US20140020124A1 - Methods of Modifying Eukaryotic Cells - Google Patents

Methods of Modifying Eukaryotic Cells Download PDF

Info

Publication number
US20140020124A1
US20140020124A1 US14/036,778 US201314036778A US2014020124A1 US 20140020124 A1 US20140020124 A1 US 20140020124A1 US 201314036778 A US201314036778 A US 201314036778A US 2014020124 A1 US2014020124 A1 US 2014020124A1
Authority
US
United States
Prior art keywords
mouse
variable region
human
chain variable
heavy chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/036,778
Inventor
Andrew J. Murphy
George D. Yancopoulos
Margaret Karow
Lynn MacDonald
Sean Stevens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regeneron Pharmaceuticals Inc
Original Assignee
Regeneron Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25133744&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140020124(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Regeneron Pharmaceuticals Inc filed Critical Regeneron Pharmaceuticals Inc
Priority to US14/036,778 priority Critical patent/US20140020124A1/en
Publication of US20140020124A1 publication Critical patent/US20140020124A1/en
Assigned to REGENERON PHARMACEUTICALS INC. reassignment REGENERON PHARMACEUTICALS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAROW, MARGARET, STEVENS, SEAN, MACDONALD, LYNN, MURPHY, ANDREW J., YANCOPOULOS, GEORGE D.
Assigned to REGENERON PHARMACEUTICALS, INC. reassignment REGENERON PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ECONOMIDES, ARIS N., VALENZUELA, DAVID M.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/462Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/20Pseudochromosomes, minichrosomosomes
    • C12N2800/204Pseudochromosomes, minichrosomosomes of bacterial origin, e.g. BAC

Definitions

  • the field of this invention is a method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells.
  • the field also encompasses the use of these cells to generate organisms bearing the genetic modification, the organisms, themselves, and methods of use thereof.
  • LTVECs provides substantial advantages over current methods. For example, since these are derived from DNA fragments larger than those currently used to generate targeting vectors, LTVECs can be more rapidly and conveniently generated from available libraries of large genomic DNA fragments (such as BAC and PAC libraries) than targeting vectors made using current technologies. In addition, larger modifications as well as modifications spanning larger genomic regions can be more conveniently generated than using current technologies. Furthermore, the present invention takes advantage of long regions of homology to increase the targeting frequency of “hard to target” loci, and also diminishes the benefit, if any, of using isogenic DNA in these targeting vectors.
  • the present invention thus provides for a rapid, convenient, and streamlined method for systematically modifying virtually all the endogenous genes and chromosomal loci of a given organism.
  • Gene targeting by means of homologous recombination between homologous exogenous DNA and endogenous chromosomal sequences has proven to be an extremely valuable way to create deletions, insertions, design mutations, correct gene mutations, introduce transgenes, or make other genetic modifications in mice.
  • targeting vectors with homology arms larger than those used in current methods would be extremely valuable.
  • such targeting vectors could be more rapidly and conveniently generated from available libraries containing large genomic inserts (e.g. BAC or PAC libraries) than targeting vectors made using current technologies, in which such genomic inserts have to be extensively characterized and trimmed prior to use.
  • larger modifications as well as modifications spanning larger genomic regions could be more conveniently generated and in fewer steps than using current technologies.
  • the use of long regions of homology could increase the targeting frequency of “hard to target” loci in eukaryotic cells, since the targeting of homologous recombination in eukaryotic cells appears to be related to the total homology contained within the targeting vector (Deng and Capecchi, Mol Cell Biol, 12:3365-71, 1992).
  • the increased targeting frequency obtained using long homology arms could diminish any potential benefit that can be derived from using isogenic DNA in these targeting vectors.
  • Applicants provide novel methods that enables the use of targeting vectors containing large regions of homology so as to modify endogenous genes or chromosomal loci in eukaryotic cells via homologous recombination.
  • Such methods overcome the above-described limitations of current technologies.
  • the skilled artisan will readily recognize that the methods of the invention are easily adapted for use with any genomic DNA of any eukaryotic organism including, but not limited to, animals such as mouse, rat, other rodent, or human, as well as plants such as soy, corn and wheat.
  • Applicants have developed a novel, rapid, streamlined, and efficient method for creating and screening eukaryotic cells which contain modified endogenous genes or chromosomal loci.
  • This novel methods combine, for the first time: 1. Bacterial homologous recombination to precisely engineer a desired genetic modification within a large cloned genomic fragment, thereby creating a large targeting vector for use in eukaryotic cells (LTVECs); 2. Direct introduction of these LTVECs into eukaryotic cells to modify the endogenous chromosomal locus of interest in these cells; and 3.
  • An analysis to determine the rare eukaryotic cells in which the targeted allele has been modified as desired involving an assay for modification of allele (MOA) of the parental allele that does not require sequence information outside of the targeting sequence, such as, for example, quantitative PCR.
  • MOA assay for modification of allele
  • a preferred embodiment of the invention is a method for genetically modifying an endogenous gene or chromosomal locus in eukaryotic cells, comprising: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to modify the endogenous gene or chromosomal locus in the cells; and d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous gene or chromosomal locus has been genetically modified.
  • MOA modification of allele
  • Another embodiment of the invention is a method wherein the genetic modification to the endogenous gene or chromosomal locus comprises deletion of a coding sequence, gene segment, or regulatory element; alteration of a coding sequence, gene segment, or regulatory element; insertion of a new coding sequence, gene segment, or regulatory element; creation of a conditional allele; or replacement of a coding sequence or gene segment from one species with an homologous or orthologous coding sequence from a different species.
  • An alternative embodiment of the invention is a method wherein the alteration of a coding sequence, gene segment, or regulatory element comprises a substitution, addition, or fusion, wherein the fusion comprises an epitope tag or bifunctional protein.
  • Yet another embodiment of the invention is a method wherein the quantitative assay comprises quantitative PCR, comparative genomic hybridization, isothermic DNA amplification, or quantitative hybridization to an immobilized probe, wherein the quantitative PCR comprises TAQMAN® technology or quantitative PCR using molecular beacons.
  • Another preferred embodiment of the invention is a method wherein the eukaryotic cell is a mammalian embryonic stem cell and in particular wherein the embryonic stem cell is a mouse, rat, or other rodent embryonic stem cell.
  • Another preferred embodiment of the invention is a method wherein the endogenous gene or chromosomal locus is a mammalian gene or chromosomal locus, preferably a human gene or chromosomal locus or a mouse, rat, or other rodent gene or chromosomal locus.
  • An additional preferred embodiment is one in which the LTVEC is capable of accommodating large DNA fragments greater than 20 kb, and in particular large DNA fragments greater than 100 kb.
  • Another preferred embodiment is a genetically modified endogenous gene or chromosomal locus that is produced by the method of the invention.
  • Yet another preferred embodiment is a genetically modified eukaryotic cell that is produced by the method of the invention.
  • a preferred embodiment of the invention is a non-human organism containing the genetically modified endogenous gene or chromosomal locus produced by the method of the invention. Also preferred in a non-human organism produced from the genetically modified eukaryotic cells or embryonic stem cells produced by the method of the invention.
  • a preferred embodiment is a non-human organism containing a genetically modified endogenous gene or chromosomal locus, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector (LTVEC) for use in embryonic stem cells; c) introducing the LTVEC of (b) into the embryonic stem cells to modify the endogenous gene or chromosomal locus in the cells; d) using a quantitative assay to detect modification of allele (MOA) in the embryonic stem cells of (c) to identify those embryonic stem cells in which the endogenous gene or chromosomal locus has been genetically modified; e) introducing the embryonic stem cell of (d) into a blastocyst; and f) introducing the blastocyst of (e) into
  • An additional preferred embodiment of the invention is a non-human organism containing a genetically modified endogenous gene or chromosomal locus, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to genetically modify the endogenous gene or chromosomal locus in the cells; d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous gene or chromosomal locus has been genetically modified; e) removing the nucleus from the eukaryotic cell of (d); f) introducing the nucleus
  • Yet another preferred embodiment is a non-human organism containing a genetically modified endogenous gene or chromosomal locus, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to genetically modify the endogenous gene or chromosomal locus in the cells; d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous gene or chromosomal locus has been genetically modified; e) fusing the eukaryotic cell of (d) with another eukaryotic cell; f) introducing the fuse
  • a preferred embodiment of the invention is a method for genetically modifying an endogenous gene or chromosomal locus of interest in mouse embryonic stem cells, comprising: a) obtaining a large cloned genomic fragment greater than 20 kb which contains a DNA sequence of interest, wherein the large cloned DNA fragment is homologous to the endogenous gene or chromosomal locus; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the mouse embryonic stem cells, wherein the genetic modification is deletion of a coding sequence, gene segment, or regulatory element; c) introducing the large targeting vector of (b) into the mouse embryonic stem cells to modify the endogenous gene or chromosomal locus in the cells; and d) using a quantitative assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (c) to identify those mouse embryonic stem cells in which the endogenous gene
  • Another preferred embodiment is a mouse containing a genetically modified endogenous gene or chromosomal locus of interest, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment greater than 20 kb which contains a DNA sequence of interest, wherein the large cloned DNA fragment is homologous to the endogenous gene or chromosomal locus; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the mouse embryonic stem cells, wherein the genetic modification is deletion of a coding sequence, gene segment, or regulatory element; c) introducing the large targeting vector of (b) into the mouse embryonic stem cells to modify the endogenous gene or chromosomal locus in the cells; and d) using a quantitative assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (c) to identify those mouse embryonic stem cells in which the endogenous gene
  • One embodiment of the invention is a method of replacing, in whole or in part, in a non-human eukaryotic cell, an endogenous immunoglobulin variable region gene locus with an homologous or orthologous human gene locus comprising: a) obtaining a large cloned genomic fragment containing, in whole or in part, the homologous or orthologous human gene locus; b) using bacterial homologous recombination to genetically modify the cloned genomic fragment of (a) to create a large targeting vector for use in the eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to replace, in whole or in part, the endogenous immunoglobulin variable gene locus; and d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous immunoglobulin variable region gene locus has been replaced, in whole
  • Another embodiment is a method of replacing, in whole or in part, in a non-human eukaryotic cell, an endogenous immunoglobulin variable region gene locus with an homologous or orthologous human gene locus further comprising the steps: e) obtaining a large cloned genomic fragment containing a part of the homologous or orthologous human gene locus that differs from the fragment of (a); f) using bacterial homologous recombination to genetically modify the cloned genomic fragment of (e) to create a second LTVEC; g) introducing the second LTVEC of (f) into the eukaryotic cells identified in step (d) to replace, in whole or in part, the endogenous immunoglobulin variable gene locus; and h) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (g) to identify those eukaryotic cells in which the endogenous immunoglobulin variable region gene locus has been replaced, in whole
  • Another embodiment of the above method is a method wherein steps (e) through (h) are repeated until the endogenous immunoglobulin variable region gene locus is replaced in whole with an homologous or orthologous human gene locus.
  • the immunoglobulin variable gene locus is a locus selected from the group consisting of a) a variable gene locus of the kappa light chain; b) a variable gene locus of the lambda light chain; and c) a variable gene locus of the heavy chain.
  • a preferred embodiment is a method wherein the quantitative assay comprises quantitative PCR, FISH, comparative genomic hybridization, isothermic DNA amplification, or quantitative hybridization to an immobilized probe, and in particular wherein the quantitative PCR comprises TAQMAN®. technology or quantitative PCR using molecular beacons.
  • Yet another preferred embodiment is a method of replacing, in whole or in part, in a mouse embryonic stem cell, an endogenous immunoglobulin variable region gene locus with its homologous or orthologous human gene locus comprising: a) obtaining a large cloned genomic fragment containing, in whole or in part, the homologous or orthologous human gene locus; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the embryonic stem cells; c) introducing the large targeting vector of (b) into mouse embryonic stem cells to replace, in whole or in part, the endogenous immunoglobulin variable gene locus in the cells; and d) using a quantitative PCR assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (d) to identify those mouse embryonic stem cells in which the endogenous variable gene locus has been replaced, in whole or in part, with the homologous or orthologous human
  • the method further comprises: e) obtaining a large cloned genomic fragment containing a part of the homologous or orthologous human gene locus that differs from the fragment of (a); f) using bacterial homologous recombination to genetically modify the cloned genomic fragment of (e) to create a large targeting vector for use in the embryonic stem cells; g) introducing the large targeting vector of (f) into the mouse embryonic stem cells identified in step (d) to replace, in whole or in part, the endogenous immunoglobulin variable gene locus; and h) using a quantitative assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (g) to identify those mouse embryonic stem cells in which the endogenous immunoglobulin variable region gene locus has been replaced, in whole or in part, with the homologous or orthologous human gene locus.
  • MOA modification of allele
  • Another preferred embodiment is a genetically modified immunoglobulin variable region gene locus produced by the methods described above; a genetically modified eukaryotic cell comprising a genetically modified immunoglobulin variable region gene locus produced by the methods described above; a non-human organism comprising a genetically modified immunoglobulin variable region gene locus produced by the methods described above; and a mouse embryonic stem cell containing a genetically modified immunoglobulin variable region gene locus produced by the methods described above.
  • an embryonic stem cell wherein the mouse heavy chain variable region locus is replaced, in whole or in part, with a human heavy chain variable gene locus; an embryonic stem cell of claim wherein the mouse kappa light chain variable region locus is replaced, in whole or in part, with a human kappa light chain variable region locus; an embryonic stem cell wherein the mouse lambda light chain variable region locus is replaced, in whole or in part, with a human lambda light chain variable region locus; and an embryonic stem cell wherein the heavy and light chain variable region gene loci are replaced, in whole, with their human homologs or orthologs.
  • Yet another preferred embodiment is an antibody comprising a human variable region encoded by the genetically modified variable gene locus of described above; an antibody further comprising a non-human constant region; and an antibody further comprising a human constant region.
  • transgenic mouse having a genome comprising entirely human heavy and light chain variable region loci operably linked to entirely endogenous mouse constant region loci such that the mouse produces a serum containing an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation; a transgenic mouse having a genome comprising human heavy and/or light chain variable region loci operably linked to endogenous mouse constant region loci such that the mouse produces a serum containing an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation; a transgenic mouse containing an endogenous variable region locus that has been replaced with an homologous or orthologous human variable locus, such mouse being produced by a method comprising: a) obtaining one or more large cloned genomic fragments containing the entire homologous or orthologous human variable region locus; b) using bacterial homologous recombination to genetically modify the cloned genomic fragment(s) of (a) to create large targeting vector(s) for
  • Still yet another preferred embodiment of the invention is a method of making a human antibody comprising: a) exposing the mouse described above to antigenic stimulation, such that the mouse produces an antibody against the antigen; b) isolating the DNA encoding the variable regions of the heavy and light chains of the antibody; c) operably linking the DNA encoding the variable regions of (b) to DNA encoding the human heavy and light chain constant regions in a cell capable of expressing active antibodies; d) growing the cell under such conditions as to express the human antibody; and e) recovering the antibody.
  • the cell described above is a CHO cell. Also preferred is a method of wherein the DNA of step (b) described above is isolated from a hybridoma created from the spleen of the mouse exposed to antigenic stimulation in step (a) described above.
  • FIG. 2 Schematic diagram of donor fragment and LTVEC for mouse OCR10.
  • hb1 homoology box 1
  • lacZ ⁇ -galactosidase ORF
  • SV40 polyA a DNA fragment derived from Simian Virus 40, containing a polyadenylation site and signal
  • PGKp mouse phosphoglycerate kinase (PGK) promoter
  • EM7 a bacterial promoter
  • neo neomycin phosphotransferase
  • PGK polyA 3′ untranslated region derived from the PGK gene and containing a polyadenylation site and signal
  • hb2 homology box 2
  • FIG. 3A-3D Sequence of the mouse OCR10 cDNA (upper strand, SEQ ID NO:5; amino acid, SEQ ID NO:6), homology box 1 (hb1), homology box 2 (hb2), and TAQMAN® probes and primers used in a quantitative PCR assay to detect modification of allele (MOA) in ES cells targeted using the mOCR10LTVEC.
  • TAQMAN® probe and corresponding PCR primer set derived from mOCR10 exon 3 TAQMAN® probe: nucleotides 413 to 439-upper strand; Primer ex3-5′: nucleotides 390 to 410-upper strand; Primer ex3-3′: nucleotides 445 to 461-lower strand; TAQMAN® probe and corresponding PCR primer set derived from mOCR10 exon 4: TAQMAN® probe: nucleotides 608 to 639-upper strand; Primer ex4-5′: nucleotides 586 to 605-upper strand; Primer ex4-3′: nucleotides 642 to 662-lower strand.
  • FIG. 4A-4D (SEQ ID NO:5-6) Schematic diagram of the two LTVECs constructed to replace the mouse VDJ region with human VDJ region.
  • C-D In the first step, LTVEC1 is constructed by bacterial homologous recombination in E. coli .
  • LTVEC1 contains, in order: a large mouse homology arm derived from the region upstream from the mouse DJ region, but whose absolute endpoints are not important; a cassette encoding a selectable marker functional in ES cells (PGK-neomycinR); a loxP site; a large human insert spanning from several V gene segments through the entire DJ region; and a mouse homology arm containing the region immediately adjacent to, but not including, the mouse J segments.
  • LTVEC2 is constructed by bacterial homologous recombination in E. coli .
  • LTVEC2 contains, in order: a large mouse homology arm containing the region adjacent to the most distal mouse V gene segment, but not containing any mouse V gene segments; a large insert containing a large number of distal human V gene segments; a mutant loxP site called lox511 in the orientation opposite to that of the wild type loxP sites in LTVEC2 and LTVEC1 (this site will not recombine with wild type loxP sites but will readily recombine with other lox511 sites); a wild type loxP site; a second selectable marker (PGK-hygromycinR); and a mouse homology arm derived from the V region, but whose absolute endpoints are not important.
  • a “targeting vector” is a DNA construct that contains sequences “homologous” to endogenous chromosomal nucleic acid sequences flanking a desired genetic modification(s).
  • the flanking homology sequences referred to as “homology arms”, direct the targeting vector to a specific chromosomal location within the genome by virtue of the homology that exists between the homology arms and the corresponding endogenous sequence and introduce the desired genetic modification by a process referred to as “homologous recombination”.
  • “Homologous” means two or more nucleic acid sequences that are either identical or similar enough that they are able to hybridize to each other or undergo intermolecular exchange.
  • Gene targeting is the modification of an endogenous chromosomal locus by the insertion into, deletion of, or replacement of the endogenous sequence via homologous recombination using a targeting vector.
  • a “gene knockout” is a genetic modification resulting from the disruption of the genetic information encoded in a chromosomal locus.
  • a “gene knockin” is a genetic modification resulting from the replacement of the genetic information encoded in a chromosomal locus with a different DNA sequence.
  • a “knockout organism” is an organism in which a significant proportion of the organism's cells harbor a gene knockout.
  • a “knockin organism” is an organism in which a significant proportion of the organism's cells harbor a gene knockin.
  • a “marker” or a “selectable marker” is a selection marker that allows for the isolation of rare transfected cells expressing the marker from the majority of treated cells in the population.
  • marker's gene's include, but are not limited to, neomycin phosphotransferase and hygromycin B phosphotransferase, or fluorescing proteins such as GFP.
  • ES cell is an embryonic stem cell. This cell is usually derived from the inner cell mass of a blastocyst-stage embryo.
  • An “ES cell clone” is a subpopulation of cells derived from a single cell of the ES cell population following introduction of DNA and subsequent selection.
  • a “flanking DNA” is a segment of DNA that is collinear with and adjacent to a particular point of reference.
  • LTVECs are large targeting vectors for eukaryotic cells that are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells.
  • Modification of allele refers to the modification of the exact DNA sequence of one allele of a gene(s) or chromosomal locus (loci) in a genome. This modification of allele (MOA) includes, but is not limited to, deletions, substitutions, or insertions of as little as a single nucleotide or deletions of many kilobases spanning a gene(s) or chromosomal locus (loci) of interest, as well as any and all possible modifications between these two extremes.
  • Ordering refers to a sequence from one species that is the functional equivalent of that sequence in another species.
  • Applicants have developed a novel, rapid, streamlined, and efficient method for creating and screening eukaryotic cells which contain modified endogenous genes or chromosomal loci.
  • the modification may be gene(s) knockouts, knockins, point mutations, or large genomic insertions or deletions or other modifications.
  • These cells may be embryonic stem cells which are useful for creating knockout or knockin organisms and in particular, knockout or knockin mice, for the purpose of determining the function of the gene(s) that have been altered, deleted and/or inserted.
  • novel methods described herein combine, for the first time: 1. Bacterial homologous recombination to precisely engineer a desired genetic modification within a large cloned genomic DNA fragment, thereby creating a large targeting vector for use in eukaryotic cells (LTVECs); 2. Direct introduction of these LTVECs into eukaryotic cells to modify the corresponding endogenous gene(s) or chromosomal locus (loci) of interest in these cells; and 3. An analysis to determine the rare eukaryotic cells in which the targeted allele has been modified as desired, involving a quantitative assay for modification of allele (MOA) of the parental allele.
  • MOA quantitative assay for modification of allele
  • Targeting vectors are more rapidly and conveniently generated from available libraries containing large genomic inserts (e.g. BAC or PAC libraries) than targeting vectors made using previous technologies, in which the genomic inserts have to be extensively characterized and “trimmed” prior to use (explained in detail below).
  • genomic inserts e.g. BAC or PAC libraries
  • minimal sequence information needs to be known about the locus of interest, i.e. it is only necessary to know the approximately 80-100 nucleotides that are required to generate the homology boxes (described in detail below) and to generate probes that can be used in quantitative assays for MOA (described in detail below).
  • the method of the invention makes possible the precise modification of large loci that cannot be accommodated by traditional plasmid-based targeting vectors because of their size limitations. It also makes possible the modification of any given locus at multiple points (e.g. the introduction of specific mutations at different exons of a multi-exon gene) in one step, alleviating the need to engineer multiple targeting vectors and to perform multiple rounds of targeting and screening for homologous recombination in ES cells. 3.
  • long regions of homology increase the targeting frequency of “hard to target” loci in eukaryotic cells, consistent with previous findings that targeting of homologous recombination in eukaryotic cells appears to be related to the total homology contained within the targeting vector. 4.
  • the increased targeting frequency obtained using long homology arms apparently diminishes the benefit, if any, from using isogenic DNA in these targeting vectors. 5.
  • the application of quantitative MOA assays for screening eukaryotic cells for homologous recombination not only empowers the use of LTVECs as targeting vectors (advantages outlined above) but also reduces the time for identifying correctly modified eukaryotic cells from the typical several days to a few hours.
  • DNA vectors described herein are standard molecular biology techniques well known to the skilled artisan (see e.g., Sambrook, J., E. F. Fritsch And T. Maniatis. Molecular Cloning: A Laboratory Manual, Second Edition, Vols 1, 2, and 3, 1989; Current Protocols in Molecular Biology, Eds. Ausubel et al., Greene Publ. Assoc., Wiley Interscience, NY). All DNA sequencing is done by standard techniques using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, Calif.).
  • Step 1 Obtain a Large Genomic DNA Clone Containing the Gene(s) or Chromosomal Locus (Loci) of Interest.
  • a gene(s) or locus (loci) of interest can be selected based on specific criteria, such as detailed structural or functional data, or it can be selected in the absence of such detailed information as potential genes or gene fragments become predicted through the efforts of the various genome sequencing projects.
  • the only sequence information that is required is approximately 80-100 nucleotides so as to obtain the genomic clone of interest as well as to generate the homology boxes used in making the LTVEC (described in detail below) and to make probes for use in quantitative MOA assays.
  • a large genomic clone(s) containing this gene(s) or locus (loci) is obtained.
  • This clone(s) can be obtained in any one of several ways including, but not limited to, screening suitable DNA libraries (e.g. BAC, PAC, YAC, or cosmid) by standard hybridization or PCR techniques, or by any other methods familiar to the skilled artisan.
  • Step 2 Append Homology Boxes 1 and 2 to a Modification Cassette and Generation of LTVEC.
  • Homology boxes mark the sites of bacterial homologous recombination that are used to generate LTVECs from large cloned genomic fragments ( FIG. 1 ).
  • Homology boxes are short segments of DNA, generally double-stranded and at least 40 nucleotides in length, that are homologous to regions within the large cloned genomic fragment flanking the “region to be modified”.
  • the homology boxes are appended to the modification cassette, so that following homologous recombination in bacteria, the modification cassette replaces the region to be modified ( FIG. 1 ).
  • the technique of creating a targeting vector using bacterial homologous recombination can be performed in a variety of systems (Yang et al. supra; Muyrers et al.
  • ET refers to the recE (Hall and Kolodner, Proc Natl Acad Sci USA, 91:3205-9, 1994) and recT proteins (Kusano et al., Gene, 138:17-25, 1994) that carry out the homologous recombination reaction.
  • RecE is an exonuclease that trims one strand of linear double-stranded DNA (essentially the donor DNA fragment described infra) 5′ to 3′, thus leaving behind a linear double-stranded fragment with a 3′ single-stranded overhang.
  • This single-stranded overhang is coated by recT protein, which has single-stranded DNA (ssDNA) binding activity (Koval) and Matthews, Science, 277:1824-7, 1997).
  • ssDNA single-stranded DNA
  • ET cloning is performed using E. coli that transiently express the E.
  • the kgam protein is required for protecting the donor DNA fragment from degradation by the recBC exonuclease system (Myers and Stahl, Annu Rev Genet, 28:49-70, 1994) and it is required for efficient ET-cloning in recBC + hosts such as the frequently used E. coli strain DH10b.
  • the region to be modified and replaced using bacterial homologous recombination can range from zero nucleotides in length (creating an insertion into the original locus) to many tens of kilobases (creating a deletion and/or a replacement of the original locus).
  • the modification can result in the following: (a) deletion of coding sequences, gene segments, or regulatory elements; (b) alteration(s) of coding sequence, gene segments, or regulatory elements including substitutions, additions, and fusions (e.g.
  • Step 3 Optional. Verify that Each LTVEC has been Engineered Correctly.
  • each LTVEC has been engineered correctly by: a. Diagnostic PCR to verify the novel junctions created by the introduction of the donor fragment into the gene(s) or chromosomal locus (loci) of interest. The PCR fragments thus obtained can be sequenced to further verify the novel junctions created by the introduction of the donor fragment into the gene(s) or chromosomal locus (loci) of interest. b. Diagnostic restriction enzyme digestion to make sure that only the desired modifications have been introduced into the LTVEC during the bacterial homologous recombination process. c. Direct sequencing of the LTVEC, particularly the regions spanning the site of the modification to verify the novel junctions created by the introduction of the donor fragment into the gene(s) or chromosomal locus (loci) of interest.
  • Step 4 Purification, Preparation, and Linearization of LTVEC DNA for Introduction Into Eukaryotic Cells.
  • this plasmid (a) because it is a high copy number plasmid and may reduce the yields obtained in the large scale LTVEC preps; (b) to eliminate the possibility of inducing expression of the recombinogenic proteins; and (c) because it may obscure physical mapping of the LTVEC.
  • LTVEC DNA Before introducing the LTVEC into eukaryotic cells, larger amounts of LTVEC DNA are prepared by standard methodology; Sambrook et al. supra; Tillett and Neilan, Biotechniques, 24:568-70, 572, 1998). However, this step can be bypassed if a bacterial homologous recombination method that utilizes a recombinogenic prophage is used, i.e. where the genes encoding the recombinogenic proteins are integrated into the bacterial chromosome (Yu, et al. supra), is used.
  • the LTVEC is preferably linearized in a manner that leaves the modified endogenous gene(s) or chromosomal locus (loci) DNA flanked with long homology arms.
  • This can be accomplished by linearizing the LTVEC, preferably in the vector backbone, with any suitable restriction enzyme that digests only rarely.
  • suitable restriction enzymes include NotI, PacI, SfiI, SrfI, Swal, FseI, etc.
  • the choice of restriction enzyme may be determined experimentally (i.e. by testing several different candidate rare cutters) or, if the sequence of the LTVEC is known, by analyzing the sequence and choosing a suitable restriction enzyme based on the analysis.
  • the LTVEC has a vector backbone containing rare sites such as CosN sites, then it can be cleaved with enzymes recognizing such sites, for example 2 terminase (Shizuya et al., Proc Natl Acad Sci USA, 89:8794-7, 1992; Becker and Gold, Proc Natl Acad Sci USA, 75:4199-203, 1978; Rackwitz et al., Gene, 40:259-66, 1985).
  • enzymes recognizing such sites for example 2 terminase (Shizuya et al., Proc Natl Acad Sci USA, 89:8794-7, 1992; Becker and Gold, Proc Natl Acad Sci USA, 75:4199-203, 1978; Rackwitz et al., Gene, 40:259-66, 1985).
  • Step 5 Introduction of LTVEC into Eukaryotic Cells and Selection of Cells Where Successful Introduction of the LTVEC has Taken Place.
  • LTVEC DNA can be introduced into eukaryotic cells using standard methodology, such as transfection mediated by calcium phosphate, lipids, or electroporation (Sambrook et al. supra).
  • the cells where the LTVEC has been introduced successfully can be selected by exposure to selection agents, depending on the selectable marker gene that has been engineered into the LTVEC.
  • the selectable marker is the neomycin phosphotransferase (neo) gene (Beck, et al., Gene, 19:327-36, 1982)
  • neo neomycin phosphotransferase
  • cells that have taken up the LTVEC can be selected in G418-containing media; cells that do not have the LTVEC will die whereas cells that have taken up the LTVEC will survive (Santerre, et al., Gene, 30:147-56, 1984).
  • selectable markers include any drug that has activity in eukaryotic cells, such as hygromycin B (Santerre, et al., Gene, 30:147-56, 1984; Bernard, et al., Exp Cell Res, 158:237-43, 1985; Giordano and McAllister, Gene, 88:285-8, 1990), Blasticidin S (Izumi, et al., Exp Cell Res, 197:229-33, 1991), and other which are familiar to those skilled in the art.
  • Eukaryotic cells that have been successfully modified by targeting the LTVEC into the locus of interest can be identified using a variety of approaches that can detect modification of allele within the locus of interest and that do not depend on assays spanning the entire homology arm or arms.
  • Such approaches can include but are not limited to: (a) quantitative PCR using TAQMAN® (Lie and Petropoulos, Curr Opin Biotechnol, 9:43-8, 1998); (b) quantitative MOA assay using molecular beacons (Tan, et al., Chemistry, 6:1107-11, 2000); (c) fluorescence in situ hybridization FISH (Laan, et al., Hum Genet, 96:275-80, 1995) or comparative genomic hybridization (CGH) (Forozan, et al., Trends Genet, 13:405-9, 1997; Thompson and Gray, J Cell Biochem Suppl, 13943, 1993; Houldsworth and Chaganti, Am J Pathol, 145:1253-60, 1994); (d) isothermic DNA amplification (Lizardi et al., Nat Genet, 19:225-32, 1998; Mitra and Church, Nucleic Acids Res, 27:e34, 1999); and (e) quantitative hybridization to an im
  • TAQMAN® quantitative PCR is used to screen for successfully targeted eukaryotic cells.
  • TAQMAN® is used to identify eukaryotic cells which have undergone homologous recombination wherein a portion of one of two endogenous alleles in a diploid genome has been replaced by another sequence.
  • the quantitative TAQMAN® method will detect the modification of one allele by measuring the reduction in copy number (by half) of the unmodified allele. Specifically, the probe detects the unmodified allele and not the modified allele.
  • TAQMAN® is used to quantify the number of copies of a DNA template in a genomic DNA sample, especially by comparison to a reference gene (Lie and Petropoulos, Curr. Opin. Biotechnol., 9:43-8, 1998).
  • the reference gene is quantitated in the same genomic DNA as the target gene(s) or locus (loci). Therefore, two TAQMAN® amplifications (each with its respective probe) are performed.
  • One TAQMAN® probe determines the “Ct” (Threshold Cycle) of the reference gene, while the other probe determines the Ct of the region of the targeted gene(s) or locus (loci) which is replaced by successful targeting.
  • the Ct is a quantity that reflects the amount of starting DNA for each of the TAQMAN® probes, i.e. a less abundant sequence requires more cycles of PCR to reach the threshold cycle. Decreasing by half the number of copies of the template sequence for a TAQMAN® reaction will result in an increase of about one Ct unit.
  • TAQMAN® reactions in cells where one allele of the target gene(s) or locus (loci) has been replaced by homologous recombination will result in an increase of one Ct for the target TAQMAN® reaction without an increase in the Ct for the reference gene when compared to DNA from non-targeted cells. This allows for ready detection of the modification of one allele of the gene(s) of interest in eukaryotic cells using LTVECs.
  • modification of allele (MOA) screening is the use of any method that detects the modification of one allele to identify cells which have undergone homologous recombination. It is not a requirement that the targeted alleles be identical (homologous) to each other, and in fact, they may contain polymorphisms, as is the case in progeny resulting from crossing two different strains of mice.
  • MOA screening is targeting of genes which are normally present as a single copy in cells, such as some of the located on the sex chromosomes and in particular, on the Y chromosome.
  • methods that will detect the modification of the single targeted allele such as quantitative PCR, Southern blottings, etc., can be used to detect the targeting event. It is clear that the method of the invention can be used to generate modified eukaryotic cells even when alleles are polymorphic or when they are present in a single copy in the targeted cells.
  • the genetically modified eukaryotic cells generated by the methods described in steps 1 through 7 can be employed in any in vitro or in vivo assay, where changing the phenotype of the cell is desirable.
  • the genetically modified eukaryotic cell generated by the methods described in steps 1 through 7 can also be used to generate an organism carrying the genetic modification.
  • the genetically modified organisms can be generated by several different techniques including but not limited to: 1. Modified embryonic stem (ES) cells such as the frequently used rat and mouse ES cells.
  • ES modified embryonic stem
  • ES cells can be used to create genetically modified rats or mice by standard blastocyst injection technology or aggregation techniques (Robertson, Practical Approach Series, 254, 1987; Wood, et al., Nature, 365:87-9, 1993; Joyner supra), tetraploid blastocyst injection (Wang, et al., Mech Dev, 62:137-45, 1997), or nuclear transfer and cloning (Wakayama, et al., Proc Natl Acad Sci USA, 96:14984-9, 1999).
  • ES cells derived from other organisms such as rabbits (Wang, et al., Mech Dev, 62:137-45, 1997; Schoonjans, et al., Mol Reprod Dev, 45:439-43, 1996) or chickens (Pain, et al., Development, 122:2339-48, 1996) or other species should also be amenable to genetic modification(s) using the methods of the invention.
  • Modified protoplasts can be used to generate genetically modified plants (for example see U.S. Pat. No. 5,350,689 “Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells”, and U.S. Pat. No.
  • BAC Artificial Chromosome
  • mOCR10 mouse OCR10
  • the primers employed to screen this library were derived from the mOCR10 gene cDNA sequence.
  • Two primer pairs where used: (a) OCR10.RAA (SEQ ID NO:1) and OCR10.PVIrc (SEQ ID NO:2) which amplifies a 102 bp DNA; and (b) OCR10.TDY (SEQ ID NO:3)) and OCR10.QETrc (SEQ ID NO:4)) which amplifies a 1500 bp DNA.
  • This mOCR10BAC contained approximately 180 kb of genomic DNA including the complete mOCR10 coding sequence.
  • This BAC clone was used to generate an LTVEC which was subsequently used to delete a portion of the coding region of mOCR10 while simultaneously introducing a reporter gene whose initiation codon precisely replaced the initiation codon of OCR10, as well as insertion of a selectable marker gene useful for selection both in E. coli and mammalian cells following the reporter gene ( FIG. 2 ).
  • the reporter gene (LacZ) encodes the E. coli ⁇ -galactosidase enzyme.
  • LacZ Because of the position of insertion of LacZ (its initiating codon is at the same position as the initiation codon of mOCR10) the expression of lacZ should mimic that of mOCR10, as has been observed in other examples where similar replacements with LacZ were performed using previous technologies (see “Gene trap strategies in ES cells”, by W Wurst and A. Gossler, in Joyner supra).
  • the LacZ gene allows for a simple and standard enzymatic assay to be performed that can reveal its expression patterns in situ, thus providing a surrogate assay that reflects the normal expression patterns of the replaced gene(s) or chromosomal locus (loci).
  • the modification cassette used in the construction of the mOCR10LTVEC is the lacZ-SV40 polyA-PGKp-EM7-neo-PGK polyA cassette wherein lacZ is a marker gene as described above, SV40 polyA is a fragment derived from Simian Virus 40 (Subramanian, et al., Prog Nucleic Acid Res Mol Biol, 19:157-64, 1976; Thimmappaya, et al., J Biol Chem, 253:1613-8, 1978; Dhar, et al., Proc Natl Acad Sci USA, 71:371-5, 1974; Reddy, et al., Science, 200:494-502, 1978) and containing a polyadenylation site and signal (Subramanian, et al., Prog Nucleic Acid Res Mol Biol, 19:157-64, 1976; Thimmappaya, et al., J Biol Chem, 253
  • a donor fragment was generated consisting of a mOCR10 homology box 1 (hb1) attached upstream from the LacZ gene in the modification cassette and a mOCR10 homology box 2 (hb2) attached downstream of the neo-PGK polyA sequence in the modification cassette ( FIG. 2 ), using standard recombinant genetic engineering technology.
  • Homology box 1 (hb1) consists of 211 bp of untranslated sequence immediately upstream of the initiating methionine of the mOCR10 open reading frame (mOCR10ORF) ( FIG. 3A-3D ).
  • Homology box 2 (hb2) consists of last 216 bp of the mOCR10ORF, ending at the stop codon ( FIG. 3A-3D ).
  • this donor fragment was used to precisely replace the mOCR10 coding region (from initiation methionine to stop codon) with the insertion cassette, resulting in construction of the mOCR10LTVEC ( FIG. 2 ).
  • the mOCR10 coding sequence was replaced by the insertion cassette creating an approximately 20 kb deletion in the mOCR10 locus while leaving approximately 130 kb of upstream homology (upstream homology arm) and 32 kb of downstream homology (downstream homology arm).
  • LTVECs can be more rapidly and conveniently generated from available BAC libraries than targeting vectors made using previous technologies because only a single bacterial homologous recombination step is required and the only sequence information required is that needed to generate the homology boxes.
  • previous approaches for generating targeting vectors using bacterial homologous recombination require that large targeting vectors be “trimmed” prior to their introduction in ES cells (Hill et al., Genomics, 64:111-3, 2000). This trimming is necessary because of the need to generate homology arms short enough to accommodate the screening methods utilized by previous approaches.
  • Another obvious advantage, illustrated by the above example, is that a very large deletion spanning the mOCR10 gene (approximately 20 kb) can be easily generated in a single step.
  • to accomplish the same task may require several steps and may involve marking the regions upstream and downstream of the coding sequences with loxP sites in order to use the Cre recombinase to remove the sequence flanked by these sites after introduction of the modified locus in eukaryotic cells.
  • This may be unattainable in one step, and thus may require the construction of two targeting vectors using different selection markers and two sequential targeting events in ES cells, one to introduce the loxP site at the region upstream of the coding sequence and another to introduce the loxP site at the region downstream of the coding sequence.
  • the creation of large deletions often occurs with low efficiency using the previous targeting technologies in eukaryotic cells, because the frequency of achieving homologous recombination may be low when using targeting vectors containing large deletion flanked by relatively short homology arms.
  • the high efficiency obtained using the method of the invention is due to the very long homology arms present in the LTVEC that increase the rate of homologous recombination in eukaryotic cells.
  • the sequence surrounding the junction of the insertion cassette and the homology sequence was verified by DNA sequencing.
  • the size of the mOCR10LTVEC was verified by restriction analysis followed by pulsed field gel electrophoresis (PFGE) (Cantor, et al., Annu Rev Biophys Biophys Chem, 17:287-304, 1988; Schwartz and Cantor, Cell, 37:67-75, 1984).
  • PFGE pulsed field gel electrophoresis
  • a standard large-scale plasmid preparation of the mOCR10LTVEC was done, the plasmid DNA was digested with the restriction enzyme NotI, which cuts in the vector backbone of the mOCR10LTVEC, to generate linear DNA.
  • ES cells successfully transfected with the mOCR10 LTVEC were selected for in G418-containing media using standard selection methods.
  • DNA from individual ES cell clones was analyzed by quantitative PCR using standard TAQMAN® methodology as described (Applied Biosystems, TAQMAN® Universal PCR Master Mix, catalog number P/N 4304437).
  • the primers and TAQMAN® probes used are as described in FIG. 3A-3D (SEQ ID NO:5-6).
  • a total of 69 independent ES cells clones where screened and 3 were identified as positive, i.e. as clones in which one of the endogenous mOCR10 coding sequence had been replaced by the modification cassette described above.
  • the increased targeting frequency obtained using long homology arms should diminish the benefit, if any, derived from using genomic DNA in constructing LTVECs that is isogenic with (i.e. identical in sequence to) the DNA of the eukaryotic cell being targeted.
  • Applicants have constructed numerous LTVECs using genomic DNA derived from the same mouse substrain as the eukaryotic cell to be targeted (presumably isogenic), and numerous other LTVECs using genomic DNA derived from mouse substrains differing from that of the eukaryotic cell to be targeted (presumably non-isogenic).
  • the two sets of LTVECs exhibited similar targeting frequencies, ranging from 1-13%, indicating that the rate of successful targeting using LTVECs does not depend on isogenicity.
  • variable region genes during the initial development of B cells are the primary mechanism whereby the immune system produces antibodies capable of recognizing the huge number of antigens that it may encounter.
  • V variable
  • C constant
  • chimeric antibodies which utilize human variable regions with mouse constant regions through B cell maturation, followed by subsequent engineering of the antibodies to replace the mouse constant regions with their human counterparts.
  • U.S. Pat. No. 5,770,429 The only methodology that has existed to date for making such chimeras has been trans-switching, wherein the formation of the chimeras is only a rare event which occurs only in heavy chains.
  • chimeric antibodies are generated which can then be altered, through standard technology, to create high affinity human antibodies.
  • a transgenic mouse is created that produces hybrid antibodies containing human variable regions and mouse constant regions. This is accomplished by a direct, in situ replacement of the mouse variable region genes with their human counterparts. The resultant hybrid immunoglobulin loci will undergo the natural process of rearrangements during B-cell development to produce the hybrid antibodies.
  • murine Fc regions will be more specific than human Fc regions in their interactions with Fc receptors on mouse cells, complement molecules, etc. These interactions are important for a strong and specific immune response, for the proliferation and maturation of B cells, and for the affinity maturation of antibodies.
  • the murine immunoglobulin heavy chain intronic enhancer has been shown to be critical for V-D-J recombination as well as heavy chain gene expression during the early stages of B cell development (Ronai et al. Mol Cell Biol 19:7031-7040 (1999)), whereas the immunoglobulin heavy chain 3′ enhancer region appears to be critical for class switching (Pan et al.
  • the required recombination events which occur at the immunoglobulin loci during the normal course of B cell differentiation may increase the frequency of aberrant, non-productive immunoglobulin rearrangements when these loci are inserted at improper chromosomal locations, or in multiple copies, as in currently available mice. With reductions in productive immunoglobulin rearrangement and, therefore, appropriate signaling at specific steps of B cell development the aberrant cells are eliminated. Reductions of B cell numbers at early stages of development significantly decreases the final overall B cell population and greatly limits the immune responses of the mice.
  • VDJ mouse heavy chain locus variable region
  • BAC Large insert clones spanning the entire VDJ region of the human heavy chain locus are isolated ( FIG. 4A ). The sequence of this entire region is available in the following Gen Bank files (AB019437, AB019438, AB019439, AB019440, AB019441, X97051 and X54713).
  • large insert (BAC) clones are isolated from the ends of the mouse VDJ region as a source of homology arms ( FIG. 4B ) which are used to direct integration via homologous recombination of the human VDJ sequences in a two step process.
  • LTVEC1 ( FIG. 4D ) is constructed by bacterial homologous recombination in E. coli .
  • LTVEC1 contains, in order: a large mouse homology arm derived from the region upstream from the mouse DJ region, but whose absolute endpoints are not important; a cassette encoding a selectable marker functional in ES cells (PGK-neomycinR); a loxP site; a large human insert spanning from several V gene segments through the entire DJ region; and a mouse homology arm containing the region immediately adjacent to, but not including, the mouse J segments.
  • Mouse ES cells will be transformed by standard techniques, for example, electroporation, with linearized LTVEC1, and neomycin resistant colonies will be screened for correct targeting using a MOA assay. These targeted ES cells can give rise to mice that produce antibodies with hybrid heavy chains. However, it will be preferable to proceed with subsequent steps that will eliminate the remainder of the mouse variable segments.
  • LTVEC2 ( FIG. 4C ) is constructed by bacterial homologous recombination in E. coli .
  • LTVEC2 contains, in order: a large mouse homology arm containing the region adjacent to the most distal mouse V gene segment, but not containing any mouse V gene segments; a large insert containing a large number of distal human V gene segments; a mutant loxP site called lox511 (Hoess et al. Nucleic Acids Res.
  • CRE recombinase in the double targeted ES cells will result in deletion of the remainder of the mouse V region.
  • the double targeted ES cells can be injected into host blastocysts for the production of chimeric mice. Breeding of the resultant chimeric mice with mice expressing CRE recombinase early in development will result in deletion of the remainder of the mouse V region in the progeny F1. This later alternative increases the likelihood that the hybrid heavy chain locus will be passed through the germline because it involves culturing the ES cells for fewer generations.
  • lox511 in LTVEC2 will allow for the insertion of additional human V gene segments into the hybrid locus.
  • One approach would be to use bacterial homologous recombination to flank a large genomic DNA clone containing many additional human V gene segments with lox511 and loxP sites. Co-transformation of such a modified large genomic DNA clone into double targeted ES cells with a plasmid that transiently expresses CRE recombinase will result in the introduction of the additional V gene segments by cassette exchange (Bethke et al. Nucleic Acids Res. 25:2828-2834 (1997)).
  • a second approach to the incorporation of additional V gene segments is to independently target a large genomic DNA clone containing many additional human V gene segments into the mouse locus using, for instance, the same mouse homology arms included in LTVEC2.
  • the additional human V gene segments would be flanked by lox511 and loxP sites, and the targeted ES cells would be used to create a mouse.
  • the mice derived from double targeted ES cells and the mice derived from the ES cells containing the additional V gene segments would be bred with a third mouse that directs expression of CRE recombinase during meiosis.
  • the final steps in creating the human variable/mouse constant monoclonal antibody producing-mouse will be performing the equivalent variable region substitutions on the lambda and kappa light chain loci and breeding all three hybrid loci to homozygocity together in the same mouse.
  • the resultant transgenic mouse will have a genome comprising entirely human heavy and light chain variable gene loci operably linked to entirely endogenous mouse constant region such that the mouse produces a serum containing an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation.
  • Such a mouse may then be used as a source of DNA encoding the variable regions of human antibodies.
  • DNA encoding the variable regions of the heavy and light chains of the antibody is operably linked to DNA encoding the human heavy and light chain constant regions in cells, such as a CHO cells, which are capable of expressing active antibodies.
  • the cells are grown under the appropriate conditions to express the fully human antibodies, which are then recovered.
  • Variable region encoding sequences may be isolated, for example, by PCR amplification or cDNA cloning.
  • hybridomas made from transgenic mice comprising some or all of the human variable region immunoglobulin loci are used as a source of DNA encoding the human variable regions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/719,842, filed Dec. 19, 2012 and U.S. patent application Ser. No. 13/719,819, filed on Dec. 19, 2012, both of which are continuations of U.S. patent application Ser. No. 13/154,976, filed Jun. 7, 2011, which is a continuation of U.S. patent application Ser. No. 11/595,427, filed Nov. 9, 2006, which is a continuation of U.S. patent application Ser. No. 10/624,044, filed Jul. 21, 2003, now abandoned, which is a divisional of U.S. patent application Ser. No. 09/784,859, filed Feb. 16, 2001, now U.S. Pat. No. 6,596,541; each of which is incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The field of this invention is a method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. The field also encompasses the use of these cells to generate organisms bearing the genetic modification, the organisms, themselves, and methods of use thereof.
  • BACKGROUND
  • The use of LTVECs provides substantial advantages over current methods. For example, since these are derived from DNA fragments larger than those currently used to generate targeting vectors, LTVECs can be more rapidly and conveniently generated from available libraries of large genomic DNA fragments (such as BAC and PAC libraries) than targeting vectors made using current technologies. In addition, larger modifications as well as modifications spanning larger genomic regions can be more conveniently generated than using current technologies. Furthermore, the present invention takes advantage of long regions of homology to increase the targeting frequency of “hard to target” loci, and also diminishes the benefit, if any, of using isogenic DNA in these targeting vectors.
  • The present invention thus provides for a rapid, convenient, and streamlined method for systematically modifying virtually all the endogenous genes and chromosomal loci of a given organism.
  • Gene targeting by means of homologous recombination between homologous exogenous DNA and endogenous chromosomal sequences has proven to be an extremely valuable way to create deletions, insertions, design mutations, correct gene mutations, introduce transgenes, or make other genetic modifications in mice. Current methods involve using standard targeting vectors, with regions of homology to endogenous DNA typically totaling less than 10-20 kb, to introduce the desired genetic modification into mouse embryonic stem (ES) cells, followed by the injection of the altered ES cells into mouse embryos to transmit these engineered genetic modifications into the mouse germline (Smithies et al., Nature, 317:230-234, 1985; Thomas et al., Cell, 51:503-512, 1987; Koller et al., Proc Natl Acad Sci USA, 86:8927-8931, 1989; Kuhn et al., Science, 254:707-710, 1991; Thomas et al., Nature, 346:847-850, 1990; Schwartzberg et al., Science, 246:799-803, 1989; Doetschman et al., Nature, 330:576-578, 1987; Thomson et al., Cell, 5:313-321, 1989; DeChiara et al., Nature, 345:78-80, 1990; U.S. Pat. No. 5,789,215, issued Aug. 4, 1998 in the name of GenPharm International) In these current methods, detecting the rare ES cells in which the standard targeting vectors have correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) requires sequence information outside of the homologous targeting sequences contained within the targeting vector. Assays for successful targeting involve standard Southern blotting or long PCR (see for example Cheng, et al., Nature, 369:684-5, 1994; U.S. Pat. No. 5,436,149) from sequences outside the targeting vector and spanning an entire homology arm (see Definitions); thus, because of size considerations that limit these methods, the size of the homology arms are restricted to less than 10-20 kb in total (Joyner, The Practical Approach Series, 293, 1999).
  • The ability to utilize targeting vectors with homology arms larger than those used in current methods would be extremely valuable. For example, such targeting vectors could be more rapidly and conveniently generated from available libraries containing large genomic inserts (e.g. BAC or PAC libraries) than targeting vectors made using current technologies, in which such genomic inserts have to be extensively characterized and trimmed prior to use. In addition, larger modifications as well as modifications spanning larger genomic regions could be more conveniently generated and in fewer steps than using current technologies. Furthermore, the use of long regions of homology could increase the targeting frequency of “hard to target” loci in eukaryotic cells, since the targeting of homologous recombination in eukaryotic cells appears to be related to the total homology contained within the targeting vector (Deng and Capecchi, Mol Cell Biol, 12:3365-71, 1992). In addition, the increased targeting frequency obtained using long homology arms could diminish any potential benefit that can be derived from using isogenic DNA in these targeting vectors.
  • The problem of engineering precise modifications into very large genomic fragments, such as those cloned in BAC libraries, has largely been solved through the use of homologous recombination in bacteria (Zhang, et al., Nat Genet, 20:123-8, 1998; Yang, et al., Nat Biotechnol, 15:859-65, 1997; Angrand, et al., Nucleic Acids Res, 27:e16, 1999; Muyrers, et al., Nucleic Acids Res, 27:1555-7, 1999; Narayanan, et al., Gene Ther, 6:442-7, 1999), allowing for the construction of vectors containing large regions of homology to eukaryotic endogenous genes or chromosomal loci. However, once made, these vectors have not been generally useful for modifying endogenous genes or chromosomal loci via homologous recombination because of the difficulty in detecting rare correct targeting events when homology arms are larger than 10-20 kb (Joyner supra). Consequently, vectors generated using bacterial homologous recombination from BAC genomic fragments must still be extensively trimmed prior to use as targeting vectors (Hill et al., Genomics, 64:111-3, 2000). Therefore, there is still a need for a rapid and convenient methodology that makes possible the use of targeting vectors containing large regions of homology so as to modify endogenous genes or chromosomal loci in eukaryotic cells.
  • In accordance with the present invention, Applicants provide novel methods that enables the use of targeting vectors containing large regions of homology so as to modify endogenous genes or chromosomal loci in eukaryotic cells via homologous recombination. Such methods overcome the above-described limitations of current technologies. In addition, the skilled artisan will readily recognize that the methods of the invention are easily adapted for use with any genomic DNA of any eukaryotic organism including, but not limited to, animals such as mouse, rat, other rodent, or human, as well as plants such as soy, corn and wheat.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, Applicants have developed a novel, rapid, streamlined, and efficient method for creating and screening eukaryotic cells which contain modified endogenous genes or chromosomal loci. This novel methods combine, for the first time: 1. Bacterial homologous recombination to precisely engineer a desired genetic modification within a large cloned genomic fragment, thereby creating a large targeting vector for use in eukaryotic cells (LTVECs); 2. Direct introduction of these LTVECs into eukaryotic cells to modify the endogenous chromosomal locus of interest in these cells; and 3. An analysis to determine the rare eukaryotic cells in which the targeted allele has been modified as desired, involving an assay for modification of allele (MOA) of the parental allele that does not require sequence information outside of the targeting sequence, such as, for example, quantitative PCR.
  • A preferred embodiment of the invention is a method for genetically modifying an endogenous gene or chromosomal locus in eukaryotic cells, comprising: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to modify the endogenous gene or chromosomal locus in the cells; and d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous gene or chromosomal locus has been genetically modified. Another embodiment of the invention is a method wherein the genetic modification to the endogenous gene or chromosomal locus comprises deletion of a coding sequence, gene segment, or regulatory element; alteration of a coding sequence, gene segment, or regulatory element; insertion of a new coding sequence, gene segment, or regulatory element; creation of a conditional allele; or replacement of a coding sequence or gene segment from one species with an homologous or orthologous coding sequence from a different species. An alternative embodiment of the invention is a method wherein the alteration of a coding sequence, gene segment, or regulatory element comprises a substitution, addition, or fusion, wherein the fusion comprises an epitope tag or bifunctional protein. Yet another embodiment of the invention is a method wherein the quantitative assay comprises quantitative PCR, comparative genomic hybridization, isothermic DNA amplification, or quantitative hybridization to an immobilized probe, wherein the quantitative PCR comprises TAQMAN® technology or quantitative PCR using molecular beacons. Another preferred embodiment of the invention is a method wherein the eukaryotic cell is a mammalian embryonic stem cell and in particular wherein the embryonic stem cell is a mouse, rat, or other rodent embryonic stem cell. Another preferred embodiment of the invention is a method wherein the endogenous gene or chromosomal locus is a mammalian gene or chromosomal locus, preferably a human gene or chromosomal locus or a mouse, rat, or other rodent gene or chromosomal locus. An additional preferred embodiment is one in which the LTVEC is capable of accommodating large DNA fragments greater than 20 kb, and in particular large DNA fragments greater than 100 kb. Another preferred embodiment is a genetically modified endogenous gene or chromosomal locus that is produced by the method of the invention. Yet another preferred embodiment is a genetically modified eukaryotic cell that is produced by the method of the invention. A preferred embodiment of the invention is a non-human organism containing the genetically modified endogenous gene or chromosomal locus produced by the method of the invention. Also preferred in a non-human organism produced from the genetically modified eukaryotic cells or embryonic stem cells produced by the method of the invention.
  • A preferred embodiment is a non-human organism containing a genetically modified endogenous gene or chromosomal locus, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector (LTVEC) for use in embryonic stem cells; c) introducing the LTVEC of (b) into the embryonic stem cells to modify the endogenous gene or chromosomal locus in the cells; d) using a quantitative assay to detect modification of allele (MOA) in the embryonic stem cells of (c) to identify those embryonic stem cells in which the endogenous gene or chromosomal locus has been genetically modified; e) introducing the embryonic stem cell of (d) into a blastocyst; and f) introducing the blastocyst of (e) into a surrogate mother for gestation.
  • An additional preferred embodiment of the invention is a non-human organism containing a genetically modified endogenous gene or chromosomal locus, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to genetically modify the endogenous gene or chromosomal locus in the cells; d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous gene or chromosomal locus has been genetically modified; e) removing the nucleus from the eukaryotic cell of (d); f) introducing the nucleus of (e) into an oocyte; and g) introducing the oocyte of (f) into a surrogate mother for gestation.
  • Yet another preferred embodiment is a non-human organism containing a genetically modified endogenous gene or chromosomal locus, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment containing a DNA sequence of interest; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to genetically modify the endogenous gene or chromosomal locus in the cells; d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous gene or chromosomal locus has been genetically modified; e) fusing the eukaryotic cell of (d) with another eukaryotic cell; f) introducing the fused eukaryotic cell of (e) into a surrogate mother for gestation.
  • A preferred embodiment of the invention is a method for genetically modifying an endogenous gene or chromosomal locus of interest in mouse embryonic stem cells, comprising: a) obtaining a large cloned genomic fragment greater than 20 kb which contains a DNA sequence of interest, wherein the large cloned DNA fragment is homologous to the endogenous gene or chromosomal locus; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the mouse embryonic stem cells, wherein the genetic modification is deletion of a coding sequence, gene segment, or regulatory element; c) introducing the large targeting vector of (b) into the mouse embryonic stem cells to modify the endogenous gene or chromosomal locus in the cells; and d) using a quantitative assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (c) to identify those mouse embryonic stem cells in which the endogenous gene or chromosomal locus has been genetically modified, wherein the quantitative assay is quantitative PCR. Also preferred is a genetically modified mouse embryonic stem cell produced by this method; a mouse containing a genetically modified endogenous gene or chromosomal locus produced by this method; and a mouse produced from the genetically modified mouse embryonic stem cell.
  • Another preferred embodiment is a mouse containing a genetically modified endogenous gene or chromosomal locus of interest, produced by a method comprising the steps of: a) obtaining a large cloned genomic fragment greater than 20 kb which contains a DNA sequence of interest, wherein the large cloned DNA fragment is homologous to the endogenous gene or chromosomal locus; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the mouse embryonic stem cells, wherein the genetic modification is deletion of a coding sequence, gene segment, or regulatory element; c) introducing the large targeting vector of (b) into the mouse embryonic stem cells to modify the endogenous gene or chromosomal locus in the cells; and d) using a quantitative assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (c) to identify those mouse embryonic stem cells in which the endogenous gene or chromosomal locus has been genetically modified, wherein the quantitative assay is quantitative PCR; e) introducing the mouse embryonic stem cell of (d) into a blastocyst; and f) introducing the blastocyst of (e) into a surrogate mother for gestation.
  • One embodiment of the invention is a method of replacing, in whole or in part, in a non-human eukaryotic cell, an endogenous immunoglobulin variable region gene locus with an homologous or orthologous human gene locus comprising: a) obtaining a large cloned genomic fragment containing, in whole or in part, the homologous or orthologous human gene locus; b) using bacterial homologous recombination to genetically modify the cloned genomic fragment of (a) to create a large targeting vector for use in the eukaryotic cells (LTVEC); c) introducing the LTVEC of (b) into the eukaryotic cells to replace, in whole or in part, the endogenous immunoglobulin variable gene locus; and d) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (c) to identify those eukaryotic cells in which the endogenous immunoglobulin variable region gene locus has been replaced, in whole or in part, with the homologous or orthologous human gene locus.
  • Another embodiment is a method of replacing, in whole or in part, in a non-human eukaryotic cell, an endogenous immunoglobulin variable region gene locus with an homologous or orthologous human gene locus further comprising the steps: e) obtaining a large cloned genomic fragment containing a part of the homologous or orthologous human gene locus that differs from the fragment of (a); f) using bacterial homologous recombination to genetically modify the cloned genomic fragment of (e) to create a second LTVEC; g) introducing the second LTVEC of (f) into the eukaryotic cells identified in step (d) to replace, in whole or in part, the endogenous immunoglobulin variable gene locus; and h) using a quantitative assay to detect modification of allele (MOA) in the eukaryotic cells of (g) to identify those eukaryotic cells in which the endogenous immunoglobulin variable region gene locus has been replaced, in whole or in part, with the homologous or orthologous human gene locus.
  • Another embodiment of the above method is a method wherein steps (e) through (h) are repeated until the endogenous immunoglobulin variable region gene locus is replaced in whole with an homologous or orthologous human gene locus.
  • Another embodiment of the method is one in which the immunoglobulin variable gene locus is a locus selected from the group consisting of a) a variable gene locus of the kappa light chain; b) a variable gene locus of the lambda light chain; and c) a variable gene locus of the heavy chain.
  • A preferred embodiment is a method wherein the quantitative assay comprises quantitative PCR, FISH, comparative genomic hybridization, isothermic DNA amplification, or quantitative hybridization to an immobilized probe, and in particular wherein the quantitative PCR comprises TAQMAN®. technology or quantitative PCR using molecular beacons.
  • Yet another preferred embodiment is a method of replacing, in whole or in part, in a mouse embryonic stem cell, an endogenous immunoglobulin variable region gene locus with its homologous or orthologous human gene locus comprising: a) obtaining a large cloned genomic fragment containing, in whole or in part, the homologous or orthologous human gene locus; b) using bacterial homologous recombination to genetically modify the large cloned genomic fragment of (a) to create a large targeting vector for use in the embryonic stem cells; c) introducing the large targeting vector of (b) into mouse embryonic stem cells to replace, in whole or in part, the endogenous immunoglobulin variable gene locus in the cells; and d) using a quantitative PCR assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (d) to identify those mouse embryonic stem cells in which the endogenous variable gene locus has been replaced, in whole or in part, with the homologous or orthologous human gene locus.
  • In another embodiment, the method further comprises: e) obtaining a large cloned genomic fragment containing a part of the homologous or orthologous human gene locus that differs from the fragment of (a); f) using bacterial homologous recombination to genetically modify the cloned genomic fragment of (e) to create a large targeting vector for use in the embryonic stem cells; g) introducing the large targeting vector of (f) into the mouse embryonic stem cells identified in step (d) to replace, in whole or in part, the endogenous immunoglobulin variable gene locus; and h) using a quantitative assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (g) to identify those mouse embryonic stem cells in which the endogenous immunoglobulin variable region gene locus has been replaced, in whole or in part, with the homologous or orthologous human gene locus.
  • Another preferred embodiment is a genetically modified immunoglobulin variable region gene locus produced by the methods described above; a genetically modified eukaryotic cell comprising a genetically modified immunoglobulin variable region gene locus produced by the methods described above; a non-human organism comprising a genetically modified immunoglobulin variable region gene locus produced by the methods described above; and a mouse embryonic stem cell containing a genetically modified immunoglobulin variable region gene locus produced by the methods described above.
  • Also preferred is an embryonic stem cell wherein the mouse heavy chain variable region locus is replaced, in whole or in part, with a human heavy chain variable gene locus; an embryonic stem cell of claim wherein the mouse kappa light chain variable region locus is replaced, in whole or in part, with a human kappa light chain variable region locus; an embryonic stem cell wherein the mouse lambda light chain variable region locus is replaced, in whole or in part, with a human lambda light chain variable region locus; and an embryonic stem cell wherein the heavy and light chain variable region gene loci are replaced, in whole, with their human homologs or orthologs.
  • Yet another preferred embodiment is an antibody comprising a human variable region encoded by the genetically modified variable gene locus of described above; an antibody further comprising a non-human constant region; and an antibody further comprising a human constant region.
  • Also preferred is a transgenic mouse having a genome comprising entirely human heavy and light chain variable region loci operably linked to entirely endogenous mouse constant region loci such that the mouse produces a serum containing an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation; a transgenic mouse having a genome comprising human heavy and/or light chain variable region loci operably linked to endogenous mouse constant region loci such that the mouse produces a serum containing an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation; a transgenic mouse containing an endogenous variable region locus that has been replaced with an homologous or orthologous human variable locus, such mouse being produced by a method comprising: a) obtaining one or more large cloned genomic fragments containing the entire homologous or orthologous human variable region locus; b) using bacterial homologous recombination to genetically modify the cloned genomic fragment(s) of (a) to create large targeting vector(s) for use in mouse embryonic stem cells; c) introducing the large targeting vector(s) of (b) into mouse embryonic stem cells to replace the entire endogenous variable region locus in the cells; and d) using a quantitative PCR assay to detect modification of allele (MOA) in the mouse embryonic stem cells of (c) to identify those mouse embryonic stem cells in which the entire endogenous variable region locus has been replaced with the homologous or orthologous human variable region locus; e) introducing the mouse embryonic stem cell of (d) into a blastocyst; and f) introducing the blastocyst of (e) into a surrogate mother for gestation.
  • Still yet another preferred embodiment of the invention is a method of making a human antibody comprising: a) exposing the mouse described above to antigenic stimulation, such that the mouse produces an antibody against the antigen; b) isolating the DNA encoding the variable regions of the heavy and light chains of the antibody; c) operably linking the DNA encoding the variable regions of (b) to DNA encoding the human heavy and light chain constant regions in a cell capable of expressing active antibodies; d) growing the cell under such conditions as to express the human antibody; and e) recovering the antibody. In another preferred embodiment, the cell described above is a CHO cell. Also preferred is a method of wherein the DNA of step (b) described above is isolated from a hybridoma created from the spleen of the mouse exposed to antigenic stimulation in step (a) described above.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1: Schematic diagram of the generation of a typical LTVEC using bacterial homologous recombination. (hb1=homology box 1; hb2=homology box 2; RE=restriction enzyme site).
  • FIG. 2: Schematic diagram of donor fragment and LTVEC for mouse OCR10. (hb1=homology box 1; lacZ=β-galactosidase ORF; SV40 polyA=a DNA fragment derived from Simian Virus 40, containing a polyadenylation site and signal; PGKp=mouse phosphoglycerate kinase (PGK) promoter; EM7=a bacterial promoter; neo=neomycin phosphotransferase; PGK polyA=3′ untranslated region derived from the PGK gene and containing a polyadenylation site and signal; hb2=homology box 2)
  • FIG. 3A-3D: Sequence of the mouse OCR10 cDNA (upper strand, SEQ ID NO:5; amino acid, SEQ ID NO:6), homology box 1 (hb1), homology box 2 (hb2), and TAQMAN® probes and primers used in a quantitative PCR assay to detect modification of allele (MOA) in ES cells targeted using the mOCR10LTVEC. hb1: base pairs 1 to 211; hb2: base pairs 1586 to 1801; TAQMAN® probe and corresponding PCR primer set derived from mOCR10 exon 3: TAQMAN® probe: nucleotides 413 to 439-upper strand; Primer ex3-5′: nucleotides 390 to 410-upper strand; Primer ex3-3′: nucleotides 445 to 461-lower strand; TAQMAN® probe and corresponding PCR primer set derived from mOCR10 exon 4: TAQMAN® probe: nucleotides 608 to 639-upper strand; Primer ex4-5′: nucleotides 586 to 605-upper strand; Primer ex4-3′: nucleotides 642 to 662-lower strand.
  • FIG. 4A-4D: (SEQ ID NO:5-6) Schematic diagram of the two LTVECs constructed to replace the mouse VDJ region with human VDJ region. A: Large insert (BAC) clones spanning the entire VDJ region of the human heavy chain locus are isolated. B: In this example, large insert (BAC) clones are isolated from the ends of the mouse VDJ region as a source of homology arms which are used to direct integration via homologous recombination of the human VDJ sequences in a two step process. C-D: In the first step, LTVEC1 is constructed by bacterial homologous recombination in E. coli. LTVEC1 contains, in order: a large mouse homology arm derived from the region upstream from the mouse DJ region, but whose absolute endpoints are not important; a cassette encoding a selectable marker functional in ES cells (PGK-neomycinR); a loxP site; a large human insert spanning from several V gene segments through the entire DJ region; and a mouse homology arm containing the region immediately adjacent to, but not including, the mouse J segments. In the second step, LTVEC2 is constructed by bacterial homologous recombination in E. coli. LTVEC2 contains, in order: a large mouse homology arm containing the region adjacent to the most distal mouse V gene segment, but not containing any mouse V gene segments; a large insert containing a large number of distal human V gene segments; a mutant loxP site called lox511 in the orientation opposite to that of the wild type loxP sites in LTVEC2 and LTVEC1 (this site will not recombine with wild type loxP sites but will readily recombine with other lox511 sites); a wild type loxP site; a second selectable marker (PGK-hygromycinR); and a mouse homology arm derived from the V region, but whose absolute endpoints are not important.
  • DETAILED DESCRIPTION
  • A “targeting vector” is a DNA construct that contains sequences “homologous” to endogenous chromosomal nucleic acid sequences flanking a desired genetic modification(s). The flanking homology sequences, referred to as “homology arms”, direct the targeting vector to a specific chromosomal location within the genome by virtue of the homology that exists between the homology arms and the corresponding endogenous sequence and introduce the desired genetic modification by a process referred to as “homologous recombination”.
  • “Homologous” means two or more nucleic acid sequences that are either identical or similar enough that they are able to hybridize to each other or undergo intermolecular exchange.
  • “Gene targeting” is the modification of an endogenous chromosomal locus by the insertion into, deletion of, or replacement of the endogenous sequence via homologous recombination using a targeting vector.
  • A “gene knockout” is a genetic modification resulting from the disruption of the genetic information encoded in a chromosomal locus. A “gene knockin” is a genetic modification resulting from the replacement of the genetic information encoded in a chromosomal locus with a different DNA sequence. A “knockout organism” is an organism in which a significant proportion of the organism's cells harbor a gene knockout. A “knockin organism” is an organism in which a significant proportion of the organism's cells harbor a gene knockin.
  • A “marker” or a “selectable marker” is a selection marker that allows for the isolation of rare transfected cells expressing the marker from the majority of treated cells in the population. Such marker's gene's include, but are not limited to, neomycin phosphotransferase and hygromycin B phosphotransferase, or fluorescing proteins such as GFP.
  • An “ES cell” is an embryonic stem cell. This cell is usually derived from the inner cell mass of a blastocyst-stage embryo. An “ES cell clone” is a subpopulation of cells derived from a single cell of the ES cell population following introduction of DNA and subsequent selection.
  • A “flanking DNA” is a segment of DNA that is collinear with and adjacent to a particular point of reference.
  • “LTVECs” are large targeting vectors for eukaryotic cells that are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells.
  • “Modification of allele” (MOA) refers to the modification of the exact DNA sequence of one allele of a gene(s) or chromosomal locus (loci) in a genome. This modification of allele (MOA) includes, but is not limited to, deletions, substitutions, or insertions of as little as a single nucleotide or deletions of many kilobases spanning a gene(s) or chromosomal locus (loci) of interest, as well as any and all possible modifications between these two extremes.
  • “Orthologous” sequence refers to a sequence from one species that is the functional equivalent of that sequence in another species.
  • GENERAL DESCRIPTION
  • Applicants have developed a novel, rapid, streamlined, and efficient method for creating and screening eukaryotic cells which contain modified endogenous genes or chromosomal loci. In these cells, the modification may be gene(s) knockouts, knockins, point mutations, or large genomic insertions or deletions or other modifications. These cells may be embryonic stem cells which are useful for creating knockout or knockin organisms and in particular, knockout or knockin mice, for the purpose of determining the function of the gene(s) that have been altered, deleted and/or inserted.
  • The novel methods described herein combine, for the first time: 1. Bacterial homologous recombination to precisely engineer a desired genetic modification within a large cloned genomic DNA fragment, thereby creating a large targeting vector for use in eukaryotic cells (LTVECs); 2. Direct introduction of these LTVECs into eukaryotic cells to modify the corresponding endogenous gene(s) or chromosomal locus (loci) of interest in these cells; and 3. An analysis to determine the rare eukaryotic cells in which the targeted allele has been modified as desired, involving a quantitative assay for modification of allele (MOA) of the parental allele.
  • It should be emphasized that previous methods to detect successful homologous recombination in eukaryotic cells cannot be utilized in conjunction with the LTVECs of Applicants' invention because of the long homology arms present in the LTVECs. Utilizing a LTVEC to deliberately modify endogenous genes or chromosomal loci in eukaryotic cells via homologous recombination is made possible by the novel application of an assay to determine the rare eukaryotic cells in which the targeted allele has been modified as desired, such assay involving a quantitative assay for modification of allele (MOA) of a parental allele, by employing, for example, quantitative PCR or other suitable quantitative assays for MOA.
  • The ability to utilize targeting vectors with homology arms larger than those used in current methods is extremely valuable for the following reasons: 1. Targeting vectors are more rapidly and conveniently generated from available libraries containing large genomic inserts (e.g. BAC or PAC libraries) than targeting vectors made using previous technologies, in which the genomic inserts have to be extensively characterized and “trimmed” prior to use (explained in detail below). In addition, minimal sequence information needs to be known about the locus of interest, i.e. it is only necessary to know the approximately 80-100 nucleotides that are required to generate the homology boxes (described in detail below) and to generate probes that can be used in quantitative assays for MOA (described in detail below). 2. Larger modifications as well as modifications spanning larger genomic regions are more conveniently generated and in fewer steps than using previous technologies. For example, the method of the invention makes possible the precise modification of large loci that cannot be accommodated by traditional plasmid-based targeting vectors because of their size limitations. It also makes possible the modification of any given locus at multiple points (e.g. the introduction of specific mutations at different exons of a multi-exon gene) in one step, alleviating the need to engineer multiple targeting vectors and to perform multiple rounds of targeting and screening for homologous recombination in ES cells. 3. The use of long regions of homology (long homology arms) increase the targeting frequency of “hard to target” loci in eukaryotic cells, consistent with previous findings that targeting of homologous recombination in eukaryotic cells appears to be related to the total homology contained within the targeting vector. 4. The increased targeting frequency obtained using long homology arms apparently diminishes the benefit, if any, from using isogenic DNA in these targeting vectors. 5. The application of quantitative MOA assays for screening eukaryotic cells for homologous recombination not only empowers the use of LTVECs as targeting vectors (advantages outlined above) but also reduces the time for identifying correctly modified eukaryotic cells from the typical several days to a few hours. In addition, the application of quantitative MOA does not require the use of probes located outside the endogenous gene(s) or chromosomal locus (loci) that is being modified, thus obviating the need to know the sequence flanking the modified gene(s) or locus (loci). This is a significant improvement in the way the screening has been performed in the past and makes it a much less labor-intensive and much more cost-effective approach to screening for homologous recombination events in eukaryotic cells.
  • Methods
  • Many of the techniques used to construct DNA vectors described herein are standard molecular biology techniques well known to the skilled artisan (see e.g., Sambrook, J., E. F. Fritsch And T. Maniatis. Molecular Cloning: A Laboratory Manual, Second Edition, Vols 1, 2, and 3, 1989; Current Protocols in Molecular Biology, Eds. Ausubel et al., Greene Publ. Assoc., Wiley Interscience, NY). All DNA sequencing is done by standard techniques using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, Calif.).
  • Step 1. Obtain a Large Genomic DNA Clone Containing the Gene(s) or Chromosomal Locus (Loci) of Interest.
  • A gene(s) or locus (loci) of interest can be selected based on specific criteria, such as detailed structural or functional data, or it can be selected in the absence of such detailed information as potential genes or gene fragments become predicted through the efforts of the various genome sequencing projects. Importantly, it should be noted that it is not necessary to know the complete sequence and gene structure of a gene(s) of interest to apply the method of the subject invention to produce LTVECs. In fact, the only sequence information that is required is approximately 80-100 nucleotides so as to obtain the genomic clone of interest as well as to generate the homology boxes used in making the LTVEC (described in detail below) and to make probes for use in quantitative MOA assays.
  • Once a gene(s) or locus (loci) of interest has been selected, a large genomic clone(s) containing this gene(s) or locus (loci) is obtained. This clone(s) can be obtained in any one of several ways including, but not limited to, screening suitable DNA libraries (e.g. BAC, PAC, YAC, or cosmid) by standard hybridization or PCR techniques, or by any other methods familiar to the skilled artisan.
  • Step 2. Append Homology Boxes 1 and 2 to a Modification Cassette and Generation of LTVEC.
  • Homology boxes mark the sites of bacterial homologous recombination that are used to generate LTVECs from large cloned genomic fragments (FIG. 1). Homology boxes are short segments of DNA, generally double-stranded and at least 40 nucleotides in length, that are homologous to regions within the large cloned genomic fragment flanking the “region to be modified”. The homology boxes are appended to the modification cassette, so that following homologous recombination in bacteria, the modification cassette replaces the region to be modified (FIG. 1). The technique of creating a targeting vector using bacterial homologous recombination can be performed in a variety of systems (Yang et al. supra; Muyrers et al. supra; Angrand et al. supra; Narayanan et al. supra; Yu, et al., Proc Natl Acad Sci USA, 97:5978-83, 2000). One example of a favored technology currently in use is ET cloning and variations of this technology (Yu et al. supra). ET refers to the recE (Hall and Kolodner, Proc Natl Acad Sci USA, 91:3205-9, 1994) and recT proteins (Kusano et al., Gene, 138:17-25, 1994) that carry out the homologous recombination reaction. RecE is an exonuclease that trims one strand of linear double-stranded DNA (essentially the donor DNA fragment described infra) 5′ to 3′, thus leaving behind a linear double-stranded fragment with a 3′ single-stranded overhang. This single-stranded overhang is coated by recT protein, which has single-stranded DNA (ssDNA) binding activity (Koval) and Matthews, Science, 277:1824-7, 1997). ET cloning is performed using E. coli that transiently express the E. coli gene products of recE and recT (Hall and Kolodner, Proc Natl Acad Sci USA, 91:3205-9, 1994; Clark et al., Cold Spring Harb Symp Quant Biol, 49:453-62, 1984; Noirot and Kolodner, J Biol Chem, 273:12274-80, 1998; Thresher et al., J Mol Biol, 254:364-71, 1995; Kolodner et al., Mol Microbiol, 11:23-30, 1994; Hall et al., J Bacteriol, 175:277-87, 1993) and the bacteriophage lambda (λ) protein λgam (Murphy, J Bacteriol, 173:5808-21, 1991; Poteete et al., J Bacteriol, 170:2012-21, 1988). The kgam protein is required for protecting the donor DNA fragment from degradation by the recBC exonuclease system (Myers and Stahl, Annu Rev Genet, 28:49-70, 1994) and it is required for efficient ET-cloning in recBC+ hosts such as the frequently used E. coli strain DH10b.
  • The region to be modified and replaced using bacterial homologous recombination can range from zero nucleotides in length (creating an insertion into the original locus) to many tens of kilobases (creating a deletion and/or a replacement of the original locus). Depending on the modification cassette, the modification can result in the following: (a) deletion of coding sequences, gene segments, or regulatory elements; (b) alteration(s) of coding sequence, gene segments, or regulatory elements including substitutions, additions, and fusions (e.g. epitope tags or creation of bifunctional proteins such as those with GFP); (c) insertion of new coding regions, gene segments, or regulatory elements, such as those for selectable marker genes or reporter genes or putting new genes under endogenous transcriptional control; (d) creation of conditional alleles, e.g. by introduction of loxP sites flanking the region to be excised by Cre recombinase (Abremski and Hoess, J Biol Chem, 259:1509-14, 1984), or FRT sites flanking the region to be excised by Flp recombinase (Andrews et al., Cell, 40:795-803, 1985; Meyer-Leon et al., Cold Spring Harb Symp Quant Biol, 49:797-804, 1984; Cox, Proc Natl Acad Sci USA, 80:4223-7, 1983); or (e) replacement of coding sequences or gene segments from one species with orthologous coding sequences from a different species, e.g. replacing a murine genetic locus with the orthologous human genetic locus to engineer a mouse where that particular locus has been ‘humanized’.
  • Any or all of these modifications can be incorporated into a LTVEC. A specific example in which an endogenous coding sequence is entirely deleted and simultaneously replaced with both a reporter gene as well as a selectable marker is provided below in Example 1, as are the advantages of the method of the invention as compared to previous technologies.
  • Step 3 (Optional). Verify that Each LTVEC has been Engineered Correctly.
  • Verify that each LTVEC has been engineered correctly by: a. Diagnostic PCR to verify the novel junctions created by the introduction of the donor fragment into the gene(s) or chromosomal locus (loci) of interest. The PCR fragments thus obtained can be sequenced to further verify the novel junctions created by the introduction of the donor fragment into the gene(s) or chromosomal locus (loci) of interest. b. Diagnostic restriction enzyme digestion to make sure that only the desired modifications have been introduced into the LTVEC during the bacterial homologous recombination process. c. Direct sequencing of the LTVEC, particularly the regions spanning the site of the modification to verify the novel junctions created by the introduction of the donor fragment into the gene(s) or chromosomal locus (loci) of interest.
  • Step 4. Purification, Preparation, and Linearization of LTVEC DNA for Introduction Into Eukaryotic Cells.
  • a. Preparation of LTVEC DNA:
  • Prepare miniprep DNA (Sambrook et al. supra; Tillett and Neilan, Biotechniques, 24:568-70, 572, 1998; of the selected LTVEC and re-transform the miniprep LTVEC DNA into E. coli using electroporation (Sambrook et al. supra). This step is necessary to get rid of the plasmid encoding the recombinogenic proteins that are utilized for the bacterial homologous recombination step. It is useful to get rid of this plasmid (a) because it is a high copy number plasmid and may reduce the yields obtained in the large scale LTVEC preps; (b) to eliminate the possibility of inducing expression of the recombinogenic proteins; and (c) because it may obscure physical mapping of the LTVEC. Before introducing the LTVEC into eukaryotic cells, larger amounts of LTVEC DNA are prepared by standard methodology; Sambrook et al. supra; Tillett and Neilan, Biotechniques, 24:568-70, 572, 1998). However, this step can be bypassed if a bacterial homologous recombination method that utilizes a recombinogenic prophage is used, i.e. where the genes encoding the recombinogenic proteins are integrated into the bacterial chromosome (Yu, et al. supra), is used.
  • b. Linearizing the LTVEC DNA:
  • To prepare the LTVEC for introduction into eukaryotic cells, the LTVEC is preferably linearized in a manner that leaves the modified endogenous gene(s) or chromosomal locus (loci) DNA flanked with long homology arms. This can be accomplished by linearizing the LTVEC, preferably in the vector backbone, with any suitable restriction enzyme that digests only rarely. Examples of suitable restriction enzymes include NotI, PacI, SfiI, SrfI, Swal, FseI, etc. The choice of restriction enzyme may be determined experimentally (i.e. by testing several different candidate rare cutters) or, if the sequence of the LTVEC is known, by analyzing the sequence and choosing a suitable restriction enzyme based on the analysis. In situations where the LTVEC has a vector backbone containing rare sites such as CosN sites, then it can be cleaved with enzymes recognizing such sites, for example 2 terminase (Shizuya et al., Proc Natl Acad Sci USA, 89:8794-7, 1992; Becker and Gold, Proc Natl Acad Sci USA, 75:4199-203, 1978; Rackwitz et al., Gene, 40:259-66, 1985).
  • Step 5. Introduction of LTVEC into Eukaryotic Cells and Selection of Cells Where Successful Introduction of the LTVEC has Taken Place.
  • LTVEC DNA can be introduced into eukaryotic cells using standard methodology, such as transfection mediated by calcium phosphate, lipids, or electroporation (Sambrook et al. supra). The cells where the LTVEC has been introduced successfully can be selected by exposure to selection agents, depending on the selectable marker gene that has been engineered into the LTVEC. For example, if the selectable marker is the neomycin phosphotransferase (neo) gene (Beck, et al., Gene, 19:327-36, 1982), then cells that have taken up the LTVEC can be selected in G418-containing media; cells that do not have the LTVEC will die whereas cells that have taken up the LTVEC will survive (Santerre, et al., Gene, 30:147-56, 1984). Other suitable selectable markers include any drug that has activity in eukaryotic cells, such as hygromycin B (Santerre, et al., Gene, 30:147-56, 1984; Bernard, et al., Exp Cell Res, 158:237-43, 1985; Giordano and McAllister, Gene, 88:285-8, 1990), Blasticidin S (Izumi, et al., Exp Cell Res, 197:229-33, 1991), and other which are familiar to those skilled in the art.
  • Step 6.
  • Screen for homologous recombination events in eukaryotic cells using quantitative assay for modification of allele (MOA). Eukaryotic cells that have been successfully modified by targeting the LTVEC into the locus of interest can be identified using a variety of approaches that can detect modification of allele within the locus of interest and that do not depend on assays spanning the entire homology arm or arms. Such approaches can include but are not limited to: (a) quantitative PCR using TAQMAN® (Lie and Petropoulos, Curr Opin Biotechnol, 9:43-8, 1998); (b) quantitative MOA assay using molecular beacons (Tan, et al., Chemistry, 6:1107-11, 2000); (c) fluorescence in situ hybridization FISH (Laan, et al., Hum Genet, 96:275-80, 1995) or comparative genomic hybridization (CGH) (Forozan, et al., Trends Genet, 13:405-9, 1997; Thompson and Gray, J Cell Biochem Suppl, 13943, 1993; Houldsworth and Chaganti, Am J Pathol, 145:1253-60, 1994); (d) isothermic DNA amplification (Lizardi et al., Nat Genet, 19:225-32, 1998; Mitra and Church, Nucleic Acids Res, 27:e34, 1999); and (e) quantitative hybridization to an immobilized probe(s) (Southern, J. Mol. Biol. 98: 503, 1975; Kafatos et al., Nucleic Acids Res 7(6):1541-52, 1979).
  • Applicants provide herein an example in which TAQMAN® quantitative PCR is used to screen for successfully targeted eukaryotic cells. For example, TAQMAN® is used to identify eukaryotic cells which have undergone homologous recombination wherein a portion of one of two endogenous alleles in a diploid genome has been replaced by another sequence. In contrast to traditional methods, in which a difference in restriction fragment length spanning the entire homology arm or arms indicates the modification of one of two alleles, the quantitative TAQMAN® method will detect the modification of one allele by measuring the reduction in copy number (by half) of the unmodified allele. Specifically, the probe detects the unmodified allele and not the modified allele. Therefore, the method is independent of the exact nature of the modification and not limited to the sequence replacement described in this example. TAQMAN® is used to quantify the number of copies of a DNA template in a genomic DNA sample, especially by comparison to a reference gene (Lie and Petropoulos, Curr. Opin. Biotechnol., 9:43-8, 1998). The reference gene is quantitated in the same genomic DNA as the target gene(s) or locus (loci). Therefore, two TAQMAN® amplifications (each with its respective probe) are performed. One TAQMAN® probe determines the “Ct” (Threshold Cycle) of the reference gene, while the other probe determines the Ct of the region of the targeted gene(s) or locus (loci) which is replaced by successful targeting. The Ct is a quantity that reflects the amount of starting DNA for each of the TAQMAN® probes, i.e. a less abundant sequence requires more cycles of PCR to reach the threshold cycle. Decreasing by half the number of copies of the template sequence for a TAQMAN® reaction will result in an increase of about one Ct unit. TAQMAN® reactions in cells where one allele of the target gene(s) or locus (loci) has been replaced by homologous recombination will result in an increase of one Ct for the target TAQMAN® reaction without an increase in the Ct for the reference gene when compared to DNA from non-targeted cells. This allows for ready detection of the modification of one allele of the gene(s) of interest in eukaryotic cells using LTVECs.
  • As stated above, modification of allele (MOA) screening is the use of any method that detects the modification of one allele to identify cells which have undergone homologous recombination. It is not a requirement that the targeted alleles be identical (homologous) to each other, and in fact, they may contain polymorphisms, as is the case in progeny resulting from crossing two different strains of mice. In addition, one special situation that is also covered by MOA screening is targeting of genes which are normally present as a single copy in cells, such as some of the located on the sex chromosomes and in particular, on the Y chromosome. In this case, methods that will detect the modification of the single targeted allele, such as quantitative PCR, Southern blottings, etc., can be used to detect the targeting event. It is clear that the method of the invention can be used to generate modified eukaryotic cells even when alleles are polymorphic or when they are present in a single copy in the targeted cells.
  • Step 8.
  • Uses of genetically modified eukaryotic cells. (a) The genetically modified eukaryotic cells generated by the methods described in steps 1 through 7 can be employed in any in vitro or in vivo assay, where changing the phenotype of the cell is desirable. (b) The genetically modified eukaryotic cell generated by the methods described in steps 1 through 7 can also be used to generate an organism carrying the genetic modification. The genetically modified organisms can be generated by several different techniques including but not limited to: 1. Modified embryonic stem (ES) cells such as the frequently used rat and mouse ES cells. ES cells can be used to create genetically modified rats or mice by standard blastocyst injection technology or aggregation techniques (Robertson, Practical Approach Series, 254, 1987; Wood, et al., Nature, 365:87-9, 1993; Joyner supra), tetraploid blastocyst injection (Wang, et al., Mech Dev, 62:137-45, 1997), or nuclear transfer and cloning (Wakayama, et al., Proc Natl Acad Sci USA, 96:14984-9, 1999). ES cells derived from other organisms such as rabbits (Wang, et al., Mech Dev, 62:137-45, 1997; Schoonjans, et al., Mol Reprod Dev, 45:439-43, 1996) or chickens (Pain, et al., Development, 122:2339-48, 1996) or other species should also be amenable to genetic modification(s) using the methods of the invention. 2. Modified protoplasts can be used to generate genetically modified plants (for example see U.S. Pat. No. 5,350,689 “Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells”, and U.S. Pat. No. 5,508,189 “Regeneration of plants from cultured guard cell protoplasts” and references therein). 3. Nuclear transfer from modified eukaryotic cells to oocytes to generate cloned organisms with modified allele (Wakayama, et al., Proc Natl Acad Sci USA, 96:14984-9, 1999; Baguisi, et al., Nat Biotechnol, 17:456-61, 1999; Wilmut, et al., Reprod Fertil Dev, 10:639-43, 1998; Wilmut, et al., Nature, 385:810-3, 1997; Wakayama, et al., Nat Genet, 24:108-9, 2000; Wakayama, et al., Nature, 394:369-74, 1998; Rideout, et al., Nat Genet, 24:109-10, 2000; Campbell, et al., Nature, 380:64-6, 1996). 4. Cell-fusion to transfer the modified allele to another cell, including transfer of engineered chromosome(s), and uses of such cell(s) to generate organisms carrying the modified allele or engineered chromosome(s) (Kuroiwa, et al., Nat Biotechnol, 18:1086-1090, 2000). 5. The method of the invention are also amenable to any other approaches that have been used or yet to be discovered.
  • While many of the techniques used in practicing the individual steps of the methods of the invention are familiar to the skilled artisan, Applicants contend that the novelty of the method of the invention lies in the unique combination of those steps and techniques coupled with the never-before-described method of introducing a LTVEC directly into eukaryotic cells to modify a chromosomal locus, and the use of quantitative MOA assays to identify eukaryotic cells which have been appropriately modified. This novel combination represents a significant improvement over previous technologies for creating organisms possessing modifications of endogenous genes or chromosomal loci.
  • EXAMPLES Example 1
  • Engineering Mouse ES Cells Bearing a Deletion of the OCR10Gene
  • a. Selection of a large genomic DNA clone containing mOCR10.
  • A Bacterial
  • Artificial Chromosome (BAC) clone carrying a large genomic DNA fragment that contained the coding sequence of the mouse OCR10 (mOCR10) gene was obtained by screening an arrayed mouse genomic DNA BAC library (Incyte Genomics) using PCR. The primers employed to screen this library were derived from the mOCR10 gene cDNA sequence. Two primer pairs where used: (a) OCR10.RAA (SEQ ID NO:1) and OCR10.PVIrc (SEQ ID NO:2) which amplifies a 102 bp DNA; and (b) OCR10.TDY (SEQ ID NO:3)) and OCR10.QETrc (SEQ ID NO:4)) which amplifies a 1500 bp DNA. This mOCR10BAC contained approximately 180 kb of genomic DNA including the complete mOCR10 coding sequence. This BAC clone was used to generate an LTVEC which was subsequently used to delete a portion of the coding region of mOCR10 while simultaneously introducing a reporter gene whose initiation codon precisely replaced the initiation codon of OCR10, as well as insertion of a selectable marker gene useful for selection both in E. coli and mammalian cells following the reporter gene (FIG. 2). The reporter gene (LacZ), encodes the E. coli β-galactosidase enzyme. Because of the position of insertion of LacZ (its initiating codon is at the same position as the initiation codon of mOCR10) the expression of lacZ should mimic that of mOCR10, as has been observed in other examples where similar replacements with LacZ were performed using previous technologies (see “Gene trap strategies in ES cells”, by W Wurst and A. Gossler, in Joyner supra). The LacZ gene allows for a simple and standard enzymatic assay to be performed that can reveal its expression patterns in situ, thus providing a surrogate assay that reflects the normal expression patterns of the replaced gene(s) or chromosomal locus (loci).
  • b. Construction of donor fragment and generation of LTVEC. The modification cassette used in the construction of the mOCR10LTVEC is the lacZ-SV40 polyA-PGKp-EM7-neo-PGK polyA cassette wherein lacZ is a marker gene as described above, SV40 polyA is a fragment derived from Simian Virus 40 (Subramanian, et al., Prog Nucleic Acid Res Mol Biol, 19:157-64, 1976; Thimmappaya, et al., J Biol Chem, 253:1613-8, 1978; Dhar, et al., Proc Natl Acad Sci USA, 71:371-5, 1974; Reddy, et al., Science, 200:494-502, 1978) and containing a polyadenylation site and signal (Subramanian, et al., Prog Nucleic Acid Res Mol Biol, 19:157-64, 1976; Thimmappaya, et al., J Biol Chem, 253:1613-8, 1978; Dhar, et al., Proc Natl Acad Sci USA, 71:371-5, 1974; Reddy, et al., Science, 200:494-502, 1978), PGKp is the mouse phosphoglycerate kinase (PGK) promoter (Adra, et al., Gene, 60:65-74, 1987) (which has been used extensively to drive expression of drug resistance genes in mammalian cells), EM7 is a strong bacterial promoter that has the advantage of allowing for positive selection in bacteria of the completed LTVEC construct by driving expression of the neomycin phosphotransferase (neo) gene, neo is a selectable marker that confers Kanamycin resistance in prokaryotic cells and G418 resistance in eukaryotic cells (Beck, et al., Gene, 19:327-36, 1982), and PGK polyA is a 3′ untranslated region derived from the PGK gene and containing a polyadenylation site and signal (Boer, et al., Biochem Genet, 28:299-308, 1990).
  • To construct the mOCR10LTVEC, first a donor fragment was generated consisting of a mOCR10 homology box 1 (hb1) attached upstream from the LacZ gene in the modification cassette and a mOCR10 homology box 2 (hb2) attached downstream of the neo-PGK polyA sequence in the modification cassette (FIG. 2), using standard recombinant genetic engineering technology. Homology box 1 (hb1) consists of 211 bp of untranslated sequence immediately upstream of the initiating methionine of the mOCR10 open reading frame (mOCR10ORF) (FIG. 3A-3D). Homology box 2 (hb2) consists of last 216 bp of the mOCR10ORF, ending at the stop codon (FIG. 3A-3D).
  • Subsequently, using bacterial homologous recombination (Zhang, et al. supra; Angrand, et al., supra; Muyrers, et al. supra; Narayanan et al. supra; Yu et al. supra), this donor fragment was used to precisely replace the mOCR10 coding region (from initiation methionine to stop codon) with the insertion cassette, resulting in construction of the mOCR10LTVEC (FIG. 2). Thus, in this mOCR10LTVEC, the mOCR10 coding sequence was replaced by the insertion cassette creating an approximately 20 kb deletion in the mOCR10 locus while leaving approximately 130 kb of upstream homology (upstream homology arm) and 32 kb of downstream homology (downstream homology arm).
  • It is important to note that LTVECs can be more rapidly and conveniently generated from available BAC libraries than targeting vectors made using previous technologies because only a single bacterial homologous recombination step is required and the only sequence information required is that needed to generate the homology boxes. In contrast, previous approaches for generating targeting vectors using bacterial homologous recombination require that large targeting vectors be “trimmed” prior to their introduction in ES cells (Hill et al., Genomics, 64:111-3, 2000). This trimming is necessary because of the need to generate homology arms short enough to accommodate the screening methods utilized by previous approaches. One major disadvantage of the method of Hill et al. is that two additional homologous recombination steps are required simply for trimming (one to trim the region upstream of the modified locus and one to trim the region downstream of the modified locus). To do this, substantially more sequence information is needed, including sequence information spanning the sites of trimming.
  • In addition, another obvious advantage, illustrated by the above example, is that a very large deletion spanning the mOCR10 gene (approximately 20 kb) can be easily generated in a single step. In contrast, using previous technologies, to accomplish the same task may require several steps and may involve marking the regions upstream and downstream of the coding sequences with loxP sites in order to use the Cre recombinase to remove the sequence flanked by these sites after introduction of the modified locus in eukaryotic cells. This may be unattainable in one step, and thus may require the construction of two targeting vectors using different selection markers and two sequential targeting events in ES cells, one to introduce the loxP site at the region upstream of the coding sequence and another to introduce the loxP site at the region downstream of the coding sequence. It should be further noted that the creation of large deletions often occurs with low efficiency using the previous targeting technologies in eukaryotic cells, because the frequency of achieving homologous recombination may be low when using targeting vectors containing large deletion flanked by relatively short homology arms. The high efficiency obtained using the method of the invention (see below) is due to the very long homology arms present in the LTVEC that increase the rate of homologous recombination in eukaryotic cells.
  • c. Verification, Preparation, and Introduction of mOCR10LTVEC DNA into ES Cells.
  • The sequence surrounding the junction of the insertion cassette and the homology sequence was verified by DNA sequencing. The size of the mOCR10LTVEC was verified by restriction analysis followed by pulsed field gel electrophoresis (PFGE) (Cantor, et al., Annu Rev Biophys Biophys Chem, 17:287-304, 1988; Schwartz and Cantor, Cell, 37:67-75, 1984). A standard large-scale plasmid preparation of the mOCR10LTVEC was done, the plasmid DNA was digested with the restriction enzyme NotI, which cuts in the vector backbone of the mOCR10LTVEC, to generate linear DNA. Subsequently the linearized DNA was introduced into mouse ES cells by electroporation (Robertson, Practical Approach Series, 254, 1987; Joyner supra; Sambrook, et al. supra). ES cells successfully transfected with the mOCR10 LTVEC were selected for in G418-containing media using standard selection methods.
  • d. Identification of Targeted ES Cells Clones Using a Quantitative Modification of Allele (MOA) Assay.
  • To identify ES cells in which one of the two endogenous mOCR10 genes had been replaced by the modification cassette sequence, DNA from individual ES cell clones was analyzed by quantitative PCR using standard TAQMAN® methodology as described (Applied Biosystems, TAQMAN® Universal PCR Master Mix, catalog number P/N 4304437). The primers and TAQMAN® probes used are as described in FIG. 3A-3D (SEQ ID NO:5-6). A total of 69 independent ES cells clones where screened and 3 were identified as positive, i.e. as clones in which one of the endogenous mOCR10 coding sequence had been replaced by the modification cassette described above.
  • Several advantages of the MOA approach are apparent: (i) It does not require the use of a probe outside the locus being modified, thus obviating the need to know the sequence flanking the modified locus. (ii) It requires very little time to perform compared to conventional Southern blot methodology which has been the previous method of choice, thus reducing the time for identifying correctly modified cells from the typical several days to just a few hours. This is a significant improvement in the way screening has been performed in the past and makes it a much less labor-intensive and more cost-effective approach to screening for homologous recombination events in eukaryotic cells. Yet another advantage of the method of the invention is that it is also superior to previous technologies because of its ability to target difficult loci. Using previous technologies, it has been shown that for certain loci the frequency of successful targeting may by as low as 1 in 2000 integration events, perhaps even lower. Using the method of the invention, Applicants have demonstrated that such difficult loci can be targeted much more efficiently using LTVECs that contain long homology arms (i.e. greater than those allowed by previous technologies). As the non-limiting example described above demonstrates, the Applicants have targeted the OCR10 locus, a locus that has previously proven recalcitrant to targeting using conventional technology. Using the method of the invention, Applicants have shown that they have obtained successful targeting in 3 out of 69 ES cells clones in which the mOCR10LTVEC (containing more than 160 kb of homology arms, and introducing a 20 kb deletion) had integrated, whereas using previous technology for ES cell targeting using a plasmid-based vector with homology arms shorter than 10-20 kb while also introducing a deletion of less than 15 kb, no targeted events were identified among more than 600 integrants of the vector. These data clearly demonstrate the superiority of the method of the invention over previous technologies.
  • Example 2
  • Increased Targeting Frequency and Abrogation of the Need to Use Isogenic DNA when LTVECs are Used as the Targeting Vectors
  • As noted above, the increased targeting frequency obtained using long homology arms should diminish the benefit, if any, derived from using genomic DNA in constructing LTVECs that is isogenic with (i.e. identical in sequence to) the DNA of the eukaryotic cell being targeted. To test this hypothesis, Applicants have constructed numerous LTVECs using genomic DNA derived from the same mouse substrain as the eukaryotic cell to be targeted (presumably isogenic), and numerous other LTVECs using genomic DNA derived from mouse substrains differing from that of the eukaryotic cell to be targeted (presumably non-isogenic). The two sets of LTVECs exhibited similar targeting frequencies, ranging from 1-13%, indicating that the rate of successful targeting using LTVECs does not depend on isogenicity.
  • The approach of creating LTVECs and directly using them as targeting vectors combined with MOA screening for homologous recombination events in ES cells creates a novel method for engineering genetically modified loci that is rapid, inexpensive and represents a significant improvement over the tedious, time-consuming methods previously in use. It thus opens the possibility of a rapid large scale in vivo functional genomics analysis of essentially any and all genes in an organism's genome in a fraction of the time and cost necessitated by previous methodologies.
  • Example 3 Use of LTVECs to Produce Chimeric and Human Antibodies
  • a. Introduction.
  • The rearrangement of variable region genes during the initial development of B cells is the primary mechanism whereby the immune system produces antibodies capable of recognizing the huge number of antigens that it may encounter. Essentially, through DNA rearrangements during B cell development, a huge repertoire of variable (V) region sequences are assembled which are subsequently joined to a constant (C) region to produce complete heavy and light chains which assemble to form an antibody. After functional antibodies have been assembled, somatic hypermutation which occurs in the secondary lymphoid organs, introduces further diversity which enables the organism to select and optimize the affinity of the antibody.
  • The production of antibodies to various antigens in non-human species initially provided great promise for the large scale production of antibodies that could be used as human therapeutics. Species differences, however, leads to the production of antibodies by humans which inactivate the foreign antibodies and cause allergic reactions. Attempts were subsequently made to “humanize” the antibodies, thus making them less likely to be recognized as foreign in humans. Initially, this process involved combining the antigen binding portions of antibodies derived from mice with the constant region of human antibodies, thereby creating recombinant antibodies that were less immunogenic in humans. A second approach which was developed was phage display, whereby human V regions are cloned into a phage display library and regions with the appropriate binding characteristics are joined to human constant regions to create human antibodies. This technology is limited, however, by the lack of antibody development and affinity maturation which naturally occurs in B cells.
  • More recently, endogenous genes have been knocked out of mice, and the genes replaced with their human counterparts to produce entirely human antibodies. Unfortunately, the use of these constructs has highlighted the importance of an endogenous constant region in the development and optimization of antibodies in B cells. Human antibodies produced by transgenic mice with entirely human constructs have reduced affinity as compared to their mouse counterparts. Accordingly, the much acclaimed methods of producing humanized antibodies in mice and other organisms, wherein endogenous variable and constant regions of the mice are knocked out and replaced with their human counterparts, has not resulted in optimal antibodies.
  • The use of chimeric antibodies, which utilize human variable regions with mouse constant regions through B cell maturation, followed by subsequent engineering of the antibodies to replace the mouse constant regions with their human counterparts, has been suggested (U.S. Pat. No. 5,770,429). However, the only methodology that has existed to date for making such chimeras has been trans-switching, wherein the formation of the chimeras is only a rare event which occurs only in heavy chains. Heretofore, there has been no mechanism to produce, in transgenic animals, large scale replacement of the entire variable gene encoding segments with human genes, thereby producing chimeras in both the heavy and light chains. Utilizing Applicants' technology, as disclosed herein, chimeric antibodies are generated which can then be altered, through standard technology, to create high affinity human antibodies.
  • b. Brief Description.
  • A transgenic mouse is created that produces hybrid antibodies containing human variable regions and mouse constant regions. This is accomplished by a direct, in situ replacement of the mouse variable region genes with their human counterparts. The resultant hybrid immunoglobulin loci will undergo the natural process of rearrangements during B-cell development to produce the hybrid antibodies.
  • Subsequently, fully-human antibodies are made by replacing the mouse constant regions with the desired human counterparts. This approach will give rise to therapeutic antibodies much more efficiently than previous methods, e.g. the “humanization” of mouse monoclonal antibodies or the generation of fully human antibodies in HUMAB™ mice. Further, this method will succeed in producing therapeutic antibodies for many antigens for which previous methods have failed. This mouse will create antibodies that are human variable region-mouse constant region, which will have the following benefits over the previously available HUMAB™ mice that produce totally human antibodies. Antibodies generated by the new mouse will retain murine Fc regions which will interact more efficiently with the other components of the mouse B cell receptor complex, including the signaling components required for appropriate B cell differentiation (such as Iga and Igb). Additionally, the murine Fc regions will be more specific than human Fc regions in their interactions with Fc receptors on mouse cells, complement molecules, etc. These interactions are important for a strong and specific immune response, for the proliferation and maturation of B cells, and for the affinity maturation of antibodies.
  • Because there is a direct substitution of the human V-D-J/V-J regions for the equivalent regions of the mouse loci all of the sequences necessary for proper transcription, recombination, and/or class switching will remain intact. For example, the murine immunoglobulin heavy chain intronic enhancer, Em, has been shown to be critical for V-D-J recombination as well as heavy chain gene expression during the early stages of B cell development (Ronai et al. Mol Cell Biol 19:7031-7040 (1999)), whereas the immunoglobulin heavy chain 3′ enhancer region appears to be critical for class switching (Pan et al. Eur J Immunol 30:1019-1029 (2000)) as well as heavy chain gene expression at later stages of B cell differentiation (Ong, et al. J Immunol 160:4896-4903 (1998)). Given these various, yet crucial, functions of the transcriptional control elements, it is desirable to maintain these sequences intact.
  • The required recombination events which occur at the immunoglobulin loci during the normal course of B cell differentiation may increase the frequency of aberrant, non-productive immunoglobulin rearrangements when these loci are inserted at improper chromosomal locations, or in multiple copies, as in currently available mice. With reductions in productive immunoglobulin rearrangement and, therefore, appropriate signaling at specific steps of B cell development the aberrant cells are eliminated. Reductions of B cell numbers at early stages of development significantly decreases the final overall B cell population and greatly limits the immune responses of the mice. Since there will be only one, chimeric, heavy or light chain locus (as opposed to mutated immunoglobulin loci and with human transgenic loci integrated at distinct chromosomal locations for heavy and light chains in the currently available mice) there should be no trans-splicing or trans-rearrangements of the loci which could result in non-productive rearrangements or therapeutically irrelevant chimeric antibodies (Willers et al. Immunobiology 200:150-164 (2000); Fujieda et al. J. Immunol. 157:3450-3459 (1996)).
  • The substitutions of the human V-D-J or V-J regions into the genuine murine chromosomal immunoglobulin loci should be substantially more stable, with increased transmission rates to progeny and decreased mosaicism of B cell genotypes compared with the currently available mice (Tomizuka et al Proc Natl Acad Sci (USA) 97:722-727 (2000)). Furthermore, introduction of the human variable regions at the genuine murine loci in vivo will maintain the appropriate global regulation of chromatin accessibility previously shown to be important for appropriately timed recombination events (Haines et al. Eur J Immunol 28:4228-4235 (1998)).
  • Approximately 1/3 of human antibodies contain lambda light chains, as compared to mice in which only 1/20 of murine antibodies contain lambda light chains. Therefore, replacing murine lambda light chain V-J sequences with lambda light chain V-J sequences derived from the human locus will serve to increase the repertoire of antibodies as well as more closely match the genuine human immune response, thus increasing the likelihood of obtaining therapeutically useful antibodies.
  • An additional benefit of integrating the human sequences into the genuine murine immunoglobulin loci is that no novel integration sites are introduced which might give rise to mutagenic disruptions at the insertion site and preclude the isolation of viable homozygous mice. This will greatly simplify the production and maintenance of a breeding mouse colony.
  • c. Materials and Methods:
  • Precise replacement of the mouse heavy chain locus variable region (VDJ) with its human counterpart is exemplified using a combination of homologous and site-specific recombination in the following example, which utilizes a two step process. One skilled in the art will recognize that replacement of the mouse locus with the homologous or orthologous human locus may be accomplished in one or more steps. Accordingly, the invention contemplates replacement of the murine locus, in whole or in part, with each integration via homologous recombination.
  • Large insert (BAC) clones spanning the entire VDJ region of the human heavy chain locus are isolated (FIG. 4A). The sequence of this entire region is available in the following Gen Bank files (AB019437, AB019438, AB019439, AB019440, AB019441, X97051 and X54713). In this example, large insert (BAC) clones are isolated from the ends of the mouse VDJ region as a source of homology arms (FIG. 4B) which are used to direct integration via homologous recombination of the human VDJ sequences in a two step process.
  • In the first step, LTVEC1 (FIG. 4D) is constructed by bacterial homologous recombination in E. coli. LTVEC1 contains, in order: a large mouse homology arm derived from the region upstream from the mouse DJ region, but whose absolute endpoints are not important; a cassette encoding a selectable marker functional in ES cells (PGK-neomycinR); a loxP site; a large human insert spanning from several V gene segments through the entire DJ region; and a mouse homology arm containing the region immediately adjacent to, but not including, the mouse J segments. Mouse ES cells will be transformed by standard techniques, for example, electroporation, with linearized LTVEC1, and neomycin resistant colonies will be screened for correct targeting using a MOA assay. These targeted ES cells can give rise to mice that produce antibodies with hybrid heavy chains. However, it will be preferable to proceed with subsequent steps that will eliminate the remainder of the mouse variable segments.
  • In the second step, LTVEC2 (FIG. 4C) is constructed by bacterial homologous recombination in E. coli. LTVEC2 contains, in order: a large mouse homology arm containing the region adjacent to the most distal mouse V gene segment, but not containing any mouse V gene segments; a large insert containing a large number of distal human V gene segments; a mutant loxP site called lox511 (Hoess et al. Nucleic Acids Res. 14:2287-2300 (1986)), in the orientation opposite to that of the wild type loxP sites in LTVEC2 and LTVEC1 (this site will not recombine with wild type loxP sites but will readily recombine with other lox511 sites); a wild type loxP site; a second selectable marker (PGK-hygromycinR); and a mouse homology arm derived from the V region, but whose absolute endpoints are not important. Mouse ES cells that were correctly targeted with LTVEC1 will then be transformed by standard techniques with linearized LTVEC2, and hygromycin resistant colonies will be screened for correct targeting using a MOA assay. Correctly targeted ES cells resulting from this transformation will hereafter be referred to as “double targeted ES cells”.
  • Subsequent transient expression of CRE recombinase in the double targeted ES cells will result in deletion of the remainder of the mouse V region. Alternatively, the double targeted ES cells can be injected into host blastocysts for the production of chimeric mice. Breeding of the resultant chimeric mice with mice expressing CRE recombinase early in development will result in deletion of the remainder of the mouse V region in the progeny F1. This later alternative increases the likelihood that the hybrid heavy chain locus will be passed through the germline because it involves culturing the ES cells for fewer generations.
  • The inclusion of lox511 in LTVEC2 will allow for the insertion of additional human V gene segments into the hybrid locus. One approach would be to use bacterial homologous recombination to flank a large genomic DNA clone containing many additional human V gene segments with lox511 and loxP sites. Co-transformation of such a modified large genomic DNA clone into double targeted ES cells with a plasmid that transiently expresses CRE recombinase will result in the introduction of the additional V gene segments by cassette exchange (Bethke et al. Nucleic Acids Res. 25:2828-2834 (1997)).
  • A second approach to the incorporation of additional V gene segments is to independently target a large genomic DNA clone containing many additional human V gene segments into the mouse locus using, for instance, the same mouse homology arms included in LTVEC2. In this case, the additional human V gene segments would be flanked by lox511 and loxP sites, and the targeted ES cells would be used to create a mouse. The mice derived from double targeted ES cells and the mice derived from the ES cells containing the additional V gene segments would be bred with a third mouse that directs expression of CRE recombinase during meiosis. The close proximity of the two recombinant loci during meiotic pairing would result in a high frequency of CRE induced inter-chromosomal recombination as has been seen in other systems (Herault et al. Nature Genetics 20: 381-384 (1998)).
  • The final steps in creating the human variable/mouse constant monoclonal antibody producing-mouse will be performing the equivalent variable region substitutions on the lambda and kappa light chain loci and breeding all three hybrid loci to homozygocity together in the same mouse. The resultant transgenic mouse will have a genome comprising entirely human heavy and light chain variable gene loci operably linked to entirely endogenous mouse constant region such that the mouse produces a serum containing an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation. Such a mouse may then be used as a source of DNA encoding the variable regions of human antibodies. Using standard recombinant technology, DNA encoding the variable regions of the heavy and light chains of the antibody is operably linked to DNA encoding the human heavy and light chain constant regions in cells, such as a CHO cells, which are capable of expressing active antibodies. The cells are grown under the appropriate conditions to express the fully human antibodies, which are then recovered. Variable region encoding sequences may be isolated, for example, by PCR amplification or cDNA cloning. In a preferred embodiment, hybridomas made from transgenic mice comprising some or all of the human variable region immunoglobulin loci (Kohler et al. Eur. J. Immunol., 6:511-519 (1976) are used as a source of DNA encoding the human variable regions.

Claims (24)

We claim:
1. A transgenic mouse having a genome comprising a modified immunoglobulin heavy chain locus in which an endogenous heavy chain variable region has been replaced with an unrearranged human heavy chain variable region such that the unrearranged human heavy chain variable region is operably linked to an endogenous mouse heavy chain constant region.
2. The mouse of claim 1, wherein the human heavy chain variable region is contained on a human genomic DNA fragment that is larger than 20 kb.
3. The mouse of claim 1, wherein the human heavy chain variable region is contained on a human genomic DNA fragment that is larger than 100 kb.
4. The mouse of claim 1, wherein the genome further comprises a modified immunoglobulin light chain locus in which an endogenous light chain variable region has been replaced with an unrearranged human light chain variable region such that the unrearranged light chain variable region is operably linked to an endogenous mouse light chain constant region.
5. The mouse of claim 4, wherein the light chain immunoglobulin locus is a kappa light chain locus.
6. The mouse of claim 4, wherein the human heavy chain variable region is contained on a human genomic DNA fragment that is larger than 20 kb and the human light chain variable region is contained on a human genomic DNA fragment that is larger than 20 kb.
7. The mouse of claim 4, wherein the human heavy chain variable region is contained on a human genomic DNA fragment that is larger than 100 kb and the human light chain variable region is contained on a human genomic DNA fragment that is larger than 100 kb.
8. The mouse of claim 1, wherein the human unrearranged heavy chain variable region is capable of rearranging to form a functional heavy chain variable region gene.
9. The mouse of claim 8, wherein following rearrangement the mouse expresses an antibody comprising an antibody heavy chain variable region encoded by the functional heavy chain region gene.
10. The mouse of claim 1, wherein the mouse produces an antibody that comprises a human heavy chain variable region and a mouse heavy chain constant region.
11. The mouse of claim 1, wherein the mouse does not comprise a human immunoglobulin heavy chain constant gene.
12. The mouse of claim 4, wherein the mouse produces an antibody that comprises a human heavy chain variable region and a mouse heavy chain constant region, a human light chain variable region and a mouse light chain constant region.
13. The mouse of claim 1, wherein the modified immunoglobulin heavy chain locus comprises a murine heavy chain intronic enhancer, Em.
14. The mouse of claim 1, wherein the modified immunoglobulin heavy chain locus comprises a murine immunoglobulin 3′ enhancer region.
15. A transgenic mouse having a genome comprising:
a. a modified immunoglobulin heavy chain locus in which an endogenous heavy chain variable region has been replaced with an unrearranged human heavy chain variable region such that the unrearranged human heavy chain variable region is operably linked to an endogenous mouse heavy chain constant region;
b. a modified immunoglobulin kappa light chain locus in which an endogenous kappa light chain variable region has been replaced with an unrearranged human kappa light chain variable region such that the unrearranged kappa light chain variable region is operably linked to an endogenous mouse light chain constant region; and
c. a modified immunoglobulin lambda light chain locus in which an endogenous lambda light chain variable region has been replaced with an unrearranged human lambda light chain variable region such that the unrearranged lambda light chain variable region is operably linked to an endogenous mouse lambda light chain constant region.
16. The mouse of claim 15, wherein the human heavy chain variable region is contained on a human genomic DNA fragment that is larger than 20 kb, the human kappa light chain variable region is contained on a human genomic DNA fragment that is larger than 20 kb, and the human lambda light chain variable region is contained on a human genomic DNA fragment that is larger than 20 kb.
17. The mouse of claim 15, wherein the human heavy chain variable region is contained on a human genomic DNA fragment that is larger than 100 kb, the human kappa light chain variable region is contained on a human genomic DNA fragment that is larger than 100 kb, and the human lambda light chain variable region is contained on a human genomic DNA fragment that is larger than 100 kb.
18. The mouse of claim 15, wherein the human unrearranged heavy chain variable region is capable of rearranging to form a functional heavy chain variable region gene, the human unrearranged kappa light chain variable region is capable of rearranging to form a functional kappa light chain variable region gene, and the human unrearranged lambda light chain variable region is capable of rearranging to form a functional lambda light chain variable region gene.
19. The mouse of claim 18, wherein the mouse expresses an antibody having a heavy chain comprising a heavy chain variable region encoded by the functional heavy chain variable region gene and a light chain comprising a light chain variable region encoded by the functional kappa light chain variable region gene or the functional lambda light chain variable region gene.
20. The mouse of claim 15, wherein the mouse produces an antibody that has a heavy chain that comprises a human heavy chain variable region and a mouse heavy chain constant region and has a light chain that comprises a human light chain variable region and a mouse light chain constant region.
21. The mouse of claim 15, wherein the mouse does comprises neither a human immunoglobulin heavy chain constant gene nor a human immunoglobulin light chain constant gene.
22. The mouse of claim 15, wherein the mouse is homozygous for the modified immunoglobulin heavy chain locus, the modified immunoglobulin kappa light chain locus and the modified immunoglobulin lambda light chain locus.
23. The mouse of claim 15, wherein the modified immunoglobulin heavy chain locus comprises a murine heavy chain intronic enhancer, Em.
24. The mouse of claim 15, wherein the modified immunoglobulin heavy chain locus comprises a murine immunoglobulin 3′ enhancer region.
US14/036,778 2001-02-16 2013-09-25 Methods of Modifying Eukaryotic Cells Abandoned US20140020124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/036,778 US20140020124A1 (en) 2001-02-16 2013-09-25 Methods of Modifying Eukaryotic Cells

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US09/784,859 US6596541B2 (en) 2000-10-31 2001-02-16 Methods of modifying eukaryotic cells
US10/624,044 US20040018626A1 (en) 2000-10-31 2003-07-21 Methods of modifying eukaryotic cells
US11/595,427 US8791323B2 (en) 2000-10-31 2006-11-09 Hybrid antibodies comprising human variable regions and mouse constant regions produced in a genetically modified mouse
US13/154,976 US9376699B2 (en) 2000-10-31 2011-06-07 Methods of producing hybrid antibodies
US13/719,842 US10227625B2 (en) 2000-10-31 2012-12-19 Methods of modifying eukaryotic cells
US13/719,819 US9708635B2 (en) 2000-10-31 2012-12-19 Methods of making a nucleic acid encoding a human variable region
US14/036,778 US20140020124A1 (en) 2001-02-16 2013-09-25 Methods of Modifying Eukaryotic Cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/719,819 Continuation US9708635B2 (en) 2000-10-31 2012-12-19 Methods of making a nucleic acid encoding a human variable region

Publications (1)

Publication Number Publication Date
US20140020124A1 true US20140020124A1 (en) 2014-01-16

Family

ID=25133744

Family Applications (21)

Application Number Title Priority Date Filing Date
US09/784,859 Expired - Lifetime US6596541B2 (en) 2000-10-31 2001-02-16 Methods of modifying eukaryotic cells
US10/624,044 Abandoned US20040018626A1 (en) 2000-10-31 2003-07-21 Methods of modifying eukaryotic cells
US11/595,427 Expired - Fee Related US8791323B2 (en) 2000-10-31 2006-11-09 Hybrid antibodies comprising human variable regions and mouse constant regions produced in a genetically modified mouse
US13/154,976 Expired - Lifetime US9376699B2 (en) 2000-10-31 2011-06-07 Methods of producing hybrid antibodies
US13/164,176 Expired - Lifetime US8502018B2 (en) 2000-10-31 2011-06-20 Methods of modifying eukaryotic cells
US13/719,842 Expired - Fee Related US10227625B2 (en) 2000-10-31 2012-12-19 Methods of modifying eukaryotic cells
US13/719,819 Expired - Fee Related US9708635B2 (en) 2000-10-31 2012-12-19 Methods of making a nucleic acid encoding a human variable region
US14/035,432 Expired - Fee Related US10378037B2 (en) 2001-02-16 2013-09-24 Methods of making a nucleic acid encoding a human variable region
US14/036,514 Expired - Lifetime US9388446B2 (en) 2001-02-16 2013-09-25 Methods of producing hybrid antibodies
US14/036,518 Expired - Fee Related US10378038B2 (en) 2001-02-16 2013-09-25 Mice that produce hybrid antibodies
US14/036,865 Abandoned US20140017782A1 (en) 2001-02-16 2013-09-25 Methods for Modifying Eukaryotic Cells
US14/036,530 Expired - Lifetime US9382567B2 (en) 2001-02-16 2013-09-25 Methods of producing hybrid antibodies
US14/036,892 Expired - Lifetime US9528136B2 (en) 2001-02-16 2013-09-25 Methods of modifying eukaryotic cells
US14/036,784 Expired - Fee Related US10378040B2 (en) 2001-02-16 2013-09-25 Mice that produce hybrid antibodies
US14/036,774 Expired - Fee Related US10378039B2 (en) 2001-02-16 2013-09-25 Mouse embryonic stem cells comprising a hybrid heavy chain immunoglobulin locus
US14/036,778 Abandoned US20140020124A1 (en) 2001-02-16 2013-09-25 Methods of Modifying Eukaryotic Cells
US14/046,279 Expired - Lifetime US9371553B2 (en) 2001-02-16 2013-10-04 Genetically modified mice that produce hybrid antibodies
US14/046,285 Expired - Fee Related US10584364B2 (en) 2000-12-07 2013-10-04 Mice that produce hybrid antibodies
US14/046,291 Expired - Fee Related US10526630B2 (en) 2001-02-16 2013-10-04 Genetically modified mice that produce hybrid antibodies
US14/080,114 Expired - Lifetime US9353394B2 (en) 2001-02-16 2013-11-14 Methods of producing hybrid antibodies
US15/213,947 Expired - Fee Related US10640800B2 (en) 2001-02-16 2016-07-19 Mice that produce hybrid antibodies

Family Applications Before (15)

Application Number Title Priority Date Filing Date
US09/784,859 Expired - Lifetime US6596541B2 (en) 2000-10-31 2001-02-16 Methods of modifying eukaryotic cells
US10/624,044 Abandoned US20040018626A1 (en) 2000-10-31 2003-07-21 Methods of modifying eukaryotic cells
US11/595,427 Expired - Fee Related US8791323B2 (en) 2000-10-31 2006-11-09 Hybrid antibodies comprising human variable regions and mouse constant regions produced in a genetically modified mouse
US13/154,976 Expired - Lifetime US9376699B2 (en) 2000-10-31 2011-06-07 Methods of producing hybrid antibodies
US13/164,176 Expired - Lifetime US8502018B2 (en) 2000-10-31 2011-06-20 Methods of modifying eukaryotic cells
US13/719,842 Expired - Fee Related US10227625B2 (en) 2000-10-31 2012-12-19 Methods of modifying eukaryotic cells
US13/719,819 Expired - Fee Related US9708635B2 (en) 2000-10-31 2012-12-19 Methods of making a nucleic acid encoding a human variable region
US14/035,432 Expired - Fee Related US10378037B2 (en) 2001-02-16 2013-09-24 Methods of making a nucleic acid encoding a human variable region
US14/036,514 Expired - Lifetime US9388446B2 (en) 2001-02-16 2013-09-25 Methods of producing hybrid antibodies
US14/036,518 Expired - Fee Related US10378038B2 (en) 2001-02-16 2013-09-25 Mice that produce hybrid antibodies
US14/036,865 Abandoned US20140017782A1 (en) 2001-02-16 2013-09-25 Methods for Modifying Eukaryotic Cells
US14/036,530 Expired - Lifetime US9382567B2 (en) 2001-02-16 2013-09-25 Methods of producing hybrid antibodies
US14/036,892 Expired - Lifetime US9528136B2 (en) 2001-02-16 2013-09-25 Methods of modifying eukaryotic cells
US14/036,784 Expired - Fee Related US10378040B2 (en) 2001-02-16 2013-09-25 Mice that produce hybrid antibodies
US14/036,774 Expired - Fee Related US10378039B2 (en) 2001-02-16 2013-09-25 Mouse embryonic stem cells comprising a hybrid heavy chain immunoglobulin locus

Family Applications After (5)

Application Number Title Priority Date Filing Date
US14/046,279 Expired - Lifetime US9371553B2 (en) 2001-02-16 2013-10-04 Genetically modified mice that produce hybrid antibodies
US14/046,285 Expired - Fee Related US10584364B2 (en) 2000-12-07 2013-10-04 Mice that produce hybrid antibodies
US14/046,291 Expired - Fee Related US10526630B2 (en) 2001-02-16 2013-10-04 Genetically modified mice that produce hybrid antibodies
US14/080,114 Expired - Lifetime US9353394B2 (en) 2001-02-16 2013-11-14 Methods of producing hybrid antibodies
US15/213,947 Expired - Fee Related US10640800B2 (en) 2001-02-16 2016-07-19 Mice that produce hybrid antibodies

Country Status (19)

Country Link
US (21) US6596541B2 (en)
EP (9) EP3626819B1 (en)
JP (7) JP4412900B2 (en)
AU (1) AU2002244023B2 (en)
CA (1) CA2438390C (en)
CY (8) CY1113964T1 (en)
CZ (1) CZ305619B6 (en)
DE (6) DE14172420T1 (en)
DK (9) DK2264163T3 (en)
ES (8) ES2725712T5 (en)
HK (4) HK1146298A1 (en)
HU (1) HU231221B1 (en)
MX (2) MXPA03007325A (en)
NZ (1) NZ527629A (en)
PL (1) PL217086B1 (en)
PT (8) PT3626819T (en)
TR (2) TR201907641T4 (en)
WO (1) WO2002066630A1 (en)
ZA (1) ZA200306275B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017201476A1 (en) 2016-05-20 2017-11-23 Regeneron Pharmaceuticals, Inc. Methods for breaking immunological tolerance using multiple guide rnas

Families Citing this family (995)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908744B1 (en) * 2000-03-14 2005-06-21 Regeneron Pharmaceuticals, Inc. Methods of stimulating cartilage formation
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20050144655A1 (en) 2000-10-31 2005-06-30 Economides Aris N. Methods of modifying eukaryotic cells
GB0115256D0 (en) 2001-06-21 2001-08-15 Babraham Inst Mouse light chain locus
US7435871B2 (en) 2001-11-30 2008-10-14 Amgen Fremont Inc. Transgenic animals bearing human Igλ light chain genes
US20050158296A1 (en) 2002-01-11 2005-07-21 Starr Christopher M. Use of p97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes
CA2473741C (en) * 2002-01-18 2015-12-22 Morphotek, Inc. A method for generating engineered cells for locus specific gene regulation and analysis
DK2314629T4 (en) 2002-07-18 2023-02-06 Merus Nv RECOMBINANT PRODUCTION OF MIXTURES OF ANTIBODIES
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
CA2496233A1 (en) * 2002-09-09 2004-03-18 California Institute Of Technology Methods and compositions for the generation of humanized mice
AU2004242614B2 (en) 2003-05-30 2011-09-22 Merus N.V. Fab library for the preparation of anti vegf and anti rabies virus fabs
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
GB2408980B (en) * 2003-12-09 2006-06-07 Nat Biolog Standards Board Genetic reference materials
PT2311874T (en) 2004-07-22 2017-08-25 Univ Erasmus Med Ct Rotterdam Binding molecules
AU2007235496B2 (en) 2006-03-31 2013-11-21 E. R. Squibb & Sons, L.L.C. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
MY159787A (en) * 2006-06-02 2017-01-31 Regeneron Pharma High affinity antibodies to human il-6 receptor
US8323815B2 (en) * 2006-06-16 2012-12-04 Porous Power Technology, LLC Optimized microporous structure of electrochemical cells
PL2769992T3 (en) 2006-10-02 2021-08-02 Regeneron Pharmaceuticals, Inc. High affinity human antibodies to human IL-4 receptor
US7608693B2 (en) 2006-10-02 2009-10-27 Regeneron Pharmaceuticals, Inc. High affinity human antibodies to human IL-4 receptor
RU2448979C2 (en) 2006-12-14 2012-04-27 Ридженерон Фармасьютикалз, Инк. Human antibodies to delta-like human ligand-4
CA2681530C (en) 2007-03-22 2017-03-28 Biogen Idec Ma Inc. Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154
DK2602323T3 (en) * 2007-06-01 2018-04-16 Open Monoclonal Tech Inc Compositions and Methods for Inhibiting Endogenous Immunoglobin Genes and Producing Transgenic Human Idiotypic Antibodies
WO2009023540A1 (en) 2007-08-10 2009-02-19 Regeneron Pharmaceuticals, Inc. High affinity human antibodies to human nerve growth factor
EP3255144A1 (en) * 2007-08-10 2017-12-13 E. R. Squibb & Sons, L.L.C. Recombineering construct for preparing transgenic mice capable of producing human immunoglobulin
GB0718029D0 (en) * 2007-09-14 2007-10-24 Iti Scotland Ltd Two step cluster deletion and humanisation
KR102467302B1 (en) 2007-09-26 2022-11-14 추가이 세이야쿠 가부시키가이샤 Modified antibody constant region
KR20100103810A (en) 2007-12-10 2010-09-28 알리바 바이오파마수티컬스, 아이엔씨. Methods for sequential replacement of targeted region by homologous recombination
US20090208832A1 (en) * 2008-02-17 2009-08-20 Porous Power Technologies, Llc Lamination Configurations for Battery Applications Using PVDF Highly Porous Film
US20090227163A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Protective Apparel with Porous Material Layer
US20090223155A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Building Construction Applications for Porous Material
US20090222995A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Bedding Applications for Porous Material
EP2098536A1 (en) 2008-03-05 2009-09-09 4-Antibody AG Isolation and identification of antigen- or ligand-specific binding proteins
US20090226683A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Porous Material Uses in Furniture
CN112481367A (en) * 2008-03-31 2021-03-12 健泰科生物技术公司 Compositions and methods for treating and diagnosing asthma
US20110123527A1 (en) * 2008-05-23 2011-05-26 Hiroaki Shizuya Method of generating single vl domain antibodies in transgenic animals
US20100122358A1 (en) * 2008-06-06 2010-05-13 Crescendo Biologics Limited H-Chain-only antibodies
US20090328240A1 (en) * 2008-06-24 2009-12-31 Sing George L Genetically modified mice as predictors of immune response
KR102261586B1 (en) * 2008-06-27 2021-06-08 메뤼스 엔.페. Antibody producing non-human mammals
AU2014203150C1 (en) * 2008-06-27 2018-10-18 Merus N.V. Antibody producing non-human mammals
KR102362774B1 (en) 2008-09-30 2022-02-15 아블렉시스, 엘엘씨 Non-human mammals for the production of chimeric antibodies
US20130064834A1 (en) 2008-12-15 2013-03-14 Regeneron Pharmaceuticals, Inc. Methods for treating hypercholesterolemia using antibodies to pcsk9
JO3672B1 (en) 2008-12-15 2020-08-27 Regeneron Pharma High Affinity Human Antibodies to PCSK9
MX2011007660A (en) 2008-12-18 2011-08-17 Kingdon Craig R Non-human transgenic animals expressing humanised antibodies and use therof.
US20100178567A1 (en) * 2008-12-24 2010-07-15 Porous Power Technologies, Llc Mat Forming Spacers in Microporous Membrane Matrix
GB0905023D0 (en) 2009-03-24 2009-05-06 Univ Erasmus Medical Ct Binding molecules
RU2011142974A (en) 2009-03-25 2013-04-27 Дженентек, Инк. NEW ANTIBODIES AGAINST α5β1 AND THEIR APPLICATION
CN102804297A (en) * 2009-05-20 2012-11-28 多孔渗透电力技术公司 Treatment and adhesive for microporous membranes
TWI513465B (en) 2009-06-25 2015-12-21 Regeneron Pharma Method of treating cancer with dll4 antagonist and chemotherapeutic agent
EP2448966B1 (en) 2009-07-03 2018-11-14 Avipep Pty Ltd Immuno-conjugates and methods for producing them
DK3622813T3 (en) 2009-07-08 2021-05-03 Kymab Ltd ANIMAL MODELS AND THERAPEUTIC MOLECULES
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
US20120204278A1 (en) * 2009-07-08 2012-08-09 Kymab Limited Animal models and therapeutic molecules
ES2908587T3 (en) * 2009-10-06 2022-05-03 Regeneron Pharma Genetically modified mice and graft
DK2954779T3 (en) * 2009-12-10 2019-05-13 Regeneron Pharma Mice that produce heavy chain antibodies
WO2011072266A2 (en) 2009-12-11 2011-06-16 Atyr Pharma, Inc. Aminoacyl trna synthetases for modulating hematopoiesis
RU2549695C2 (en) 2009-12-21 2015-04-27 Ридженерон Фармасьютикалз, Инк. FCγR HUMANISED MICE
US9315581B2 (en) 2009-12-23 2016-04-19 A Vipep Pty Limited Immuno-conjugates and methods for producing them
US10143186B2 (en) 2010-02-08 2018-12-04 Regeneron Pharmaceuticals, Inc. Common light chain mouse
US20130045492A1 (en) 2010-02-08 2013-02-21 Regeneron Pharmaceuticals, Inc. Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain
US9796788B2 (en) 2010-02-08 2017-10-24 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
US20130185821A1 (en) * 2010-02-08 2013-07-18 Regeneron Pharmaceuticals, Inc. Common Light Chain Mouse
US20120021409A1 (en) 2010-02-08 2012-01-26 Regeneron Pharmaceuticals, Inc. Common Light Chain Mouse
MX2012008958A (en) 2010-02-18 2012-08-23 Genentech Inc Neuregulin antagonists and use thereof in treating cancer.
WO2011101328A2 (en) 2010-02-18 2011-08-25 Roche Glycart Ag Treatment with a humanized igg class anti egfr antibody and an antibody against insulin like growth factor 1 receptor
US8846041B2 (en) 2010-03-24 2014-09-30 Genentech, Inc. Anti-LRP6 antibodies
KR20210010942A (en) 2010-03-31 2021-01-28 아블렉시스, 엘엘씨 Genetic engineering of non-human animals for the production of chimeric antibodies
AU2011248625B2 (en) 2010-04-26 2017-01-05 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-tRNA synthetase
CA2797362C (en) 2010-04-27 2020-12-08 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of isoleucyl trna synthetases
CA2797271C (en) 2010-04-28 2021-05-25 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl trna synthetases
AU2011248457B2 (en) 2010-04-29 2017-02-16 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl tRNA synthetases
AU2011248490B2 (en) 2010-04-29 2016-11-10 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases
CA2797277C (en) 2010-05-03 2021-02-23 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of arginyl-trna synthetases
EP2566496B1 (en) 2010-05-03 2018-02-28 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-trna synthetases
US9034321B2 (en) 2010-05-03 2015-05-19 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-tRNA synthetases
AU2011248101B2 (en) 2010-05-04 2016-10-20 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-tRNA synthetase complex
CA2799197C (en) 2010-05-14 2019-10-29 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases
JP6046607B2 (en) 2010-05-27 2016-12-21 エータイアー ファーマ, インコーポレイテッド Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of glutaminyl tRNA synthetase
AU2011265306C1 (en) 2010-06-11 2015-01-22 Regeneron Pharmaceuticals, Inc. Production of fertile XY female animals from XY ES cells
US9242014B2 (en) 2010-06-15 2016-01-26 The Regents Of The University Of California Receptor tyrosine kinase-like orphan receptor 1 (ROR1) single chain Fv antibody fragment conjugates and methods of use thereof
CN105695415A (en) * 2010-06-17 2016-06-22 科马布有限公司 Animal models and therapeutic molecules
JP5940061B2 (en) 2010-06-18 2016-06-29 ジェネンテック, インコーポレイテッド Anti-AXL antibodies and methods of use
KR20220150430A (en) 2010-06-22 2022-11-10 리제너론 파아마슈티컬스, 인크. Mice expressing a light chain with human lambda variable and mouse constant regions
CA2803792A1 (en) 2010-07-09 2012-01-12 Genentech, Inc. Anti-neuropilin antibodies and methods of use
AU2011289831C1 (en) 2010-07-12 2017-06-15 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-tRNA synthetases
WO2012009705A1 (en) 2010-07-15 2012-01-19 Zyngenia, Inc. Ang-2 binding complexes and uses thereof
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
DK2597945T3 (en) 2010-07-26 2020-09-21 Trianni Inc Transgenic animals and methods for their use
US10662256B2 (en) 2010-07-26 2020-05-26 Trianni, Inc. Transgenic mammals and methods of use thereof
US10793829B2 (en) 2010-07-26 2020-10-06 Trianni, Inc. Transgenic mammals and methods of use thereof
NZ707327A (en) 2010-08-02 2017-01-27 Regeneron Pharma Mice that make binding proteins comprising vl domains
BR112013002535A2 (en) 2010-08-03 2019-09-24 Hoffmann La Roche biomarkers of chronic lymphocytic leukemia (cll)
CA2805564A1 (en) 2010-08-05 2012-02-09 Stefan Jenewein Anti-mhc antibody anti-viral cytokine fusion protein
CA2806640A1 (en) 2010-08-13 2012-02-16 Roche Glycart Ag Anti-tenascin-c a2 antibodies and methods of use
EP2603525A1 (en) 2010-08-13 2013-06-19 F.Hoffmann-La Roche Ag Antibodies to il-1beta and il-18, for treatment of disease
NO2603530T3 (en) 2010-08-13 2018-04-07
EP2608801B1 (en) 2010-08-25 2019-08-21 aTyr Pharma, Inc. INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF TYROSYL-tRNA SYNTHETASES
RU2013114360A (en) 2010-08-31 2014-10-10 Дженентек, Инк. BIOMARKERS AND TREATMENT METHODS
CA2816763A1 (en) 2010-11-05 2012-05-10 Transbio Ltd Markers of endothelial progenitor cells and uses thereof
TW201300417A (en) 2010-11-10 2013-01-01 Genentech Inc Methods and compositions for neural disease immunotherapy
US8771696B2 (en) 2010-11-23 2014-07-08 Regeneron Pharmaceuticals, Inc. Method of reducing the severity of stress hyperglycemia with human antibodies to the glucagon receptor
JO3756B1 (en) 2010-11-23 2021-01-31 Regeneron Pharma Human antibodies to the glucagon receptor
KR101615474B1 (en) 2010-12-16 2016-04-25 제넨테크, 인크. Diagnosis and treatments relating to th2 inhibition
MA34881B1 (en) 2010-12-20 2014-02-01 Genentech Inc ANTIBODIES AND ANTI-MESOTHELIN IMMUNOCONJUGATES
MA34818B1 (en) 2010-12-22 2014-01-02 Genentech Inc ANTI-PCSK9 ANTIBODIES AND METHODS OF USE
WO2012093068A1 (en) 2011-01-03 2012-07-12 F. Hoffmann-La Roche Ag A pharmaceutical composition of a complex of an anti-dig antibody and digoxigenin that is conjugated to a peptide
DK2663579T3 (en) 2011-01-14 2017-07-31 Univ California THERAPEUTIC ANTIBODIES AGAINST ROR-1 PROTEIN AND PROCEDURES FOR USE THEREOF
EP2650016A1 (en) 2011-01-28 2013-10-16 Sanofi Human antibodies to PSCK9 for use in methods of treatment based on particular dosage regimens (11565)
BR112013018740A2 (en) 2011-01-28 2019-01-08 Sanofi Sa human antibodies to pcsk9 for use in treatment methods of specific groups of individuals
SI2673373T1 (en) 2011-02-08 2019-03-29 Medimmune, Llc Antibodies that specifically bind staphylococcus aureus alpha toxin and methods of use
DK3375284T3 (en) 2011-02-15 2023-06-12 Univ Yale Humanized M-CSF mice and uses thereof
DE12192727T1 (en) 2011-02-25 2013-07-11 Regeneron Pharmaceuticals, Inc. ADAM6 mice
EP2686016B1 (en) 2011-03-14 2019-05-01 Cellmid Limited Antibody recognizing n-domain of midkine
ES2692268T3 (en) 2011-03-29 2018-12-03 Roche Glycart Ag Antibody Fc variants
TW201249867A (en) 2011-04-01 2012-12-16 Astellas Pharma Inc Novel anti-human il-23 receptor antibody
CN103596983B (en) 2011-04-07 2016-10-26 霍夫曼-拉罗奇有限公司 Anti-FGFR4 antibody and using method
CA2833404A1 (en) 2011-04-21 2012-10-26 Garvan Institute Of Medical Research Modified variable domain molecules and methods for producing and using them b
AR088782A1 (en) 2011-04-29 2014-07-10 Sanofi Sa TEST SYSTEMS AND METHODS TO IDENTIFY AND CHARACTERIZE HYPOLIPEMIATING PHARMACOS
JP5987053B2 (en) 2011-05-12 2016-09-06 ジェネンテック, インコーポレイテッド Multiple reaction monitoring LC-MS / MS method for detecting therapeutic antibodies in animal samples using framework signature peptides
PT2631654E (en) 2011-05-12 2015-08-21 Regeneron Pharma Neuropeptide release assay for sodium channels
BR112013026266A2 (en) 2011-05-16 2020-11-10 Genentech, Inc treatment method, isolated and anti-fgfr1 antibodies, isolated nucleic acid, host cell, method of producing an antibody, pharmaceutical formulation, use of the antibody and method of treating diabetes in an individual
CN106432506A (en) 2011-05-24 2017-02-22 泽恩格尼亚股份有限公司 Multivalent and monovalent multispecific complexes and their uses
CA2838246C (en) 2011-06-13 2018-07-10 Csl Limited Antibodies against g-csfr and uses thereof
BR112013032235A2 (en) 2011-06-15 2016-11-22 Hoffmann La Roche anti-human epo receptor antibodies and methods of use
SG194932A1 (en) 2011-06-30 2013-12-30 Genentech Inc Anti-c-met antibody formulations
HUE029855T2 (en) 2011-07-05 2017-04-28 Bioasis Technologies Inc P97-antibody conjugates
US10040826B2 (en) 2011-07-05 2018-08-07 Duke University Human immunodeficiency virus type 1 (HIV-1) N-terminal deleted GP120 immunogens
WO2013015821A1 (en) 2011-07-22 2013-01-31 The Research Foundation Of State University Of New York Antibodies to the b12-transcobalamin receptor
US9120858B2 (en) 2011-07-22 2015-09-01 The Research Foundation Of State University Of New York Antibodies to the B12-transcobalamin receptor
AR087305A1 (en) 2011-07-28 2014-03-12 Regeneron Pharma STABILIZED FORMULATIONS CONTAINING ANTI-PCSK9 ANTIBODIES, PREPARATION METHOD AND KIT
PT2739649T (en) 2011-08-05 2018-01-03 Bioasis Technologies Inc P97 fragments with transfer activity
PT3572517T (en) 2011-08-05 2021-06-23 Regeneron Pharma Humanized universal light chain mice
JP5376095B2 (en) 2011-08-11 2013-12-25 アステラス製薬株式会社 Novel anti-human NGF antibody
MX2014001766A (en) 2011-08-17 2014-05-01 Genentech Inc Neuregulin antibodies and uses thereof.
CN103890008A (en) 2011-08-17 2014-06-25 霍夫曼-拉罗奇有限公司 Inhibition of angiogenesis in refractory tumors
US9017670B2 (en) 2011-08-19 2015-04-28 Regeneron Pharmaceuticals, Inc. Anti-Tie2 antibodies and uses thereof
WO2013026832A1 (en) 2011-08-23 2013-02-28 Roche Glycart Ag Anti-mcsp antibodies
RU2617970C2 (en) 2011-08-23 2017-04-28 Рош Гликарт Аг ANTIBODIES WITHOUT Fc-FRAGMENT INCLUDING TWO FAB-FRAGMENT AND METHODS OF APPLICATION
JP6159724B2 (en) 2011-08-23 2017-07-05 ロシュ グリクアート アーゲー Bispecific antibodies and tumor antigens specific for T cell activating antigens and methods of use
RU2014109395A (en) 2011-09-15 2015-10-20 Дженентек, Инк. WAYS TO STIMULATE DIFFERENTIATION
CN103930444B (en) 2011-09-16 2020-08-04 瑞泽恩制药公司 Methods for reducing lipoprotein (a) levels using proprotein convertase subtilisin/kexin-9 (PCSK9) inhibitors
WO2013041845A2 (en) * 2011-09-19 2013-03-28 Kymab Limited Animals, repertoires & methods
ES2612935T3 (en) 2011-09-19 2017-05-19 Kymab Limited Antibodies, variable domains and chains adapted for use in humans
BR112014006419A2 (en) 2011-09-19 2018-08-07 Genentech Inc Methods to Treat a Cancer Patient, Kit and Article
CA2791109C (en) 2011-09-26 2021-02-16 Merus B.V. Generation of binding molecules
EP2761008A1 (en) 2011-09-26 2014-08-06 Kymab Limited Chimaeric surrogate light chains (slc) comprising human vpreb
EP2763699A4 (en) 2011-10-03 2015-05-20 Univ Duke Vaccine
MX2014004074A (en) 2011-10-05 2014-06-05 Genentech Inc Methods of treating liver conditions using notch2 antagonists.
EP3461839A1 (en) 2011-10-14 2019-04-03 F. Hoffmann-La Roche AG Anti-htra1 antibodies and methods of use
JP6254087B2 (en) 2011-10-15 2017-12-27 ジェネンテック, インコーポレイテッド SCD1 antagonists for treating cancer
PL2627773T3 (en) 2011-10-17 2017-11-30 Regeneron Pharmaceuticals, Inc. Restricted immunoglobulin heavy chain mice
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
RU2661106C2 (en) 2011-10-28 2018-07-11 Регенерон Фармасьютикалз, Инк. Genetically modified t cell receptor mice
AU2012327878A1 (en) 2011-10-28 2014-05-29 Patrys Limited PAT-LM1 epitopes and methods for using same
US9591835B2 (en) 2011-10-28 2017-03-14 Regeneron Pharmaceuticals, Inc. Genetically modified major histocompatibility complex animals
SI2770821T1 (en) 2011-10-28 2018-01-31 Regeneron Pharmaceuticals, Inc. Genetically modified major histocompatibility complex mice
HUE048511T2 (en) 2011-10-28 2020-07-28 Regeneron Pharma Genetically modified mice expressing chimeric major histocompatibility complex (mhc) ii molecules
US20140283153A1 (en) 2011-10-28 2014-09-18 Trianni, Inc. Transgenic animals and methods of use
CN104039340B (en) 2011-10-28 2017-04-05 霍夫曼-拉罗奇有限公司 Treat melanomatous method and therapeutic combination
US9043996B2 (en) 2011-10-28 2015-06-02 Regeneron Pharmaceuticals, Inc. Genetically modified major histocompatibility complex animals
GB2496375A (en) * 2011-10-28 2013-05-15 Kymab Ltd A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof
AU2012340826A1 (en) 2011-11-21 2014-05-29 Genentech, Inc. Purification of anti-c-met antibodies
GB201122047D0 (en) 2011-12-21 2012-02-01 Kymab Ltd Transgenic animals
US9253965B2 (en) * 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
US20140335084A1 (en) 2011-12-06 2014-11-13 Hoffmann-La Roche Inc. Antibody formulation
SI2793567T1 (en) 2011-12-20 2019-05-31 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
MX2014007262A (en) 2011-12-22 2014-08-01 Hoffmann La Roche Full length antibody display system for eukaryotic cells and its use.
ES2791758T3 (en) 2011-12-22 2020-11-05 Hoffmann La Roche Organization of expression vectors, methods of generating novel production cells and their use for recombinant production of polypeptides
MX355624B (en) 2011-12-22 2018-04-25 Hoffmann La Roche Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides.
MX345019B (en) * 2011-12-22 2017-01-11 Astellas Pharma Inc Novel anti-human ctgf antibody.
AR089434A1 (en) 2011-12-23 2014-08-20 Genentech Inc PROCEDURE TO PREPARE FORMULATIONS WITH HIGH CONCENTRATION OF PROTEINS
CN104066449B (en) 2012-01-18 2018-04-27 霍夫曼-拉罗奇有限公司 Anti- LRP5 antibody and application method
EP2804630B1 (en) 2012-01-18 2017-10-18 F. Hoffmann-La Roche AG Methods of using fgf19 modulators
ES2753774T3 (en) * 2012-02-01 2020-04-14 Regeneron Pharma Humanized mice expressing heavy chains containing VL domains
US20130209473A1 (en) 2012-02-11 2013-08-15 Genentech, Inc. R-spondin translocations and methods using the same
WO2013120929A1 (en) 2012-02-15 2013-08-22 F. Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
NZ628126A (en) 2012-02-16 2016-10-28 Atyr Pharma Inc Histidyl-trna synthetases for treating autoimmune and inflammatory diseases
US9371391B2 (en) 2012-02-28 2016-06-21 Astellas Pharma Inc. Anti-human IL-23 receptor antibody and encoding polynucleotides
SG11201405087PA (en) 2012-03-02 2014-09-26 Regeneron Pharma Human antibodies to clostridium difficile toxins
MX353278B (en) 2012-03-06 2018-01-05 Regeneron Pharma Common light chain mouse.
EA201400996A1 (en) 2012-03-13 2015-03-31 Ф.Хоффманн-Ля Рош Аг COMBINED THERAPY FOR THE TREATMENT OF OVARIAN CANCER
RS57414B1 (en) 2012-03-16 2018-09-28 Regeneron Pharma Histidine engineered light chain antibodies and genetically modified rodents for generating the same
US20140013456A1 (en) 2012-03-16 2014-01-09 Regeneron Pharmaceuticals, Inc. Histidine Engineered Light Chain Antibodies and Genetically Modified Non-Human Animals for Generating the Same
BR112014022855A2 (en) 2012-03-16 2017-07-18 Regeneron Pharma genetically modified nonhuman animal, genetically modified mammal, and method for making a nonhuman animal
CN104302170B (en) 2012-03-16 2016-09-28 瑞泽恩制药公司 Produce the mice of the antigen-binding proteins with PH dependency binding characteristic
CN104220457A (en) 2012-03-27 2014-12-17 霍夫曼-拉罗奇有限公司 Diagnosis and treatments relating to her3 inhibitors
GB2502127A (en) * 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
WO2013144567A1 (en) 2012-03-28 2013-10-03 Kymab Limited Transgenic non-human vertebrate for the expression of class - switched, fully human, antibodies
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
TWI619729B (en) 2012-04-02 2018-04-01 再生元醫藥公司 Anti-hla-b*27 antibodies and uses thereof
CN114163530A (en) 2012-04-20 2022-03-11 美勒斯公司 Methods and means for producing immunoglobulin-like molecules
PL2847335T3 (en) * 2012-04-25 2019-01-31 Regeneron Pharmaceuticals, Inc. Nuclease-mediated targeting with large targeting vectors
RU2014148162A (en) 2012-05-01 2016-06-20 Дженентек, Инк. ANTI-PMEL17 ANTIBODIES AND THEIR IMMUNO CONJUGATES
JO3820B1 (en) 2012-05-03 2021-01-31 Regeneron Pharma Human antibodies to fel d1 and methods of use thereof
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
KR101843614B1 (en) 2012-05-23 2018-03-29 제넨테크, 인크. Selection method for therapeutic agents
AR092325A1 (en) 2012-05-31 2015-04-15 Regeneron Pharma STABILIZED FORMULATIONS CONTAINING ANTI-DLL4 ANTIBODIES AND KIT
CN104582476B (en) * 2012-06-05 2017-03-08 瑞泽恩制药公司 The method preparing complete people bi-specific antibody using common light chain
ME03551B (en) 2012-06-12 2020-07-20 Regeneron Pharma Humanized non-human animals with restricted immunoglobulin heavy chain loci
RU2015101113A (en) 2012-06-15 2016-08-10 Дженентек, Инк. ANTIBODIES AGAINST PCSK9, COMPOSITIONS, DOSES AND METHODS OF APPLICATION
CN107082810B (en) 2012-07-04 2020-12-25 弗·哈夫曼-拉罗切有限公司 Anti-theophylline antibodies and methods of use
JP6247287B2 (en) 2012-07-04 2017-12-13 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Anti-biotin antibodies and methods of use
KR102090849B1 (en) 2012-07-04 2020-03-19 에프. 호프만-라 로슈 아게 Covalently linked antigen-antibody conjugates
CA2877009C (en) 2012-07-05 2023-10-03 Devin TESAR Expression and secretion system
JP6297550B2 (en) 2012-07-09 2018-03-20 ジェネンテック, インコーポレイテッド Immune complex comprising anti-CD79B antibody
AR091700A1 (en) 2012-07-09 2015-02-25 Genentech Inc ANTI-CD79B ANTIBODIES AND IMMUNOCATION
BR112015000439A2 (en) 2012-07-09 2017-12-19 Genentech Inc immunoconjugate, pharmaceutical formulation and methods of treating an individual and inhibiting proliferation
EP2869849A1 (en) 2012-07-09 2015-05-13 Genentech, Inc. Immunoconjugates comprising anti-cd22 antibodies
EP3210627B1 (en) 2012-07-12 2022-12-21 Hangzhou Dac Biotech Co., Ltd Conjugates of cell binding molecules with cytotoxic agents
EP3495387B1 (en) 2012-07-13 2021-09-01 Roche Glycart AG Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
WO2014018375A1 (en) 2012-07-23 2014-01-30 Xenon Pharmaceuticals Inc. Cyp8b1 and uses thereof in therapeutic and diagnostic methods
CA2880162C (en) 2012-07-31 2023-04-04 Bioasis Technologies, Inc. Dephosphorylated lysosomal storage disease proteins and methods of use thereof
AU2013299724A1 (en) 2012-08-07 2015-02-26 Genentech, Inc. Combination therapy for the treatment of glioblastoma
PT3470432T (en) 2012-08-21 2021-12-14 Regeneron Pharma Methods for treating or preventing asthma by administering an il-4r antagonist
PL2887959T3 (en) 2012-08-23 2019-04-30 Agensys Inc Antibody drug conjugates (adc) that bind to 158p1d7 proteins
EP3838923B1 (en) 2012-08-24 2024-05-01 The Regents of The University of California Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis
EP2703008A1 (en) 2012-08-31 2014-03-05 Sanofi Human antibodies to PCSK9 for use in methods of treating particular groups of subjects
EP2703009A1 (en) 2012-08-31 2014-03-05 Sanofi Combination treatments involving antibodies to human PCSK9
EP2706070A1 (en) 2012-09-06 2014-03-12 Sanofi Combination treatments involving antibodies to human PCSK9
EP4193834A1 (en) 2012-09-07 2023-06-14 Yale University Genetically modified non-human animals and methods of use thereof
NZ731864A (en) 2012-09-07 2022-07-01 Regeneron Pharma Methods for treating atopic dermatitis by administering an il-4r antagonist
CA2879768A1 (en) 2012-10-08 2014-04-17 Roche Glycart Ag Fc-free antibodies comprising two fab-fragments and methods of use
CA2887133C (en) * 2012-10-12 2022-05-03 Glycovaxyn Ag Methods of host cell modification
WO2014071358A2 (en) 2012-11-05 2014-05-08 Foundation Medicine, Inc. Novel ntrk1 fusion molecules and uses thereof
EP3556206B1 (en) 2012-11-05 2021-06-02 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
EP2917360B1 (en) 2012-11-06 2020-01-08 Medlmmune, LLC Antibodies to s. aureus surface determinants
CN104755500B (en) 2012-11-08 2020-10-02 霍夫曼-拉罗奇有限公司 HER3 antigen binding proteins that bind to the HER3 beta-hairpin
CN104968367B (en) 2012-11-13 2018-04-13 弗·哈夫曼-拉罗切有限公司 Antihemagglutinin antibody and application method
TW201438736A (en) 2012-11-14 2014-10-16 Regeneron Pharma Methods of treating ovarian cancer with Dll4 antagonists
ES2701076T3 (en) 2012-11-24 2019-02-20 Hangzhou Dac Biotech Co Ltd Hydrophilic linkers and their uses for the conjugation of drugs to molecules that bind to cells
PT2931030T (en) 2012-12-14 2020-08-03 Open Monoclonal Tech Inc Polynucleotides encoding rodent antibodies with human idiotypes and animals comprising same
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
CA2898326C (en) 2013-01-18 2022-05-17 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
EP2953452A1 (en) 2013-02-06 2015-12-16 Regeneron Pharmaceuticals, Inc. B cell lineage based immunogen design with humanized animals
CN117843785A (en) 2013-02-07 2024-04-09 Csl有限公司 IL-11R binding proteins and uses thereof
HUE045478T2 (en) 2013-02-20 2019-12-30 Regeneron Pharma Mice expressing humanized t-cell co-receptors
EP2958990B1 (en) 2013-02-20 2019-10-16 Regeneron Pharmaceuticals, Inc. Genetic modification of rats
WO2014130690A1 (en) 2013-02-20 2014-08-28 Regeneron Pharmaceuticals, Inc. Non-human animals with modified immunoglobulin heavy chain sequences
JP2016509045A (en) 2013-02-22 2016-03-24 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト How to treat cancer and prevent drug resistance
US20150342163A1 (en) 2013-02-22 2015-12-03 Regeneron Pharmaceuticals, Inc. Genetically modified major histocompatibility complex mice
JP6444321B2 (en) * 2013-02-22 2018-12-26 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Mice expressing humanized major histocompatibility gene complex
RU2015140921A (en) 2013-02-26 2017-04-03 Роше Гликарт Аг ANTIBODIES TO MCSP
EP2964260A2 (en) 2013-03-06 2016-01-13 F. Hoffmann-La Roche AG Methods of treating and preventing cancer drug resistance
CN108464278B (en) * 2013-03-11 2021-05-04 瑞泽恩制药公司 Transgenic mice expressing chimeric Major Histocompatibility Complex (MHC) class II molecules
WO2014160179A1 (en) 2013-03-13 2014-10-02 Regeneron Pharmaceuticals, Inc. Common light chain mouse
PL3501272T3 (en) 2013-03-13 2023-07-03 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
WO2014160438A1 (en) 2013-03-13 2014-10-02 Bioasis Technologies Inc. Fragments of p97 and uses thereof
CA2905070A1 (en) 2013-03-14 2014-09-25 Genentech, Inc. Methods of treating cancer and preventing cancer drug resistance
WO2014159835A1 (en) 2013-03-14 2014-10-02 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
MX369574B (en) 2013-03-14 2019-11-13 Regeneron Pharma Human antibodies to grem 1.
JP2016515132A (en) 2013-03-14 2016-05-26 ジェネンテック, インコーポレイテッド Combination and use of MEK inhibitor compounds with HER3 / EGFR inhibitor compounds
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
ES2829376T3 (en) 2013-03-14 2021-05-31 Univ Erasmus Med Ct Rotterdam Non-human mammal transgenic for antibody production
US10993420B2 (en) 2013-03-15 2021-05-04 Erasmus University Medical Center Production of heavy chain only antibodies in transgenic mammals
EP2970476A1 (en) 2013-03-15 2016-01-20 F. Hoffmann-La Roche AG Compositions and methods for diagnosis and treatment of hepatic cancers
EP4356960A2 (en) 2013-03-15 2024-04-24 F. Hoffmann-La Roche AG Biomarkers and methods of treating pd-1 and pd-l1 related conditions
EP2968541A4 (en) 2013-03-15 2017-02-08 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
MX2015011348A (en) 2013-03-15 2016-01-15 Regeneron Pharma Biologically active molecules, conjugates thereof, and therapeutic uses.
JP2016520528A (en) 2013-03-15 2016-07-14 ジェネンテック, インコーポレイテッド Cancer treatment and anticancer drug resistance prevention method
WO2014150877A2 (en) 2013-03-15 2014-09-25 Ac Immune S.A. Anti-tau antibodies and methods of use
US20140328849A1 (en) 2013-03-15 2014-11-06 Genentech, Inc. Anti-crth2 antibodies and methods of use
EP2968508B1 (en) * 2013-03-15 2022-04-27 Sanofi Pasteur Biologics, LLC Antibodies against clostridium difficile toxins and methods of using the same
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
HUE040575T2 (en) 2013-04-16 2019-03-28 Regeneron Pharma Targeted modification of rat genome
WO2014177460A1 (en) 2013-04-29 2014-11-06 F. Hoffmann-La Roche Ag Human fcrn-binding modified antibodies and methods of use
SG10201810481UA (en) 2013-04-29 2018-12-28 Hoffmann La Roche Fcrn-binding abolished anti-igf-1r antibodies and their use in the treatment of vascular eye diseases
EP3878866A1 (en) 2013-04-29 2021-09-15 F. Hoffmann-La Roche AG Fc-receptor binding modified asymmetric antibodies and methods of use
US9783618B2 (en) 2013-05-01 2017-10-10 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US11707056B2 (en) * 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
US20140331339A1 (en) * 2013-05-03 2014-11-06 Kymab Limited Transgenic Non-Human Assay Vertebrates, Assays and Kits
SG11201509566RA (en) 2013-05-20 2015-12-30 Genentech Inc Anti-transferrin receptor antibodies and methods of use
US10111953B2 (en) 2013-05-30 2018-10-30 Regeneron Pharmaceuticals, Inc. Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9)
TWI682780B (en) 2013-05-30 2020-01-21 美商再生元醫藥公司 Use of a pharmaceutical composition for the manufacture of a medicament for treating autosomal dominant hypercholesterolemia associated with pcsk9 gain-of-function mutations
EP2810955A1 (en) 2013-06-07 2014-12-10 Sanofi Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9
EP2862877A1 (en) 2013-10-18 2015-04-22 Sanofi Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9
US10494442B2 (en) 2013-06-07 2019-12-03 Sanofi Biotechnology Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9
US10059771B2 (en) 2013-06-21 2018-08-28 Sanofi Biotechnology Methods for treating nasal polyposis by administering an IL-4R antagonist
AU2014296219A1 (en) 2013-08-01 2016-02-25 Agensys, Inc. Antibody drug conjugates (ADC) that bind to CD37 proteins
KR102138723B1 (en) 2013-08-07 2020-07-29 리제너론 파마슈티칼스 인코포레이티드 Lincrna-deficient non-human animals
JP6380394B2 (en) 2013-08-09 2018-08-29 アステラス製薬株式会社 Novel anti-human TSLP receptor antibody
CA2922113C (en) 2013-08-23 2023-05-23 Regeneron Pharmaceuticals, Inc. Diagnostic tests and methods for assessing safety, efficacy or outcome of allergen-specific immunotherapy (sit)
CN105530942B (en) 2013-08-26 2019-10-11 瑞泽恩制药公司 A kind of pharmaceutical composition comprising macrolides diastereomer, preparation method and use
AU2014312190A1 (en) 2013-08-28 2016-02-18 Bioasis Technologies Inc. CNS-targeted conjugates of antibodies
US10617755B2 (en) 2013-08-30 2020-04-14 Genentech, Inc. Combination therapy for the treatment of glioblastoma
US10456470B2 (en) 2013-08-30 2019-10-29 Genentech, Inc. Diagnostic methods and compositions for treatment of glioblastoma
US9988408B2 (en) 2013-09-02 2018-06-05 Hangzhou Dac Biotech Co., Ltd. Cytotoxic agents for conjugation to a cell binding molecule
EP3046940B1 (en) 2013-09-17 2019-07-03 F.Hoffmann-La Roche Ag Methods of using anti-lgr5 antibodies
MY191512A (en) 2013-09-18 2022-06-28 Regeneron Pharma Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
DE202014010413U1 (en) * 2013-09-18 2015-12-08 Kymab Limited Cells and organisms
CA2925723A1 (en) * 2013-10-01 2015-04-09 Kymab Limited Animal models and therapeutic molecules
BR112016007635A2 (en) 2013-10-11 2017-09-12 Genentech Inc nsp4 inhibitors and methods of use
EP3689913B1 (en) 2013-10-11 2022-03-23 Sanofi Biotechnology Use of a pcsk9 inhibitor to treat hyperlipidemia
KR20160070136A (en) 2013-10-18 2016-06-17 제넨테크, 인크. Anti-rsp02 and/or anti-rsp03 antibodies and their uses
CA2924873A1 (en) 2013-10-23 2015-04-30 Genentech, Inc. Methods of diagnosing and treating eosinophilic disorders
EP3466445A1 (en) 2013-11-06 2019-04-10 Janssen Biotech, Inc. Anti-ccl17 antibodies
EP3882273A1 (en) 2013-11-12 2021-09-22 Sanofi Biotechnology Dosing regimens for use with pcsk9 inhibitors
EP3783020A1 (en) 2013-11-21 2021-02-24 F. Hoffmann-La Roche AG Anti-alpha-synuclein antibodies and methods of use
MX2016007654A (en) * 2013-12-11 2017-08-15 Regeneron Pharma Methods and compositions for the targeted modification of a genome.
EP4349980A2 (en) 2013-12-11 2024-04-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
SG11201604784XA (en) 2013-12-13 2016-07-28 Genentech Inc Anti-cd33 antibodies and immunoconjugates
BR112016013963A2 (en) 2013-12-17 2017-10-10 Genentech Inc combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
BR122021025087B1 (en) 2013-12-17 2023-04-04 Genentech, Inc ANTI-CD3 ANTIBODY, PROKARYOTIC HOST CELL, BISPECIFIC ANTIBODY PRODUCTION METHOD, IMMUNOCONJUGATE, COMPOSITION, BISPECIFIC ANTIBODY USE AND KIT
RU2016128726A (en) 2013-12-17 2018-01-23 Дженентек, Инк. METHODS FOR TREATING MALIGNANT TUMORS USING PD-1 BINDING ANTAGONISTS AND ANTIBODIES AGAINST CD20
EP3083686B2 (en) 2013-12-17 2023-03-22 F. Hoffmann-La Roche AG Methods of treating cancers using pd-1 axis binding antagonists and taxanes
TWI728373B (en) 2013-12-23 2021-05-21 美商建南德克公司 Antibodies and methods of use
CN105829534B (en) 2013-12-24 2021-08-03 安斯泰来制药株式会社 Anti-human BDCA-2 antibodies
MX2016008191A (en) 2014-01-03 2017-11-16 Hoffmann La Roche Covalently linked polypeptide toxin-antibody conjugates.
US10561737B2 (en) 2014-01-03 2020-02-18 Hoffmann-La Roche Inc. Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles
MX2016008189A (en) 2014-01-03 2016-09-29 Hoffmann La Roche Covalently linked helicar-anti-helicar antibody conjugates and uses thereof.
WO2015103549A1 (en) 2014-01-03 2015-07-09 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
KR20160107190A (en) 2014-01-15 2016-09-13 에프. 호프만-라 로슈 아게 Fc-region variants with modified fcrn- and maintained protein a-binding properties
TWI680138B (en) 2014-01-23 2019-12-21 美商再生元醫藥公司 Human antibodies to pd-l1
TWI681969B (en) 2014-01-23 2020-01-11 美商再生元醫藥公司 Human antibodies to pd-1
AU2015209154A1 (en) 2014-01-24 2017-02-16 Genentech, Inc. Methods of using anti-STEAP1 antibodies and immunoconjugates
WO2015116852A1 (en) 2014-01-29 2015-08-06 Regeneron Pharmaceuticals, Inc. Methods for treating rheumatoid arthritis by administering an il-6r antibody
AU2015210612B2 (en) 2014-02-03 2020-04-09 Bioasis Technologies Inc. P97 fusion proteins
TW202239429A (en) 2014-02-08 2022-10-16 美商建南德克公司 Methods of treating alzheimer’s disease
TWI705824B (en) 2014-02-08 2020-10-01 美商建南德克公司 Methods of treating alzheimer's disease
ES2685424T3 (en) 2014-02-12 2018-10-09 F. Hoffmann-La Roche Ag Anti-Jagged1 antibodies and procedures for use
US20150231236A1 (en) 2014-02-14 2015-08-20 Regeneron Pharmaceuticals, Inc. Methods for treating patients with hypercholesterolemia that is not adequately controlled by moderate-dose statin therapy
DK3107562T3 (en) 2014-02-19 2019-12-16 Bioasis Technologies Inc P97-IDS FUSION PROTEIN
MX2016010729A (en) 2014-02-21 2016-10-26 Genentech Inc Anti-il-13/il-17 bispecific antibodies and uses thereof.
KR102368450B1 (en) 2014-02-21 2022-02-28 사노피 바이오테크놀로지 Methods for treating or preventing asthma by administering an il-4r antagonist
US10464955B2 (en) 2014-02-28 2019-11-05 Hangzhou Dac Biotech Co., Ltd. Charged linkers and their uses for conjugation
PL3116999T3 (en) 2014-03-14 2021-12-27 F.Hoffmann-La Roche Ag Methods and compositions for secretion of heterologous polypeptides
WO2015142668A1 (en) 2014-03-17 2015-09-24 Sanofi Methods for reducing cardiovascular risk
CN106255410B (en) 2014-03-21 2020-01-10 瑞泽恩制药公司 Non-human animals producing single domain binding proteins
SG10201808083VA (en) 2014-03-21 2018-10-30 Regeneron Pharma Vl antigen binding proteins exhibiting distinct binding characteristics
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
CN107002119A (en) 2014-03-24 2017-08-01 豪夫迈·罗氏有限公司 Treatment of cancer and the former and associating that HGF is expressed using C MET antagonists
SG11201608106PA (en) 2014-03-31 2016-10-28 Genentech Inc Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
PE20211291A1 (en) 2014-03-31 2021-07-20 Genentech Inc ANTI-OX40 ANTIBODIES AND METHODS OF USE
EP3126389A1 (en) 2014-04-02 2017-02-08 F. Hoffmann-La Roche AG Method for detecting multispecific antibody light chain mispairing
SG11201608194VA (en) 2014-04-03 2016-10-28 Igm Biosciences Inc Modified j-chain
BR112016024319B1 (en) 2014-04-18 2024-01-23 Acceleron Pharma Inc USE OF A COMPOSITION COMPRISING AN ActRII ANTAGONIST FOR THE MANUFACTURING OF A MEDICATION FOR TREATING OR PREVENTING A COMPLICATION OF SICKLE CELL ANEMIA
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
CN106413757B (en) 2014-05-01 2022-01-14 比奥阿赛斯技术有限公司 P97-Polynucleotide conjugates
DK3841877T3 (en) 2014-05-19 2023-11-27 Regeneron Pharma Genetically modified mouse expressing human EPO
JP2017522861A (en) 2014-05-22 2017-08-17 ジェネンテック, インコーポレイテッド Anti-GPC3 antibody and immunoconjugate
KR20170005016A (en) 2014-05-23 2017-01-11 제넨테크, 인크. Mit biomarkers and methods using the same
US9497945B2 (en) * 2014-05-30 2016-11-22 Regeneron Pharmaceuticals, Inc. Humanized dipeptidyl peptidase IV (DPP4) animals
LT3152312T (en) 2014-06-06 2020-04-27 Regeneron Pharmaceuticals, Inc. Methods and compositions for modifying a targeted locus
CN106459202A (en) 2014-06-11 2017-02-22 豪夫迈·罗氏有限公司 Anti-lgR5 antibodies and uses thereof
AU2015274277B2 (en) 2014-06-13 2021-03-18 Acceleron Pharma, Inc. Methods and compositions for treating ulcers
CN107073121A (en) 2014-06-13 2017-08-18 基因泰克公司 Treatment and the method for prevention cancer drug resistance
HUE049405T2 (en) 2014-06-23 2020-09-28 Regeneron Pharma Nuclease-mediated dna assembly
TWI713453B (en) 2014-06-23 2020-12-21 美商健生生物科技公司 Interferon alpha and omega antibody antagonists
HUE041584T2 (en) 2014-06-26 2019-05-28 Regeneron Pharma Methods and compositions for targeted genetic modifications and methods of use
TW201623329A (en) 2014-06-30 2016-07-01 亞佛瑞司股份有限公司 Vaccines and monoclonal antibodies targeting truncated variants of osteopontin and uses thereof
NZ728041A (en) 2014-07-10 2023-01-27 Affiris Ag Substances and methods for the use in prevention and/or treatment in huntington’s disease
EP3166627A1 (en) 2014-07-11 2017-05-17 Genentech, Inc. Notch pathway inhibition
JP2017523776A (en) 2014-07-14 2017-08-24 ジェネンテック, インコーポレイテッド Glioblastoma diagnosis method and therapeutic composition thereof
JP6912374B2 (en) 2014-07-16 2021-08-04 サノフィ・バイオテクノロジー Methods for treating patients at high cardiovascular risk with hypercholesterolemia
CA2955294A1 (en) 2014-07-16 2016-01-21 Sanofi Biotechnology Methods for treating patients with heterozygous familial hypercholesterolemia (hefh)
RU2017108238A (en) 2014-08-15 2018-09-17 Эйдинкс, Инк. BIG OLIGONUCLEOTIDES FOR THE TREATMENT OF PAIN
MX2017003022A (en) 2014-09-12 2017-05-12 Genentech Inc Anti-cll-1 antibodies and immunoconjugates.
MX2017003126A (en) 2014-09-12 2017-08-28 Genentech Inc Anti-her2 antibodies and immunoconjugates.
TW201625689A (en) 2014-09-12 2016-07-16 建南德克公司 Anti-B7-H4 antibodies and immunoconjugates
KR20170062466A (en) 2014-09-16 2017-06-07 리제너론 파마슈티칼스 인코포레이티드 Anti-glucagon antibodies and uses thereof
CN107124870A (en) 2014-09-17 2017-09-01 基因泰克公司 Immunoconjugates comprising Anti-HER 2 and Pyrrolobenzodiazepines *
WO2016044745A1 (en) 2014-09-19 2016-03-24 Regeneron Pharmaceuticals, Inc. Chimeric antigen receptors
CA2961517C (en) 2014-09-23 2023-05-02 Regeneron Pharmaceuticals, Inc. Anti-il-25 antibodies and uses thereof
DK3262071T3 (en) 2014-09-23 2020-06-15 Hoffmann La Roche Method of using anti-CD79b immune conjugates
PL3207124T3 (en) 2014-10-15 2019-11-29 Regeneron Pharma Methods and compositions for generating or maintaining pluripotent cells
WO2016061389A2 (en) 2014-10-16 2016-04-21 Genentech, Inc. Anti-alpha-synuclein antibodies and methods of use
AU2015336946A1 (en) 2014-10-23 2017-04-13 La Trobe University Fn14-binding proteins and uses thereof
US10626176B2 (en) 2014-10-31 2020-04-21 Jounce Therapeutics, Inc. Methods of treating conditions with antibodies that bind B7-H4
RU2017119009A (en) 2014-11-03 2018-12-05 Дженентек, Инк. ANALYSIS FOR DETECTION OF SUBPOPULATIONS OF IMMUNE T-CELLS AND WAYS OF THEIR APPLICATION
RU2017119231A (en) 2014-11-03 2018-12-06 Дженентек, Инк. METHODS AND BIOMARKERS FOR PREDICTING EFFICIENCY AND EVALUATING TREATMENT WITH OX40 AGONIST
PT3215528T (en) 2014-11-06 2019-10-11 Hoffmann La Roche Fc-region variants with modified fcrn-binding and methods of use
CN107073126A (en) 2014-11-06 2017-08-18 豪夫迈·罗氏有限公司 Combination treatment comprising OX40 combinations activator and TIGIT inhibitor
WO2016071377A1 (en) 2014-11-06 2016-05-12 F. Hoffmann-La Roche Ag Fc-region variants with modified fcrn- and protein a-binding properties
WO2016077369A1 (en) 2014-11-10 2016-05-19 Genentech, Inc. Animal model for nephropathy and agents for treating the same
TWI705976B (en) 2014-11-10 2020-10-01 美商建南德克公司 Anti-interleukin-33 antibodies and uses thereof
EP3218412A1 (en) 2014-11-14 2017-09-20 Sanofi Biotechnology Methods for treating chronic sinusitis with nasal polyps by administering an il-4r antagonist
US10160795B2 (en) 2014-11-14 2018-12-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to Ebola virus glycoprotein and their use
MA40929A (en) 2014-11-14 2017-09-20 Regeneron Pharma HIGH AFINITY ANTIBODIES PRODUCTION PROCESS
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
EP3221361B1 (en) 2014-11-19 2021-04-21 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
WO2016081639A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
CN107001473B (en) 2014-11-19 2021-07-09 豪夫迈·罗氏有限公司 Anti-transferrin receptor antibodies and methods of use
DK3221355T3 (en) 2014-11-20 2020-12-07 Hoffmann La Roche Combination therapy with T cell activating bispecific antigen binding molecules CD3 and folate receptor 1 (FolR1) as well as PD-1 axis binding antagonists
LT3221457T (en) 2014-11-21 2019-06-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification using paired guide rnas
RU2020122439A (en) 2014-11-24 2020-09-24 Регенерон Фармасьютикалз, Инк. NON-HUMAN ANIMALS EXPRESSING HUMANIZED CD3 COMPLEX
JP6554280B2 (en) * 2014-11-28 2019-07-31 株式会社デンソーテン Data processing apparatus, image processing method, and program
MA41119A (en) 2014-12-03 2017-10-10 Acceleron Pharma Inc METHODS OF TREATMENT OF MYELODYSPLASIC SYNDROMES AND SIDEROBLASTIC ANEMIA
JP6802158B2 (en) 2014-12-05 2020-12-16 ジェネンテック, インコーポレイテッド Anti-CD79b antibody and usage
AU2015360579A1 (en) 2014-12-10 2017-05-18 Genentech, Inc. Blood brain barrier receptor antibodies and methods of use
RU2707137C2 (en) 2014-12-19 2019-11-22 Регенерон Фармасьютикалз, Инк. Methods and compositions for targeted genetic modification by single-step multiple targeting
ES2899894T3 (en) 2014-12-19 2022-03-15 Chugai Pharmaceutical Co Ltd Anti-C5 antibodies and methods of use
AU2015367224B2 (en) 2014-12-19 2020-12-10 Monash University IL-21 antibodies
TWI701258B (en) 2014-12-19 2020-08-11 美商再生元醫藥公司 Human antibodies to influenza hemagglutinin
US20160200815A1 (en) 2015-01-05 2016-07-14 Jounce Therapeutics, Inc. Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof
CN107428823B (en) 2015-01-22 2021-10-26 中外制药株式会社 Combinations and methods of use of two or more anti-C5 antibodies
TWI710573B (en) 2015-01-26 2020-11-21 美商再生元醫藥公司 Human antibodies to ebola virus glycoprotein
EA201791754A1 (en) 2015-02-05 2019-01-31 Чугаи Сейяку Кабусики Кайся ANTIBODIES CONTAINING ANTIGEN-BINDING DOMAIN DEPENDING ON THE CONCENTRATION OF IONS, Fc-AREA OPTIONS, IL-8-CONNECTING ANTIBODIES AND THEIR APPLICATIONS
WO2016130539A2 (en) 2015-02-09 2016-08-18 Memorial Sloan Kettering Cancer Center Multi-specific antibodies with affinity for human a33 antigen and dota metal complex and uses thereof
CA2975899A1 (en) 2015-02-13 2016-08-18 Biommune Technologies Inc. Antibodies to l-type voltage gated channels and related methods
MY178919A (en) 2015-03-09 2020-10-23 Agensys Inc Antibody drug conjugates (adc) that bind to flt3 proteins
KR20170127011A (en) 2015-03-16 2017-11-20 제넨테크, 인크. Methods for detecting and quantifying IL-13 and for diagnosing and treating TH2-related diseases
KR102616160B1 (en) 2015-03-16 2023-12-22 리제너론 파마슈티칼스 인코포레이티드 Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception
CA2979702A1 (en) 2015-03-19 2016-09-22 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
US10562960B2 (en) 2015-03-20 2020-02-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to gp120 and their use
BR112017020054A2 (en) 2015-03-23 2018-06-05 Jounce Therapeutics Inc antibodies to icos
EP3273998B1 (en) 2015-03-27 2019-09-04 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
HRP20231039T1 (en) 2015-04-06 2023-12-22 Regeneron Pharmaceuticals, Inc. Humanized t cell mediated immune responses in non-human animals
WO2016164503A1 (en) 2015-04-06 2016-10-13 Acceleron Pharma Inc. Alk7:actriib heteromultimers and uses thereof
MA41919A (en) 2015-04-06 2018-02-13 Acceleron Pharma Inc ALK4 HETEROMULTIMERS: ACTRIIB AND THEIR USES
MX2017012802A (en) 2015-04-07 2018-04-11 Alector Llc Anti-sortilin antibodies and methods of use thereof.
KR20180002653A (en) 2015-04-07 2018-01-08 제넨테크, 인크. Antigen binding complexes having an agonistic activity activity and methods of use
JP6752221B2 (en) 2015-04-13 2020-09-09 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Humanized SIRPA-IL15 knock-in mouse and its usage
CN107810197B (en) 2015-04-24 2022-10-25 豪夫迈·罗氏有限公司 Methods of identifying bacteria comprising binding polypeptides
CN107709363A (en) 2015-05-01 2018-02-16 基因泰克公司 Shelter anti-cd 3 antibodies and application method
WO2016179194A1 (en) 2015-05-04 2016-11-10 Jounce Therapeutics, Inc. Lilra3 and method of using the same
US20160346387A1 (en) 2015-05-11 2016-12-01 Genentech, Inc. Compositions and methods of treating lupus nephritis
PT3294770T (en) 2015-05-12 2020-12-04 Hoffmann La Roche Therapeutic and diagnostic methods for cancer
US10395759B2 (en) 2015-05-18 2019-08-27 Regeneron Pharmaceuticals, Inc. Methods and systems for copy number variant detection
WO2016196343A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Humanized anti-ebola virus glycoprotein antibodies and methods of use
CA2986048C (en) 2015-05-29 2021-10-26 Regeneron Pharmaceuticals, Inc. Non-human animals having a disruption in a c9orf72 locus
IL255372B (en) 2015-05-29 2022-07-01 Genentech Inc Therapeutic and diagnostic methods for cancer
JP2018516933A (en) 2015-06-02 2018-06-28 ジェネンテック, インコーポレイテッド Compositions and methods for treating neurological disorders using anti-IL-34 antibodies
WO2016196975A1 (en) 2015-06-03 2016-12-08 The United States Of America, As Represented By The Secretary Department Of Health & Human Services Neutralizing antibodies to hiv-1 env and their use
UA126272C2 (en) 2015-06-05 2022-09-14 Дженентек, Інк. Anti-tau antibodies and methods of use
WO2016200836A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies
MX2017015937A (en) 2015-06-08 2018-12-11 Genentech Inc Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists.
EP3307771A2 (en) 2015-06-12 2018-04-18 Alector LLC Anti-cd33 antibodies and methods of use thereof
EP3307779A2 (en) 2015-06-12 2018-04-18 Alector LLC Anti-cd33 antibodies and methods of use thereof
WO2016205176A1 (en) 2015-06-15 2016-12-22 Genentech, Inc. Antibodies and immunoconjugates
AU2016280102B2 (en) 2015-06-16 2022-06-16 Genentech, Inc. Humanized and affinity matured antibodies to FcRH5 and methods of use
EP3916018A1 (en) 2015-06-16 2021-12-01 Genentech, Inc. Anti-cd3 antibodies and methods of use
EP3310378B1 (en) 2015-06-16 2024-01-24 F. Hoffmann-La Roche AG Anti-cll-1 antibodies and methods of use
WO2016205531A2 (en) 2015-06-17 2016-12-22 Genentech, Inc. Anti-her2 antibodies and methods of use
CA2986263A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
BR112017024610A2 (en) 2015-06-24 2018-07-31 F. Hoffmann-La Roche Ag specific affinity antitransferrin receptor antibodies
CA2989936A1 (en) 2015-06-29 2017-01-05 Genentech, Inc. Type ii anti-cd20 antibody for use in organ transplantation
CA2991973C (en) 2015-07-12 2021-12-07 Suzhou M-Conj Biotech Co., Ltd. Bridge linkers for conjugation of a cell-binding molecule
US9839687B2 (en) 2015-07-15 2017-12-12 Suzhou M-Conj Biotech Co., Ltd. Acetylenedicarboxyl linkers and their uses in specific conjugation of a cell-binding molecule
CA2994413A1 (en) 2015-08-04 2017-02-09 Acceleron Pharma, Inc. Methods for treating myeloproliferative disorders
CA2994825A1 (en) 2015-08-05 2017-02-09 Janssen Biotech, Inc. Anti-cd154 antibodies and methods of using them
TW201713690A (en) 2015-08-07 2017-04-16 再生元醫藥公司 Anti-ANGPTL8 antibodies and uses thereof
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
KR20180034672A (en) 2015-08-18 2018-04-04 리제너론 파아마슈티컬스, 인크. Anti-PCSK9 inhibitory antibodies for treating patients with hyperlipemia experiencing lipoprotein separation and export
AU2016311268B2 (en) 2015-08-24 2023-02-02 Trianni, Inc. Enhanced production of immunoglobulins
EP3350202A1 (en) 2015-09-18 2018-07-25 Chugai Seiyaku Kabushiki Kaisha Il-8-binding antibodies and uses thereof
WO2017053807A2 (en) 2015-09-23 2017-03-30 Genentech, Inc. Optimized variants of anti-vegf antibodies
BR112018005931A2 (en) 2015-09-24 2018-10-09 Abvitro Llc hiv antibody compositions and methods of use
RU2732591C2 (en) 2015-09-25 2020-09-21 Дженентек, Инк. Anti-tigit antibodies and methods of using
WO2017059387A1 (en) 2015-09-30 2017-04-06 Igm Biosciences, Inc. Binding molecules with modified j-chain
WO2017059196A2 (en) 2015-09-30 2017-04-06 Janssen Biotech, Inc. Antagonistic antibodies specifically binding human cd40 and methods of use
WO2017059380A1 (en) 2015-09-30 2017-04-06 Igm Biosciences, Inc. Binding molecules with modified j-chain
ES2895034T3 (en) 2015-10-02 2022-02-17 Hoffmann La Roche Anti-PD1 Antibodies and Procedures for Use
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
RU2753390C1 (en) 2015-10-02 2021-08-13 Ф. Хоффманн-Ля Рош Аг Bispecific antibodies to human cd20/human transferrin receptor and methods for their use
TWI756187B (en) 2015-10-09 2022-03-01 美商再生元醫藥公司 Anti-lag3 antibodies and uses thereof
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
KR20180066236A (en) 2015-10-22 2018-06-18 조운스 테라퓨틱스, 인크. Gene traits for measuring ICOS expression
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
MA43113B1 (en) 2015-10-30 2021-06-30 Hoffmann La Roche Anti-htr a1 antibodies and methods of use thereof
US10407510B2 (en) 2015-10-30 2019-09-10 Genentech, Inc. Anti-factor D antibodies and conjugates
BR112018008891A8 (en) 2015-11-03 2019-02-26 Janssen Biotech Inc antibodies that specifically bind to pd-1 and tim-3 and their uses
EP3371217A1 (en) 2015-11-08 2018-09-12 H. Hoffnabb-La Roche Ag Methods of screening for multispecific antibodies
EP3380121B1 (en) 2015-11-23 2023-12-20 Acceleron Pharma Inc. Actrii antagonist for use in treating eye disorders
US10813346B2 (en) 2015-12-03 2020-10-27 Trianni, Inc. Enhanced immunoglobulin diversity
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
CN115920030A (en) 2015-12-09 2023-04-07 豪夫迈·罗氏有限公司 Use of type II anti-CD 20 antibodies for reducing anti-drug antibody formation
BR112018012344A2 (en) 2015-12-17 2018-12-04 Janssen Biotech Inc antibodies that specifically bind to hla-dr and their uses
RU2742606C2 (en) 2015-12-18 2021-02-09 Чугаи Сейяку Кабусики Кайся C5 antibodies and methods for using them
CA3006529A1 (en) 2016-01-08 2017-07-13 F. Hoffmann-La Roche Ag Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
KR102482103B1 (en) 2016-01-13 2022-12-28 리제너론 파마슈티칼스 인코포레이티드 Rodents with Engineered Heavy Chain Diversity Regions
EP3405489A1 (en) 2016-01-20 2018-11-28 Genentech, Inc. High dose treatments for alzheimer's disease
CN114478801A (en) 2016-01-25 2022-05-13 里珍纳龙药品有限公司 Maytansinoid derivatives, conjugates thereof, and methods of use
US11053288B2 (en) 2016-02-04 2021-07-06 Trianni, Inc. Enhanced production of immunoglobulins
CN109195443A (en) * 2016-02-16 2019-01-11 雷杰纳荣制药公司 Non-human animal with saltant type kynurenin enzyme gene
MX2018009680A (en) 2016-02-17 2018-09-10 Regeneron Pharma Methods for treating or preventing atherosclerosis by administering an inhibitor of angptl3.
MX2018010361A (en) 2016-02-29 2019-07-08 Genentech Inc Therapeutic and diagnostic methods for cancer.
MX2018010401A (en) 2016-03-03 2019-03-06 Regeneron Pharma Methods for treating patients with hyperlipidemia by administering a pcsk9 inhibitor in combination with an angptl3 inhibitor.
WO2017159699A1 (en) 2016-03-15 2017-09-21 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
EP3433621A1 (en) 2016-03-25 2019-01-30 H. Hoffnabb-La Roche Ag Multiplexed total antibody and antibody-conjugated drug quantification assay
CA3018186C (en) 2016-03-29 2023-06-13 Regeneron Pharmaceuticals, Inc. Genetic variant-phenotype analysis system and methods of use
EP3228630A1 (en) 2016-04-07 2017-10-11 IMBA-Institut für Molekulare Biotechnologie GmbH Combination of an apelin antagonist and an angiogenesis inhibitor for the treatment of cancer
SI3439689T1 (en) 2016-04-08 2021-12-31 Regeneron Pharmaceuticals, Inc. Methods for treating hyperlipidemia with an angptl8 inhibitor and an angptl3 inhibitor
WO2017180864A1 (en) 2016-04-14 2017-10-19 Genentech, Inc. Anti-rspo3 antibodies and methods of use
MX2018012492A (en) 2016-04-15 2019-06-06 Genentech Inc Methods for monitoring and treating cancer.
CN109154027A (en) 2016-04-15 2019-01-04 豪夫迈·罗氏有限公司 For monitoring and the method for the treatment of cancer
MX2018012741A (en) 2016-04-28 2019-05-16 Regeneron Pharma Methods for treating patients with familial hypercholesterolemia.
BR112018069890A2 (en) 2016-05-02 2019-02-05 Hoffmann La Roche target-specific fusion polypeptide, dimeric fusion polypeptide, isolated nucleic acid, isolated nucleic acid pair, host cell, method for producing a fusion polypeptide, immunoconjugate, pharmaceutical formulation, fusion polypeptide and use of the fusion polypeptide
CN109071640B (en) 2016-05-11 2022-10-18 豪夫迈·罗氏有限公司 Modified anti-tenascin antibodies and methods of use
TWI755395B (en) 2016-05-13 2022-02-21 美商再生元醫藥公司 Combination of anti-pd-1 antibodies and radiation to treat cancer
ES2858151T3 (en) 2016-05-20 2021-09-29 Hoffmann La Roche PROTAC-Antibody Conjugates and Procedures for Use
CN109313200B (en) 2016-05-27 2022-10-04 豪夫迈·罗氏有限公司 Bioanalytical methods for characterizing site-specific antibody-drug conjugates
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
SI3462853T1 (en) 2016-06-03 2023-05-31 Regeneron Pharmaceuticals, Inc. Rodents expressing exogenous terminal deoxynucleotidyltransferase
CA3025995C (en) 2016-06-06 2023-08-08 F. Hoffmann-La Roche Ag Fusion proteins for ophthalmology with increased eye retention
WO2017214089A1 (en) 2016-06-06 2017-12-14 Regeneron Pharmaceuticals, Inc. Non-human animals expressing antibodies with human lambda light chains
EP3464280B1 (en) 2016-06-06 2021-10-06 F. Hoffmann-La Roche AG Silvestrol antibody-drug conjugates and methods of use
GB201610162D0 (en) 2016-06-10 2016-07-27 Imp Innovations Ltd And Inst Pasteur Methods
WO2017218515A1 (en) 2016-06-14 2017-12-21 Regeneron Pharmaceuticals, Inc. Anti-c5 antibodies and uses thereof
JP7133477B2 (en) 2016-06-24 2022-09-08 ジェネンテック, インコーポレイテッド Anti-polyubiquitin multispecific antibody
SG11201811559WA (en) 2016-06-27 2019-01-30 Univ California Cancer treatment combinations
CN109415435B (en) 2016-07-04 2024-01-16 豪夫迈·罗氏有限公司 Novel antibody forms
EP3496739B1 (en) 2016-07-15 2021-04-28 Acceleron Pharma Inc. Compositions comprising actriia polypeptides for use in treating pulmonary hypertension
TW201815821A (en) 2016-07-18 2018-05-01 美商再生元醫藥公司 Anti-zika virus antibodies and methods of use
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
AU2017302282A1 (en) 2016-07-27 2019-02-07 Acceleron Pharma Inc. Methods and compositions for treating myelofibrosis
KR20190041476A (en) 2016-07-29 2019-04-22 리제너론 파마슈티칼스 인코포레이티드 A mouse containing a mutation inducing the expression of C-truncated fibrilin-1
CN109415444B (en) 2016-07-29 2024-03-01 中外制药株式会社 Bispecific antibodies exhibiting increased functional activity of alternative FVIII cofactors
CN109689099B (en) 2016-08-05 2023-02-28 中外制药株式会社 Composition for preventing or treating IL-8-related diseases
US11046776B2 (en) 2016-08-05 2021-06-29 Genentech, Inc. Multivalent and multiepitopic antibodies having agonistic activity and methods of use
CN109476748B (en) 2016-08-08 2023-05-23 豪夫迈·罗氏有限公司 Methods for treatment and diagnosis of cancer
EP3282019A1 (en) 2016-08-09 2018-02-14 Medizinische Universität Wien Genotyping and treatment of cancer, in particular chronic lymphocytic leukemia
JP7093767B2 (en) 2016-08-11 2022-06-30 ジェネンテック, インコーポレイテッド Pyrrolobenzodiazepine prodrug and its antibody conjugate
EP3497126A4 (en) 2016-08-12 2020-04-08 Janssen Biotech, Inc. Fc engineered anti-tnfr superfamily member antibodies having enhanced agonistic activity and methods of using them
KR102587941B1 (en) 2016-08-12 2023-10-11 얀센 바이오테크 인코포레이티드 Engineered antibodies and other Fc-domain containing molecules with improved agonism and effector functions
MX2019002382A (en) 2016-08-29 2019-06-20 Regeneron Pharma Anti-gremlin-1 (grem1) antibodies and methods of use thereof for treating pulmonary arterial hypertension.
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
EP3515932B1 (en) 2016-09-19 2023-11-22 F. Hoffmann-La Roche AG Complement factor based affinity chromatography
UA124269C2 (en) 2016-09-23 2021-08-18 Дженентек, Інк. Uses of il-13 antagonists for treating atopic dermatitis
CA3034105A1 (en) 2016-09-23 2018-03-29 Csl Limited Coagulation factor binding proteins and uses thereof
WO2018064600A1 (en) 2016-09-30 2018-04-05 Regeneron Pharmaceuticals, Inc. Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus
EP4026556A1 (en) 2016-10-05 2022-07-13 Acceleron Pharma Inc. Compositions and method for treating kidney disease
JP7050770B2 (en) 2016-10-05 2022-04-08 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Method for preparing antibody drug conjugate
MX2019003934A (en) 2016-10-06 2019-07-10 Genentech Inc Therapeutic and diagnostic methods for cancer.
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
JP7265984B2 (en) 2016-10-21 2023-04-27 アディマブ, エルエルシー Anti-respiratory syncytial virus antibodies and methods of their production and use
JP2020503843A (en) 2016-10-21 2020-02-06 アディマブ, エルエルシー Anti-respiratory syncytial virus antibodies and methods for their production and use
IL303833A (en) 2016-10-21 2023-08-01 Adimab Llc Anti-respiratory syncytial virus antibodies, and methods of their generation and use
CN110267678A (en) 2016-10-29 2019-09-20 霍夫曼-拉罗奇有限公司 Anti- MIC antibody and application method
AU2017348743C1 (en) * 2016-10-31 2022-03-03 National University Corporation Tottori University Human antibody–producing non-human animal and method for preparing human antibodies using same
HUE057559T2 (en) 2016-11-02 2022-06-28 Jounce Therapeutics Inc Antibodies to pd-1 and uses thereof
KR102319069B1 (en) 2016-11-04 2021-11-01 리제너론 파마슈티칼스 인코포레이티드 Non-Human Animals With Engineered Immunoglobulin Lambda Light Chain Locus
JP7330101B2 (en) 2016-11-08 2023-08-21 レゲネロン ファーマシューティカルス,インコーポレーテッド Steroids and their protein conjugates
KR20220150408A (en) 2016-11-14 2022-11-10 항저우 디에이씨 바이오테크 씨오, 엘티디 Conjugation linkers, cell binding molecule-drug conjugates containing the likers, methods of making and uses such conjugates with the linkers
JP7133551B2 (en) 2016-11-17 2022-09-08 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Methods of treating obesity using anti-ANGPTL8 antibodies
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 Anti-hla-g antibodies and use thereof
US11773163B2 (en) 2016-11-21 2023-10-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the prophylactic treatment of metastases
EP3548082B1 (en) 2016-11-29 2024-05-15 Regeneron Pharmaceuticals, Inc. A pharmaceutical composition for averting opioid addiction
KR102480773B1 (en) 2016-11-30 2022-12-23 크로다 인터내셔날 피엘씨 Aqueous binder systems, coating compositions and coatings
EP3551655A2 (en) 2016-12-07 2019-10-16 Genentech, Inc. Anti-tau antibodies and methods of their use
WO2018106781A1 (en) 2016-12-07 2018-06-14 Genentech, Inc Anti-tau antibodies and methods of use
EP3556773A4 (en) 2016-12-13 2020-08-19 Astellas Pharma Inc. Anti-human cd73 antibody
EP3559250A1 (en) 2016-12-21 2019-10-30 H. Hoffnabb-La Roche Ag Re-use of enzymes in in vitro glycoengineering of antibodies
JP6850351B2 (en) 2016-12-21 2021-03-31 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft In vitro sugar chain engineering of antibodies
KR102293106B1 (en) 2016-12-21 2021-08-24 에프. 호프만-라 로슈 아게 Methods for in vitro glycoengineering of antibodies
US11352417B2 (en) 2016-12-22 2022-06-07 Regeneron Pharmaceuticals, Inc. Method of treating an allergy with allergen-specific monoclonal antibodies
WO2018124155A1 (en) * 2016-12-27 2018-07-05 国立大学法人群馬大学 Production method for conditional knockout animal
TWI781130B (en) 2017-01-03 2022-10-21 美商再生元醫藥公司 Human antibodies to s. aureus hemolysin a toxin
CA3049980A1 (en) 2017-01-23 2018-07-26 Regeneron Pharmaceuticals, Inc. Hydroxysteroid 17-beta dehydrogenase 13 (hsd17b13) variants and uses thereof
US10713373B2 (en) * 2017-02-09 2020-07-14 Lifesite, Inc. Computing system with information storage mechanism and method of operation thereof
EP3580235B1 (en) 2017-02-10 2024-05-01 The United States of America, as represented by the Secretary, Department of Health and Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
US10738131B2 (en) 2017-02-10 2020-08-11 Genentech, Inc. Anti-tryptase antibodies, compositions thereof, and uses thereof
SG11201907208XA (en) 2017-02-10 2019-09-27 Regeneron Pharma Radiolabeled anti-lag3 antibodies for immuno-pet imaging
KR20190134631A (en) 2017-03-01 2019-12-04 제넨테크, 인크. How to diagnose and treat cancer
AR111249A1 (en) 2017-03-22 2019-06-19 Genentech Inc OPTIMIZED ANTIBODY COMPOSITIONS FOR THE TREATMENT OF OCULAR DISORDERS
ES2928718T3 (en) 2017-04-03 2022-11-22 Hoffmann La Roche Immunoconjugates of an anti-PD-1 antibody with a mutant IL-2 or with IL-15
BR112019018767A2 (en) 2017-04-03 2020-05-05 Hoffmann La Roche antibodies, bispecific antigen binding molecule, one or more isolated polynucleotides, one or more vectors, host cell, method for producing an antibody, pharmaceutical composition, uses, method for treating a disease in an individual and invention
WO2018184965A1 (en) 2017-04-03 2018-10-11 F. Hoffmann-La Roche Ag Immunoconjugates of il-2 with an anti-pd-1 and tim-3 bispecific antibody
EP4112644A1 (en) 2017-04-05 2023-01-04 F. Hoffmann-La Roche AG Anti-lag3 antibodies
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
CA3060514A1 (en) 2017-04-20 2018-10-25 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
EP3624820A1 (en) 2017-04-21 2020-03-25 H. Hoffnabb-La Roche Ag Use of klk5 antagonists for treatment of a disease
MX2019012793A (en) 2017-04-27 2020-02-13 Tesaro Inc Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof.
EP3625251A1 (en) 2017-05-15 2020-03-25 University Of Rochester Broadly neutralizing anti-influenza monoclonal antibody and uses thereof
CN110944718A (en) 2017-05-18 2020-03-31 里珍纳龙药品有限公司 Cyclodextrin protein drug conjugates
NZ759513A (en) 2017-06-01 2022-01-28 Regeneron Pharma Human antibodies to bet v 1 and methods of use thereof
KR20200014304A (en) 2017-06-02 2020-02-10 에프. 호프만-라 로슈 아게 Type II anti-CD20 antibodies and anti-CD20 / anti-CD3 bispecific antibodies for the treatment of cancer
CA3065516A1 (en) 2017-06-05 2018-12-13 Janssen Biotech, Inc. Antibodies that specifically bind pd-1 and methods of use
CA3065171A1 (en) 2017-06-05 2018-12-13 Janssen Biotech, Inc. Engineered multispecific antibodies and other multimeric proteins with asymmetrical ch2-ch3 region mutations
US20190031774A1 (en) 2017-06-09 2019-01-31 Sanofi Biotechnology Methods for treating hyperlipidemia in diabetic patients by administering a pcsk9 inhibitor
AU2018290856A1 (en) 2017-06-28 2020-01-02 Regeneron Pharmaceuticals, Inc. Anti-human papillomavirus (HPV) antigen-binding proteins and methods of use thereof
WO2019018770A1 (en) 2017-07-21 2019-01-24 Trianni, Inc. Single chain vh-l1-ckappa-l2-ch1- antibodies
US11674962B2 (en) 2017-07-21 2023-06-13 Genentech, Inc. Therapeutic and diagnostic methods for cancer
MY197688A (en) 2017-07-24 2023-07-05 Regeneron Pharma Anti-cd8 antibodies and uses thereof
WO2019020480A1 (en) 2017-07-24 2019-01-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies and peptides to treat hcmv related diseases
TWI799432B (en) 2017-07-27 2023-04-21 美商再生元醫藥公司 Anti-ctla-4 antibodies and uses thereof
JP7299160B2 (en) 2017-08-03 2023-06-27 アレクトル エルエルシー ANTI-CD33 ANTIBODY AND METHOD OF USE THEREOF
WO2019051164A1 (en) 2017-09-07 2019-03-14 Augusta University Research Institute, Inc. Antibodies to programmed cell death protein 1
CR20210381A (en) 2017-09-29 2021-09-09 Chugai Pharmaceutical Co Ltd Multispecific antigen-binding molecule having blood coagulation factor viii (fviii) cofactor function-substituting activity, and pharmaceutical formulation containing said molecule as active ingredient
SG11202001160XA (en) 2017-09-29 2020-03-30 Regeneron Pharma Bispecific antigen-binding molecules that bind a staphylococcus target antigen and a complement component and uses thereof
DK3476942T3 (en) 2017-10-27 2022-04-19 Trianni Inc LONG SEEDLINE DH GENES AND ANTIBODIES WITH LONG HCDR3
CN111526920A (en) 2017-10-30 2020-08-11 赛诺菲生物技术公司 Methods of treating or preventing asthma by administering IL-4R antagonists
KR102559706B1 (en) 2017-11-01 2023-07-25 에프. 호프만-라 로슈 아게 TRIFAB-Contols Body
CN111295392A (en) 2017-11-01 2020-06-16 豪夫迈·罗氏有限公司 Compbody-multivalent target binders
WO2019090263A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
AU2018375340A1 (en) 2017-11-30 2020-05-07 Regeneron Pharmaceuticals, Inc. Anti-TrkB monoclonal antibodies and methods of use
PT3720279T (en) 2017-12-05 2022-10-06 Regeneron Pharma Non-human animals having an engineered immunoglobulin lambda light chain and uses thereof
CA3083113A1 (en) 2017-12-13 2019-06-20 Regeneron Pharmaceuticals, Inc. Anti-c5 antibody combinations and uses thereof
WO2019126194A1 (en) 2017-12-18 2019-06-27 Regeneron Pharmaceuticals, Inc. Angptl8 assay and uses thereof
SG11202005632SA (en) 2017-12-21 2020-07-29 Hoffmann La Roche Antibodies binding to hla-a2/wt1
AU2018389111A1 (en) 2017-12-22 2020-06-18 Jounce Therapeutics, Inc. Antibodies to LILRB2
TW201929907A (en) 2017-12-22 2019-08-01 美商建南德克公司 Use of PILRA binding agents for treatment of a Disease
JP7369127B2 (en) 2017-12-28 2023-10-25 ナンジン レジェンド バイオテック カンパニー,リミテッド Single domain antibodies against TIGIT and variants thereof
US20220135687A1 (en) 2017-12-28 2022-05-05 Nanjing Legend Biotech Co., Ltd. Antibodies and variants thereof against pd-l1
WO2019133512A1 (en) 2017-12-29 2019-07-04 Alector Llc Anti-tmem106b antibodies and methods of use thereof
CA3086926A1 (en) 2018-01-08 2019-07-11 Regeneron Pharmaceuticals, Inc. Steroids and antibody-conjugates thereof
KR20200120641A (en) 2018-01-15 2020-10-21 난징 레전드 바이오테크 씨오., 엘티디. Single-domain antibody against PD-1 and variants thereof
WO2019143636A1 (en) 2018-01-16 2019-07-25 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
US20190225689A1 (en) 2018-01-22 2019-07-25 Janssen Biotech, Inc. Methods of treating cancers with antagonistic anti-pd-1 antibodies
MA46731B1 (en) 2018-01-26 2021-06-30 Regeneron Pharma Anti-tmprss2 antibodies and antigen binding fragments
WO2019147867A1 (en) 2018-01-26 2019-08-01 Regeneron Pharmaceuticals, Inc. Human antibodies to influenza hemagglutinin
JP7268038B2 (en) 2018-01-31 2023-05-02 アレクトル エルエルシー ANTI-MS4A4A ANTIBODY AND METHOD OF USE THEREOF
BR112020016169A2 (en) 2018-02-08 2020-12-15 Genentech, Inc. MOLECULES FOR BINDING THE BIESPECIFIC ANTIGEN, INSULATED NUCLEIC ACID, VECTOR, HOSTING CELL, METHODS FOR PRODUCING THE BINDING MOLECULE, SET OF NUCLEIC ACIDS, ISOLATED, VEGETABLE CONTAINER, VEGETABLE CONTAINERS, TO TREAT OR DELAY CANCER PROGRESSION, METHODS TO IMPROVE THE IMMUNE FUNCTION AND KIT
KR20220098056A (en) 2018-02-09 2022-07-08 제넨테크, 인크. Therapeutic and diagnostic methods for mast cell-mediated inflammatory diseases
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
CA3092108A1 (en) 2018-02-26 2019-08-29 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
JP7426940B2 (en) 2018-03-06 2024-02-02 サノフィ・バイオテクノロジー Use of PCSK9 inhibitors to reduce cardiovascular risk
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
JP2021518343A (en) 2018-03-15 2021-08-02 中外製薬株式会社 Anti-dengue virus antibody with cross-reactivity to Zika virus and how to use
EP3940382A1 (en) 2018-03-24 2022-01-19 Regeneron Pharmaceuticals, Inc. Systems and methods for identifying hla-associated tumor peptides
CN112040769B (en) 2018-03-24 2023-05-16 瑞泽恩制药公司 Genetically modified non-human animals, methods of manufacture and use for producing therapeutic antibodies against peptide-MHC complexes
MX2020009851A (en) 2018-03-26 2020-11-09 Regeneron Pharma Anti-pfrh5 antibodies and antigen-binding fragments thereof.
CA3093850A1 (en) 2018-03-26 2019-10-03 Regeneron Pharmaceuticals, Inc. Humanized rodents for testing therapeutic agents
JP2021519073A (en) 2018-03-29 2021-08-10 ジェネンテック, インコーポレイテッド Regulation of lactogenic activity in mammalian cells
AU2019241350A1 (en) 2018-03-30 2020-07-30 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against LAG-3 and uses thereof
EP3778639A4 (en) 2018-04-02 2021-06-09 Mab-Venture Biopharm Co., Ltd. Lymphocyte activation gene-3 (lag-3) binding antibody and use thereof
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
WO2019213384A1 (en) 2018-05-03 2019-11-07 University Of Rochester Anti-influenza neuraminidase monoclonal antibodies and uses thereof
BR112020022400A2 (en) 2018-05-09 2021-02-02 Regeneron Pharmaceuticals, Inc. anti-msr1 antibodies and methods of using them
MA52777A (en) 2018-05-24 2021-04-14 Janssen Biotech Inc PSMA LIAISON OFFICERS AND CORRESPONDING USES
EA202092847A1 (en) 2018-05-24 2021-04-20 Янссен Байотек, Инк. ANTIBODIES TO CD3 AND THEIR APPLICATION
MA52772A (en) 2018-05-24 2021-04-14 Janssen Biotech Inc MONOSPECIFIC AND MULTISPECIFIC ANTI-TMEFF2 ANTIBODIES AND THEIR USES
MX2020011828A (en) 2018-05-25 2021-02-09 Alector Llc Anti-sirpa antibodies and methods of use thereof.
MX2020011385A (en) 2018-05-31 2021-04-13 Glyconex Inc Therapeutic antibodies binding to biantennary lewis b and lewis y antigens.
JP2021525806A (en) 2018-06-01 2021-09-27 タユー ファシャ バイオテック メディカル グループ カンパニー, リミテッド Compositions for treating diseases or conditions and their use
EP3811364A1 (en) 2018-06-01 2021-04-28 Regeneron Pharmaceuticals, Inc. Methods and systems for sparse vector-based matrix transformations
KR102444180B1 (en) 2018-06-14 2022-09-16 리제너론 파마슈티칼스 인코포레이티드 Non-human animals capable of DH-DH rearrangement in the immunoglobulin heavy chain coding sequence
EP3810270A1 (en) 2018-06-19 2021-04-28 Regeneron Pharmaceuticals, Inc. Anti-factor xii/xiia antibodies and uses thereof
MX2020014091A (en) 2018-06-23 2021-05-27 Genentech Inc Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor.
CA3099176A1 (en) 2018-06-29 2020-01-02 Alector Llc Anti-sirp-beta1 antibodies and methods of use thereof
EP3820891A1 (en) 2018-07-10 2021-05-19 Regeneron Pharmaceuticals, Inc. Modifying binding molecules to minimize pre-existing interactions
CN111372655A (en) 2018-07-13 2020-07-03 艾利妥 Anti-sortilin antibodies and methods of use thereof
JP7386224B2 (en) 2018-07-16 2023-11-24 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Anti-IL36R antibody
MX2021000268A (en) 2018-07-17 2021-06-08 Humabs Biomed Sa Antibodies against campylobacter species.
EP3823611A1 (en) 2018-07-18 2021-05-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
BR112021001214A2 (en) 2018-07-24 2021-04-27 Medimmune, Llc antibody directed against the agglutination factor a (cfa) of s. aureus
AU2019318031A1 (en) 2018-08-10 2021-02-25 Chugai Seiyaku Kabushiki Kaisha Anti-CD137 antigen-binding molecule and utilization thereof
US11472870B2 (en) 2018-08-10 2022-10-18 Regeneron Pharmaceuticals, Inc. Pharmaceutical composition for safe and effective treatment of knee and/or hip pain
TW202021618A (en) 2018-08-17 2020-06-16 美商23與我有限公司 Anti-il1rap antibodies and methods of use thereof
BR112021003206A2 (en) 2018-08-29 2021-05-25 Regeneron Pharmaceuticals, Inc. methods and compositions for treating individuals with rheumatoid arthritis
TW202016307A (en) 2018-08-31 2020-05-01 美商阿列克特有限責任公司 Anti-cd33 antibodies and methods of use thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
EP3849304B1 (en) 2018-09-13 2024-01-10 Regeneron Pharmaceuticals, Inc. Complement factor h gene knockout rat as a model of c3 glomerulopathy
WO2020061060A1 (en) 2018-09-19 2020-03-26 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
EP4249917A3 (en) 2018-09-21 2023-11-08 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
US20200109200A1 (en) 2018-10-09 2020-04-09 Genentech, Inc. Methods and systems for determining synapse formation
AU2019357983A1 (en) 2018-10-09 2021-05-27 Medimmune, Llc Combinations of anti-staphylococcus aureus antibodies
CN113196061A (en) 2018-10-18 2021-07-30 豪夫迈·罗氏有限公司 Methods of diagnosis and treatment of sarcoma-like renal cancer
BR112021004329A2 (en) 2018-10-23 2021-08-03 Regeneron Pharmaceuticals, Inc. anti-npr1 antibodies and their uses
TW202037381A (en) 2018-10-24 2020-10-16 瑞士商赫孚孟拉羅股份公司 Conjugated chemical inducers of degradation and methods of use
JOP20210093A1 (en) 2018-10-31 2023-01-30 Astellas Pharma Inc ANTI-HUMAN Fn14 ANTIBODY
EP3877413A1 (en) 2018-11-06 2021-09-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
EP3883963A1 (en) 2018-11-21 2021-09-29 Regeneron Pharmaceuticals, Inc. Anti-staphylococcus antibodies and uses thereof
AU2018451747A1 (en) 2018-12-06 2021-06-17 F. Hoffmann-La Roche Ag Combination therapy of diffuse large B-cell lymphoma comprising an anti-CD79b immunoconjugates, an alkylating agent and an anti-CD20 antibody
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
WO2020120786A1 (en) 2018-12-14 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Isolated mhc-derived human peptides and uses thereof for stimulating and activating the suppressive function of cd8+cd45rclow tregs
GB201820547D0 (en) 2018-12-17 2019-01-30 Oxford Univ Innovation Modified antibodies
GB201820554D0 (en) 2018-12-17 2019-01-30 Univ Oxford Innovation Ltd BTLA antibodies
AR117327A1 (en) 2018-12-20 2021-07-28 23Andme Inc ANTI-CD96 ANTIBODIES AND METHODS OF USE OF THEM
EP3883609A2 (en) 2018-12-20 2021-09-29 The United States of America, as represented by the Secretary, Department of Health and Human Services Ebola virus glycoprotein-specific monoclonal antibodies and uses thereof
IL301193A (en) 2018-12-20 2023-05-01 Regeneron Pharma Nuclease-mediated repeat expansion
TW202035442A (en) 2018-12-20 2020-10-01 美商建南德克公司 Modified antibody fcs and methods of use
SG11202106100VA (en) 2018-12-21 2021-07-29 23Andme Inc Anti-il-36 antibodies and methods of use thereof
TW202043256A (en) 2019-01-10 2020-12-01 美商健生生物科技公司 Prostate neoantigens and their uses
TW202043272A (en) 2019-01-14 2020-12-01 美商建南德克公司 Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
SG11202107981VA (en) 2019-01-22 2021-08-30 Genentech Inc Immunoglobulin a antibodies and methods of production and use
JPWO2020153467A1 (en) 2019-01-24 2021-12-02 中外製薬株式会社 New cancer antigens and antibodies against those antigens
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
EA202192090A1 (en) 2019-02-01 2021-10-20 Регенерон Фармасьютикалз, Инк. ANTIGEN BINDING PROTEINS AGAINST IL2 RECEPTOR GAMMA CHAIN
MX2021009533A (en) 2019-02-12 2021-11-12 Regeneron Pharma Compositions and methods for using bispecific antibodies to bind complement and a target antigen.
EP3924378A4 (en) 2019-02-15 2023-04-05 WuXi Biologics Ireland Limited Process for preparing antibody-drug conjugates with improved homogeneity
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
CN112400022B (en) 2019-02-18 2023-06-30 百奥赛图(北京)医药科技股份有限公司 Genetically modified non-human animals with humanized immunoglobulin loci
JP2022520819A (en) 2019-02-22 2022-04-01 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Rodents with genetically modified sodium channels and how to use them
JP2022521773A (en) 2019-02-27 2022-04-12 ジェネンテック, インコーポレイテッド Dosing for treatment with anti-TIGIT antibody and anti-CD20 antibody or anti-CD38 antibody
CA3131908A1 (en) 2019-03-01 2020-09-10 Allogene Therapeutics, Inc. Dll3 targeting chimeric antigen receptors and binding agents
KR20210138588A (en) 2019-03-08 2021-11-19 제넨테크, 인크. Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles
IL286917B (en) 2019-04-04 2022-09-01 Regeneron Pharma Methods for scarless introduction of targeted modifications into targeting vectors
IL286905B1 (en) 2019-04-04 2024-02-01 Regeneron Pharma Non-human animals comprising a humanized coagulation factor 12 locus
CA3134258A1 (en) 2019-04-10 2020-10-15 Regeneron Pharmaceuticals, Inc. Human antibodies that bind ret and methods of use thereof
WO2020214690A1 (en) 2019-04-15 2020-10-22 Qwixel Therapeutics Fusion protein composition(s) comprising targeted masked type i interferons (ifna and ifnb) and an antibody against tumor antigen, for use in the treatment of cancer
CA3136888A1 (en) 2019-04-19 2020-10-22 Janssen Biotech, Inc. Methods of treating prostate cancer with an anti- psma/cd3 antibody
JP2022529154A (en) 2019-04-19 2022-06-17 ジェネンテック, インコーポレイテッド Anti-MERTK antibody and how to use it
KR20220004028A (en) 2019-04-26 2022-01-11 알로젠 테라퓨틱스 인코포레이티드 Methods for making allogeneic CAR T cells
WO2020223541A1 (en) 2019-05-01 2020-11-05 Sanofi Biotechnology Methods for treating or preventing asthma by administering an il-33 antagonist
US20220227853A1 (en) 2019-05-03 2022-07-21 The United States Of America,As Represented By The Secretary,Department Of Health And Human Services Neutralizing antibodies to plasmodium falciparum circumsporozoite protein and their use
EP3962947A2 (en) 2019-05-03 2022-03-09 F. Hoffmann-La Roche AG Methods of treating cancer with an anti-pd-l1 antibody
BR112021022815A2 (en) 2019-05-14 2021-12-28 Genentech Inc Methods to treat follicular lymphoma, kits, immunoconjugates and polatuzumab vedotin
US20230085439A1 (en) 2019-05-21 2023-03-16 University Of Georgia Research Foundation, Inc. Antibodies that bind human metapneumovirus fusion protein and their use
EP3801011A1 (en) 2019-06-04 2021-04-14 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use
TW202110323A (en) 2019-06-05 2021-03-16 美商再生元醫藥公司 Non-human animals having a limited lambda light chain repertoire expressed from the kappa locus and uses thereof
KR20220017939A (en) 2019-06-07 2022-02-14 리제너론 파마슈티칼스 인코포레이티드 Non-Human Animals Comprising a Humanized Albumin Locus
TW202112817A (en) 2019-06-11 2021-04-01 美商阿列克特有限責任公司 Methods of use of anti-sortilin antibodies
CN113966343A (en) 2019-06-11 2022-01-21 瑞泽恩制药公司 anti-PcrV antibodies that bind PcrV, compositions comprising anti-PcrV antibodies, and methods of use thereof
JP2022537142A (en) 2019-06-12 2022-08-24 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Human antibody against bone morphogenetic protein 6
WO2020257681A1 (en) 2019-06-21 2020-12-24 Regeneron Pharmaceuticals, Inc. Use of bispecific antigen-binding molecules that bind psma and cd3 in combination with 4-1bb co-stimulation
JP2022537269A (en) 2019-06-21 2022-08-25 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Use of Bispecific Antigen Binding Molecules that Bind MUC16 and CD3 in Combination with 4-1BB Costimulation
CA3145050A1 (en) 2019-06-29 2021-01-07 Robert Zhao Conjugates of tubulysin derivatives and cell binding molecules and methods of making
JP2022538886A (en) 2019-07-01 2022-09-06 トリアニ・インコーポレイテッド TRANSGENIC MAMMALS AND USES THEREOF
CA3144958A1 (en) 2019-07-01 2021-01-07 Trianni, Inc. Transgenic mammals and methods of use thereof
TW202115115A (en) 2019-07-02 2021-04-16 瑞士商赫孚孟拉羅股份公司 Immunoconjugates
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
AU2020315369A1 (en) 2019-07-16 2022-03-03 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing asthma by administering an IL-4R antagonist
UY38803A (en) 2019-07-26 2021-01-29 Janssen Biotech Inc PROTEINS INCLUDING CALICREIN-RELATED PEPTIDASE 2 ANTIGEN BINDING DOMAINS AND USES
CA3144524A1 (en) 2019-07-31 2021-02-04 F. Hoffmann-La Roche Ag Antibodies binding to gprc5d
CN114174338A (en) 2019-07-31 2022-03-11 豪夫迈·罗氏有限公司 Antibodies that bind to GPRC5D
EP4003519A2 (en) 2019-07-31 2022-06-01 Alector LLC Anti-ms4a4a antibodies and methods of use thereof
WO2021026205A1 (en) 2019-08-05 2021-02-11 Regeneron Pharmaceuticals, Inc. Methods for treating atopic dermatitis by administering an il-4r antagonist
CN114173819A (en) 2019-08-05 2022-03-11 瑞泽恩制药公司 Methods of treating allergy and enhancing allergen-specific immunotherapy by administering IL-4R antagonists
US20210047425A1 (en) 2019-08-12 2021-02-18 Purinomia Biotech, Inc. Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells
CA3148121A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Materials and methods for improved single chain variable fragments
DK3785536T3 (en) 2019-08-28 2022-03-28 Trianni Inc Adam6 knockin mouse
AU2020345913A1 (en) 2019-09-12 2022-02-24 Genentech, Inc. Compositions and methods of treating lupus nephritis
CR20220156A (en) 2019-09-18 2022-05-23 Genentech Inc Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use
AU2020348393A1 (en) 2019-09-20 2022-02-24 Genentech, Inc. Dosing for anti-tryptase antibodies
CA3151406A1 (en) 2019-09-27 2021-04-01 Raymond D. Meng Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
EP4034560A1 (en) 2019-09-27 2022-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance antibodies and uses thereof
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
EP4036116A4 (en) 2019-09-27 2024-01-24 Nanjing Genscript Biotech Co Ltd Anti-vhh domain antibodies and use thereof
EP4034160A1 (en) 2019-09-27 2022-08-03 Janssen Biotech, Inc. Anti-ceacam antibodies and uses thereof
WO2021066869A1 (en) 2019-10-04 2021-04-08 TAE Life Sciences Antibody compositions comprising fc mutations and site-specific conjugation properties
BR112022007216A2 (en) 2019-10-18 2022-08-23 Genentech Inc METHODS FOR TREATMENT OF DIFFUSE LYMPHOMA, KIT AND IMMUNOCONJUGATE
AU2020374878A1 (en) 2019-10-28 2022-04-28 Regeneron Pharmaceuticals, Inc. Anti-hemagglutinin antibodies and methods of use thereof
CA3155922A1 (en) 2019-11-06 2021-05-14 Huang Huang Diagnostic and therapeutic methods for treatment of hematologic cancers
CN114641270A (en) 2019-11-15 2022-06-17 豪夫迈·罗氏有限公司 Prevention of visible particle formation in aqueous protein solutions
CR20220220A (en) 2019-11-18 2022-09-20 Janssen Biotech Inc Vaccines based on mutant calr and jak2 and their uses
WO2021099600A1 (en) 2019-11-22 2021-05-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Inhibitors of adrenomedullin for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
IL293282A (en) 2019-11-25 2022-07-01 Mabloc Llc Anti-yellow fever virus antibodies, and methods of their generation and use
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
WO2021113297A1 (en) 2019-12-02 2021-06-10 Regeneron Pharmaceuticals, Inc. Peptide-mhc ii protein constructs and uses thereof
EP4069365A1 (en) 2019-12-06 2022-10-12 Sanofi Biotechnology Methods for treating copd by administering an il-33 antagonist
JP2023504204A (en) 2019-12-09 2023-02-01 サノフィ・バイオテクノロジー Methods of treating digitally identified IL-4/IL-13 related disorders
EP3992974A1 (en) 2020-11-02 2022-05-04 Sanofi Biotechnology Methods for treating digitally-identified il-4/il-13 related disorders
MX2022007071A (en) 2019-12-10 2022-07-11 Regeneron Pharma Use of a pcsk9 inhibitor to treat homozygous familial hypercholesterolemia.
US11897968B2 (en) 2019-12-13 2024-02-13 Alector Llc Anti-MerTK antibodies and methods of use thereof
WO2021119505A1 (en) 2019-12-13 2021-06-17 Genentech, Inc. Anti-ly6g6d antibodies and methods of use
WO2021122875A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Antibodies binding to hla-a2/mage-a4
IL294045A (en) 2019-12-20 2022-08-01 Hudson Inst Med Res Cxcl10 binding proteins and uses thereof
BR112022011388A2 (en) 2019-12-23 2022-08-30 Sanofi Biotechnology METHODS TO TREAT OR PREVENT ALLERGIC ASTHMA BY ADMINISTERING AN IL-33 ANTAGONIST AND/OR AN IL-4R ANTAGONIST
BR112022011723A2 (en) 2019-12-27 2022-09-06 Chugai Pharmaceutical Co Ltd ANTI-CTLA-4 ANTIBODY AND USE THEREOF
CN115280151A (en) 2020-01-08 2022-11-01 瑞泽恩制药公司 Enhancing signal in mass spectrometry using amino acids
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
JP2023511956A (en) 2020-01-24 2023-03-23 レゲネロン ファーマシューティカルス,インコーポレーテッド Protein-Antiviral Compound Conjugates
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
US11639939B2 (en) 2020-01-27 2023-05-02 Regeneron Pharmaceuticals, Inc. Tandem mass tag multiplexed quantitation of post-translational modifications of proteins
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CN115175559A (en) 2020-01-28 2022-10-11 瑞泽恩制药公司 Non-human animals comprising a humanized PNPLA3 locus and methods of use thereof
CN115210564A (en) 2020-01-30 2022-10-18 瑞泽恩制药公司 Platform for natural liquid chromatography-mass spectrometry
MX2022009411A (en) 2020-01-31 2022-08-25 Regeneron Pharma High confidence compound identification by liquid chromatography-mass spectrometry.
MX2022009391A (en) 2020-01-31 2022-09-26 Genentech Inc Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine.
WO2021158521A1 (en) 2020-02-03 2021-08-12 Vir Biotechnology, Inc. Antibodies against sars-cov-2 and methods of using the same
CA3108168A1 (en) 2020-02-05 2021-08-05 Yue Zhang Conjugates of cell-binding molecules with cytotoxic agents
EP4099821A1 (en) 2020-02-07 2022-12-14 Regeneron Pharmaceuticals, Inc. <smallcaps/>? ? ?klkb1? ? ? ? ?non-human animals comprising a humanizedlocus and methods of use
AU2021219671A1 (en) 2020-02-10 2022-07-14 Regeneron Pharmaceuticals, Inc. Anti-Tmprss2 Antibodies and Antigen-Binding Fragments
EP4105238A4 (en) 2020-02-10 2024-03-27 Shanghai Escugen Biotechnology Co Ltd Claudin 18.2 antibody and use thereof
KR20220139357A (en) 2020-02-10 2022-10-14 상하이 에스쿠겐 바이오테크놀로지 컴퍼니 리미티드 CLDN18.2 Antibodies and Their Uses
CA3167441A1 (en) 2020-02-11 2021-08-19 Vincent J. Idone Anti-acvr1 antibodies and uses thereof
TW202144395A (en) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 Anti-CD137 antigen-binding molecule for use in cancer treatment
TW202140012A (en) 2020-02-12 2021-11-01 比利時商健生藥品公司 Fgfr tyrosine kinase inhibitors and anti-pd1 agents for the treatment of urothelial carcinoma
US11692038B2 (en) 2020-02-14 2023-07-04 Gilead Sciences, Inc. Antibodies that bind chemokine (C-C motif) receptor 8 (CCR8)
TW202144389A (en) 2020-02-14 2021-12-01 美商健生生物科技公司 Neoantigens expressed in multiple myeloma and their uses
TW202144388A (en) 2020-02-14 2021-12-01 美商健生生物科技公司 Neoantigens expressed in ovarian cancer and their uses
BR112022017048A2 (en) 2020-02-26 2022-11-16 Vir Biotechnology Inc ANTIBODIES AGAINST SARS-COV-2 AND METHODS FOR USING THEM
AU2021225920A1 (en) 2020-02-28 2022-09-15 Shanghai Henlius Biotech, Inc. Anti-CD137 construct and use thereof
EP4110826A1 (en) 2020-02-28 2023-01-04 Shanghai Henlius Biotech, Inc. Anti-cd137 constructs, multispecific antibody and uses thereof
WO2021183849A1 (en) 2020-03-13 2021-09-16 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
PE20230001A1 (en) 2020-03-13 2023-01-05 Janssen Biotech Inc MATERIALS AND METHODS FOR THE LINK OF SIGLEC-3/CD33
CN115279408A (en) 2020-03-19 2022-11-01 基因泰克公司 Isotype-selective anti-TGF-beta antibodies and methods of use
US20230102342A1 (en) 2020-03-23 2023-03-30 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
AU2021242249A1 (en) 2020-03-24 2022-08-18 Genentech, Inc. Tie2-binding agents and methods of use
CN115315512A (en) 2020-03-26 2022-11-08 基因泰克公司 Modified mammalian cells with reduced host cell proteins
MX2022011730A (en) 2020-03-27 2022-10-13 Regeneron Pharma Methods for treating atopic dermatitis by administering an il-4r antagonist.
JP2023519962A (en) 2020-03-31 2023-05-15 アレクトル エルエルシー ANTI-MERTK ANTIBODY AND METHOD OF USE THEREOF
CA3170570A1 (en) 2020-04-01 2021-10-07 James J. KOBIE Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses
CN113766928A (en) 2020-04-02 2021-12-07 瑞泽恩制药公司 anti-SARS-COV-2 fiber process glycoprotein antibody and antigen binding fragment
WO2021203053A1 (en) 2020-04-03 2021-10-07 Vir Biotechnology, Inc. Immunotherapy targeting a conserved region in sars coronaviruses
EP4127724A1 (en) 2020-04-03 2023-02-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
CN115461620A (en) 2020-04-14 2022-12-09 瑞泽恩制药公司 Ultraviolet monitoring of chromatographic performance by orthometric partial least squares
WO2021211775A1 (en) 2020-04-14 2021-10-21 Vir Biotechnology, Inc. Antibodies against sars-cov-2 and methods of using the same
KR20230004494A (en) 2020-04-15 2023-01-06 에프. 호프만-라 로슈 아게 immunoconjugate
WO2021211984A1 (en) 2020-04-16 2021-10-21 Regeneron Pharmaceuticals, Inc. Diels-alder conjugation methods
CA3175530A1 (en) 2020-04-24 2021-10-28 Genentech, Inc. Methods of using anti-cd79b immunoconjugates
TW202206459A (en) 2020-04-24 2022-02-16 瑞士商赫孚孟拉羅股份公司 Enzyme and pathway modulation with sulfhydryl compounds and their derivatives
JP2023523450A (en) 2020-04-28 2023-06-05 ジェネンテック, インコーポレイテッド Methods and compositions for non-small cell lung cancer immunotherapy
KR20230002261A (en) 2020-04-28 2023-01-05 더 락커펠러 유니버시티 Anti-SARS-COV-2 Neutralizing Antibodies and Methods of Using The Same
CN116963782A (en) 2020-05-03 2023-10-27 联宁(苏州)生物制药有限公司 Antibody drug conjugates comprising anti-TROP-2 antibodies
CA3177169A1 (en) 2020-05-08 2021-11-11 Vir Biotechnology, Inc. Antibodies against sars-cov-2
CN115916335A (en) 2020-05-12 2023-04-04 瑞泽恩制药公司 anti-GLP 1R antagonist antibodies and methods of use thereof
US20230181753A1 (en) 2020-05-12 2023-06-15 Inserm (Institut National De La Sante Et De La Recherche Medicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
JP2023520249A (en) 2020-05-15 2023-05-16 エフ. ホフマン-ラ ロシュ アーゲー Method for preventing visible particle formation in parenteral protein solutions
CN115605185A (en) 2020-05-19 2023-01-13 豪夫迈·罗氏有限公司(Ch) Use of a chelating agent to prevent the formation of visible particles in parenteral protein solutions
MX2022014440A (en) 2020-05-22 2023-02-27 Regeneron Pharma Methods for treating eosinophilic esophagitis by administering an il-4r inhibitor.
WO2021242815A1 (en) 2020-05-26 2021-12-02 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
CA3184189A1 (en) 2020-05-27 2021-12-02 Janssen Biotech, Inc. Proteins comprising cd3 antigen binding domains and uses thereof
BR112022024339A2 (en) 2020-05-29 2022-12-27 23Andme Inc ANTI CD200R1 ANTIBODIES AND METHODS OF THEIR USE
CN116529260A (en) 2020-06-02 2023-08-01 当康生物技术有限责任公司 anti-CD 93 constructs and uses thereof
BR112022024629A2 (en) 2020-06-02 2023-02-23 Dynamicure Biotechnology Llc ANTI-CD93 CONSTRUCTS AND THEIR USES
WO2021247925A1 (en) 2020-06-03 2021-12-09 Vir Biotechnology, Inc. Structure-guided immunotherapy against sars-cov-2
MX2022015206A (en) 2020-06-08 2023-01-05 Hoffmann La Roche Anti-hbv antibodies and methods of use.
RU2751237C1 (en) * 2020-06-10 2021-07-12 Регенерон Фармасьютикалс, Инк. Methods and compositions for directed genome modification
GB202008860D0 (en) 2020-06-11 2020-07-29 Univ Oxford Innovation Ltd BTLA antibodies
CA3180477A1 (en) 2020-06-12 2021-12-16 Elizabeth Alexander Antibody therapies for sars-cov-2 infection
CN115698719A (en) 2020-06-12 2023-02-03 基因泰克公司 Methods and compositions for cancer immunotherapy
WO2021257503A1 (en) 2020-06-16 2021-12-23 Genentech, Inc. Methods and compositions for treating triple-negative breast cancer
IL299103A (en) 2020-06-18 2023-02-01 Regeneron Pharma Activin a antibody formulations and methods of use thereof
US20210395366A1 (en) 2020-06-18 2021-12-23 Genentech, Inc. Treatment with anti-tigit antibodies and pd-1 axis binding antagonists
JP2023531222A (en) 2020-06-22 2023-07-21 アルミラル・ソシエダッド・アノニマ ANTI-IL-36 ANTIBODY AND METHODS OF USE THEREOF
US20220041672A1 (en) 2020-06-24 2022-02-10 Genentech, Inc. Apoptosis resistant cell lines
KR20230024822A (en) 2020-06-25 2023-02-21 주식회사 휴맵 Heterozygous Transgenic Animals
AU2021300129A1 (en) 2020-07-01 2022-12-08 Regeneron Pharmaceuticals, Inc. Methods of treating allergy using anti-Bet v 1 antibodies
JP2023532764A (en) 2020-07-07 2023-07-31 エフ. ホフマン-ラ ロシュ アーゲー Alternative surfactants as stabilizers for therapeutic protein formulations
EP4178625A1 (en) 2020-07-13 2023-05-17 Regeneron Pharmaceuticals, Inc. Camptothecin analogs conjugated to a glutamine residue in a protein, and their use
WO2022016037A1 (en) 2020-07-17 2022-01-20 Genentech, Inc. Anti-notch2 antibodies and methods of use
JP2023535409A (en) 2020-07-21 2023-08-17 ジェネンテック, インコーポレイテッド Antibody-Conjugated Chemical Inducers of BRM Degradation and Methods of BRM Degradation
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
EP4188550A1 (en) 2020-07-29 2023-06-07 Dynamicure Biotechnology LLC Anti-cd93 constructs and uses thereof
CA3190307A1 (en) 2020-07-29 2022-02-03 Janssen Biotech, Inc. Proteins comprising hla-g antigen binding domains and their uses
IL300429A (en) 2020-08-07 2023-04-01 Regeneron Pharma Methods for treating refractory hypercholesterolemia involving an angptl3 inhibitor
CA3128035A1 (en) 2020-08-13 2022-02-13 Bioasis Technologies, Inc. Combination therapies for delivery across the blood brain barrier
WO2022046925A1 (en) 2020-08-26 2022-03-03 Regeneron Pharmaceuticals, Inc. Method of treating an allergy with allergen-specific monoclonal antibodies
WO2022047222A2 (en) 2020-08-28 2022-03-03 Genentech, Inc. Crispr/cas9 multiplex knockout of host cell proteins
CA3187680A1 (en) 2020-09-11 2022-03-17 Yashu Liu Identification and production of antigen-specific antibodies
MX2023002974A (en) 2020-09-14 2023-05-25 Regeneron Pharma Antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof.
TW202227496A (en) 2020-09-14 2022-07-16 瑞士商伊克諾斯科學公司 Antibodies that bind to il1rap and uses thereof
CA3194162A1 (en) 2020-09-28 2022-03-31 Humabs Biomed Sa Antibodies against sars-cov-2
KR20230082650A (en) 2020-10-05 2023-06-08 사노피 바이오테크놀로지 Methods of Treating Asthma in Pediatric Subjects Using an IL-4R Antagonist
CA3193952A1 (en) 2020-10-05 2022-04-14 Bernard Martin Fine Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2022075793A1 (en) 2020-10-08 2022-04-14 주식회사 휴맵 Method for preparing transgenic non-human animal having genome including humanized immunoglobulin gene locus
UY39467A (en) 2020-10-13 2022-04-29 Janssen Biotech Inc BIOENGINEERED T-CELL-MEDIATED IMMUNITY, MATERIALS, AND OTHER METHODS TO MODULATE DIFFERENTIATION GROUP IV AND/OR VIII
CA3198456A1 (en) 2020-10-14 2022-04-21 Five Prime Therapeutics, Inc. Anti-c-c chemokine receptor 8 (ccr8) antibodies and methods of use thereof
WO2022084210A1 (en) 2020-10-20 2022-04-28 F. Hoffmann-La Roche Ag Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
CA3190569A1 (en) 2020-10-22 2022-04-28 Christopher Daly Anti-fgfr2 antibodies and methods of use thereof
WO2022084915A1 (en) 2020-10-22 2022-04-28 Janssen Biotech, Inc. Proteins comprising delta-like ligand 3 (dll3) antigen binding domains and their uses
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
US20220153842A1 (en) 2020-11-04 2022-05-19 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
CA3196539A1 (en) 2020-11-04 2022-05-12 Chi-Chung Li Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
EP4240758A1 (en) 2020-11-04 2023-09-13 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
JP2023548069A (en) 2020-11-04 2023-11-15 ジェネンテック, インコーポレイテッド Subcutaneous dosing of anti-CD20/anti-CD3 bispecific antibodies
US20240002483A1 (en) 2020-11-16 2024-01-04 Hoffmann-La Roche Inc. Fab high mannose glycoforms
AR124063A1 (en) 2020-11-16 2023-02-08 Astellas Pharma Inc ANTI-TSPAN8 / ANTI-CD3 BIOSPECIFIC ANTIBODY AND ANTI-TSPAN8 ANTIBODY
EP4247844A1 (en) 2020-11-23 2023-09-27 VIR Biotechnology, Inc. Antibodies against influenza a viruses
JP2023551667A (en) 2020-11-23 2023-12-12 ヴィア・バイオテクノロジー・インコーポレイテッド Anti-influenza antibodies and combinations thereof
TW202229329A (en) 2020-11-23 2022-08-01 美商維爾生物科技股份有限公司 Broadly neutralizing antibodies against influenza neuraminidase
WO2022115486A1 (en) 2020-11-25 2022-06-02 Vir Biotechnology, Inc. Antibodies that bind to multiple betacoronaviruses
WO2022120352A1 (en) 2020-12-02 2022-06-09 Alector Llc Methods of use of anti-sortilin antibodies
IL303529A (en) 2020-12-09 2023-08-01 Trianni Inc Heavy chain-only antibodies
IL303626A (en) 2020-12-16 2023-08-01 Regeneron Pharma Mice expressing humanized fc alpha receptors
WO2022132904A1 (en) 2020-12-17 2022-06-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies targeting sars-cov-2
WO2022129120A1 (en) 2020-12-17 2022-06-23 F. Hoffmann-La Roche Ag Anti-hla-g antibodies and use thereof
WO2022133239A1 (en) 2020-12-18 2022-06-23 Regeneron Pharmaceuticals, Inc. Immunoglobulin proteins that bind to npr1 agonists
CA3202429A1 (en) 2020-12-20 2022-06-23 Regeneron Pharmaceuticals, Inc. Methods for identification of scrambled disulfides in biomolecules
TW202241934A (en) 2020-12-23 2022-11-01 美商再生元醫藥公司 Nucleic acids encoding anchor modified antibodies and uses thereof
CA3197426A1 (en) 2020-12-23 2022-06-30 Regeneron Pharmaceuticals, Inc. Methods for obtaining antibodies that bind transmembrane proteins and cells that produce the same
WO2022150605A1 (en) 2021-01-08 2022-07-14 Regeneron Pharmaceuticals, Inc. Methods for treating peanut allergy and enhancing peanut allergen-specific immunotherapy by administering an il-4r antagonist
WO2022148853A1 (en) 2021-01-11 2022-07-14 F. Hoffmann-La Roche Ag Immunoconjugates
JPWO2022153997A1 (en) 2021-01-13 2022-07-21
US20220227844A1 (en) 2021-01-15 2022-07-21 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
WO2022159842A1 (en) 2021-01-25 2022-07-28 Vir Biotechnology, Inc. Antibody combination therapies for sars-cov-2 infection
US20220242943A1 (en) 2021-01-25 2022-08-04 Regeneron Pharmaceuticals, Inc. Anti- pdgf-b antibodies and methods of use for treating pulmonary arterial hypertension (pah)
KR20230137393A (en) 2021-01-28 2023-10-04 얀센 바이오테크 인코포레이티드 PSMA binding protein and its uses
JP2024506321A (en) 2021-02-09 2024-02-13 ヒューマブス・バイオメッド・ソシエテ・アノニム Antibodies against respiratory syncytial virus and other paramyxoviruses and their use
CN117396502A (en) 2021-02-09 2024-01-12 佐治亚大学研究基金会有限公司 Human monoclonal antibodies to pneumococcal antigens
MX2023009244A (en) 2021-02-09 2023-09-11 Us Health Antibodies targeting the spike protein of coronaviruses.
CA3210069A1 (en) 2021-03-03 2022-09-09 Tong Zhu Antibody-drug conjugates comprising an anti-bcma antibody
JP2024509191A (en) 2021-03-05 2024-02-29 ダイナミキュア バイオテクノロジー エルエルシー Anti-VISTA constructs and their uses
WO2022187626A1 (en) 2021-03-05 2022-09-09 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-variant-spike glycoprotein antibodies and antigen-binding fragments
AR125074A1 (en) 2021-03-12 2023-06-07 Genentech Inc ANTI-KLK7 ANTIBODIES, ANTI-KLK5 ANTIBODIES, ANTI-KLK5/KLK7 MULTI-SPECIFIC ANTIBODIES AND METHODS OF USE
JP2024511970A (en) 2021-03-15 2024-03-18 ジェネンテック, インコーポレイテッド Compositions and methods for the treatment of lupus nephritis
JP2024512002A (en) 2021-03-18 2024-03-18 アレクトル エルエルシー Anti-TMEM106B antibody and method of use thereof
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
WO2022204202A1 (en) 2021-03-23 2022-09-29 Vir Biotechnology, Inc. Antibodies that bind to multiple sarbecoviruses
JP2024511610A (en) 2021-03-23 2024-03-14 アレクトル エルエルシー Anti-TMEM106B antibody for treatment and prevention of coronavirus infection
TW202304986A (en) 2021-03-24 2023-02-01 美商健生生物科技公司 Antibody targeting cd22 and cd79b
EP4314056A1 (en) 2021-03-24 2024-02-07 Janssen Biotech, Inc. Proteins comprising cd3 antigen binding domains and uses thereof
EP4314049A1 (en) 2021-03-25 2024-02-07 Dynamicure Biotechnology LLC Anti-igfbp7 constructs and uses thereof
AR125255A1 (en) 2021-04-02 2023-06-28 Regeneron Pharma METHODS OF PREDICTION AND MODULATION OF THE GLYCATION OF A PROTEIN
AR125344A1 (en) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd ANTI-C1S ANTIBODY
WO2022220603A1 (en) 2021-04-16 2022-10-20 고려대학교 산학협력단 Human antibody targeting covid-19 virus
EP4326855A1 (en) 2021-04-19 2024-02-28 Genentech, Inc. Modified mammalian cells
BR112023021256A2 (en) 2021-04-20 2023-12-12 Regeneron Pharma HUMAN ANTIBODIES TO ARTEMINA AND METHODS OF USE THEREOF
IL307744A (en) 2021-04-22 2023-12-01 Astellas Pharma Inc Anti-cldn4/anti-cd137 bispecific antibody
KR20240005691A (en) 2021-04-30 2024-01-12 에프. 호프만-라 로슈 아게 Dosage for combination therapy with anti-CD20/anti-CD3 bispecific antibody and anti-CD79B antibody drug conjugate
WO2022228706A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
AU2022270075A1 (en) 2021-05-04 2023-11-09 Regeneron Pharmaceuticals, Inc. Multispecific fgf21 receptor agonists and their uses
AU2022268937A1 (en) 2021-05-05 2023-10-26 Trianni, Inc. Transgenic rodents expressing chimeric equine-rodent antibodies and methods of use thereof
EP4334343A2 (en) 2021-05-06 2024-03-13 The Rockefeller University Neutralizing anti-sars- cov-2 antibodies and methods of use thereof
US20220411487A1 (en) 2021-05-11 2022-12-29 Regeneron Pharmaceuticals, Inc. Anti-tmprss6 antibodies and uses thereof
CN117396232A (en) 2021-05-12 2024-01-12 基因泰克公司 Methods of treating diffuse large B-cell lymphomas using anti-CD 79B immunoconjugates
EP4341385A1 (en) 2021-05-21 2024-03-27 Genentech, Inc. Modified cells for the production of a recombinant product of interest
AU2022280767A1 (en) 2021-05-24 2024-01-18 Humabs Biomed Sa Engineered polypeptides
CN113278071B (en) 2021-05-27 2021-12-21 江苏荃信生物医药股份有限公司 Anti-human interferon alpha receptor1 monoclonal antibody and application thereof
JP2024520261A (en) 2021-06-04 2024-05-24 中外製薬株式会社 Anti-DDR2 Antibodies and Uses Thereof
AU2022289684A1 (en) 2021-06-09 2023-10-05 F. Hoffmann-La Roche Ag Combination of a particular braf inhibitor (paradox breaker) and a pd-1 axis binding antagonist for use in the treatment of cancer
WO2022266221A1 (en) 2021-06-16 2022-12-22 Alector Llc Monovalent anti-mertk antibodies and methods of use thereof
EP4355786A1 (en) 2021-06-16 2024-04-24 Alector LLC Bispecific anti-mertk and anti-pdl1 antibodies and methods of use thereof
EP4355785A1 (en) 2021-06-17 2024-04-24 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
CN117529330A (en) 2021-06-18 2024-02-06 纳米医疗有限公司 Fusion protein compositions comprising masked type I interferons (IFNα and IFNβ) and methods for treating cancer
WO2022270611A1 (en) 2021-06-25 2022-12-29 中外製薬株式会社 Anti–ctla-4 antibody
WO2022270612A1 (en) 2021-06-25 2022-12-29 中外製薬株式会社 Use of anti-ctla-4 antibody
AU2022307659A1 (en) 2021-07-05 2024-01-25 Regeneron Pharmaceuticals, Inc. Utilization of antibodies to shape antibody responses to an antigen
US20230125469A1 (en) 2021-07-14 2023-04-27 Regeneron Pharmaceuticals, Inc. Anti-SARS-CoV-2-Spike Glycoprotein Antibodies and Antigen-Binding Fragments
PE20240638A1 (en) 2021-07-14 2024-03-27 Genentech Inc ANTI-CHEMOKINE RECEPTOR ANTIBODIES OF C-C MOTIQUE 8 (CCR8) AND METHODS OF USE
CN117730102A (en) 2021-07-22 2024-03-19 豪夫迈·罗氏有限公司 Heterodimeric Fc domain antibodies
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
KR20240037321A (en) 2021-07-26 2024-03-21 사노피 바이오테크놀로지 Method for treating chronic spontaneous cardiac arrest by administration of IL-4R antagonist
KR20240038928A (en) 2021-07-28 2024-03-26 리제너론 파마슈티칼스 인코포레이티드 Protein-antiviral compound conjugate
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
CN117897409A (en) 2021-08-13 2024-04-16 基因泰克公司 Administration of anti-tryptase antibodies
AU2022333073A1 (en) 2021-08-23 2024-04-04 Regeneron Pharmaceuticals, Inc. Methods for treating atopic dermatitis by administering an il-4r antagonist
PE20240727A1 (en) 2021-08-27 2024-04-15 Janssen Biotech Inc ANTI-PSMA ANTIBODIES AND USES OF THESE
TW202325727A (en) 2021-08-30 2023-07-01 美商建南德克公司 Anti-polyubiquitin multispecific antibodies
WO2023034871A1 (en) 2021-09-01 2023-03-09 Vir Biotechnology, Inc. High concentration antibody therapies for sars-cov-2 infection
CA3230613A1 (en) 2021-09-01 2023-03-09 Daren J. AUSTIN Antibody therapies for sars-cov-2 infection in pediatric subjects
CN113683694B (en) 2021-09-03 2022-05-13 江苏荃信生物医药股份有限公司 Anti-human TSLP monoclonal antibody and application thereof
CN113603775B (en) 2021-09-03 2022-05-20 江苏荃信生物医药股份有限公司 Anti-human interleukin-33 monoclonal antibody and application thereof
WO2023039442A1 (en) 2021-09-08 2023-03-16 Vir Biotechnology, Inc. Broadly neutralizing antibody combination therapies for sars-cov-2 infection
WO2023046322A1 (en) 2021-09-24 2023-03-30 Janssen Pharmaceutica Nv Proteins comprising cd20 binding domains, and uses thereof
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
CN118056006A (en) 2021-10-01 2024-05-17 雅伯希勒拉生物公司 Transgenic rodents for cell line identification and enrichment
WO2023058705A1 (en) 2021-10-08 2023-04-13 中外製薬株式会社 Drug formulation of anti-hla-dq2.5 antibody
WO2023062050A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
WO2023062048A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag Alternative pd1-il7v immunoconjugates for the treatment of cancer
WO2023069919A1 (en) 2021-10-19 2023-04-27 Alector Llc Anti-cd300lb antibodies and methods of use thereof
US20230183362A1 (en) 2021-10-20 2023-06-15 Sanofi Biotechnology Methods for treating prurigo nodularis by administering an il-4r antagonist
WO2023070097A2 (en) 2021-10-22 2023-04-27 Regeneron Pharmaceuticals, Inc. Factor xi a2 domain-binding antibodies and methods of use thereof
WO2023077053A2 (en) 2021-10-28 2023-05-04 Regeneron Pharmaceuticals, Inc. Crispr/cas-related methods and compositions for knocking out c5
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
CA3235395A1 (en) 2021-11-10 2023-05-19 Peter Burrows Transgenic mammals and methods of use thereof
CA3236006A1 (en) 2021-11-16 2023-05-25 Genentech, Inc. Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
WO2023092052A1 (en) 2021-11-19 2023-05-25 Regeneron Pharmaceuticals, Inc. Methods and compositions for reducing centralized pain
WO2023089587A1 (en) 2021-11-22 2023-05-25 Janssen Biotech, Inc. Compositions comprising enhanced multispecific binding agents for an immune response
US20230250170A1 (en) 2021-12-06 2023-08-10 Regeneron Pharmaceuticals, Inc. Antagonist anti-npr1 antibodies and methods of use thereof
CA3238939A1 (en) 2021-12-08 2023-06-15 Gaurang Patel Mutant myocilin disease model and uses thereof
WO2023130010A1 (en) 2021-12-30 2023-07-06 Regeneron Pharmaceuticals, Inc. Methods for attenuating atopic march by administering an il-4/il-13 antagonist
US20230287138A1 (en) 2022-01-12 2023-09-14 Regneron Pharmaceuticals, Inc. Protein-drug conjugates comprising camptothecin analogs and methods of use thereof
WO2023137443A1 (en) 2022-01-14 2023-07-20 Regeneron Pharmaceuticals, Inc. Verrucarin a derivatives and antibody drug conjugates thereof
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
TW202332767A (en) 2022-02-02 2023-08-16 美商雷傑納榮製藥公司 Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease
WO2023150798A1 (en) 2022-02-07 2023-08-10 Regeneron Pharmaceuticals, Inc. Compositions and methods for defining optimal treatment timeframes in lysosomal disease
WO2023152581A1 (en) 2022-02-09 2023-08-17 Janssen Biotech, Inc. Method of treating cancer with psmaxcd3 antibody
WO2023154824A1 (en) 2022-02-10 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that broadly target coronaviruses
WO2023154861A1 (en) 2022-02-11 2023-08-17 Regeneron Pharmaceuticals, Inc. Compositions and methods for screening 4r tau targeting agents
WO2023155902A1 (en) 2022-02-18 2023-08-24 Chongqing Mingdao Haoyue Biotechnology Co., Ltd. Intranasal formulations and anti-sars-cov-2-spike protein antibodies
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
US20230414750A1 (en) 2022-03-23 2023-12-28 Hoffmann-La Roche Inc. Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023201256A1 (en) 2022-04-12 2023-10-19 Vir Biotechnology, Inc. High dose antibody therapies for sars-cov-2 infection
TW202404637A (en) 2022-04-13 2024-02-01 瑞士商赫孚孟拉羅股份公司 Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
US20240002491A1 (en) 2022-04-27 2024-01-04 Regeneron Pharmaceuticals, Inc. Methods for selecting patients for treatment with an ngf antagonist
TW202406934A (en) 2022-05-03 2024-02-16 美商建南德克公司 Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023230445A2 (en) 2022-05-23 2023-11-30 Humabs Biomed Sa Broadly neutralizing antibodies against influenza neuraminidase
WO2023230448A1 (en) 2022-05-23 2023-11-30 Vir Biotechnology, Inc. Combination immunotherapy for influenza
WO2023235699A1 (en) 2022-05-31 2023-12-07 Jounce Therapeutics, Inc. Antibodies to lilrb4 and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023245078A1 (en) 2022-06-15 2023-12-21 Humabs Biomed Sa Anti-parvovirus antibodies and uses thereof
WO2024006472A1 (en) 2022-06-30 2024-01-04 Vir Biotechnology, Inc. Antibodies that bind to multiple sarbecoviruses
US20240034798A1 (en) 2022-07-08 2024-02-01 Regeneron Pharmaceuticals, Inc. Methods for treating eosinophilic esophagitis by administering an il-4r antagonist
WO2024015816A1 (en) 2022-07-12 2024-01-18 Regeneron Pharmaceuticals, Inc. Antibodies to ciliary neurotrophic factor receptor (cntfr) and methods of use thereof
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020057A1 (en) 2022-07-19 2024-01-25 Regeneron Pharmaceuticals, Inc. Genetically modified animal model and its use to model the human immune system
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024026411A1 (en) 2022-07-27 2024-02-01 Humabs Biomed Sa Broadly neutralizing antibodies against rsv and mpv paramyxoviruses
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
TW202405020A (en) 2022-07-29 2024-02-01 美商阿列克特有限責任公司 Transferrin receptor antigen-binding domains and uses therefor
WO2024026447A1 (en) 2022-07-29 2024-02-01 Alector Llc Anti-gpnmb antibodies and methods of use thereof
WO2024026471A1 (en) 2022-07-29 2024-02-01 Alector Llc Cd98hc antigen-binding domains and uses therefor
WO2024026470A2 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Anti-tfr:payload fusions and methods of use thereof
WO2024030829A1 (en) 2022-08-01 2024-02-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies that bind to the underside of influenza viral neuraminidase
WO2024044770A1 (en) 2022-08-26 2024-02-29 Core Biotherapeutics, Inc. Oligonucleotides for the treatment of breast cancer
WO2024047021A1 (en) 2022-08-29 2024-03-07 Sanofi Methods for treating chronic inducible cold urticaria by administering an il-4r antagonist
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
WO2024054822A1 (en) 2022-09-07 2024-03-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Engineered sars-cov-2 antibodies with increased neutralization breadth
WO2024073606A1 (en) 2022-09-28 2024-04-04 Regeneron Pharmaceuticals, Inc. Antibody resistant modified receptors to enhance cell-based therapies
US20240130341A1 (en) 2022-09-29 2024-04-25 Regeneron Pharmaceuticals, Inc. Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes
WO2024077239A1 (en) 2022-10-07 2024-04-11 Genentech, Inc. Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies
WO2024086796A1 (en) 2022-10-20 2024-04-25 Alector Llc Anti-ms4a4a antibodies with amyloid-beta therapies
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
US20240150474A1 (en) 2022-10-27 2024-05-09 Regeneron Pharmaceuticals, Inc. Anti-acvri antibodies and their use in the treatment of trauma-induced heterotopic ossification
WO2024097714A1 (en) 2022-11-01 2024-05-10 Regeneron Pharmaceuticals, Inc. Methods for treating hand and foot dermatitis by administering an il-4r antagonist
US20240165227A1 (en) 2022-11-04 2024-05-23 Gilead Sciences, Inc. Anticancer therapies using anti-ccr8 antibody, chemo and immunotherapy combinations
WO2024098002A1 (en) 2022-11-04 2024-05-10 Regeneron Pharmaceuticals, Inc. Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle
WO2024102369A1 (en) 2022-11-07 2024-05-16 Regeneron Pharmaceuticals, Inc. Factor xi catalytic domain-binding antibodies and methods of use thereof
WO2024102734A1 (en) 2022-11-08 2024-05-16 Genentech, Inc. Compositions and methods of treating childhood onset idiopathic nephrotic syndrome
WO2024100170A1 (en) 2022-11-11 2024-05-16 F. Hoffmann-La Roche Ag Antibodies binding to hla-a*02/foxp3
US20240158515A1 (en) 2022-11-14 2024-05-16 Regeneron Pharmaceuticals, Inc. Anti-fgfr3 antibodies and antigen-binding fragments and methods of use thereof
WO2024107765A2 (en) 2022-11-14 2024-05-23 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002602A1 (en) * 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
US6114598A (en) * 1990-01-12 2000-09-05 Abgenix, Inc. Generation of xenogeneic antibodies
US20060015957A1 (en) * 1991-08-28 2006-01-19 Genpharm International, Inc. Transgenic non-human animals for producing chimeric antibodies

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5350689A (en) 1987-05-20 1994-09-27 Ciba-Geigy Corporation Zea mays plants and transgenic Zea mays plants regenerated from protoplasts or protoplast-derived cells
US5202238A (en) 1987-10-27 1993-04-13 Oncogen Production of chimeric antibodies by homologous recombination
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
FR2646438B1 (en) 1989-03-20 2007-11-02 Pasteur Institut A METHOD FOR SPECIFIC REPLACEMENT OF A COPY OF A GENE PRESENT IN THE RECEIVER GENOME BY INTEGRATION OF A GENE DIFFERENT FROM THAT OR INTEGRATION
WO1991000906A1 (en) 1989-07-12 1991-01-24 Genetics Institute, Inc. Chimeric and transgenic animals capable of producing human antibodies
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US6657103B1 (en) 1990-01-12 2003-12-02 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5614396A (en) 1990-06-14 1997-03-25 Baylor College Of Medicine Methods for the genetic modification of endogenous genes in animal cells by homologous recombination
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US6255458B1 (en) * 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
US5877397A (en) * 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993004169A1 (en) 1991-08-20 1993-03-04 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
DE4228162C1 (en) 1992-08-25 1994-01-13 Rajewsky Klaus Dr Method for replacing homologous gene segments from mammals in the germline of non-human mammals
US5436149A (en) 1993-02-19 1995-07-25 Barnes; Wayne M. Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension
AU6819494A (en) * 1993-04-26 1994-11-21 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6096878A (en) 1993-05-10 2000-08-01 Japan Tobacco Inc. Human immunoglobulin VH gene segments and DNA fragments containing the same
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
US5508189A (en) 1994-04-26 1996-04-16 Pepperdine University Regeneration of plants from cultured guard cell protoplasts
US6130364A (en) 1995-03-29 2000-10-10 Abgenix, Inc. Production of antibodies using Cre-mediated site-specific recombination
US6069010A (en) * 1995-09-11 2000-05-30 Axys Pharmaceuticals, Inc. High throughput gene inactivation with large scale gene targeting
US5928914A (en) 1996-06-14 1999-07-27 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Methods and compositions for transforming cells
US5763715A (en) 1996-10-08 1998-06-09 Stone & Webster Engineering Corp. Butadiene removal system for ethylene plants with front end hydrogenation systems
ATE387495T1 (en) 1996-12-03 2008-03-15 Amgen Fremont Inc FULLY HUMANE ANTIBODIES THAT BIND EGFR
US6075859A (en) 1997-03-11 2000-06-13 Qualcomm Incorporated Method and apparatus for encrypting data in a wireless communication system
GB9823930D0 (en) * 1998-11-03 1998-12-30 Babraham Inst Murine expression of human ig\ locus
WO2000046251A2 (en) 1999-02-05 2000-08-10 Buelow Jens Ulrich Human polyclonal antibodies from transgenic nonhuman animals
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
US6355412B1 (en) 1999-07-09 2002-03-12 The European Molecular Biology Laboratory Methods and compositions for directed cloning and subcloning using homologous recombination
WO2001019394A2 (en) 1999-09-15 2001-03-22 Therapeutic Human Polyclonals, Inc. Immunotherapy with substantially human polyclonal antibody preparations purified from genetically engineered birds
GB2356897B (en) 1999-12-01 2003-05-14 Secr Defence Improved nozzle
US20020028488A1 (en) 2000-06-19 2002-03-07 Sujay Singh Transgenic avian species for making human and chimeric antibodies
AU8470301A (en) 2000-08-03 2002-02-18 Wim-Van Schooten Production of humanized antibodies in transgenic animals
US7105348B2 (en) 2000-10-31 2006-09-12 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US6586251B2 (en) 2000-10-31 2003-07-01 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20050144655A1 (en) 2000-10-31 2005-06-30 Economides Aris N. Methods of modifying eukaryotic cells
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US7435871B2 (en) 2001-11-30 2008-10-14 Amgen Fremont Inc. Transgenic animals bearing human Igλ light chain genes
US20050246782A1 (en) 2002-03-22 2005-11-03 Origen Therapeutics Transgenic aves producing human polyclonal antibodies
US20030182675A1 (en) 2002-03-22 2003-09-25 Origen Therapeutics Functional disruption of avian immunoglobulin genes
US20040158880A1 (en) 2003-02-05 2004-08-12 Roland Buelow Suppression of endogenous immunoglobulin expression in transgenic non-human animals expressing humanized or human antibodies
CA2532117C (en) 2003-07-15 2012-07-10 Therapeutic Human Polyclonals, Inc. Humanized immunoglobulin loci
US20050153392A1 (en) 2003-08-11 2005-07-14 Roland Buelow Transgenesis with humanized immunoglobulin loci
US7618403B2 (en) 2004-05-14 2009-11-17 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
KR101017301B1 (en) 2004-12-21 2011-02-28 메드임뮨 리미티드 Antibodies Directed to Angiopoietin-2 and Uses Thereof
AU2006231506B2 (en) * 2005-04-04 2012-08-30 Intersect Ent, Inc. Device and methods for treating paranasal sinus conditions
KR101232139B1 (en) 2005-12-13 2013-02-12 엘지디스플레이 주식회사 Liquid Crystal Display Device
MY159787A (en) 2006-06-02 2017-01-31 Regeneron Pharma High affinity antibodies to human il-6 receptor
PL2769992T3 (en) 2006-10-02 2021-08-02 Regeneron Pharmaceuticals, Inc. High affinity human antibodies to human IL-4 receptor
RU2448979C2 (en) 2006-12-14 2012-04-27 Ридженерон Фармасьютикалз, Инк. Human antibodies to delta-like human ligand-4
ES2527297T3 (en) 2007-07-31 2015-01-22 Regeneron Pharmaceuticals, Inc. Human antibodies for human CD20 and method to use them
WO2009023540A1 (en) 2007-08-10 2009-02-19 Regeneron Pharmaceuticals, Inc. High affinity human antibodies to human nerve growth factor
US8321568B2 (en) 2008-03-31 2012-11-27 Amazon Technologies, Inc. Content management
US8194152B2 (en) 2008-09-05 2012-06-05 CSR Technology, Inc. Image processing under flickering lighting conditions using estimated illumination parameters
DK3622813T3 (en) 2009-07-08 2021-05-03 Kymab Ltd ANIMAL MODELS AND THERAPEUTIC MOLECULES
JO3182B1 (en) 2009-07-29 2018-03-08 Regeneron Pharma High Affinity Human Antibodies to Human Angiopoietin-2
US10143186B2 (en) 2010-02-08 2018-12-04 Regeneron Pharmaceuticals, Inc. Common light chain mouse
US20120021409A1 (en) * 2010-02-08 2012-01-26 Regeneron Pharmaceuticals, Inc. Common Light Chain Mouse
KR20220150430A (en) 2010-06-22 2022-11-10 리제너론 파아마슈티컬스, 인크. Mice expressing a light chain with human lambda variable and mouse constant regions
DE12192727T1 (en) 2011-02-25 2013-07-11 Regeneron Pharmaceuticals, Inc. ADAM6 mice
EP3556206B1 (en) 2012-11-05 2021-06-02 Regeneron Pharmaceuticals, Inc. Genetically modified non-human animals and methods of use thereof
MX2016007654A (en) 2013-12-11 2017-08-15 Regeneron Pharma Methods and compositions for the targeted modification of a genome.
LT3221457T (en) 2014-11-21 2019-06-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification using paired guide rnas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114598A (en) * 1990-01-12 2000-09-05 Abgenix, Inc. Generation of xenogeneic antibodies
US20060015957A1 (en) * 1991-08-28 2006-01-19 Genpharm International, Inc. Transgenic non-human animals for producing chimeric antibodies
US7501552B2 (en) * 1991-08-28 2009-03-10 Medarex, Inc. Transgenic non-human animals for producing chimeric antibodies
WO1994002602A1 (en) * 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
Bono et al J. Mol. Biol. (2004) 342, 131-143 *
Bono et al J. Mol. Biol. (2004) 342, 131–143 *
Carson et al Immunogenetics. 1989;29(3):173-9 *
Clark et al (Immunol Today. 2000 Aug;21(8):397-402 *
Cox et al TRENDS in Biotechnology Vol.19 No.7 July 2001, 247-250 *
Cox et al Trends in Biotechnology, 19 (7), 2001, 247-250 *
Ebert et al Immunity, 2011, 25; 34(2):175-87 *
Featherstone et al, J. Biol. Chem. 2010, 285:9327-9338 *
Han et al Biology of Reproduction, 2009, 80, 1001-1008 *
Han et al Biology of Reproduction, 2009, 80, 1001–1008 *
Hewitt et al (Nature Immunology, 2008, 9(4), 396-404 *
Hewitt et al Nature Immunology, 2008, 9(4), 396-404 *
Hill et al., Genomics, 64:111-3, 2000 *
Johnston et al The Journal of Immunology, 2006, 176: 4221-4234 *
Kitamura et al 1991. Nature 350:423 *
Liu et Dev. Dyn, 1997, 209, 85-91 *
Macdonald (PNAS, 2010, 111, 5147-5152 *
Pawlitzsky et al (The Journal of Immunology, 2006, 176: 6839–6851 *
Pawlitzsky et al. The Journal of Immunology,176: 6839-6851 (Year: 2006) *
Ronai et al. Mol Cell Biol 19:7031-7040 (1999 *
Sen and Baltimore, Cell, 1986, 705-716 *
Sheng et al, Nucleic Acid Research, 1995, 23, 1990-1996 *
Strob et al Molecular and Cell Biology, 1989, 711-718 *
Taki et al (Science, 1993: 262, 5137,. 1268-127l *
Taki et al Science, 1993: 262, 5137,. 1268-127l *
Wagner et al abstract Nucleic Acids Res. 1994; 22(8):1389-93 *
Zhang, et al., Nat Genet, 20:123-8, 1998 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017201476A1 (en) 2016-05-20 2017-11-23 Regeneron Pharmaceuticals, Inc. Methods for breaking immunological tolerance using multiple guide rnas
EP4368637A2 (en) 2016-05-20 2024-05-15 Regeneron Pharmaceuticals, Inc. Methods for breaking immunological tolerance using multiple guide rnas

Also Published As

Publication number Publication date
US20110258710A1 (en) 2011-10-20
DE14163642T1 (en) 2014-10-09
DK3085779T3 (en) 2019-06-24
EP3085780A1 (en) 2016-10-26
EP1360287A4 (en) 2004-04-14
US10526630B2 (en) 2020-01-07
DE14172437T1 (en) 2014-11-27
US20140073010A1 (en) 2014-03-13
US10378040B2 (en) 2019-08-13
ES2744220T3 (en) 2020-02-24
ES2391391T5 (en) 2019-07-19
DK2786657T3 (en) 2018-03-26
EP1360287B1 (en) 2012-09-12
US10227625B2 (en) 2019-03-12
ES2608362T5 (en) 2024-03-27
EP2767588A1 (en) 2014-08-20
EP1360287B2 (en) 2019-04-03
US9388446B2 (en) 2016-07-12
US20140018522A1 (en) 2014-01-16
PT3626819T (en) 2021-05-25
US9382567B2 (en) 2016-07-05
US20140013457A1 (en) 2014-01-09
US9708635B2 (en) 2017-07-18
CY1113964T1 (en) 2016-07-27
JP2004524841A (en) 2004-08-19
US20160316731A1 (en) 2016-11-03
AU2002244023B2 (en) 2007-05-10
WO2002066630A1 (en) 2002-08-29
DE14172420T1 (en) 2014-12-04
PL217086B1 (en) 2014-06-30
JP5692863B2 (en) 2015-04-01
DE19172361T1 (en) 2020-01-16
EP2264163B1 (en) 2015-10-14
DK1360287T3 (en) 2012-10-08
ES2556767T3 (en) 2016-01-20
ZA200306275B (en) 2004-08-13
US20140020125A1 (en) 2014-01-16
JP2012095670A (en) 2012-05-24
TR201802443T4 (en) 2018-03-21
PT1360287E (en) 2012-12-06
US20130130388A1 (en) 2013-05-23
US9376699B2 (en) 2016-06-28
US10378037B2 (en) 2019-08-13
DK3626819T3 (en) 2021-06-28
US6596541B2 (en) 2003-07-22
HK1198259A1 (en) 2015-03-20
CY1118500T1 (en) 2017-07-12
DK2264163T3 (en) 2015-10-26
EP3085780B2 (en) 2023-06-28
US20140017238A1 (en) 2014-01-16
EP3085779B2 (en) 2023-05-31
EP2786657A3 (en) 2015-03-04
EP3085780B1 (en) 2019-06-26
HUP0303187A2 (en) 2003-12-29
EP2264163A2 (en) 2010-12-22
DK2767588T3 (en) 2020-11-23
US20040018626A1 (en) 2004-01-29
JP2016189796A (en) 2016-11-10
EP2787075A1 (en) 2014-10-08
ES2827482T3 (en) 2021-05-21
CY1123912T1 (en) 2022-03-24
US10378039B2 (en) 2019-08-13
EP3085779B1 (en) 2019-04-03
DK3572508T3 (en) 2022-12-19
CY1120265T1 (en) 2019-07-10
ES2660749T3 (en) 2018-03-26
US20140017229A1 (en) 2014-01-16
US20140041068A1 (en) 2014-02-06
CZ20032192A3 (en) 2004-03-17
US20140033337A1 (en) 2014-01-30
DK3085780T3 (en) 2019-10-07
CY1122059T1 (en) 2020-11-25
CY1122039T1 (en) 2020-10-14
US10584364B2 (en) 2020-03-10
JP6402368B2 (en) 2018-10-10
DK2787075T3 (en) 2017-02-27
US20140023637A1 (en) 2014-01-23
US10378038B2 (en) 2019-08-13
EP2264163A3 (en) 2011-07-06
EP3572508B1 (en) 2022-11-23
PT2786657T (en) 2018-04-04
CY1117254T1 (en) 2017-04-26
PT2767588T (en) 2020-11-04
US9371553B2 (en) 2016-06-21
DK3626819T1 (en) 2020-03-30
CA2438390A1 (en) 2002-08-29
EP3626819A1 (en) 2020-03-25
DE10010741T1 (en) 2014-08-21
EP3626819B1 (en) 2021-03-31
TR201907641T4 (en) 2019-06-21
PT3085780T (en) 2019-09-30
US8791323B2 (en) 2014-07-29
JP2014176391A (en) 2014-09-25
MX343591B (en) 2016-11-11
US20140017782A1 (en) 2014-01-16
CZ305619B6 (en) 2016-01-13
DK1360287T4 (en) 2019-06-11
EP3085779A1 (en) 2016-10-26
JP5345463B2 (en) 2013-11-20
JP2009240331A (en) 2009-10-22
JP4412900B2 (en) 2010-02-10
EP1360287A1 (en) 2003-11-12
US9353394B2 (en) 2016-05-31
JP5805056B2 (en) 2015-11-04
MXPA03007325A (en) 2003-12-04
EP2787075B1 (en) 2016-11-30
US20140017781A1 (en) 2014-01-16
US8502018B2 (en) 2013-08-06
CA2438390C (en) 2014-10-28
EP2786657A2 (en) 2014-10-08
HUP0303187A3 (en) 2010-01-28
EP2767588B1 (en) 2020-08-19
HU231221B1 (en) 2022-01-28
JP2013090631A (en) 2013-05-16
ES2725712T3 (en) 2019-09-26
US20110283376A1 (en) 2011-11-17
US20130210137A1 (en) 2013-08-15
US20070061900A1 (en) 2007-03-15
US9528136B2 (en) 2016-12-27
PT2787075T (en) 2017-01-03
DK3572508T1 (en) 2019-12-09
EP2786657B1 (en) 2018-02-07
ES2608362T3 (en) 2017-04-10
NZ527629A (en) 2005-03-24
ES2869225T3 (en) 2021-10-25
EP3572508A1 (en) 2019-11-27
HK1146298A1 (en) 2011-05-20
US10640800B2 (en) 2020-05-05
ES2391391T3 (en) 2012-11-23
HK1057058A1 (en) 2004-03-12
JP2018108115A (en) 2018-07-12
US20140033336A1 (en) 2014-01-30
PL364281A1 (en) 2004-12-13
PT3085779T (en) 2019-05-31
JP6426670B2 (en) 2018-11-21
HK1198260A1 (en) 2015-03-20
EP2787075B2 (en) 2023-10-18
CY1124458T1 (en) 2022-07-22
PT2264163E (en) 2016-01-08
ES2725712T5 (en) 2023-10-31
US20020106629A1 (en) 2002-08-08
DE19203913T1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
US10640800B2 (en) Mice that produce hybrid antibodies
US20020183275A1 (en) Methods of modifying eukaryotic cells

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENERON PHARMACEUTICALS INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURPHY, ANDREW J.;YANCOPOULOS, GEORGE D.;KAROW, MARGARET;AND OTHERS;SIGNING DATES FROM 20010606 TO 20130819;REEL/FRAME:032406/0956

AS Assignment

Owner name: REGENERON PHARMACEUTICALS, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ECONOMIDES, ARIS N.;VALENZUELA, DAVID M.;SIGNING DATES FROM 20140114 TO 20140116;REEL/FRAME:032738/0571

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION