusion protein.
- one two, three, four, five, six, seven to ten, or more than ten MRDs are operably linked to the amino terminus and/or carboxyl terminus of the immunoglobulin fragment. These MRDs are optionally linked to one another or to the immunoglobulin fragment via a linker. In one embodiment, one, two, three, four, five, six, seven to ten, or more than ten, of the MRDs operably linked to the amino terminus and/or carboxyl terminus of the immunoglobulin fragment are the same. In another embodiment, one, two, three, four, five, six, seven to ten, or more than ten, of the MRDs operably linked to the amino terminus and/or carboxyl terminus of the immunoglobulin fragment are different.
- the MRDs operably linked to the immunoglobulin fragment can be monomeric (i.e., containing one MRD at the terminus of a peptide chain optionally connected by a linker) or multimeric (i.e., containing more than one MRD in tandem optionally connected by a linker).
- the MRDs can be homo-multimeric (i.e., containing more than one of the same MRD in tandem optionally connected by linker(s) (e.g., homodimers, homotrimers, homotetramers etc.)) or hetero-multimeric (i.e., containing two or more MRDs in which there are at least two different MRDs optionally connected by linker(s) where all or some of the MRDs linked to a particular terminus are different (e.g., heterodimer)).
- linker(s) e.g., homodimers, homotrimers, homotetramers etc.
- hetero-multimeric i.e., containing two or more MRDs in which there are at least two different MRDs optionally connected by linker(s) where all or some of the MRDs linked to a particular terminus are different (e.g., heterodimer)
- two different monomeric MRDs are located at different termini of the immunoglobulin fragment.
- the MRD-containing antibody contains at least one dimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homodimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heterodimeric and one monomeric MRD located at different immunoglobulin termini.
- the MRD-containing antibody contains at least one multimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homomultimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heteromultimeric and one monomeric MRD located at different immunoglobulin termini.
- Multiple MRDs that are operably linked to the immunoglobulin fragment can target the same target binding site, or two or more different target binding sites. Where the MRDs bind to different target binding sites, the binding sites may be on the same or different target molecules. Similarly, one or more of the MRDs may bind to the same target molecule as the immunoglobulin fragment.
- At least one of the MRDs and if applicable, the immunoglobulin fragment (e.g., where the immunoglobulin fragment is an Fab), bind to their targets simultaneously.
- the immunoglobulin fragment binds to their target molecules simultaneously.
- two, three, four, five, six, seven, eight, nine, ten, or more than ten MRDs, and if applicable the immunoglobulin fragment bind to their target molecules simultaneously.
- MRDs operably linked to an immunoglobulin fragment and the assay of these MRDs and immunoglobulin fragment for their ability to bind, or compete for binding, with one or more targets simultaneously can be routinely accomplished using methods disclosed herein or otherwise known in the art.
- one or more of the operably linked MRDs or the immunoglobulin fragment binds to VEGF. In another specific embodiment, one or more of the operably linked MRDs or the immunoglobulin fragment, binds to the same epitope as ranibizumab (LUCENTIS®). In another specific embodiment, one or more of the operably linked MRDs or the immunoglobulin fragment, competitively inhibits ranibizumab binding to VEGF. In an additional embodiment, the immunoglobulin fragment is an Fab. In a further specific embodiment, the immunoglobulin fragment is ranibizumab.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-immunoglobulin fragment fusion to a patient in need thereof.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-Fab fusion to a patient in need thereof.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of MRD-ranibizumab to a patient in need thereof.
- the one or more MRDs of the invention are operably linked to the amino and/or carboxyl terminus of an Fc fusion protein.
- the Fc fusion protein can contain fusions to any protein or polypeptide sequence of therapeutic value, for example, any of the targets or receptors of the targets described herein.
- the fusions can contain the extracellular domain of receptors or ligands that typically function or display improved cognate-partner binding in multimeric form, including for example, receptors corresponding to the TNF-R superfamily (e.g, TNFR2, TACI, BCMA, HVEM, etc.), IL receptor superfamily (e.g., IL1-R-IL-6R), VEGFR superfamily (e.g., VEGFR1-VEGR3), FGRFR superfamily (e.g., FGFR1-FGFR4), and B7 superfamily (e.g., CTLA)).
- TNF-R superfamily e.g, TNFR2, TACI, BCMA, HVEM, etc.
- IL receptor superfamily e.g., IL1-R-IL-6R
- VEGFR superfamily e.g., VEGFR1-VEGR3
- FGRFR superfamily e.g., FGFR1-FGFR4
- B7 superfamily e.g.
- one, two, three, four, five, six, or more MRDs are operably linked to a VEGR1/VEGFR2-Fc fusion protein.
- one or more of the operably linked MRDs bind to the same epitope as aflibercept (Regeneron).
- one or more of the operably linked MRDs competitively inhibit aflibercept binding to VEGFA or PLGF.
- the MRDs are operably linked to aflibercept.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of an MRD-VEGFR1/VEGFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating colorectal cancer, prostate cancer, or non-small cell lung cancer comprising administering a therapeutically effective amount of a VEGFA or PLGF binding MRD-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or PLGF binding MRD-Fc fusion protein and irinotecan, 5FU, oxaliplatin, doxetaxel, or FOLFOX6, to a patient in need thereof.
- the invention provides a method of treating cancer comprising administering a therapeutically effective amount of MRD-aflibercept to a patient in need thereof.
- the invention provides a method of treating colorectal cancer, prostate cancer, or non-small cell lung cancer comprising administering a therapeutically effective amount of MRD-aflibercept to a patient in need thereof.
- the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of MRD-aflibercept and irinotecan, 5FU, oxaliplatin, doxetaxel, or FOLFOX6, to a patient in need thereof.
- one, two, three, four, five, six, or more MRDs are operably linked to a CTLA4-Fc fusion protein.
- one or more of the operably linked MRDs bind to the same epitope as abatacept (ORENCIA®).
- one or more of the operably linked MRDs competitively inhibits abatacept binding to B7-1 (CD80) or B7-2 (CD86).
- the MRDs are operably linked to abatacept.
- one or more of the operably linked MRDs bind to the same epitope as belatacept (Bristol Myers Squibb).
- one or more of the operably linked MRDs competitively inhibits belatacept binding to B7-1 (CD80) or B7-2 (CD86).
- the immunoglobulin fragment is an Fab.
- the MRDs are operably linked to belatacept.
- the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-CTLA4-Fc fusion protein to a patient in need thereof.
- the invention provides a method suppressing an immune response comprising administering a therapeutically effective amount of MRD-abatacept to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of MRD-abatacept to a patient in need thereof.
- the invention provides a method of suppressing an immune response to a graft rejection comprising administering a therapeutically effective amount of MRD-abatacept to a patient in need thereof.
- the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of MRD-belatacept to a patient in need thereof.
- the invention provides a method of suppressing an immune response to a graft rejection comprising administering a therapeutically effective amount of MRD-belatacept to a patient in need thereof.
- one, two, three, four, five, six, or more MRDs are operably linked to a TNFR2-Fc fusion protein.
- one or more of the operably linked MRDs bind to the same epitope as etanercept (ENBREL®).
- one or more of the operably linked MRDs competitively inhibits etanercept binding to TNF alpha.
- one or more of the operably linked MRDs binds ANG2.
- the MRDs are operably linked to etanercept.
- the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of a MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-etanercept-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof.
- the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof.
- the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof.
- the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof.
- the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof.
- one, two, three, four, five, six, or more MRDs are operably linked to a TACI-Fc fusion protein.
- one or more of the operably linked MRDs bind to the same epitope as atacicept (Merck/Serono).
- one or more of the operably linked MRDs competitively inhibits atacicept binding to BLyS or APRIL.
- the MRDs are operably linked to atacicept.
- the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof.
- the invention provides a method of treating systemic lupus erythematosus by administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof.
- the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-atacicept fusion protein to a patient in need thereof.
- the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of a MRD-atacicept fusion protein to a patient in need thereof.
- the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of a MRD-atacicept protein fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating systemic lupus erythematosus, by administering a therapeutically effective amount of a MRD-atacicept fusion protein to a patient in need thereof.
- one, two, three, four, five, six, or more MRDs are operably linked to an IL-1R-Fc fusion protein.
- one or more of the operably linked MRDs bind to the same epitope as rilonacept (Regeneron).
- one or more of the operably linked MRDs competitively inhibits rilonacept binding to IL-1R.
- the MRDs are operably linked to rilonacept.
- the invention provides a method of preventing gout comprising administering a therapeutically effective amount of a MRD-IL-1R-Fc fusion protein to a patient in need thereof.
- the invention provides a method of preventing gout comprising administering a therapeutically effective amount of a MRD-rilonacept-Fc fusion protein to a patient in need thereof.
- Novel antibody-MRD fusion molecules were prepared by fusion of an integrin ⁇ v ⁇ 3-targeting peptides to catalytic antibody 38C2. Fusions at the N-termini and C-termini of the light chain and the C-termini of the heavy chain were most effective. Using flow cytometry, the antibody conjugates were shown to bind efficiently to integrin ⁇ v ⁇ 3-expressing human breast cancer cells. The antibody conjugates also retained the retro-aldol activity of their parental catalytic antibody 38C2, as measured by methodol and doxorubicin prodrug activation. This demonstrates that cell targeting and catalytic antibody capability can be efficiently combined for selective chemotherapy.
- Angiogenic cytokine targeting antibody-MRD fusion molecules were constructed.
- the antibody used was 38C2, which was fused with a MRD containing the 2 ⁇ Con4 peptide (AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10)).
- the MRD-containing peptide was fused to either the N- or C-terminus of the light chain and the C-terminus of the heavy chain. Similar results were found with the other Ang2 MRD peptides.
- Additional Ang2 MRD peptides include: MGAQTNFMPMDNDELLLYEQ FILQQGLEGGSGSTASSGSGSSLGAQTNFMPMDNDELLLY (SEQ ID NO:20) (LM-2x-32); AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10) (2 ⁇ Con4); AQQEECEFAPWTCEHM (SEQ ID NO:21) ConFA; core XnEFAPWfXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:22); AQQEEC EFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFAPWTCEHMLE (SEQ ID NO:23) (2 ⁇ ConFA); AQQEECELAPWTCEHM (SEQ ID NO:24) (ConLA); XnELAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:
- such peptides can be present in dimmers, trimers or other multimers either homologous or heterologous in nature.
- ConFA ConFA combined with ConFS to create ConFA-FS with the sequence: AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSPW TCEHMLE (SEQ ID NO:34).
- JC7U A human non-catalytic monoclonal Ab, JC7U was fused to an anti-Ang2 MRD containing 2 ⁇ Con4 (AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECE WDPWTCEHMLE (SEQ ID NO:10)) at either the N- or C-terminus of the light chain.
- 2 ⁇ Con4 AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEEC EWDPWTCEHMLE (SEQ ID NO:10)
- 2 ⁇ Con4 was studied as an N-terminal fusion to the Kappa chain of the antibody (2 ⁇ Con4-JC7U) and as a C-terminal fusion (JC7U-2 ⁇ Con4).
- both fusions maintained integrin and Ang2 binding.
- both antibody constructs (2 ⁇ Con4-JC7U and JC7U-2 ⁇ Con4) specifically bound to recombinant Ang2 as demonstrated by ELISA studies. Binding to Ang2, however, is significantly higher with JC7U-2 ⁇ Con4, which has the 2 ⁇ Con4 (SEQ ID NO:10) fusion at the C-terminus of the light chain of the antibody.
- the right panel of FIG. 3 depicts the binding of Ang2-JC7U and JC7U-Ang2 to integrin ⁇ v ⁇ 3 .
- FIG. 4 depicts another ELISA study using the same antibody-MRD fusion constructs.
- MRD fusions to a non-catalytic antibody are HERCEPTIN®-MRD fusion constructs.
- the HERCEPTIN®-MRD fusions are multifunctional, both small-molecule ⁇ v integrin antagonists and the chemically programmed integrin-targeting antibody show remarkable efficacy in preventing the breast cancer metastasis by interfering with ⁇ v-mediated cell adhesion and proliferation.
- MRD fusions containing HERCEPTIN®-2 ⁇ Con4 (which targets ErbB2 and Ang2) and HERCEPTIN®-V114 (which targets ErbB2 and VEGF targeting) and HERCEPTIN®-RGD-4C-2 ⁇ Con4 (which targets ErbB2, ang2, and integrin targeting) are effective.
- An antibody containing an MRD that targets VEGF was constructed.
- a MRD which targets vl 14 (SEQ ID NO:13) was fused at the N-terminus of the kappa chain of 38C2 and HERCEPTIN® using a linker. Expression and testing of the resulting antibody-MRD fusion constructs demonstrated strong VEGF binding.
- An antibody was constructed which contains an MRD that targets Ang2 (L17) (SEQ ID NO:7) fused to the light chain of an antibody which binds to ErbB2. Either the short linker sequence, the long linker sequence, or the 4th loop in the light chain constant region was used as a linker.
- FIG. 5 depicts the results of an ELISA using constructs containing an N-terminal fusion of an Ang2 targeting MRD with the ErbB2 antibody with the short linker peptide (GGGS (SEQ ID NO:1)) (L17-sL-Her), a C-terminal fusion of Ang2 targeting MRD with the ErbB2 antibody with the short linker peptide (Her-sL-L17), a C-terminal fusion of Ang2 targeting MRD with the ErbB2 antibody with the 4th loop in the light chain constant region (Her-1o-L17), or an N-terminal fusion of Ang2 targeting MRD with the ErbB2 antibody with the long linker peptide (SSGGGGSGGGGGGSSRSS (SEQ ID NO:19)) (L17-1L-Her).
- ErbB2 was bound with varying degrees by all of the constructs. However, Ang2 was bound only by Her-sL-L17 and L17-1L-Her.
- FIG. 6 depicts the results of an ELISA using constructs containing N-terminal fusion of Ang2 targeting MRD with the Met antibody with the short linker peptide (GGGS (SEQ ID NO:1)) (L17-sL-Met), N-terminal fusion of Ang2 targeting MRD with the Met antibody with the long linker peptide (SSGGGGSGGGGGGSSRSS (SEQ ID NO:19)) (L17-1L-Met), and C-terminal fusion of Ang2 targeting MRD with the Met antibody with the long linker peptide (Met-iL-L17).
- Expression and testing of the resulting antibody-MRD fusion constructs demonstrated strong Ang2 binding when the long linker peptide was used. Fusion of the Ang2 targeting MRD to the C-light chain terminus of the antibody resulted in slightly higher binding to Ang2 then fusion of the Ang2 targeting to the N-light chain terminus of the antibody.
- An antibody was constructed which contains an MRD that targets integrin ⁇ v ⁇ 3 (RGD4C) with the sequence CDCRGDCFC (SEQ ID NO:106) fused to the light chain of an antibody HERCEPTTN® which binds to ErbB2 (Her). Either the short linker sequence, the long linker sequence, or the 4th loop in the light chain constant region was used as a linker.
- FIG. 7 depicts the results of an ELISA using constructs containing an N-terminal fusion of integrin ⁇ v ⁇ 3 targeting MRD with the ErbB2 antibody with the short linker peptide (GGGS (SEQ ID NO:1)) (RGD4C-sL-Her), a C-terminal fusion of integrin ⁇ v ⁇ 3 targeting MRD with the ErbB2 antibody with the short linker peptide (Her-sL-RGD4C), a C-terminal fusion of integrin ⁇ v ⁇ 3 targeting MRD with the ErbB2 antibody with the 4th loop in the light chain constant region (Her-1o-RGD4C), or an N-terminal fusion of integrin ⁇ v ⁇ 3 targeting MRD with the ErbB2 antibody with the long linker peptide (SSGGGGSGGGGGGSSRSS (SEQ ID NO:19)) (RGD4C-1L-Her).
- ErbB2 was bound with varying degrees by all of the constructs.
- FIG. 8 depicts the results of an ELISA using constructs containing an N-terminal fusion of integrin ⁇ v ⁇ 3 targeting MRD with the hepatocyte growth factor receptor antibody (RGD4C-1L-Met), or a C-terminal fusion of integrin ⁇ v ⁇ 3 targeting MRD with the hepatocyte growth factor receptor antibody (Met-1L-RGD4C).
- RGD4C-1L-Met demonstrated strong integrin ⁇ v ⁇ 3 binding.
- Antibodies were constructed which contains an MRD that targets insulin-like growth factor-I receptor (RP) (SEQ ID NO:14) fused to the light chain of an antibody which binds to ErbB2 (Her). Either the short linker peptide, the long linker peptide, or the 4th loop in the light chain constant region was used as a linker (Carter et al., Proc Natl Acad Sci 89:4285-9 (1992); U.S. Pat. No. 5,677,171; and ATCC Deposit 10463, each of which is herein incorporated by reference).
- FIG. 9 depicts the results of an ELISA using constructs containing an N-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the short linker peptide (RP-sL-Her), a C-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody and the short linker peptide (Her-sL-RP), a C-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the 4th loop in the light chain constant region (Her-1o-RP), an N-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the long linker peptide (RP-1L-Her), or a C-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the long linker peptide (Her-1L-RP).
- ErbB2 was bound with varying degrees by all of the constructs. Insulin-like
- FIG. 10 depicts the results of an ELISA using a construct containing an N-terminal fusion of VEGF targeting MRD with the ErbB2-binding antibody with the medium linker peptide (Vl 14-mL-Her). Expression and testing of the resulting antibody-MRD fusion construct demonstrated strong VEGF and ErbB2 binding.
- FIG. 11 demonstrates that expression and testing of the resulting antibody-MRD fusion construct had strong integrin ⁇ v ⁇ 3 binding.
- FIG. 12 demonstrates that expression and testing of the resulting antibody-MRD fusion construct had strong Ang2 binding.
- FIG. 13 demonstrates that the resulting antibody-MRD fusion construct bound to integrin, Ang2, and ErbB2.
- ErbB2 targeting antibodies e.g., Her
- an IGF-1R MRD fused to the C-terminus of the heavy chain or the N-terminus of the light chain bound to immobilized IGF-1R at comparable rates.
- Each of these three MRD-containing antibodies also inhibited the binding of IGF-1 to immobilized IGF-1R.
- the trispecific molecule (HERCEPTIN with IGF-1R and Ang2 MRDs) bound to both cell surface ErbB2 and soluble Ang2.
- FIG. 14 depicts the results of an ELISA using the construct. Both integrin and ErbB2 were bound by the construct.
- Antibody-MRD molecules were constructed which contain ErbB2 or hepatocyte growth factor receptor binding antibodies, and integrin ⁇ v ⁇ 3, Ang2 or insulin-like growth factor-1 receptor-targeting MRD regions were linked with the short linker peptide to the light chain of the antibody.
- Antibody-MRD molecules were constructed which contain ErbB2 or hepatocyte growth factor receptor binding antibodies, and integrin ⁇ v ⁇ 3, Ang2 or insulin-like growth factor-I receptor-targeting MRD regions linked with the long linker peptide to the light chain of the antibody.
- FIG. 16 depicts the results of an ELISA using constructs containing an N-terminal fusion of Ang2 targeting MRD fused to the ErbB2 antibody (L17-1L-Her), an N-terminal fusion of integrin-targeting MRD with the ErbB2 antibody (RGD4C-1L-Her), an N-terminal fusion of insulin-like growth factor-I receptor-targeting MRD with the ErbB2 binding antibody (RP-1L-Her), a C-terminal fusion of Ang2 targeting MRD with the hepatocyte growth factor receptor binding antibody (L17-1L-Met), a C-terminal fusion of integrin targeting MRD with the hepatocyte growth factor receptor binding antibody (RGD4C-1L-Met), a C-terminal fusion of Ang2 targeting MRD with the insulin-like growth factor-I receptor binding antibody (Her-1L-RP), a C-terminal fusion of Ang2 targeting MRD with the hepatocyte growth factor receptor binding antibody (Met-1L-L17
- antibody-MRD fusions are effective to bind antigen and ErbB2.
- Monomer and dimer peptides were expressed as protein fusions to maltose binding protein (MBP) using a modified form of the pMAL-p2 vector and expression system from New England Biolabs (NEB; Beverly, Mass.)
- MBP maltose binding protein
- the PCR-generated MRD sequence was inserted into a pMAL vector down-stream from the malE gene, which encodes MBP. This results in a vector that encodes an MRD-MBP-fusion protein.
- the pMAL vector contains a strong Ptac promoter and is inducible by IPTG.
- the pMAL-p2 series contains the normal malE signal sequence, which directs the fusion protein through the cytoplasmic membrane.
- pMAL-p2 fusion proteins capable of being exported can be purified from the periplasm through osmotic shock. Further purification can be performed, for example by binding to amylose resin.
- bacterial cultures grown overnight were back-diluted into fresh media to an OD A600 of approximately 0.1. Cultures were grown to an OD of approximately 0.8 and induced with IPTG at a concentration of 0.3 mM. Cultures were incubated with shaking for approximately 4 hours, after which bacteria were centrifuged for 15 minutes at 4700 g. Pelleted bacteria were resuspended in 30 mM Tris-HCL pH 7.4, 20% sucrose, 1 mM EDTA. Cells were incubated for 20 minutes at room temperature (RT) prior to centrifugation for 15 minutes at 4700 g. Pelleted bacteria were then resuspended in ice cold MgSO 4 , and incubated for 20 minutes on ice, with periodic mixing.
- RT room temperature
- osmotic shock fraction was adjusted to 1 ⁇ PBS using 10 ⁇ PBS (Quality Biologics, cat #119-069-131) and filtered through 0.2 micron filter. These osmotic shock fractions were assayed directly for binding to Ang2.
- MRD-MBP fusions were assayed for direct binding to Ang2.
- Osmotic shock fractions of induced bacterial cultures were serially diluted and added to Ang2 coated wells. Bound fusion proteins were detected with anti-MBP mAb.
- the dose response curves are presented in FIG. 17A .
- Assayed proteins represent mutational variants of the sequence MGAQTNFMPMDDDELLLYEQFILQQGLE (L17D) (SEQ ID NO:107). In this series, the motif MDD within L17D was mutated at the first D to all other possible amino acids (except cysteine).
- Other MRDs tested were “Lm32 KtoS” and a dimer of Lm32 (2 ⁇ Lm32).
- FIG. 17B several MXD mutants exhibit binding in the 0.1 to 100 nm range. The Lm32 dimer (2 ⁇ Lm32) exhibits greater than 10 fold higher affinity for Ang2 than either L17D or “Lm32 KtoS”.
- Molecular recognition domains were constructed and expressed in a pcDNA 3.3 vector as fusion proteins with either the heavy or light chains of antibodies.
- plasmid DNAs encoding the heavy and light chains of the antibodies containing MRDs were first transformed into chemically competent bacteria in order to produce large amounts of DNA for transient transfection. Single transformants were propagated in LB media and purified using Qiagen's Endotoxin Free Plasmid Kits. Briefly, cells from an overnight culture were lysed; lysates were clarified and applied to an anion-exchange column, and then subjected to a wash step and eluted with high salt. Plasmids were precipitated, washed, and resuspended in sterile water.
- HEK293T cells were expanded to the desired final batch size (about 5 L) prior to transfection.
- the purified plasmid (1 mg per liter of production) was complexed with the polyethylenimine (PEI) transfection reagent, added to the shake flask culture, and incubated at 37° C.
- the culture was monitored daily for cell count, cell diameter, and viability.
- the conditioned medium was harvested and stored at ⁇ 80° C. until purification.
- Antibodies containing MRDs were purified from the conditioned medium using affinity chromatography. Culture supernatant was filter clarified and applied directly to a chromatography column containing recombinant Protein A Sepharose (GE Healthcare). The column was washed, and bound antibodies containing MRDs were eluted by lowering buffer pH. Following elution, eluate fractions were immediately adjusted to physiologic pH. Following Protein A affinity purification, an additional optional polishing chromatographic step can be performed as needed.
- Purified proteins were dialyzed into PBS, concentrated to ⁇ 1-4 mg/ml, sterile filtered, aliquoted aseptically, and stored frozen at ⁇ 80° C. All steps of the purification were monitored by SDS-PAGE-Coomassie, and precautions were taken during the purification to keep endotoxin levels as minimal as possible.
- Antibodies containing MRDs (HER-lm32(H), HER-lm32(L), and AVA-lm32(H)) and antibodies (HERCEPTIN®) were serially diluted in Blocking buffer, containing 1.94 ⁇ g/ml biotinylated Ang2 (R&D cat#BT633) and added to wells for 2 hours at RT. After washing (8 ⁇ 300 ⁇ l wash buffer), parallel samples received either HRP-conjugated anti-human kappa chain mAb- (Abcam, cat #ab79115-1) diluted 1:1000 in Blocking buffer or HRP-conjugated streptavidin (Thermo Scientific cat#N100) diluted 1:4000 diluted in Blocking buffer.
- both a HERCEPTIN®-based antibody or HERCEPTIN®-based antibodies containing MRDs bind to Her2 Fc in the presence of Ang2 in a dose dependent manner ( FIG. 18A ).
- Only the HERCEPTIN®-based antibodies containing MRDs (HER-lm32(H) and HER-lm32(L)) exhibit simultaneous binding to Her2 Fc and Ang2, as detected by HRP-conjugated streptavidin ( FIG. 18B ).
- both AVASTIN® and AVASTIN®-based antibodies containing MRDs bind to VEGF in the presence of Ang2 in a dose dependent manner ( FIG. 19A ).
- Only the AVASTIN®-based antibodies containing MRDs (AVA-lm32(H)) exhibited simultaneous binding to VEGF and Ang2, as detected by HRP-conjugated streptavidin ( FIG. 19B ).
- HER-lm32 (H) and HER-lm32 (L) simultaneously bind to Her2 expressed on the surface of breast carcinoma cells BT-474, and to Ang2 in solution, was determined by flow cytometry.
- Mouse anti-human Ig-FITC was used for detection of the heavy chain of the antibodies containing MRDs
- Ang2-biotin/streptavidin-PE was used for detection of the lm32 MRD.
- Cells that bind Her2 and Ang2 simultaneously are expected to be detected as double positive for FITC and PE fluorescence.
- HER2 positive breast carcinoma cells BT-474 were incubated with 1 ⁇ g HER-lm32(H) or HER-lm32(L) for 25 minutes at RT. After washing, cells were incubated with 200 ng/mL Ang2 biotin (R&D systems) for 25 minutes at RT and then with 20 ⁇ L of mouse anti-human Ig-FITC and Streptavidin-PE for 15 minutes. After washing with 2 mL buffer, cells were analyzed by flow cytometry (FACS Canto II, BD).
- binding was determined in the presence of 10-fold excess of HERCEPTIN®.
- antibodies containing MRDs (1 ⁇ g) were incubated with one million BT-474 cells in the absence or presence of 10 ⁇ g HERCEPTIN® for 25 minutes at RT. Binding of antibodies containing MRDs to HER2 was determined by incubating with 200 ng/mL Ang2 biotin followed by detection with streptavidin-PE.
- FIG. 20A The data presented in FIG. 20A demonstrate that both HER-lm32(H) and HER-lm32(L), bind simultaneously to HER2 and Ang2. In both cases, the cells exhibited bright dual fluorescence in the FITC and PE fluorescence channels. The fact that HER-lm32(H) and HER-lm32(L) binding to HER2 is completely inhibited by HERCEPTIN® ( FIG. 20B ) indicates that the binding is specific.
- Ang2 (R&D Systems, catalog#623-AN) was coated on a 96-well plate (Thermo Electron, cat#3855) at 200 ng/mL in PBS overnight at 4° C. The plate was then incubated with 100 ⁇ L of blocking solution (Thermo Scientific, cat#N502) for 1 hour at RT. After washing the plate 4 times with 0.1% Tween-20 in PBS, the plate bound Ang2 was incubated with 0.5 ⁇ g/mL soluble Tie2 (R&D Systems, cat#313-TI) in the absence or presence of various concentrations of serially diluted antibodies containing MRDs for 1 hour at RT.
- HER-lm32(H), HER-lm32(L), and AVA-lm32(H) inhibited Tie2 binding to plate-bound Ang2 in a dose-dependent fashion.
- All tested lm32-containing antibodies demonstrated comparable inhibitory effects with IC-50 values of 4 nM for HER-lm32 (H), 8 nM for HER-lm32(L) and 3.3 nM for AVA-lm32(H).
- AVA-lm32 (H) binding to VEGF a competitive binding assay was performed using biotin labeled AVASTIN®.
- AVASTIN® was labeled with biotin using EZ-Link NHS-LC-Biotin (Pierce, cat#21336).
- VEGF (Peprotech, cat#100-20) was coated on a 96-well plate (Thermo Electron, cat#3855) at 100 ng/mL in PBS overnight at 4° C. The plate was then incubated with 100 ⁇ L of blocking solution (Thermo Scientific, cat#N502) for 1 hour at RT.
- AVA-lm32(H) specifically binds to VEGF-2. It inhibits binding of biotinylated AVASTIN® to VEGF in a dose dependent manner.
- the dose response curves generated by AVA-lm32(H) and unlabeled AVASTIN® are superimposable and indicate similar binding affinities.
- HERCEPTIN®-based antibodies containing MRDs to cell surface HER2 compared to HERCEPTIN®
- a competitive binding assay was performed with Eu-labeled HERCEPTIN®.
- HERCEPTIN® was labeled with Eu3+ using a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) Europium-labeling kit (Perkin Elmer Life Sciences, cat#1244-302) following the manufacturer's instructions.
- the labeling agent is the Eu-chelate of N1-(p-isothiocynateobenzyl)diethylenetriamine N1, N2, N3, N3-tetraacetic acid (DTTA).
- the DTTA group forms a stable complex with Eu3+, and the isothiocynate group reacts with amino groups on the protein at alkaline pH to form a stable, covalent thio-urea bond.
- HERCEPTIN® (0.2 mg in 200 mL sodium bicarbonate buffer pH 9.3) was labeled with 0.2 mg of labeling agent at 4° C. overnight. Eu-labeled HERCEPTIN® was purified by spin column using 50 mmol/L tris-HCl pH 7.5 and 0.9% NaCl elution buffer.
- the Eu-HERCEPTIN® binding assay was performed by incubating 0.5-1 million BT-474 or SK-BR3 breast cancer cells per well in a 96-well plate with 2-5 nM Eu-HERCEPTIN® in the presence of various concentrations of unlabeled HERCEPTIN®-based antibodies containing MRDs or HERCEPTIN® for 1 hour at RT. Unbound Eu-HERCEPTIN® was removed by washing using 200 ⁇ L complete medium. Cells were then resuspended in 100 ⁇ L complete medium and 80 ⁇ L of cell suspension transferred to a 96-well isoplate. Cells were incubated with 100 ⁇ L Delfia enhancer solution at RT for 10 minutes and cell bound Eu-HERCEPTIN® was detected by Envison (Perkin Elmer).
- HERCEPTIN sensitive breast cancer cells SK-BR-3 expressing HER2neo receptor were also tested in a bioassay.
- SK-BR-3 cells 2000 cell/well were plated in 96 well plates (Costar) in complete McCoy's growth medium containing 2 mM glutamine, pen/strep (Invitrogen) and 10% FBS (HyClone). The cells were cultured for 24 hours at 37° C., 5% CO 2 , 85% humidity. On the following day, the growth medium was replaced with starvation medium (McCoy's medium containing 2 mM glutamine, pen/strep, 0.5% FBS).
- IC50 values determined using a four-parameter logistic model were as follows: 0.49+/ ⁇ 0.17 nm for HER-lm32(H), 0.81+/ ⁇ 0.19 nm for HER-lm32(L),a and 0.67+/ ⁇ 0.15 nm for HER-con4(H). All tested HERCEPTIN®-based antibodies containing MRDs were able to inhibit the proliferation of the SK-BR-3 breast carcinoma cells with subnanomolar IC-50 values. The representative fitted dose response curves shown in FIGS. 24A-C demonstrate that HERCEPTIN®-based antibodies containing MRDs inhibit cell proliferation with similar potency to HERCEPTIN®.
- a cytotoxicity assay based on the “DELFIA EUTDA Cytotoxicity reagents AD0116′′ kit (PerkinElmer) was used.
- the target cells were labeled with a hydrophobic fluorescence enhancing ligand (BADTA, bis(acetoxymethyl) 2,2′:6′,2′′-terpyridine-6,6′′-dicarboxylate).
- BADTA hydrophobic fluorescence enhancing ligand
- TDA 2,2′:6′,2′′-terpyridine-6,6′′-dicarboxylic acid
- TDA 2,2′:6′,2′′-terpyridine-6,6′′-dicarboxylic acid
- EuTDA fluorescent chelate
- HERCEPTIN® and HERCEPTIN®-based antibodies containing MRDs can mediate ADCC on Her2 positive breast cancer cells by binding to the HER2 receptor on the surface of the target cells and activating the effector cells present in human PBMCs by interacting with their Fc ⁇ RIII receptors.
- a HER2 positive human breast cancer cell line SK-BR-3 was used as a target cell line in the ADCC assay to demonstrate this.
- SK-BR-3 cells were detached with 0.05% trypsin-versene and resuspended at 1 ⁇ 10 6 cells/mL in RPMI1640 medium containing 2 mM glutamine, pen/strep and 10% FBS (complete growth medium). 2 ⁇ 10 6 cells in 2 mL of media were transferred into 15 mL tube and 10 ⁇ l of BADTA reagent was added. The cell suspension was mixed gently and placed in the incubator at 37° C., 5% CO 2 and 85% humidity for 15 minutes. Seven 10 ⁇ serial dilutions starting with 5 ⁇ g/mL of HERCEPTIN® or HERCEPTIN®-based antibodies containing MRDs were prepared during cell labeling.
- SK-BR-3 cells were resuspended in 10 mL complete growth medium and 50 ⁇ l of cells were added to each well of 96 well plate, except background wells. 50 ⁇ l of serial dilutions of HERCEPTIN® or HERCEPTIN®-based antibodies containing MRDs were added to the designated wells. The plates were transferred to the incubator at 37° C., 5% CO 2 and 85% humidity for 30 minutes.
- PBMCs that were purified from human peripheral blood one day prior the ADCC assay, were washed once in RPMI1640 with 2 mM glutamine, pen/strep, 10% FBS. 10 mL of the PBMCs suspension with 2.5 ⁇ 10 6 cells/mL was prepared. 100 ⁇ l of PBMC suspension was transferred into wells containing target cells and HERCEPTIN® or HERCEPTIN®-based antibodies containing MRDs in triplicate. The following controls were placed in designated wells: Spontaneous release (target cells without effector cells), Maximum release (lysed target cells) and Background (media without cells). The plates were incubated for 2.5 hours an incubator with 37° C., 5% CO 2 and 85% humidity.
- IC50 values calculated by a four-parameter logistic model were as follows: 0.213+/ ⁇ 0.077 nM for HER-lm32(H), 0.204+/ ⁇ 0.036 nM for HER-lm32(L), and 0.067+/ ⁇ 0.015 nM for HER-con4(H). All tested antibodies containing MRDs demonstrated robust ADCC activity with subnanomolar IC-50 values.
- the representative fitted dose response curves shown in FIGS. 25A and 25B demonstrate that antibodies containing MRDs are able to mediate cell dependent cytotoxicity with comparable potency to HERCEPTIN®.
- HUVEC were obtained from GlycoTech (Gaithersburg, Md.) and Lonza on passage 1 and passage 3 respectively.
- Cells were grown on Endothelial cell basal medium (EBM-2) with addition of 2% fetal bovine serum (FBS) and single quotes (Lonza) at 37° C., 5% CO 2 , 85% humidity.
- EBM-2 Endothelial cell basal medium
- FBS fetal bovine serum
- Single quotes Single quotes
- cells were plated in 96-well plates (Costar) at 2000 cells per well in EBM-2 medium with 2% FBS and cultivated for 24 hours.
- Nine serial dilutions of AVASTIN® or AVA-lm32(H) were prepared starting with 5 ⁇ g/mL on EBM-2 medium with 2% FBS.
- VEGF (R&D Systems) was added at a final concentration of 10 ng/mL to all serial dilutions. After incubation for 15 minutes at 37° C., 5% CO 2 , 85% humidity, serial dilutions were added to the cells. After 96 hours, CellTiter Glo was added to the cells. After incubation at RT for 15 minutes, the cell suspension was transferred into 96 well white opaque plates, and luminescence was measured using PerkinElmer EnVision 2104 Multilabel Reader.
- AVA-lm32(H) exhibited dose dependent anti-proliferative activity on HUVECs from both sources.
- IC50 values calculated from 4 PL fitted curves indicate similar potency for AVA-lm32(H) and AVASTIN® (IC50 values 0.36+/ ⁇ 0.42 nM and 0.33+/ ⁇ 0.38 nM, respectively).
- HERCEPTIN with lm32 fused to the C-terminus of the heavy chain also inhibited tumor growth in both Her2 dependent and angiogenesis dependent xenograft tumor models.
- the HERCEPTIN-lm32 fusion had a similar PK to HERCEPTIN in both mice and monkeys after single dose injections. Furthermore, the HERCEPTIN-lm32 fusion was stable in whole blood at 37° C. for up to 72 hours.
- Novel MRD-containing antibodies are generated by altering the sequence of the MRD and/or the antibody, by altering the location at which the antibody is linked to the MRD, and/or by altering the linker through which the MRD is connected to the antibody.
- the binding potential, structure, and functional properties of the MRD-containing antibodies are evaluated using known techniques to measure protein binding and function.
- the MRD-containing antibodies are compared to the MRD alone, the antibody alone, and to other MRD-containing antibodies.
- An NERD-containing antibody is tested using a solid phase assay in which a target of the MRD and/or antibody is immobilized on a solid surface and then exposed to increasing concentrations of a fluorescently labeled MRD-containing antibody.
- the solid surface is washed to remove unbound MRD-containing antibody and the amount of target-bound MRD-containing antibody is determined directly by quantitating fluorescence.
- the immobilized target is exposed to increasing concentrations of an unlabeled MRD-containing antibody and the amount of target-bound MRD-containing antibody is determined indirectly by use of a labeled reagent that binds to the MRD-containing antibody.
- An MRD-containing antibody is tested using a liquid phase assay in which a target of the MRD and/or antibody is added to various concentrations of an MRD-containing antibody is a solution.
- the interaction of the target with the MRD-containing antibody is detected by the appearance of a molecular complex comprised of a target and MRD-containing antibody that differs in molecular mass (and mobility) from unbound target and unbound MRD-containing antibody.
- An MRD-containing antibody is also assayed in a cell based assay in which target-expressing cells are incubated in the presence of increasing concentrations of MRD-containing antibody.
- the binding of the MRD-containing antibody is detected by fluorescence activated cell sorting.
- cellular proliferation, cellular differentiation, protein phosphorylation, protein expression, mRNA expression, membrane composition, signaling pathway activity, and cellular viability are assessed.
- Useful MRD-containing antibodies bind to both the MRD target and to the antibody target. In addition, useful MRD-containing antibodies affect at least one cellular process.
- LM32 Two potential T cell epitopes were identified in LM32. In order to identify LM32 variants that did not containing T cell epitopes, and therefore, were less likely to produce immunogenic responses, mutational and deletional variants of the LM32 peptide were created.
- the LM32 variants listed in Table 7 MRDs were expressed as MBP fusion proteins and tested for the ability to bind Ang2.
- the LM32 variants are then tested for their ability to induce proliferation and/or cytokine release.
- LM32 variants that are functionally active and have reduced immunogenic potential are identified.
- An MRD-containing antibody comprising the LM32 variant fused to the light chain of HERCEPTIN®, an MRD-containing antibody comprising the LM32 variant fused to the heavy chain of HERCEPTIN®, an MRD-containing antibody comprising the LM32 variant fused to the light chain of HUMIRA®, an MRD-containing antibody comprising the LM32 variant fused to the heavy chain of HUMIRA®, MRD-containing antibody comprising the LM32 variant fused to the light chain of AVASTIN®, and an MRD-containing antibody comprising the LM32 variant fused to the heavy chain of AVASTIN® are created.
- the LM32-variant containing antibodies are administered to animal models and the plasma protein representation and plasma and tissue residence are measured and compared to those of HERCEPTIN®, HUMIRA®, and AVASTIN®.
- the effects of the LM32-variant containing antibodies on cellular proliferation, angiogenesis, tumorigenicity, arthritic indicators are compared to the effects of HERCEPTIN®, HUMIRA®, and AVASTIN®.
- MRD-containing anti-HER2 antibodies are tested in the following in vivo model.
- NIH 3T3 cells transfected with a HER2 expression plasmid are injected into nu/nu athymic mice subcutaneously at a dose of 10 6 cells in 0.1 ml of phosphate-buffered saline as described in U.S. Pat. No. 6,399,063, which is herein incorporated by reference in its entirety.
- On days, 0, 1, 5, and every 4 days thereafter 100 ⁇ g of a HER2 antibody, an ang2-containing HER2 antibody, an igf1r-containing HER2 antibody and an ang2-igf1r-containing HER2 antibody are injected intraperitoneally. Tumor occurrence and size are monitored for one month. Increases in efficacy of MRD-containing antibodies compared to antibodies are observed.
- MRD-containing anti-VEGF antibodies are tested in the following in vivo model.
- RIP-T ⁇ Ag mice are provided with high-sugar chow and 5% sugar water as described in U.S. Published Application No. 2008/0248033, which is herein incorporated by reference in its entirety.
- the mice are treated twice-weekly with intra-peritoneal injections of 5 mg/kg of an anti-VEGF antibody, ang2-containing VEGF antibody, ifg1r-containing VEGF antibody or ang2- and igf1r-containing antibody.
- the 9-9.5 week mice are treating for 14 days and then examined.
- the 11-12 week mice are examined after 7, 14, and 21 days of treatment.
- the pancreas and spleen of the mice are removed and analyzed.
- Tumor number is determined by dissecting out each spherical tumor and counting.
- Tumor burden is determined by calculating the sum of the volume of all tumors within the pancreas of a mouse.
- the effect on angiogenesis is determined by calculating the mean number of angiogenic islets observed. Increases in efficacy of MRD-containing antibodies compared to antibodies are observed.
- MRD-containing anti-TNF antibodies are tested in the following in vivo model.
- Transgenic mice Tg197 are treated with three intra-peritoneal injections of anti-TNF antibody or ang2-containing TNF antibody at 1.5 ⁇ g/g, 15 ⁇ g/g, or 30 ⁇ g/g as in U.S. Pat. No. 6,258,562, which is incorporated herein by reference in its entirety. Injections continue for about 10 weeks and macroscopic changes in joint morphology are recorded each week. At 10 weeks, mice are sacrificed and microscopic examination of tissue is performed.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Rheumatology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Pain & Pain Management (AREA)
- Transplantation (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Complexes containing one or more modular recognition domains (MRDs) and MRDs attached to scaffolds including antibodies are described. The manufacture of these complexes are the use of these complexes to treat and diagnose diseases and disorders are also described.
Description
- This is a Nonprovisional Application which claims the benefit under 35 U.S.C. §119(e) to Provisional Application Nos. 61/364,764, filed Jul. 15, 2010; 61/364,765, filed Jul. 15, 2010, 61/364,766, filed Jul. 15, 2010; 61/364,771, filed Jul. 15, 2010; 61/364,774, filed Jul. 15, 2010; 61/383,644, filed Sep. 16, 2010, 61/481,063, filed Apr. 29, 2011; 61/485,486, filed May 12, 2011; 61/485,484, filed May 12, 2011; 61/485,502, filed May 12, 2011; and 61/485,505, filed May 12, 2011, each of which is herein incorporated by reference in its entirety.
- The content of the electronically submitted sequence listing (Size: 79,196 bytes; and Date of Creation: Sep. 23, 2011) filed with the application is incorporated herein by reference in its entirety.
- 1. Field of the Invention
- The invention relates generally to complexes containing one or more modular recognition domains and includes complexes containing a scaffold such as an antibody. The invention also relates to methods of making these complexes and methods of treatment and diagnosis using these complexes.
- 2. Background Art
- The development of bispecific or multi-specific molecules that target two or more targets simultaneously and/or activate prodrugs offers a novel and promising solution to attacking cancer and other diseases. Such molecules can be based, inter alia, on immunoglobulin-like domains or subdomains as exemplified in
FIG. 1 . Studies of bispecific antibodies that simultaneously target two tumor-associated antigens (e.g., growth factor receptors) for down-regulation of multiple cell proliferation/survival pathways have provided support for this approach. Traditionally, bispecific antibodies have been prepared by chemically linking two different monoclonal antibodies or by fusing two hybridoma cell lines to produce a hybrid-hybridoma. Other technologies that have created multispecific, and/or multi-valent molecules include dAbs, diabodies, TandAbs, nanobodies, BiTEs, SMIPs, DARPins, DNLs, affibodies, Duocalins, adnectins, fynomers, Kunitz Domains Albu-dabs, DARTs, DVD-IG, Covx-bodies, peptibodies, scFv-Igs, SVD-Igs, dAb-Igs, Knob-in-Holes, and triomAbs. Although each of these molecules may bind one or more targets, they each present challenges with respect to retention of typical Ig function (e.g., half-life, effector function), production (e.g., yield, purity), valency, and simultaneous target recognition. - Some of the smaller, Ig subdomain- and non-Ig-domain-based multi-specific molecules may possess some advantages over the full-length or larger IgG-like molecules for certain clinical applications, such as for tumor radio-imaging and targeting, because of better tissue penetration and faster clearance from the circulation. On the other hand, IgG-like molecules may prove to be preferred over smaller fragments for other in vivo applications, specifically for oncology indications, by providing the Fc domain that confers long serum half-life and supports secondary immune function, such as antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity. Unlike their fragment counterparts, engineering and production of recombinant IgG-like multi-specific, multi-valent molecules has been, however, rather technically challenging due to their large size (150-200 kDa) and structural complexity. Success in the field, as judged by successful application in animal models, has been very limited. Recently, with the examination of a variety of constructs, the efficient expression of Fc domain-containing bi-specific molecules in mammalian cells has made some strides.
- Another approach that has been used to target antibodies is through the use of peptibodies. Peptibodies are essentially peptide fusions with antibody Fc regions. Given the success of studies using random peptide libraries to find high-affinity peptide ligands for a wide variety of targets, fusion of such peptides to antibody Fc regions provides a means of making peptides into therapeutic candidates by increasing their circulatory half-life and activity through increased valency.
- Protein interactions with other molecules are basic to biochemistry. Protein interactions include receptor-ligand interactions, antibody-antigen interactions, cell-cell contact and pathogen interactions with target tissues. Protein interactions can involve contact with other proteins, with carbohydrates, oligosaccharides, lipids, metal ions and like materials. The basic unit of protein interaction is the region of the protein involved in contact and recognition, and is referred to as the binding site or target site. Such units may be linear sequence(s) of amino acids or discontinuous amino acids that collectively form the binding site or target site.
- Peptides derived from phage display libraries typically retain their binding characteristics when linked to other molecules. Specific peptides of this type can be treated as modular specificity blocks or molecular recognition domains (MRDs) that can, independently, or in combination with other protein scaffolds, create a single protein with binding specificities for several defined targets.
- An example of such a defined target site is integrin. Integrins are a family of transmembrane cell adhesion receptors that are composed of α and β subunits and mediate cell attachment to proteins within the extracellular matrix. At present, eighteen α and eight β subunits are known; these
form 24 different αβ heterodimers with different specificities for various extracellular matrix (ECM) cell-adhesive proteins. Ligands for various integrins include fibronectin, collagen, laminin, von Willebrand factor, osteopontin, thrombospondin, and vitronectin, which are all components of the ECM. Certain integrins can also bind to soluble ligands such as fibrinogen or to other adhesion molecules on adjacent cells. Integrins are known to exist in distinct activation states that exhibit different affinities for ligand. Recognition of soluble ligands by integrins strictly depends on specific changes in receptor conformation. This provides a molecular switch that controls the ability of cells to aggregate in an integrin dependent manner and to arrest under the dynamic flow conditions of the vasculature. This mechanism is well established for leukocytes and platelets that circulate within the blood stream in a resting state while expressing non-activated integrins. Upon stimulation through proinflammatory or prothrombotic agonists, these cell types promptly respond with a number of molecular changes including the switch of key integrins, β2 integrins for leukocytes and αvβ3 for platelets, from “resting” to “activated” conformations. This enables these cell types to arrest within the vasculature, promoting cell cohesion and leading to thrombus formation. - It has been demonstrated that a metastatic subset of human breast cancer cells expresses integrin αvβ3 in a constitutively activated form. This aberrant expression of αvβ3 plays a role in metastasis of breast cancer as well as prostate cancer, melanoma, and neuroblastic tumors. The activated receptor strongly promotes cancer cell migration and enables the cells to arrest under blood flow conditions. In this way, activation of αvβ3 endows metastatic cells with key properties likely to be critical for successful dissemination and colonization of target organs. Tumor cells that have successfully entered a target organ may further utilize αvβ3 to thrive in the new environment, as αvβ3 matrix interactions can promote cell survival and proliferation. For example, αvβ3 binding to osteopontin promotes malignancy and elevated levels of osteopontin correlate with a poor prognosis in breast cancer.
- For these reasons, and for its established role in angiogenesis, the αvβ3 integrin is one of the most widely studied integrins. Antagonists of this molecule have significant potential for use in targeted drug delivery. One approach that has been used to target αvβ3 integrin uses the high binding specificity to αvβ3 of peptides containing the Arg-Gly-Asp (RGD) sequence. This tripeptide, naturally present in extracellular matrix proteins, is the primary binding site of the αvβ3 integrin. However, RGD based reporter probes are problematic due to fast blood clearance, high kidney and liver uptake, and fast tumor washout. Chemical modification of cyclized RGD peptides has been shown to increase their stability and valency. These modified peptides are then coupled to radio-isotopes and used either for tumor imaging or to inhibit tumor growth.
- Integrin αvβ3 is one of the most well characterized integrin heterodimers and is one of several heterodimers that have been implicated in tumor-induced angiogenesis. While sparingly expressed in mature blood vessels, αvβ3 is significantly up-regulated during angiogenesis in vivo. The expression of αvβ3 correlates with aggressiveness of disease in breast and cervical cancer as well as in malignant melanoma. Recent studies suggest that αvβ3 may be useful as a diagnostic or prognostic indicator for some tumors. Integrin αvβ3 is particularly attractive as a therapeutic target due to its relatively limited cellular distribution. Integrin αvβ3 is not generally expressed on epithelial cells, and minimally expressed on other cell types. Furthermore, αvβ3 antagonists, including both cyclic RGD peptides and monoclonal antibodies, significantly inhibit cytokine-induced angiogenesis and the growth of solid tumor on the chick chorioallantoic membrane.
- Another integrin heterodimer, αvβ5, is more widely expressed on malignant tumor cells and is likely involved in VEGF-mediated angiogenesis. It has been shown that αvβ3 and αvβ5 promote angiogenesis via distinct pathways: αvβ3 through bFGF and TNF-α, and αvβ5 through VEGF and TGF-α. It has also been shown that inhibition of Src kinase can block VEGF-induced, but not FGF2-induced, angiogenesis. These results strongly imply that FGF2 and VEGF activate different angiogenic pathways that require αvβ3 and αvβ5, respectively.
- Integrins have also been implicated in tumor metastasis. Metastasis is the primary cause of morbidity and mortality in cancer. Malignant progression of melanoma, glioma, ovarian, and breast cancer have all been strongly linked with the expression of the integrin αvβ3 and in some cases with αvβ5. More recently, it has been shown that activation of integrin αvβ3 plays a significant role in metastasis in human breast cancer. A very strong correlation between expression of αvβ3 and breast cancer metastasis has been noted where normal breast epithelia are αvβ3 negative and approximately 50% of invasive lobular carcinomas and nearly all bone metastases in breast cancer express αvβ3. Antagonism of αvβ3 with a cyclic peptide has been shown to synergize with radioimmunotherapy in studies involving breast cancer xenografts.
- Angiogenesis, the formation of new blood vessels from existing ones, is essential to many physiological and pathological processes. Normally, angiogenesis is tightly regulated by pro- and anti-angiogenic factors, but in the case of diseases such as cancer, ocular neovascular disease, arthritis and psoriasis, the process can go awry. The association of angiogenesis with disease has made the discovery of anti-angiogenic compounds attractive. Among the most promising phage-derived anti-angiogenic peptides described to date, are those that neutralize vascular endothelial growth factor (VEGF), and cytokine Ang2. See e.g., U.S. Pat. Nos. 6,660,843 and 7,138,370, respectively.
- While the VEGFs and their receptors have been among the most extensively targeted molecules in the angiogenesis field, preclinical efforts targeting the more recently discovered angiopoietin-Tie2 pathway are underway. Both protein families involve ligand receptor interactions, and both include members whose functions are largely restricted postnatally to endothelial cells and some hematopoietic stem cell lineages. Tie2 is a receptor tyrosine kinase with four known ligands, angiopoietin-1 (Ang1) through angiopoietin-4 (Ang4), the best studied being Ang1 and Ang2. Ang1 stimulates phosphorylation of Tie2 and the Ang2 interaction with Tie2 has been shown to both antagonize and agonize Tie2 receptor phosphorylation. Elevated Ang2 expression at sites of normal and pathological postnatal angiogenesis circumstantially implies a proangiogenic role for Ang2. Vessel-selective Ang2 induction associated with angiogenesis has been demonstrated in diseases including cancer. In patients with colon carcinoma, Ang2 is expressed ubiquitously in tumor epithelium, whereas expression of Ang1 in tumor epithelium has been shown to be rare. The net gain of Ang2 activity has been suggested to be an initiating factor for tumor angiogenesis.
- Other proteins directed towards cellular receptors are under clinical evaluation. HERCEPTIN® (Trastuzumab), developed by Genentech, is a recombinant humanized monoclonal antibody directed against the extracellular domain of the human epidermal tyrosine kinase receptor 2 (HER2 or ErbB2). The HER2 gene is overexpressed in 25% of invasive breast cancers, and is associated with poor prognosis and altered sensitivity to chemotherapeutic agents. HERCEPTIN® blocks the proliferation of ErbB2-overexpressing breast cancers, and is currently the only ErbB2 targeted antibody therapy approved by the FDA for the treatment of ErbB2 over-expressing metastatic breast cancer (MBC). In normal adult cells, few ErbB2 molecules exist at the cell surface ˜20,000 per cell thereby limiting their signaling capacity and the likelihood of forming homo- and hetero-receptor complexes on the cell surface. When ErbB2 is overexpressed on the cell surface, ˜500,000 per cell, multiple ErbB2 homo- and hetero-complexes are formed and cell signaling is stronger, resulting in enhanced responsiveness to growth factors and malignant growth. This explains why ErbB2 overexpression is an indicator of poor prognosis in breast tumors and may be predictive of response to treatment.
- ErbB2 is a promising and validated target for breast cancer, where it is found both in primary tumor and metastatic sites. HERCEPTIN® induces rapid removal of ErbB2 from the cell surface, thereby reducing its availability to multimerize and ability to promote growth. Mechanisms of action of HERCEPTIN® observed in experimental in vitro and in vivo models include inhibition of proteolysis of ErbB2's extracellular domain, disruption of downstream signaling pathways such as phosphatidylinositiol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) cascades, GI cell-cycle arrest, inhibition of DNA repair, suppression of angiogenesis and induction of antibody dependent cellular cytotoxicity (ADCC). Many patients with metastatic breast cancer who initially respond to HERCEPTIN®, however, demonstrate disease progression within one year of treatment initiation.
- Another target cellular receptor is
type 1 insulin-like growth factor-1 receptor (IGF1R), IGF1R is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. The IGF system is frequently deregulated in cancer cells by the establishment of autocrine loops involving IGF-I or IGF-II and/or IGF1R overexpression. Moreover, epidemiological studies have suggested a link between elevated IGF levels and the development of major human cancers, such as breast, colon, lung and prostate cancer. Expression of IGFs and their cognate receptors has been correlated with disease stage, reduced survival, development of metastases and tumor de-differentiation. - Besides IGF1R, epidermal growth factor receptor (EGFR) has also been implicated in the tumorigenesis of numerous cancers. Effective tumor inhibition has been achieved both experimentally and clinically with a number of strategies that antagonize either receptor activity. Because of the redundancy of growth signaling pathways in tumor cells, inhibition of one receptor function (e.g., EGFR) could be effectively compensated by up-regulation of other growth factor receptor (e.g., IGF1R) mediated pathways. For example, a recent study has shown that malignant glioma cell lines expressing equivalent EGFR had significantly different sensitivity to EGFR inhibition depending on their capability to activate IGF1R and its downstream signaling pathways. Other studies have also demonstrated that overexpression and/or activation of IGF1R in tumor cells might contribute to their resistance to chemotherapeutic agents, radiation, or antibody therapy such as HERCEPTIN®. And consequently, inhibition of IGF1R signaling has resulted in increased sensitivity of tumor cells to HERCEPTIN®.
- EGFR is a receptor tyrosine kinase that is expressed on many normal tissues as well as neoplastic lesions of most organs. Overexpression of EGFR or expression of mutant forms of EGFR has been observed in many tumors, particularly epithelial tumors, and is associated with poor clinical prognosis. Inhibition of signaling through EGFR induces an anti-tumor effect. With the FDA approval of cetuximab, also known as ERBITUX® (a mouse/human chimeric antibody) in February of 2004, EGFR became an approved antibody drug target for the treatment of metastatic colorectal cancer. In March of 2006, ERBITUX® also received FDA approval for the treatment of squamous cell carcinoma of the head and neck (SCCHN). More recently, panitumumab, also known as VECTIBIX®, a fully human antibody directed against EGFR, was approved for metastatic colorectal cancer. Neither ERBITUX® or VECTIBIX® is a stand-alone agent in colorectal cancer—they were approved as add-ons to existing colorectal regimens. In colorectal cancer, ERBITUX® is given in combination with the drug irinotecan and VECTIBIX® is administered after disease progression on, or following fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens. ERBITUX® has been approved as a single agent in recurrent or metastatic SCCHN only where prior platinum-based chemotherapy has failed. Advanced clinical trials which use these drugs to target non-small cell lung carcinoma are ongoing. The sequence of the heavy and light chains of ERBITUX® are well known in the art (see for example, Goldstein, et al., Clin. Cancer Res. 1:1311 (1995); U.S. Pat. No. 6,217,866, which are herein incorporated by reference).
- An obstacle in the utilization of a catalytic antibody for selective prodrug activation in cancer therapy has been systemic tumor targeting. An efficient alternative would be using the catalytic antibody fused to a targeting peptide located outside the antibody combining site, thereby leaving the active site available for the prodrug activation as described herein. For example, the fusion of Ab 38C2 to an integrin αvβ3-binding peptide would selectively localize the antibody to the tumor and/or the tumor vasculature and trigger prodrug activation at that site. The potential therapy of this approach is supported by preclinical and clinical data suggesting that peptides can be converted into viable drugs through attachment to the isolated Fc domain of an immunoglobulin. The present invention describes an approach based on the adaptation of target binding peptides, or modular recognition domains (MRDs), which are fused to full-length antibodies that effectively target tumor cells or soluble molecules while retaining the prodrug activation capability of the catalytic antibody. The current invention calls for the fusion of MRDs to the N- and/or C-termini of an antibody. So as not to significantly mitigate binding to the antibody's traditional binding site, the antibody's specificity remains intact after MRD addition thereby resulting in a multi-specific antibody.
- As depicted in
FIG. 2 , MRDs, designated by triangles, circles, diamonds, and squares, can be appended on any of the termini of either heavy or light chains of a typical IgG antibody. The first schematic represents a simple peptibody with a peptide fused to the C-terminus of an Fc. This approach provides for the preparation of bi-, tri-, tetra-, and penta-specific antibodies. Display of a single MRD at each N- and C-termini of an IgG provides for octavalent display of the MRD. As an alternative to the construction of bi- and multifunctional antibodies through the combination of antibody variable domains, high-affinity peptides selected from, for example, phage display libraries or derived from natural ligands, may offer a highly versatile and modular approach to the construction of multifunctional antibodies that retain both the binding and half-life advantages of traditional antibodies. MRDs can also extend the binding capacity of non-catalytic antibodies, providing for an effective approach to extend the binding functionality of antibodies, particularly for therapeutic purposes. - Therapeutic antibodies represent the most rapidly growing sector of the pharmaceutical industry. Treatment with bispecific antibodies and defined combinations of monoclonal antibodies are expected to show therapeutic advantages over established and emerging antibody monotherapy regimens. However, the cost of developing and producing such therapies has limited their consideration as viable treatments for most indications. There is, therefore, a great need for developing multispecific and multivalent antibodies or other scaffolds having superior drug properties with substantially reduced production costs as compared to conventional bispecific antibodies and combinations of monoclonal antibodies.
- The present invention is directed towards a full-length antibody comprising at least one modular recognition domain (MRD). In some embodiments, the full-length antibody comprises multiple MRDs. In additional non-exclusive embodiments, the full-length antibody comprises more than one type of MRD (i.e., multiple MRDs having the same or different specificities). Also embodied in the present invention are variants and derivatives of such antibodies comprising a MRD. Variants and derivatives of such antibodies comprising more than one type of MRD are also encompassed by the invention.
- The MRDs of the MRD containing antibodies can be attached to the antibodies at any location on the antibody. In one aspect, the MRD is operably linked to the C-terminal end of the heavy chain of the antibody. In another aspect, the MRD is operably linked to the N-terminal end of the heavy chain of the antibody. In yet another aspect, the MRD is operably linked to the C-terminal end of the light chain of the antibody. In another aspect, the MRD is operably linked to the N-terminal end of the light chain of the antibody. In another aspect, two or more MRDs are operably linked to the same antibody location, e.g., any terminal end of the antibody. In another aspect, two or more MRDs are operably linked to at least two different antibody locations, e.g., two or more different terminal ends of the antibody. In another aspect, MRDs may possess activities in addition to antigen binding such as catalytic activity, carriers of therapeutic agents, prodrugs, or other modifications that do not prevent the antibody from binding to an antigen.
- The antibodies of the MRD containing antibodies can be any immunoglobulin molecule that binds to an antigen and can be of any type, class, or subclass. In some embodiments, the antibody is an IgG. In some embodiments, the antibody is a polyclonal, monoclonal, multispecific, human, humanized, primatized or chimeric antibody. In a specific embodiment, the antibody is chimeric or humanized. In another specific embodiment, the antibody is human. In other non-exclusive embodiments, the antibodies also include modifications that do not interfere with their ability to bind antigen. In particular embodiments, the MRD-containing antibodies include modifications that increase ADCC, decrease ADCC, increase CDC, or decrease CDC compared to the antibody without the modification. In other embodiments, the MRD containing antibodies include modifications that increase antibody half life, or decrease antibody half-life compared to the antibody without the modification.
- The antibodies of the MRD-containing antibodies of the invention can be any antibody that binds to a target of therapeutic or diagnostic value. In some embodiments, the antibodies corresponding to the MRD containing antibodies are marketed. In some embodiments, the antibodies corresponding to the MRD containing antibodies are in clinical trials for regulatory approval.
- In preferred embodiments, the antibody of the MRD-containing antibody binds to a validated target. In one embodiment, the antibody binds to a cell surface antigen. In another embodiment, the antibody binds to an angiogenic factor. In a further embodiment, the antibody binds to an angiogenic receptor.
- In some embodiments, the antibody binds to a target that is selected from the group consisting of EGFR, ErbB2, ErbB3, ErbB4, CD20, insulin-like growth factor-I receptor, VEGF, VEGF-R and prostate specific membrane antigen.
- In one specific embodiment, the antibody the antibody of the MRD-containing antibody binds to EGFR. In another specific embodiment, the antibody binds to the same epitope as Erbitux® antibody or competitively inhibits binding of the Erbitux® antibody to EGFR. In a further specific embodiment, the antibody is the Erbitux® antibody. In another specific embodiment, the antibody binds to the same epitope as zalutumumab (e.g., Genmab) antibody or competitively inhibits binding of the zalutumumab antibody to EGFR. In a further specific embodiment, the antibody is zalutumumab. In another specific embodiment, the antibody binds to the same epitope as nimotuzumab (e.g., BIOMAB® EGFR, YM Biosciences) antibody or competitively inhibits binding of the nimotuzumab antibody to EGFR. In a further specific embodiment, the antibody is nimotuzumab. In another specific embodiment, the antibody binds to the same epitope as matuzumab (e.g., EMD 72000, Merck Serono) antibody or competitively inhibits binding of the matuzumab antibody to EGFR. In a further specific embodiment, the antibody is matuzumab.
- In a specific embodiment, the antibody of the MRD-containing antibody binds to ErbB2. In another specific embodiment, the antibody binds to the same epitope as HERCEPTIN® (trastuzumab) antibody or competitively inhibits HERCEPTIN® (trastuzumab) antibody. In another specific embodiment, the antibody is an antibody that comprises the CDR sequences of SEQ ID NOs: 59-64. In a further specific embodiment, the antibody is the HERCEPTIN® (trastuzumab) antibody.
- In another specific embodiment, the antibody binds to VEGF. In another specific embodiment, the antibody binds to the same epitope as AVASTIN® (bevacizumab) antibody or competitively inhibits AVASTIN® antibody. In a further specific embodiment, the antibody is the AVASTIN® antibody.
- In some embodiments, the antibody binds to a target that is associated with a disease or disorder of the immune system. In one embodiment, the antibody binds to TNF. In another specific embodiment, the antibody binds to the same epitope as HUMIRA® (adalimumab) antibody or competitively inhibits HUMIRA® antibody. In a further specific embodiment, the antibody is the HUMIRA® antibody. In one embodiment, the antibody binds to TNF. In another specific embodiment, the antibody binds to the same epitope as SIMPONI™ (golimumab) antibody or competitively inhibits SIMPONI™ antibody. In a further specific embodiment, the antibody is the SIMPONI™ antibody.
- In other embodiments, the antibody component of the MRD containing antibody binds to a target that is associated with a disease or disorder of the metabolic, cardiovascular, musculoskeletal, neurological, or skeletal system.
- In other embodiments, the antibody component of the MRD containing antibody binds to a target that is associated with a yeast, fungal, viral or bacterial infections or disease.
- MRDs can be linked to an antibody or other MRDs directly or through a linker. A linker can be any chemical structure that allows for the MRD that has been linked to an antibody to bind its target. In some embodiments, the linker is a chemical linker described herein or otherwise known in the art. In other embodiments the linker is a polypeptide linker described herein or otherwise known in the art. In one aspect, the antibody and the MRD are operably linked through a linker peptide. In one aspect, the linker peptide is between 2 to 20 peptides long, or between 4 to 10 or about 4 to 15 peptides long. In one aspect, the linker peptide comprises the sequence GGGS (SEQ ID NO:1), the sequence SSGGGGSGGGGGGSS (SEQ ID NO:2), or the sequence SSGGGGSGGGGGGSSRSS (SEQ ID NO:19). Other linkers containing a core sequence of GGGS as shown in SEQ ID NO:1 are also included herein wherein the linker peptide is from about 4-20 amino acids.
- The MRDs can be any target binding peptide. In some embodiments, the MRD target is a soluble factor. In other embodiments, the MRD target is a transmembrane protein such as a cell surface receptor. For example, in some embodiments, the MRD target is selected from the group consisting of an angiogenic cytokine and an integrin. In a specific embodiment, the MRD comprises the sequence of SEQ ID NO:8. In another specific embodiment, the MRD comprises the sequence of SEQ ID NO:14. In another specific embodiment, the MRD comprises the sequence of SEQ ID NO:69.
- In one embodiment, the MRD is about 2 to 150 amino acids. In another embodiment, the MRD is about 2 to 60 amino acids.
- In an additional embodiment, the MRD-containing antibody comprises an MRD containing a sequence selected from the group consisting of SEQ ID NO:8, SEQ ID NO:14, and SEQ ID NO:70.
- In one embodiment, the target of the MRD is a cellular antigen. In a specific embodiment of the present invention, the target of the MRD is CD20.
- In another embodiment, the target of the MRD is an integrin. In one aspect, the peptide sequence of the integrin targeting MRD is YCRGDCT (SEQ ID NO:3). In another aspect, the peptide sequence of the integrin targeting MRD is PCRGDCL (SEQ ID NO:4). In yet another aspect, the peptide sequence of the integrin targeting MRD is TCRGDCY (SEQ ID NO:5). In another aspect, the peptide sequence of the integrin targeting MRD is LCRGDCF (SEQ ID NO:6).
- In an additional embodiment, the target of the MRD is an angiogenic cytokine. In one aspect, the peptide sequence of the angiogenic cytokine targeting (i.e., binding) MRD is MGAQTNFMPMDDLEQRLYEQFILQQGLE (SEQ ID NO:7). In another aspect, the peptide sequence of the angiogenic cytokine targeting MRD is MGAQTNFMPMDNDELLLYEQFIL QQGLE (SEQ ID NO:8). In yet another aspect, the peptide sequence of the angiogenic cytokine targeting MRD is MGAQTNFMPMDATETRLYEQFILQQGLE (SEQ ID NO:9). In another aspect, the peptide sequence of the angiogenic cytokine targeting MRD is AQQEECEWDPWTCEHMGSGSATG GSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10). In another aspect, the peptide sequence of the angiogenic cytokine targeting MRD is MGAQTNFM PMDNDELLNYEQFILQQGLE (SEQ ID NO:11). In another aspect, the peptide sequence of the angiogenic cytokine targeting MRD is PXDNDXLLNY (SEQ ID NO:12), where X is one of the 20 naturally-occurring amino acids. In another aspect, the targeting MRD peptide has the core sequence MGAQTNFMPMDXn (SEQ ID NO:56), wherein X is any amino acid and n is from about 0 to 15.
- In a further embodiment, the targeting MRD peptide contains a core sequence selected from:
- XnEFAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:22);
XnELAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:25);
XnEFSPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:28);
XnELEPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:31); and
XnAQQEECEX1X2PWTCEHMXn where n is from about 0 to 50 amino acid residues and X, X1 and X2 are any amino acid (SEQ ID NO:57). Exemplary peptides containing such core peptides encompassed by the invention include for example: AQQEECEFAPWTCEHM (SEQ ID NO:21); AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFAPWTCEHMLE (SEQ ID NO:23); AQQEECELAPWTCEHM (SEQ ID NO:24); AQQEECELAPWTCEHM GSGSATG GSGSTASSGSGSATHQEECELAPWTCEHMLE (SEQ ID NO:26); AQQEECEFAPWTCEHM (SEQ ID NO:27);AQQEECEFSPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSPW TCEHMLE 2×ConFS (SEQ ID NO:29); AQQEECELEPWTCEHM (SEQ ID NO:30); AQQEEC ELEPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELEPWTCEHMLE (SEQ ID NO:32); AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELAPWTCEHMLE (SEQ ID NO:33); AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSPWTCE HMLE (SEQ ID NO:34); and AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQ EECEWDPWTCEHMLE (SEQ ID NO:10). - In one embodiment, the target of the MRD is ErbB2. In another embodiment, the target to which the MRD binds is ErbB3. In an additional embodiment, the target to which the MRD binds is tumor-associated surface antigen or an epithelial cell adhesion molecule (Ep-CAM).
- In one embodiment, the target to which the MRD binds is VEGF. In one aspect, the peptide sequence of the VEGF targeting MRD is VEPNCDIHVMWEWECFERL (SEQ ID NO:13).
- In one embodiment, the target to which the MRD binds is an insulin-like growth factor-I receptor (IGF1R). In one aspect, the peptide sequence of the insulin-like growth factor-I receptor targeting MRD comprises SFYSCLESLVNGPAEKSRGQWDGCRKK (SEQ ID NO:14). Other illustrative IGF1R targeting MRDs include, for example, a peptide sequence having the formula NFYQCIX1X2LX3X4X5PAEKSRGQWQECRTGG (SEQ ID NO:58), wherein X1 is E or D; X2 is any amino acid; X3 is any amino acid; X4 is any amino acid; and X5 is any amino acid. Other illustrative IGF1R targeting MRDs include, for example, a peptide sequence having the formula of XXXXCXEXXXXXPAEKSRGQWXXCXXX (SEQ ID NO:101), wherein X is any amino acid. Illustrative peptides that contain such formula include:
- NFYQCIESLVNGPAEKSRGQWQECRTG (SEQ ID NO:70) (Rm2-2-319). Another IGF1R targeting MRDs contains the sequence NFYQCIDLLMAYPAEKSRGQWQECRTGG (SEQ ID NO:37).
- In one embodiment, the target of the MRD is a tumor antigen.
- In one embodiment, the target of the MRD is an epidermal growth factor receptor (EGFR). In another embodiment of the present invention, the target of the MRD is an angiogenic factor. In an additional embodiment, the target of the MRD is an angiogenic receptor.
- In another embodiment, the MRD is a vascular homing peptide. In one aspect, the peptide sequence of the vascular homing peptide MRD comprises the sequence ACDCRGDCFCG (SEQ ID NO:15).
- In one embodiment, the target of the MRD is a nerve growth factor.
- In another embodiment, the antibody and/or MRD binds to EGFR, ErbB2, ErbB3, ErbB4, CD20, insulin-like growth factor-I receptor, or prostate specific membrane antigen.
- In one aspect, the peptide sequence of the EGFR targeting (binding) MRD is VDNKFNKELEICAYNEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:16). In one aspect, the peptide sequence of the EGFR targeting MRD is VDNKFNKEMWIAWEEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKINDAQAPK (SEQ ID NO:17). In another aspect, the peptide sequence of the ErbB2 targeting MRD is VDNKFNKEMRNAYWEIALLPNLNNQQKRAFIRSLYDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:18).
- The present invention also relates to an isolated polynucleotide comprising a nucleotide sequence encoding an MRD containing antibody. In one aspect, a vector comprises a polynucleotide sequence encoding an MRD containing antibody. In another aspect, the polynucleotide sequence encoding an MRD containing antibody is operatively linked with a regulatory sequence that controls expression on the polynucleotide. In an additional aspect, a host cell comprises the polynucleotide sequence encoding an MRD containing antibody.
- Methods of making MRD-antibody fusions (i.e., MRD-containing antibodies) are also provided, as are the use of these MRD-antibody fusions in diagnostic and therapeutic applications. The present invention also relates to methods of designing and making MRD-containing antibodies having a full-length antibody comprising a MRD. In one aspect, the MRD is derived from a phage display library. In another aspect, the MRD is derived from natural ligands. In another aspect, the MRD is derived from yeast display or RNA display technology.
- The present invention also relates to a method of treating or preventing a disease or disorder in a subject in need thereof, comprising administering an antibody comprising an MRD to the subject. In one aspect, the disease is cancer. In another aspect, undesired angiogenesis in inhibited. In another aspect, angiogenesis is modulated. In yet another aspect, tumor growth is inhibited.
- Certain embodiments provide for methods of treating or preventing a disease, disorder, or injury comprising administering a therapeutically effective amount of an antibody comprising an MRD (i.e., MRD-containing antibodies) to a subject in need thereof. In some embodiments, the disease, disorder or injury is cancer. In other embodiments, the disease, disorder or injury is a disorder of the immune system. In one embodiment, the disorder of the immune system is inflammation. In another embodiment, the disorder of the immune system is an autoimmune disease. In an additional embodiment, the disorder of the immune system is selected from the group consisting of: rheumatoid arthritis, Crohn's disease, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, diabetes, ulcerative colitis, and multiple sclerosis. In one embodiment, the disease, disorder or injury is a metabolic disease. In another embodiment, the disease, disorder, or injury is an infectious disease. In specific embodiments, the infectious disease is human immunodeficiency virus (HIV) infection or AIDS, botulism, anthrax, or clostridium difficile. In other embodiments, the disease, disorder, or injury is neurological. In a specific embodiment, the neurological disease, disorder or injury is pain. In a more specific embodiment, the pain is, acute pain or chronic pain.
- In another embodiment, a method of treatment or prevention comprising administering an additional therapeutic agent along with an antibody comprising an MRD is provided. In other embodiments, the methods of treatment or prevention comprise administering an antibody comprising more than one type of MRD.
-
FIG. 1 shows the schematic representation of different designs of multi-specific and multi-valent molecules. MRDs are depicted as triangles, circles, diamonds, and squares. -
FIG. 2A shows a typical peptibody as a C-terminal fusion with the heavy chain of Fc. -
FIG. 2B shows an MRD containing antibody with a C-terminal MRD fusion with the light chain of the antibody. -
FIG. 2C shows an MRD containing antibody with an N-terminal MRD fusion with the light chain of the antibody. -
FIG. 2D shows an MRD containing antibody with unique MRD peptides fused to each terminus of the antibody. -
FIG. 3 depicts the results of an enzyme linked immunosorbent assay (ELISA) in which integrin and Ang2 were bound by an anti-integrin antibody (JC7U) fused to a Ang2 targeting MRD (2×Con4). -
FIG. 4 depicts the results of an ELISA in which integrin and Ang2 were bound by an anti-integrin antibody (JC7U) fused to a Ang2 targeting MRD (2×Con4). -
FIG. 5 depicts the results of an ELISA in which an anti-ErbB2 antibody was fused to an MRD which targets Ang2. -
FIG. 6 depicts the results of an ELISA in which an Ang2 targeting MRD was fused to a hepatocyte growth factor receptor (cMET) binding antibody. -
FIG. 7 depicts the results of an ELISA in which an integrin targeting MRD was fused to an ErbB2 binding antibody. -
FIG. 8 depicts the results of an ELISA in which an integrin targeting MRD was fused to an hepatocyte growth factor receptor binding antibody. -
FIG. 9 depicts the results of an ELISA in which an insulin-like growth factor-I receptor targeting MRD was fused to an ErbB2 binding antibody. -
FIG. 10 depicts the results of an ELISA in which a VEGF-targeting MRD was fused to an ErbB2 binding antibody. -
FIG. 11 depicts the results of an ELISA in which an integrin targeting MRD was fused to a catalytic antibody. -
FIG. 12 depicts the results of an ELISA in which an Ang2-targeting MRD was fused to a catalytic antibody. -
FIG. 13 depicts the results of an ELISA in which an integrin targeting MRD and an Ang2 targeting MRD were fused to an ErbB2 binding antibody. -
FIG. 14 depicts the results of an ELISA in which an integrin targeting MRD was fused to an ErbB2 binding antibody. -
FIG. 15 depicts the results of an ELISA in which an integrin, Ang2, or insulin-like growth factor-I receptor-targeting MRD was fused to an ErbB2 or hepatocyte growth factor receptor-binding antibody with a short linker peptide. -
FIG. 16 depicts the results of an ELISA in which an integrin, Ang2, or insulin-like growth factor-I receptor-targeting MRD was fused to an ErbB2 or hepatocyte growth factor receptor-binding antibody with a long linker peptide. -
FIG. 17A depicts the dose response curves of MRD-maltose binding protein (MBP) fusions assayed for direct binding to Ang2. -
FIG. 17B indicates MRD-MBP fusion proteins tested, the amino acid sequence of the MRD, and the EC50 values (calculated using a 4 parameter fit). The MXD sequence motif in the MRD components of the MRD-MBP fusions is underlined and mutated residues are in bold and italics. -
FIG. 18A depicts the results of an assay for direct binding of a HERCEPTIN® based zybody (i.e., an MRD containing HERCEPTIN® antibody sequences) antibody-MRDs and a HERCEPTIN® antibody to Her2 (ErbB2) Fc in the presence of biotinylated Ang2. Binding was detected with HRP-conjugated anti-human kappa chain mAb. -
FIG. 18B depicts the results of an assay for direct binding of a HERCEPTIN® based zybody (i.e., an MRD containing HERCEPTIN® antibody sequences) and a HERCEPTIN® antibody to Her2 Fc in the presence of biotinylated Ang2. Binding was detected with horseradish peroxidase (HRP)-conjugated streptavidin. -
FIG. 19A depicts the results of an assay for direct binding of antibody-MRDs and an AVASTIN® antibody to VEGF in the presence of biotinylated Ang2. Binding was detected with HRP-conjugated anti-human kappa chain mAb. -
FIG. 19B depicts the results of an assay for direct binding of antibody-MRDs and an AVASTIN® antibody to VEGF in the presence of biotinylated Ang2. Binding was detected with HRP-conjugated streptavidin. -
FIG. 20A depicts the results of a flow cytometry assay which demonstrates that antibody-MRDs simultaneously bind Her2 and Ang2 on BT-474 breast cancer cells. -
FIG. 20B depicts binding of antibody-MRDs to HER2 on BT-474 breast cancer cells. -
FIG. 21 depicts the results of an ELISA assay that demonstrates the inhibitory effect of antibody-MRDs on TIE-2 binding to plate immobilized Ang2. -
FIG. 22 depicts the results of a competitive binding assay that demonstrates the inhibition of binding of biotinylated antibody by antibody-MRD and unlabeled antibody. -
FIG. 23 depicts the results of a competitive binding assay that illustrates the inhibition of labeled antibody binding to BT-474 cells by antibody-MRDs and unlabeled antibody. -
FIG. 24A depicts the fitted dose curves illustrating the inhibition of BT-474 cell proliferation by HERCEPTIN® with the lm32 MRD (SEQ ID NO:8) fused to the heavy chain and HERCEPTIN®. -
FIG. 24B depicts the fitted dose curves illustrating the inhibition of BT-474 cell proliferation by HERCEPTIN® with the lm32 MRD fused to the light chain and HERCEPTIN®. -
FIG. 24C depicts the fitted dose curves illustrating the inhibition of BT-474 cell proliferation by HERCEPTIN® with the 2×con4 MRD fused to the heavy chain and HERCEPTIN®. -
FIG. 25A depicts the results of a cytotoxicity assay illustrating ADCC-mediated killing of BT-474 cells by HERCEPTIN® with the lm32 MRD fused to the heavy chain, HERCEPTIN® with the lm32 MRD fused to the light chain, and HERCEPTIN®. -
FIG. 25B depicts the results of a cytotoxicity assay illustrating ADCC-mediated killing of BT-474 cells by HERCEPTIN® with the 2×con4 MRD fused to the heavy chain, and HERCEPTIN®. -
FIG. 26A depicts the inhibition of HUVEC proliferation by AVASTIN® with the lm32 MRD fused to the heavy chain and AVASTIN® using HUVECs obtained from GlycoTech (Gaithersburg, Md.). -
FIG. 26B depicts the inhibition of HUVEC proliferation by AVASTIN® with the lm32 MRD fused to the heavy chain and AVASTIN® using HUVECs obtained from Lonza. -
FIG. 27 depicts the effect of RITUXIMAB®, HERCEPTIN®, and an MRD-containing antibody on tumor volume in vivo. - The following provides a description of antibodies containing at least one modular recognition domain (MRD). The linkage of one or more MRDs to an antibody results in a multi-specific molecule of the invention that retains structural and functional properties of traditional antibodies or Fc optimized antibodies and can readily be synthesized using conventional antibody expression systems and techniques. The antibody can be any suitable antigen-binding immunoglobulin, and the MRDs can be any suitable target-binding peptide. The MRDs can be operably linked to any location on the antibody, and the attachment can be direct or indirect (e.g., through a chemical or polypeptide linker). Compositions of antibodies comprising an MRD, methods of manufacturing antibodies comprising an MRD, and methods of using antibodies comprising MRDs are also described in the sections below.
- The section headings used herein are for organizational purposes only and are not to be construed as in any way limiting the subject matter described.
- Standard techniques may be used for recombinant DNA molecule, protein, and antibody production, as well as for tissue culture and cell transformation. Enzymatic reactions and purification techniques are typically performed according to the manufacturer's specifications or as commonly accomplished in the art using conventional procedures such as those set forth in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) and Sambrook et al. (Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)) (both herein incorporated by reference), or as described herein. Unless specific definitions are provided, the nomenclature utilized in connection with, and the laboratory procedures and techniques of analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein, are those known and used in the art. Standard techniques may be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, delivery, and treatment of patients.
- The terms “MRD-containing antibodies,” “antibody-MRD molecules,” “MRD-antibody molecules,” “antibodies comprising an MRD” and “Zybodies” are used interchangeably herein and do not encompass a peptibody. Each of these terms may also be used herein to refer to a “complex” of the invention.
- The term “antibody” is used herein to refer to immunoglobulin molecules that are able to bind antigens through an antigen binding domain (i.e., antibody combining site). The term “antibody” includes polyclonal, oligoclonal (mixtures of antibodies), and monoclonal antibodies, chimeric, single chain, and humanized antibodies. The term “antibody” also includes human antibodies. In some embodiments, an antibody comprises at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains: CH1, CH2, and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxyl-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. In other embodiments, the antibody is a homomeric heavy chain antibody (e.g., camelid antibodies) which lacks the first constant region domain (CH1) but retains an otherwise intact heavy chain and is able to bind antigens through an antigen binding domain. The variable regions of the heavy and light chains in the antibody-MRD fusions of the invention contain a functional binding domain that interacts with an antigen.
- The term “monoclonal antibody” typically refers to a population of antibody molecules that contain only one species of antibody combining site capable of immunoreacting with a particular epitope. A monoclonal antibody thus typically displays a single binding affinity for any epitope with which it immunoreacts. As used herein, a “monoclonal antibody” may also contain an antibody molecule having a plurality of antibody combining sites (i.e., a plurality of variable domains), each immunospecific for a different epitope, e.g., a bispecific monoclonal antibody. Thus, as used herein, a “monoclonal antibody” refers to a homogeneous antibody population involved in the highly specific recognition and binding of one or two (in the case of a bispecific monoclonal antibody) antigenic determinants, or epitopes. This is in contrast to polyclonal antibodies that typically include different antibodies directed against different antigenic determinants. The term “monoclonal antibody” refers to such antibodies made in any number of manners including but not limited to by hybridoma, phage selection, recombinant expression, yeast, and transgenic animals.
- A “dual-specific antibody” is used herein to refer to an immunoglobulin molecule that contains dual-variable-domain immunoglobulins, where the dual-variable-domain can be engineered from any two monoclonal antibodies.
- The term “chimeric antibodies” refers to antibodies wherein the amino acid sequence of the immunoglobulin molecule is derived from two or more species. Typically, the variable region of both light and heavy chains corresponds to the variable region of antibodies derived from one species of mammals (e.g., mouse, rat, rabbit, etc.) with the desired specificity and/or affinity while the constant regions are homologous to the sequences in antibodies derived from another species (usually human) to avoid eliciting an immune response in that species.
- The term “humanized antibody” refers to forms of non-human (e.g., murine) antibodies that are specific immunoglobulin chains, chimeric immunoglobulins, or fragments thereof that contain minimal non-human (e.g., murine) sequences. Typically, humanized antibodies are human immunoglobulins in which residues from the complementarity determining region (CDR) are replaced by residues from the CDR of a non-human species (e.g., mouse, rat, rabbit, hamster) that have the desired specificity and/or affinity (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)). In some instances, the Fv framework region (FR) residues of a human immunoglobulin are replaced with the corresponding residues in an antibody from a non-human species that has the desired specificity and/or affinity. The humanized antibody can be further modified by the substitution of additional residues either in the Fv framework region and/or within the replaced non-human residues to refine and optimize antibody specificity, affinity, and/or capability. In general, the humanized antibody will comprise substantially all of at least one, and typically two or three, variable domains containing all or substantially all of the CDR regions that correspond to the non-human immunoglobulin whereas all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody can also comprise an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin. Examples of methods used to generate humanized antibodies are described in U.S. Pat. No. 5,225,539, U.S. Pat. No. 4,816,567, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 86/01533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); and Neuberger et al., Nature 314:268 (1985) which are herein incorporated by reference.
- As used herein, “human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin or one or more human germlines and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulins and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Pat. No. 5,939,598 by Kucherlapati et al. A human antibody may still be considered “human” even if amino acid substitutions are made in the antibody. Examples of methods used to generate human antibodies are described in: PCT publications WO 98/24893, WO 92/01047, WO 96/34096, and WO 96/33735; European Patent No. 0 598 877; U.S. Pat. Nos. 5,413,923, 5,625,126, 5,633,425, 5,569,825, 5,661,016, 5,545,806, 5,814,318, 5,885,793, 5,916,771, and 5,939,598; and Lonberg and Huszar, Int. Rev. Immunol. 13:65-93 (1995), which are herein incorporated by reference.
- An “antibody combining site” is that structural portion of an antibody molecule comprised of heavy and light chain variable and hypervariable regions that specifically binds (immunoreacts with) an antigen. The term “immunoreact” in its various forms means specific binding between an antigenic determinant-containing molecule and a molecule containing an antibody combining site such as a whole antibody molecule or a portion thereof.
- In naturally occurring antibodies, the six “complementarity determining regions” or “CDRs” present in each antigen binding domain are short, non-contiguous sequences of amino acids that are specifically positioned to form the antigen binding domain as the antibody assumes its three dimensional configuration in an aqueous environment. The remainder of the amino acids in the antigen binding domains, referred to as “framework” regions, show less inter-molecular variability. The framework regions largely adopt a β-sheet conformation and the CDRs form loops which connect, and in some cases form part of, the β-sheet structure. Thus, framework regions act to form a scaffold that provides for positioning the CDRs in correct orientation by inter-chain, non-covalent interactions. The antigen binding domain (i.e., antibody combining site) formed by the positioned CDRs defines a surface complementary to the epitope on the immunoreactive antigen. This complementary surface promotes the non-covalent binding of the antibody to its cognate epitope. The amino acids comprising the CDRs and the framework regions, respectively, can be readily identified for any given heavy or light chain variable region by one of ordinary skill in the art, since they have been precisely defined (see, “Sequences of Proteins of Immunological Interest,” Kabat, E., et al., U.S. Department of Health and Human Services, (1983); and Chothia and Lesk, J. Mol. Biol., 196:901-917 (1987), which are herein incorporated by reference). “Humanized antibody” or “chimeric antibody” includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
- The term “peptibody” refers to a peptide or polypeptide which comprises less than a complete, intact antibody. A peptibody can be an antibody Fc domain attached to at least one peptide. A peptibody does not include antibody variable regions, an antibody combining site, CH1 domains, or Ig light chain constant region domains.
- The term “naturally occurring” when used in connection with biological materials such as a nucleic acid molecules, polypeptides, host cells, and the like refers to those which are found in nature and not modified by a human being.
- The term “domain” as used herein refers to a part of a molecule or structure that shares common physical or chemical features, for example hydrophobic, polar, globular, helical domains or properties, e.g., a protein binding domain, a DNA binding domain or an ATP binding domain. Domains can be identified by their homology to conserved structural or functional motifs.
- A “conservative amino acid substitution” is one in which one amino acid residue is replaced with another amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). For example, substitution of a phenylalanine for a tyrosine is a conservative substitution. In some embodiments, conservative substitutions in the sequences of the polypeptides and antibodies of the invention do not abrogate the binding of the polypeptide or antibody containing the amino acid sequence to the antigen(s) to which the polypeptide or antibody binds. Methods of identifying nucleotide and amino acid conservative substitutions and non-conservative substitutions which do not eliminate polypeptide or antigen binding are well-known in the art (see, e.g., Brummell et al., Biochem. 32:1180-1187 (1993); Kobayashi et al., Protein Eng. 12(10):879-884 (1999); and Burks et al., Proc. Natl. Acad. Sci. USA 94:412-417 (1997)).
- A “modular recognition domain” (MRD) or “target binding peptide” is a molecule, such as a protein, glycoprotein and the like, that can specifically (non-randomly) bind to a target molecule. The amino acid sequence of a MRD can typically tolerate some degree of variability and still retain a degree of capacity to bind the target molecule. Furthermore, changes in the sequence can result in changes in the binding specificity and in the binding constant between a preselected target molecule and the binding site. In one embodiment, the MRD is an agonist of the target it binds. An MRD agonist refers to a MRD that in some way increases or enhances the biological activity of the MRD's target protein or has biological activity comparable to a known agonist of the MRD's target protein. In another embodiment, the MRD is an antagonist of the target it binds. An MRD antagonist refers to an MRD that blocks or in some way interferes with the biological activity of the MRD's target protein or has biological activity comparable to a known antagonist or inhibitor of the MRD's target protein.
- “Cell surface receptor” refers to molecules and complexes of molecules capable of receiving a signal and the transmission of such a signal across the plasma membrane of a cell. An example of a cell surface receptor of the present invention is an activated integrin receptor, for example, an activated αvβ3 integrin receptor on a metastatic cell. As used herein, “cell surface receptor” also includes a molecule expressed on a cell surface that is capable of being bound by an MRD containing antibody of the invention.
- As used herein, a “target binding site” or “target site” is any known, or yet to be defined, amino acid sequence having the ability to selectively bind a preselected agent. Exemplary reference target sites are derived from the RGD-dependent integrin ligands, namely fibronectin, fibrinogen, vitronectin, von Willebrand factor and the like, from cellular receptors such as ErbB2, VEGF, vascular homing peptide or angiogenic cytokines, from protein hormones receptors such as insulin-like growth factor-1 receptor, epidermal growth factor receptor and the like, and from tumor antigens.
- The term “epitope” or “antigenic determinant” are used interchangeably herein and refer to that portion of any molecule capable of being recognized and specifically bound by a particular binding agent (e.g., an antibody or an MRD). When the recognized molecule is a polypeptide, epitopes can be formed from contiguous amino acids and noncontiguous amino acids and/or other chemically active surface groups of molecules (such as carbohydrates) juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained upon protein denaturing, whereas epitopes formed by tertiary folding are typically lost upon protein denaturing. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.
- An antibody, MRD, antibody-containing MRD, or other molecule is said to “competitively inhibit” binding of a reference molecule to a given epitope if it binds to that epitope to the extent that it blocks, to some degree, binding of the reference molecule to the epitope. Competitive inhibition may be determined by any method known in the art, for example, competition ELISA assays. As used herein, an antibody, MRD, antibody-containing MRD, or other molecule may be said to competitively inhibit binding of the reference molecule to a given epitope, for example, by at least 90%, at least 80%, at least 70%, at least 60%, or at least 50%.
- The term “protein” is defined as a biological polymer comprising units derived from amino acids linked via peptide bonds; a protein can be composed of two or more chains.
- A “fusion polypeptide” is a polypeptide comprised of at least two polypeptides and optionally a linking sequence to operatively link the two polypeptides into one continuous polypeptide. The two polypeptides linked in a fusion polypeptide are typically derived from two independent sources, and therefore a fusion polypeptide comprises two linked polypeptides not normally found linked in nature. The two polypeptides may be operably attached directly by a peptide bond or may be linked indirectly through a linker described herein or otherwise known in the art.
- The term “operably linked,” as used herein, indicates that two molecules are attached so as to each retain functional activity. Two molecules are “operably linked” whether they are attached directly (e.g., a fusion protein) or indirectly (e.g., via a linker).
- The term “linker” refers to a peptide located between the antibody and the MRD or between two MRDs. Linkers can have from about 1 to 20 amino acids, about 2 to 20 amino acids, or about 4 to 15 amino acids. One or more of these amino acids may be glycosylated, as is well understood by those in the art. In one embodiment, the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine. In another embodiment, a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Thus, in some embodiments, the linker is selected from polyglycines (such as (Gly)5, and (Gly)8), poly(Gly-Ala), and polyalanines. The linker can also be a non-peptide linker such as an alkyl linker, or a PEG linker. For example, alkyl linkers such as —NH—(CH2)s-C(O)—, wherein s=2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C1-C6) lower acyl, halogen (e.g., Cl, Br), CN, NH2, phenyl, etc. An exemplary non-peptide linker is a PEG linker. In certain embodiments, the PEG linker has a molecular weight of about 100 to 5000 kDa, or about 100 to 500 kDa. The peptide linkers may be altered to form derivatives.
- “Target cell” refers to any cell in a subject (e.g., a human or animal) that can be targeted by an antibody-containing MRD or MRD of the invention. The target cell can be a cell expressing or overexpressing the target binding site, such as an activated integrin receptor.
- “Patient,” “subject,” “animal” or “mammal” are used interchangeably and refer to mammals such as human patients and non-human primates, as well as experimental animals such as rabbits, rats, and mice, and other animals. Animals include all vertebrates, e.g., mammals and non-mammals, such as sheep, dogs, cows, chickens, amphibians, and reptiles. In some embodiments, the patient is a human.
- “Treating” or “treatment” includes the administration of the antibody comprising an MRD of the present invention to prevent or delay the onset of the symptoms, complications, or biochemical indicia of a disease, condition, or disorder, alleviating the symptoms or arresting or inhibiting further development of the disease, condition, or disorder. Treatment can be prophylactic (to prevent or delay the onset of the disease, or to prevent the manifestation of clinical or subclinical symptoms thereof) or therapeutic suppression or alleviation of symptoms after the manifestation of the disease, condition, or disorder. Treatment can be with the antibody-MRD composition alone, the MRD alone, or in combination of either with an additional therapeutic agent.
- As used herein, the terms “pharmaceutically acceptable,” or “physiologically tolerable” and grammatical variations thereof, as they refer to compositions, carriers, diluents and reagents, are used interchangeably and represent that the materials are capable of administration to or upon a human without the production of therapeutically prohibitive undesirable physiological effects such as nausea, dizziness, gastric upset and the like.
- “Modulate,” means adjustment or regulation of amplitude, frequency, degree, or activity. In another related aspect, such modulation may be positively modulated (e.g., an increase in frequency, degree, or activity) or negatively modulated (e.g., a decrease in frequency, degree, or activity).
- “Cancer,” “tumor,” or “malignancy” are used as synonymous terms and refer to any of a number of diseases that are characterized by uncontrolled, abnormal proliferation of cells, the ability of affected cells to spread locally or through the bloodstream and lymphatic system to other parts of the body (metastasize) as well as any of a number of characteristic structural and/or molecular features. A “cancerous tumor,” or “malignant cell” is understood as a cell having specific structural properties, lacking differentiation and being capable of invasion and metastasis. Examples of cancers that may be treated using the antibody-MRD fusions of the invention include solid tumors and hematologic cancers. Additional, examples of cancers that may be treated using the antibody-MRD fusions of the invention include breast, lung, brain, bone, liver, kidney, colon, head and neck, ovarian, hematopoietic (e.g., leukemia), and prostate cancer. Further examples of cancer that may be treated using the MRD-containing antibodies include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancers. Other types of cancer and tumors that may be treated using MRD-containing antibodies are described herein or otherwise known in the art.
- An “effective amount” of an antibody, MRD, or MRD-containing antibody as disclosed herein is an amount sufficient to carry out a specifically stated purpose such as to bring about an observable change in the level of one or more biological activities related to the target to which the antibody, MRD, or MRD-containing antibody binds. In certain embodiments, the change increases the level of target activity. In other embodiments, the change decreases the level of target activity. An “effective amount” can be determined empirically and in a routine manner, in relation to the stated purpose.
- The term “therapeutically effective amount” refers to an amount of an antibody, MRD, MRD-containing antibody, or other drug effective to “treat” a disease or disorder in a subject or mammal. In the case of cancer, the therapeutically effective amount of the drug can reduce angiogenesis and neovascularization; reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent or stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent or stop) tumor metastasis; inhibit, to some extent, tumor growth or tumor incidence; stimulate immune responses against cancer cells and/or relieve to some extent one or more of the symptoms associated with the cancer. See the definition herein of “treating”. To the extent the drug can prevent growth and/or kill existing cancer cells, it can be cytostatic and/or cytotoxic. A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
- The present invention describes an approach based on the adaptation of target binding peptides or modular recognition domains (MRDs) as fusions to catalytic or non-catalytic antibodies.
- In certain embodiments, where the antibody component of the MRD-antibody fusion is a catalytic antibody, the MRD-antibody fusions provide for effective targeting to tumor cells or soluble molecules while leaving the prodrug activation capability of the catalytic antibody intact. MRDs can also extend the binding capacity of non-catalytic antibodies providing for an effective approach to extend the binding functionality of antibodies, particularly for therapeutic purposes.
- One aspect of the present invention relates to development of a full-length antibody comprising at least one modular recognition domain (MRD). In another non-exclusive embodiment, the full-length antibody comprises more than one MRD, wherein the MRDs have the same or different specificities. In addition, a single MRD may be comprised of a tandem repeat of the same or different amino acid sequence that can allow for the binding of a single MRD to multiple targets and/or to a repeating epitope on a given target.
- The interaction between a protein ligand and its target receptor site often takes place at a relatively large interface. However, only a few key residues at the interface contribute to most of the binding. The MRDs can mimic ligand binding. In certain embodiments, the MRD can mimic the biological activity of a ligand (an agonist MRD) or through competitive binding inhibit the bioactivity of the ligand (an antagonist MRD). MRDs in MRD-containing antibodies can also affect targets in other ways, e.g., by neutralizing, blocking, stabilizing, aggregating, or crosslinking the MRD target.
- It is contemplated that MRDs of the present invention will generally contain a peptide sequence that binds to target sites of interests and have a length of about 2 to 150 amino acids, about 2 to 125 amino acids, about 2 to 100 amino acids, about 2 to 90 amino acids, about 2 to 80 amino acids, about 2 to 70 amino acids, about 2 to 60 amino acids, about 2 to 50 amino acids, about 2 to 40 amino acids, about 2 to 30 amino acids, or about 2 to 20 amino acids. It is also contemplated that MRDs have a length of about 10 to 150 amino acids, about 10 to 125 amino acids, about 10 to 100 amino acids, about 10 to 90 amino acids, about 10 to 80 amino acids, about 10 to 70 amino acids, about 10 to 60 amino acids, about 10 to 50 amino acids, about 10 to 40 amino acids, about 10 to 30 amino acids, or about 10 to 20 amino acids. It is further contemplated that MRDs have a length of about 20 to 150 amino acids, about 20 to 125 amino acids, about 20 to 100 amino acids, about 20 to 90 amino acids, about 20 to 80 amino acids, about 20 to 70 amino acids, about 20 to 60 amino acids, about 20 to 50 amino acids, about 20 to 40 amino acids, or about 20 to 30 amino acids. In certain embodiments, the MRDs have a length of about 2 to 60 amino acids. In other embodiments, the MRDs have a length of about 10 to 60 amino acids. In other embodiments, the MRDs have a length of about 10 to 50 amino acids. In additional embodiments, the MRDs have a length of about 10 to 40 amino acids. In additional embodiments, the MRDs have a length of about 10 to 30 amino acids.
- In some embodiments, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd of less than 5×10−3 M, 10−3 M, 5×10−4 M, 10−4 M, 5×10−5 M, 10−5 M, 5×10−6 M, 10−6 M, 5×10−7 M, 10−7 M, 5×10−8 M, 10−8 M, 5×10−9 M, 10−9 M, 5×10−10 M, 10−10 M, 5×10−11 M, 10−11 M, 5×10−12 M, 10−12 M, 5×10−13 M, 10−13 M, 5×10−14 M, 10−14 M, 5×10−15 M, or 10−15 M. In one embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5×10−5 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5×10−8 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5×10−9 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5×10−10 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5×10−11 M. In another embodiment, one or more of the MRD components of the MRD-containing antibodies have a dissociation constant or Kd less than 5×10−12 M.
- In specific embodiments, one or more of the MRD components of the MRD-containing antibodies bind their targets with an off rate (koff) of less than 5×10−2 sec−1, 10−2 sec−1, 5×10−3 sec−1, or 10−3 sec−1. More preferably, one or more of the MRD components of the MRD-containing antibodies bind their targets with an off rate (koff) of less than 5×10−4 sec−1, 10−4 sec−1, 5×10−5 sec−1, or 10−5 sec−1, 5×10−6 sec−1, 10−6 sec−1, 5×10−7 sec−1, or 10−7 sec−1.
- In other specific embodiments, one or more of the MRD components of the MRD-containing antibodies bind their targets with an on rate (kon) of greater than 103 M−1sec−1, 5×103 M−1sec−1, 104 M−1sec−1, or 5×104 M−1sec−1. More preferably, one or more of the MRD components of the MRD-containing antibodies bind their targets with an on rate (kon) of greater than 105 M−1 sec−1, 5×105 M−1sec−1, 106 M−1sec−1, or 5×106 M−1sec−1, or 107 M−1sec−1.
- In some embodiments, the MRDs are affibodies. Affibodies represent a class of affinity proteins based on a 58-amino acid residue protein domain derived from one of the IgG-binding domains of staphylococcal protein A. This three helix bundle domain has been used as a scaffold for the construction of combinatorial phagemid libraries, from which affibody variants that bind a desired target molecule, such as one or more of the targets disclosed herein, can routinely be selected using phage display technology (see, e.g., Nord et al., Nat Biotechnol 15:772-7 (1997), and Ronmark et al., Eur J Biochem 269:2647-55 (2002)). Further details of Affibodies and methods of production thereof are provided by reference to U.S. Pat. No. 5,831,012, which is herein incorporated by reference in its entirety.
- In some embodiments, the MRDs are fynomers or another SH3 domain based binding polypeptide. Fynomers, like other SH3 domain derived affinity peptides share a compact barrel conformation that is formed by two anti-parallel beta sheets. The Fyn SH3 domain is 63 residues in length and contains 2 flexible loops that have been modified using combinatorial protein design to create display libraries. Fynomers that bind a target of interest can routinely be selected using recombinant technology as described for example, in Grbulovski et al., J. Biol. Chem. 282(5) 3196-3204 (2007) and International Publication WO 2008/022759, which is herein incorporated by reference in its entirety.
- In other embodiments, the MRDs comprise one or more amino acid residues or sequences of amino acid residues (including derivatives, analogs, and mimetics thereof), that are preferentially targeted by chemistries or other processes that covalently or non-covalently link a molecular entity to the MRD, as compared to the antibody component of the MRD-containing antibody. For example, in some embodiments, the amino acid sequence of the MRD contains one or more residues having reactive side chains (e.g., cysteine or lysine) that allow for selective or preferential linkage of the MRD to drug conjugates, imaging agents or bioactive ligands. The use of these “linking” MRDs to arm an MRD-comprising antibody with a “payload” overcomes many of the issues associated with antibody destabilization and reduction in antibody activity that have frequently been observed using conventional methods for generating immunotoxins. The “payload” component of an MRD-comprising antibody complex of the invention can be any composition that confers a beneficial therapeutic, diagnostic, or prognostic effect, or that provide an advantage in manufacturing, purifying or formulating an MRD-containing antibody. In some embodiments, the payload is a cytotoxin. In additional embodiments, the payload is another MRD, a toxin, a chemotherapeutic drug, a catalytic enzyme, a prodrug, a radioactive nuclide, or a chelator (e.g., for the attachment of lanthanides). In particular embodiments, the payload is a chemotherapeutic drug, or a prodrug, such as, doxorubicin or a maytansinoid-like drug. The payloads can be designed to be released from the MRD-comprising antibody complex using techniques known in the art. In certain embodiments, the payloads are released from the MRD-comprising antibody by cleavage of the MRD upon binding of the MRD-comprising-payload complex to a cell or other biomolecule. In other embodiments, the payloads of the MRD-comprising-antibody complex are released upon internalization of the complex into a cell.
- In nonexclusive embodiments, the MRD does not contain an antigen binding domain, or another antibody domain such as a constant region, a variable region, a complementarity determining region (CDR), a framework region, an Fc domain, or a hinge region. In one non-exclusive embodiment, the MRD does not contain an antigen binding domain. In another non-exclusive embodiment, the MRD does not contain three CDRs. In another non-exclusive embodiment, the MRD does not contain CDR1 and CDR2. In yet another non-exclusive embodiment, the MRD does not contain CDR1. In one nonexclusive embodiment, the MRD is not derived from a natural cellular ligand. In another embodiment, the MRD is not a naturally occurring protein or functionally active (i.e., able to bind its natural target) fragment thereof. In another nonexclusive embodiment, the MRD is not a radioisotope. In another nonexclusive embodiment, the MRD is not a protein expression marker such as glutathione S-transferase (GST), His-tag, Flag, hemagglutinin (HA), MYC or a fluorescent protein (e.g., GFP or RFP). In another nonexclusive embodiment, the MRD does not bind serum albumin. In an additional nonexclusive embodiment, the MRD is not a small molecule that is a cytotoxin. It yet another nonexclusive embodiment, the MRD does not have enzymatic activity. In another non-exclusive embodiment, the MRD has a therapeutic effect when administered alone and/or when fused to an Fc in a patient or animal model. In another non-exclusive embodiment, the MRD has a therapeutic effect when repeatedly administered alone and/or when fused to an Fc in a patient or animal model (e.g., 3 or more times over the course of at least six months).
- In some embodiments, the MRD is conformationally constrained. In other embodiments, the MRD is not conformationally constrained. In some embodiments, the MRD contains at least two cysteine residues. Cysteine residues in the MRDs may produce either or both, intrachain or interchain disulfide bonds. In some embodiments, the MRD contains two cysteine residues outside the core target-binding domain. As used herein, the term “core binding domain means a region corresponding the minimal number of amino acids making up a portion of a binding protein that are required to competitively inhibit the binding of the full-length protein to a binding target. Alternatively, when dealing with proteins of less than 100 KDa, the core binding domain can conveniently be benchmarked as the minimum number of amino acids in a portion of a binding protein that retains greater than or equal to 80% of the biologic activity (e.g., binding) of the full-length protein Methods and reagents for assaying competitive binding inhibition between compounds are readily known in the art.
- In additional embodiments, the MRD contains two cysteine residues located within the core target-binding domain at each end of the target-binding domain. In some embodiments, a first cysteine is located near the terminus of the molecule (i.e., at the C-terminus of an MRD on the C-terminus of a linker or antibody chain or at the N-terminus of an MRD on the N-terminus of a linker or antibody chain). Thus, in some embodiments, a first cysteine is located within one amino acid, within two amino acids, within three amino acids, within four amino acids, within five amino acids, or within six amino acids of the terminus of the molecule. In some embodiments, a second cysteine is located near the MRD fusion location (i.e., at the N-terminus of an MRD on the C-terminus of a linker or antibody chain or at the C-terminus of an MRD on the N-terminus of a linker or antibody chain). Thus, in some embodiments, a second cysteine is located within one amino acid, within two amino acids, within three amino acids, within four amino acids, within five amino acids, within 10 amino acids, or within 15 amino acids from the MRD fusion. In additional embodiments, the MRD one or two cysteine residues located outside of the core target-binding domain.
- In some particular embodiments, the MRD has a particular hydrophobicity. For example, the hydrophobicity of MRDs can be compared on the basis of retention times determined using hydrophobic interaction chromatography or reverse phase liquid chromatography.
- The MRD target can be any molecule that it is desirable for an MRD-containing antibody to interact with. For example, the MRD target can be a soluble factor or a transmembrane protein, such as a cell surface receptor. The MRD target can also be an extracellular component or an intracellular component. In certain non-exclusive embodiments, the MRD target is a factor that regulates cell proliferation, differentiation, or survival. In other nonexclusive embodiments, the MRD target is a cytokine. In another nonexclusive embodiment, the MRD target is a factor that regulates angiogenesis. In another nonexclusive embodiment, the MRD target is a factor that regulates cellular adhesion and/or cell-cell interaction. In certain non-exclusive embodiments, the MRD target is a cell signaling molecule. In another nonexclusive embodiment, the MRD target is a factor that regulates one or more immune responses, such as, autoimmunity, inflammation and immune responses against cancer cells. In another nonexclusive embodiment, the MRD target is a factor that regulates cellular adhesion and/or cell-cell interaction. In an additional nonexclusive embodiment, the MRD target is a cell signaling molecule. In another embodiment, an MRD can bind a target that is itself an MRD. The ability of MRDs to bind a target and block, increase, or interfere with the biological activity of the MRD target can be determined using or routinely modifying assays, bioassays, and/or animal models known in the art for evaluating such activity.
- The MRDs are able to bind their respective target when the MRDs are attached to an antibody. In some embodiments, the MRD is able to bind its target when not attached to an antibody. In some embodiments, the MRD is a target agonist. In other embodiments, the MRD is a target antagonist. In certain embodiments, the MRD can be used to localize an MRD-containing antibody to an area where the MRD target is located.
- The sequence of the MRD can be determined several ways. For example, MRD sequences can be derived from natural ligands or known sequences that bind to a specific target binding site. Additionally, phage display technologies have emerged as a powerful method in identifying peptides which bind to target receptors and ligands. In peptide phage display libraries, naturally occurring and non-naturally occurring (e.g., random peptide) sequences can be displayed by fusion with coat proteins of filamentous phage. The methods for elucidating binding sites on polypeptides using phage display vectors has been previously described, in particular in WO 94/18221, which is herein incorporated by reference. The methods generally involve the use of a filamentous phage (phagemid) surface expression vector system for cloning and expressing polypeptides that bind to the pre-selected target site of interest.
- The methods of the present invention for preparing MRDs include the use of phage display vectors for their particular advantage of providing a means to screen a very large population of expressed display proteins and thereby locate one or more specific clones that code for a desired target binding reactivity. The ability of the polypeptides encoded by the clones to bind a target and/or alter the biological activity of the target can be determined using or routinely modifying assays and other methodologies described herein or otherwise known in the art.
- For example, phage display technology can be used to identify and improve the binding properties of MRDs. See, for example, Scott et al., Science 249: 386 (1990); Devlin et al., Science 249: 404 (1990); U.S. Pat. Nos. 5,223,409, 5,733,731, 5,498,530, 5,432,018, 5,338,665, 5,922,545; WO 96/40987, and WO 98/15833, which are herein incorporated by reference. In peptide phage display libraries, natural and/or non-naturally occurring peptide sequences can be displayed by fusion with coat proteins of filamentous phage. The displayed peptides can be affinity-eluted against a target of interest if desired. The retained phage may be enriched by successive rounds of affinity purification and repropagation. The best binding peptides may be sequenced to identify key residues within one or more structurally related families of peptides. See, e.g., Cwirla et al., Science 276: 1696-9 (1997), in which two distinct families were identified. The peptide sequences may also suggest which residues may be safely replaced by alanine scanning or by mutagenesis at the DNA level. Mutagenesis libraries may be created and screened to further optimize the sequence of the best binders. Lowman, Ann. Rev. Biophys. Biomol. Struct. 26: 401-24 (1997).
- Structural analysis of protein-protein interaction may also be used to suggest peptides that mimic the binding activity of large protein ligands. In such an analysis, the crystal structure may suggest the identity and relative orientation of critical residues of the large protein ligand, from which a peptide such as an MRD may be designed. See, e.g., Takasaki et al., Nature Biotech 15: 1266-70 (1997). These analytical methods may also be used to investigate the interaction between a target and an MRD selected by phage display, which can suggest further modification of the MRDs to increase binding affinity.
- Other methods known in the art can be used to identify MRDs. For example, a peptide library can be fused to the carboxyl terminus of the lac repressor and expressed in E. coli. Another E. coli-based method allows display on the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). These and related methods are collectively referred to as “E. coli display.” In another method, translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. This and related methods are collectively referred to as “ribosome display.” Other known methods employ chemical linkage of peptides to RNA. See, for example, Roberts and Szostak, Proc Natl Acad Sci USA, 94:12297-303 (1997). This and related methods are collectively referred to as “RNA-peptide screening, RNA display and mRNA display.” Chemically derived peptide libraries have been developed in which peptides are immobilized on stable, non-biological materials, such as polyethylene rods or solvent-permeable resins. Another chemically derived peptide library uses photolithography to scan peptides immobilized on glass slides. These and related methods are collectively referred to as “chemical-peptide screening.” Chemical-peptide screening may be advantageous in that it allows use of D-amino acids and other unnatural analogues, as well as non-peptide elements. Both biological and chemical methods are reviewed in Wells and Lowman, Curr. Opin. Biotechnol., 3:355-62 (1992). Furthermore, constrained libraries, linear libraries, and/or focused libraries (comprised of structurally related domains that share significant primary sequence homology) can be used to identify, characterize, and modify MRDs.
- An improved MRD that specifically binds a desired target can also be prepared based on a known MRD sequence. For example, at least one, two, three, four, five, or more amino acid mutations (e.g., conservative or non-conservative substitutions), deletions or insertions can be introduced into a known MRD sequence and the resulting MRD can be screened for binding to the desired target and biological activity, such as the ability to antagonize target biological activity or agonize target biological activity.
- Additionally, MRDs can be identified based on their effects in assays that measure particular pathways or activities. For example, assays that measure signaling pathways (e.g., phosphorylation studies or multimerization), ion channel fluxes, intracellular cAMP levels, cellular activities such as migration, adherence, proliferation, or apoptosis, and viral entry, replication, budding, or integration can be used to identify, characterize, and improve MRDs.
- Variants and derivatives of the MRDs that retain the ability to bind the target antigen are included within the scope of the present invention. Included within variants are insertional, deletional, and substitutional variants, as well as variants that include MRDs presented herein with additional amino acids at the N- and/or C-terminus, including from about 0 to 50, 0 to 40, 0 to 30, 0 to 20 amino acids and the like. It is understood that a particular MRD of the present invention may be modified to contain one, two, or all three types of variants. Insertional and substitutional variants may contain natural amino acids, unconventional amino acids, or both. In some embodiments, the MRD contains a sequence with no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 amino acid differences when compared to an MRD sequence described herein. In some embodiments, the amino acid differences are substitutions. These substitutions can be conservative or non-conservative in nature and can include unconventional or non-natural amino acids. In other embodiments the MRD contains a sequence that competitively inhibits the ability of an MRD-containing sequence described herein to bind with a target molecule. The ability of an MRD to competitively inhibit another MRD-containing sequence can be determined using techniques known in the art, including ELISA and BIAcore analysis.
- The ability of an MRD to bind its target can be assessed using any technique that assesses molecular interaction. For example, MRD-target interaction can be assayed as described in the Examples below or alternatively, using in vitro or in vivo binding assays such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, fluorescent immunoassays, protein A immunoassays, and immunohistochemistry (IHC). Assays evaluating the ability of an MRD to functionally affect its target (e.g., assays to measure signaling, proliferation, migration etc.) can also be used to indirectly assess MRD-target interaction.
- Once the sequence of the MRD has been elucidated, the peptides may be prepared by any of the methods known in the art. For example, the MRD peptides can be chemically synthesized and operably attached to the antibody or can be synthesized using recombinant technology. For example, MRDs can be synthesized in solution or on a solid support using known techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Tam et al., J. Am. Chem. Soc., 105:6442 (1983); Merrifield, Science 232:341-347 (1986); Barany and Merrifield, The Peptides, Gross and Meienhofer, eds, Academic Press, New York, 1-284; Barany et al., Int. J. Pep. Protein Res., 30:705-739 (1987); and U.S. Pat. No. 5,424,398, which are herein incorporated by reference.
- MRDs can be synthesized with covalently attached molecules that are not amino acids but aid in the purification, identification, and/or tracking of an MRD in vitro or in vivo. (e.g., biotin for reacting with avidin or avidin-labeled molecules).
- The following MRD targets are described in more detail by way of example only.
- In some embodiments described herein, the MRD targets an integrin. The role of integrins such as αvβ3 and αvβ5 as tumor-associated markers has been well documented. A recent study of 25 permanent human cell lines established from advanced ovarian cancer demonstrated that all lines were positive for αvβ5 expression and many were positive for αvβ3 expression. Studies have also shown that αvβ3 and αvβ5 is highly expressed on malignant human cervical tumor tissues. Integrins have also demonstrated therapeutic effects in animal models of Kaposi's sarcoma, melanoma, and breast cancer.
- A number of integrin αvβ3 and αvβ5 antagonists are in clinical development. These include cyclic RGD peptides and synthetic small molecule RGD mimetics. Two antibody-based integrin antagonists are currently in clinical trials for the treatment of cancer. The first is VITAXIN® (MEDI-522, Abegrein), the humanized form of the murine anti-human αvβ3 antibody LM609. A dose-escalating phase I study in cancer patients demonstrated that VITAXIN® is safe for use in humans. Another antibody in clinical trials is CNT095, a fully human Ab that recognizes αv integrins. A Phase I study of CNT095 in patients with a variety of solid tumors has shown that it is well tolerated. Cilengitide (EMD 121974), a peptide antagonist of αvβ3 and αvβ5, has also proven safe in phase I trials. Furthermore, there have been numerous drug targeting and imaging studies based on the use of ligands for these receptors. These preclinical and clinical observations demonstrate the importance of targeting αvβ3 and αvβ5 and studies involving the use of antibodies in this strategy have consistently reported that targeting through these integrins is safe.
- Clinical trials are also ongoing for antagonists targeting α5vβ1 for treating metastatic melanoma, renal cell carcinoma, and non-small cell lung cancer (M200 (volociximab) and malignant glioma (ATN-161).
- Integrin-binding MRDs containing one or more RGD tripeptide sequence motifs represent an example of MRDs of the invention. Ligands having the RGD motif as a minimum recognition domain and from which MRDs of the invention can be derived are well known, a partial list of which includes, with the corresponding integrin target in parenthesis, fibronectin (α3β1, α5β1, αvβ1, α11bβ3, αvβ3, and α3β1) fibrinogen (αMβ2 and α11bβ1) von Willebrand factor (α11bβ3 and αvβ3), and vitronectin (α11bβ3, αvβ3 and αvβ5).
- In one embodiment, the RGD containing targeting MRD is a member selected from the group consisting of: YCRGDCT (SEQ ID NO:3); PCRGDCL (SEQ ID NO:4); TCRGDCY (SEQ ID NO:5); and LCRGDCF (SEQ ID NO:6).
- A MRD that mimics a non-RGD-dependent binding site on an integrin receptor and having the target binding specificity of a high affinity ligand that recognizes the selected integrin is also contemplated in the present invention. MRDs that bind to an integrin receptor and disrupt binding and/or signaling activity of the integrin are also contemplated.
- In some embodiments, the MRD targets an angiogenic molecule. Angiogenesis is essential to many physiological and pathological processes. Ang2 has been shown to act as a proangiogenic molecule. Administration of Ang2-selective inhibitors is sufficient to suppress both tumor angiogenesis and corneal angiogenesis. Therefore, Ang2 inhibition alone or in combination with inhibition of other angiogenic factors, such as VEGF, can represent an effective antiangiogenic strategy for treating patients with solid tumors.
- It is contemplated that MRDs useful in the present invention include those that bind to angiogenic receptors, angiogenic factors, and/or Ang2. In a specific embodiment, an MRD of the invention binds Ang2. In one embodiment, the angiogenic cytokine targeting MRD sequences or MRD-containing sequences contain a sequence selected from the group: MGAQTNFMPMDDLEQRLYEQFILQQGLE (SEQ ID NO:7); MGAQTNFMPMDNDELLLYEQFILQQGLE (SEQ ID NO:8); MGAQTNFMPMDATETRLYEQFILQQGLE (SEQ ID NO:9); AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10) (2×Con4); MGAQTNFMPMDNDELLNYEQFILQQGLE (SEQ ID NO:11); and PXDNDXLLNY (SEQ ID NO:12) where X is one of the 20 naturally-occurring amino acids.
- In another embodiment, the angiogenic cytokine targeting MRD sequences or MRD-containing sequences contain a sequence selected from the group: MGAQTNFMPMDNDELLLYEQFILQQGLEGGSGSTASSGSGSSLGAQTNFMPMDNDELLLY (SEQ ID NO:20); AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10); AQQEE CEFAPWTCEHM (SEQ ID NO:21) (ConFA); core nEFAPWTn (SEQ ID NO:22) where n is from about 0 to 50 amino acid residues; AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFAPWTCEHMLE (SEQ ID NO:23) (2×ConFA); and AQQEECELAPWTCEHM (SEQ ID NO:24) (ConLA).
- In one embodiment, the Ang2 binding MRD contains the sequence AQTNFMPM DQEEALLYEEFI (SEQ ID NO:108). In another embodiment, the Ang2 binding MRD contains the sequence AQTNFMPMDQDEALLYEEFI (SEQ ID NO:109). In a further embodiment, the Ang2 binding MRD contains the sequence AQTNFMPM DQDEALLYEQFI (SEQ ID NO:110). In an additional embodiment, the Ang2 binding MRD contains the sequence AQTNFMPM DQDELLLYEEF1 (SEQ ID NO:111).
- In another embodiment, the Ang2 binding MRD contains a sequence selected from:
- In one embodiment, the Ang2 binding MRD contains an amino acid sequence of the formula: X1AQTNFMPMDX11X12EX14LLYEX19FI (SEQ ID NO:122) and wherein X1 is 1-10 amino acid residues. According to one embodiment, X11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H; X12 is A, D, E, N, Q, G, S, T, Y, P, W, K, R, or H; X14 is A, D, N, G, S, T, Y, V, P, I, W, F, M, K, R, or H, and X19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H. In a further embodiment, X11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H; X12 is D, E, N, Q, G, S, T, Y, V, K, R, or H; X14 is A, D, N, G, S, T, Y, V, P, 1, W, F, M, K, R, or H, and X19 is E, N, D, G, S, T, Y, L, V, P, 1, W, F, M, K, R, or H (SEQ ID NO:123). According to another embodiment, X11 is Q, X12 is D, E, N, Q, or G; X14 is A A, D, N, G, S, T, Y, V, P, I, W, F, M, K, R, or H; and X19 is E, N, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H (SEQ ID NO:124).
- In one embodiment, the Ang2 binding MRD contains a sequence having the formula X1X2X3X4X5X6 MPMDX11X12EX14X15LYEX19X20X21X22 (SEQ ID NO:125) and wherein:
- X1 is 1-10 amino acid residues;
- X22 is 1-10 amino acid residues. In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X2 is any amino acid (SEQ ID NO:126). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X2 is any amino acid, X5 is Q, E, or N (SEQ ID NO:127). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X2 is any amino acid, X11 is Q or N, and X12 is not L or C (SEQ ID NO:128). In another embodiment, the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X2 is any amino acid, X11 is Q, and X12 is not L or C, and X12 is D, E, S, K, or R (SEQ ID NO:129). In other embodiment, the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X2 is any amino acid, X11 is Q, and X12 is not L or C, and X12 is D, E, S, K, or R (SEQ ID NO:130).
- In another embodiment the Ang2 binding MRD contains a sequence having the formula: X1X2X3X4X5X6MPMDX11X12EX14X15LYEX19X20X21X22 (SEQ ID NO:131) and wherein:
- X1 is 1-10 amino acid residues;
- X22 is 1-10 amino acid residues. In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q (SEQ ID NO:132). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q and X12 is D (SEQ ID NO:133).
- In one embodiment, the Ang2 binding MRD contains a sequence having the formula X1AQTNFMPMDX11X12EX14LLYEX19X20FI (SEQ ID NO:134) wherein:
- X1 is 1-10 amino acid residues;
- X20 is E, D, V, M, A, F, L, P, I, W, Y, K, R, H, or Norleucine. In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q (SEQ ID NO:135). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q, and the amino acid at X12 is any amino acid other than L or C (SEQ ID NO:136). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q, and X12 is D, E, S, K, or R (SEQ ID NO:137). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q and X12 is D (SEQ ID NO:138).
- In another embodiment, the Ang2 binding MRD contains a sequence having the formula X1AQTNFMPMDX11X12EX14LLYEX19X20FI (SEQ ID NO:139)) wherein:
- X1 is 1-10 amino acid residues;
- X20 is L, V, Norleucine, or F. In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q (SEQ ID NO:140). In additional embodiments the Ang2 binding MRD contains a sequence having the formula and sequences disclosed above, but wherein X11 is Q and X12 is D (SEQ ID NO:141).
- In another embodiment, the angiogenic cytokine targeting MRD sequences or MRD-containing sequences contain a sequence selected from the group: XnELAPWTXn where n is from about 0 to 50 amino acid residues and X is any amino acid (SEQ ID NO:25); AQQEECELAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELAPWTCEHMLE (SEQ ID NO:26) (2×ConLA); AQQEECEFSPWTCEHM (SEQ ID NO:27) (ConFS); XnEFSPWTXn where n is from about 0 to 50 amino acid residues and X is any amino acid (SEQ ID NO:28); AQQEECEFSPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSPWTCEHMLE (SEQ ID NO:29) (2×ConFS); AQQEECELEPWTCEHM (SEQ ID NO:30) (ConLE); XnELEPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:31) and wherein X is any amino acid; and AQQEECELEPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELEPWTCEHMLE (SEQ ID NO:32) (2×ConLE).
- It should be understood that such the MRDs of the invention can be present in tandem dimers, trimers or other multimers either homologous or heterologous in nature. For example, one can dimerize identical Con-based sequences such as in 2×ConFA to provide a homologous dimer, or the Con peptides can be mixed such that ConFA is combined with ConLA to create ConFA-LA heterodimer with the sequence:
-
(SEQ ID NO: 33) AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELAPWT CEHMLE. - Another heterodimer of the invention is ConFA combined with ConFS to create ConFA-FS with the sequence:
-
(SEQ ID NO: 34) AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSP WTCEHMLE. - One of skill in the art, given the teachings herein, will appreciate that other such combinations will create functional Ang2 binding MRDs as described herein.
- The invention also includes human Ang2 MRDs having a core sequence selected from: XnEFAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:22); XnELAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:25); XnEFSPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:28); XnELEPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:31); and XnAQQEECEX1X2PWTCEHMXn where n is from about 0 to 50 amino acid residues and X represents any natural amino acid (SEQ ID NO:57).
- In some embodiments, the MRD targets vascular endothelial growth factor (VEGF). Phage display selections and structural studies of VEGF neutralizing peptides in complex with VEGF have been reported. These studies have revealed that peptide vl 14 (VEPNCDIHVM WEWECFERL) (SEQ ID NO:13) is VEGF specific, binds VEGF with 0.2 μM affinity, and neutralizes VEGF-induced proliferation of Human Umbilical Vein Endothelial Cells (HUVEC). Since VEGF is a homodimer, the peptide occupies two identical sites at either end of the VEGF homodimer. In a specific embodiment, the antibody-MRD fusion of the invention comprises vl14. In other embodiments, the antibody-MRD fusion comprises variants/derivatives that competitively inhibit the ability of the antibody-vl14 fusion to bind to VEGF. In another embodiment, the antibody-MRD fusion comprises an MRD with the sequence ATWLPPP (SEQ ID NO:71), which inhibits VEGF-mediated angiogenesis. Binetruy-Tournaire, R. et. al., EMBO 19:1525-1533 (2000). In additional embodiments, an anti-VEGF antibody containing an MRD that targets VEGF is contemplated in the present invention. Anti-VEGF antibodies can be found for example in Presta et al., Cancer Research 57:4593-4599 (1997); and Fuh et al., J Biol Chem 281:10 6625 (2006), which are herein incorporated by reference.
- Insulin-like growth factor-I receptor-specific MRDs can also be used in the present invention. In one embodiment, the MRD sequence that targets the insulin-like growth factor-I receptor is SFYSCLESLVNGPAEKSRGQWDGCRKK (SEQ ID NO:14).
- In one aspect, the invention includes an IGF1R binding MRD having the sequence: NFYQC1X1X2LX3X4X5PAEKSRGQWQECRTGG (SEQ ID NO:58), wherein X1 is E or D; X2 is any amino acid; X3 is any amino acid; X4 is any amino acid and X5 is any amino acid.
- In another embodiment, the IGF1R binding MRD contains a sequence selected from the group: NFYQCIEMLASHPAEKSRGQWQECRTGG (SEQ ID NO:35); NFYQCIEQLALRPAEKSRGQWQECRTGG (SEQ ID NO:36); NFYQCEDLLMAYPAEKS RGQWQECRTGG (SEQ ID NO:37); NFYQCIERLVTGPAEKSRGQWQECRTGG (SEQ ID NO:38); NFYQCIEYLAMKPAEKSRGQWQECRTGG (SEQ ID NO:39); and NFYQCIEALQSRPAEKSRGQWQECR TGG (SEQ ID NO:40).
- In another embodiment, the IGF1R binding MRD contains a sequence selected from the group: NFYQCIEALSRSPAEKSRGQWQECRTGG (SEQ ID NO:41); NFYQCIEHLSGSPAEKSRGQWQECRTG (SEQ ID NO:42); NFYQCIESLAGGPAEKSRGQWQECRTG (SEQ ID NO:43); NFYQCIEALVGVPAEKSRGQWQECRTG (SEQ ID NO:44); and NFYQCIEMLSLPPAEKSRGQWQECRTG (SEQ ID NO:45).
- In another embodiment, the IGF1R binding MRD contains a sequence selected from the group: NFYQCIEVFWGRPAEKSRGQWQECRTG (SEQ ID NO:46); NFYQCIEQLSSGPAEKSRGQWQECRTG (SEQ ID NO:47); NFYQCIELLSARPAEKSRGQWAECRAG (SEQ ID NO:48); and NFYQCIEALARTPAEKSRGQWVECRAP (SEQ ID NO:49).
- Vascular homing-specific MRDs are also contemplated for use in the present invention. A number of studies have characterized the efficacy of linking the vascular homing peptide to other proteins like IL-12 or drugs to direct their delivery in live animals. One example of an MRD sequence that is a vascular homing peptide that is envisioned to be included within an antibody-MRD fusion of the invention is ACDCRGDCFCG (SEQ ID NO:15).
- Numerous other target binding sites are contemplated as being the target of the antibody-MRD fusions of the present invention, including for example, epidermal growth factor receptor (EGFR), CD20, tumor antigens, ErbB2, ErbB3, ErbB4, insulin-like growth factor-I receptor, nerve growth factor (NGR), hepatocyte growth factor receptor, and tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). MRDs can be directed towards these target binding sites or the corresponding ligands.
- In one embodiment, the MRD binds to IL6. In one embodiment, the MRD binds to IL6R.
- In one embodiment, the MRD binds to HER2/3.
- In one embodiment, the MRD sequence that binds to EGFR and that is envisioned to be included within an antibody-MRD fusion is selected from the group: VDNKFNKELEKAYNEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:16); and VDNKFNKEMWIAWEEIRNLPNLNGWQMTAFIASLVDDPSQSANLLAEAKKLNDAQAPK (SEQ ID NO:17).
- In another embodiment, the MRD binds ErbB2 and has the sequence:
-
(SEQ ID NO: 18) VDNKFNKEMRNAYWEIALLPNLNNQQKRAFIRSLYDDPSQSANLLAE AKKLNDAQAPK. - In some embodiments, the MRD binds to a human protein. In some embodiments, the MRD binds to both a human protein and its ortholog in mouse, rat, rabbit, or hamster.
- Complexes comprising a modular recognition domain (MRD), such as those described herein are encompassed by the invention, as are complexes containing the MRD and an antibody. According to some embodiments, the MRD is part of a fusion protein, with for example an immunoglobulin heavy chain or an immunoglobulin light chain. According to some embodiments, the antibody and MRD (“the first MRD) bind to the same target. According to other embodiments, the antibody and the MRD bind to different targets. In additional embodiments, the MRD and antibody complex also contains at least a second MRD that is capable of binding to a different epitope or target than the first MRD. Complexes comprising an MRD having or associated with alternative scaffolds (e.g., plaforms that confer or can be used in creating multispecific and/or multivalent compositions) are also encompassed by the invention. Such alternative scaffolds, include, but are not limited to, scaffolds based on, VASP polypeptides, Avian pancreatic polypeptides (aPP), tetranectins (based on CTLD3), affitins (based on Sac7d from the hyperthermophilic archaeon), affilins (based on γB-crystallin/ubiquitin), knottins, SH3 domains (e.g., fynomers, see e.g., PCT publications WO 2008/022759 and WO 2011/02368, which are herein incorporated by reference), PDZ domains, tendamistat, transferrin, an ankyrin repeat consensus domains (e.g., DARPins), lipocalin protein folds (e.g., anticalins amd duocalins), fibronectins (e.g., adnectins, see e.g., US Patent Application Publication 2003/0170753 and 20090155275 which are herein incorporated by reference), knottins, Z-domain of protein A (e.g., affibodies), thioredoxin, albumin (e.g., ALBUdAb (Domantis/GSK), Kunitz type domains, ALB-Kunitz sequences (e.g., Dyax)), unstructured repeat sequences of 3 or 6 amino acids (e.g., PASylation® technology and XTEN® technology), centyrin scaffolding, and sequences containing elastin-like repeat domains (see for example, U.S. Patent Application 61/442,106, which is herein incorporated by reference). Polynucleotides encoding MRDs, vectors comprising these polynucleotides and host cells containing these vectors are also encompassed by the invention, as are pharmaceutical compositions containing these complexes. Methods of making and using these complexes to for example, inhibit cell growth or to inhibit cellular activity, or to treat cancer, diseases or disorder of the immune system (e.g., inflammation and autoimmune disease), infectious disease, or other diseases or disorders described herein or otherwise known in the art are also encompassed by the invention. According to one embodiment, a method for producing an MRD capable of binding a target is produced, wherein the method comprises culturing a host cell containing a vector that encodes the MRD under conditions wherein the nucleotide sequence encoding the MRD is expressed as a protein and recovering said protein.
- According to some embodiments, the MRD is contained in a complex with an antibody that binds to a target selected from: VEGF, EGF, IGF-1, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, VEGFR1, EGFR, PDGFR, ErbB2, ErbB3, IGF-IR, cMET, CD19, and CD20. In additional embodiments, the antibody competitively inhibits: (a) binding of trastuzumab to ErbB2; binding of pertuzumab to ErbB2; binding of bevacizumab to VEGF; binding of cetuximab to EGFR; binding of panituinumab to EGFR; binding of zalutumumab to EGFR; binding of nimotuzumab to EGFR; or binding of matuzumab to EGFR; binding of figitumumab to IGF1R; binding of AMG 479 to IGF1R; binding of cixutumumab to IGF1R; binding of dalotuzumab to IGF1; binding of BIIB022 to IGF1; or binding of MEDI-573 to IGF1.
- According to additional embodiments, the antibody binds a target selected from: interferon-alpha, interferon alpha receptor, interferon beta, interferon beta receptor, interferon-gamma, S1PR, integrin avb3, IL-1B, IL-2, IL-4, IL-4R, IL-5, IL-5R, IL-6, IL-6R, IL-7, IL-8, IL-9, IL-9R, IL-10R, IL-11, IL-12, IL-13, IL-23, IL-15, IL-18, IL-21, ICOS, PD1, and LIF. In one embodiment, the antibody in the complex binds TNF. In additional embodiments, the antibody competitively inhibits binding of adalimumab, golumimab, or infliximab to TNF.
- In additional embodiments, the complex contains two or more MRDs that bind to a target selected from, for example: ANG2, VEGF, EGF, IGF-1, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, VEGFR1, EGFR, PDGFR, ErbB2, ErbB3, IGF-IR, cMET, CD19, CD20, TNF alpha, IL-6, interferon-alpha, interferon alpha receptor, interferon beta, interferon beta receptor, interferon-gamma, S1PR, integrin avb3, IL-1B, IL-2, IL-4, IL-4R, IL-5, IL-5R, IL-6, IL-6R, IL-7, IL-8, IL-9, IL-9R, IL-10R, IL-11, IL-12, IL-13, IL-23, IL-15, IL-18, IL-21, ICOS, PD1, and LIF.
- The antibody in the MRD-containing antibodies described herein can be any suitable antigen-binding immunoglobulin. In certain embodiments, the MRD-containing antibody molecules described herein retain the structural and functional properties of traditional monoclonal antibodies. Thus, the antibodies retain their epitope binding properties, but advantageously also incorporate one or more additional target-binding specificities.
- Antibodies that can be used in the MRD-containing antibodies include, but are not limited to, monoclonal, multispecific, human, humanized, primatized, and chimeric antibodies. Immunoglobulin or antibody molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule. In specific embodiments, the antibodies are IgG1. In other specific embodiments, the antibodies are IgG3.
- Antibodies that can be used as part of the MRD-containing antibodies can be naturally derived or the result of recombinant engineering (e.g., phage display, xenomouse, and synthetic). The antibodies can include modifications, for example, to enhance half-life or to increase or decrease antibody dependent cellular cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) activity. Antibodies can be from or derived from any animal origin including birds and mammals or generated synthetically. In some embodiments, the antibodies are human, murine, donkey, rabbit, goat, guinea pig, camel, llama, horse, or chicken antibodies. In specific embodiments, the antibodies are human.
- In certain embodiments, the heavy chain portions of one polypeptide chain of a multimer are identical to those on a second polypeptide chain of the multimer. In alternative embodiments, the heavy chain portion-containing monomers of the invention are not identical. For example, each monomer may comprise a different target binding site, forming, for example, a bispecific antibody.
- Bispecific, bivalent antibodies, and methods of making them, are described, for instance in U.S. Pat. Nos. 5,731,168; 5,807,706; 5,821,333; and U.S. Appl. Publ. Nos. 2003/020734 and 2002/0155537, which are herein incorporated by reference. Bispecific tetravalent antibodies, and methods of making them are described, for instance, in WO 02/096948 and WO 00/44788, the disclosures of both of which are herein incorporated by reference. See generally, PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt et al., J. Immunol. 147:60-69 (1991); U.S. Pat. Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; and 5,601,819; and Kostelny et al., J. Immunol. 148:1547-1553 (1992).
- The heavy chain portions of the antibody component of the MRD-antibody fusions for use in the methods disclosed herein may be derived from different immunoglobulin molecules. For example, a heavy chain portion of a polypeptide may comprise a CH1 domain derived from an IgG1 molecule and a hinge region derived from an IgG3 molecule. In another example, a heavy chain portion can comprise a hinge region derived, in part, from an IgG1 molecule and, in part, from an IgG3 molecule. In another example, a heavy chain portion can comprise a chimeric hinge region derived, in part, from an IgG1 molecule and, in part, from an IgG4 molecule.
- In some embodiments, the antigen binding domains of the antibody component of the MRD-containing antibodies bind to their target with a dissociation constant or Kd of less than 5×10−3 M, 10−3 M, 5×10−4 M, 10−4 M, 5×10−5 M, 10−5 M, 5×10−6 M, 106 M, 5×10−7 M, 10−7 M, 5×10−8 M, 10−8 M, 5×10−9 M, 10−9 M, 5×10−10 M, 10−10 M, 5×10−11 M, 10−11 M, 5×10−12 M, 10−12 M, 5×10−13 M, 10−13 M, 5×10−14 M, 10−14 M, 5×10−15 M, or 10−15 M. In one embodiment, the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5×10−5 M. In another embodiment, antigen binding of the antibody component of the MRD-containing antibodies has a dissociation constant or Kd of less than 5×10−8 M. In another embodiment, antigen binding of the antibody component of the MRD-containing antibodies has a dissociation constant or Kd of less than less than 5×10−9 M. In another embodiment, the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5×10−10 M In another embodiment, the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5×10−11 M. In another embodiment, the antibody component of the MRD-containing antibodies have a dissociation constant or Kd of less than 5×10−12 M.
- In specific embodiments, the antibody component of the MRD-containing antibody binds its target with an off rate (koff) of less than 5×10−2 sec−1, 10−2 sec−1, 5×10−3 sec−1, or 10−3 sec−1. More preferably, the antibody component of the MRD-containing antibody binds its target with an off rate (koff) of less than 5×10−4 sec−1, 10−4 sec−1, 5×10−5 sec−1, or 10−5 sec−1, 5×10−6 sec−, 10−6 sec−1, 5×10−7 sec−1, or 10−7 sec−1.
- In other specific embodiments, the antibody component of the MRD-containing antibody binds its target with an on rate (kon) of greater than 103 M−1sec−1, 5×103 M−1sec−1, 104 M−1sec−1, or 5×104 M−1sec−1. More preferably, the antibody component of the MRD-containing antibody binds its target with an on rate (kon) of greater than 105 M−1sec−1, 5×105 M−1sec−1, 106 M−1sec−1, or 5×106 M−1sec−1, or 107 M−1sec−1.
- Affinity maturation strategies and chain shuffling strategies (see, e.g., Marks et al., Bio/Technology 10:779-783 (1992), which is herein incorporated by reference) are known in the art and can be employed to generate high affinity antibodies that can be used in the MRD-containing antibodies described herein.
- Advantageously, the antibodies of the MRD-containing antibodies can also include variants and derivatives that improve antibody function and/or desirable pharmacodynamic properties.
- Accordingly, certain embodiments of the invention include an antibody-MRD fusion, in which at least a fraction of one or more of the constant region domains has been altered so as to provide desired biochemical characteristics such as reduced or increased effector functions, the ability to non-covalently dimerize, increased ability to localize at the site of a tumor, reduced serum half-life, or increased serum half-life when compared with an unaltered antibody of approximately the same immunoreactivity. The alterations of the constant region domains can be amino acid substitutions, insertions, or deletions.
- In some embodiments, a complex of the invention comprises an antibody and at least one MRD, wherein the antibody has an altered effector function. The complex can comprise MRDs that bind to at least 3 different targets. The complex can be a complex wherein the effector function of the antibody has been modified to: increased ADCC, decreased ADCC, increased CDC, decreased CDC, increased half-life, or decreased half-life. In some embodiments, a method for producing the complex comprises culturing a host cell transformed with polynucleotides encoding antibodies and MRDs of the complex under conditions wherein the nucleotide sequence encoding the MRDs and the antibody heavy and light chains are expressed as two or more proteins, and recovering the proteins. In some embodiments, a method of treating or preventing a disease or disorder in a subject in need thereof comprises administering a therapeutically acceptable amount of the complex to the subject.
- In certain embodiments, the antibody component of the antibody-MRD fusion has been modified to increase antibody dependent cellular cytotoxicity (ADCC) (see, e.g., Bruhns et al., Blood 113:3716-3725 (2009); Shields et al., J. Biol. Chem. 276:6591-6604 (2001); Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005-4010 (2006); Stavenhagen et al., Cancer Res., 67:8882-8890 (2007); Horton et al., Cancer Res. 68:8049-8057 (2008); Zalevsky et al., Blood 113:3735-3743 (2009); Bruckheimer et al., Neoplasia 11:509-517 (2009); Allan et al., WO 2006/020114; Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Watkins et al., WO 2004/074455, each of which is herein incorporated by reference). Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases ADCC include one or more modifications corresponding to: IgG1-S298A, E333A, K334A; IgG1-S239D, 1332E; IgG1-S239D, A330L, 1332E; IgG1-P2471, A339D or Q; IgG1-D280H, K290S with or without S298D or V; IgG1-F243L, R292P, Y300L; IgG1-F243L, R292P, Y300L, P396L; and IgG1-F243L, R292P, Y300L, V305I, P396L; wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
- In certain embodiments, the antibody component of the antibody-MRD fusion has been modified to decrease ADCC (see, e.g., Idusogie et al., J. Immunol. 166:2571-2575 (2001); Sazinsky et al., Proc. Natl. Acad. Sci. USA 105:20167-20172 (2008); Davis et al., J. Rheumatol. 34:2204-2210 (2007); Bolt et al., Eur. J. Immunol. 23:403-411 (1993); Alegre et al., Transplantation 57:1537-1543 (1994); Xu et al., Cell Immunol. 200:16-26 (2000); Cole et al., Transplantation 68:563-571 (1999); Hutchins et al., Proc. Natl. Acad. Sci. USA 92:11980-11984 (1995); Reddy et al., J. Immunol. 164:1925-1933 (2000); Mueller et al., WO 1997/11971; Bell et al., WO 2007/106585; Strohl, US 2007/0148167A1; McEarchern et al., Blood 109:1185-1192 (2007); Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Kumagai et al., J. Clin. Pharmacol. 47:1489-1497 (2007), each of which is herein incorporated by reference). Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decreases ADCC include one or more modifications corresponding to: IgG1-K326W, E333S; IgG2-E333S; IgG1-N297A; IgG1-L234A, L235A; IgG2-V234A, G237A; IgG4-L235A, G237A, E318A; IgG4-S228P, L236E; IgG2-EU sequence 118-260; IgG4-EU sequence 261-447; IgG2-H268Q, V309L, A330S, A331S; IgG1-C220S, C226S, C229S, P238S; IgG1-C226S, C229S, E233P, L234V, L235A; and IgG1-L234F, L235E, P331S.
- In certain embodiments, the antibody component of the antibody-MRD fusion has been modified to increase antibody-dependent cell phagocytosis (ADCP); (see, e.g., Shields et al., J. Biol. Chem. 276:6591-6604 (2001); Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005-4010 (2006); Stavenhagen et al., Cancer Res., 67:8882-8890 (2007); Richards et al., Mol. Cancer. Ther. 7:2517-2527 (2008); Horton et al., Cancer Res. 68:8049-8057 (2008), Zalevsky et al., Blood 113:3735-3743 (2009); Bruckheimer et al., Neoplasia 11:509-517 (2009); Allan et al., WO 2006/020114; Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Watkins et al., WO 2004/074455, each of which is herein incorporated by reference). Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases ADCP include one or more modifications corresponding to: IgG1-S298A, E333A, K334A; IgG1-S239D, I332E; IgG1-S239D, A330L, I332E; IgG1-P2471, A339D or Q; IgG1-D280H, K290S with or without S298D or V; IgG1-F243L, R292P, Y300L; IgG1-F243L, R292P, Y300L, P396L; IgG1-F243L, R292P, Y300L, V3051, P396L; IgG1-G236A, S239D, I332E.
- In certain embodiments, the antibody component of the antibody-MRD fusion has been modified to decrease ADCP (see, e.g., Sazinsky et al., Proc. Natl. Acad. Sci. USA 105:20167-20172 (2008); Davis et al., J. Rheumatol. 34:2204-2210 (2007); Bolt et al., Eur. J. Immunol. 23:403-411 (1993); Alegre et al., Transplantation 57:1537-1543 (1994); Xu et al., Cell Immunol. 200:16-20 (2000); Cole et al., Transplantation 68:563-571 (1999); Hutchins et al., Proc. Natl. Acad. Sci. USA 92:11980-11984 (1995); Reddy et al., J. Immunol. 164:1925-1933 (2000); Mueller et al., WO 1997/11971; Bell et al., WO 2007/106585; Strohl et al., US 2007/0148167A1; McEarchern et al., Blood 109:1185-1192 (2007); Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Kumagai et al., J. Clin. Pharmacol. 47:1489-1497 (2007), each of which is herein incorporated by reference). Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decreases ADCC include one or more modifications corresponding to: IgG1-N297A; IgG1-L234A, L235A; IgG2-V234A, G237A; IgG4-L235A, G237A, E318A; IgG4-S228P, L236E; IgG2 EU sequence 118-260; IgG4-EU sequence 261-447; IgG2-H268Q, V309L, A330S, A331S; IgG1-C220S, C226S, C229S, P238S; IgG1-C226S, C229S, E233P, L234V, L235A; and IgG1-L234F, L235E, P331S.
- In certain embodiments, the antibody component of the antibody-MRD fusions have been modified to increase complement-dependent cytotoxicity (CDC) (see, e.g., (see, e.g., Idusogie et al., J. Immunol. 166:2571-2575 (2001); Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Natsume et al., Cancer Res. 68:3863-3872 (2008), each of which is herein incorporated by reference). Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases CDC include one or more modifications corresponding to: IgG1-K326A, E333A; IgG1-K326W, E333S, IgG2-E333S; and IgG1/IgG3 fusion versions ‘1133’ and ‘113F’.
- In certain embodiments, the antibody component of the antibody-MRD fusions have been modified to increase inhibitory binding to FcgammaRIIb receptor (see, e.g., Chu et al., Mol. Immunol. 45:3926-3933 (2008)). An example of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases binding to inhibitory FcgammaRIIb receptor is IgG1-S267E, L328F.
- In certain embodiments, the antibody component of the antibody-MRD fusions have been modified to decrease CDC (see, e.g., Mueller et al., WO 1997/11971; Bell et al., WO 2007/106585; Strohl et al., US 2007/0148167A1; McEarchern et al., Blood 109:1185-1192 (2007); Hayden-Ledbetter et al., Clin. Cancer 15:2739-2746 (2009); Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005-4010 (2006); Bruckheimer et al., Neoplasia 11:509-517 (2009); Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Sazinsky et al., Proc. Natl. Acad. Sci. USA 105:20167-20172 (2008); each of which is herein incorporated by reference). Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decreases CDC include one or more modifications corresponding to: IgG1-S239D, A330L, I332E; IgG2 EU sequence 118-260; IgG4-EU sequence 261-447; IgG2-H268Q, V309L, A330S, A331S; IgG1-C226S, C229S, E233P, L234V, L235A; IgG1-L234F, L235E, P331S; and IgG1-C226S, P230S.
- The half-life on an IgG is mediated by its pH-dependent binding to the neonatal receptor FcRn. In certain embodiments the antibody component of the antibody-MRD fusion has been modified to enhance binding to FcRn (see, e.g., Petkova et al., Int. Immunol. 18:1759-1769 (2006); Dall'Acqua et al., J. Immunol. 169:5171-5180 (2002); Oganesyan et al., Mol. Immunol. 46:1750-1755 (2009); Dall'Acqua et al., J. Biol. Chem. 281:23514-23524 (2006), Hinton et al., J. Immunol. 176:346-356 (2006); Datta-Mannan et al., Drug Metab. Dispos. 35:86-94 (2007); Datta-Mannan et al., J. Biol. Chem. 282:1709-1717 (2007); Ward WO 2006/130834; Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Yeung et al., J. Immunol. 182:7663-7671 (2009) each of which is herein incorporated by reference).
- In additional embodiments, the antibody of the antibody-MRD fusion has been modified to selectively bind Fan at pH 6.0, but not pH 7.4. Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that increases half-life include one or more modifications corresponding to: IgG1-M252Y, S254T, T256E; IgG1-T250Q, M428L; IgG1-H433K, N434Y; IgG1-N434A; and IgG1-T307A, E380A, N434A.
- In other embodiments the antibody component of the antibody-MRD fusion has been modified to decrease binding to FcRn (see, e.g., Petkova et al., Int. Immunol. 18:1759-1769 (2006); Datta-Mannan et al., Drug Metab. Dispos. 35:86-94 (2007); Datta-Mannan et al., J. Biol. Chem. 282:1709-1717 (2007); Strohl, Curr. Op. Biotechnol. 20:685-691 (2009); and Vaccaro et al., Nat. Biotechnol. 23:1283-1288 (2005), each of which is herein incorporated by reference). Examples of Fc sequence engineering modifications contained in the antibody component of the antibody-MRD fusions that decrease half-life include one or more modifications corresponding to: IgG1-M252Y, S254T, T256E; H433K, N434F, 436H; IgG1-1253A; and IgG1-P2571, N434H or D376V, N434H.
- In certain embodiments, the antibody-MRD fusions have been glyocoengineered or the Fc portion of the MRD-containing antibody has been mutated to increase effector function using techniques known in the art.
- For example, the inactivation (through point mutations or other means) of a constant region domain may reduce Fc receptor binding of the circulating modified antibody thereby increasing tumor localization. In other cases it may be that constant region modifications consistent with the instant invention moderate complement binding and thus reduce the serum half-life and nonspecific association of a conjugated cytotoxin. Yet other modifications of the constant region may be used to modify disulfide linkages or oligosaccharide moieties that allow for enhanced localization due to increased antigen specificity or antibody flexibility. The resulting physiological profile, bioavailability and other biochemical effects of the modifications, such as tumor localization, biodistribution and serum half-life, can easily be measured and quantified using well know immunological techniques without undue experimentation.
- MRD-containing antibodies used according to the methods of the invention also include derivatives that are modified, e.g., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from specifically binding to its cognate epitope. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, or derivatization by known protecting/blocking groups. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to acetylation, formylation, etc. Additionally, the derivative may contain one or more non-classical amino acids.
- In certain embodiments, the MRD-containing antibodies have been modified so as to not elicit a deleterious immune response in the animal to be treated, e.g., in a human. In one embodiment, the antibody is modified to reduce immunogenicity using art-recognized techniques. For example, antibody components of the MRD-containing antibodies can be humanized, primatized, deimmunized, or chimerized. These types of antibodies are derived from a non-human antibody, typically a murine or primate antibody, that retains or substantially retains the antigen-binding properties of the parent antibody, but which is less immunogenic in humans. This may be achieved by various methods, including (a) grafting the entire non-human variable domains onto human constant regions to generate chimeric antibodies; (b) grafting at least a part of one or more of the non-human complementarity determining regions (CDRs) into human frameworks and constant regions with or without retention of critical framework residues; or (c) transplanting the entire non-human variable domains, but “cloaking” them with human-like sections by replacement of surface residues. Such methods are disclosed in Morrison et al., Proc. Natl. Acad. Sci. 81:6851-6855 (1984); Morrison et al., Adv. Immunol. 44:65-92 (1988); Verhoeyen et al., Science 239:1534-1536 (1988); Padlan, Molec. Immun. 28:489-498 (1991); Padlan, Molec. Immun. 31:169-217 (1994), and U.S. Pat. Nos. 5,585,089, 5,693,761, 5,693,762, and 6,190,370, all of which are herein incorporated by reference.
- De-immunization can also be used to decrease the immunogenicity of an MRD-containing antibody. As used herein, the term “de-immunization” includes alteration of an MRD-containing antibody to modify T cell epitopes (see, e.g., WO9852976A1, and WO0034317A2, which are herein incorporated by reference). For example, VH and VL sequences from the starting antibody are analyzed and a human T cell epitope “map” is generated from each V region showing the location of epitopes in relation to complementarity-determining regions (CDRs) and other key residues within the sequence. Individual T cell epitopes from the T cell epitope map are analyzed in order to identify alternative amino acid substitutions with a low risk of altering activity of the final antibody. A range of alternative VH and VL sequences are designed comprising combinations of amino acid substitutions and these sequences are subsequently incorporated into a range of antibodies for use in the diagnostic and treatment methods disclosed herein, which are then tested for function. Typically, between 12 and 24 variant antibodies are generated and tested. Complete heavy and light chain genes comprising modified V and human C regions are then cloned into expression vectors and the subsequent plasmids introduced into cell lines for the production of whole antibody. The antibodies are then compared in appropriate biochemical and biological assays, and the optimal variant is identified.
- Many different antibody components of the MRD-containing antibodies can be used in the methods described herein. It is contemplated that catalytic and non-catalytic antibodies can be used in the present invention. For example, Antibody 38C2 is an antibody-secreting hybridoma and has been previously described in WO 97/21803. 38C2 contains an antibody combining site that catalyzes the aldol addition reaction between an aliphatic donor and an aldehyde acceptor. In a syngeneic mouse model of neuroblastoma, systemic administration of an etoposide prodrug and intra-tumor injection of Ab 38C2 inhibited tumor growth.
- The antibody target of the MRD-containing antibody (i.e., the target of the antigenic binding domain) can be any molecule that it is desirable for a MRD-antibody fusion to interact with. For example, the antibody target can be a soluble factor or the antibody target can be a transmembrane protein, such as a cell surface receptor. The antibody target can also be an extracellular component or an intracellular component. In certain nonexclusive embodiments, the antibody target is a factor that regulates cell proliferation, differentiation, or survival. In another nonexclusive embodiment, the antibody target is a cytokine. In another nonexclusive embodiment, the antibody target is a factor that regulates angiogenesis. In another nonexclusive embodiment, the antibody target is a factor that regulates one or more immune responses, such as, autoimmunity, inflammation and immune responses against cancer cells. In another nonexclusive embodiment, the antibody target is a factor that regulates cellular adhesion and/or cell-cell interaction. In certain nonexclusive embodiments, the antibody target is a cell signaling molecule. The ability of an antibody to bind to a target and to block, increase, or interfere with the biological activity of the antibody target can be determined using or routinely modifying assays, bioassays, and/or animal models known in the art for evaluating such activity.
- In some embodiments the antibody target of the MRD-containing antibody is a disease-related antigen. The antigen can be an antigen characteristic of a particular cancer, and/or of a particular cell type (e.g., a hyperproliferative cell), and/or of a particular pathogen (e.g., a bacterial cell (e.g., tuberculosis, smallpox, anthrax), a virus (e.g., HIV), a parasite (e.g., malaria, leichmaniasis), a fungal infection, a mold, a mycoplasm, a prion antigen, or an antigen associated with a disorder of the immune system.
- In some embodiments, the antibody target of the MRD-containing antibody is a target that has been validated in an animal model or clinical setting.
- In other embodiments, the antibody target of the MRD-containing antibody is a cancer antigen.
- In one embodiment, the antibody target of the MRD-containing antibody is: PDGFRa, PDGFRb, PDGF-A, PDGF-B, PDGF-CC, PDGF-C, PDGF-D, VEGFR1, VEGFR2, VEGFR3, VEGFC, VEGFD, neuropilin 2 (NRP2), betacellulin, P1GF, RET (rearranged during transfection), TIE1, TIE2 (TEK), CA125, CD3, CD4, CD7, CD10, CD13, CD25, CD32, CD32b, CD44, CD49e (integrin alpha 5), CD55, CD64, CD90 (THY1), CD133 (prominin 1), CD147, CD166, CD200, ALDH1, ESA, SHH, DHH, IHH, patched1 (PTCH1), smoothened (SMO), WNT1, WNT2B, WNT3A, WNT4, WNT4A, WNT5A, WNT5B, WNT7B, WNT8A, WNT10A, WNT10B, WNT16B, LRP5, LRP6, FZD1, FZD2, FZD4, FZD5, FZD6, FZD7, FZD8, Notch, Notch1, Notch3, Notch4, DLL4, Jagged, Jagged1, Jagged2, Jagged3, TNFSF1 (TNFb, LTa), TNFRSF1A (TNFR1, p55, p60), TNFRSF1B (TNFR2), TNFSF6 (Fas Ligand), TNFRSF6 (Fas, CD95), TNFRSF6B (DcR3), TNFSF7 (CD27 Ligand, CD70), TNFRSF7 (CD27), TNFSF8 (CD30 Ligand), TNFRSF8 (CD30), TNFSF11 (RANKL), TNFRSF11A (RANK), TNFSF12 (TWEAK), TNFRSF12 (TWEAKR), TNFSF13 (APRIL), TNFSF13B (BLYS), TNFRSF13B (TACI), TNFRSF13C (BAFFR), TNFSF15 (TL1A), TNFRSF17 (BCMA), TNFRSF19L (RELT), TNFRSF19 (TROY), TNFRSF21 (DR6), TNFRSF25 (DR3), ANG1 (ANGPT1), ANG3 (ANGPTL1), ANG4 (ANGPT4), IL1 alpha, IL1 beta, IL1R1, IL1R2, IL2, IL2R, IL5, IL5R, IL6, IL6R, IL8, IL8R, IL10, IL10R, IL12, IL12R, IL13, IL13R, IL15, IL15R, IL18, IL18R, IL19, IL19R, IL21R, IL23, IL23R, mif, XAG1, XAG3, REGIV, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, ALK, ALK1, ALK7, ALCAM, Artemin, Ax1, TGFb, TGFb2, TGFb3, TGFBR1, IGFIIR, BMP2, BMP5, BMP6, BMPRI, GDF3, GDF8, GDF9, N-cadherin, E-cadherin, VE-cadherin, NCAM, L1CAM (CD171), ganglioside GM2, ganglioside GD2, calcitonin, PSGR, DCC, CDCP1, CXCR2, CXCR7, CCR3, CCR5, CCR7, CCR10, CXCL1, CXCL5, CXCL6, CXCL8, CXCL12, CCL3, CCL4, CCL5, CCL11, Claudin1, Claudin2, Claudin3, Claudin4, TMEFF2, neuregulin, MCSF, CSF, CSFR (fins), GCSF, GCSFR, BCAM, HPV, hCG, SR1F, PSA, FOLR2 (folate receptor beta), BRCA1, BRCA2, HLA-DR, ABCC3, ABCB5, HM1.24, LFA1, LYNX, S100A8, S100A9, SCF, Von Willebrand factor, Lewis Y6 receptor, Lewis Y, CA G250 (CA9), integrin avb3 (CNTO95), integrin avb5, activin B1 alpha, leukotriene B4 receptor (LTB4R), neurotensin NT receptor (NTR), 5T4 oncofetal antigen, Tenascin C, MMP, MMP2, MMP7, MMP9, MMP12, MMP14, MMP26, cathepsin G, cathepsin H, cathepsin L, SULF1, SULF2, MET, UPA, MHC1, MN (CA9), TAG-72, TM4SF1, Heparanse (HPSE), syndecan (SDC1), Ephrin B2, Ephrin B4, or relaxing. An MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention. The above antibody and MRD targets and those otherwise described herein are intended to be illustrative and not limiting.
- In another embodiment, the antibody target of the MRD-containing antibody is CD19, CD22, CD30, CD33, CD38, CD44v6, TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), CD52, CD54 (ICAM), CD74, CD80, CD200, EPCAM (EGP2), neuropilin 1 (NRP1), TEM1, mesothelin,
TGFbeta 1, TGFBRII, phosphatidlyserine, folate receptor alpha (FOLR1), TNFRSF10A (TRAIL R1 DR4), TNFRSF10B (TRAIL R2 DR5), CXCR4, CCR4, CCL2, HGF, CRYPTO, VLA5, TNFSF9 (41BB Ligand), TNFRSF9 (41BB, CD137), CTLA4, HLA-DR, IL6, TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), MUC1, MUC18, mucin CanAg, ganglioside GD3, EGFL7, PDGFRa, IL21, IGF1, IGF2, CD117 (cKit), PSMA, SLAMF7, carcinoembryonic antigen (CEA), FAP, integrin avb3, or integrin α5β3. An MRD that binds to one of the above targets are encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention. - In particular embodiments, the antibody of the MRD-containing antibody competes for target binding with an antibody selected from: siplizumab CD2 (e.g., MEDI-507, MedImmune), blinatumomab CD19 CD3 (e.g., MT103, Micromet/MedImmune); XMAB®5574 CD19 (Xencor), SGN-19A CD19 (Seattle Genetics), ASG-5ME (Agenesys and Seattle Genetics), MEDI-551 CD19 (MedImmune), epratuzumab CD22 (e.g., hLL2, Immunomedics/UCB), inotuzumab ozogamicin CD22 (Pfizer), iratumumab CD30 (e.g., SGN-30 (Seattle Genetics) and MDX-060 (Medarex)), XMAB®2513 CD30 (Xencor), brentuximab vedotin CD30 (e.g., SGN-35, Seattle Genetics), gemtuzumab ozogamicin CD33 (e.g., MYLOTARG®, Pfizer), lintuzumab CD33 (e.g., antibody of Seattle Genetics), MOR202, CD38 (MorphoSys), daratumumab CD38 (e.g., Genmab antibody), CP870893 CD40 (Pfizer), dacetuzumab CD40 (e.g., SGN40, Seattle Genetics), ANTOVA® CD40 (Biogen Idec), lucatumumab CD40 (e.g., HCD122, Novartis) XMAB®5485 CD40 (Xencor), teneliximub, ruplizumab CD40L (e.g., ANTOVA®) bivatuzumab mertansine CD44v6, alemtuzumab CD52 (e.g., CAMPATH®/MABCAMPATH®, Genzyme/Bayer), BI505 ICAM1 (Bioinvent), milatuzumab CD74 (e.g., antibody of Immunomedics), galiximab CD80 (Biogen Idec), BMS663513 4-1BB (Bristol-Myers Squibb), Alexion CD200 antibody (Alexion), edrecolomab EPCAM (e.g., MAb17-1A, PANOREX® (GlaxoSmithKline), AT003 EPCAM (Affitech)), adecatumumab EPCAM (e.g., MT201, Micromet), oportuzumab monatox EPCAM, Genentech anti-NRP1 antibody, MORAB004 TEM1 (Morphotek), MORAB009 mesothelin (Morphotek), lerdelimumab TGFb1 (e.g., CAT-152, Cambridge Antibody Technology), metelimumab TGFb1 (e.g., CAT-192, Cambridge Antibody Technology), ImClone anti-TGFBRII antibody, bavituximab phosphatidylserine (e.g., antibody of Peregrine (Peregrine Pharmaceuticals)), AT004 phosphatidylserine (Affitech), AT005 phosphatidylserine (Affitech), MORAB03 folate receptor alpha (Morphotek), farletuzumabfolate receptor alpha cancer (e.g., MORAB003, Morphotek), CS1008 DR4 (Sankyo), mapatumumab DR4 (e.g., HGS-ETR1, Human Genome Sciences), LBY135 DR5 (Novartis), AMG66 DR5 (Amgen), Apomab DR5 (Genentech), PRO95780 (Genentech), lexatumumab DR5, (e.g., HGS-ETR2, Human Genome Sciences), conatumumab DR5, (e.g., AMG655, Amgen), tigatuzumab (e.g., CS-1008), AT009 CXCR4 (Affitech), AT008 CCR4 (Affitech), CNTO-888 CCL2 (Centocor), AMG102 HGF (Amgen), CRYPTO antibody (Biogen Idec), M200 antibody VLA5 (Biogen Idec), ipilimumab CTLA4 (e.g., MDX010, Bristol-Myers Squibb/Medarex), belatacept CTLA4 ECD (e.g., CP-675,206, Pfizer), IMMU114 HLA-DR (Immunomedics), apolizumab HLA-DR, toclizumab IL-6R (e.g., ACTEMR®A/ROACTREMRA®, Hoffman-La Roche), OX86 OX40, pemtumomab PEM/MUC1 (Theragyn), ABX-MA1 MUC-18 (Abgenix), clivatuzumab MUC-18 (e.g., hPAM4, Immunomedics), cantuzumab mertansine mucin CanAg, ecromeximab (Ludwig Institute), Genentech anti-EGFL7 antibody, AMG820 CSFR (Amgen), olaratumab PDGFRa (e.g., antibody of Imclone (Imclone)), IL21 antibody Zymogenetics (Zymogenetics), MEDI-573 IGF1/IGF2 (MedImmune), AMG191 cKit (Amgen), etaracizumab (e.g., MEDI-522, MedImune), and MLN591 PSMA (Millennium Pharmaceuticals), elotuzumab SLAMF7 (e.g, HuLuc63, PDL), labetuzumab CEA (CEA-CIDE®, Immunomedics), sibrotuzumab FAP, CNTO95 integrin avb3 (Centocor), VITAXIN® integrin avb3 (MedImmune), and voloximab α5β1 MRDs that compete for target binding with one of the above antibodies are encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- In particular embodiments, the antibody of the MRD-containing antibody is an antibody selected from: siplizumab CD2 (e.g., MEDI-507, MedImmune), blinatumomab CD19 CD3 (e.g., MT103, Micromet/MedImmune); XMAB®5574 CD19, (Xencor), SGN-19A CD19 (Seattle Genetics), ASG-5ME (Agenesys and Seattle Genetics), MEDI-551 CD19 (MedImmune), epratuzumab CD22 (e.g., hLL2, Immunomedics/UCB), inotuzumab ozogamicin CD22, iratumumab CD30 (e.g., SGN-30 (Seattle Genetics) and MDX-060 (Medarex)), XMAB®02513 CD30 (Xencor), brentuximab vedotin CD30 (e.g., SGN-35, Seattle Genetics), gemtuzumab ozogamicin CD33 (e.g., MYLOTARG®, Pfizer), lintuzumab CD33 (e.g., antibody of Seattle Genetics), MOR202CD38 (MorphoSysdaratumumab CD38 (e.g., Genmab antibody), CP870893 CD40 (Pfizer), dacetuzumab CD40 (e.g., SGN40, Seattle Genetics), ANTOVA® CD40 (Biogen Idec), lucatumumab CD40 (e.g., HCD122, Novartis) XMAB®5485 CD40 (Xencor), teneliximub, ruplizumab CD40L (e.g., ANTOVA®), bivatuzumab mertansine CD44v6, alemtuzumab CD52 (e.g., CAMPATH®/MABCAMPATH®, Genzyme/Bayer), BI505 ICAM1 (Bioinvent), milatuzumab CD74 (e.g., antibody of Immunomedics), galiximab CD80 (Biogen Idec), BMS663513 4-1BB (Bristol-Myers Squibb), Alexion CD200 antibody (Alexion), edrecolomab EPCAM (e.g., MAb17-1A, PANOREX® (GlaxoSmithKline), AT003 EPCAM (Affitech)), adecatumumab EPCAM (e.g., MT201, Micromet), oportuzumab monatox EPCAM, Genentech anti-NRP1 antibody, MORAB004 TEM1 (Morphotek), MORAB009 mesothelin (Morphotek), lerdelimumab TGFb1 (e.g., CAT-152, Cambridge Antibody Technology), metelimumab TGFb1 (e.g., CAT-192, Cambridge Antibody Technology), ImClone anti-TGFBRII antibody, bavituximab phosphatidylserine (e.g., antibody of Peregrine (Peregrine Pharmaceuticals)), AT004 phosphatidylserine (Affitech), AT005 phosphatidylserine (Affitech), MORAB03 folate receptor alpha (Morphotek), farletuzumab folate receptor alpha cancer (e.g., MORAB003, Morphotek), CS1008 DR4 (Sankyo), mapatumumab DR4 (e.g., HGS-ETR1, Human Genome Sciences), LBY135 DR5 (Novartis), AMG66 DR5 (Amgen), Apomab DR5 (Genentech), PRO95780 (Genentech), lexatumumab DR5 (e.g., HGS-ETR2, Human Genome Sciences), conatumumab DR5 (e.g., AMG655, Amgen), tigatuzumab (e.g., CS-1008), AT009 CXCR4 (Affitech), AT008 CCR4 (Affitech), CNTO-888 CCL2 (Centocor), AMG102 HGF (Amgen), CRYPTO antibody (Biogen Idec), M200 antibody VLA5 (Biogen Idec), ipilimumab CTLA4 (e.g., MDX010, Bristol-Myers Squibb/Medarex), belatacept CTLA4 ECD (e.g., CP-675,206, Pfizer), IMMU114 HLA-DR (Immunomedics), apolizumab HLA-DR, toclizumab IL-6R (e.g., ACTEMR®A/ROACTREMRA®, Hoffman-La Roche) OX86 OX40, pemtumomab PEM/MUC1 (Theragyn), ABX-MA1 MUC-18 (Abgenix), cantuzumab mertansine mucin CanAg, ecromeximab (Ludwig Institute), Genentech anti-EGFL7 antibody, AMG820 CSFR (Amgen), olaratumab PDGFRa (e.g., antibody of Imclone (Imclone)), IL21 antibody Zymogenetics (Zymogenetics), MEDI-573 IGF1/IGF2 (MedImmune), AMG191 cKit (Amgen), etaracizumab (e.g., MEDI-522, MedImmune), MLN591 PSMA (Millennium Pharmaceuticals), elotuzumab SLAMF7 (e.g, HuLuc63, PDL), labetuzumab CEA (CEA-CIDE®, Immunomedics), sibrotuzumab FAP, CNTO95 integrin avb3 (Centocor), VITAXIN® integrin avb3 (MedImmune), and voloximab α5β1 (e.g., M200, PDL and Biogen Idec) (antibody targets are italicized).
- In an additional embodiment, the antibody target of the MRD-containing antibody is ALK1. In one embodiment, the antibody is PF-3,446,962 (Pfizer). In another embodiment, the antibody binds to the same epitope as PF-3,446,962. In a further embodiment, the antibody competitively inhibits binding of PF-3,446,962 to ALK1. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for ALK1 binding with PF-3,446,962 are also encompassed by the invention.
- In an additional embodiment, the antibody target of the MRD-containing antibody is CD22. In one embodiment, the antibody is inotuzumab (e.g., inotuzumab ozogamicin CMC-544, PF-5,208,773; Pfizer). In one embodiment, the antibody binds to the same epitope as inotuzumab. In another embodiment, the antibody competitively inhibits binding of inotuzumab to CD22. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD22 binding with inotuzumab are also encompassed by the invention.
- In an additional embodiment, the antibody target of the MRD-containing antibody is CRYPTO. In one embodiment, the antibody is the Biogen CRYPTO antibody that has advanced to phase I clinical trials (Biogen Idec). In another embodiment, the antibody binds to the same epitope as the Biogen CRYPTO antibody. In a further embodiment, the antibody competitively inhibits binding of the Biogen CRYPTO antibody to CRYPTO. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CRYPTO binding with the Biogen CRYPTO antibody are also encompassed by the invention.
- In an additional embodiment, the antibody target of the MRD-containing antibody is CD40L. In one embodiment, the antibody is the Biogen CD40L antibody that has advanced to phase I clinical trials (Biogen Idec). In another embodiment, the antibody binds to the same epitope as the Biogen CD40L antibody. In a further embodiment, the antibody competitively inhibits binding of the Biogen CD40L antibody to CD40L. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD40L binding with the Biogen CD40L antibody are also encompassed by the invention.
- In an additional embodiment, the antibody target of the MRD-containing antibody is CD80. In one embodiment, the antibody is galiximab (Biogen Idec). In another embodiment, the antibody binds to the same epitope as galiximab. In a further embodiment, the antibody competitively inhibits binding of galiximab to CD80. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD80 binding with galiximab are also encompassed by the invention.
- In an additional embodiment, the antibody target of the MRD-containing antibody is MCSF. In one embodiment, the antibody is PD-360,324 (Pfizer). In another embodiment, the antibody binds to the same epitope as PD-360,324. In a further embodiment, the antibody competitively inhibits binding of PD-360,324 to MCSF. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for MCSF binding with PD-360,324 are also encompassed by the invention.
- In an additional embodiment, the antibody target of the MRD-containing antibody is CD44. In one embodiment, the antibody is PF-3,475,952 (Pfizer). In another embodiment, the antibody binds to the same epitope as PF-3,475,952. In a further embodiment, the antibody competitively inhibits binding of PF-3,475,952 to CD44. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD44 binding with PF-3,475,952 are also encompassed by the invention.
- In an additional embodiment, the antibody target of the MRD-containing antibody is p-cadherin (CDH3). In one embodiment, the antibody is PF-3,732,010 (Pfizer). In another embodiment, the antibody binds to the same epitope as PF-3,732,010. In a further embodiment, the antibody competitively inhibits binding of PF-3,732,010 to p-cadherin. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for p-cadherin binding with PF-3,732,010 are also encompassed by the invention.
- In another embodiment, the antibody target of the MRD-containing antibody is: ANG2 (ANGPT2). In one embodiment, the antibody is MEDI3617 (MedImmune). In one embodiment, the antibody binds to the same epitope as MEDI3617. In another embodiment, the antibody competitively inhibits binding of MEDI3617 to ANG2. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for ANG2 binding with MEDI3617 are also encompassed by the invention.
- In certain embodiments, the antibody target of the MRD-containing antibody is EGFR, ErbB2, ErbB3, ErbB4, CD20, insulin-like growth factor-I receptor, prostate specific membrane antigen, an integrin, or cMet.
- In one embodiment, the antibody in the MRD-containing antibody specifically binds EGFR. In a specific embodiment, the antibody is ERBITUX® (IMC-C225). In one embodiment, the antibody binds to the same epitope as ERBITUX®. In another embodiment, the antibody competitively inhibits binding of ERBITUX® to EGFR. In another embodiment, the antibody in the MRD-containing antibody inhibits EGFR dimerization. In another specific embodiment, the antibody is matuzimab (e.g., EMD 72000, Merck Serono) or panitumumab (e.g., VECTIBIX®, Amgen). In another embodiment, the antibody binds to the same epitope as matuzimab or panitumumab. In another embodiment, the antibody competitively inhibits binding of matuzimab or panitumumab to EGFR. In another embodiment, the antibody is ABX-EGF (Immunex) or MDX-214 (Medarex). In another embodiment, the antibody binds to the same epitope as ABX-EGF or MDX-214. In another embodiment, the antibody competitively inhibits binding of ABX-EGF or MDX-214 to EGFR.
- In one embodiment the MRD-containing antibody specifically binds ErbB2 (Her2). In a specific embodiment, the antibody is trastuzumab (e.g., HERCEPTIN®, Genentech/Roche). In one embodiment, the antibody binds to the same epitope as trastuzumab. In another embodiment, the antibody competitively inhibits binding of trastuzumab to ErbB2. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- In other embodiments, the antibody in the MRD-containing antibody specifically binds to ErbB2. In one embodiment, the antibody in the MRD-containing antibody is an antibody that specifically binds to the same epitope as the anti-ErbB2 antibody trastuzumab (e.g, HERCEPTIN®, Genentech). In another embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits ErbB2 binding by the anti-ErbB2 antibody trastuzumab. In yet another embodiment, the antibody in the MRD-containing antibody is the anti-ErbB2 antibody trastuzumab. In another embodiment, the antibody in the MRD-containing antibody inhibits HER2 dimerization. In another embodiment, the antibody in the MRD-containing antibody inhibits HER2 heterodimerization with HER3 (ErbB3). In a specific embodiment, the antibody is pertuzumab (e.g, OMNITARG® and phrMab2C4, Genentech). In another embodiment, the antibody specifically binds to the same epitope as pertuzumab. In another embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of ErbB2 by pertuzumab. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention. Accordingly, in one embodiment the antibody in the MRD-containing antibody is trastuzumab and 1, 2, 3, 4, 5, 6, or more MRDs in the MRD-containing antibody competitively inhibit binding of ErbB2 by pertuzumab.
- In another embodiment, the antibody in the MRD-containing antibody is an ErbB2 binding antibody selected from the group: MDX-210 (Medarex), tgDCC-E1A (Targeted Genetics), MGAH22 (MacroGenics), and pertuzumab (OMNITARG™, 2C4; Genentech). An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, or 4 of the above antibodies are also encompassed by the invention.
- In some embodiments, the antibody in the MRD-containing antibody comprises the CDRs of the anti-ErbB2 antibody trastuzumab. The CDR, VH, and VL sequences of trastuzumab are provided in Table 1.
-
TABLE 1 CDR Sequence VL-CDR1 RASQDVNTAVAW (SEQ ID NO: 59) VL-CDR2 SASFLYS (SEQ ID NO: 60) VL-CDR3 QQHYTTPPT (SEQ ID NO: 61) VH-CDR1 GRNIKDTYIH (SEQ ID NO: 62) VH-CDR2 RIYPTNGYTRYADSVKG (SEQ ID NO: 63) VH-CDR3 WGGDGFYAMDY (SEQ ID NO: 64) VL DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKP GKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQP EDFATYYCQQHYTTPPTFGQGTKVEIKRT (SEQ ID NO: 65) VH EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQA PGKGLEWVARIYPTNGYTRYADSVKGRFTISADTSKNTAY LQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSS (SEQ ID NO: 66) - In one embodiment the MRD-containing antibody specifically binds ErbB3 (Her3). In a specific embodiment, the antibody is MM121 (Merrimack Pharmaceuticals) or AMG888 (Amgen). In one embodiment, the antibody binds to the same epitope as MM121 or AMG888. In another embodiment, the antibody competitively inhibits binding of MM121 or AMG888 to ErbB3. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1 or both of the above antibodies are also encompassed by the invention
- In one embodiment the MRD-containing antibody specifically binds VEGFA. In a specific embodiment, the antibody is bevacizumab (e.g., AVASTIN®, Genentech/Roche). In one embodiment, the antibody binds to the same epitope as bevacizumab. In another embodiment, the antibody competitively inhibits binding of bevacizumab to VEGFA. In another embodiment the MRD-containing antibody is AT001 (Affitech). In one embodiment, the antibody binds to the same epitope as AT001. In another embodiment, the antibody competitively inhibits binding of AT001 to VEGFA. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1 or both of the above antibodies are also encompassed by the invention.
- In some embodiments, the antibody in the MRD-containing antibody comprises the CDRs of the anti-VEGF antibody bevacizumab. The CDR, VH, and VL sequences of bevacizumab are provided in Table 2.
-
TABLE 2 CDR Sequence VL-CDR1 SASQDISNYLN (SEQ ID NO: 72) VL-CDR2 FTSSLHS (SEQ ID NO: 73) VL-CDR3 QQYSTVPWT (SEQ ID NO: 74) VH-CDR1 GYTFTNYGMN (SEQ ID NO: 75) VH-CDR2 WINTYTGEPTYAADFKR (SEQ ID NO: 76) VH-CDR3 YPHYYGSSHWYFDV (SEQ ID NO: 77) VL DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKP GKAPKVLIYFTSSLHSGVPSRFSGSGSGTDFILTISSLQP EDFATYYCQQYSTVPWTFGQGTKVEIKR (SEQ ID NO: 78) VH EVQLVESGGGLVQPGGSLRLSCAASGYTFTNYGMNWVRQA PGKGLEWVGWINTYTGEPTYAADFKRRFTFSLDTSKSTAY LQMNSLRAEDTAVYYCAKYPHYYGSSHWYFDVWGQGTLVT VSS (SEQ ID NO: 79) - In one embodiment the MRD-containing antibody specifically binds VEGFR1. In one embodiment, the antibody competitively inhibits binding of Aflibercept (Regeneron) to VEGFR1. In another embodiment, the antibody in the MRD-containing antibody inhibits VEGFR1 dimerization. An MRD that competes for target binding with Aflibercept is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with Aflibercept are also encompassed by the invention.
- In one embodiment, the MRD-containing antibody specifically binds VEGFR2. In a specific embodiment, the antibody is ramucirumab (e.g., IMC1121B and IMC1C11, ImClone). In another embodiment, the antibody in the MRD-containing antibody inhibits VEGFR2 dimerization. In one embodiment, the antibody binds to the same epitope as ramucirumab. In another embodiment, the antibody competitively inhibits binding of ramucirumab to VEGFR2. In another embodiment, the antibody competitively inhibits binding of Aflibercept to VEGFR2. An MRD that competes for target binding with ramucirumab is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with ramucirumab or Aflibercept are also encompassed by the invention
- In one embodiment, the antibody in the MRD-containing antibody specifically binds CD20. In a specific embodiment the antibody is rituximab (e.g., RITUXAN®/MABTHERA®, Genentech/Roche/Biogen Idec). In one embodiment, the antibody binds to the same epitope as rituximab. In another embodiment, the antibody competitively inhibits binding of rituximab to CD20. In an additional embodiment, the antibody is GA101 (Biogen Idec/Roche/Glycart). In one embodiment, the antibody binds to the same epitope as GA 101. In another embodiment, the antibody competitively inhibits binding of GA101 to CD20. In an additional embodiment, the antibody is PF-5,230,895 (SBI-087; Pfizer). In one embodiment, the antibody binds to the same epitope as PF-5,230,895. In another embodiment, the antibody competitively inhibits binding of PF-5,230,895 to CD20. In another specific embodiment, the antibody is ocrelizumab (e.g., 2H7; Genentech/Roche/Biogen Idec). In one embodiment, the antibody binds to the same epitope as ocrelizumab. In another embodiment, the antibody competitively inhibits binding of ocrelizumab to CD20. In another specific embodiment, the MRD-containing antibody is selected from: obinutuzumab (e.g., GA101; Biogen Idec/Roche/Glycart), ofatumumab (e.g., ARZERRA® and HuMax-CD20 Genmab), veltuzumab (e.g., IMMU-160, Immunomedics), AME-133 (Applied Molecular Evolution), SGN35 (Millennium), TG-20 (GTC Biotherapeutics), afutuzumab (Hoffman-La Roche), and PRO131921 (Genentech). In another embodiment, the antibody binds to the same epitope as an antibody selected from: obinutuzumab, ofatumumab, veltuzumab, AME-133, SGN35, TG-20 and PRO131921. In another embodiment, the antibody competitively inhibits CD20 binding by an antibody selected from: obinutuzumab, ofatumumab, veltuzumab, AME-133, SGN35, TG-20, afutuzumab, and PRO131921. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- In one embodiment the MRD-containing antibody specifically binds IGF1R. In a specific embodiment, the antibody is selected from: cixutumumab (e.g., IMC-A12, Imclone), figitumumab (e.g., CP-751,871, Pfizer), AMG479 (Amgen), BIIB022 (Biogen Idec), SCH 717454 (Schering-Pough), and R1507 (Hoffman La-Roche). In one embodiment, the antibody binds to the same epitope as an antibody selected from: cixutumumab, figitumumab, AMG479, BIIB022, SCH 717454, and R1507. In another embodiment, the antibody competitively inhibits IGF1R binding by an antibody selected from: cixutumumab, figitumumab, AMG479, BIIB022, SCH 717454, and R1507. In a specific embodiment, the antibody is figitumumab. In another specific embodiment, the antibody binds to the same epitope as figitumumab. In a further specific embodiment, the antibody competitively inhibits IGF1R binding by figitumumab. In an additional specific embodiment, the antibody is BIIB022. In another specific embodiment, the antibody binds to the same epitope as BIIB022. In a further specific embodiment, the antibody competitively inhibits IGF1R binding by BIIB022. In another embodiment, the antibody in the MRD-containing antibody inhibits IGF1R dimerization. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for IGF1R binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- In one embodiment, the antibody in the MRD-containing antibody specifically binds integrin. In a specific embodiment, the antibody is selected from: MEDI-522 avb3 (VITAXIN®, MedImmune), CNTO 95 a5b3 (Centocor), JC7U αvβ3, and volociximab a5b1 (e.g, M200, PDL and Biogen Idec). In another embodiment, the antibody binds to the same epitope as an antibody selected from: MEDI-522, CNTO 95, JC7U αvβ3, and volociximab. In another embodiment, the antibody competitively inhibits integrin binding by an antibody selected from: MEDI-522, CNTO 95, JC7U, and M200. In a specific embodiment, the antibody is natalizumab (e.g., TSABRI®, Biogen Idec). In one embodiment, the antibody binds to the same epitope as natalizumab. In another embodiment, the antibody competitively inhibits integrin binding by natalizumab. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- In one embodiment, the antibody in the MRD-containing antibody specifically binds cMet. In a specific embodiment, the antibody is selected from: MetMab (OA-5D5, Genentech), AMG-102 (Amgen) and DN30. In another embodiment, the antibody binds to the same epitope as an antibody selected from: MetMab (OA-5D5), AMG-102 and DN30. In another embodiment, the antibody competitively inhibits cMET binding by an antibody selected from: MetMab (OA-5D5), AMG-102 and DN30. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, or 3 of the above antibodies are also encompassed by the invention.
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds a5b1 integrin (VLA5). In a specific embodiment, the antibody is volociximab (e.g., M200 Biogen Idec). In another embodiment, the antibody binds to the same epitope as volociximab. In a further embodiment, the antibody competitively inhibits a5b1 integrin binding by volociximab. An MRD that competes for a5b1 integrin binding with volociximab is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for a5b1 integrin binding with volociximab are also encompassed by the invention.
- In other specific embodiments, the antibody in the MRD-containing antibody specifically binds VEGF. In a specific embodiment, the antibody is bevacizumab (e.g., AVASTIN®, Genentech). In one embodiment, the antibody binds to the same epitope as bevacizumab. In another embodiment, the antibody competitively inhibits binding of bevacizumab to VEGF. In another specific embodiment, the antibody is r84 (Peregrine) or 2C3 (Peregrine). In another embodiment, the antibody binds to the same epitope as r84 or 2C3. In another embodiment, the antibody competitively inhibits VEGF binding by r84 or 2C3. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, or 3 of the above antibodies are also encompassed by the invention.
- In another embodiment, the antibody target of the MRD-containing antibody is an antigen associated with an autoimmune disorder, inflammatory or other disorder of the immune system or is associated with regulating an immune response.
- In one embodiment the antibody target of the MRD-containing antibody is an immunoinhibitory target selected from: IL-1, IL-1B, IL-1Ra, L-5, IL6, IL-6R, CD26L, CD28, CD80, FcRn, or FcGamma RIIB. An MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- In another embodiment the antibody target of the MRD-containing antibody is an immunostimulatory target selected from: CD25, CD28, CTLA-4, PD1, PD11, B7-H1, B7-H4, IL-10, TGFbeta, TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), TNFSF9 (41BB Ligand), TNFRSF9 (41BB, CD137), TNFSF14 (LIGHT, HVEM Ligand), TNFRSF14 (HVEM), TNFSF15 (TL1A), TNFRSF25 (DR3), TNFSF 18 (GITR Ligand), and TNFRSF18 (GITR). An MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- In another embodiment the antibody target of the MRD-containing antibody is cytokine selected from: IL-1 alpha, IL-1 beta, IL-18, TNFSF2 (TNFa), LTalpha, LT beta, TNFSF11 (RANKL), TNFSF13B (BLYS), TNFSF13 (APRIL), IL-6, IL-7, IL-10, IL-12, IL-15, IL-17A, IL-23, OncoStatinM, TGFbeta, BMP2-15, PDGF, an FGF family member, VEGF, MIF, and a type I interferon. In an additional embodiment, the antibody target of the MRD-containing antibody is a member selected from: interferon-gamma, TNFSF15 (TL1A), IL-21, IL-13, IL-4, IL-5, IL-2, IL-8, IL-11, and LIF (HILDA): An MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- In another embodiment the antibody target of the MRD-containing antibody is cytokine selected from: TNF-alpha (TNFSF1A), CD25, CD28, CTLA-4, PD1, PD11, B7-H1, B7-H4, IL-10, TGFbeta, TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), TNFSF9 (41BB Ligand), TNFRSF9 (41BB, CD137), TNFSF14 (LIGHT, HVEM Ligand), TNFRSF14 (HVEM), TNFSF15 (TL1A), TNFRSF25 (DR3), TNFSF18 (GITR Ligand), and TNFRSF18 (GITR). An MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- In one embodiment the antibody target of the MRD-containing antibody is IL1Ra, IL1Rb, IL-2, IL-3, IL-4, IL-7, IL-10, IL-11, IL-15, IL-16, IL-17, IL-17A, IL-17F, IL-18, IL-19, IL-25, IL-32, IL-33, interferon beta, SCF, BCA1/CXCL13, CXCL1, CXCL2, CXCL6, CXCL13, CXCL16, C3AR, C5AR, CXCR1, CXCR2, CCR1, CCR3, CCR7, CCR8, CCR9, CCR10, ChemR23, CCL3, CCL5, CCL11, CCL13, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, MPL, GP130, TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, TLR9, TREM1, TREM2, FcRn, FcGamma RIIB, oncostatin M, lymphotoxin alpha (LTa), integrin beta 7 subunit, CD49a (integrin alpha 1), integrin a5b3, MIF, ESM1, WIF1, cathepsin B, cathepsin D, cathepsin K, cathepsin S, TNFSF2 (TNFa), TNFSF3 (LTb), TNFRSF3 (LTBR), TNFSF6 (Fas Ligand), TNFRSF6 (Fas, CD95), TNFRSF6B (DcR3), TNFSF8 (CD30 Ligand), TNFRSF8 (CD30), TNFSF9 (41BB Ligand), TNFRSF9 (41BB, CD137), TNFSF11 (RANKL), TNFRSF11A (RANK), TNFSF14 (LIGHT, HVEM Ligand), TNFRSF14 (HVEM), TNFRSF16 (NGFR), TNFSF18 (GITR Ligand), TNFRSF18 (GITR), TNFRSF19L (RELT), TNFRSF19 (TROY), TNFRSF21 (DR6), CD14, CD23 CD25, CD28, CD36, CD36L, CD39, CD52, CD91, CD137, CD153, CD164, CD200, CD200R, BTLA, B7-1 (CD80), B7-2 (CD86), B7h, ICOS, ICOSL, MHC, CD, B7-H2, B7-H3, B7-H4, B7x, SLAM, KIM-1, SLAMF2, SLAMF3, SLAMF4, SLAMF5, SLAMF6, or SLAMF7. An MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention. The above antibody and MRD targets and those otherwise described herein are intended to be illustrative and not limiting.
- In another embodiment, the antibody target of the MRD-containing antibody is TNFSF1A (TNF-alpha), TNFRSF1A (TNFR1, p55, p60), TNFRSF1B (TNFR2), TNFSF7 (CD27 Ligand, CD70), TNFRSF7 (CD27), TNFSF13B (BLYS), TNFSF13 (APRIL), TNFRSF13B (TACI), TNFRSF13C (BAFFR), TNFRSF17 (BCMA), TNFSF15 (TL1A), TNFRSF25 (DR3), TNFSF12 (TWEAK), TNFRSF12 (TWEAKR), TNFSF4 (OX40 Ligand), TNFRSF4 (OX40), TNFSF5 (CD40 Ligand), TNFRSF5 (CD40), IL-1, IL-1 beta, IL1R, IL-2R, IL4-Ra, IL-5, IL-5R, IL-6, IL6R, IL9, IL12, IL-13, IL-14, IL-15, IL-15R, IL-17f, IL-17R, IL-17Rb, IL-17RC, IL-20, IL-21, IL-22RA, IL-23, IL-23R, IL-31, TSLP, TSLPR, interferon alpha, interferon gamma, B7RP-1, cKit, GMCSF, GMCSFR, CTLA-4, CD2, CD3, CD4, CD11a, CD18, CD20, CD22, CD26L, CD30, CD40, CD80, CD86, CXCR3, CXCR4, CCR2, CCR4, CCR5, CCR8, CCL2, CXCL10, P1GF, PD1, B7-DC (PDL2), B7-H1 (PDL1), alpha4 integrin, A4B7 integrin, C5, RhD, IgE, or Rh. An MRD that binds to one of the above targets is encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention.
- In particular embodiments, the antibody target of the MRD-containing antibody competes for target binding with: SGN-70 CD70 (Seattle Genetics), SGN-75 CD70 (Seattle Genetics), Belimumab BLYS (e.g., BENLYSTA®, Human Genome Sciences/GlaxoSmithKline), Atacicept BLYS/APRIL (Merck/Serono), TWEAK (e.g., Biogen mAb), TL1a antibodies of CoGenesys/Teva (e.g., hum11D8, hum25B9, and hum1B4 (U.S. Patent Application Publication 2009/0280116), OX40 mAb, humAb OX40L (Genentech), rilonacept IL1 trap (e.g., ARCALYST®, Regeneron), catumaxomab IL1 beta (e.g., REMOVAB®, Fresenius Biotech GmbH), Xoma052 IL1 beta (Lilly), canakinumab IL1 beta (e.g., ILARIS® (Novartis) and ACZ885 (Novartis)), AMG108 IL1R (Amgen), daclizumab IL2Ra (e.g., ZENAPAX®, Hoffman-La Roche), basiliximab IL2Ra (e.g., SIMULECT®, Novartis), AMGN-317 IL-4-a (Amgen), pascolizumab IL-4 (PDL), mepolizumab IL5 (e.g., BOSATRIA®, GlaxoSmithKline), reslizumab IL5 (e.g., SCH55700, Ception Therapeutics), MEDI-563 IL-5R (MedImmune), BIW-8405, IL-5R (BioWa), etanercept TNFR2-fc (e.g., ENBREL®, Amgen), siltuximab IL6 (e.g., CNT0328, Centocor), CNTO-136 IL6 (Centocor), CDP-6038 IL6 (UCB), AMGN-220 IL6 (Amgen), REGN-88 IL6R (Regeneron), tocilizumab IL6R (e.g., ACTEMRA™/ROACTEMRA™, Chugai/Roche), MEDI-528 IL9 (MedImmune), briakinumab IL-12/13 (e.g., ABT-874, Abbott), ustekinumab IL-12, IL-23 (e.g., STELARA® and CNTO 1275, Centocor), TNX-650 IL-13 (Tanox), lebrikizumab IL-13 (Genentech), CAT354 IL-13 (Cambridge Antibody Technology), AMG714 IL-15 (Amgen), CRB-15 IL-15R (Hoffman La-Roche), AMG827 IL-17R (Amgen), IL-17RC antibody of Zymogenetics/Merck Serono, IL-20 antibody of Zymogenetics, IL-20 antibody of Novo Nordisk, IL-21 antibody of Novo Nordisk (e.g., NCT01038674), IL-21 antibody Zymogenetics (Zymogenetics), IL-22RA antibody of Zymogenetics, IL-31 antibody of Zymogenetics, AMG157 TSLP (Amgen), MEDI-545 interferon alpha (MedImmune), MEDI-546 interferon alpha pathway component (MedImmune), AMG811 interferon gamma (Amgen), INNO202 interferon gamma (Innogenetics/Advanced Biotherapy), HuZAF interferon-gamma (PDL), AMG557 B7RP1 (Amgen), AMG191 cKit (Amgen), MOR103GMCSF (MorphoSys), CAM-3001 GMCSFR (MedImmune), tremelimumab CTLA4 (e.g., CP-675,206, Pfizer), iplimumab CTLA4 (e.g., MDX-010, BMS/Medarex), alefacept CD2 (e.g., AMEVIVE®, Astellas), siplizumab CD2 (e.g., MEDI-507, MedImmune), otelixizumab CD3 (e.g., TRX4, Tolerx/GlaxoSmithKline), teplizumab CD3 (e.g., MGA031, MacroGenics/Eli Lilly), visilizumab CD3 (e.g., NUVION®, PDL), muromonab-CD3 CD3 (Ortho), ibalizumab (e.g., TMB-355 and TNX-355, TaiMed Biologics), zanolimumab CD4 (e.g., HUMAX-CD4®, Genmab), cedelizumab CD4 (Euroasian Chemicals), keliximab CD4, priliximab CD4 (e.g., cMT412, Centocor), BT-061 CD4 (BioTest AG), efalizumab CD11a. (e.g., RAPTIVA®/XANELIM™, Genentech/Roche/Merck-Serono), MLN01 CD18 (Millennium Pharmaceuticals), epratuzumab CD22 (e.g., Amgen antibody) and hLL2; (Immunomedics/UCB)), aselizumab CD26L, iratumumab CD30 (e.g., SGN30 (Seattle Genetics) and MDX-060 (Medarex), SGN40 CD40 (Seattle Genetics), ANTOVA® CD40 ligand (Biogen Idec), abatacept CD80 CD86 (e.g., ORENCIA®, Bristol-Myers Squibb), CT-011 PD1 (Cure Tech), ATM CXCR3 (Affitech), MLN1202 CCR2 (Millennium Pharmaceuticals), AMG-761 CCR4 (Amgen), HGS004 CCR5 (Human Genome Sciences), PRO140 (Progenies), MDX-1338 CXCR4 (Medarex), CNTO-888 CCL2 (Centocor), ABN912 CCL2 (Novartis), MDX-1100 CXCL10 (Medarex), TB-403 P1GF (BioInvent), natalizumab integrin Alpha4 subunit (e.g., TYSABRI®, Biogen Idec/Elan), vedolizumab integrin A4B7 (e.g., MLN2, Millennium Pharmaceuticals/Takeda), eculizumab C5 Compliment (e.g., SOLIRIS®, Alexion), pexelizumab C5 Compliment (Alexion), omalizumab IgE (e.g., XOLAIR®, Genentech/Roche/Novartis), talizumab (e.g., TNX-901, Tanox), toralizumab (IDEC 131, IDEC), bertilimumab eotaxin (e.g., iCo-008, iCo Therapeutics Inc.), ozrolimupab RhD (e.g., Sym001, Symphogen A/S), atorolimumab or morolimumab (Rh factor). An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, 5, 6, or more of the above antibodies are also encompassed by the invention.
- In particular embodiments, the antibody of the MRD-containing antibody is: SGN-70 CD70 (Seattle Genetics), SGN-75 CD70 (Seattle Genetics), Belimumab BLYS (e.g., BENLYSTA®, Human Genome Sciences/GlaxoSmithKline), BIIB023 TWEAK (Biogen Idec), TL1a antibodies of CoGenesys/Teva (e.g., 11D8, 25B9, and 1B4 (U.S. Patent Application Publication 2009/0280116), OX40 mAb, humAb OX40L (Genentech), catumaxomab IL1 beta (e.g., REMOVAB®, Fresenius Biotech GmbH), canakinumab IL1 beta (e.g., ILARIS® (Novartis) and ACZ885 (Novartis)), AMG108 IL1R (Amgen), daclizumab IL2Ra (e.g., ZENAPAX®, Hoffman-La Roche), basiliximab IL2Ra (e.g., SIMULECT®, Novartis), AMGN-317 IL-4-a (Amgen), pascolizumab IL-4 (PDL), mepolizumab IL5 (e.g., BOSATRIA®, GlaxoSmithKline), reslizumab IL5 (e.g., SCH55700, Ception Therapeutics), MEDI-563 IL-5R (MedImmune), benralizumab IL-5R (MedImmune), BIW-8405, IL-5R (BioWa), siltuximab IL6 (e.g., CNT0328, Centocor), CNTO-136 IL6 (Centocor), CDP-6038 IL6 (UCB), AMGN-220 IL6 (Amgen), REGN-88 IL6R (Regeneron), tocilizumab IL6R (e.g., ACTEMRA™/ROACTEMRA™, Chugai/Roche), MEDI-528 IL9 (MedImmune), briakinumab IL-12/13 (e.g., ABT-874, Abbott), ustekinumab IL-12, IL-23 (e.g., CNTO 1275, Centocor), lebrikizumab IL-13 (Genentech), TNX-650 IL-13 (Tanox), CAT354 IL-13 (Cambridge Antibody Technology), AMG714 IL-15 (Amgen), CRB-15 IL-15R (Hoffman La-Roche), AMG827 IL-17R (Amgen), IL-17RC antibody of Zymogenetics/Merck Serono, IL-20 antibody of Zymogenetics, IL-20 antibody of Novo Nordisk, IL-21 antibody of Novo Nordisk, IL-21 antibody Zymogenetics (Zymogenetics), IL-22RA antibody of Zymogenetics, IL-31 antibody of Zymogenetics, AMG157 TSLP (Amgen), MEDI-545 interferon alpha (MedImmune), MEDI-546 interferon alpha pathway component (MedImmune), AMG811 interferon gamma (Amgen), INNO202 interferon gamma (Innogenetics/Advanced Biotherapy), HuZAF interferon-gamma (PDL), AMG557 B7RP1 (Amgen), AMG191 cKit (Amgen), MOR103 GMCSF (MorphoSys), CAM-3001 GMCSFR (MedImmune), tremelimumab CTLA4 (e.g., CP-675,206, Pfizer), iplimumab CTLA4 (e.g., MDX-010, BMS/Medarex), siplizumab CD2 (e.g., MEDI-507, MedImmune), otelixizumab CD3 (e.g., TRX4, Tolerx/GlaxoSmithKline), muromonab-CD3 CD3 (Ortho), teplizumab CD3 (e.g., MGA031, MacroGenics/Eli Lilly), visilizumab CD3 (e.g., NUVION®, PDL), zanolimumab CD4 (e.g., HUMAX-CD4®, Genmab), cedelizumab CD4 (Euroasian Chemicals), keliximab CD4, priliximab CD4 (e.g., cMT412, Centocor), BT-061 CD4 (BioTest AG), ibalizumab (e.g., TMB-355 and TNX-355, TaiMed Biologics), efalizumab CD11a (e.g., RAPTIVA®/XANELIM™, Genentech/Roche/Merck-Serono), MLN01 CD18 (Millennium Pharmaceuticals), epratuzumab CD22 (e.g., Amgen antibody) and hLL2 (Immunomedics/UCB)), aselizumab CD26L iratumumab CD30 (e.g., SGN30 (Seattle Genetics) and MDX-060 (Medarex), SGN40 CD40 (Seattle Genetics), ANTOVA® CD40 ligand (Biogen Idec), CT-011 PD1 (Cure Tech), AT010 CXCR3 (Affitech), MLN3897 CCR1 (Millennium Pharmaceuticals), MLN1202 CCR2 (Millennium Pharmaceuticals), AMG-761 CCR4 (Amgen), HGS004 CCR5 (Human Genome Sciences), PRO 140 (Progenics), MDX-1338 CXCR4 (Medarex), CNTO-888 CCL2 (Centocor), ABN912 CCL2 (Novartis), MDX-1100 CXCL10 (Medarex), TB-403 P1GF (BioInvent), natalizumab integrin Alpha4 subunit (e.g., TYSABRI®, Biogen Idec/Elan), vedolizumab integrin A4B7 (e.g., MLN02, Millennium Pharmaceuticals/Takeda), eculizumab C5 Compliment (e.g., SOLIRIS®, Alexion pharmaceuticals), omalizumab IgE (e.g., XOLAIR®, Genentech/Roche/Novartis), talizumab (e.g., TNX-901, Tanox), toralizumab (IDEC 131, IDEC), bertilimumab eotaxin (e.g., iCo-008, iCo Therapeutics Inc.), ozrolimupab RhD (e.g., Sym001, Symphogen A/S), atorolimumab or morolimumab (Rh factor).
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds CTLA4. In a specific embodiment, the antibody is tremelimumab (e.g., CP-675,206, Pfizer). In another embodiment, the antibody binds to the same epitope as tremelimumab. In a further embodiment, the antibody competitively inhibits binding of tremelimumab to CTLA4. In an additional specific embodiment, the antibody is ipilimumab (e.g., MDX010, Bristol-Myers Squibb/Medarex). In one embodiment, the antibody binds to the same epitope as ipilimumab. In a further embodiment, the antibody competitively inhibits binding of ipilimumab to CTLA4. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CTLA4 binding with tremelimumab or ipilimumab are also encompassed by the invention.
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds TWEAK (TNFSF12). In a specific embodiment, the antibody is the TWEAK antibody of Biogen that has advanced to Phase I clinical trials. In another embodiment, the antibody binds to the same epitope as the Biogen TWEAK antibody. In a further embodiment, the antibody competitively inhibits binding of the Biogen TWEAK antibody to TWEAK. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for TWEAK binding with the Biogen TWEAK antibody are also encompassed by the invention.
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds IL2Ra (CD25). In a specific embodiment, the antibody is daclizumab (e.g., ZENAPAX®). In another embodiment, the antibody binds to the same epitope as daclizumab. In a further embodiment, the antibody competitively inhibits binding of daclizumab to IL2Ra (CD25). Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for IL2Ra (CD25) binding with daclizumab are also encompassed by the invention.
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds CD40 (TNFRSF5). In a specific embodiment, the antibody is CP-870893 CD40 (Pfizer). In another embodiment, the antibody binds to the same epitope as CP-870893. In a further embodiment, the antibody competitively inhibits binding of CP-870893 to CD40. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for CD40 binding with CP-870893 are also encompassed by the invention.
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds Alpha4 integrin. In a specific embodiment, the antibody is natalizumab (e.g., TYSABRI®; Biogen Idec/Elan). In one embodiment, the antibody binds to the same epitope as natalizumab. In a further embodiment, the antibody competitively inhibits binding of natalizumab to Alpha4 integrin. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for Alpha4 integrin binding with natalizumab are also encompassed by the invention.
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds IL-22. In a specific embodiment, the antibody is PF-5,212,367 (ILV-094) (Pfizer). In another embodiment, the antibody binds to the same epitope as PF-5,212,367. In a further embodiment, the antibody competitively inhibits binding of PF-5,212,367 to IL-22. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for IL-22 binding with PF-5,212,367 are also encompassed by the invention.
- In an additional embodiment, the antibody in the MRD-containing antibody specifically binds MAdCAM. In a specific embodiment, the antibody is PF-547,659 (Pfizer). In another embodiment, the antibody binds to the same epitope as PF-547,659. In a further embodiment, the antibody competitively inhibits binding of PF-547,659 to MAdCAM. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for MAdCAM binding with PF-547,659 are also encompassed by the invention.
- In one embodiment, the antibody in the MRD-containing antibody specifically binds TNF. In a specific embodiment, the antibody is adalimumab (e.g., HUMIRA®/TRUDEXA®, Abbott). In one embodiment, the antibody binds to the same epitope as adalimumab. In another embodiment, the antibody competitively inhibits binding of adalimumab to TNF. In another specific embodiment, the antibody is ATN-103 (Pfizer). In one embodiment, the antibody binds to the same epitope as ATN-103. In another embodiment, the antibody competitively inhibits binding of ATN-103 to TNF. In another specific embodiment, the antibody is infliximab. In one embodiment, the antibody binds to the same epitope as infliximab. In another embodiment, the antibody competitively inhibits binding of infliximab to TNF. In another specific embodiment, the antibody is selected from: certolizumab (e.g., CIMZIA®, UCB), golimumab (e.g., SIMPONI™, Centocor), or AME-527 (Applied Molecular Evolution). In one embodiment, the antibody binds to the same epitope as certolizumab, golimumab, or AME-527. In another embodiment, the antibody competitively inhibits binding of certolizumab, golimumab, or AME-527, to TNF. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, 3, 4, or 5, of the above antibodies are also encompassed by the invention.
- In some embodiments, the antibody in the MRD-containing antibody comprises the CDRs of the anti-TNF antibody adalimumab. The CDR, VH, and VL sequences of adaliumumab are provided in Table 3.
-
TABLE 3 CDR Sequence VL-CDR1 RASQGIRNYLA (SEQ ID NO: 80) VL-CDR2 AASTLQS (SEQ ID NO: 81) VL-CDR3 QRYNRAPYT (SEQ ID NO: 82) VH-CDR1 DYAMH (SEQ ID NO: 83) VH-CDR2 AITWNSGHIDYADSVEG (SEQ ID NO: 84) VH-CDR3 VSYLSTASSLDY (SEQ ID NO: 85) VL DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKP GKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQP EDVATYYCQRYNRAPYTFGQGTKVEIKR (SEQ ID NO: 86) VH EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQA PGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLY LQMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSS (SEQ ID NO: 87) - In other embodiments, the target of the antibody of the MRD-containing antibody is IL6. In some embodiments, the antibody of the MRD-containing antibody is siltuximab (CNT0328, Centocor), CNTO-136 (Centocor), CDP-6038 (UCB), or AMGN-220 (Amgen). In other embodiments, the antibody of the MRD-containing antibody competes with siltuximab (CNT0328, Centocor), CNTO-136 (Centocor), CDP-6038 (UCB), or AMGN-220 (Amgen) for binding to IL6. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2, or more of the above antibodies are also encompassed by the invention.
- In other embodiments, the target of the antibody of the MRD-containing antibody is IL6R. In some embodiments, the antibody of the MRD-containing antibody is REGN-88 (Regeneron) or tocilizumab (ACTEMRA™/ROACTEMRA™, Chugai/Roche). In other embodiments, the antibody of the MRD-containing antibody competes with siltuximab REGN-88 (Regeneron) or tocilizumab (ACTEMRA™/ROACTEMRA™, Chugai/Roche) for binding to IL6R. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1 or both of the above antibodies are also encompassed by the invention.
- In additional embodiments, an MRD-containing antibody binds to 2, 3, 4, 5 or more targets associated with abnormalities of the immune system including inflammation and autoimmune disease that include IL6, IL6R, TNF alpha (TNFSF1A), IL-1,
cadherin 11, fibronectin, BLYS (TNFSF13B), Ang-2, VEGF, VEGFR1, integrin avb3, CD80/CD86, TL1a (TNFSF15), S1PR, CD19, CD20, CD22, CD70, CD32b, CD40, CD4, INF gamma, IL-10R, IL-10, CD80, CD86, ILTs, ICOS, PD1, CD4, IL-4R, IL5R, and IL19R. These MRD-containing antibodies have applications in treating, ameliorating diseases and disorders of the immune system, including inflammation and autoimmune disease. - According to one embodiment, an MRD-containing antibody binds to 2, 3, 4, 5 or more targets selected from IL6, IL6R, TNF alpha (TNFSF1A), IL-1,
cadherin 11, fibronectin, BLyS (TNFSF13B), Ang-2, VEGF, VEGFR1, integrin avb3, and CD80/CD86. These MRD-containing antibodies have applications in treating, preventing, or ameliorating inflammation, such as autoimmune related inflammation in for example, rheumatoid arthritis. - According to another embodiment, an MRD-containing antibody binds to 1, 2, 3, or more targets selected from BLYS (TNFSF13B), S1pr, IFNbR, and IFNaR. These MRD-containing antibodies have applications in treating, preventing, or ameliorating inflammation, such as autoimmune related inflammation associated with systemic lupus erythematosus.
- According to another embodiment, an MRD-containing antibody binds to 1, 2, or 3 targets selected from TNF alpha (TNFSF1A), TL1a (TNFSF15), and Ang-2. These MRD-containing antibodies have applications in treating, preventing, or ameliorating inflammation, such as autoimmune related inflammation associated with inflammatory bowel disease.
- In another embodiment, an MRD-containing antibody binds to 1, 2, 3, 4, 5 or more targets selected from CD19, CD20, CD22, CD70, CD32b, CD40, CD4, IFNg, IL10R, and IL-10R. Members of this group are associated with cancer, hematologic disorders, inflammation and autoimmune disease, and B cell related diseases and disorders and these MRD-containing antibodies have applications in treating, preventing, or ameliorating such disorders.
- According to one embodiment, an MRD-containing antibody binds to 1, 2, 3 or more targets selected from CD4, IFNg, IL10R, and IL10(R). Members of this group are associated with TH1 mediated immune responses and these MRD-containing antibodies have applications in treating, preventing, or ameliorating B cell associated autoimmune diseases and B cell associated diseases.
- According to an additional embodiment, an MRD-containing antibody binds to 1, 2, or 3 targets selected from CD4, IL4R, IL5R, and IL9R. Members of this group are associated with TH2 mediated immune responses and these MRD-containing antibodies have applications in treating, preventing, or ameliorating for example, autoimmune disease and inflammation.
- According to another embodiment, an MRD-containing antibody binds to 1, 2, 3, 4, 5 or more targets selected from CD80/86, ILTs, ICOS, and PD1. Members of this group are associated with stimulation of the immune response and these MRD-containing antibodies have applications in for example, in treating, preventing immune disorders such as those associated with autoimmune disease.
- In particular embodiments, the target of the antibody of the MRD-containing antibody is: amyloid beta (Abeta), beta amyloid, complement factor D, PLP, ROBO4, ROBO, GDNF, NGF, LINGO, or myostatin. In specific embodiments, the antibody in the MRD-containing antibody is gantenerumab (e.g., R1450, Hoffman La-Roche), bapineuzumab beta amyloid 9 (Elan and Wyeth), solanezumab beta amyloid 9 (Lilly), tanezumab NGF (e.g, RN624, Pfizer), BIIB033 LINGO (Biogen Idec), PF-3,446,879 myostatin (Pfizer), or stamulumab myostatin (Wyeth). In another embodiment, the antibody specifically binds to the same epitope as gantenerumab, bapineuzumab, solarezumab, tanezumab, the Biogen LINGO antibody, or stamulumab. In another embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits target binding by gantenerumab, bapineuzumab, solarezumab, tanezumab, BIIB033, or stamulumab. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- In an additional embodiment, the target of the antibody of the MRD-containing antibody is beta amyloid. In a specific embodiment, the antibody in the MRD-containing antibody is RN1219 (PF-4,360,365; Pfizer). In another embodiment, the antibody specifically binds to the same epitope as RN1219. In a further embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits beta amyloid binding by RN1219. An MRD that competes for beta amyloid binding with RN1219 is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for beta amyloid binding with RN1219 are also encompassed by the invention.
- In an additional embodiment, the target of the antibody of the MRD-containing antibody is NGF. In a specific embodiment, the antibody in the MRD-containing antibody is tanezumab (e.g., RN624, Pfizer). In another embodiment, the antibody specifically binds to the same epitope as tanezumab. In a further embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits NGF binding by tanezumab. An MRD that competes for NGF binding with tanezumab is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for NGF binding with tanezumab are also encompassed by the invention.
- In an additional embodiment, the target of the antibody of the MRD-containing antibody is LINGO (e.g., LINGO1). In a specific embodiment, the antibody in the MRD-containing antibody is BIIB033 (Biogen Idec). In another embodiment, the antibody specifically binds to the same epitope as BIIB033. In a further embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits LINGO binding by BIIB033. An MRD that competes for LINGO binding with BIIB033 is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for LINGO binding with BIIB033 are also encompassed by the invention.
- In an additional embodiment, the MRD-containing antibody binds to LINGO and DR6 (TNFRSF21). These MRD-containing antibodies are expected to have applications in treating multiple sclerosis.
- In another embodiment, the target of the antibody of the MRD-containing antibody is: oxidized LDL, gpIIB, gpIIIa, PCSK9, Factor VIII, integrin a2bB3, AOC3, or mesothelin. In specific embodiments, the antibody in the MRD-containing antibody is BI-204 oxidized LDL (BioInvent), abciximab gpIIB, gpIIIa (e.g., REOPRO, Eli Lilly), AMG-145 PCSK9 (Amgen), TB-402 Factor VIII (BioInvent), vapaliximab, or tadocizumab integrin a2bB3 (Yamonochi Pharma). In another embodiment, the antibody specifically binds to the same epitope as BI-204, abciximab, AMG-145, TB-402, or tadocizumab. In another embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of BI-204, abciximab, AMG-145, TB-402, vapaliximab, or tadocizumab. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- In other embodiments, the antibody of the MRD-containing antibody is associated with bone growth and/or metabolism. In certain embodiments the antibody target of the MRD-containing antibody is RANKL. In other embodiments the antibody target of the MRD-containing antibody is: DKK1, osteopontin, cathepsin K, TNFRSF19L (RELT), TNFRSF19 (TROY), or sclerostin (CDP-7851 UCB Celltech). In another embodiment antibody target of the MRD-containing antibody is RANKL. In a specific embodiment, the antibody in the MRD-containing antibody is denosumab (e.g., AMG-162, Amgen). In another embodiment, the antibody specifically binds to the same epitope as denosumab. In another embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of RANKL by denosumab. In another specific embodiment, the antibody is AMG617 or AMG785 (e.g., CDP7851, Amgen). In another embodiment, the antibody specifically binds to the same epitope as AMG617 or AMG785. In another embodiment, the antibody in the MRD-containing antibody is an antibody that competitively inhibits binding of sclerostin by AMG617 or AMG785. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- In additional embodiments, an MRD-containing antibody binds to 2, 3, 4, 5, 6, or more targets selected from TNFSF11 (RANKL), TNF-alpha (TNFSF1A), integrin avB3,
Cad 11, fibronectin, DKK1, osteopontin, cathepsin K, TNFRSF19L (RELT), TNFRSF19 (TROY), and sclerostin. These MRD-containing antibodies have applications in treating an ameliorating musculoskeletal disorders such as osteoporosis and other degenerative bone disorders and other musculoskeletal diseases and disorders described herein or otherwise known in the art. - In additional embodiments, the antibody target of the MRD-containing antibody is a bacterial antigen, a viral antigen, a mycoplasm antigen, a prion antigen, or a parasite antigen (e.g., one infecting a mammal).
- In other embodiments, the target of the antibody of the MRD-containing antibody is a viral antigen. In one embodiment, the target of the antibody of the MRD-containing antibody is anthrax, hepatitis b, rabies, Nipah virus, west nile virus, a mengititis virus, or CMV. In other embodiments, the antibody of the MRD-containing antibody competes with antigen binding with ABTHRAX® (Human Genome Sciences), exbivirumab, foravirumab, libivirumab, rafivirumab, regavirumab, sevirumab (e.g., MSL-109, Protovir), tuvirumab, raxibacumab, Nipah virus M102.4, or MGAWN1® (MacroGenics) for target binding. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- In other embodiments, the target of the antibody of the MRD-containing antibody is RSV. In other embodiments, the antibody of the MRD-containing antibody is motavizumab (e.g., NUMAX®, MEDI-577; MedImmune) or palivizumab RSV fusion f protein (e.g., SYNAGIS®, MedImmune). In other embodiments, the antibody of the MRD-containing antibody competes with motavizumab or palivizumab RSV fusion f protein, for target binding. In other embodiments, the antibody of the MRD-containing antibody is felvizumab. In other embodiments, the antibody of the MRD-containing antibody competes with felvizumab for target binding. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- In other embodiments, the target of the antibody of the MRD-containing antibody is a bacterial or fungal antigen. In other embodiments, the antibody of the MRD-containing antibody competes for antigen binding with nebacumab, edobacomab (e.g., E5), tefibazumab (Inhibitex), panobacumab (e.g., KBPA101, Kenta), pagibaximab (e.g., BSYX-A110, Biosynexus), urtoxazumab, or efungumab (e.g., MYCOGRAB®, Novartis). In other embodiments, the antibody of the MRD-containing antibody is nebacumab, edobacomab, tefibazumab (Inhibitex), panobacumab, pagibaximab, urtoxazumab, or efungumab. An MRD that competes for target binding with one of the above antibodies is also encompassed by the invention. Additionally, MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that compete for target binding with 1, 2 or more of the above antibodies are also encompassed by the invention.
- In another specific embodiment, the antibody in the MRD-containing antibody is the catalytic antibody 38C2. In another embodiment, the antibody binds to the same epitope as 38C2. In another embodiment, the antibody competitively inhibits 38C2.
- Other antibodies of interest include A33 binding antibodies. Human A33 antigen is a transmembrane glycoprotein of the Ig superfamily. The function of the human A33 antigen in normal and malignant colon tissue is not yet known. However, several properties of the A33 antigen suggest that it is a promising target for immunotherapy of colon cancer. These properties include (i) the highly restricted expression pattern of the A33 antigen, (ii) the expression of large amounts of the A33 antigen on colon cancer cells, (iii) the absence of secreted or shed A33 antigen, (iv) the fact that upon binding of antibody A33 to the A33 antigen, antibody A33 is internalized and sequestered in vesicles, and (v) the targeting of antibody A33 to A33 antigen expressing colon cancer in preliminary clinical studies. Fusion of a MRD directed toward A33 to a catalytic or non-catalytic antibody would increase the therapeutic efficacy of A33 targeting antibodies.
- In some embodiments, the antibody in the MRD-containing antibody binds to a human target protein. In some embodiments, the MRD binds to both a human protein and its ortholog in mouse, rat, rabbit, or hamster.
- The antibodies in the MRD-containing antibodies are able to bind their respective targets when the MRDs are attached to the antibody. In certain embodiments, the antibody binds its target independently. In some embodiments, the antibody is a target agonist. In other embodiments, the antibody is a target antagonist. In certain embodiments, the antibody can be used to localize an MRD-containing antibody to an area where the antibody target is located.
- It is contemplated that the antibodies used in the present invention may be prepared by any method known in the art. For example, antibody molecules and MRD-containing antibodies can be “recombinantly produced,” i.e., produced using recombinant DNA technology.
- Monoclonal antibodies that can be used as the antibody component of the MRD-containing antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature 256:495 (1975). Using the hybridoma method, a mouse, hamster, or other appropriate host animal, is immunized as described above to elicit the production by lymphocytes of antibodies that will specifically bind to an immunizing antigen. Lymphocytes can also be immunized in vitro. Following immunization, the lymphocytes are isolated and fused with a suitable myeloma cell line using, for example, polyethylene glycol, to form hybridoma cells that can then be selected away from unfused lymphocytes and myeloma cells. Hybridomas that produce monoclonal antibodies directed specifically against a chosen antigen as determined by immunoprecipitation, immunoblotting, or by an in vitro binding assay (e.g., radioimmunoassay (RIA); enzyme-linked immunosorbent assay (ELISA)) can then be propagated either in vitro, for example, using standard methods (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, 1986) or in vivo, for example, as ascites tumors in an animal. The monoclonal antibodies can then be purified from the culture medium or ascites fluid as described for polyclonal antibodies above.
- Alternatively monoclonal antibodies can also be made using recombinant DNA methods, for example, as described in U.S. Pat. No. 4,816,567. For example, in one approach polynucleotides encoding a monoclonal antibody are isolated from mature B-cells or hybridoma cell, such as by RT-PCR using oligonucleotide primers that specifically amplify the genes encoding the heavy and light chains of the antibody, and their sequence is determined using conventional procedures. The isolated polynucleotides encoding the heavy and light chains are then cloned into suitable expression vectors, which when transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, monoclonal antibodies are generated by the host cells. In other approaches, recombinant monoclonal antibodies or antibody fragments having the desired immunoreactivity can be isolated from phage display libraries expressing CDRs of the desired species using techniques known in the art (McCafferty et al., Nature 348:552-554 (1990); Clackson et al., Nature 352:624-628 (1991); and Marks et al., J. Mol. Biol. 222:581-597 (1991)).
- The polynucleotide(s) encoding a monoclonal antibody can further be modified in a number of different manners, using recombinant DNA technology to generate alternative antibodies. For example, polynucleotide sequences that encode one or more MRDs and optionally linkers, can be operably fused, for example, to the 5′ or 3′ end of sequence encoding monoclonal antibody sequences. In some embodiments, the constant domains of the light and heavy chains of, for example, a mouse monoclonal antibody can be substituted (1) for those regions of, for example, a human antibody to generate a chimeric antibody or (2) for a non-immunoglobulin polypeptide to generate a fusion antibody. Techniques for site-directed and high-density mutagenesis of the variable region are known in the art and can be used to optimize specificity, affinity, etc. of a monoclonal antibody.
- In certain embodiments, the antibody of the MRD-containing antibody is a human antibody. For example, human antibodies can be directly prepared using various techniques known in the art. Immortalized human B lymphocytes immunized in vitro or isolated from an immunized individual that produce an antibody directed against a target antigen can be generated (See, e.g., Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boerner et al., J. Immunol. 147 (1):86-95 (1991); and U.S. Pat. Nos. 5,750,373 and 6,787,637). In one embodiment, the human antibody can be derived from the “minilocus approach” in which an exogenous Ig locus is mimicked through inclusion of individual genes from the Ig locus (see e.g., U.S. Pat. No. 5,545,807). Methods of preparing a human antibody from a phage library, and optionally optimizing binding affinity are known in the art and described, for example, in Vaughan et al., Nat. Biotech. 14:309-314 (1996); Sheets et al., Proc. Nat'l. Acad. Sci. 95:6157-6162 (1998); Hoogenboom Nat. Biotechnology 23:1105-1116 (2005); Hoogenboom and Winter, J. Mol. Biol. 227:381 (1991); Persic et al., Gene 187:9-18 (1997); Jostock et al., J. Immunol. Methods 289:65-80 (2004); Marks et al., J. Mol. Biol., 222:581 (1991)); Barbas III, C. F., Kang, A. S., Lerner, R. A. and Benkovic, S. J., Proc. Natl. Acad. Sci. USA, 88:7978-7982 (1991); Barbas III, C. F., Hu, D., Dunlop, N., Sawyer, L., Cababa, D., Hendry, R. M., Nara, P. L. and Burton, D. R., Proc. Natl. Acad. Sci. USA 91:3809-3813 (1994); Yang, W.-P., Green, K., Pinz-Sweeney, S., Briones, A. T., Burton, D. R., and Barbas III, C. F., J. Mol. Biol. 254:392-403 (1995); and Barbas III, C. F., Bain, J. D., Hoekstra, D. M. and Lerner, R. A. Proc. Natl. Acad. Sci. USA 89:4457-4461 (1992). Techniques for the generation and use of antibody phage libraries are also described in: U.S. Pat. Nos. 5,545,807, 5,969,108, 6,172,197, 5,885,793, 6,521,404, 6,544,731, 6,555,313, 6,582,915, 6,593,081, 6,300,064, 6,653,068, 6,706,484, and 7,264,963; and Rothe et al., J. Mol. Bio. 130:448-54 (2007) (each of which is herein incorporated by reference). Affinity maturation strategies and chain shuffling strategies (Marks et al., Bio/Technology 10:779-783 (1992) (which is herein incorporated by reference) are known in the art and can be employed to generate high affinity human antibodies.
- Antibodies can also be made in mice that are transgenic for human immunoglobulin genes or fragments of these genes and that are capable, upon immunization, of producing a broad repertoire of human antibodies in the absence of endogenous immunoglobulin production. This approach is described in: Lonberg, Nat. Biotechnol 23:1117-1125 (2005), Green, Nature Genet. 7:13-21 (1994), and Lonberg, Nature 368:856-859 (1994); U.S. Pat. Nos. 5,545,807, 5,545,806, 5,569,825, 5,625,126, 5,633,425, 5,661,016, 6,596,541, 7,105,348, and 7,368,334 (each of which is herein incorporated by reference).
- MRD-containing antibodies can contain a single linker, multiple linkers, or no linker. Thus, a MRD may be operably attached (linked) to the antibody directly, or operably attached through an optional linker peptide. Similarly, a MRD may be operably attached to one or more MRD(s) directly, or operably attached to one or more MRD(s) through one or more optional linker peptide(s). Linkers can be of any size or composition so long as they are able to operably attach an MRD and an antibody such that the MRD enables the MRD containing antibody to bind the MRD target. In some embodiments, linkers have about 1 to 20 amino acids, about 1 to 15 amino acids, about 1 to 10 amino acids, about 1 to 5 amino acids, about 2 to 20 amino acids, about 2 to 15 amino acids, about 2 to 10 amino acids, or about 2 to 5 amino acids. The linker can also have about 4 to 15 amino acids.
- In certain embodiments, the linker peptide contains a short linker peptide with the sequence GGGS (SEQ ID NO:1), a medium linker peptide with the sequence SSGGGGSGGGGGGSS (SEQ ID NO:2), or a long linker peptide with the sequence SSGGGGSGGGGGGSSRSS (SEQ ID NO:19). In another embodiment, the MRD is inserted into the fourth loop in the light chain constant region. For example, the MRD can be inserted between the underlined letters in the following amino acid sequence: RTVAAPSVFIFPPSDEQL KSGTASVVCLLNNFYPREAKVQWKVDKLGTNSQESVTEQDSKDSTYSLSSTLTLSK ADY EKHKVYACEVTHQGLSLPVTKSFNRGEC (SEQ ID NO:102).
- The linker can also be a non-peptide linker such as an alkyl linker, or a PEG linker. For example, alkyl linkers such as —NH—(CH2)s-C(O)—, wherein s=2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C1 C6) lower acyl, halogen (e.g., Cl, Br), CN, NH2, phenyl, etc. An exemplary non-peptide linker is a PEG linker. In certain embodiments, the PEG linker has a molecular weight of about 100 to 5000 kDa, or about 100 to 500 kDa.
- Linker optimization can be evaluated using the techniques described in Examples 1-18 and techniques otherwise known in the art. Linkers preferably should not disrupt the ability of an MRD and/or an antibody to bind target molecules.
- Using the methods described herein, multi-specificity and greater multi-valency can be achieved through the fusion of MRDs to antibodies.
- The MRDs of the MRD-containing antibodies prepared according to the present invention, may be operably linked to an antibody through the peptide's N-terminus or C-terminus. The MRD may be operably linked to the antibody at the C-terminal end of the heavy chain of the antibody, the N-terminal end of the heavy chain of the antibody, the C-terminal end of the light chain of the antibody, or the N-terminal end of the light chain of the antibody. Optimization of the MRD composition, MRD-antibody attachment location and linker composition can be performed using the binding assays described in Examples 1-18 and bioassays and other assays known in the art for the appropriate target related biological activity.
- In one embodiment, MRD-containing antibodies contain an MRD operably linked to either the antibody heavy chain, the antibody light chain, or both the heavy and the light chain. In one embodiment an MRD-containing antibody contains at least one MRD linked to one of the antibody chain terminals. In another embodiment, an MRD-containing antibody of the invention contains at least one MRD operably linked to two of the antibody chain terminals. In another embodiment, an MRD-containing antibody contains at least one MRD operably linked to three of the antibody chain terminals. In another embodiment, an MRD-containing antibody contains at least one MRD operably attached to each of the four antibody chain terminals (i.e., the N and C terminals of the light chain and the N and C terminals of the heavy chain).
- In certain specific embodiments, the MRD-containing antibody has at least one MRD operably attached to the N-terminus of the light chain. In another specific embodiment, the MRD-containing antibody has at least one MRD operably attached to the N-terminus of the heavy chain. In another specific embodiment, the MRD-containing antibody has at least one MRD operably attached to the C-terminus of the light chain. In another specific embodiment, the MRD-containing antibody has at least one MRD operably attached to the C-terminus of the heavy chain.
- An MRD-containing antibody can be “multispecific” (e.g., bispecific, trispecific tetraspecific, pentaspecific or of greater multispecificity), meaning that it recognizes and binds to two or more different epitopes present on one or more different antigens (e.g., proteins). Thus, whether an MRD-containing antibody is “monospecific” or “multispecific,” (e.g., bispecific, trispecific, and tetraspecific) refers to the number of different epitopes that the MRD-containing antibody binds. Multispecific antibodies may be specific for different epitopes of a target polypeptide (e.g., as described herein) or may be specific for a target polypeptide as well as for a heterologous epitope, such as a heterologous polypeptide target or solid support material. The present invention contemplates the preparation of mono-, bi-, tri-, tetra-, and penta-specific antibodies as well as antibodies of greater multispecificity. In one embodiment, the MRD-containing antibody binds two different epitopes. In an additional embodiment the MRD-containing antibody binds two different epitopes simultaneously. In another embodiment, the MRD-containing antibody binds three different epitopes. In an additional embodiment the MRD-containing antibody binds three different epitopes simultaneously. In another embodiment, the MRD-containing antibody binds four different epitopes. In an additional embodiment the MRD-containing antibody binds four different epitopes simultaneously. In another embodiment, the MRD-containing antibody binds five different epitopes (see, e.g.,
FIG. 2D ). In an additional embodiment the MRD-containing antibody binds five different epitopes simultaneously. - In other embodiments two MRDs of the MRD-containing antibody bind the same antigen. In other embodiments three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments at least two MRDs of the MRD-containing antibody bind the same antigen. In other embodiments at least three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments two MRDs of the MRD-containing antibody bind the same epitope. In other embodiments three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope. In other embodiments at least two MRDs of the MRD-containing antibody bind the same epitope. In other embodiments at least three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope.
- In other embodiments, the antibody and one MRD of the MRD-containing antibody bind the same antigen. In other embodiments the antibody and two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments, the antibody and at least one MRD of the MRD-containing antibody bind the same antigen. In other embodiments the antibody and at least two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same antigen. In other embodiments, the antibody and one MRD of the MRD-containing antibody bind the same epitope. In other embodiments the antibody and two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope. In other embodiments, the antibody and at least one MRD of the MRD-containing antibody bind the same epitope. In other embodiments the antibody and at least two, three, four, five, six, seven, eight, nine or ten MRDs of the MRD-containing antibody bind the same epitope.
- The present invention also provides for two or more MRDs which are linked to any terminal end of the antibody. Thus, in one non-exclusive embodiment, two, three, four, or more MRDs are operably linked to the N-terminal of the heavy chain. In another non-exclusive embodiment, two, three, four, or more MRDs are operably linked to the N-terminal of the light chain. In another non-exclusive embodiment, two, three, four, or more MRDs are operably linked to the C-terminal of the heavy chain. In another non-exclusive embodiment, two, three, four, or more MRDs are operably linked to the C-terminal of the light chain. It is envisioned that these MRDs can be the same or different. In addition, any combination of MRD number and linkages can be used. For example, two MRDs can be operably linked to the N-terminal of the heavy chain of an antibody which contains one MRD linked to the C-terminal of the light chain. Similarly, three MRDs can be operably linked to the C-terminal of the light chain and two MRDs can be operably linked to the N-terminal of the light chain.
- MRD-containing antibodies can contain one, two, three, four, five, six, seven, eight, nine, ten or more than ten MRDs.
- In one embodiment, the MRD-containing antibody contains one MRD (see, e.g.,
FIGS. 2B and 2C ). In another embodiment, the MRD-containing antibody contains two MRDs. In another embodiment, the MRD-containing antibody contains three MRDs. In another embodiment, the MRD-containing antibody contains four MRDs (see, e.g.,FIGS. 2B and 2C ). In another embodiment, the MRD-containing antibody contains five MRDs. In another embodiment, the MRD-containing antibody contains six MRDs. In an additional embodiment, the MRD-containing antibody contains between two and ten MRDs. - In one embodiment, the MRD-containing antibody contains at least one MRD. In another embodiment, the MRD-containing antibody contains at least two MRDs. In another embodiment, the MRD-containing antibody contains at least three MRDs. In another embodiment, the MRD-containing antibody contains at least four MRDs. In another embodiment, the MRD-containing antibody contains at least five MRDs. In another embodiment, the MRD-containing antibody contains at least six MRDs.
- In another embodiment, the MRD-containing antibody contains two different MRDs. In another embodiment, the MRD-containing antibody contains three different MRDs. In another embodiment, the MRD-containing antibody contains four different MRDs. In another embodiment, the MRD-containing antibody contains five different MRDs. In another embodiment, the MRD-containing antibody contains six different MRDs. In an additional embodiment, the MRD-containing antibody contains between two and ten different MRDs.
- In another embodiment, the MRD-containing antibody contains at least two different MRDs. In another embodiment, the MRD-containing antibody contains at least three different MRDs. In another embodiment, the MRD-containing antibody contains at least four different MRDs. In another embodiment, the MRD-containing antibody contains at least five different MRDs. In another embodiment, the MRD-containing antibody contains at least six different MRDs.
- Thus, the MRD-containing antibodies can be MRD monomeric (i.e., containing one MRD at the terminus of a peptide chain optionally connected by a linker) or MRD multimeric (i.e., containing more than one MRD in tandem optionally connected by a linker). The multimeric MRD-containing antibodies can be homo-multimeric (i.e., containing more than one of the same MRD in tandem optionally connected by linker(s) (e.g., homodimers, homotrimers, homotetramers etc.)) or hetero-multimeric (i.e., containing two or more MRDs in which there are at least two different MRDs optionally connected by linker(s) where all or some of the MRDs linked to a particular terminus are different (e.g., heterodimer, heterotrimer, heterotetramer etc.)). In one embodiment, the MRD-containing antibody contains two different monomeric MRDs located at different immunoglobulin termini. In another embodiment, the MRD-containing antibody contains three different monomeric MRDs located at different immunoglobulin termini. In another embodiment, the MRD-containing antibody contains four different monomeric MRDs located at different immunoglobulin termini. In another embodiment, the MRD-containing antibody contains five different monomeric MRDs located at different immunoglobulin termini. In another embodiment, the MRD-containing antibody contains six different monomeric MRDs located at different immunoglobulin termini.
- In an alternative embodiment, the MRD-containing antibody contains at least one dimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homodimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heterodimeric and one monomeric MRD located at different immunoglobulin termini.
- In an alternative embodiment, the MRD-containing antibody contains at least one multimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homomultimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heteromultimeric and one monomeric MRD located at different immunoglobulin termini.
- In an alternative embodiment, the MRD-containing antibody contains MRDs operably linked to at least two different immunoglobulin termini. In a specific embodiment, the MRDs fused to at least one of the immunoglobulins is a multimer. In one embodiment, the MRDs fused to a least one of the immunoglobulins is a homomultimer (i.e., more than one of the same MRD operably linked in tandem, optionally linked via a linker), In another embodiment, the MRDs fused to at least one of the immunoglobulins is a heteromultimer (i.e., two or more different MRDs operably linked in tandem, optionally linked via a linker). In an additional embodiment, the MRDs fused to at least one of the immunoglobulins is a dimer. In another embodiment, the MRDs fused to a least one of the immunoglobulins is a homodimer. In another embodiment, the MRDs fused to at least one of the immunoglobulins is a heterodimer.
- The multiple MRDs can target the same target binding site, or two or more different target binding sites. Where the MRDs bind to different target binding sites, the binding sites may be on the same or different target molecules.
- Similarly, the antibody and the MRD in a MRD-containing antibody may bind to the same target molecule or to different target molecules.
- In some embodiments, at least one MRD and the antibody in the MRD-containing antibody can bind to their targets simultaneously. In one embodiment, each MRD in the MRD-containing antibody and the antibody can bind to its target simultaneously. Therefore, in some embodiments, the MRD-containing antibody binds two, three, four, five, six, seven, eight, nine, ten or more target molecules simultaneously.
- The ability of a MRD-containing antibody to bind to multiple targets simultaneously can be assayed using methods known in the art, including, for example, those methods described in the examples below.
- In some embodiments, the MRD(s) and the antibody in the MRD-containing antibody are antagonists of their respective target molecules. In other embodiments, the MRD(s) and the antibody in the MRD-containing antibody are agonists of their respective target molecules. In yet other embodiments, at least one of the MRDs in the MRD-containing antibody is an antagonist of its target molecule and the antibody is an agonist of its target molecule. In yet another embodiment, at least one of the MRDs in the MRD-containing antibody is an agonist of its target molecule, and the antibody is an antagonist of its target molecule.
- In some embodiments, both the MRD(s) and the antibody in the MRD-containing antibody bind to soluble factors. In some embodiments, both the MRD(s) and the antibody in the MRD-containing antibody bind to cell surface molecules. In some embodiments, at least one MRD in the MRD-containing antibody binds to a cell surface molecule and the antibody in the MRD-containing antibody binds to a soluble factor. In some embodiments, at least one MRD in the MRD-containing antibody binds to a soluble factor and the antibody in the MRD-containing antibody binds to a cell surface molecule.
- An improved MRD-containing antibody that specifically binds a desired target or targets can also be prepared based on a previously known MRD or MRD-containing antibody. For example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10-20, 20-30, 30-50, 50-100, 100-150 or more than 150 amino acid substitutions, deletions or insertions can be introduced into an MRD or MRD-containing antibody sequence and the resulting MRD or MRD-containing antibody can be screened for binding to the desired target or targets, for antagonizing target activity, or for agonizing target activity as described in the examples or using techniques known in the art.
- Additional peptide sequences may be added, for example, to enhance the in vivo stability of the MRD or affinity of the MRD for its target.
- In preferred embodiments, the MRD-containing antibody retains particular activities of the parent antibody. Thus, in certain embodiments, the MRD-containing antibody is capable of inducing complement dependent cytotoxicity. In certain embodiments, the MRD-containing antibody is capable of inducing antibody dependent cell mediated cytotoxicity (ADCC). In additional embodiments, the MRD-containing antibody is capable of inducing apoptosis. In additional embodiments, the MRD-containing antibody is capable of reducing tumor volume. In additional embodiments, the MRD-containing antibodies are capable of inhibiting tumor growth.
- In some embodiments, the MRD-containing antibody shows improved activity or pharmacodynamic properties compared to the corresponding antibody without the attached MRD. Thus, in certain embodiments, the MRD-containing antibody has greater avidity than the corresponding antibody without the attached MRD. In other embodiments, the MRD-containing antibody results in increased receptor aggregation compared to the corresponding antibody without the attached MRD. In another embodiment, the MRD-containing antibody antagonizes target activity to a greater extent than the corresponding antibody without the attached MRD. In another embodiment, the MRD-containing antibody agonizes target activity to a greater extent than the corresponding antibody without the attached MRD. In another embodiment, the MRD-containing antibody has an improved pharmacodynamic profile than the corresponding antibody without the attached MRD.
- In another embodiment, the MRD-containing antibody has a greater therapeutic efficacy than the corresponding antibody without the attached MRD.
- In other embodiments, the MRD-containing antibodies have one or more of the following effects: inhibit proliferation of tumor cells, reduce the tumorigenicity of a tumor, inhibit tumor growth, increase subject survival, trigger cell death of tumor cells, differentiate tumorigenic cells to a non-tumorigenic state, or prevent metastasis of tumor cells.
- In certain embodiments, the MRD-containing antibody is at least as stable as the corresponding antibody without the attached MRD. In certain embodiments, the MRD-containing antibody is more stable than the corresponding antibody without the attached MRD. MRD-antibody stability can be measured using methods known to those in the art, including, for example, ELISA techniques. In some embodiments, the MRD-containing antibody is stable in whole blood at 37° C. for at least about 10 hours, at least about 15 hours, at least about 20 hours, at least about 24 hours, at least about 25 hours, at least about 30 hours, at least about 35 hours, at least about 40 hours, at least about 45 hours, at least about 48 hours, at least about 50 hours, at least about 55 hours, at least about 60 hours, at least about 65 hours, at least about 70 hours, at least about 72 hours, at least about 75 hours, at least about 80 hours, at least about 85 hours, at least about 90 hours, at least about 95 hours, or at least about 100 hours.
- In certain embodiments, the MRD-containing antibody has at least the same affinity for Fc receptors as the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has at least the same affinity for complement receptors as the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has at least the same half-life as the corresponding parent antibody. In other embodiments, the MRD-containing antibody can be expressed at levels commensurate with the corresponding parent antibody.
- In additional, embodiments, the MRD-containing antibody has an increased affinity for Fc receptors compared to the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has an increased affinity for complement receptors compared to the corresponding parent antibody. In other nonexclusive embodiments, the MRD-containing antibody has an increased half-life compared to the corresponding parent antibody. In other embodiments, the MRD-containing antibody can be expressed at increased levels compared to that of the corresponding parent antibody.
- In other embodiments, the MRD-containing antibody is conjugated to a cytotoxin. Cytotoxins include chemotherapeutic agents, growth inhibitory agents, toxins (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), radioactive isotopes (i.e., a radioconjugate), etc. Chemotherapeutic agents useful in the generation of such immunoconjugates include, for example, methotrexate, adriamicin, doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents. Chemotherapeutic agents useful in the generation of such immunoconjugates also include antitubulin drugs, such as auristatins, including monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF). Enzymatically active toxins and fragments thereof that can be used according to the invention include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain, ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. In some embodiments, the heteromultimeric molecules can be conjugated to radioisotopes, such as 90Y, 125I, 131I, 123I, 111In, 105Rh, 153Sm. 67Cu, 67Ga, 166Ho, 177Lu, 186Re and 188Re using anyone of a number of well known chelators or direct labeling. In other embodiments, the MRD-containing antibody is coupled to drugs, prodrugs or lymphokines such as interferon. Conjugates of the MRD-containing antibody and cytotoxin can routinely be made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis(p-azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as
tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). In specific embodiments, the toxin is conjugate to an MRD-containing antibody through an enzyme-cleavable linker system (e.g., such as that present in SGN-35). Conjugates of an MRD-containing antibody and one or more small molecule toxins, such as a calicheamicin, maytansinoids, a trichothene, and CC1065, and the derivatives of these toxins that have toxin activity, can also be used. In some embodiments, the MRD-containing antibody can be complexed, or have MRDs that bind with other immunologically active ligands (e.g., chemokines, cytokines, and antibodies or fragments thereof) wherein the resulting molecule binds to both the neoplastic cell or other target as well as the chemokine, cytokine, or an effector cell such as a T cell. - In some embodiments, the N-terminus or C-terminus of the antibody to which the MRD is operably linked in the MRD-antibody fusions is truncated. In preferred embodiments, this truncation does not prevent or reduce the ability of the antibody to bind to its target antigen via its antigen binding domain. In other embodiments, the truncation does not prevent or reduce Fc effector function, half-life and/or ADCC activity. In other embodiments, MRDs are attached in the terminal region of the antibody chain. More particularly, in certain embodiments, the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the C-terminal amino acid of the heavy chain. In other embodiments, the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the C-terminal amino acid of the light chain. In additional embodiments, the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the N-terminal amino acid of the heavy chain. In other embodiments, the MRD is attached within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 residues of the N-terminal amino acid of the light chain. Thus, for example, a MRD that is linked to the N-terminal end of the heavy chain can be linked to the first, second, third, fourth, fifth, or tenth amino acid of the N-terminal chain of the heavy chain. For example, an MRD-antibody fusion containing an MRD linked to the N-terminal of the heavy chain may contain amino acids 1-3 of the heavy chain sequence linked to the MRD, which is linked to
amino acid 4 of the heavy chain sequence. - In certain embodiments, one or more MRDs are attached to the antibody at locations other than the termini of the antibody light and heavy chains. The MRD can be attached to any portion of the antibody that does not prevent the ability of the antibody to bind its target. Thus, in some embodiments, the MRD is located outside the antibody combining site. For example, the MRD can be located within a heavy chain sequence or within a light chain sequence. By way of example only, the MRD can be located between the Fc domain and the hinge region, between the hinge region and the CH1 domain of the heavy chain, between the CH1 domain and the variable region of the heavy chain, or between the constant region and the variable region of the light chain.
- In specific embodiments, the MRD-containing antibody targets ErbB2 and an angiogenic factor. In specific embodiments, the MRD-containing antibody targets ErbB2 and IGF1R. In another embodiment, the antibody targets ErbB2, and at least one MRD targets an angiogenic factor and/or IGF 1R. In one embodiment, an antibody that binds to the same ErbB2 epitope as trastuzumab is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In an additional embodiment, an antibody that competitively inhibits trastuzumab binding is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In additional embodiments, an antibody that comprises the sequences of SEQ ID NOS:59-64 is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In additional embodiments, the trastuzumab antibody is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- In some embodiments, an antibody that binds to ErbB2 is operably linked to an MRD that targets Ang2. In some embodiments, the antibody that binds to ErbB2 is linked to an Ang2 binding MRD that binds to the same Ang2 epitope as an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to ErbB2 is linked to an Ang2 binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to ErbB2 is linked to an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to ErbB2 is linked to an MRD comprising the sequence of SEQ ID NO:XXX.
- In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to ErbB2. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to ErbB2.
- In some embodiments, at least one Ang2 binding MRD is operably linked directly to an antibody that binds to ErbB2. In additional embodiments, at least one Ang2 binding MRD is operably linked to an antibody that binds to ErbB2 via a linker.
- In some embodiments, an antibody that binds to ErbB2 is operably linked to an MRD that targets IGF1R. In some embodiments, the antibody that binds to ErbB2 is linked to an IGF1R binding MRD that binds to the same IGF1R epitope as an MRD comprising the sequence of SEQ ID NO:14. In some embodiments, the antibody that binds to ErbB2 is linked to an IGF1R binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:14. In some embodiments, the antibody that binds to ErbB2 is linked to an MRD comprising the sequence of SEQ ID NO:14. In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence SLFVPRPERK (SEQ ID NO:103). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence ESDVLHFTST (SEQ ID NO:104). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence LRKYADGTL (SEQ ID NO:105).
- In some embodiments, at least one IGF1R binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one IGF1R binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to ErbB2. In some embodiments, at least one IGF1R binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to ErbB2. In some embodiments, at least one IGF1R binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to ErbB2.
- In some embodiments, at least one IGF1R binding MRD is operably linked directly to an antibody that binds to ErbB2. In additional embodiments, at least one IGF1R binding MRD is operably linked to an antibody that binds to ErbB2 via a linker.
- In some embodiments, an MRD-containing antibody targets ErbB2 and HER2/3. In some embodiments, an MRD-containing antibody can bind to ErbB2 and HER2/3 simultaneously. In some embodiments, an antibody that binds to ErbB2 is operably linked to an MRD that targets HER2/3. In additional embodiments, at least one HER2/3-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to ErbB2. In further embodiments, at least one HER2/3-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to ErbB2. In additional embodiments, at least one HER2/3-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to ErbB2. In additional embodiments, at least one HER2/3-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to ErbB2.
- In some embodiments, at least one HER2/3-binding MRD is operably linked directly to an antibody that binds to ErbB2. In additional embodiments, at least one HER2/3-binding MRD is operably linked to an antibody that binds to ErbB2 via a linker.
- In some embodiments, an MRD-containing antibody targets ErbB2 and HER2/3. In some embodiments, an MRD-containing antibody can bind to ErbB2 and HER2/3 simultaneously. In some embodiments, an antibody that binds to HER2/3 is operably linked to an MRD that targets ErbB2. In additional embodiments, at least one ErbB2-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to HER2/3. In further embodiments, at least one ErbB2-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to HER2/3. In additional embodiments, at least one ErbB2-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to HER2/3. In additional embodiments, at least one ErbB2-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to HER2/3.
- In some embodiments, the MRD-containing antibody targets ErbB2, Ang2, and IGF1R. In some embodiments, the MRD-containing antibody comprises an antibody that targets ErbB2, an MRD that targets Ang2, and an MRD that targets IGF1R. In some embodiments, the Ang2 and IGF1R MRDs are attached to the same location on the anti-ErbB2 antibody. In some embodiments, the Ang2 and IGF1R MRDs are attached to different locations on the anti-ErbB2 antibody. In some embodiments, the Ang2 and IGF1R MRDs are on the light chain of the anti-ErbB2 antibody. In some embodiments, the Ang2 and IGF1R MRDs are on the heavy chain of the anti-ErbB2 antibody. In some embodiments, the Ang2 MRD is on the light chain of the ErbB2 antibody, and the IGF1R MRD is on the heavy chain of the anti-ErbB2 antibody. In some embodiments, the Ang2 MRD is on the heavy chain of the ErbB2 antibody, and the IGF1R MRD is on the light chain of the anti-ErbB2 antibody. In some embodiments, the Ang2 MRD is on the N-terminus of the heavy chain of the ErbB2 antibody, and the IGF1R MRD is on the C-terminus of the light chain of the anti-ErbB2 antibody. In some embodiments, the IGF1R MRD is on the N-terminus of the heavy chain of the ErbB2 antibody, and the Ang2 MRD is on the C-terminus of the light chain of the anti-ErbB2 antibody. MRD-containing antibodies comprising an antibody that targets Ang2, an MRD that targets ErbB2, and an MRD that targets IGF1R; and MRD-containing antibodies comprising an antibody that targets IGF1R, an MRD that targets ErbB2, and an MRD that targets Ang2 are also encompassed by the invention.
- In some embodiments, the anti-ErbB2 antibody operably linked to an Ang2 binding MRD binds to both ErbB2 and Ang2 simultaneously. In some embodiments, the anti-ErbB2 antibody operably linked to an IGF1R binding MRD binds to both ErbB2 and IGF1R simultaneously. In some embodiments, the anti-ErbB2 antibody operably linked to an Ang2 MRD and an IGF1R MRD binds to ErbB2, Ang2, and IGF1R simultaneously. In some embodiments, the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) exhibits ADCC activity. In additional embodiments, the anti-ErbB2 antibody operably linked to an Ang2 and/or, IGF1R binding MRD(s) down-regulates Akt signaling. In additional embodiments, the anti-ErbB2 antibody operably linked to an Ang2 binding MRD inhibits Ang2 binding to Tie2. In additional embodiments, the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) down-regulates IGF1R signaling. In additional embodiments, the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits cell proliferation. In additional embodiments, the anti-ErbB2 antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits tumor growth.
- According to some embodiments, the MRD-containing antibody binds 2, 3, 4, 5 or more targets selected from the group: EGFR, ErbB2, ErbB3, cMet, IGF1R, PDGFR, FGFR1, FGFR2, FGFR3, VEGFR1, and Ang2. MRD-containing antibodies having 1, 2, 3, 4, 5, 6, or more MRDs that bind to 1, 2, 3, 4, 5, 6, or more of the above targets are also encompassed by the invention. Accordingly, for example, in one embodiment, the MRD-containing antibody is an anti-ErbB2 antibody operably linked to MRDs that bind Her3, EGFR, IGF1R, Ang2, and PDGFR. According to another embodiment, an anti-EGFR antibody is operably linked to MRDs that bind Her3, ErbB2, VEGR, IGF1R, Ang2, and PDGFR. Such MRD containing antibodies are expected to have particular use in treating cancers including solid tumors and an treating disorders associated with neovascularization, such as those indications described herein or otherwise known in the art. In additional embodiments these MRD-containing antibodies contain an MRD or antibody that binds MACE, Meloe-1 and/or CD20. Such MRD-containing antibodies have applications in, for example treating cancers such as, melanoma. In additional embodiments these MRD-containing antibody additionally contain an MRD or antibody that binds PSMA. Such MRD-containing antibodies have applications in, for example treating prostate cancer and other disorders associated with the prostate.
- In additional embodiments these MRD-containing antibodies contain an MRD or antibody that binds PMSA. Such MRD-containing antibodies have applications in, for example treating prostate cancer and other disorders associated with the protstate. In additional embodiments these MRD-containing antibody additionally contain an MRD or antibody that binds PMSA. Such MRD-containing antibodies have applications in, for example treating prostate cancer and other disorders associated with the protstate.
- In specific embodiments, the MRD-containing antibody targets VEGF and an angiogenic factor. In specific embodiments, the MRD-containing antibody targets VEGF and IGF1R. In another embodiment, the antibody targets VEGF, and at least one MRD targets an angiogenic factor and/or IGF1R. In one embodiment, an antibody that binds to the same VEGF epitope as bevacizumab is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In an additional embodiment, an antibody that competitively inhibits bevacizumab binding is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In additional embodiments, an antibody that comprises the sequences of SEQ ID NOS:78-79 is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R. In additional embodiments, the bevacizumab antibody is operably linked to at least one MRD that targets an angiogenic factor and/or IGF1R.
- In some embodiments, an antibody that binds to VEGF is operably linked to an MRD that targets Ang2. In some embodiments, the antibody that binds to VEGF is linked to an Ang2 binding MRD that binds to the same Ang2 epitope as an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to VEGF is linked to an Ang2 binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to VEGF is linked to an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to VEGF is linked to an MRD comprising the sequence of SEQ ID NO:XXX.
- In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to VEGF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to VEGF.
- In some embodiments, at least one Ang2 binding MRD is operably linked directly to an antibody that binds to VEGF. In additional embodiments, at least one Ang2 binding MRD is operably linked to an antibody that binds to VEGF via a linker.
- In some embodiments, an antibody that binds to VEGF is operably linked to an MRD that targets IGF1R. In some embodiments, the antibody that binds to VEGF is linked to an IGF1R binding MRD that binds to the same IGF1R epitope as an MRD comprising the sequence of SEQ ID NO:14. In some embodiments, the antibody that binds to VEGF is linked to an IGF1R binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:14. In some embodiments, the antibody that binds to VEGF is linked to an MRD comprising the sequence of SEQ ID NO:14. In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence SLFVPRPERK (SEQ ID NO:103). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence ESDVLHFTST (SEQ ID NO:104). In some embodiments, the antibody that binds ErbB2 is linked to an MRD encoding the sequence LRKYADGTL (SEQ ID NO:105).
- In some embodiments, at least one IGF1R binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one IGF1R binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to VEGF. In some embodiments, at least one IGF1R binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to VEGF. In some embodiments, at least one IGF I R binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to VEGF.
- In some embodiments, at least one IGF1R binding MRD is operably linked directly to an antibody that binds to VEGF. In additional embodiments, at least one IGF1R binding MRD is operably linked to an antibody that binds to VEGF via a linker.
- In some embodiments, the MRD-containing antibody targets VEGF, Ang2, and IGF1R. In some embodiments, the MRD-containing antibody comprises an antibody that targets VEGF, an MRD that targets Ang2, and an MRD that targets IGF1R. In some embodiments, the Ang2 and IGF1R MRDs are attached to the same location on the anti-VEGF antibody. In some embodiments, the Ang2 and IGF1R MRDs are attached to different locations on the anti-VEGF antibody. In some embodiments, the Ang2 and IGF1R MRDs are on the light chain of the anti-VEGF antibody. In some embodiments, the Ang2 and IGF1R MRDs are on the heavy chain of the anti-VEGF antibody. In some embodiments, the Ang2 MRD is on the light chain of the anti-VEGF antibody, and the IGF1R MRD is on the heavy chain of the anti-VEGF antibody. In some embodiments, the Ang2 MRD is on the heavy chain of the anti-VEGF antibody, and the IGF1R MRD is on the light chain of the anti-VEGF antibody. In some embodiments, the Ang2 MRD is on the N-terminus of the heavy chain of the anti-VEGF antibody, and the IGF1R MRD is on the C-terminus of the light chain of the anti-VEGF antibody. In some embodiments, the IGF1R MRD is on the N-terminus of the heavy chain of the anti-VEGF antibody, and the Ang2 MRD is on the C-terminus of the light chain of the anti-VEGF antibody.
- In some embodiments, the anti-VEGF antibody operably linked to an Ang2 binding MRD binds to both anti-VEGF and Ang2 simultaneously. In some embodiments, the anti-VEGF antibody operably linked to an IGF1R binding MRD binds to both anti-VEGF and IGFR1 simultaneously. In some embodiments, the anti-VEGF antibody operably linked to an Ang2 binding MRD and an IGF1R binding MRD binds to VEGF, Ang2, and IGF1R simultaneously. In some embodiments, the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) exhibits ADCC activity. In additional embodiments, the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) down-regulates VEGF signaling. In additional embodiments, the anti-VEGF antibody operably linked to an Ang2 binding MRD inhibits Ang2 binding to Tie2. In additional embodiments, the anti-VEGF antibody operably linked to an IGF1R binding MRD inhibits IGF1R signaling. In additional embodiments, the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits cell proliferation. In additional embodiments, the anti-VEGF antibody operably linked to an Ang2 and/or IGF1R binding MRD(s) inhibits tumor growth.
- In some embodiments, the anti-ErbB2 antibody or the VEGF antibody contains and MRD that inhibits the binding of pertuzumab to ErbB2. In some embodiments, an anti-ErbB2 antibody contains at least one'MRD that binds to Ang2 or IGF1R and one MRD that inhibits the binding of pertuzumab to ErbB2. In some embodiments, an anti-VEGF antibody contains at least one MRD that binds to Ang2 or IGF1R and one MRD that inhibits the binding of pertuzumab to ErbB2. In some embodiments, an anti-ErbB2 antibody contains an MRD that binds Ang2, an MRD that binds IGF1R, and an MRD that inhibits the binding of pertuzumab to ErbB2. In some embodiments, an anti-VEGF antibody contains an MRD that binds Ang2, an MRD that binds IGF1R, and an MRD that inhibits the binding of pertuzumab to ErbB2.
- In specific embodiments, the MRD-containing antibody targets TNF and an angiogenic factor. In another embodiment, the antibody targets TNF (i.e., TNF-alpha (TNFSF1A)), and at least one MRD targets an angiogenic factor. In one embodiment, an antibody that binds to the same TNF epitope as adalimumab is operably linked to at least one MRD that targets an angiogenic factor. In an additional embodiment, an antibody that competitively inhibits adalimumab binding is operably linked to at least one MRD that targets an angiogenic factor. In additional embodiments, an antibody that comprises the sequences of SEQ ID NOS:80-85 is operably linked to at least one MRD that targets an angiogenic factor. In additional embodiments, the adalimumab antibody is operably linked to at least one MRD that targets an angiogenic factor. In one embodiment, an antibody that binds to the same TNF epitope as golimumab is operably linked to at least one MRD that targets an angiogenic factor. In an additional embodiment, an antibody that competitively inhibits golimumab binding is operably linked to at least one MRD that targets an angiogenic factor. In additional embodiments, the golimumab antibody is operably linked to at least one MRD that targets an angiogenic factor.
- In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets Ang2. In some embodiments, the antibody that binds to TNF is linked to an Ang2 binding MRD that binds to the same Ang2 epitope as an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to TNF is linked to an Ang2 binding MRD that competitively inhibits an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to TNF is linked to an MRD comprising the sequence of SEQ ID NO:8. In some embodiments, the antibody that binds to TNF is linked to an MRD comprising the sequence of SEQ ID NO:XXX.
- In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one Ang2 binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one Ang2 binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- In some embodiments, at least one Ang2 binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one Ang2 binding MRD is operably linked to an antibody that binds to TNF via a linker.
- In some embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD binds to both TNF and Ang2 simultaneously. In some embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD exhibits ADCC activity. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD inhibits binding of TNF to the p55 and p75 cell surface TNF receptors. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD lyses surface TNF-expressing cells in vitro in the presence of complement. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD inhibits Ang2 binding to Tie2. In additional embodiments, the anti-TNF antibody operably linked to an Ang2 binding MRD reduces the signs and symptoms of arthritis.
- In some embodiments, the MRD-containing antibody targets TNF and IL6. In some embodiments, the MRD-containing antibody is capable of binding TNF and IL6 simultaneously. Thus, in some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets IL6. In other embodiments, an antibody that binds to IL6 is operably linked to an MRD that targets TNF.
- In some embodiments, at least one IL6-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one IL6-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one IL6-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one IL6-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds IL6. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to IL6. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to IL6. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to IL6.
- In some embodiments, at least one IL6-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one IL6-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- In some embodiments, at least one TNF-binding MRD is operably linked directly to an antibody that binds to IL6. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL6 via a linker.
- In some embodiments, at least one IL-1 beta-binding MRD is operably linked directly to an antibody that binds to IL-6. In additional embodiments, at least one IL6-binding MRD is operably linked to an antibody that binds to IL-1 beta via a linker.
- In some embodiments, at least one TNF-binding MRD is operably linked directly to an antibody that binds to IL6. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL6 via a linker.
- In some embodiments, the MRD-containing antibody targets TNF and IL-17 (e.g., IL-17A). In some embodiments, the MRD-containing antibody is capable of binding TNF and IL-17 simultaneously. Thus, in some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets IL17. In other embodiments, an antibody that binds to IL-17 is operably linked to an MRD that targets TNF.
- In some embodiments, at least one IL-17-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one IL-17-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one IL-17-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one IL-17-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds IL-17. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to IL-17. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to IL-17. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to IL17.
- In some embodiments, at least one IL-17-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one IL-17-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- In some embodiments, at least one TNF-binding MRD is operably linked directly to an antibody that binds to IL-17. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL-17 via a linker.
- In some embodiments, the MRD-containing antibody targets TNF and IL-1 beta. In some embodiments, the MRD-containing antibody is capable of binding TNF and IL-1 beta simultaneously. Thus, in some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets IL-1 beta. In other embodiments, an antibody that binds to IL-1 beta is operably linked to an MRD that targets TNF.
- In some embodiments, at least one IL-1 beta-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one IL-1 beta-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one IL-1 beta-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one IL-1 beta-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds IL-1 beta. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to IL-1 beta. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to IL-1 beta. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to IL-1 beta.
- In some embodiments, at least one IL-1 beta-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one IL-1 beta-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- In some embodiments, at least one TNF-binding MRD is operably linked directly to an antibody that binds to IL-1 beta. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to IL-1 beta via a linker.
- In some embodiments, at least one IL-17 (e.g., IL-17A)-binding MRD and at least one IL1 beta binding MRD are operably linked directly to the same or different termini of an antibody that binds to TNF. In additional embodiments at least one IL-17-binding MRD and at least one IL1 beta binding MRD are operably linked to the same or different termini of an antibody that binds to TNF via a linker.
- In additional embodiments, at least one IL-17 (e.g., IL-17A)-binding MRD and at least one TNF-binding MRD are operably linked directly to the same or different termini of an antibody that binds to IL-1 beta. In additional embodiments, at least one IL-17-binding MRD and at least one TNF-binding MRD are operably linked to the same or different termini of an antibody that binds to IL-1 beta via a linker.
- In additional embodiments, at least one IL-1 beta-binding MRD and at least one TNF-binding MRD are operably linked directly to the same or different termini of an antibody that binds to IL-17 (e.g., IL-17A). In additional embodiments, at least one IL-1 beta-binding MRD and at least one TNF-binding MRD are operably linked to the same or different termini of an antibody that binds to IL-17 via a linker.
- In some embodiments, the MRD-containing antibody targets TNF and BLyS. In some embodiments, the MRD-containing antibody is capable of binding TNF and BLyS simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets BLyS. In other embodiments, an antibody that binds to BLyS is operably linked to an MRD that targets TNF.
- In some embodiments, at least one BLyS-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds TNF. In some embodiments, at least one BLyS-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to TNF. In some embodiments, at least one BLyS-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to TNF. In some embodiments, at least one BLyS-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to TNF.
- In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the heavy chain of an antibody that binds BLyS. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the heavy chain of an antibody that binds to BLyS. In some embodiments, at least one TNF-binding MRD is operably linked to the C-terminus of the light chain of an antibody that binds to BLyS. In some embodiments, at least one TNF-binding MRD is operably linked to the N-terminus of the light chain of an antibody that binds to BLyS.
- In some embodiments, at least one BLyS-binding MRD is operably linked directly to an antibody that binds to TNF. In additional embodiments, at least one BLyS-binding MRD is operably linked to an antibody that binds to TNF via a linker.
- In other embodiments, at least one TNF-binding MRD is operably linked directly to an antibody that binds to BLyS. In additional embodiments, at least one TNF-binding MRD is operably linked to an antibody that binds to BLyS via a linker.
- In some embodiments, the MRD-containing antibody targets Ang2, TNF, and IL6. In some embodiments, the MRD-containing antibody is capable of binding Ang2, TNF, and IL6 simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets Ang2 and an MRD that targets IL6. In some embodiments, the Ang2- and IL6-binding MRDs are located on the same antibody chain. In some embodiments, the Ang2- and IL6-binding MRDs are located on the same antibody terminus. In some embodiments, the Ang2- and IL6-binding MRDs are located on different antibody chains. In some embodiments, the Ang2- and IL6-binding MRDs are located on different antibody termini.
- In some embodiments, an antibody that binds to Ang2 is operably linked to an MRD that targets TNF and an MRD that targets IL6. In some embodiments, the TNF- and IL6-binding MRDs are located on the same antibody chain. In some embodiments, the TNF- and IL6-binding MRDs are located on the same antibody terminus. In some embodiments, the TNF- and IL6-binding MRDs are located on different antibody chains. In some embodiments, the TNF- and IL6-binding MRDs are located on different antibody termini.
- In some embodiments, an antibody that binds to IL6 is operably linked to an MRD that targets Ang2 and an MRD that targets TNF. In some embodiments, the Ang2- and TNF-binding MRDs are located on the same antibody chain. In some embodiments, the Ang2- and TNF-binding MRDs are located on the same antibody terminus. In some embodiments, the Ang2- and TNF-binding MRDs are located on different antibody chains. In some embodiments, the Ang2- and TNF-binding MRDs are located on different antibody termini.
- In some embodiments, the MRD-containing antibody targets Ang2, TNF, and BLyS. In some embodiments, the MRD-containing antibody is capable of binding Ang2, TNF, and BLyS simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets Ang2 and an MRD that targets BLyS. In other embodiments, an antibody that binds to BLyS is operably linked to an MRD that targets TNF and an MRD that targets Ang2. In other embodiments, an antibody that binds to Ang2 is operably linked to an MRD that targets TNF and an MRD that targets BLyS. In some embodiments, the Ang2-, BLyS, and/or TNF-binding MRDs are located on the same antibody chain. In some embodiments, Ang2-, BLyS, and/or TNF-binding MRDs are located on the same antibody terminus. In some embodiments, the Ang2-, BLyS, and/or TNF-binding MRDs are located on different antibody chains. In some embodiments, the Ang2-, BLyS, and/or TNF-binding MRDs are located on different antibody termini.
- In some embodiments, the MRD-containing antibody targets Ang2, TNF, IL6, and BLyS. In some embodiments, the MRD-containing antibody is capable of binding Ang2, TNF, IL6 and BLyS simultaneously. In some embodiments, an antibody that binds to TNF is operably linked to an MRD that targets Ang2, an MRD that targets IL6, and an MRD that targets BLyS. In some embodiments, an antibody that binds to Ang2 is operably linked to an MRD that targets TNF, an MRD that targets IL6, and an MRD that targets BLyS. In some embodiments, an antibody that binds to IL6 is operably linked to an MRD that targets Ang2, an MRD that targets TNF, and an MRD that targets BLyS. In some embodiments, an antibody that binds to BLyS is operably linked to an MRD that targets Ang2, an MRD that targets IL6, and an MRD that targets TNF. In some embodiments, the TNF-, Ang2-, IL6-, and/or BLyS-binding MRDs are located on the same antibody chain. In some embodiments, the TNF-, Ang2-, IL6- and/or BLyS-binding MRDs are located on the same antibody terminus. In some embodiments, the TNF-, Ang2-, IL6-, and/or BLyS-binding MRDs are located on different antibody chains. In some embodiments, the TNF-, Ang2-, IL6- and/or BLyS-binding MRDs are located on different antibody termini.
- An additional advantage of MRD-containing antibodies is that they can be produced using protocols that are known in the art for producing antibodies. The antibody-MRD fusion molecules can be encoded by a polynucleotide comprising a nucleotide sequence. Thus, the polynucleotides described herein can encode an MRD, an antibody heavy chain, an antibody light chain, a fusion protein comprising an antibody heavy chain and at least one MRD, and/or a fusion protein comprising an antibody light chain and at least one MRD.
- Also provided herein are an expression vector and/or a host cell that comprises one or more of the polynucleotides. Also provided herein, are methods of producing an MRD-containing antibody, the method comprising: culturing a host cell comprising one or more polynucleotides or an expression vector comprising one or more isolated polynucleotides in a medium under conditions allowing the expression of said one or more polynucleotide, wherein said one or more polynucleotides encodes one or more polypeptides that form part of MRD-containing antibody; and recovering said MRD-containing antibody.
- Generally, any type of cultured cell line can be used to express the MRD-containing antibody of the present invention. In some embodiments, CHO cells, BHK cells, NS0 cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, other mammalian cells, avian cells, yeast cells, insect cells, or plant cells are used as the background cell line to generate the engineered host cells of the invention.
- In one embodiment, one or several polynucleotides encoding an MRD-containing antibody can be expressed under the control of a constitutive promoter or, alternately, a regulated expression system. Suitable regulated expression systems include, but are not limited to, a tetracycline-regulated expression system, an ecdysone inducible expression system, a lac-switch expression system, a glucocorticoid-inducible expression system, a temperature-inducible promoter system, and a metallothionein metal-inducible expression system. If several different nucleic acids encoding an MRD-containing antibody are comprised within the host cell system, some of them can be expressed under the control of a constitutive promoter, while others are expressed under the control of a regulated promoter. The maximal expression level is considered to be the highest possible level of stable polypeptide expression that does not have a significant adverse effect on cell growth rate, and will be determined using routine experimentation. Expression levels are determined by methods generally known in the art, including Western blot analysis and Northern blot analysis. In a further alternative, the polynucleotide may be operatively linked to a reporter gene; the expression levels of an MRD-containing antibody disclosed herein are determined by measuring a signal correlated with the expression level of the reporter gene. The reporter gene may be transcribed together with the nucleic acid(s) encoding said MRD-containing antibody as a single mRNA molecule; their respective coding sequences may be linked either by an internal ribosome entry site (IRES) or by a cap-independent translation enhancer. The nucleic acids encoding an MRD-containing antibody can be operatively linked to the reporter gene under the control of a single promoter, such that the nucleic acid encoding the MRD-containing antibody and the reporter gene are transcribed into an RNA molecule which is alternatively spliced into two separate messenger RNA (mRNA) molecules; one of the resulting mRNAs is translated into said reporter protein, and the other is translated into the MRD-containing antibody.
- Methods which are well known to those skilled in the art can be used to construct expression vectors containing the coding sequence of an MRD-containing antibody along with appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis et al., MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, N.Y. (1989) and Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, N.Y. (1989). In some embodiments, the vectors used are pCEP4 (Invitrogen®) vectors. In some embodiments, the vectors used are pcDNA3 (Invitrogen®) vectors.
- A variety of host-expression vector systems may be utilized to express the coding sequence an MRD-containing antibody. Mammalian cells can be used as host cell systems transfected with recombinant plasmid DNA or cosmid DNA expression vectors containing the coding sequence of the protein of interest and the coding sequence of the fusion polypeptide. Cells such as 293 cells (e.g., 293T and 293F), CHO cells, BHK (cells, NS0 cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or hybridoma cells, other mammalian cells, yeast cells, insect cells, or plant cells are used as host cell system. Some examples of expression systems and selection methods are described in the following references and references cited therein: Borth et al., Biotechnol. Bioen. 71(4):266-73 (2000-2001), in Werner et al., Arzneimittelforschung/Drug Res. 48(8):870-80 (1998), in Andersen and Krummen, Curr. Op. Biotechnol. 13:117-123 (2002), in Chadd and Chamow, Curr. Op. Biotechnol. 12:188-194 (2001), and in Giddings, Curr. Op. Biotechnol. 12: 450-454 (2001).
- In alternate embodiments, other eukaryotic host cell systems may be used, including yeast cells transformed with recombinant yeast expression vectors containing the coding sequence of an MRD-containing antibody of the present invention, such as the expression systems taught in U.S. Pat. Appl. No. 60/344,169 and WO 03/056914 (methods for producing human-like glycoprotein in a non-human eukaryotic host cell) (the contents of each of which are incorporated by reference in their entirety); insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the coding sequence of an MRD-containing antibody; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the coding sequence of an MRD-containing antibody, including, but not limited to, the expression systems taught in U.S. Pat. No. 6,815,184 (methods for expression and secretion of biologically active polypeptides from genetically engineered duckweed); WO 2004/057002 (production of glycosylated proteins in bryophyte plant cells by introduction of a glycosyl transferase gene) and WO 2004/024927 (methods of generating extracellular heterologous non-plant protein in moss protoplast); and U.S. Pat. Appl. Nos. 60/365,769, 60/368,047, and WO 2003/078614 (glycoprotein processing in transgenic plants comprising a functional mammalian GnTIII enzyme) (the contents of each of which is herein incorporated by reference in its entirety); or animal cell systems infected with recombinant virus expression vectors (e.g., adenovirus, vaccinia virus) including cell lines engineered to contain multiple copies of the DNA encoding an MRD-containing antibody either stably amplified (CHO/dhfr) or unstably amplified in double-minute chromosomes (e.g., murine cell lines). In one embodiment, the vector comprising the polynucleotide(s) encoding the MRD-containing antibody of the invention is polycistronic.
- Stable expression typically achieves more reproducible results than transient expression and also is more amenable to large-scale production; however, it is within the skill of one in the art to determine whether transient expression is better for a particular situation. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with the respective coding nucleic acids controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows selection of cells which have stably integrated the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
- A number of selection systems may be used, including, but not limited to, the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:2026 (1962)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 (1980)) genes, which can be employed in tk−, hgprt− or apt− cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:3567 (1989); O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin et al., J. Mol. Biol. 150:1 (1981)); and hygro, which confers resistance to hygromycin (Santerre et al., Gene 30:147 (1984) genes. Recently, additional selectable genes have been described, namely trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. USA 85:8047 (1988)); the glutamine synthase system; and ODC (ornithine decarboxylase) which confers resistance to the ornithine decarboxylase inhibitor, 2-(difluoromethyl)-DL-ornithine, DFMO (McConlogue, in: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed. (1987)).
- In some embodiments, the MRD-containing antibodies are expressed at levels (titers) comparable to those of antibodies. In some embodiments, the MRD-containing antibodies are expressed at least about 10 μg/ml, at least about 20 μg/ml, or at least about 30 μg/ml. In some embodiments, the MRD-containing antibodies are expressed at least about 40 μg/ml or at least about 50 μg/ml. In some embodiments, the MRD-containing antibodies are expressed at least about 60 μg/ml, at least about 70 μg/ml, at least about 80 μg/ml, at least about 90 μg/ml, at least about 95 μg/ml, at least about 100 μg/ml, at least about 110 μg/ml, at least about 120 μg/ml, at least about 130 μg/ml, at least about 140 μg/ml, at least about 150 μg/ml, at least about 160 μg/ml, at least about 170 μg/ml, at least about 180 μg/ml, at least about 190 μg/ml, or at least about 200 μg/ml.
- The present invention is further directed to a method for modifying the glycosylation profile of an MRD-containing antibody that is produced by a host cell, comprising expressing in said host cell a nucleic acid encoding an MRD-containing antibody and a nucleic acid encoding a polypeptide with a glycosyltransferase activity, or a vector comprising such nucleic acids. Genes with glycosyltransferase activity include β(1,4)-N-acetylglucosaminyltansferase III (GnTII), α-mannosidase II (Mann), β(1,4)-galactosyltransferase (GalT), β(1,2)-N-acetylglucosaminyltransferase I (GnTI), and β(1,2)-N-acetylglucosaminyltransferase II (GnTII). In one embodiment, a combination of genes with glycosyltransferase activity are expressed in the host cell (e.g., GnTIII and Man II). Likewise, the method also encompasses expression of one or more polynucleotide(s) encoding the MRD-containing antibody in a host cell in which a glycosyltransferase gene has been disrupted or otherwise deactivated (e.g., a host cell in which the activity of the gene encoding α1-6 core fucosyltransferase has been knocked out). In another embodiment, the MRD-containing antibody can be produced in a host cell that further expresses a polynucleotide encoding a polypeptide having GnTIII activity to modify the glycosylation pattern. In a specific embodiment, the polypeptide having GnTIII activity is a fusion polypeptide comprising the Golgi localization domain of a Golgi resident polypeptide. In another embodiment, the expression of the MRD-containing antibody in a host cell that expresses a polynucleotide encoding a polypeptide having GnTIII activity results in an MRD-containing antibody with increased Fc receptor binding affinity and increased effector function. Accordingly, in one embodiment, the present invention is directed to a host cell comprising (a) an isolated nucleic acid comprising a sequence encoding a polypeptide having GnTIII activity; and (b) an isolated polynucleotide encoding an MRD-containing antibody of the present invention, such as a chimeric, primatized or humanized antibody. In another embodiment, the polypeptide having GnTIII activity is a fusion polypeptide comprising the catalytic domain of GnTIII and the Golgi localization domain is the localization domain of mannosidase II. Methods for generating such fusion polypeptides and using them to produce antibodies with increased effector functions are disclosed in U.S. Provisional Pat. Appl. No. 60/495,142 and U.S. Pat. Appl. Publ. No. 2004/0241817, each of which is herein incorporated by reference.
- The MRD-containing antibodies with altered glycosylation produced by the host cells of the invention typically exhibit increased Fc receptor binding affinity and/or increased effector function as a result of the modification of the host cell (e.g., by expression of a glycosyltransferase gene). The increased Fc receptor binding affinity can be increased binding to a Fey activating receptor, such as the FcγRIIIa receptor. The increased effector function can be an increase in one or more of the following: increased antibody-dependent cellular cytotoxicity, increased antibody-dependent cellular phagocytosis (ADCP), increased cytokine secretion, increased immune-complex-mediated antigen uptake by antigen-presenting cells, increased Fc-mediated cellular cytotoxicity, increased binding to NK cells, increased binding to macrophages, increased binding to polymorphonuclear cells (PMNs), increased binding to monocytes, increased crosslinking of target-bound antibodies, increased direct signaling inducing apoptosis, increased dendritic cell maturation, and increased T cell priming.
- The MRD-containing antibodies described herein are useful in a variety of applications including, but not limited to, therapeutic treatment methods, such as the treatment of cancer. In certain embodiments, the MRD-containing antibodies are useful for inhibiting tumor growth, reducing neovascularization, reducing angiogenesis, inducing differentiation, reducing tumor volume, and/or reducing the tumorigenicity of a tumor. The methods of use may be in vitro, ex vivo, or in vivo methods.
- In one embodiment, the MRD-containing antibodies are useful for detecting the presence of a factor or multiple factors (e.g., antigens or organisms) in a biological sample. The term “detecting” as used herein encompasses quantitative or qualitative detection. In certain embodiments, a biological sample comprises a cell or tissue. In certain embodiments, such tissues include normal and/or cancerous tissues.
- The present invention contemplates therapeutic compositions useful for practicing the therapeutic methods described herein. In one embodiment, therapeutic compositions of the present invention contain a physiologically tolerable carrier together with at least one species of antibody comprising an MRD as described herein, dissolved or dispersed therein as an active ingredient. In another embodiment, therapeutic compositions of the present invention contain a physiologically tolerable carrier together with at least one species of an MRD as described herein, dissolved or dispersed therein as an active ingredient. In a preferred embodiment, the therapeutic composition is not immunogenic when administered to a human patient for therapeutic purposes.
- The preparation of a pharmacological composition that contains active ingredients dissolved or dispersed therein is well understood in the art. Typically such compositions are prepared as sterile injectables either as liquid solutions or suspensions, aqueous or nonaqueous. However, solid forms suitable for solution, or suspensions, in liquid prior to use can also be prepared. The preparation can also be emulsified. Thus, an antibody-MRD containing composition can take the form of solutions, suspensions, tablets, capsules, sustained release formulations or powders, or other compositional forms.
- The active ingredient can be mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient and in amounts suitable for use in the therapeutic methods described herein. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol or the like and combinations thereof. In addition, if desired, the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like which enhance the effectiveness of the active ingredient.
- The therapeutic composition of the present invention can include pharmaceutically acceptable salts of the components therein. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide) that are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, tartaric, mandelic and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like.
- Physiologically tolerable carriers are well known in the art. Exemplary of liquid carriers are sterile aqueous solutions that contain no materials in addition to the active ingredients and water, or contain a buffer such as sodium phosphate at physiological pH value, physiological saline or both, such as phosphate-buffered saline. Still further, aqueous carriers can contain more than one buffer salt, as well as salts such as sodium and potassium chlorides, dextrose, propylene glycol, polyethylene glycol, and other solutes.
- Liquid compositions can also contain liquid phases in addition to and to the exclusion of water.
- Exemplary of such additional liquid phases are glycerin, vegetable oils such as cottonseed oil, organic esters such as ethyl oleate, and water-oil emulsions.
- In one embodiment, a therapeutic composition contains an antibody comprising a MRD of the present invention, typically in an amount of at least 0.1 weight percent of antibody per weight of total therapeutic composition. A weight percent is a ratio by weight of antibody total composition. Thus, for example, 0.1 weight percent is 0.1 grams of antibody-MRD per 100 grams of total composition.
- An antibody-containing therapeutic composition typically contains about 10 micrograms (μg) per milliliter (ml) to about 100 milligrams (mg) per ml of antibody as active ingredient per volume of composition, and more preferably contains about 1 mg/ml to about 10 mg/ml (i.e., about 0.1 to 1 weight percent).
- A therapeutic composition In another embodiment contains a polypeptide of the present invention, typically in an amount of at least 0.1 weight percent of polypeptide per weight of total therapeutic composition. A weight percent is a ratio by weight of polypeptide total composition. Thus, for example, 0.1 weight percent is 0.1 grams of polypeptide per 100 grams of total composition.
- Preferably, a polypeptide-containing therapeutic composition typically contains about 10 micrograms (ug) per milliliter (ml) to about 100 milligrams (mg) per ml of polypeptide as active ingredient per volume of composition, and more preferably contains about 1 mg/ml to about 10 mg/ml (i.e., about 0.1 to 1 weight percent).
- In view of the benefit of using human, humanized or chimeric antibodies in vivo in human patients, the presently described antibody-MRD molecules are particularly well suited for in vivo use as a therapeutic reagent. The method comprises administering to the patient a therapeutically effective amount of a physiologically tolerable composition containing an antibody-MRD molecule of the invention.
- The dosage ranges for the administration of the antibody-MRD molecule of the invention are those large enough to produce the desired effect in which the disease symptoms mediated by the target molecule are ameliorated. The dosage should not be so large as to cause adverse side effects, such as hyperviscosity syndromes, pulmonary edema, congestive heart failure, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any complication.
- As shown in the examples herein, an antibody-MRD molecule can have a similar PK profile to the corresponding antibody. Thus, in some embodiments, an antibody-MRD is administered in a dosing concentration and regimen that is the same as the antibody component of the antibody-MRD molecule alone (e.g., a commercial antibody, biosimilar, or a biobetter thereof). In other embodiments, an antibody-MRD is administered in a dosing concentration and regimen that is similar, or substantially the same as the antibody component of the antibody-MRD molecule alone.
- A therapeutically effective amount of an antibody-MRD molecule of the invention is typically an amount of antibody such that when administered in a physiologically tolerable composition is sufficient to achieve a plasma concentration of from about 0.1 microgram (μg) per milliliter (ml) to about 100 μg/ml, preferably from about 1 μg/ml to about 5 μg/ml, and usually about 5 μg/ml. Stated differently, the dosage can vary from about 0.1 mg/kg to about 300 mg/kg, preferably from about 0.2 mg/kg to about 200 mg/kg, most preferably from about 0.5 mg/kg to about 20 mg/kg, in one or more dose administrations daily, for one or several days.
- In some embodiments, the antibody-MRD molecule is administered at about 1 mg/kg to about 50 mg/kg, about 1 mg/kg to about 25 mg/kg, about 1 mg/kg to about 20 mg/kg, about 1 mg/kg to about 15 mg/kg, about 1 mg/kg to about 10 mg/kg, or about 1 mg/kg to about 5 mg/kg.
- In some embodiments, the interval between doses is about twice a week, about every week, about every other week, or about every three weeks.
- In some embodiments, the antibody-MRD is administered first at a higher loading dose and subsequently at a lower maintenance dose.
- The antibody-MRD molecule of the invention can be administered parenterally by injection or by gradual infusion over time. Although the target molecule can typically be accessed in the body by systemic administration and therefore most often treated by intravenous administration of therapeutic compositions, other tissues and delivery means are contemplated where there is a likelihood that the tissue targeted contains the target molecule. Thus, antibody-MRD molecules of the invention can be administered intravenously, intraperitoneally, intramuscularly, subcutaneously, intracavity, transdermally, and can be delivered by peristaltic means. MRD-containing antibodies can also be delivered by aerosol to airways and lungs. In some embodiments, the antibody-MRD molecule is administered by intravenous infusion. In some embodiments, the antibody-MRD molecule is administered by subcutaneous injection.
- The therapeutic compositions containing an antibody-MRD molecule of this invention are conventionally administered intravenously, as by injection of a unit dose, for example. The term “unit dose” when used in reference to a therapeutic composition of the present invention refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle. In a specific embodiment, the therapeutic compositions containing a human monoclonal antibody or a polypeptide are administered subcutaneously.
- The compositions of the invention are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount. The quantity to be administered depends on the subject to be treated, capacity of the subject's system to utilize the active ingredient, and degree of therapeutic effect desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each individual. However, suitable dosage ranges for systemic application are disclosed herein and depend on the route of administration. Suitable regimes for administration are also variable, but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration. Alternatively, continuous intravenous infusion sufficient to maintain concentrations in the blood in the ranges specified for in vivo therapies are contemplated.
- In other embodiments, the invention provides a method for treating or preventing a disease, disorder, or injury comprising administering a therapeutically effective amount or prophylactically effective amount of antibody-MRD molecule to a subject in need thereof. In some embodiments, the disease, disorder or injury is cancer. In other embodiments, the disease, disorder or injury is a disease or disorder of the immune system, such as inflammation or an autoimmune disease.
- MRD-containing antibodies are expected to have at least the same therapeutic efficacy as the antibody contained in the MRD antibody containing antibody when administered alone. Accordingly, it is envisioned that the MRD-containing antibodies can be administered to treat or prevent a disease, disorder, or injury for which the antibody contained in the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, demonstrates a reasonably correlated beneficial activity in treating or preventing such disease, disorder or injury. This beneficial activity can be demonstrated in vitro, in an in vivo animal model, or in human clinical trials. In one embodiment, an MRD-containing antibody is administered to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, demonstrates therapeutic or prophylactic efficacy in vitro or in an animal model. In another embodiment, an MRD-containing antibody is administered to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, demonstrates therapeutic or prophylactic efficacy in humans. In another embodiment, an MRD-containing antibody is administered to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD-containing antibody, has been approved by a regulatory authority for use in such treatment or prevention.
- In another embodiment, an MRD-containing antibody is administered in combination with another therapeutic to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD antibody, in combination with the therapeutic, or a different therapeutic that functions in the same way as the therapeutic in the combination, demonstrates therapeutic or prophylactic efficacy in vitro or in an animal model. In another embodiment, an MRD-containing antibody is administered in combination with another therapeutic to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD antibody, in combination with the therapeutic, or a different therapeutic that functions in the same way as the therapeutic in the combination, demonstrates therapeutic or prophylactic efficacy in humans. In another embodiment, an MRD-containing antibody, is administered in combination with another therapeutic to treat or prevent a disease, disorder or injury for which the antibody component of the MRD-containing antibody, or an antibody that functions in the same way as the antibody contained in the MRD antibody, in combination with the therapeutic, or a different therapeutic that functions in the same way as the therapeutic in the combination, has been approved by a regulatory authority for use in such treatment or prevention.
- In one embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating colorectal cancer by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having colorectal cancer. In another embodiment, the invention provides a method of treating breast cancer by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having breast cancer. In another embodiment, the invention provides a method of treating non-small cell lung carcinoma by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having non-small cell lung carcinoma. In other embodiments, therapeutic effective amounts of bevacizumab comprising at least one MRD are administered to treat a patient having metastatic colorectal cancer, metastatic breast cancer, metastatic pancreatic cancer, or metastatic non-small cell lung carcinoma. In another embodiment, the invention provides a method of treating cancer by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having renal cell carcinoma, glioblastoma muliforme, ovarian cancer, prostate cancer, liver cancer or pancreatic cancer.
- Combination therapy and compositions including MRD-containing antibodies of the invention and another therapeutic are also encompassed by the invention, as are methods of treatment using these compositions. In other embodiments, compositions of the invention are administered alone or in combination with one or more additional therapeutic agents. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration “in combination” further includes the separate administration of one of the therapeutic compounds or agents given first, followed by the second. Accordingly, in one embodiment, a VEGFA or VEGFR binding MRD-containing antibody is administered in combination with 5-fluorouracil, carboplatin, paclitaxel, or interferon alpha. In another embodiment, bevacizumab comprising at least one MRD is administered in combination with 5-fluorouracil, carboplatin, paclitaxel, or interferon alpha.
- In another embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient in need thereof. In a specific embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of ranibizumab comprising at least one MRD to a patient in need thereof.
- In some embodiments, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a ErbB2 (HER2) binding MRD-containing antibody to a patient in need thereof. In various embodiments, the ErbB2-binding MRD-containing antibodies are administered to patients who have been previously shown to respond to another ErbB2-based therapy (e.g., HERCEPTIN, chemotherapy and/or radiation) or are predicted to respond to another ErbB2-based therapy. In other embodiments, the ErbB2-binding MRD-containing antibodies are administered to patients who have previously failed to respond to another ErbB2-based therapy or are predicted to fail to respond to another ErbB2-based therapy.
- In a specific embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of trastuzumab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating breast cancer by administering a therapeutically effective amount of trastuzumab comprising at least one MRD to a patient having breast cancer. In other embodiments, therapeutic effective amounts of trastuzumab comprising at least one MRD are administered to treat a patient having metastatic breast cancer.
- In another embodiment, an ErbB2 (HER2) binding MRD-containing antibody is administered in combination with cyclophosphamide, paclitaxel, docetaxel, carboplatin, anthracycline, or a maytansinoid. In a specific embodiment, trastuzumab comprising at least one MRD is administered in combination with cyclophosphamide, paclitaxel, docetaxel, carboplatin, anthracycline, or a maytansinoid.
- In another embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a CD20-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating a hematologic cancer comprising administering a therapeutically effective amount of rituximab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating CD20 positive NHL by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having CD20 positive NHL. In one embodiment, the invention provides a method of treating CD20 positive CLL by administering a therapeutically effective amount of bevacizumab comprising at least one MRD to a patient having CD20 positive CLL.
- In another embodiments, a therapeutically effective amount of a CD20-binding MRD-containing antibody is administered in combination with: ludarabine, cyclophosphamide, FC (fludarabine and cyclophosphamide), anthracycline based chemotherapy regimen (e.g., CHOP (cyclophosphamide, adriamycin, vincristine and prednisone)), or CVP (cyclophosphamide, prednisone, and vincristine) chemotherapy. In a specific embodiment, a therapeutically effective amount of bevacizumab comprising at least one MRD is administered in combination with: ludarabine, cyclophosphamide, FC (fludarabine and cyclophosphamide), anthracycline based chemotherapy regimen (e.g., CHOP (cyclophosphamide, adriamycin, vincristine and prednisone)), or CVP (cyclophosphamide, prednisone, and vincristine) chemotherapy.
- Any of the antibody-MRD fusions containing antibodies and/or MRDs that bind CD20 can be used according to the methods of treating a disorder associated with CD20, or that can be treated by targeting cells that express CD20 (e.g., hematological cancers and autoimmune disease). In some embodiments, the antibody component of the antibody-MRD-fusion is a member selected from rituximab, ocrelizumab, GA101, and PF-5,230,895.
- In another embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a CD20-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a CD20-binding MRD-containing antibody to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a rituximab-MRD-containing antibody to a patient in need thereof.
- In an additional embodiment, the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof. In a further embodiment, the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a ocrelizumab-MRD-containing antibody to a patient in need thereof.
- In an additional embodiment, the invention provides a method of treating an autoimmune disease comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof. In a further embodiment, the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a PF5,230,895-MRD-containing antibody to a patient in need thereof.
- In some embodiments, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a TNF-binding MRD-containing antibody to a patient in need thereof. In various embodiments, the TNF-binding MRD-containing antibodies are administered to patients who have been previously shown to respond to another TNF-based therapy or are predicted to respond to another TNF-based therapy (e.g, TNF antagonists such as Anti-TNFs (e.g., HUMIRA), EMBREL, CD28 antagonists, CD-20 antagonists, and IL6/IL6R antagonists). In other embodiments, the TNF-binding MRD-containing antibodies are administered to patients who have previously failed to respond to another TNF-based therapy or are predicted to fail to respond to another TNF-based therapy.
- In other embodiments, the TNF-binding MRD-containing antibodies are administered to patients who have been previously shown to respond to an autoimmune disease based therapy or are predicted to respond to other autoimmune disease based therapies (e.g, TNF antagonists such as anti-TNFs (e.g., HUMIRA), EMBREL, CD28 antagonists, CD-20 antagonists, BLyS antagonists, and IL6/IL6R antagonists). In other embodiments, the TNF-binding MRD-containing antibodies are administered to patients who have previously failed to respond to another autoimmune disease based therapy or are predicted to fail to respond to another autoimmune disease based therapy.
- In a specific embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of adalimumab comprising at least one MRD to a patient in need thereof.
- In an additional embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating an autoimmune disease, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof. In an additional embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of ATN-103 comprising at least one MRD to a patient in need thereof.
- In a specific embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of infliximab comprising at least one MRD to a patient in need thereof.
- In an additional embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a IL22-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of PF5,212,367 (ILV-094) comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of PF5,212,367 comprising at least one MRD to a patient in need thereof.
- In an additional embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a alpha4 integrin-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a natalizumab-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a natalizumab-MRD-containing antibody to a patient in need thereof. In a further embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof. In an additional embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis, by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof. In an additional embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of natalizumab comprising at least one MRD to a patient in need thereof.
- In an additional embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a CD40L-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a CDP7657-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a CDP7657-MRD-containing antibody to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof. In an additional embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of CDP7657 comprising at least one MRD to a patient in need thereof.
- In another embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a TWEAK-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of the Biogen TWEAK antibody (that has entered
phase 1 clinical trials) comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. In an additional embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of the Biogen TWEAK antibody comprising at least one MRD to a patient in need thereof. - In an additional embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of a CD25-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating a disorder of the immune system comprising administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating systemic lupus erythematosus comprising administering a therapeutically effective amount of a daclizumab-MRD-containing antibody to a patient in need thereof. In another embodiment, the invention provides a method of treating multiple sclerosis comprising administering a therapeutically effective amount of a daclizumab-MRD-containing antibody to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof. In a further embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof. In an additional embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of daclizumab comprising at least one MRD to a patient in need thereof.
- Antibody-MRD fusion proteins having antibodies and/or MRDs that bind cancer antigens or other targets associated with cancer establishment, progression, and/or metastasis are described herein or otherwise known in the art and may be used according to the methods of the invention to treat cancer. In specific embodiments the antibody-MRD fusion proteins comprise an antibody and/or MRD that bind to a target identified in paragraphs [227]-[286] herein.
- In another embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of a EGFR-binding MRD-containing antibody to a patient in need thereof. In a specific embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of cetuximab comprising at least one MRD to a patient in need thereof. In one embodiment, the invention provides a method of treating cancer by administering a therapeutically effective amount of cetuximab comprising at least one MRD to a patient having colorectal cancer. In another embodiment, therapeutic effective amounts of cetuximab comprising at least one MRD are administered to treat a patient having metastatic colorectal cancer, metastatic breast cancer, metastatic pancreatic cancer, or metastatic non-small cell lung carcinoma. In one embodiment, the invention provides a method of treating cancer by administering a therapeutically effective amount of cetuximab comprising at least one MRD to a patient having squamous cell carcinoma of the head and neck.
- In another embodiment, a therapeutically effective amount of an EGFR-binding MRD-containing antibody is administered in combination with irinotecan, FOLFIRI, platinum-based chemotherapy, or radiation therapy. In a specific embodiment, a therapeutically effective amount of cetuximab comprising at least one MRD is administered in combination with irinotecan, FOLFIRI, platinum-based chemotherapy, or radiation therapy
- In certain embodiments, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of an MRD-antibody described herein (e.g., at paragraphs [227]-[286]) to a patient in need thereof.
- In one embodiment, the invention provides a method of treating a solid cancer by administering a therapeutically effective amount of a solid cancer binding MRD-antibody described herein (e.g., an MRD-antibody that binds a validated solid tumor associated target as described in paragraphs [227]-[286] herein), to a patient in need thereof.
- In some embodiments, the invention provides a method of treating a solid cancer by administering a therapeutically effective amount of an MRD-antibody that binds to a member selected from the group consisting of IGFR1, ALK1, p-cadherin, CRYPTO, and alpha5 b1 integrin, In other embodiments, the antibody component of the administered MRD-antibody is a member selected from the group: figitumumab, CP-870893, PF-3,732,010, PF-3,446,962, volociximab, BIIB022, and the Biogen CRYPTO antibody.
- In some embodiments, the MRD-containing antibodies described herein are useful for treating cancer. Thus, in some embodiments, the invention provides methods of treating cancer comprise administering a therapeutically effective amount of a MRD-containing antibody to a subject (e.g., a subject in need of treatment). In certain embodiments, the cancer is a cancer selected from the group consisting of colorectal cancer, pancreatic cancer, lung cancer, ovarian cancer, liver cancer, breast cancer, brain cancer, kidney cancer, prostate cancer, gastrointestinal cancer, melanoma, cervical cancer, bladder cancer, glioblastoma, and head and neck cancer. In certain embodiments, the cancer is breast cancer. In certain embodiments, the subject is a human.
- Other examples of cancers or malignancies that may be treated with MRD containing antibodies and MRDs include, but are not limited to: Acute Childhood Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphocytic Leukemia, Acute Myeloid Leukemia, Adrenocortical Carcinoma, Adult (Primary) Hepatocellular Cancer, Adult (Primary) Liver Cancer, Adult Acute Lymphocytic Leukemia, Adult Acute Myeloid Leukemia, Adult Hodgkin's Disease, Adult Hodgkin's Lymphoma, Adult Lymphocytic Leukemia, Adult Non-Hodgkin's Lymphoma, Adult Primary Liver Cancer, Adult Soft Tissue Sarcoma, AIDS-Related Lymphoma, AIDS-Related Malignancies, Anal Cancer, Astrocytoma, Bile Duct Cancer, Bladder Cancer, Bone Cancer, Brain Stem Glioma, Brain Tumors, Breast Cancer, Cancer of the Renal Pelvis and Ureter, Central Nervous System (Primary) Lymphoma, Central Nervous System Lymphoma, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Childhood (Primary) Hepatocellular Cancer, Childhood (Primary) Liver Cancer, Childhood Acute Lymphoblastic Leukemia, Childhood Acute Myeloid Leukemia, Childhood Brain Stem Glioma, Childhood Cerebellar Astrocytoma, Childhood Cerebral Astrocytoma, Childhood Extracranial Germ Cell Tumors, Childhood Hodgkin's Disease, Childhood Hodgkin's Lymphoma, Childhood Hypothalamic and Visual Pathway Glioma, Childhood Lymphoblastic Leukemia, Childhood Medulloblastoma, Childhood Non-Hodgkin's Lymphoma, Childhood Pineal and Supratentorial Primitive Neuroectodermal Tumors, Childhood Primary Liver Cancer, Childhood Rhabdomyosarcoma, Childhood Soft Tissue Sarcoma, Childhood Visual Pathway and Hypothalamic Glioma, Chronic Lymphocytic Leukemia, Chronic Myelogenous Leukemia, Colon Cancer, Cutaneous T-Cell Lymphoma, Endocrine Pancreas Islet Cell Carcinoma, Endometrial Cancer, Ependymoma, Epithelial Cancer, Esophageal Cancer, Ewing's Sarcoma and Related Tumors, Exocrine Pancreatic Cancer, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Eye Cancer, Female Breast Cancer, Gaucher's Disease, Gallbladder Cancer, Gastric Cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Tumors, Germ Cell Tumors, Gestational Trophoblastic Tumor, Hairy Cell Leukemia, Head and Neck Cancer, Hepatocellular Cancer, Hodgkin's Disease, Hodgkin's Lymphoma, Hypergammaglobulinemia, Hypopharyngeal Cancer, Intestinal Cancers, Intraocular Melanoma, Islet Cell Carcinoma, Islet Cell Pancreatic Cancer, Kaposi's Sarcoma, Kidney Cancer, Laryngeal Cancer, Lip and Oral Cavity Cancer, Liver Cancer, Lung Cancer, Lymphoproliferative Disorders, Macroglobulinemia, Male Breast Cancer, Malignant Mesothelioma, Malignant Thymoma, Medulloblastoma, Melanoma, Mesothelioma, Metastatic Occult Primary Squamous Neck Cancer, Metastatic Primary Squamous Neck Cancer, Metastatic Squamous Neck Cancer, Multiple Myeloma, Multiple Myeloma/Plasma Cell Neoplasm, Myelodysplastic Syndrome, Myelogenous Leukemia, Myeloid Leukemia, Myeloproliferative Disorders, Nasal Cavity and Paranasal Sinus Cancer, Nasopharyngeal Cancer, Neuroblastoma, Non-Hodgkin's Lymphoma During Pregnancy, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Occult Primary Metastatic Squamous Neck Cancer, Oropharyngeal Cancer, Osteo-/Malignant Fibrous Sarcoma, Osteosarcoma/Malignant Fibrous Histiocytoma, Osteosarcoma/Malignant Fibrous Histiocytoma of Bone, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Pancreatic Cancer, Paraproteinemias, Purpura, Parathyroid Cancer, Penile Cancer, Pheochromocytoma, Pituitary Tumor, Plasma Cell Neoplasm/Multiple Myeloma, Primary Central Nervous System Lymphoma, Primary Liver Cancer, Prostate Cancer, Rectal Cancer, Renal Cell Cancer, Renal Pelvis and Ureter Cancer, Retinoblastoma, Rhabdomyosarcoma, Salivary Gland Cancer, Sarcoidosis Sarcomas, Sezary Syndrome, Skin Cancer, Small Cell Lung Cancer, Small Intestine Cancer, Soft Tissue Sarcoma, Squamous Neck Cancer, Stomach Cancer, Supratentorial Primitive Neuroectodermal and Pineal Tumors, T-Cell Lymphoma, Testicular Cancer, Thymoma, Thyroid Cancer, Transitional Cell Cancer of the Renal Pelvis and Ureter, Transitional Renal Pelvis and Ureter Cancer, Trophoblastic Tumors, Ureter and Renal Pelvis Cell Cancer, Urethral Cancer, Uterine Cancer, Uterine Sarcoma, Vaginal Cancer, Visual Pathway and Hypothalamic Glioma, Vulvar Cancer, Waldenstrom's Macroglobulinemia, and Wilms' Tumor.
- In some embodiments, MRD-containing antibodies are useful for inhibiting tumor growth. In certain embodiments, the method of inhibiting the tumor growth comprises contacting the cell with a MRD-containing antibody in vitro. For example, an immortalized cell line or a cancer cell line that expresses an MRD target and/or an antibody target is cultured in medium to which is added the MRD-containing antibody to inhibit tumor growth. In some embodiments, tumor cells are isolated from a patient sample such as, for example, a tissue biopsy, pleural effusion, or blood sample and cultured in medium to which is added a MRD-containing antibody to inhibit tumor growth.
- In some embodiments, the method of inhibiting tumor growth comprises contacting the tumor or tumor cells with a therapeutically effective amount of the MRD-containing antibody in vivo. In certain embodiments, contacting a tumor or tumor cell is undertaken in an animal model. For example, MRD-containing antibodies can be administered to xenografts in immunocompromised mice (e.g., NOD/SCID mice) to inhibit tumor growth. In some embodiments, cancer stem cells are isolated from a patient sample such as, for example, a tissue biopsy, pleural effusion, or blood sample and injected into immunocompromised mice that are then administered a MRD-containing antibody to inhibit tumor cell growth. In some embodiments, the MRD-containing antibody is administered at the same time or shortly after introduction of tumorigenic cells into the animal to prevent tumor growth. In some embodiments, the MRD-containing antibody is administered as a therapeutic after the tumorigenic cells have grown to a specified size.
- In certain embodiments, the method of inhibiting tumor growth comprises administering to a subject a therapeutically effective amount of a MRD-containing antibody. In certain embodiments, the subject is a human. In certain embodiments, the subject has a tumor or has had a tumor removed. In certain embodiments, the tumor expresses an antibody target. In certain embodiments, the tumor overexpresses the MRD target and/or the antibody target.
- In certain embodiments, the inhibited tumor growth is selected from the group consisting of brain tumor, colorectal tumor, pancreatic tumor, lung tumor, ovarian tumor, liver tumor, breast tumor, kidney tumor, prostate tumor, gastrointestinal tumor, melanoma, cervical tumor, bladder tumor, glioblastoma, and head and neck tumor. In certain embodiments, the tumor is a breast tumor.
- In additional embodiments, MRD-containing antibodies are useful for reducing tumorigenicity. Thus, in some embodiments, the method of reducing the tumorigenicity of a tumor in a subject, comprises administering a therapeutically effective amount of a MRD-containing antibody to the subject. In certain embodiments, the tumor comprises cancer stem cells. In certain embodiments, the frequency of cancer stem cells in the tumor is reduced by administration of the agent.
- In other embodiments, MRD-containing antibodies are useful for diagnosing, treating or preventing a disorder of the immune system. In one embodiment, the disorder of the immune system is inflammation or an inflammatory disorder. In a more specific embodiment, the inflammatory disorder is selected from the group consisting of asthma, allergic disorders, and rheumatoid arthritis.
- In another embodiment, the disorder of the immune system is an autoimmune disease. Autoimmune disorders, diseases, or conditions that may be diagnosed, treated or prevented using MRD-containing antibodies include, but are not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmune neutiopenia, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, gluten-sensitive enteropathy, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g., IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polyendocrinopathies, Purpura (e.g., Henloch-Scoenlein purpura), Reiter's Disease, Stiff-Man Syndrome, Autoimmune Pulmonary Inflammation, myocarditis, IgA glomerulonephritis, dense deposit disease, rheumatic heart disease, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye, autoimmune thyroiditis, hypothyroidism (i.e., Hashimoto's thyroiditis, systemic lupus erhythematosus, discoid lupus, Goodpasture's syndrome, Pemphigus, Receptor autoimmunities such as, for example, (a) Graves' Disease, (b) Myasthenia Gravis, and (c) insulin resistance, autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura, rheumatoid arthritis, schleroderma with anti-collagen antibodies, mixed connective tissue disease, polymyositis/dermatomyositis, pernicious anemia, idiopathic Addison's disease, infertility, glomerulonephriis such as primary glomerulonephriis and IgA nephropathy, bullous pemphigoid, Sjogren's syndrome, diabetes mellitus, and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis), chronic active hepatitis, primary biliary cirrhosis, other endocrine gland failure, vitiligo, vasculitis, post-MI, cardiotomy syndrome, urticaria, atopic dermatitis, asthma, inflammatory myopathies, and other inflammatory, granulomatous, degenerative, and atrophic disorders.
- In another embodiment the disorder of the immune system diagnosed, treated or prevented using MRD-containing antibodies is selected from the group consisting of: Crohn's disease, Systemic lupus erythematosus (SLE), inflammatory bowel disease, psoriasis, diabetes, ulcerative colitis, multiple sclerosis, and rheumatoid arthritis. In a preferred embodiment, the autoimmune disease is rheumatoid arthritis.
- In other embodiments, MRD-containing antibodies are useful for treating or preventing a metabolic disease or disorder.
- In other embodiments, the MRD-containing antibodies are useful for treating or preventing a cardiovascular disease or disorder. In one embodiment, the MRD-containing antibodies are useful for treating or preventing thrombosis, atherosclerosis, heart attack, or stroke.
- In other embodiments, the MRD-containing antibodies are useful for treating or preventing a musculoskeletal disease or disorder.
- In other embodiments, the MRD-containing antibodies are useful for treating or preventing a skeletal disease or disorder. In one embodiment, the MRD-containing antibodies are useful for treating or preventing osteoporosis.
- In other embodiments, the disease, disorder, or injury treated or prevented with an MRD-containing antibody or MRD of the invention is neurological. In one embodiment, the neurological disease, disorder or injury in pain such as, acute pain or chronic pain.
- In some embodiments, the invention provides a method of treating or ameliorating pain by administering a therapeutically effective amount of a pain target binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating pain by administering a therapeutically effective amount of an NGF binding MRD-antibody, to a patient in need thereof. In further embodiments, the invention provides a method of treating or ameliorating pain by administering a therapeutically effective amount of tanezumumab (e.g., Pfizer) comprising an MRD, to a patient in need thereof.
- In additional embodiments, an MRD-containing antibody binds to 2, 3, 4, or 5 targets selected from NGF, IL6R, IL6, CB2, SCN9A (Nav1.7). These MRD-containing antibodies have applications in treating an ameliorating pain.
- In additional embodiments, the invention provides a method of treating or ameliorating Alzheimer's by administering a therapeutically effective amount of an Alzheimer's target binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating Alzheimer's by administering a therapeutically effective amount of a beta amyloid binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating Alzheimer's by administering a therapeutically effective amount of RN1219 (PF-4,360,365; Pfizer) comprising an MRD, to a patient in need thereof.
- In additional embodiments, an MRD-containing antibody binds to 1, 2, or 3 targets selected from NGF, beta amyloid and IGF1R. These MRD-containing antibodies have applications in treating, ameliorating and delaying the onset of pre-dementia and dementia, including Alzheimer's.
- In additional embodiments, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of an multiple sclerosis target binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of a LINGO binding MRD-antibody, to a patient in need thereof. In additional embodiments, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of the Biogen LINGO antibody comprising an MRD, to a patient in need thereof. In further embodiments, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of the natalizumab (e.g., TYSABRI®; Biogen) comprising an MRD, to a patient in need thereof. In an additional embodiment, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of the Biogen LINGO antibody comprising an MRD, to a patient in need thereof.
- In an additional embodiment, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of a CD20 binding MRD-antibody, to a patient in need thereof. In one embodiment, the invention provides a method of treating or ameliorating multiple sclerosis by administering a therapeutically effective amount of the ocrelizumab (Biogen Idec) comprising an MRD, to a patient in need thereof.
- In other embodiments, MRD-containing antibodies are useful for treating or preventing an infectious disease. Infectious diseases that may be treated or prevented with MRD-containing antibodies include diseases associated with yeast, fungal, viral and bacterial infections. Viruses causing viral infections which can be treated or prevented with MRD-containing antibodies include, but are not limited to, retroviruses (e.g., human T-cell lymphotrophic virus (HTLV) types I and II and human immunodeficiency virus (HIV)), herpes viruses (e.g., herpes simplex virus (HSV) types I and II, Epstein-Barr virus, HHV6-HHV8, and cytomegalovirus), adrenoviruses (e.g., lassa fever virus), paramyxoviruses (e.g., morbilbivirus virus, human respiratory syncytial virus, mumps, and pneumovirus), adrenoviruses, bunyaviruses (e.g., hantavirus), cornaviruses, filoviruses (e.g., Ebola virus), flaviviruses (e.g., hepatitis C virus (HCV), yellow fever virus, and Japanese encephalitis virus), hepadnaviruses (e.g., hepatitis B viruses (HBV)), orthomyoviruses (e.g., influenza viruses A, B and C (including avian influenza, e.g., H5N1 subtype)), papovaviruses (e.g., papillomaviruses), picornaviruses (e.g., rhinoviruses, enteroviruses and hepatitis A viruses), poxviruses, reoviruses (e.g., rotaviruses), togaviruses (e.g., rubella virus), rhabdoviruses (e.g., rabies virus). Microbial pathogens causing bacterial infections include, but are not limited to, Streptococcus pyogenes, Streptococcus pneumoniae, Neisseria gonorrhoea, Neissetia meningitidis, Corynebacterium diphtheriae, Clostridium botulinum, Clostridium pefringens, Clostridium tetani, Haemophilus influenzae, Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromotis, Staphylococcus aureus, Vibrio cholerae, Escherichia coli, Pseudomonas aeruginosa, Campylobacter (Vibrio) fetus, Campylobacter jejuni, Aeromonas hydrophila, Bacillus cereus, Edwardsiella tarda, Yersinia enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Salmonella typhimurium, Treponema pallidum, Treponema pertenue, Treponema carateneum, Borrelia vincentii, Borrelia burgdorferi, Leptospira icterohemorrhagiae, Mycobacterium tuberculosis, Toxoplasma gondii, Pneumocystis carinii, Francisella tularensis, Brucella abortus, Brucella suis, Brucella melitensis, Mycoplasma spp., Rickettsia prowazeki, Rickettsia Lsutsugumushi, Chlamydia spp., and Helicobacter pylori.
- In a preferred embodiment, the he MRD-containing antibodies are administered to treat or prevent human immunodeficiency virus (HIV) infection or AIDS, botulism, anthrax, or clostridium difficile.
- In a distinct group of embodiments, one or more MRDs of the invention are operably linked to the amino and/or carboxyl terminus of an immunoglobulin fragment, such as Fab, Fab′, F(ab′)2, pFc′, or Fc. In some embodiments, MRDs are operably linked to a Fab or Fc polypeptide containing an additional Ig domain. In some embodiments, MRDs are operably linked to the amino and/or carboxyl terminus of an immunoglobulin fragment that is also operably linked to an scFv. In other embodiments, the MRDs of the invention are operably linked to an Fc-fusion protein.
- According to this group of embodiments, one two, three, four, five, six, seven to ten, or more than ten MRDs are operably linked to the amino terminus and/or carboxyl terminus of the immunoglobulin fragment. These MRDs are optionally linked to one another or to the immunoglobulin fragment via a linker. In one embodiment, one, two, three, four, five, six, seven to ten, or more than ten, of the MRDs operably linked to the amino terminus and/or carboxyl terminus of the immunoglobulin fragment are the same. In another embodiment, one, two, three, four, five, six, seven to ten, or more than ten, of the MRDs operably linked to the amino terminus and/or carboxyl terminus of the immunoglobulin fragment are different.
- The MRDs operably linked to the immunoglobulin fragment can be monomeric (i.e., containing one MRD at the terminus of a peptide chain optionally connected by a linker) or multimeric (i.e., containing more than one MRD in tandem optionally connected by a linker). The MRDs can be homo-multimeric (i.e., containing more than one of the same MRD in tandem optionally connected by linker(s) (e.g., homodimers, homotrimers, homotetramers etc.)) or hetero-multimeric (i.e., containing two or more MRDs in which there are at least two different MRDs optionally connected by linker(s) where all or some of the MRDs linked to a particular terminus are different (e.g., heterodimer)). In one embodiment, two different monomeric MRDs are located at different termini of the immunoglobulin fragment. In another embodiment, three, four, five, six, or more different monomeric MRDs are located at different termini of the immunoglobulin fragment.
- In an alternative embodiment, the MRD-containing antibody contains at least one dimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homodimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heterodimeric and one monomeric MRD located at different immunoglobulin termini.
- In an alternative embodiment, the MRD-containing antibody contains at least one multimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one homomultimeric and one monomeric MRD located at different immunoglobulin termini. In another alternative embodiment, the MRD-containing antibody contains at least one heteromultimeric and one monomeric MRD located at different immunoglobulin termini.
- Multiple MRDs that are operably linked to the immunoglobulin fragment can target the same target binding site, or two or more different target binding sites. Where the MRDs bind to different target binding sites, the binding sites may be on the same or different target molecules. Similarly, one or more of the MRDs may bind to the same target molecule as the immunoglobulin fragment.
- In some embodiments, at least one of the MRDs and if applicable, the immunoglobulin fragment (e.g., where the immunoglobulin fragment is an Fab), bind to their targets simultaneously. In additional embodiments, two, three, four, five, six, seven, eight, nine, ten, or more than ten MRDs, and if applicable the immunoglobulin fragment, bind to their target molecules simultaneously.
- The synthesis of MRDs operably linked to an immunoglobulin fragment and the assay of these MRDs and immunoglobulin fragment for their ability to bind, or compete for binding, with one or more targets simultaneously can be routinely accomplished using methods disclosed herein or otherwise known in the art.
- In a specific embodiment, one or more of the operably linked MRDs or the immunoglobulin fragment, binds to VEGF. In another specific embodiment, one or more of the operably linked MRDs or the immunoglobulin fragment, binds to the same epitope as ranibizumab (LUCENTIS®). In another specific embodiment, one or more of the operably linked MRDs or the immunoglobulin fragment, competitively inhibits ranibizumab binding to VEGF. In an additional embodiment, the immunoglobulin fragment is an Fab. In a further specific embodiment, the immunoglobulin fragment is ranibizumab.
- In another embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-immunoglobulin fragment fusion to a patient in need thereof. In a specific embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or VEGFR binding MRD-Fab fusion to a patient in need thereof. In a specific embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of MRD-ranibizumab to a patient in need thereof.
- In other embodiments the one or more MRDs of the invention are operably linked to the amino and/or carboxyl terminus of an Fc fusion protein. The Fc fusion protein can contain fusions to any protein or polypeptide sequence of therapeutic value, for example, any of the targets or receptors of the targets described herein. For example, the fusions can contain the extracellular domain of receptors or ligands that typically function or display improved cognate-partner binding in multimeric form, including for example, receptors corresponding to the TNF-R superfamily (e.g, TNFR2, TACI, BCMA, HVEM, etc.), IL receptor superfamily (e.g., IL1-R-IL-6R), VEGFR superfamily (e.g., VEGFR1-VEGR3), FGRFR superfamily (e.g., FGFR1-FGFR4), and B7 superfamily (e.g., CTLA)).
- In a specific embodiment, one, two, three, four, five, six, or more MRDs are operably linked to a VEGR1/VEGFR2-Fc fusion protein. In another specific embodiment, one or more of the operably linked MRDs bind to the same epitope as aflibercept (Regeneron). In another specific embodiment, one or more of the operably linked MRDs competitively inhibit aflibercept binding to VEGFA or PLGF. In a further specific embodiment, the MRDs are operably linked to aflibercept.
- In another embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of an MRD-VEGFR1/VEGFR2-Fc fusion protein to a patient in need thereof. In a specific embodiment, the invention provides a method of treating colorectal cancer, prostate cancer, or non-small cell lung cancer comprising administering a therapeutically effective amount of a VEGFA or PLGF binding MRD-Fc fusion protein to a patient in need thereof. In a specific embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of a VEGFA or PLGF binding MRD-Fc fusion protein and irinotecan, 5FU, oxaliplatin, doxetaxel, or FOLFOX6, to a patient in need thereof.
- In another embodiment, the invention provides a method of treating cancer comprising administering a therapeutically effective amount of MRD-aflibercept to a patient in need thereof. In a specific embodiment, the invention provides a method of treating colorectal cancer, prostate cancer, or non-small cell lung cancer comprising administering a therapeutically effective amount of MRD-aflibercept to a patient in need thereof. In a specific embodiment, the invention provides a method of treating macular degeneration comprising administering a therapeutically effective amount of MRD-aflibercept and irinotecan, 5FU, oxaliplatin, doxetaxel, or FOLFOX6, to a patient in need thereof.
- In a specific embodiment, one, two, three, four, five, six, or more MRDs are operably linked to a CTLA4-Fc fusion protein. In another specific embodiment, one or more of the operably linked MRDs bind to the same epitope as abatacept (ORENCIA®). In another specific embodiment, one or more of the operably linked MRDs competitively inhibits abatacept binding to B7-1 (CD80) or B7-2 (CD86). In a further specific embodiment, the MRDs are operably linked to abatacept. In another specific embodiment, one or more of the operably linked MRDs bind to the same epitope as belatacept (Bristol Myers Squibb). In another specific embodiment, one or more of the operably linked MRDs competitively inhibits belatacept binding to B7-1 (CD80) or B7-2 (CD86). In an additional embodiment, the immunoglobulin fragment is an Fab. In a further specific embodiment, the MRDs are operably linked to belatacept.
- In another embodiment, the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-CTLA4-Fc fusion protein to a patient in need thereof. In a specific embodiment, the invention provides a method suppressing an immune response comprising administering a therapeutically effective amount of MRD-abatacept to a patient in need thereof. In another specific embodiment, the invention provides a method of treating rheumatoid arthritis comprising administering a therapeutically effective amount of MRD-abatacept to a patient in need thereof. In another specific embodiment, the invention provides a method of suppressing an immune response to a graft rejection comprising administering a therapeutically effective amount of MRD-abatacept to a patient in need thereof.
- In a specific embodiment, the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of MRD-belatacept to a patient in need thereof. In another specific embodiment, the invention provides a method of suppressing an immune response to a graft rejection comprising administering a therapeutically effective amount of MRD-belatacept to a patient in need thereof.
- In another specific embodiment, one, two, three, four, five, six, or more MRDs are operably linked to a TNFR2-Fc fusion protein. In another specific embodiment, one or more of the operably linked MRDs bind to the same epitope as etanercept (ENBREL®). In another specific embodiment, one or more of the operably linked MRDs competitively inhibits etanercept binding to TNF alpha. In another embodiment, one or more of the operably linked MRDs binds ANG2. In a further specific embodiment, the MRDs are operably linked to etanercept.
- In another embodiment, the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-TNFR2-Fc fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of a MRD-TNFR2-Fc fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof. In another embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof. In another embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of an MRD-TNFR2-Fc fusion protein to a patient in need thereof.
- In another embodiment, the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-etanercept-Fc fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof. In one embodiment, the invention provides a method of treating an inflammatory disorder, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof. In another embodiment, the invention provides a method of treating Crohn's disease, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof. In another embodiment, the invention provides a method of treating ulcerative colitis, by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof. In another embodiment, the invention provides a method of treating psoriatic arthritis, ankylosing spondylitis, psoriasis, or juvenile idiopathic arthritis by administering a therapeutically effective amount of MRD-etanercept to a patient in need thereof.
- In another specific embodiment, one, two, three, four, five, six, or more MRDs are operably linked to a TACI-Fc fusion protein. In another specific embodiment, one or more of the operably linked MRDs bind to the same epitope as atacicept (Merck/Serono). In another specific embodiment, one or more of the operably linked MRDs competitively inhibits atacicept binding to BLyS or APRIL. In a further specific embodiment, the MRDs are operably linked to atacicept.
- In another embodiment, the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating systemic lupus erythematosus by administering a therapeutically effective amount of a MRD-TACI-Fc fusion protein to a patient in need thereof. In another embodiment, the invention provides a method of suppressing an immune response comprising administering a therapeutically effective amount of a MRD-atacicept fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating an autoimmune disease by administering a therapeutically effective amount of a MRD-atacicept fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating rheumatoid arthritis, by administering a therapeutically effective amount of a MRD-atacicept protein fusion protein to a patient in need thereof. In one embodiment, the invention provides a method of treating systemic lupus erythematosus, by administering a therapeutically effective amount of a MRD-atacicept fusion protein to a patient in need thereof.
- In another specific embodiment, one, two, three, four, five, six, or more MRDs are operably linked to an IL-1R-Fc fusion protein. In another specific embodiment, one or more of the operably linked MRDs bind to the same epitope as rilonacept (Regeneron). In another specific embodiment, one or more of the operably linked MRDs competitively inhibits rilonacept binding to IL-1R. In a further specific embodiment, the MRDs are operably linked to rilonacept.
- In another embodiment, the invention provides a method of preventing gout comprising administering a therapeutically effective amount of a MRD-IL-1R-Fc fusion protein to a patient in need thereof. In a specific embodiment, the invention provides a method of preventing gout comprising administering a therapeutically effective amount of a MRD-rilonacept-Fc fusion protein to a patient in need thereof.
- The following examples are intended to illustrate but not limit the invention.
- Novel antibody-MRD fusion molecules were prepared by fusion of an integrin αvβ3-targeting peptides to catalytic antibody 38C2. Fusions at the N-termini and C-termini of the light chain and the C-termini of the heavy chain were most effective. Using flow cytometry, the antibody conjugates were shown to bind efficiently to integrin αvβ3-expressing human breast cancer cells. The antibody conjugates also retained the retro-aldol activity of their parental catalytic antibody 38C2, as measured by methodol and doxorubicin prodrug activation. This demonstrates that cell targeting and catalytic antibody capability can be efficiently combined for selective chemotherapy.
- Angiogenic cytokine targeting antibody-MRD fusion molecules were constructed. The antibody used was 38C2, which was fused with a MRD containing the 2×Con4 peptide (AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10)). The MRD-containing peptide was fused to either the N- or C-terminus of the light chain and the C-terminus of the heavy chain. Similar results were found with the other Ang2 MRD peptides. Additional Ang2 MRD peptides include: MGAQTNFMPMDNDELLLYEQ FILQQGLEGGSGSTASSGSGSSLGAQTNFMPMDNDELLLY (SEQ ID NO:20) (LM-2x-32); AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEWDPWTCEHMLE (SEQ ID NO:10) (2×Con4); AQQEECEFAPWTCEHM (SEQ ID NO:21) ConFA; core XnEFAPWfXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:22); AQQEEC EFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFAPWTCEHMLE (SEQ ID NO:23) (2×ConFA); AQQEECELAPWTCEHM (SEQ ID NO:24) (ConLA); XnELAPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:25); AQQEECELAPWTCEHMG SGSATGGSGSTASSGSGSATHQEECELAPWTCEHMLE (SEQ ID NO:26) (2×ConLA); AQQEECEFSPWTCEHM ConFS (SEQ ID NO:27); XnEFSPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:28); AQQEECEFSPWTCEHMGSGSATGGSGS TASSGSGSATHQEECEFSPWTCEHMLE (SEQ ID NO:29) (2×ConFS); AQQEECELEPW TCEHM ConLE (SEQ ID NO:30); XnELEPWTXn where n is from about 0 to 50 amino acid residues (SEQ ID NO:31); and AQQEECELEPWTCEHMGSGSATGGSGSTASSGSGSATH QEECELEPWTCEHMLE (SEQ ID NO:32) (2×ConLE).
- It should be understood that such peptides can be present in dimmers, trimers or other multimers either homologous or heterologous in nature. For example, one can dimerize identical Con-based sequences such as in 2×ConFA to provide a homologous dimer, or the Con peptides can be mixed such that ConFA is combined with ConLA to create ConFA-LA heterodimer with the sequence: AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECELAPWTCE HMLE (SEQ ID NO:33).
- Another illustrative heterodimer is ConFA combined with ConFS to create ConFA-FS with the sequence: AQQEECEFAPWTCEHMGSGSATGGSGSTASSGSGSATHQEECEFSPW TCEHMLE (SEQ ID NO:34).
- One of skill in the art, given the teachings herein, will appreciate that other such combinations will create functional Ang2 binding MRDs as described herein.
- A humanized mouse monoclonal antibody, LM609, directed towards human integrin αvβ3 has been previously described (Rader et. al., PNAS 95:8910-5 (1998)).
- A human non-catalytic monoclonal Ab, JC7U was fused to an anti-Ang2 MRD containing 2×Con4 (AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEECE WDPWTCEHMLE (SEQ ID NO:10)) at either the N- or C-terminus of the light chain. 2×Con4 (AQQEECEWDPWTCEHMGSGSATGGSGSTASSGSGSATHQEEC EWDPWTCEHMLE (SEQ ID NO:10)) was studied as an N-terminal fusion to the Kappa chain of the antibody (2×Con4-JC7U) and as a C-terminal fusion (JC7U-2×Con4). Both fusions maintained integrin and Ang2 binding. As shown in the left panel of
FIG. 3 , both antibody constructs (2×Con4-JC7U and JC7U-2×Con4) specifically bound to recombinant Ang2 as demonstrated by ELISA studies. Binding to Ang2, however, is significantly higher with JC7U-2×Con4, which has the 2×Con4 (SEQ ID NO:10) fusion at the C-terminus of the light chain of the antibody. The right panel ofFIG. 3 depicts the binding of Ang2-JC7U and JC7U-Ang2 to integrin αvβ3. The results show that fusion of 2×Con4 (SEQ ID NO:10) to either the N- or the C-light chain terminus does not affect mAb JC7U binding to integrin αvβ3.FIG. 4 depicts another ELISA study using the same antibody-MRD fusion constructs. - Another example of MRD fusions to a non-catalytic antibody are HERCEPTIN®-MRD fusion constructs. The HERCEPTIN®-MRD fusions are multifunctional, both small-molecule αv integrin antagonists and the chemically programmed integrin-targeting antibody show remarkable efficacy in preventing the breast cancer metastasis by interfering with αv-mediated cell adhesion and proliferation. MRD fusions containing HERCEPTIN®-2×Con4 (which targets ErbB2 and Ang2) and HERCEPTIN®-V114 (which targets ErbB2 and VEGF targeting) and HERCEPTIN®-RGD-4C-2×Con4 (which targets ErbB2, ang2, and integrin targeting) are effective.
- An antibody containing an MRD that targets VEGF was constructed. A MRD which targets vl 14 (SEQ ID NO:13) was fused at the N-terminus of the kappa chain of 38C2 and HERCEPTIN® using a linker. Expression and testing of the resulting antibody-MRD fusion constructs demonstrated strong VEGF binding.
- Fusion of an MRD which targets IGF1R(SFYSCLESLVNGPAEKSRG QWDGCRKK (SEQ ID NO:14)) to the N-terminus of the kappa chain of 38C2 and HERCEPTIN® using the long linker sequence as a connector was studied. Expression and testing of the resulting antibody-MRD fusion constructs demonstrated strong IGF1R binding. Additional clones showing high binding to IGR1R were identified after several rounds of mutagenesis and screening of the regions described in Table 4. The preferred sequences listed in Table 5 bind IGF1R and show no significant or no binding affinity to the insulin receptor, thereby suggesting specificity for IGF1R.
-
TABLE 4 Template for further mutagenesis. Name DNA AA Rm2-2-218 GTGGAGTGCAGGGCGCCG VECRAP (SEQ ID NO: 50) (SEQ ID NO: 51) Rm2-2-316 GCTGAGTGCAGGGCTGGG AECRAG (SEQ ID NO: 52) (SEQ ID NO: 53) Rm2-2-319 CAGGAGTGCAGGACGGGG QECRTG (SEQ ID NO: 54) (SEQ ID NO: 55) -
TABLE 5 SEQ ID Mutant Amino acid sequence Template NO Rm4-31 NFYQCIEMLASHPAEKSRGQWQECRTGG Rm2-2-319 35 Rm4-33 NFYQCIEQLALRPAEKSRGQWQECRTGG Rm2-2-319 36 Rm4-39 NFYQCIDLLMAYPAEKSRGQWQECRTGG Rm2-2-319 37 Rm4-310 NFYQCIERLVTGPAEKSRGQWQECRTGG Rm2-2-319 38 Rm4-314 NFYQCIEYLAMKPAEKSRGQWQECRTGG Rm2-2-319 39 Rm4-316 NFYQCIEALQSRPAEKSRGQWQECRTGG Rm2-2-319 40 Rm4-319 NFYQCIEALSRSPAEKSRGQWQECRTGG Rm2-2-319 41 Rm4-44 NFYQCIEHLSGSPAEKSRGQWQECRTG Rm2-2-319 42 Rm4-45 NFYQCIESLAGGPAEKSRGQWQECRTG Rm2-2-319 43 Rm4-46 NFYQCIEALVGVPAEKSRGQWQECRTG Rm2-2-319 44 Rm4-49 NFYQCIEMLSLPPAEKSRGQWQECRTG Rm2-2-319 45 Rm4-410 NFYQCIEVFWGRPAEKSRGQWQECRTG Rm2-2-319 46 Rm4-411 NFYQCIEQLSSGPAEKSRGQWQECRTG Rm2-2-319 47 Rm4-415 NFYQCIELLSARPAEKSRGQWAECRAG Rm2-2-316 48 Rm4-417 NFYQCIEALARTPAEKSRGQWVECRAP Rm2-2-218 49 - An antibody was constructed which contains an MRD that targets Ang2 (L17) (SEQ ID NO:7) fused to the light chain of an antibody which binds to ErbB2. Either the short linker sequence, the long linker sequence, or the 4th loop in the light chain constant region was used as a linker.
FIG. 5 depicts the results of an ELISA using constructs containing an N-terminal fusion of an Ang2 targeting MRD with the ErbB2 antibody with the short linker peptide (GGGS (SEQ ID NO:1)) (L17-sL-Her), a C-terminal fusion of Ang2 targeting MRD with the ErbB2 antibody with the short linker peptide (Her-sL-L17), a C-terminal fusion of Ang2 targeting MRD with the ErbB2 antibody with the 4th loop in the light chain constant region (Her-1o-L17), or an N-terminal fusion of Ang2 targeting MRD with the ErbB2 antibody with the long linker peptide (SSGGGGSGGGGGGSSRSS (SEQ ID NO:19)) (L17-1L-Her). ErbB2 was bound with varying degrees by all of the constructs. However, Ang2 was bound only by Her-sL-L17 and L17-1L-Her. - Fusion of an MRD which targets Ang2 (L17) (SEQ ID NO:7) was made to either the N-terminus or C-terminus of the light chain of the Met antibody, which binds to hepatocyte growth factor receptor. Either the short linker sequence or the long linker sequence were used as a connector.
FIG. 6 depicts the results of an ELISA using constructs containing N-terminal fusion of Ang2 targeting MRD with the Met antibody with the short linker peptide (GGGS (SEQ ID NO:1)) (L17-sL-Met), N-terminal fusion of Ang2 targeting MRD with the Met antibody with the long linker peptide (SSGGGGSGGGGGGSSRSS (SEQ ID NO:19)) (L17-1L-Met), and C-terminal fusion of Ang2 targeting MRD with the Met antibody with the long linker peptide (Met-iL-L17). Expression and testing of the resulting antibody-MRD fusion constructs demonstrated strong Ang2 binding when the long linker peptide was used. Fusion of the Ang2 targeting MRD to the C-light chain terminus of the antibody resulted in slightly higher binding to Ang2 then fusion of the Ang2 targeting to the N-light chain terminus of the antibody. - An antibody was constructed which contains an MRD that targets integrin αvβ3 (RGD4C) with the sequence CDCRGDCFC (SEQ ID NO:106) fused to the light chain of an antibody HERCEPTTN® which binds to ErbB2 (Her). Either the short linker sequence, the long linker sequence, or the 4th loop in the light chain constant region was used as a linker.
FIG. 7 depicts the results of an ELISA using constructs containing an N-terminal fusion of integrin αvβ3 targeting MRD with the ErbB2 antibody with the short linker peptide (GGGS (SEQ ID NO:1)) (RGD4C-sL-Her), a C-terminal fusion of integrin αvβ3 targeting MRD with the ErbB2 antibody with the short linker peptide (Her-sL-RGD4C), a C-terminal fusion of integrin αvβ3 targeting MRD with the ErbB2 antibody with the 4th loop in the light chain constant region (Her-1o-RGD4C), or an N-terminal fusion of integrin αvβ3 targeting MRD with the ErbB2 antibody with the long linker peptide (SSGGGGSGGGGGGSSRSS (SEQ ID NO:19)) (RGD4C-1L-Her). ErbB2 was bound with varying degrees by all of the constructs. However, integrin αvβ3 was bound only by RGD4C-1L-Her. - An antibody was constructed which contains an MRD that targets integrin αvβ3 (RGD4C) (SEQ ID NO:106) fused to the light chain of an antibody which binds to the hepatocyte growth factor receptor (Met). Antibody-MRD constructs containing the long linker sequence were used.
FIG. 8 depicts the results of an ELISA using constructs containing an N-terminal fusion of integrin αvβ3 targeting MRD with the hepatocyte growth factor receptor antibody (RGD4C-1L-Met), or a C-terminal fusion of integrin αvβ3 targeting MRD with the hepatocyte growth factor receptor antibody (Met-1L-RGD4C). The RGD4C-1L-Met demonstrated strong integrin αvβ3 binding. - Antibodies were constructed which contains an MRD that targets insulin-like growth factor-I receptor (RP) (SEQ ID NO:14) fused to the light chain of an antibody which binds to ErbB2 (Her). Either the short linker peptide, the long linker peptide, or the 4th loop in the light chain constant region was used as a linker (Carter et al., Proc Natl Acad Sci 89:4285-9 (1992); U.S. Pat. No. 5,677,171; and ATCC Deposit 10463, each of which is herein incorporated by reference).
FIG. 9 depicts the results of an ELISA using constructs containing an N-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the short linker peptide (RP-sL-Her), a C-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody and the short linker peptide (Her-sL-RP), a C-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the 4th loop in the light chain constant region (Her-1o-RP), an N-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the long linker peptide (RP-1L-Her), or a C-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 antibody with the long linker peptide (Her-1L-RP). ErbB2 was bound with varying degrees by all of the constructs. Insulin-like growth factor-I receptor was bound by RP-1L-Her. - Fusion of an MRD which targets VEGF (Vl 14) (SEQ ID NO:13) (Fairbrother W. J., et al, Biochemistry 37:177754-64 (1998)) was made to the N-terminus of the light chain of a ErbB2-binding antibody (Her). A medium linker peptide (SSGGGGSGGGGGGSS (SEQ ID NO:2)) was used as a connector.
FIG. 10 depicts the results of an ELISA using a construct containing an N-terminal fusion of VEGF targeting MRD with the ErbB2-binding antibody with the medium linker peptide (Vl 14-mL-Her). Expression and testing of the resulting antibody-MRD fusion construct demonstrated strong VEGF and ErbB2 binding. - Fusion of an MRD which targets integrin αvβ3 (RGD) (SEQ ID NO:106) to the N-terminus of the light chain of 38C2 using the medium linker peptide as a connector was studied.
FIG. 11 demonstrates that expression and testing of the resulting antibody-MRD fusion construct had strong integrin αvβ3 binding. - Fusion of an MRD which targets Ang2 (L 17) (SEQ ID NO:7) to the C-terminus of the light chain of 38C2 using the short linker sequence as a connector was studied.
FIG. 12 demonstrates that expression and testing of the resulting antibody-MRD fusion construct had strong Ang2 binding. - An MRD which targets integrin αvβ3 (RGD4C) was connected to the N-terminus of the light chain of an ErbB2 targeting antibody (Her) with a medium linker, and an Ang2 (L17) targeting MRD was connected by a short linker to the C-terminus of the same ErbB2 targeting antibody (RGD4C-mL-Her-sL-L17).
FIG. 13 demonstrates that the resulting antibody-MRD fusion construct bound to integrin, Ang2, and ErbB2. - Similarly, ErbB2 targeting antibodies (e.g., Her) with an IGF-1R MRD fused to the C-terminus of the heavy chain or the N-terminus of the light chain bound to immobilized IGF-1R at comparable rates. In addition, ErbB2 targeting antibodies containing an IGF-1R MRD fused to the N-terminus of the light chain and an Ang2 MRD fused to the C-terminus of the heavy chain bound to immobilized IGF-1R at comparable rates. Each of these three MRD-containing antibodies also inhibited the binding of IGF-1 to immobilized IGF-1R. The trispecific molecule (HERCEPTIN with IGF-1R and Ang2 MRDs) bound to both cell surface ErbB2 and soluble Ang2.
- An antibody was constructed which contains an MRD that targets integrin αvβ3 (RGD4C) fused to the N-terminus of the heavy chain of an antibody which binds to ErbB2 (Her) using the medium linker as a connector (RGD4C-mL-her-heavy).
FIG. 14 depicts the results of an ELISA using the construct. Both integrin and ErbB2 were bound by the construct. - Antibody-MRD molecules were constructed which contain ErbB2 or hepatocyte growth factor receptor binding antibodies, and integrin αvβ3, Ang2 or insulin-like growth factor-1 receptor-targeting MRD regions were linked with the short linker peptide to the light chain of the antibody.
FIG. 15 depicts the results of an ELISA using constructs containing an N-terminal fusion of Ang2 targeting MRD fused to the ErbB2 antibody (L17-sL-Her), an N-terminal fusion of integrin-targeting MRD with the ErbB2 antibody (RGD4C-sL-Her), an N-terminal fusion of insulin-like growth factor-I receptor targeting MRD with the ErbB2 binding antibody (RP-sL-Her), a C-terminal fusion of Ang2 targeting MRD with the hepatocyte growth factor receptor binding antibody (L17-sL-Met), a C-terminal fusion of Ang2 targeting MRD with the ErbB2 binding antibody (Her-sL-L17), a C-terminal fusion of integrin targeting MRD with the ErbB2 binding antibody (Her-sL-RGD4C), or a C-terminal fusion of insulin-like growth factor-1 receptor targeting MRD with the ErbB2 binding antibody (Her-sL-RP). ErbB2 was bound with varying degrees by the antibody-MRD constructs, with the exception of the construct containing the hepatocyte growth factor receptor-binding antibody. Antigen was bound only by the Her-sL-L17 construct. - Antibody-MRD molecules were constructed which contain ErbB2 or hepatocyte growth factor receptor binding antibodies, and integrin αvβ3, Ang2 or insulin-like growth factor-I receptor-targeting MRD regions linked with the long linker peptide to the light chain of the antibody.
FIG. 16 depicts the results of an ELISA using constructs containing an N-terminal fusion of Ang2 targeting MRD fused to the ErbB2 antibody (L17-1L-Her), an N-terminal fusion of integrin-targeting MRD with the ErbB2 antibody (RGD4C-1L-Her), an N-terminal fusion of insulin-like growth factor-I receptor-targeting MRD with the ErbB2 binding antibody (RP-1L-Her), a C-terminal fusion of Ang2 targeting MRD with the hepatocyte growth factor receptor binding antibody (L17-1L-Met), a C-terminal fusion of integrin targeting MRD with the hepatocyte growth factor receptor binding antibody (RGD4C-1L-Met), a C-terminal fusion of Ang2 targeting MRD with the insulin-like growth factor-I receptor binding antibody (Her-1L-RP), a C-terminal fusion of Ang2 targeting MRD with the hepatocyte growth factor receptor binding antibody (Met-1L-L17), or a C-terminal fusion of integrin targeting MRD with the hepatocyte growth factor receptor binding antibody (Met-1L-RGD4C). As shown inFIG. 16 , antibody-MRD fusions are effective to bind antigen and ErbB2. Lu et al. J Biol Chem 280(20) (2005): 19665-72. Epub 2005 March 9; Lu et al. J Biol Chem 279(4):2856-65 (2004). Epub 2.003 Oct. 23. - Monomer and dimer peptides were expressed as protein fusions to maltose binding protein (MBP) using a modified form of the pMAL-p2 vector and expression system from New England Biolabs (NEB; Beverly, Mass.) The PCR-generated MRD sequence was inserted into a pMAL vector down-stream from the malE gene, which encodes MBP. This results in a vector that encodes an MRD-MBP-fusion protein. The pMAL vector contains a strong Ptac promoter and is inducible by IPTG. The pMAL-p2 series contains the normal malE signal sequence, which directs the fusion protein through the cytoplasmic membrane. pMAL-p2 fusion proteins capable of being exported can be purified from the periplasm through osmotic shock. Further purification can be performed, for example by binding to amylose resin.
- For expression of fusion proteins, bacterial cultures grown overnight were back-diluted into fresh media to an OD A600 of approximately 0.1. Cultures were grown to an OD of approximately 0.8 and induced with IPTG at a concentration of 0.3 mM. Cultures were incubated with shaking for approximately 4 hours, after which bacteria were centrifuged for 15 minutes at 4700 g. Pelleted bacteria were resuspended in 30 mM Tris-HCL pH 7.4, 20% sucrose, 1 mM EDTA. Cells were incubated for 20 minutes at room temperature (RT) prior to centrifugation for 15 minutes at 4700 g. Pelleted bacteria were then resuspended in ice cold MgSO4, and incubated for 20 minutes on ice, with periodic mixing. Cell suspensions were sonicated (Misonix XL2020) for 90 seconds. Cells were centrifuged at 4° C. for 20 minutes at 4700 g. The supernatant (“osmotic shock fraction”) was adjusted to 1×PBS using 10×PBS (Quality Biologics, cat #119-069-131) and filtered through 0.2 micron filter. These osmotic shock fractions were assayed directly for binding to Ang2.
- For detection of direct binding of MRD-MBP fusions to Ang2, the following ELISA was performed. Ninety-six-well plates were coated overnight with rhAng2 (R&D cat#623-AN) at 320 ng/ml (100 μl/well). Wells were blocked for 3.25 hours with 250 μl Blocking buffer (Thermo Cat#N502), followed by 4 washes with 300 μl wash buffer (PBS, 0.1% tween). MBP fusion proteins were serially diluted in Blocking buffer and added to wells for 2 hours at RT. After washing (8×300 μl wash buffer), samples were treated with HRP-mouse anti MBP mAb (NEB, cat #E8038S), diluted 1:4000 in Blocking buffer. After incubation for 1 hour at RT, wells were washed (8×3000 wash buffer) prior to receiving 100 μl of TMB substrate (KPL Laboratories). Color development was stopped with 100 μl of H2SO4, and absorbance was read at 450 nm.
- MRD-MBP fusions were assayed for direct binding to Ang2. Osmotic shock fractions of induced bacterial cultures were serially diluted and added to Ang2 coated wells. Bound fusion proteins were detected with anti-MBP mAb. The dose response curves are presented in
FIG. 17A . Assayed proteins represent mutational variants of the sequence MGAQTNFMPMDDDELLLYEQFILQQGLE (L17D) (SEQ ID NO:107). In this series, the motif MDD within L17D was mutated at the first D to all other possible amino acids (except cysteine). Other MRDs tested were “Lm32 KtoS” and a dimer of Lm32 (2×Lm32). As presented inFIG. 17B , several MXD mutants exhibit binding in the 0.1 to 100 nm range. The Lm32 dimer (2×Lm32) exhibits greater than 10 fold higher affinity for Ang2 than either L17D or “Lm32 KtoS”. - Molecular recognition domains were constructed and expressed in a pcDNA 3.3 vector as fusion proteins with either the heavy or light chains of antibodies. For protein production, plasmid DNAs encoding the heavy and light chains of the antibodies containing MRDs were first transformed into chemically competent bacteria in order to produce large amounts of DNA for transient transfection. Single transformants were propagated in LB media and purified using Qiagen's Endotoxin Free Plasmid Kits. Briefly, cells from an overnight culture were lysed; lysates were clarified and applied to an anion-exchange column, and then subjected to a wash step and eluted with high salt. Plasmids were precipitated, washed, and resuspended in sterile water.
- HEK293T cells were expanded to the desired final batch size (about 5 L) prior to transfection. The purified plasmid (1 mg per liter of production) was complexed with the polyethylenimine (PEI) transfection reagent, added to the shake flask culture, and incubated at 37° C. The culture was monitored daily for cell count, cell diameter, and viability. The conditioned medium was harvested and stored at −80° C. until purification.
- Antibodies containing MRDs were purified from the conditioned medium using affinity chromatography. Culture supernatant was filter clarified and applied directly to a chromatography column containing recombinant Protein A Sepharose (GE Healthcare). The column was washed, and bound antibodies containing MRDs were eluted by lowering buffer pH. Following elution, eluate fractions were immediately adjusted to physiologic pH. Following Protein A affinity purification, an additional optional polishing chromatographic step can be performed as needed.
- Purified proteins were dialyzed into PBS, concentrated to ˜1-4 mg/ml, sterile filtered, aliquoted aseptically, and stored frozen at −80° C. All steps of the purification were monitored by SDS-PAGE-Coomassie, and precautions were taken during the purification to keep endotoxin levels as minimal as possible.
- The final product was analyzed for endotoxin levels (EndoSafe), purity (SDS-PAGE-coomassie, analytical SEC-HPLC), protein identity (Western blot), and yield (Bradford assay). An additional size exclusion HPLC analysis was performed to assess the level of aggregates.
- The data presented in Table 6 indicate that the antibodies containing MRDs can be expressed and purified using conventional techniques.
-
TABLE 6 Aggregates Endotoxin Zybody Yield (mg) Purity (%) (EU/ml) HER2xCon4(H) 36 >90% 4.6 <1 HER-lm32(H) 57 >90% 1 2.02 HER-lm32(L) 98 >90% 2 3.26 AVA-lm32(H) 12 >90% 0 <1 - Ninety-six-well plates were coated overnight with rHER2-Fc (R&D cat#1129-ER-050) at 20 ng/ml (100 μl/well). Wells are blocked for 3.25 hours with 250 μl Blocking buffer (Thermo Cat# N502), followed by 4 washes with 300 μl wash buffer (PBS, 0.1% tween). Antibodies containing MRDs (HER-lm32(H), HER-lm32(L), and AVA-lm32(H)) and antibodies (HERCEPTIN®) were serially diluted in Blocking buffer, containing 1.94 μg/ml biotinylated Ang2 (R&D cat#BT633) and added to wells for 2 hours at RT. After washing (8×300 μl wash buffer), parallel samples received either HRP-conjugated anti-human kappa chain mAb- (Abcam, cat #ab79115-1) diluted 1:1000 in Blocking buffer or HRP-conjugated streptavidin (Thermo Scientific cat#N100) diluted 1:4000 diluted in Blocking buffer. After incubation for 1 hour at RT, wells were washed (8×300 μl wash buffer) prior to receiving 100 μl of TMB substrate (KPL Laboratories). Color development was stopped with 100 μl of H2SO4, and absorbance was read at 450 nm.
- As detected with anti-human kappa chain mAb, both a HERCEPTIN®-based antibody or HERCEPTIN®-based antibodies containing MRDs bind to Her2 Fc in the presence of Ang2 in a dose dependent manner (
FIG. 18A ). Only the HERCEPTIN®-based antibodies containing MRDs (HER-lm32(H) and HER-lm32(L)) exhibit simultaneous binding to Her2 Fc and Ang2, as detected by HRP-conjugated streptavidin (FIG. 18B ). - Ninety-six-well plates were coated overnight with human VEGF (PeproTech, Inc. cat#100-20) at 30 ng/ml (100 μl/well). Wells were blocked for 3.25 hours with 250□ μl Blocking buffer (Thermo Cat# N502), followed by 4 washes with 300□ μl wash buffer (PBS, 0.1% tween). Antibodies containing MRDs (HER-lm32(H) and AVA-lm32(H)) and antibodies (AVASTIN®) were serially diluted in Blocking buffer, containing 3.876 μg/ml biotinylated Ang2 (R&D cat#BT633) and added to wells for 2 hours at RT. After washing (8×300 μl wash buffer), parallel samples received either HRP-conjugated anti-human kappa chain mAb (Abcam, cat #ab79115) diluted 1:1000 in Blocking buffer or HRP-conjugated streptavidin (Thermo Scientific cat#N100) diluted 1:4000 diluted in Blocking buffer. After incubation for 1 hour at RT, wells were washed (8×300 μl wash buffer) prior to receiving 100 μl of TMB substrate (KPL Laboratories). Color development was stopped with 100 μl of H2SO4, and absorbance was read at 450 nm.
- As detected with anti-human kappa chain mAb, both AVASTIN® and AVASTIN®-based antibodies containing MRDs bind to VEGF in the presence of Ang2 in a dose dependent manner (
FIG. 19A ). Only the AVASTIN®-based antibodies containing MRDs (AVA-lm32(H)) exhibited simultaneous binding to VEGF and Ang2, as detected by HRP-conjugated streptavidin (FIG. 19B ). - The ability of HER-lm32 (H) and HER-lm32 (L) simultaneously bind to Her2 expressed on the surface of breast carcinoma cells BT-474, and to Ang2 in solution, was determined by flow cytometry. Mouse anti-human Ig-FITC was used for detection of the heavy chain of the antibodies containing MRDs, and Ang2-biotin/streptavidin-PE was used for detection of the lm32 MRD. Cells that bind Her2 and Ang2 simultaneously are expected to be detected as double positive for FITC and PE fluorescence.
- One million HER2 positive breast carcinoma cells BT-474 were incubated with 1 μg HER-lm32(H) or HER-lm32(L) for 25 minutes at RT. After washing, cells were incubated with 200 ng/mL Ang2 biotin (R&D systems) for 25 minutes at RT and then with 20 μL of mouse anti-human Ig-FITC and Streptavidin-PE for 15 minutes. After washing with 2 mL buffer, cells were analyzed by flow cytometry (FACS Canto II, BD).
- In order to confirm the specificity of binding of HER-lm32(H) and HER-lm32(L) to HER2 on BT-474 cells, binding was determined in the presence of 10-fold excess of HERCEPTIN®. In these experiments, antibodies containing MRDs (1 μg) were incubated with one million BT-474 cells in the absence or presence of 10 μg HERCEPTIN® for 25 minutes at RT. Binding of antibodies containing MRDs to HER2 was determined by incubating with 200 ng/mL Ang2 biotin followed by detection with streptavidin-PE.
- The data presented in
FIG. 20A demonstrate that both HER-lm32(H) and HER-lm32(L), bind simultaneously to HER2 and Ang2. In both cases, the cells exhibited bright dual fluorescence in the FITC and PE fluorescence channels. The fact that HER-lm32(H) and HER-lm32(L) binding to HER2 is completely inhibited by HERCEPTIN® (FIG. 20B ) indicates that the binding is specific. - To assess the ability of lm32-containing antibodies to block the interaction of Ang2 with its receptor Tie2, their effect on the binding of soluble Tie2 to plate-bound Ang2 was determined by ELISA.
- Ang2 (R&D Systems, catalog#623-AN) was coated on a 96-well plate (Thermo Electron, cat#3855) at 200 ng/mL in PBS overnight at 4° C. The plate was then incubated with 100 μL of blocking solution (Thermo Scientific, cat#N502) for 1 hour at RT. After washing the
plate 4 times with 0.1% Tween-20 in PBS, the plate bound Ang2 was incubated with 0.5 μg/mL soluble Tie2 (R&D Systems, cat#313-TI) in the absence or presence of various concentrations of serially diluted antibodies containing MRDs for 1 hour at RT. After washing 4 times, 100 μL of 0.5 μg/mL anti Tie2 antibody (cat#BAM3313, R&D Systems) was added and incubated at RT for 1 hour. Tie2 binding to Ang2 was detected by incubation with 1:1000 diluted goat anti-mouse-HRP (BD Pharmingen, cat#554002) for 1 hour at RT. The plate was washed 4 times and incubated with 100 μL TMB reagent for 10 minutes at RT. After stopping the reaction with 100 μL of 0.36N H2SO4, the plate was read at 450 nm using a spectrophotometer. - As presented in
FIG. 21A , HER-lm32(H), HER-lm32(L), and AVA-lm32(H) inhibited Tie2 binding to plate-bound Ang2 in a dose-dependent fashion. All tested lm32-containing antibodies demonstrated comparable inhibitory effects with IC-50 values of 4 nM for HER-lm32 (H), 8 nM for HER-lm32(L) and 3.3 nM for AVA-lm32(H). - To determine the specificity and relative affinity of AVA-lm32 (H) binding to VEGF, a competitive binding assay was performed using biotin labeled AVASTIN®.
- AVASTIN® was labeled with biotin using EZ-Link NHS-LC-Biotin (Pierce, cat#21336). VEGF (Peprotech, cat#100-20) was coated on a 96-well plate (Thermo Electron, cat#3855) at 100 ng/mL in PBS overnight at 4° C. The plate was then incubated with 100 μL of blocking solution (Thermo Scientific, cat#N502) for 1 hour at RT. After washing the
plate 4 times with 0.1% Tween 20 in PBS, 50 μL of AVASTIN®-biotin at 150 ng/mL and 50 μL of various concentrations of AVA-lm32(H) or unlabeled AVASTIN® were added and incubated at RT for 1 hour. The plate was washed 4 times and incubated with Streptavidin-HRP (Thermo, cat#N100) at 1:1000 dilution for 1 hour at RT. The plate was washed 4 times and 100 μL of TMB reagent was added. After 10 minutes incubation at RT, 100 μL of 0.36N H2SO4 was added to stop the reaction and the plate was read at 450 nm. - The data presented in
FIG. 22 demonstrate that AVA-lm32(H) specifically binds to VEGF-2. It inhibits binding of biotinylated AVASTIN® to VEGF in a dose dependent manner. The dose response curves generated by AVA-lm32(H) and unlabeled AVASTIN® are superimposable and indicate similar binding affinities. - To determine the relative binding affinity of HERCEPTIN®-based antibodies containing MRDs to cell surface HER2 compared to HERCEPTIN®, a competitive binding assay was performed with Eu-labeled HERCEPTIN®.
- HERCEPTIN® was labeled with Eu3+ using a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) Europium-labeling kit (Perkin Elmer Life Sciences, cat#1244-302) following the manufacturer's instructions. The labeling agent is the Eu-chelate of N1-(p-isothiocynateobenzyl)diethylenetriamine N1, N2, N3, N3-tetraacetic acid (DTTA). The DTTA group forms a stable complex with Eu3+, and the isothiocynate group reacts with amino groups on the protein at alkaline pH to form a stable, covalent thio-urea bond. HERCEPTIN® (0.2 mg in 200 mL sodium bicarbonate buffer pH 9.3) was labeled with 0.2 mg of labeling agent at 4° C. overnight. Eu-labeled HERCEPTIN® was purified by spin column using 50 mmol/L tris-HCl pH 7.5 and 0.9% NaCl elution buffer.
- The Eu-HERCEPTIN® binding assay was performed by incubating 0.5-1 million BT-474 or SK-BR3 breast cancer cells per well in a 96-well plate with 2-5 nM Eu-HERCEPTIN® in the presence of various concentrations of unlabeled HERCEPTIN®-based antibodies containing MRDs or HERCEPTIN® for 1 hour at RT. Unbound Eu-HERCEPTIN® was removed by washing using 200 μL complete medium. Cells were then resuspended in 100 μL complete medium and 80 μL of cell suspension transferred to a 96-well isoplate. Cells were incubated with 100 μL Delfia enhancer solution at RT for 10 minutes and cell bound Eu-HERCEPTIN® was detected by Envison (Perkin Elmer).
- The inhibition of binding curves obtained using BT-474 cells are presented in
FIG. 23 . Eu-HERCEPTIN® binding to BT-474 was inhibited by HERCEPTIN® and HERCEPTIN®-based antibodies containing MRDs in a dose-dependent fashion. Comparable IC-50 values were observed: 4.7 nM for HER-lm32(H), 5.7 nM for HER-lm32(L), and 3.7 nM for unlabeled HERCEPTIN®. - Antibodies Containing MRDs
- HERCEPTIN sensitive breast cancer cells SK-BR-3 expressing HER2neo receptor were also tested in a bioassay. SK-BR-3 cells (2000 cell/well) were plated in 96 well plates (Costar) in complete McCoy's growth medium containing 2 mM glutamine, pen/strep (Invitrogen) and 10% FBS (HyClone). The cells were cultured for 24 hours at 37° C., 5% CO2, 85% humidity. On the following day, the growth medium was replaced with starvation medium (McCoy's medium containing 2 mM glutamine, pen/strep, 0.5% FBS). Nine serial dilutions (concentration range 5000-7.8 ng/ml) of HERCEPTIN® and HERCEPTIN®-based antibodies containing MRDs were prepared in complete growth medium. After 24 hours of incubation, the starvation medium was removed, and the serial dilutions of HERCEPTIN® and HERCEPTIN®-based antibodies containing MRDs were transferred to the plates in triplicates. The cells were cultured for 6 days. The proliferation was quantified using the CellTiter Glo luminescence method.
- The IC50 values determined using a four-parameter logistic model were as follows: 0.49+/−0.17 nm for HER-lm32(H), 0.81+/−0.19 nm for HER-lm32(L),a and 0.67+/−0.15 nm for HER-con4(H). All tested HERCEPTIN®-based antibodies containing MRDs were able to inhibit the proliferation of the SK-BR-3 breast carcinoma cells with subnanomolar IC-50 values. The representative fitted dose response curves shown in
FIGS. 24A-C demonstrate that HERCEPTIN®-based antibodies containing MRDs inhibit cell proliferation with similar potency to HERCEPTIN®. - To assess the ability of antibodies containing MRDs to mediate ADCC in vitro, a cytotoxicity assay based on the “DELFIA EUTDA Cytotoxicity reagents AD0116″ kit (PerkinElmer) was used. In this assay, the target cells were labeled with a hydrophobic fluorescence enhancing ligand (BADTA, bis(acetoxymethyl) 2,2′:6′,2″-terpyridine-6,6″-dicarboxylate). Upon entering the cells, BADTA is converted to a hydrophilic compound (TDA, 2,2′:6′,2″-terpyridine-6,6″-dicarboxylic acid) by cytoplasmic esterases mediated cleavage and no longer can cross the membrane. After cell lysis, TDA is released into a medium containing Eu3+ solution to form a fluorescent chelate (EuTDA). The fluorescence intensity is directly proportional to the number of lysed cells.
- HERCEPTIN® and HERCEPTIN®-based antibodies containing MRDs can mediate ADCC on Her2 positive breast cancer cells by binding to the HER2 receptor on the surface of the target cells and activating the effector cells present in human PBMCs by interacting with their FcγRIII receptors. A HER2 positive human breast cancer cell line SK-BR-3 was used as a target cell line in the ADCC assay to demonstrate this.
- SK-BR-3 cells were detached with 0.05% trypsin-versene and resuspended at 1×106 cells/mL in RPMI1640 medium containing 2 mM glutamine, pen/strep and 10% FBS (complete growth medium). 2×106 cells in 2 mL of media were transferred into 15 mL tube and 10 μl of BADTA reagent was added. The cell suspension was mixed gently and placed in the incubator at 37° C., 5% CO2 and 85% humidity for 15 minutes. Seven 10× serial dilutions starting with 5 μg/mL of HERCEPTIN® or HERCEPTIN®-based antibodies containing MRDs were prepared during cell labeling.
- After incubation with BADTA, cells were washed 4 times in complete growth medium containing 2.5 mM Probenecid. Between washes, cells were spun down by centrifugation at 1000 rpm for 3 minutes. After the last wash, labeled SK-BR-3 cells were resuspended in 10 mL complete growth medium and 50 μl of cells were added to each well of 96 well plate, except background wells. 50 μl of serial dilutions of HERCEPTIN® or HERCEPTIN®-based antibodies containing MRDs were added to the designated wells. The plates were transferred to the incubator at 37° C., 5% CO2 and 85% humidity for 30 minutes.
- PBMCs that were purified from human peripheral blood one day prior the ADCC assay, were washed once in RPMI1640 with 2 mM glutamine, pen/strep, 10% FBS. 10 mL of the PBMCs suspension with 2.5×106 cells/mL was prepared. 100 μl of PBMC suspension was transferred into wells containing target cells and HERCEPTIN® or HERCEPTIN®-based antibodies containing MRDs in triplicate. The following controls were placed in designated wells: Spontaneous release (target cells without effector cells), Maximum release (lysed target cells) and Background (media without cells). The plates were incubated for 2.5 hours an incubator with 37° C., 5% CO2 and 85% humidity.
- After
incubation 20 μl of the supernatant was transferred to another plate and 200 μl of Europium solution was added. The plates were incubated on a plate shaker at RT for 15 minutes. The time resolved fluorescence was measured using PerkinElmer EnVision 2104 Multilabel Reader. - The following formula was used to calculate percentage of Specific release:
-
Experimental release (counts)−Spontaneous release (counts)×100 - Maximum Release (Counts)−Spontaneous Release (Counts)
- The IC50 values calculated by a four-parameter logistic model were as follows: 0.213+/−0.077 nM for HER-lm32(H), 0.204+/−0.036 nM for HER-lm32(L), and 0.067+/−0.015 nM for HER-con4(H). All tested antibodies containing MRDs demonstrated robust ADCC activity with subnanomolar IC-50 values. The representative fitted dose response curves shown in
FIGS. 25A and 25B demonstrate that antibodies containing MRDs are able to mediate cell dependent cytotoxicity with comparable potency to HERCEPTIN®. - A similar experiment was conducted in the presence of Ang2. Human PBMCs were activated with 20 ng/ml of IL-2 overnight and added to freshly plated (10,000 cells/well) BADTA labeled SK-BR-3 cells. The effector/target ratio was 25/1. After a 4-hour incubation with serial dilutions of HER-lm32(H) or HUMIRA in the presence of 2 μg/ml Ang2, Eu was added to the medium and TRFI measured on Envision reader (Perkin-Elmer). HER-lm32 was more potent in mediating ADCC in the presence of Ang2.
- The biological activities of the AVASTIN®-based antibodies containing MRDs AVA-lm32(H) were tested to determine if they could inhibit VEGF-induced proliferation of Human Umbilical Vein Endothelial Cells (HUVEC) assay.
- HUVEC were obtained from GlycoTech (Gaithersburg, Md.) and Lonza on
passage 1 andpassage 3 respectively. Cells were grown on Endothelial cell basal medium (EBM-2) with addition of 2% fetal bovine serum (FBS) and single quotes (Lonza) at 37° C., 5% CO2, 85% humidity. For inhibition of proliferation experiments, cells were plated in 96-well plates (Costar) at 2000 cells per well in EBM-2 medium with 2% FBS and cultivated for 24 hours. Nine serial dilutions of AVASTIN® or AVA-lm32(H) were prepared starting with 5 μg/mL on EBM-2 medium with 2% FBS. VEGF (R&D Systems) was added at a final concentration of 10 ng/mL to all serial dilutions. After incubation for 15 minutes at 37° C., 5% CO2, 85% humidity, serial dilutions were added to the cells. After 96 hours, CellTiter Glo was added to the cells. After incubation at RT for 15 minutes, the cell suspension was transferred into 96 well white opaque plates, and luminescence was measured using PerkinElmer EnVision 2104 Multilabel Reader. - As shown in
FIGS. 26A and 26B , AVA-lm32(H) exhibited dose dependent anti-proliferative activity on HUVECs from both sources. IC50 values calculated from 4 PL fitted curves indicate similar potency for AVA-lm32(H) and AVASTIN® (IC50 values 0.36+/−0.42 nM and 0.33+/−0.38 nM, respectively). - In order to determine the effectiveness of MRD-containing antibodies in vivo, their efficacy in a mouse Colo5 tumor model was assessed. In these experiments, tumors were implanted into the right flank of six-week old female athymic nude mice by injecting 5×106 Colo205 cells suspended in 100 μL PBS. Three groups of eight animals each received intraperitoneal injections of 5 mg/kg of antibody (HERCEPTIN, Rituxan) or an MRD-containing antibody (HER-2×Con4; “H2×Con4”) in 100 μl, PBS every third day starting at
day 6 after tumor implantation. The results, shown inFIG. 27 , demonstrate that the MRD-containing antibody was more efficient at inhibiting tumor growth than either Rituximab® or HERCEPTIN®. - HERCEPTIN with lm32 fused to the C-terminus of the heavy chain also inhibited tumor growth in both Her2 dependent and angiogenesis dependent xenograft tumor models. The HERCEPTIN-lm32 fusion had a similar PK to HERCEPTIN in both mice and monkeys after single dose injections. Furthermore, the HERCEPTIN-lm32 fusion was stable in whole blood at 37° C. for up to 72 hours.
- Novel MRD-containing antibodies are generated by altering the sequence of the MRD and/or the antibody, by altering the location at which the antibody is linked to the MRD, and/or by altering the linker through which the MRD is connected to the antibody. The binding potential, structure, and functional properties of the MRD-containing antibodies are evaluated using known techniques to measure protein binding and function. The MRD-containing antibodies are compared to the MRD alone, the antibody alone, and to other MRD-containing antibodies.
- An NERD-containing antibody is tested using a solid phase assay in which a target of the MRD and/or antibody is immobilized on a solid surface and then exposed to increasing concentrations of a fluorescently labeled MRD-containing antibody. The solid surface is washed to remove unbound MRD-containing antibody and the amount of target-bound MRD-containing antibody is determined directly by quantitating fluorescence. In another experiment, the immobilized target is exposed to increasing concentrations of an unlabeled MRD-containing antibody and the amount of target-bound MRD-containing antibody is determined indirectly by use of a labeled reagent that binds to the MRD-containing antibody.
- An MRD-containing antibody is tested using a liquid phase assay in which a target of the MRD and/or antibody is added to various concentrations of an MRD-containing antibody is a solution. The interaction of the target with the MRD-containing antibody is detected by the appearance of a molecular complex comprised of a target and MRD-containing antibody that differs in molecular mass (and mobility) from unbound target and unbound MRD-containing antibody.
- An MRD-containing antibody is also assayed in a cell based assay in which target-expressing cells are incubated in the presence of increasing concentrations of MRD-containing antibody. The binding of the MRD-containing antibody is detected by fluorescence activated cell sorting. In addition, cellular proliferation, cellular differentiation, protein phosphorylation, protein expression, mRNA expression, membrane composition, signaling pathway activity, and cellular viability are assessed.
- Useful MRD-containing antibodies bind to both the MRD target and to the antibody target. In addition, useful MRD-containing antibodies affect at least one cellular process.
- Two potential T cell epitopes were identified in LM32. In order to identify LM32 variants that did not containing T cell epitopes, and therefore, were less likely to produce immunogenic responses, mutational and deletional variants of the LM32 peptide were created. The LM32 variants listed in Table 7 MRDs were expressed as MBP fusion proteins and tested for the ability to bind Ang2.
-
TABLE 7 MRD expressed as a MBP EC50 SEQ ID fusion protein (nM) NO KSLSLSPGSGGGSMGAQTNFMPMDNDELLLYEQFI 1.080 142 KSLSLSPGSGGGSMGAQTNFMPMDNEELLLYEQFI 20.700 143 KSLSLSPGSGGGSMGAQTNFMPMDNDEGLLYEQFI 1.040 88 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNDELGLYEQFI na 89 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNDEALLYEQFI 0.182 90 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNDELTLYEQFI 1.420 91 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNDELLLYEQFI na 92 YQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNDEGLLYEQFI 0.902 93 YQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNDEALLYEQFI 0.392 94 YQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNEELTLYEQFI na 95 FQQG KSLSLSPGSGGGSMGAQTNFMPMDNDEGLLYEEFI 0.922 96 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNDEALLYEEFI 0.426 97 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDNEELTLYEEFI na 98 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDQDELLLYEQFI 0.383 99 LQQGLE KSLSLSPGSGGGSMGAQTNFMPMDDDELLLYEQFI 0.240 100 LQQGLE - The LM32 variants are then tested for their ability to induce proliferation and/or cytokine release. LM32 variants that are functionally active and have reduced immunogenic potential are identified. An MRD-containing antibody comprising the LM32 variant fused to the light chain of HERCEPTIN®, an MRD-containing antibody comprising the LM32 variant fused to the heavy chain of HERCEPTIN®, an MRD-containing antibody comprising the LM32 variant fused to the light chain of HUMIRA®, an MRD-containing antibody comprising the LM32 variant fused to the heavy chain of HUMIRA®, MRD-containing antibody comprising the LM32 variant fused to the light chain of AVASTIN®, and an MRD-containing antibody comprising the LM32 variant fused to the heavy chain of AVASTIN® are created. The LM32-variant containing antibodies are administered to animal models and the plasma protein representation and plasma and tissue residence are measured and compared to those of HERCEPTIN®, HUMIRA®, and AVASTIN®. In addition, the effects of the LM32-variant containing antibodies on cellular proliferation, angiogenesis, tumorigenicity, arthritic indicators are compared to the effects of HERCEPTIN®, HUMIRA®, and AVASTIN®.
- In order to determine the efficacy of MRD-containing antibodies in vivo, animal models are treated with an antibody and an MRD-containing antibody and the results are compared.
- MRD-containing anti-HER2 antibodies are tested in the following in vivo model. NIH 3T3 cells transfected with a HER2 expression plasmid are injected into nu/nu athymic mice subcutaneously at a dose of 106 cells in 0.1 ml of phosphate-buffered saline as described in U.S. Pat. No. 6,399,063, which is herein incorporated by reference in its entirety. On days, 0, 1, 5, and every 4 days thereafter 100 μg of a HER2 antibody, an ang2-containing HER2 antibody, an igf1r-containing HER2 antibody and an ang2-igf1r-containing HER2 antibody are injected intraperitoneally. Tumor occurrence and size are monitored for one month. Increases in efficacy of MRD-containing antibodies compared to antibodies are observed.
- MRD-containing anti-VEGF antibodies are tested in the following in vivo model. RIP-TβAg mice are provided with high-sugar chow and 5% sugar water as described in U.S. Published Application No. 2008/0248033, which is herein incorporated by reference in its entirety. At 9-9.5 or 11-12 weeks of age, the mice are treated twice-weekly with intra-peritoneal injections of 5 mg/kg of an anti-VEGF antibody, ang2-containing VEGF antibody, ifg1r-containing VEGF antibody or ang2- and igf1r-containing antibody. The 9-9.5 week mice are treating for 14 days and then examined. The 11-12 week mice are examined after 7, 14, and 21 days of treatment. The pancreas and spleen of the mice are removed and analyzed. Tumor number is determined by dissecting out each spherical tumor and counting. Tumor burden is determined by calculating the sum of the volume of all tumors within the pancreas of a mouse. The effect on angiogenesis is determined by calculating the mean number of angiogenic islets observed. Increases in efficacy of MRD-containing antibodies compared to antibodies are observed.
- MRD-containing anti-TNF antibodies are tested in the following in vivo model. Transgenic mice (Tg197) are treated with three intra-peritoneal injections of anti-TNF antibody or ang2-containing TNF antibody at 1.5 μg/g, 15 μg/g, or 30 μg/g as in U.S. Pat. No. 6,258,562, which is incorporated herein by reference in its entirety. Injections continue for about 10 weeks and macroscopic changes in joint morphology are recorded each week. At 10 weeks, mice are sacrificed and microscopic examination of tissue is performed. Joint size is established as an average measurement on the hind right ankle using a micrometer device and arthritic scores are recorded as follows: 1=no arthritis; +/−=mild (joint distortion); ++=moderate arthritis (swelling, joint deformation); and +++=heavy arthritis (ankylosis detected on flexion and severely impaired movement). Histopathological scoring based on haematoxylinleosin staining of joint sections is based as follows; 0=No detectable disease; 1=proliferation of the synovial membrane; 2=heavy
synovial thickening 3=cartilage destruction and bone erosion. Increases in efficacy of MRD-containing antibodies compared to antibodies are observed. - Although the invention has been described with reference to the above examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.
- All publications, patents, patent applications, internet sites, and accession numbers/database sequences (including both polynucleotide and polypeptide sequences) cited are herein incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, internet site, or accession number/database sequence were specifically and individually indicated to be so incorporated by reference.
Claims (31)
1. A complex comprising a modular recognition domain (MRD) capable of binding ANG-2, wherein the MRD comprises an amino acid sequence having the formula
X1X2X3X4X5X6MPMDX11X12EX14X15LYEX19X20X21X22 (SEQ ID NO:125) and wherein:
X1 is 1-10 amino acid residues;
X2 is L, A, V, P, 1, W, F, M, S, N, F, G, T, H, Y, or C;
X3 is N, Q, G, S, T, E, D, Y, M, V, L, or I;
X4 is N, Q, G, S, T, Y, F, E, P, A, or H;
X5 is N, Q, O, S, T, Y, E, H, L, A, V, P, I, W, F, or M;
X6 is V, M, A, F, L, P, I, W, or Y;
X11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, H;
X12 is D, E, N, Q, G, S, T, Y, P, W, K, R, or H;
X14 is A, D, N, G, S, T, Y, V, P, I, W, F, M, K, R, or H;
X15 is V, M, A, F, L, P, I, W, Y, D, E, T, H, or Norleucine;
X19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, K, R, or H;
X20 is E, D, V, M, A, F, L, P, 1, W, Y, K, R, H, or Norleucine;
X21 is V, M, A, F, L, P, I, W, C, Y, or Norleucine; and
X22 is 1-10 amino acid residues.
2. The complex of claim 1 , wherein said MRD comprises an amino acid sequence having the formula X1X2X3X4X5X6MPMDX11X12EX14X15LYEX19X20X21X22 (SEQ ID NO:131) and wherein:
X, is 1-10 amino acid residues;
X2 is A, V, I, or C;
X3 is D, N, or Q;
X4 is S, or T;
X5 is Q, E, or N;
X6 is I, A, V, P, I, W, F, or M;
X11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
X12 is D, E, S, K, or R;
X14 is A, D, G, V, P, I, W, F, M, K, R, or H;
X15 is L, I, or Norleucine;
X19 is A, E, D, G, S, T, Y, L, V, P, 1, W, F, M, K, R, or H;
X20 is L, V, Norleucine, or F;
X21 is L, A, V, I, or Norleucine; and
X22 is 1-10 amino acid residues.
3. The complex of claim 1 , wherein the MRD comprises an amino acid having the formula X1AQTNFMPMDX11X12EX14LLYEX19X20FI (SEQ ID NO:134) wherein:
X1 is 1-10 amino acid residues;
X11 is Q, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H;
X12 is D, E, N, Q, O, S, T, Y, P, W, K, R, or H;
X14 is A, D, G, V, P, I, W, F, M, K, T, or H;
X19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H; and
X20 is E, D, V, M, A, F, L, P, I, W, Y, K, R, H, or Norleucine.
4. The complex of claim 1 , wherein the MRD comprises an amino acid having the formula X1AQTNFMPMDX11X12EX14LLYEX19X20FI (SEQ ID NO:139)) wherein:
X1 is 1-10 amino acid residues;
X11 is Q, Y, V, P, W, F, K, or R;
X12 D, E, N, Q, or G;
X14 is A, D, N, G, S, T, Y, V, P, W, F, M, K, R, or H;
X19 is A, E, D, G, S, T, Y, L, V, P, I, W, F, M, K, R, or H; and
X20 is L, V, Norleucine, or F.
5. The complex of claim 1 , wherein the MRD comprises amino acids AQTNFMPM DQEFALLYEEFI (SEQ ID NO:108).
6. The complex of claim 1 , wherein the MRD comprises amino acids AQTNFMPM DQDEALLYFEEFI (SEQ ID NO:109).
7. The complex of claim 1 , wherein the MRD comprises amino acids AQTNFMPM DQDEALLYEQEQFI (SEQ ID NO 110).
8. The complex of claim 1 , wherein the MRD comprises amino acids AQTNFMPM DQDELLLYEEFI (SEQ ID NO:111).
9. The complex of claim 1 , wherein the MRD is fused to a heterologous protein.
10. The complex of claim 1 , which further comprises an antibody.
11. The complex of claim 10 , wherein the MRD and the antibody are covalently bound.
12. The complex of claim 11 , wherein the antibody binds ANG-2.
13. The complex of claim 11 , wherein the MRD and the antibody bind different targets.
14. The complex of claim 13 , wherein the antibody binds a target selected from: VEGF, EGF, IGF-1, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, VEGFR1, EGFR, PDGFR, ErbB2, ErbB3, IGF-1R, cMET, CD19, and CD20.
15. The complex of claim 14 , wherein the antibody competitively inhibits:
binding of trastuzumab to ErbB2;
binding of pertuzumab to ErbB2;
binding of bevacizumab to VEGF;
binding of cetuximab to EGFR;
binding of panitumumab to EGFR;
binding of zalutumumab to EGFR;
binding of nimotuzumab to EGFR;
binding of matuzumab to EGFR;
binding of figitumumab to IGF1R;
binding of AMG 479 to IGF1R;
binding of cixutumumab to IGF1R;
binding of dalotuzumab to IGF1;
binding of BIIB022 to IGF1; or
binding of MEDI-573 to IGF1.
16. The complex of claim 13 , wherein the antibody binds a target selected from: interferon-alpha, interferon alpha receptor, interferon beta, interferon beta receptor, interferon-gamma, S1PR, integrin avb3, IL-1B, IL-2, IL-4, IL-4R, IL-5, IL-5R, IL-6, IL-6R, IL-7, IL-8, IL-9, IL-9R, IL-10R, IL-12, IL-13, IL-23, IL-15, IL-18, IL-21, ICOS. PD1, and LIF.
17. The complex of claim 13 , wherein the antibody binds TNF.
18. The complex of claim 17 , wherein the antibody competitively inhibits binding of adalimumab, golumimab, or infliximab to TNF.
19. The complex of claim 11 , which further comprises an additional MRD capable of binding a target other than ANG-2.
20. The complex of claim 19 , wherein the MRD binds to a target selected from: VEGF, EGF, IGF-1, FGF1, FGF2, FGF3, FGF4, FGFR1, FGFR2, FGFR3, VEGFR I, EGFR, PDGFR, ErbB2, ErbB3, IGF-1R, cMET, CD19, CD20, TNF alpha, IL-6, interferon-alpha, interferon alpha receptor, interferon beta, interferon beta receptor, interferon-gamma, S1PR, integrin avb3, IL-1B, IL-2, IL-4, IL-4R, IL-5, IL-5R, IL-6, IL-6R, IL-7, IL-8, IL-9. IL-9R, IL-10R, IL-11, IL-12, IL-13, IL-23, IL-15, IL-18, IL-21, ICOS, PD1, and LIF.
21. A polynucleotide encoding a polypeptide fusion comprising the MRD of claim 1 .
22. The polynucleotide of claim 21 wherein the MRD is fused to:
the amino terminus of an antibody heavy chain;
the amino terminus of an antibody light chain;
the carboxyl terminus of an antibody heavy chain; or
the carboxyl terminus of an antibody light chain.
23. A vector comprising the polynucleotide of claim 21 .
24. A host cell comprising the vector of claim 23 .
25. A pharmaceutical composition comprising the complex of claim 1 .
26. A method for producing an MRD capable of binding ANG-2, the method comprising culturing the host cell of claim 24 under conditions wherein the nucleotide sequence encoding the MRD is expressed as a protein and recovering said protein.
27. A method for treating a patient having an inflammatory disorder comprising administering to said patient a therapeutically effective amount of the complex of claim 1 .
28. The method of claim 27 , wherein the inflammatory disorder is an autoimmune disease or an inflammatory bowel disease.
29. The method of claim 28 , wherein the inflammatory bowel disease is Crohn's disease.
30. A method for treating a patient having arthritis comprising administering to said patient a therapeutically effective amount of the complex of claim 1 .
31. The method of claim 30 , wherein the arthritis is rheumatoid arthritis, juvenile idiopathic arthritis, or psoriatic arthritis.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/184,485 US20120100166A1 (en) | 2010-07-15 | 2011-07-15 | Ang-2 Binding Complexes and Uses Thereof |
| US13/840,227 US20130259868A1 (en) | 2010-07-15 | 2013-03-15 | Ang-2 Binding Complexes and Uses Thereof |
| US14/527,656 US9676833B2 (en) | 2010-07-15 | 2014-10-29 | Ang-2-binding modular recognition domain complexes and pharmaceutical compositions thereof |
| US15/589,585 US10087222B2 (en) | 2010-07-15 | 2017-05-08 | Polynucleotides encoding angiopoietin-2 (ang-2) binding polypeptides |
Applications Claiming Priority (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US36477410P | 2010-07-15 | 2010-07-15 | |
| US36476510P | 2010-07-15 | 2010-07-15 | |
| US36476610P | 2010-07-15 | 2010-07-15 | |
| US36476410P | 2010-07-15 | 2010-07-15 | |
| US36477110P | 2010-07-15 | 2010-07-15 | |
| US38364410P | 2010-09-16 | 2010-09-16 | |
| US201161481063P | 2011-04-29 | 2011-04-29 | |
| US201161485505P | 2011-05-12 | 2011-05-12 | |
| US201161485486P | 2011-05-12 | 2011-05-12 | |
| US201161485484P | 2011-05-12 | 2011-05-12 | |
| US201161485502P | 2011-05-12 | 2011-05-12 | |
| US13/184,485 US20120100166A1 (en) | 2010-07-15 | 2011-07-15 | Ang-2 Binding Complexes and Uses Thereof |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/840,227 Continuation US20130259868A1 (en) | 2010-07-15 | 2013-03-15 | Ang-2 Binding Complexes and Uses Thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120100166A1 true US20120100166A1 (en) | 2012-04-26 |
Family
ID=44629519
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/184,485 Abandoned US20120100166A1 (en) | 2010-07-15 | 2011-07-15 | Ang-2 Binding Complexes and Uses Thereof |
| US13/840,227 Abandoned US20130259868A1 (en) | 2010-07-15 | 2013-03-15 | Ang-2 Binding Complexes and Uses Thereof |
| US14/527,656 Active US9676833B2 (en) | 2010-07-15 | 2014-10-29 | Ang-2-binding modular recognition domain complexes and pharmaceutical compositions thereof |
| US15/589,585 Active US10087222B2 (en) | 2010-07-15 | 2017-05-08 | Polynucleotides encoding angiopoietin-2 (ang-2) binding polypeptides |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/840,227 Abandoned US20130259868A1 (en) | 2010-07-15 | 2013-03-15 | Ang-2 Binding Complexes and Uses Thereof |
| US14/527,656 Active US9676833B2 (en) | 2010-07-15 | 2014-10-29 | Ang-2-binding modular recognition domain complexes and pharmaceutical compositions thereof |
| US15/589,585 Active US10087222B2 (en) | 2010-07-15 | 2017-05-08 | Polynucleotides encoding angiopoietin-2 (ang-2) binding polypeptides |
Country Status (2)
| Country | Link |
|---|---|
| US (4) | US20120100166A1 (en) |
| WO (1) | WO2012009705A1 (en) |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012162561A2 (en) | 2011-05-24 | 2012-11-29 | Zyngenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
| WO2014108854A1 (en) | 2013-01-09 | 2014-07-17 | Fusimab Ltd. | Monospecific anti-hgf and anti-ang2 antibodies and bispecific anti-hgf/anti-ang2 antibodies |
| WO2014144600A3 (en) * | 2013-03-15 | 2014-12-31 | Viktor Roschke | Multivalent and monovalent multispecific complexes and their uses |
| US20150047065A1 (en) * | 2012-03-16 | 2015-02-12 | Covagen Ag | Novel binding molecules with antitumoral activity |
| US9193768B2 (en) | 2012-10-18 | 2015-11-24 | Samsung Electronics Co., Ltd. | Peptide for inhibition of binding between angiopoietin-2 and integrin and use thereof |
| US20170010266A1 (en) * | 2014-02-17 | 2017-01-12 | Isis Innovation Limited | Biomarkers and Therapeutic Targets for Sarcoma |
| US9556275B2 (en) | 2013-04-03 | 2017-01-31 | Samsung Electronics Co., Ltd. | Combination therapy using anti-C-met antibody and anti-ang-2 antibody |
| JP2017508446A (en) * | 2014-01-28 | 2017-03-30 | 北京韓美薬品有限公司 | Bifunctional fusion protein and production method and use thereof |
| US9676833B2 (en) | 2010-07-15 | 2017-06-13 | Zyngenia, Inc. | Ang-2-binding modular recognition domain complexes and pharmaceutical compositions thereof |
| US20170327569A1 (en) * | 2016-05-13 | 2017-11-16 | Askgene Pharma Inc. | Novel Angiopoietin 2, VEGF Dual Antagonists |
| US10293025B2 (en) * | 2014-10-24 | 2019-05-21 | Affilogic | Oral administration compositions comprising an OB-fold protein variant |
| US20200055923A1 (en) * | 2016-10-31 | 2020-02-20 | Hexal Ag | Antibody Preparation |
| US10723784B2 (en) | 2013-03-29 | 2020-07-28 | The Regents Of The University Of Colorado, A Body Corporate | Compositions and methods for preparing a subject for organ or non-organ implantation |
| US11066465B2 (en) | 2015-12-30 | 2021-07-20 | Kodiak Sciences Inc. | Antibodies and conjugates thereof |
| US11155610B2 (en) | 2014-06-28 | 2021-10-26 | Kodiak Sciences Inc. | Dual PDGF/VEGF antagonists |
| US11548951B1 (en) | 2020-10-14 | 2023-01-10 | Viridian Therapeutics, Inc. | Compositions and methods for treatment of thyroid eye disease |
| US11584790B2 (en) * | 2017-04-14 | 2023-02-21 | Kodiak Sciences Inc. | Complement factor D antagonist antibodies and conjugates thereof |
| US20240043549A1 (en) * | 2015-02-03 | 2024-02-08 | Als Therapy Development Institute | Anti-cd40l antibodies and methods for treating cd40l-related diseases or disorders |
| US11912784B2 (en) | 2019-10-10 | 2024-02-27 | Kodiak Sciences Inc. | Methods of treating an eye disorder |
| US12071476B2 (en) | 2018-03-02 | 2024-08-27 | Kodiak Sciences Inc. | IL-6 antibodies and fusion constructs and conjugates thereof |
| US12404337B2 (en) | 2021-08-10 | 2025-09-02 | Viridian Therapeutics, Inc. | Compositions, doses, and methods for treatment of thyroid eye disease |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8454960B2 (en) | 2008-01-03 | 2013-06-04 | The Scripps Research Institute | Multispecific antibody targeting and multivalency through modular recognition domains |
| AU2008346734A1 (en) | 2008-01-03 | 2009-07-16 | The Scripps Research Institute | Antibody targeting through a modular recognition domain |
| US8574577B2 (en) | 2008-01-03 | 2013-11-05 | The Scripps Research Institute | VEGF antibodies comprising modular recognition domains |
| US8557243B2 (en) | 2008-01-03 | 2013-10-15 | The Scripps Research Institute | EFGR antibodies comprising modular recognition domains |
| US8557242B2 (en) | 2008-01-03 | 2013-10-15 | The Scripps Research Institute | ERBB2 antibodies comprising modular recognition domains |
| BR112016005408B1 (en) * | 2013-09-13 | 2023-03-21 | Beigene Switzerland Gmbh | ANTI-PD1, F(AB) OR F(AB)2 ANTIBODIES AND REFERRED USE ANTIBODY FOR TREATMENT OF CANCER OR VIRAL INFECTION |
| AR100271A1 (en) | 2014-05-19 | 2016-09-21 | Lilly Co Eli | VEGFR2 / ANG2 COMPOUNDS |
| KR102130600B1 (en) | 2014-07-03 | 2020-07-08 | 베이진 엘티디 | Anti-PD-L1 Antibodies and Their Use as Therapeutics and Diagnostics |
| NZ728688A (en) | 2014-07-22 | 2023-06-30 | Cb Therapeutics Inc | Anti-pd-1 antibodies |
| EP3177649B1 (en) | 2014-08-05 | 2024-02-28 | Apollomics Inc. | Anti-pd-l1 antibodies |
| KR102259232B1 (en) | 2014-08-25 | 2021-05-31 | 삼성전자주식회사 | Anti-c-Met/anti-Ang2 bispecific antibody |
| AR103477A1 (en) | 2015-01-28 | 2017-05-10 | Lilly Co Eli | VEGFA / ANG2 COMPOUNDS |
| CA2992788A1 (en) | 2015-08-14 | 2017-02-23 | Allergan, Inc. | Heavy chain only antibodies to pdgf |
| EA201891341A1 (en) | 2015-12-04 | 2018-11-30 | Новартис Аг | ANTIQUE-CYTOKINE PRIMED COMPOSITIONS AND METHODS OF APPLICATION FOR IMMUNOREGULATION |
| JP6871948B2 (en) | 2016-04-27 | 2021-05-19 | アッヴィ・インコーポレイテッド | Treatment of Diseases with Harmful IL-13 Activity Using Anti-IL-13 Antibodies |
| US10864203B2 (en) | 2016-07-05 | 2020-12-15 | Beigene, Ltd. | Combination of a PD-1 antagonist and a RAF inhibitor for treating cancer |
| HUE065528T2 (en) | 2016-08-19 | 2024-06-28 | Beigene Switzerland Gmbh | Combination of zanubrutinib with an anti-cd20 or an anti-pd-1 antibody for use in treating cancer |
| EP3573989A4 (en) | 2017-01-25 | 2020-11-18 | Beigene, Ltd. | CRYSTALLINE FORMS OF (S) -7- (1- (BUT-2-YNOYL) -PIPERIDINE-4-YL) -2- (4-PHENOXYPHENYL) -4,5,6,7-TETRAHYDROPYRAZOLO [1,5-A ] PYRIMIDINE-3-CARBOXAMIDE, MANUFACTURING AND USES THEREOF |
| EP3615075A4 (en) | 2017-04-24 | 2021-01-20 | Ohio State Innovation Foundation | Recombinant egfl7, egfl7 antibodies, and uses thereof |
| JOP20190271A1 (en) | 2017-05-24 | 2019-11-21 | Novartis Ag | Antibody-cytokine engrafted proteins and methods of use for immune related disorders |
| MY206158A (en) | 2017-05-24 | 2024-12-02 | Novartis Ag | Antibody-cytokine engrafted proteins and methods of use in the treatment of cancer |
| KR102757960B1 (en) | 2017-06-26 | 2025-01-22 | 베이진 엘티디 | Immunotherapy for hepatocellular carcinoma (HCC) |
| EP3661536A4 (en) * | 2017-08-03 | 2021-07-21 | Asclepix Therapeutics, Inc. | PROCESS FOR IDENTIFICATION AND MANUFACTURING OF PHARMACEUTICAL INGREDIENTS FOR ACTIVATING A TIE2 RECEPTOR |
| EP3483180A1 (en) * | 2017-11-14 | 2019-05-15 | Affilogic | Multi specific molecules |
| US11786529B2 (en) | 2017-11-29 | 2023-10-17 | Beigene Switzerland Gmbh | Treatment of indolent or aggressive B-cell lymphomas using a combination comprising BTK inhibitors |
Family Cites Families (206)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4714681A (en) | 1981-07-01 | 1987-12-22 | The Board Of Reagents, The University Of Texas System Cancer Center | Quadroma cells and trioma cells and methods for the production of same |
| US4474893A (en) | 1981-07-01 | 1984-10-02 | The University of Texas System Cancer Center | Recombinant monoclonal antibodies |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US6054561A (en) | 1984-02-08 | 2000-04-25 | Chiron Corporation | Antigen-binding sites of antibody molecules specific for cancer antigens |
| JPS6147500A (en) | 1984-08-15 | 1986-03-07 | Res Dev Corp Of Japan | Chimeric monoclonal antibody and its production method |
| EP0173494A3 (en) | 1984-08-27 | 1987-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by dna splicing and expression |
| GB8422238D0 (en) | 1984-09-03 | 1984-10-10 | Neuberger M S | Chimeric proteins |
| EP0247091B1 (en) | 1985-11-01 | 1993-09-29 | Xoma Corporation | Modular assembly of antibody genes, antibodies prepared thereby and use |
| US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
| US5720937A (en) | 1988-01-12 | 1998-02-24 | Genentech, Inc. | In vivo tumor detection assay |
| WO1989006692A1 (en) | 1988-01-12 | 1989-07-27 | Genentech, Inc. | Method of treating tumor cells by inhibiting growth factor receptor function |
| US4925648A (en) | 1988-07-29 | 1990-05-15 | Immunomedics, Inc. | Detection and treatment of infectious and inflammatory lesions |
| US5601819A (en) | 1988-08-11 | 1997-02-11 | The General Hospital Corporation | Bispecific antibodies for selective immune regulation and for selective immune cell binding |
| US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
| AU4128089A (en) | 1988-09-15 | 1990-03-22 | Rorer International (Overseas) Inc. | Monoclonal antibodies specific to human epidermal growth factor receptor and therapeutic methods employing same |
| GB8823869D0 (en) | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
| FI903489A7 (en) | 1988-11-11 | 1990-07-10 | Medical Res Council | Ligands containing one moiety, receptors containing these ligands, methods for their preparation and uses of the ligands and receptors |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| ATE144793T1 (en) | 1989-06-29 | 1996-11-15 | Medarex Inc | BISPECIFIC REAGENTS FOR AIDS THERAPY |
| US5413923A (en) | 1989-07-25 | 1995-05-09 | Cell Genesys, Inc. | Homologous recombination for universal donor cells and chimeric mammalian hosts |
| US5196193A (en) | 1989-10-31 | 1993-03-23 | Ophidian Pharmaceuticals, Inc. | Antivenoms and methods for making antivenoms |
| DK0463151T3 (en) | 1990-01-12 | 1996-07-01 | Cell Genesys Inc | Generation of xenogenic antibodies |
| US5723286A (en) | 1990-06-20 | 1998-03-03 | Affymax Technologies N.V. | Peptide library and screening systems |
| GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
| US6172197B1 (en) | 1991-07-10 | 2001-01-09 | Medical Research Council | Methods for producing members of specific binding pairs |
| US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
| US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
| KR100272077B1 (en) | 1990-08-29 | 2000-11-15 | 젠팜인터내셔날,인코포레이티드 | Transgenic non-human animals capable of producing heterologous antibodies |
| US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
| US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
| CA2093022C (en) | 1990-10-05 | 2005-02-22 | Michael W. Fanger | Targeted immunostimulation with bispecific reagents |
| EP0557300B1 (en) | 1990-10-29 | 1997-11-19 | Chiron Corporation | Bispecific antibodies, method of production, and uses thereof |
| ES2113940T3 (en) | 1990-12-03 | 1998-05-16 | Genentech Inc | ENRICHMENT METHOD FOR PROTEIN VARIANTS WITH ALTERED UNION PROPERTIES. |
| ES2093778T3 (en) | 1991-04-26 | 1997-01-01 | Surface Active Ltd | NEW ANTIBODIES AND METHODS FOR USE. |
| US6407213B1 (en) | 1991-06-14 | 2002-06-18 | Genentech, Inc. | Method for making humanized antibodies |
| US6800738B1 (en) | 1991-06-14 | 2004-10-05 | Genentech, Inc. | Method for making humanized antibodies |
| US5637481A (en) | 1993-02-01 | 1997-06-10 | Bristol-Myers Squibb Company | Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell |
| US5733731A (en) | 1991-10-16 | 1998-03-31 | Affymax Technologies N.V. | Peptide library and screening method |
| US5270170A (en) | 1991-10-16 | 1993-12-14 | Affymax Technologies N.V. | Peptide library and screening method |
| US6027725A (en) | 1991-11-25 | 2000-02-22 | Enzon, Inc. | Multivalent antigen-binding proteins |
| ES2227512T3 (en) | 1991-12-02 | 2005-04-01 | Medical Research Council | PRODUCTION OF ANTIBODIES AGAINST SELF-ANTIGENS FROM REPERTORIES OF ANTIBODY SEGMENTS FIXED IN A PHOTO. |
| ATE239506T1 (en) | 1992-03-05 | 2003-05-15 | Univ Texas | USE OF IMMUNOCONJUGATES FOR THE DIAGNOSIS AND/OR THERAPY OF VASCULARIZED TUMORS |
| US5877289A (en) | 1992-03-05 | 1999-03-02 | The Scripps Research Institute | Tissue factor compositions and ligands for the specific coagulation of vasculature |
| US5965132A (en) | 1992-03-05 | 1999-10-12 | Board Of Regents, The University Of Texas System | Methods and compositions for targeting the vasculature of solid tumors |
| EP0574048B1 (en) | 1992-03-13 | 2002-08-14 | Organon Teknika B.V. | Peptides and nucleic acid sequences related to Epstein Barr Virus |
| JPH06105020B2 (en) | 1992-06-09 | 1994-12-21 | ホッペ・アーゲー | Latch and lockup system |
| WO1994007921A1 (en) | 1992-09-25 | 1994-04-14 | Commonwealth Scientific And Industrial Research Organisation | Target binding polypeptide |
| WO1994018221A1 (en) | 1993-02-02 | 1994-08-18 | The Scripps Research Institute | Methods for producing polypeptide binding sites |
| US6733752B1 (en) | 1994-03-30 | 2004-05-11 | The Trustees Of The University Of Pennsylvania | Prevention of tumors with monoclonal antibodies against neu |
| US5922545A (en) | 1993-10-29 | 1999-07-13 | Affymax Technologies N.V. | In vitro peptide and antibody display libraries |
| SE9400088D0 (en) | 1994-01-14 | 1994-01-14 | Kabi Pharmacia Ab | Bacterial receptor structures |
| AU692239B2 (en) | 1994-03-07 | 1998-06-04 | Medarex, Inc. | Bispecific molecules having clinical utilities |
| US5733757A (en) | 1995-12-15 | 1998-03-31 | The Scripps Research Institute | Aldolase catalytic antibody |
| US5814464A (en) | 1994-10-07 | 1998-09-29 | Regeneron Pharma | Nucleic acids encoding TIE-2 ligand-2 |
| US7063840B2 (en) | 1994-10-07 | 2006-06-20 | Regeneron Pharmaceuticals, Inc. | TIE-2 ligands, methods of making and uses thereof |
| US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
| ATE390933T1 (en) | 1995-04-27 | 2008-04-15 | Amgen Fremont Inc | HUMAN ANTIBODIES AGAINST IL-8 DERIVED FROM IMMUNIZED XENOMICES |
| WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| EP0873363B1 (en) | 1995-06-14 | 2010-10-06 | The Regents of The University of California | High affinity human antibodies to tumor antigens |
| DK2275119T3 (en) | 1995-07-27 | 2013-11-11 | Genentech Inc | Stable, isotonic lyophilized protein formulation |
| US6267958B1 (en) | 1995-07-27 | 2001-07-31 | Genentech, Inc. | Protein formulation |
| US7264963B1 (en) | 1995-08-18 | 2007-09-04 | Morphosys Ag | Protein(poly)peptide libraries |
| JP4436457B2 (en) | 1995-08-18 | 2010-03-24 | モルフォシス アイピー ゲーエムベーハー | Protein / (poly) peptide library |
| AU7378096A (en) | 1995-09-28 | 1997-04-17 | Alexion Pharmaceuticals, Inc. | Porcine cell interaction proteins |
| US5783186A (en) | 1995-12-05 | 1998-07-21 | Amgen Inc. | Antibody-induced apoptosis |
| CN103275221B (en) | 1996-02-09 | 2016-08-17 | 艾伯维生物技术有限公司 | People's antibody in conjunction with human TNF alpha |
| US6194177B1 (en) | 1996-02-20 | 2001-02-27 | Applied Research Systems Ars Holding N.V. | DNA encoding a hybrid heterodimeric protein |
| JP2001512560A (en) | 1996-10-08 | 2001-08-21 | ユー―ビスイス ベスローテン フェンノートシャップ | Methods and means for the selection of peptides and proteins with specific affinity for a target |
| US5916771A (en) | 1996-10-11 | 1999-06-29 | Abgenix, Inc. | Production of a multimeric protein by cell fusion method |
| KR100643058B1 (en) | 1996-12-03 | 2006-11-13 | 아브게닉스, 인크. | Transgenic mammals having human ig loci including plural vh and vk regions and antibodies produced therefrom |
| DK0979281T3 (en) | 1997-05-02 | 2005-11-21 | Genentech Inc | Process for the preparation of multispecific antibodies with heteromultimers and common components |
| US20020062010A1 (en) | 1997-05-02 | 2002-05-23 | Genentech, Inc. | Method for making multispecific antibodies having heteromultimeric and common components |
| ATE319745T1 (en) | 1997-05-21 | 2006-03-15 | Biovation Ltd | METHOD FOR PRODUCING NON-IMMUNOGENIC PROTEINS |
| DK0985039T3 (en) | 1997-06-12 | 2008-06-09 | Novartis Int Pharm Ltd | Artificial antibody polypeptides |
| US6207805B1 (en) | 1997-07-18 | 2001-03-27 | University Of Iowa Research Foundation | Prostate cell surface antigen-specific antibodies |
| AU8619698A (en) | 1997-07-25 | 1999-02-16 | Ban C. H. Tsui | Devices, systems and methods for determining proper placement of epidural catheters |
| US6417168B1 (en) | 1998-03-04 | 2002-07-09 | The Trustees Of The University Of Pennsylvania | Compositions and methods of treating tumors |
| CN1305896C (en) | 1998-05-06 | 2007-03-21 | 基因技术股份有限公司 | Protein purification by ion exchange chromatography |
| EP1113810B1 (en) | 1998-09-14 | 2008-12-31 | Board of Regents, The University of Texas System | Methods of treating multiple myeloma and myeloma-induced bone resorption using antagonists of integrin / receptor binding |
| US6660843B1 (en) | 1998-10-23 | 2003-12-09 | Amgen Inc. | Modified peptides as therapeutic agents |
| AU776910B2 (en) | 1998-12-08 | 2004-09-23 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Modifying protein immunogenicity |
| US6897044B1 (en) | 1999-01-28 | 2005-05-24 | Biogen Idec, Inc. | Production of tetravalent antibodies |
| ES2313883T3 (en) | 1999-02-12 | 2009-03-16 | The Scripps Research Institute | PROCEDURES FOR TUMORS AND METASTASIS TREATMENT USING A COMBINATION OF ANTIANGIOGENIC THERAPIES AND IMMUNOTHERAPIES. |
| US7527787B2 (en) | 2005-10-19 | 2009-05-05 | Ibc Pharmaceuticals, Inc. | Multivalent immunoglobulin-based bioactive assemblies |
| US6268488B1 (en) | 1999-05-25 | 2001-07-31 | Barbas, Iii Carlos F. | Prodrug activation using catalytic antibodies |
| US6787637B1 (en) | 1999-05-28 | 2004-09-07 | Neuralab Limited | N-Terminal amyloid-β antibodies |
| US6521424B2 (en) | 1999-06-07 | 2003-02-18 | Immunex Corporation | Recombinant expression of Tek antagonists |
| PT1187918E (en) | 1999-06-07 | 2006-08-31 | Immunex Corp | TEK ANTAGONISTS |
| US6949245B1 (en) | 1999-06-25 | 2005-09-27 | Genentech, Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
| IL147017A0 (en) | 1999-06-25 | 2002-08-14 | Genentech Inc | TREATING PROSTATE CANCER WITH ANTI-ErbB2 ANTIBODIES |
| BRPI0012198B8 (en) | 1999-06-25 | 2021-05-25 | Genentech Inc | humanized antibodies, composition and immunoconjugate |
| WO2001002588A2 (en) | 1999-07-02 | 2001-01-11 | Morphosys Ag | Generation of specific binding partners binding to (poly)peptides encoded by genomic dna fragments or ests |
| DE60042693D1 (en) | 1999-08-27 | 2009-09-17 | Genentech Inc | DOSAGE FOR TREATMENT WITH ANTI ERBB2 ANTIBODIES |
| US20040001827A1 (en) | 2002-06-28 | 2004-01-01 | Dennis Mark S. | Serum albumin binding peptides for tumor targeting |
| US20050287153A1 (en) | 2002-06-28 | 2005-12-29 | Genentech, Inc. | Serum albumin binding peptides for tumor targeting |
| US20040191260A1 (en) | 2003-03-26 | 2004-09-30 | Technion Research & Development Foundation Ltd. | Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof |
| KR20020093029A (en) | 2000-04-11 | 2002-12-12 | 제넨테크, 인크. | Multivalent Antibodies And Uses Therefor |
| AU2001257174A1 (en) | 2000-04-21 | 2001-11-07 | Amgen Inc. | Integrin/adhesion antagonists |
| KR20130056201A (en) | 2000-05-19 | 2013-05-29 | 제넨테크, 인크. | Gene detection assay for improving the likelihood of an effective response to an erbb antagonist cancer therapy |
| US7194128B1 (en) | 2000-07-26 | 2007-03-20 | Lockheed Martin Corporation | Data compression using principal components transformation |
| ATE479761T1 (en) | 2000-07-31 | 2010-09-15 | Biolex Therapeutics Inc | EXPRESSION OF BIOLOGICALLY ACTIVE POLYPEPTIDES IN DUSTHETS |
| US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
| US7105348B2 (en) | 2000-10-31 | 2006-09-12 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
| US20040052785A1 (en) | 2001-01-09 | 2004-03-18 | Simon Goodman | Combination therapy using receptor tyrosine kinase inhibitors and angiogenesis inhibitors |
| AU2002327164A1 (en) | 2001-01-29 | 2002-12-09 | Idec Pharmaceuticals Corporation | Engineered tetravalent antibodies and methods of use |
| KR20040074587A (en) | 2001-02-19 | 2004-08-25 | 메르크 파텐트 게엠베하 | Artificial proteins with reduced immunogenicity |
| JP4234438B2 (en) | 2001-03-07 | 2009-03-04 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Expression technology of protein containing hybrid isotype antibody part |
| US20030020733A1 (en) | 2001-07-24 | 2003-01-30 | Yin Memphis Zhihong | Computer display having selective area magnification |
| IL145035A0 (en) | 2001-08-21 | 2002-06-30 | Yeda Res & Dev | Molecular linkers suitable for crystallization and structural analysis of molecules of interest and method of using same |
| US7521053B2 (en) | 2001-10-11 | 2009-04-21 | Amgen Inc. | Angiopoietin-2 specific binding agents |
| US7205275B2 (en) * | 2001-10-11 | 2007-04-17 | Amgen Inc. | Methods of treatment using specific binding agents of human angiopoietin-2 |
| US7138370B2 (en) | 2001-10-11 | 2006-11-21 | Amgen Inc. | Specific binding agents of human angiopoietin-2 |
| US7658924B2 (en) | 2001-10-11 | 2010-02-09 | Amgen Inc. | Angiopoietin-2 specific binding agents |
| EP2359685B1 (en) | 2001-12-27 | 2013-12-04 | GlycoFi, Inc. | Methods to engineer mammalian-type carbohydrate structures |
| US20040002587A1 (en) | 2002-02-20 | 2004-01-01 | Watkins Jeffry D. | Fc region variants |
| EP1485492B1 (en) | 2002-03-19 | 2011-12-21 | Stichting Dienst Landbouwkundig Onderzoek | Gntiii (udp-n-acetylglucosamine:beta-d mannoside beta(1,4)-n-acetylglucosaminyltransferase iii) expression in plants |
| US7736652B2 (en) | 2002-03-21 | 2010-06-15 | The Regents Of The University Of California | Antibody fusion proteins: effective adjuvants of protein vaccination |
| US20070003514A1 (en) | 2002-04-05 | 2007-01-04 | The Regents Of The University Of California | Mono-and bi-functional antibody conjugates as effective adjuvants of protein vaccination |
| ATE328906T1 (en) | 2002-06-28 | 2006-06-15 | Domantis Ltd | DUAL-SPECIFIC LIGANDS WITH INCREASED HALF-LIFE |
| US20070104710A1 (en) | 2002-06-28 | 2007-05-10 | Domants Limited | Ligand that has binding specificity for IL-4 and/or IL-13 |
| BR0312534A (en) | 2002-07-15 | 2007-03-13 | Genentech Inc | Tumor identification method, Tumor cell identification method, Method for predicting the response of an individual diagnosed with a her2-positive tumor, Method for identification of an individual responsive to anti-her2 antibody treatment and Methods of treatment of a patient and article of manufacture |
| WO2006028429A2 (en) | 2002-08-05 | 2006-03-16 | The Johns Hopkins University | Peptides for targeting the prostate specific membrane antigen |
| WO2004024927A1 (en) | 2002-09-12 | 2004-03-25 | Greenovation Biotech Gmbh | Protein production method |
| US20040057969A1 (en) | 2002-09-20 | 2004-03-25 | Smith Mark L | Compositions containing stabilized hepatitis antigen and methods of their use |
| US9809654B2 (en) | 2002-09-27 | 2017-11-07 | Vaccinex, Inc. | Targeted CD1d molecules |
| US7541440B2 (en) | 2002-09-30 | 2009-06-02 | Immunomedics, Inc. | Chimeric, human and humanized anti-granulocyte antibodies and methods of use |
| KR20050065587A (en) | 2002-10-08 | 2005-06-29 | 이뮤노메딕스, 인코오포레이티드 | Antibody therapy |
| DK1549344T3 (en) | 2002-10-10 | 2015-04-07 | Merck Patent Gmbh | PHARMACEUTICAL COMPOSITION FOR ERB-B1 RECEPTORS |
| US7781197B2 (en) | 2002-12-20 | 2010-08-24 | Greenovation Biotech Gmbh | Transformed bryophyte cell having disrupted endogenous alpha 1,3-fucosyl and beta 1,2-xylosyl transferase encoding nucleotide sequences for the production of heterologous glycosylated proteins |
| DE602004028337D1 (en) | 2003-01-22 | 2010-09-09 | Glycart Biotechnology Ag | FUSION CONSTRUCTS AND ITS USE IN ANTIBODY PRODUCTION WITH INCREASED FC RECEPTOR BINDING SAFFINITY AND EFFECTOR FUNCTION |
| US7563869B2 (en) | 2003-01-23 | 2009-07-21 | Ono Pharmaceutical Co., Ltd. | Substance specific to human PD-1 |
| US6902962B2 (en) | 2003-04-04 | 2005-06-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicon-on-insulator chip with multiple crystal orientations |
| CA2534639C (en) | 2003-07-31 | 2013-07-30 | Immunomedics, Inc. | Anti-cd19 antibodies |
| GB0320878D0 (en) | 2003-09-05 | 2003-10-08 | Celltech R&D Ltd | A protein involved in carcinoma |
| CA2538141A1 (en) | 2003-09-09 | 2005-03-17 | Gpc Biotech Ag | Therapeutic human anti-mhc class ii antibodies and their uses |
| DK1709081T3 (en) | 2004-01-16 | 2011-06-06 | Regeneron Pharma | Fusion polypeptides that can activate receptors |
| WO2005089409A2 (en) | 2004-03-17 | 2005-09-29 | University Of Hawaii | Sensor constructs and detection methods |
| CN1997382A (en) | 2004-05-05 | 2007-07-11 | 梅里麦克制药股份有限公司 | Bispecific binding agents that modulate biological activity |
| MX2007001345A (en) | 2004-08-04 | 2008-03-11 | Applied Molecular Evolution | Variant fc regions. |
| CA2580796C (en) | 2004-09-24 | 2013-03-26 | Amgen Inc. | Modified fc molecules having peptides inserted in internal loop regions |
| WO2007001457A2 (en) | 2004-11-12 | 2007-01-04 | Xencor, Inc. | Antibodies operably linked to selected chemoattractants |
| EP1819731A4 (en) | 2004-12-08 | 2013-02-13 | Immunomedics Inc | Methods and compositions for immunotherapy and detection of inflammatory and immune-dysregulatory disease, infectious disease, pathologic angiogenesis and cancer |
| KR101017301B1 (en) | 2004-12-21 | 2011-02-28 | 메드임뮨 리미티드 | Antibodies to Angiopoietin-2 and Uses thereof |
| KR20130105885A (en) | 2005-01-05 | 2013-09-26 | 에프-스타 비오테크놀로기쉐 포르슝스 운드 엔트비클룽스게스.엠.베.하. | Synthetic immunoglobulin domains with binding properties engineered in regions of the molecule different from the complementarity determining regions |
| KR20150083139A (en) | 2005-01-21 | 2015-07-16 | 제넨테크, 인크. | Fixed dosing of her antibodies |
| US7700099B2 (en) | 2005-02-14 | 2010-04-20 | Merck & Co., Inc. | Non-immunostimulatory antibody and compositions containing the same |
| KR20070114765A (en) | 2005-02-23 | 2007-12-04 | 메리맥 파마슈티컬즈, 인크. | Bispecific Binders for Modulating Biological Activity |
| EP1896503B1 (en) | 2005-05-31 | 2014-10-29 | Board of Regents, The University of Texas System | IgG1 ANTIBODIES WITH MUTATED Fc PORTION FOR INCREASED BINDING TO FcRn RECEPTOR AND USES TEHEREOF |
| CA2615122A1 (en) | 2005-08-03 | 2007-02-15 | Immunogen, Inc. | Immunoconjugate formulations |
| US8008453B2 (en) | 2005-08-12 | 2011-08-30 | Amgen Inc. | Modified Fc molecules |
| EP2495257A3 (en) | 2005-08-19 | 2012-10-17 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
| US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
| WO2007097812A2 (en) | 2005-11-03 | 2007-08-30 | Genentech, Inc. | Therapeutic anti-her2 antibody fusion polypeptides |
| EP1790358A1 (en) | 2005-11-23 | 2007-05-30 | Université de Reims Champagne-Ardennes | Protein constructs designed for targeting and lysis of cells |
| EP1963370A1 (en) | 2005-12-06 | 2008-09-03 | Domantis Limited | Bispecific ligands with binding specificity to cell surface targets and methods of use therefor |
| EA013878B1 (en) | 2005-12-06 | 2010-08-30 | Домантис Лимитед | Ligands that have binding specificity for egfr and/or vegf and methods of use therefor |
| AU2006324477A1 (en) | 2005-12-15 | 2007-06-21 | Medimmune Limited | Combination of angiopoietin-2 antagonist and of VEGF-A, KDR and/or Flt1 antagonist for treating cancer |
| CN103242451B (en) | 2005-12-16 | 2017-11-21 | Ibc医药公司 | Immunoglobulin-based multivalent bioactive assemblies |
| WO2007084692A2 (en) | 2006-01-20 | 2007-07-26 | Welson Pharmaceuticals, Inc. | Immunoconjugates for treatment of infectious diseases |
| AR059066A1 (en) | 2006-01-27 | 2008-03-12 | Amgen Inc | COMBINATIONS OF THE ANGIOPOYETINE INHIBITOR -2 (ANG2) AND THE VASCULAR ENDOTELIAL GROWTH FACTOR INHIBITOR (VEGF) |
| CN106986941B (en) | 2006-02-02 | 2021-12-31 | 综合医院公司 | Engineering antibody-stress protein fusions |
| EP1820513A1 (en) | 2006-02-15 | 2007-08-22 | Trion Pharma Gmbh | Destruction of tumor cells expressing low to medium levels of tumor associated target antigens by trifunctional bispecific antibodies |
| WO2007095746A1 (en) | 2006-02-24 | 2007-08-30 | Arius Research Inc. | Cancerous disease modifying antibodies |
| AU2007225044C1 (en) | 2006-03-15 | 2018-03-29 | Alexion Pharmaceuticals, Inc. | Treatment of paroxysmal nocturnal hemoglobinuria patients by an inhibitor of complement |
| US20100021379A1 (en) | 2006-06-29 | 2010-01-28 | The Regents Of The University Of California | Chemical Antibodies for Immunotherapy and Imaging |
| AT503889B1 (en) | 2006-07-05 | 2011-12-15 | Star Biotechnologische Forschungs Und Entwicklungsges M B H F | MULTIVALENT IMMUNE LOBULINE |
| BRPI0714728A2 (en) | 2006-08-04 | 2013-05-14 | Astrazeneca Ab | targeted binding agent, antibody, composition, isolated cell line isolated nucleic acid molecule, vector, host cell, methods for making a targeted binding agent, for isolating an antibody or antigen binding portion thereof, for making an antibody human monoclonal construct, to treat, prevent or alleviate the symptoms of a disorder, to inhibit the proliferation of a cancer cell, to inhibit an erbb2 activity in an erbb2 expressing cell, and to modulate an erbb2 activity in an erbb2 expressing cell. and non-human transgenic animal or transgenic plant |
| EP1892248A1 (en) | 2006-08-21 | 2008-02-27 | Eidgenössische Technische Hochschule Zürich | Specific and high affinity binding proteins comprising modified SH3 domains of FYN kinase |
| EP2083017A4 (en) | 2006-09-14 | 2011-01-12 | Med & Biological Lab Co Ltd | Antibody having enhanced adcc activity and method for production thereof |
| DK2076290T3 (en) | 2006-10-27 | 2017-01-23 | Sunnybrook Health Sciences Center | MULTIMERIC TIE 2 AGONISTS AND APPLICATIONS THEREOF IN STIMULATING ANGIOGENESIS |
| WO2008070042A2 (en) | 2006-12-04 | 2008-06-12 | Medimmune, Inc. | High potency recombinant antibodies, methods for producing them and use in cancer therapy |
| KR20140148491A (en) | 2006-12-19 | 2014-12-31 | 제넨테크, 인크. | Vegf-specific antagonists for adjuvant and neoadjuvant therapy and the treatment of early stage tumors |
| JP2010516675A (en) | 2007-01-17 | 2010-05-20 | イミューノメディクス、インコーポレイテッド | Recognition moieties for polymer carriers of therapeutic agents and antibody-based targeting of disease sites |
| EP2684889A3 (en) | 2007-02-02 | 2014-03-05 | Baylor Research Institute | Multivariable antigens complexed with targeting humanized monoclonal antibody |
| US10259860B2 (en) | 2007-02-27 | 2019-04-16 | Aprogen Inc. | Fusion proteins binding to VEGF and angiopoietin |
| NZ578824A (en) | 2007-03-02 | 2012-03-30 | Genentech Inc | Predicting response to a her dimerisation inhibitor based on low her3 expression |
| EP2139524A1 (en) | 2007-03-23 | 2010-01-06 | The Governors of the University of Alberta | Multivalent heterobifunctional polymers and methods of their use |
| EP2650018A3 (en) | 2007-05-14 | 2014-09-03 | The University of Chicago | Antibody-LIGHT fusion products for cancer therapeutics |
| AU2008282218A1 (en) | 2007-07-31 | 2009-02-05 | Medimmune, Llc | Multispecific epitope binding proteins and uses thereof |
| CA2705292C (en) | 2007-11-13 | 2016-06-21 | Teva Biopharmaceuticals Usa, Inc. | Humanized antibodies against tl1a |
| CA2706419A1 (en) | 2007-11-30 | 2009-06-04 | Glaxo Group Limited | Antigen-binding constructs binding il-13 |
| US8454960B2 (en) | 2008-01-03 | 2013-06-04 | The Scripps Research Institute | Multispecific antibody targeting and multivalency through modular recognition domains |
| AU2008346734A1 (en) | 2008-01-03 | 2009-07-16 | The Scripps Research Institute | Antibody targeting through a modular recognition domain |
| US8557243B2 (en) | 2008-01-03 | 2013-10-15 | The Scripps Research Institute | EFGR antibodies comprising modular recognition domains |
| US8557242B2 (en) | 2008-01-03 | 2013-10-15 | The Scripps Research Institute | ERBB2 antibodies comprising modular recognition domains |
| US20140127200A1 (en) | 2008-01-03 | 2014-05-08 | The Scripps Research Institute | Multispecific Antibody Targeting and Multivalency Through Modular Recognition Domains |
| US8574577B2 (en) | 2008-01-03 | 2013-11-05 | The Scripps Research Institute | VEGF antibodies comprising modular recognition domains |
| US8507656B2 (en) | 2008-01-28 | 2013-08-13 | Medimmune Limited | Stabilized angiopoietin-2 antibodies and uses thereof |
| JO2913B1 (en) | 2008-02-20 | 2015-09-15 | امجين إنك, | Antibodies directed to angiopoietin-1 and angiopoietin-2 and uses thereof |
| EP2113255A1 (en) | 2008-05-02 | 2009-11-04 | f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. | Cytotoxic immunoglobulin |
| WO2009142460A2 (en) | 2008-05-23 | 2009-11-26 | Samsung Electronics Co., Ltd. | Antibody-peptide fused synergibody |
| EP2671891A3 (en) * | 2008-06-27 | 2014-03-05 | Amgen Inc. | Ang-2 inhibition to treat multiple sclerosis |
| AU2009275135A1 (en) | 2008-07-21 | 2010-01-28 | Compugen Ltd. | Angiopoietin derived peptides |
| US8268314B2 (en) * | 2008-10-08 | 2012-09-18 | Hoffmann-La Roche Inc. | Bispecific anti-VEGF/anti-ANG-2 antibodies |
| US8858940B2 (en) | 2008-12-10 | 2014-10-14 | Ablynx N.V. | Amino acid sequences directed against the Angiopoietin/Tie system and polypeptides comprising the same for the treatment of diseases and disorders related to angiogenesis |
| US8133979B2 (en) | 2008-12-16 | 2012-03-13 | Hoffmann-La Roche Inc. | Antibodies against human angiopoietin 2 |
| CA2755336C (en) | 2009-03-20 | 2015-07-14 | Amgen Inc. | Carrier immunoglobulins and uses thereof |
| US8703132B2 (en) | 2009-06-18 | 2014-04-22 | Hoffmann-La Roche, Inc. | Bispecific, tetravalent antigen binding proteins |
| DK2448462T3 (en) | 2009-07-03 | 2015-01-12 | Myra Ind Design Ab | toilet system |
| JO3182B1 (en) | 2009-07-29 | 2018-03-08 | Regeneron Pharma | Human antibiotics with high pH generation - 2 |
| KR101688522B1 (en) | 2009-12-15 | 2016-12-21 | 삼성전자주식회사 | Angiopoietin-2 specific antibodies and uses thereof |
| US20120100166A1 (en) | 2010-07-15 | 2012-04-26 | Zyngenia, Inc. | Ang-2 Binding Complexes and Uses Thereof |
| CA2827170A1 (en) | 2011-02-11 | 2012-08-16 | David M. Hilbert | Monovalent and multivalent multispecific complexes and uses thereof |
| ES2704038T3 (en) | 2011-05-24 | 2019-03-13 | Zyngenia Inc | Multivalent and monovalent multispecific complexes and their uses |
| CN105451767B (en) | 2013-03-15 | 2019-10-18 | 泽恩格尼亚股份有限公司 | Multivalence and monovalent polyspecific compound and application thereof |
-
2011
- 2011-07-15 US US13/184,485 patent/US20120100166A1/en not_active Abandoned
- 2011-07-15 WO PCT/US2011/044290 patent/WO2012009705A1/en active Application Filing
-
2013
- 2013-03-15 US US13/840,227 patent/US20130259868A1/en not_active Abandoned
-
2014
- 2014-10-29 US US14/527,656 patent/US9676833B2/en active Active
-
2017
- 2017-05-08 US US15/589,585 patent/US10087222B2/en active Active
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9676833B2 (en) | 2010-07-15 | 2017-06-13 | Zyngenia, Inc. | Ang-2-binding modular recognition domain complexes and pharmaceutical compositions thereof |
| US10087222B2 (en) | 2010-07-15 | 2018-10-02 | Zyngenia, Inc. | Polynucleotides encoding angiopoietin-2 (ang-2) binding polypeptides |
| US10526381B2 (en) | 2011-05-24 | 2020-01-07 | Zygenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
| WO2012162561A2 (en) | 2011-05-24 | 2012-11-29 | Zyngenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
| US20150047065A1 (en) * | 2012-03-16 | 2015-02-12 | Covagen Ag | Novel binding molecules with antitumoral activity |
| US9593314B2 (en) * | 2012-03-16 | 2017-03-14 | Covagen Ag | Binding molecules with antitumoral activity |
| US9193768B2 (en) | 2012-10-18 | 2015-11-24 | Samsung Electronics Co., Ltd. | Peptide for inhibition of binding between angiopoietin-2 and integrin and use thereof |
| WO2014108854A1 (en) | 2013-01-09 | 2014-07-17 | Fusimab Ltd. | Monospecific anti-hgf and anti-ang2 antibodies and bispecific anti-hgf/anti-ang2 antibodies |
| US10150800B2 (en) | 2013-03-15 | 2018-12-11 | Zyngenia, Inc. | EGFR-binding modular recognition domains |
| EA038918B1 (en) * | 2013-03-15 | 2021-11-09 | Зинджения, Инк. | Peptide binding an epidermal growth factor receptor, multispecific complexes comprising peptide and antibodies and use thereof |
| EP3424530A1 (en) * | 2013-03-15 | 2019-01-09 | Zyngenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
| WO2014144600A3 (en) * | 2013-03-15 | 2014-12-31 | Viktor Roschke | Multivalent and monovalent multispecific complexes and their uses |
| US10723784B2 (en) | 2013-03-29 | 2020-07-28 | The Regents Of The University Of Colorado, A Body Corporate | Compositions and methods for preparing a subject for organ or non-organ implantation |
| US9556275B2 (en) | 2013-04-03 | 2017-01-31 | Samsung Electronics Co., Ltd. | Combination therapy using anti-C-met antibody and anti-ang-2 antibody |
| JP2017508446A (en) * | 2014-01-28 | 2017-03-30 | 北京韓美薬品有限公司 | Bifunctional fusion protein and production method and use thereof |
| US20170010266A1 (en) * | 2014-02-17 | 2017-01-12 | Isis Innovation Limited | Biomarkers and Therapeutic Targets for Sarcoma |
| US11155610B2 (en) | 2014-06-28 | 2021-10-26 | Kodiak Sciences Inc. | Dual PDGF/VEGF antagonists |
| US10293025B2 (en) * | 2014-10-24 | 2019-05-21 | Affilogic | Oral administration compositions comprising an OB-fold protein variant |
| US12275793B2 (en) * | 2015-02-03 | 2025-04-15 | Als Therapy Development Institute | Anti-CD40L antibodies and methods for treating CD40L-related diseases or disorders |
| US20240043549A1 (en) * | 2015-02-03 | 2024-02-08 | Als Therapy Development Institute | Anti-cd40l antibodies and methods for treating cd40l-related diseases or disorders |
| US11066465B2 (en) | 2015-12-30 | 2021-07-20 | Kodiak Sciences Inc. | Antibodies and conjugates thereof |
| US20170327569A1 (en) * | 2016-05-13 | 2017-11-16 | Askgene Pharma Inc. | Novel Angiopoietin 2, VEGF Dual Antagonists |
| US10654922B2 (en) * | 2016-05-13 | 2020-05-19 | Askgene Pharma Inc. | Angiopoietin 2, VEGF dual antagonists |
| US20200055923A1 (en) * | 2016-10-31 | 2020-02-20 | Hexal Ag | Antibody Preparation |
| US11021530B2 (en) * | 2016-10-31 | 2021-06-01 | Hexal Ag | Antibody preparation |
| US11584790B2 (en) * | 2017-04-14 | 2023-02-21 | Kodiak Sciences Inc. | Complement factor D antagonist antibodies and conjugates thereof |
| US12071476B2 (en) | 2018-03-02 | 2024-08-27 | Kodiak Sciences Inc. | IL-6 antibodies and fusion constructs and conjugates thereof |
| US11912784B2 (en) | 2019-10-10 | 2024-02-27 | Kodiak Sciences Inc. | Methods of treating an eye disorder |
| US11548951B1 (en) | 2020-10-14 | 2023-01-10 | Viridian Therapeutics, Inc. | Compositions and methods for treatment of thyroid eye disease |
| US12404335B2 (en) | 2020-10-14 | 2025-09-02 | Viridian Therapeutics, Inc. | Compositions and methods for treatment of thyroid eye disease |
| US12404337B2 (en) | 2021-08-10 | 2025-09-02 | Viridian Therapeutics, Inc. | Compositions, doses, and methods for treatment of thyroid eye disease |
Also Published As
| Publication number | Publication date |
|---|---|
| US10087222B2 (en) | 2018-10-02 |
| US20130259868A1 (en) | 2013-10-03 |
| US9676833B2 (en) | 2017-06-13 |
| US20180072783A1 (en) | 2018-03-15 |
| US20160176934A1 (en) | 2016-06-23 |
| WO2012009705A1 (en) | 2012-01-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10087222B2 (en) | Polynucleotides encoding angiopoietin-2 (ang-2) binding polypeptides | |
| US10526381B2 (en) | Multivalent and monovalent multispecific complexes and their uses | |
| CA2907181C (en) | Multivalent and monovalent multispecific complexes and their uses | |
| US20140088019A1 (en) | Monovalent and Multivalent Multispecific Complexes and Uses Thereof | |
| WO2014028776A1 (en) | Monovalent and multivalent multispecific complexes and uses thereof | |
| HK1234424A1 (en) | Multivalent and monovalent multispecific complexes and their uses | |
| HK1222981B (en) | Multivalent and monovalent multispecific complexes and their uses | |
| NZ618334B2 (en) | Multivalent and monovalent multispecific complexes and their uses | |
| NZ719602B2 (en) | Multivalent and monovalent multispecific complexes and their uses | |
| EA043040B1 (en) | ANGIOPOETIN-2 BINDING PEPTIDE, MULTI-SPECIFIC COMPLEXES CONTAINING THIS PEPTIDE AND ANTIBODIES AND THEIR APPLICATION |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ZYNGENIA, INC., MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSCHKE, VIKTOR;LAFLEUR, DAVID;HILBERT, DAVID M.;AND OTHERS;SIGNING DATES FROM 20111014 TO 20111016;REEL/FRAME:027132/0220 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |