JP6868250B2 - ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法 - Google Patents

ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法 Download PDF

Info

Publication number
JP6868250B2
JP6868250B2 JP2018547235A JP2018547235A JP6868250B2 JP 6868250 B2 JP6868250 B2 JP 6868250B2 JP 2018547235 A JP2018547235 A JP 2018547235A JP 2018547235 A JP2018547235 A JP 2018547235A JP 6868250 B2 JP6868250 B2 JP 6868250B2
Authority
JP
Japan
Prior art keywords
gene
locus
human
human antibody
mac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018547235A
Other languages
English (en)
Other versions
JPWO2018079857A1 (ja
Inventor
康宏 香月
康宏 香月
智志 阿部
智志 阿部
光雄 押村
光雄 押村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trans Chromosomics Inc
Original Assignee
Trans Chromosomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trans Chromosomics Inc filed Critical Trans Chromosomics Inc
Publication of JPWO2018079857A1 publication Critical patent/JPWO2018079857A1/ja
Application granted granted Critical
Publication of JP6868250B2 publication Critical patent/JP6868250B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、ヒト抗体遺伝子を含むマウス人工染色体(Mouse Artificial Chromosome (MAC))、並びに、該MACを含む、かつヒト抗体を産生可能とする非ヒト動物に関する。
本発明はまた、上記非ヒト動物の作製方法に関する。
本発明はさらに、上記非ヒト動物を用いてヒト抗体を製造する方法に関する。
抗体は、癌、関節リウマチなどの治療薬として医療分野で使用されている。例えばトラスツズマブは、癌細胞表面のHER2(もしくはErbB2)に対する分子標的抗体医薬として乳癌の治療に使用されている。また、トシリズマブは、ヒト化抗IL-6受容体抗体であり、関節リウマチの治療薬に使用されている。
抗体は、ヒトに投与する際に治療効果及び安全性を高めるために、ヒト化抗体又はヒト抗体であることが望ましい。ヒト化抗体は、マウス等の異種動物由来の抗体の重鎖及び軽鎖の相補性決定領域のアミノ酸配列を、ヒト抗体の対応する相補性決定領域(CDR1,CDR2及びCDR3)に置換して得られる抗体であり、モノクローナル抗体作製技術とDNA組換え技術を組み合わせて作製可能である。これに対して、ヒト抗体は、抗体のアミノ酸配列が完全にヒト由来である抗体であり、ヒト抗体遺伝子を保持するヒト抗体産生マウス(例えばKMマウス(協和発酵キリン))を利用する技術、ScFVなどの抗体を組換え抗体の形で繊維状ファージ表面に提示するファージディスプレイ法などによって作製可能である。
本発明と関連する技術は、ヒト抗体を産生可能であるマウス等の非ヒト動物を作製する技術であり、そのような動物は、ヒト抗体遺伝子を保持している。ヒト抗体遺伝子は、それを構成する重鎖遺伝子、軽鎖κ遺伝子、軽鎖λ遺伝子がそれぞれ異なる染色体上に存在し、かつ約0.9Mb以上のサイズを有するため、ヒト抗体産生非ヒト動物を作製するには人工染色体ベクターなどの染色体工学技術を必要とする。
特許文献1には、ヒト抗体遺伝子を含むヒト人工染色体を用いてヒト抗体を産生可能とするマウス等の非ヒト動物及びヒト抗体の製造法が開示されている。
特許文献2には、再配列を経て1つ以上のヒト免疫グロブリン分子を発現するヒト免疫グロブリン遺伝子の全体、またはその一部、をコードする1つ以上の核酸を含み、かつウシ、ヒツジおよびヤギからなる群より選択されることを特徴とするトランスジェニック有蹄動物が開示されている。
特許文献3には、ヒト抗体重鎖遺伝子、ヒト抗体軽鎖遺伝子及びヒト抗体代替軽鎖遺伝子を含むヒト人工染色体ベクター、該ヒト人工染色体ベクターを有する動物、並びにヒト抗体を生産する方法が開示されている。
特許文献4には、マウス人工染色体が開示されている。
非特許文献1には、トランスジェニック動物によるヒト抗体生産に関して総説されている。この文献では、従来のトランスジェニック動物においてヒト抗体の生産効率の低さを課題として挙げている。そのための解決手段として、内在抗体遺伝子をノックアウトするともに、ヒト可変領域のV、D及びJセグメントと内在C遺伝子を結合させることを提案している。
日本国特許第4082740号公報 日本国特許第3797974号公報 国際公開WO2011/062206 日本国第特許5557217号公報
M. Bruggemann et al., Arc. Immunol. Ther. Exp. (2015) 63:101-108
本発明の目的は、安定に保持され、かつ子孫伝達可能であるヒト抗体産生非ヒト動物(例えばマウス、ラットなど)及び該動物を用いるヒト抗体の製造法を提供することである。
本発明は、要約すると、次の特徴を包含する。
(1)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHK-MAC」という。)を含む非ヒト動物。
(2)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHL-MAC」という。)を含む非ヒト動物。
(3)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(以下、「hIGHK-MAC」という。)及びヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHL-MAC」という。)を含む非ヒト動物。
(4)ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(以下、「hIGHKL-MAC」という。)を含む非ヒト動物。
(5)哺乳動物である、上記(1)〜(4)のいずれかに記載の非ヒト動物。
(6)哺乳動物がげっ歯類である、上記(5)に記載の非ヒト動物。
(7)げっ歯類がマウス又はラットである、上記(6)に記載の非ヒト動物。
(8)非ヒト動物の少なくとも2つの内在抗体遺伝子もしくは遺伝子座がノックアウトされている、上記(1)〜(7)のいずれかに記載の非ヒト動物。
(9)上記(1)記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(10)上記(2)記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(11)上記(1)記載の非ヒト動物と上記(2)記載の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含む非ヒト動物を作製するステップ、作製された非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(12)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)を含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)を含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(13) 上記(4)記載の非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子がノックアウトされた同種の非ヒト動物を交配し、hIGHKL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生することができる非ヒト動物の作製方法。
(14) 上記(1)〜(8)のいずれかに記載の非ヒト動物に抗原物質を投与するステップ、該ヒト動物から該抗原物質と結合する産生されたヒト抗体を回収するステップを含む、ヒト抗体を製造する方法。
(15)抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、上記(14)に記載の方法。
(16) 上記(1)〜(8)のいずれかに記載の非ヒト動物に抗原物質を投与するステップ、該非ヒト動物から脾臓細胞を取り出すステップ、該脾臓細胞とミエローマとを融合させてハイブリドーマを作製するステップ、該ハイブリドーマから該抗原物質と結合する抗体を回収するステップを含む、ヒトモノクローナル抗体を製造する方法。
(17)抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、上記(16)に記載の方法。
(18)ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及び/又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座とを含むマウス人工染色体ベクター。
本発明の非ヒト動物は、内在抗体重鎖及び軽鎖遺伝子もしくは遺伝子座がノックアウトされた、かつヒト抗体重鎖及び軽鎖遺伝子もしくは遺伝子座を保持するヒト抗体を産生する非ヒト動物であり、この動物は、後代においてさえヒト抗体遺伝子もしくは遺伝子座(すなわち、重鎖遺伝子もしくは遺伝子座、軽鎖κ遺伝子もしくは遺伝子座、及び軽鎖λ遺伝子もしくは遺伝子座)が安定に保持され、かつヒト抗体が産生可能であるという利点を有する。ここで、マウス人工染色体は、ほとんどマウス由来の遺伝子を含まないこと、ヒト抗体遺伝子を保持すること、並びにマウス、ラットなどのげっ歯類で安定に子孫伝達されることの特徴を有している。
本明細書は本願の優先権の基礎となる日本国特許出願番号2016-213844号の開示内容を包含する。
マウス人工染色体(MAC)を利用したヒト抗体産生マウス及びラットの作製手順の概要を示す。 ヒト2番染色体上の軽鎖κ遺伝子のセントロメア(cen)側にloxP配列を、並びに該遺伝子のテロメア(Tel)側にFRT配列を挿入することを含むヒト2番染色体の改変を示す。 ヒト2番染色体アレルを表示のターゲティングベクターによる相同組換え法を用いて改変して得たloxP搭載組換えアレルの作製を示す。 ヒト2番染色体に部位特異的にPGKhygloxP5’HPRT(矢印)が挿入されたことを示すtwo-color FISH解析図である。 ヒト2番染色体アレルへFRTサイトを表示のターゲティングベクターによる相同組換え法を用いて挿入する手順を示す。 ヒト2番染色体が1コピー保持され、さらにPGK5’HPRTFRTBsd(矢印)が挿入されたことを示すtwo-color FISH解析図である。 Cre/loxPシステムを用いてヒト2番染色体上のIGK領域をMACへ転座クローニングするIGK-MACの作製を示す。 CHO細胞においてMAC(下側の矢印)と改変ヒト2番染色体(上側の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGK領域がMACに搭載されたIGK-MAC(下側の矢印)と副産物(上側の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGK-MACにIGH領域を搭載するためのFRT配列が挿入された改変ヒト14番染色体を示す。 ヒト14番染色体アレルを表示のターゲティングベクターによる相同組換え法を用いて改変して得たFRT搭載組換えアレルの作製を示す。 ヒト14番染色体が1コピー保持され、さらにPGKhyg3’FRTHPRT(矢印)が挿入されたことを示すtwo-color FISH解析図である。 CHO細胞においてPGKhygFRT3’HPRT由来のシグナルを示すヒト14番染色体が1コピー保持されていることを示すtwo-color FISH解析図である。 IGH領域をIGK-MACに搭載するIGHK-MACの作製手順を示す。 IGK-MAC(下側の矢印)と改変ヒト14番染色体(上側の矢印)が独立して1コピーずつ保持されているクローンを確認したtwo-color FISH解析図である。 IGHK-MAC(上側の矢印)が1コピーで独立して存在していることが確認されたことを示すtwo-color FISH解析図である。下側の矢印は、FRT/FLP組換えにより形成された副産物を示す。 CHO IGHK-MACクローンについて、プローブとしてBACクローンCH17-405H5(IGK領域)とCH17-262H11(IGH領域)を用いてtwo-color FISH解析を行い、該クローン内のMAC上にそれぞれ、IGK領域とIGH領域の存在を示すシグナルが観察され、IGHK-MAC(矢印)が構築されていることが確認されたことを示す図である。左パネル:シグナルを重ねあわせた図。中パネル:CH17-405H5(IGK領域)のシグナルのみ示した図。右パネル:CH17-262H11(IGH領域)のシグナルのみを示した図。 CHO IGHK-MACクローンについて、プローブとしてBACクローンCH17-216K2(IGK領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、該クローン内のMAC上にそれぞれ、IGK領域とIGH領域の存在を示すシグナルが観察され、IGHK-MAC(矢印)が構築されていることが確認されたことを示す図である。左パネル:シグナルを重ねあわせた図。中パネル:CH17-216K2(IGK領域)のシグナルのみ示した図。右パネル:CH17-212P11(IGH領域)のシグナルのみを示した図。 IGHK-MAC(矢印)がCHO K1細胞株に移入されていること示すtwo-color FISH解析図である。 CHO K1細胞株中のIGHK-MAC(矢印)についてBAC クローンCH17-216K2(IGK領域)とCH17-212P11(IGH領域)をプローブとして用いたtwo-color FISH解析図である。 CHO K1細胞株中のIGHK-MAC(矢印)についてBACクローンCH17-405H5(IGK領域)とRP11-731F5(IGH領域)をプローブとして用いたtwo-color FISH解析図である。 IGHK-MAC(矢印)を保持するMouse ES のFISH解析図である。 IGHK-MAC(矢印)を保持するRat ESのFISH解析図である。 IGHK-MACを保持するマウスIgh、Igkが破壊されたES細胞由来のキメラマウスにおけるフローサイトメトリー解析の結果である。 IGHK-MACを保持するマウスHKD31 6TG-9細胞由来で、IGHK-MACが子孫伝達してかつIgh,Igkが破壊されたマウスにおけるフローサイトメトリー解析の結果である IGHK-MACを保持するマウスXO ES9細胞由来で、IGHK-MACが子孫伝達してかつIgh,Igkが破壊されたマウスにおけるフローサイトメトリー解析の結果である。 IGHK-MACを保持するES細胞由来キメララット(雄と雌)の画像である。 IGHK-MAC子孫伝達ラットについて血清中のヒト抗体産生をELISAで評価した結果である。 ヒト22番染色体上の軽鎖λ遺伝子のセントメア側にloxP配列を、並びに該遺伝子のテロメア側にFRT配列を挿入することを含むヒト22番染色体の改変を示す。 ヒト22番染色体アレルを表示のターゲティングベクターによる相同組換え法を用いて改変して得たloxP搭載組換えアレルの作製を示す。 ヒト22番染色体に部位特異的にPGKhygloxP5’HPRT(矢印)が挿入されたことを示すtwo-color FISH解析図である。 ヒト22番染色体アレルへFRTサイトを表示のターゲティングベクターによる相同組換え法を用いて挿入する手順を示す。 ヒト22番染色体に部位特異的にPGK5’HPRTFRTBsd(矢印)が挿入されたことを示すtwo-color FISH解析図である。 Cre/loxPシステムを用いてヒト22番染色体上のIGL領域をMACへ転座クローニングするIGL-MACの作製を示す。 CHO細胞においてMAC(左の矢印)と改変ヒト22番染色体(右の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGL領域がMACに搭載されたIGL-MAC(右の矢印)と副産物(左の矢印)が独立して保持されていることを示すtwo-color FISH解析図である。 IGH領域をIGL-MACに搭載するIGHL-MACの作製手順を示す。
本発明は、ヒト抗体重鎖及び軽鎖遺伝子もしくは遺伝子座を含むマウス人工染色体(Mouse Artificial Chromosome (MAC))を含み、ヒト抗体の産生が可能であることを特徴とする非ヒト動物、並びに、該非ヒト動物を用いてヒト抗体を製造する方法を提供する。
以下において本発明をさらに詳細に説明する。
1.ヒト抗体産生非ヒト動物
1.1 マウス人工染色体(MAC)
本明細書におけるマウス人工染色体(「マウス人工染色体ベクター」ともいう。)は、トップダウンアプローチで構築された人工染色体であり、マウス染色体から遺伝子領域を染色体改変により完全もしくはほぼ完全に削除して得られる天然セントロメアの他に、両末端にテロメア配列を含み、さらにDNA配列挿入部位等の外来エレメントを含むことができる、人工染色体ベクターであるそのようなベクターの作製例としては、本発明者らにより開発されたマウス人工染色体ベクターの作製手順が例示される(再表2011/083870号公報及び特許第5557217号)。
マウス人工染色体は、導入すべき細胞本来の染色体から独立した染色体として安定に複製及び分配が可能である。マウス由来の染色体断片は、マウスの1〜19番、X及びY染色体のうちの任意の染色体、好ましくは1番〜19番染色体のいずれかの断片(長腕の全内在遺伝子数の少なくとも99.5%、好ましくはほぼ100%が削除された長腕断片)であり、該断片には、セントロメア近傍のマウス染色体長腕の部位から長腕遠位が削除された長腕断片が含まれる。
マウスの染色体の配列情報は、DDBJ/EMBL/GenBank、Santa Cruz Biotechnology,Inc.などのChromosome Databasesから入手可能である。
染色体の「長腕」とはマウス染色体のセントロメア側から遺伝子領域を含む染色体領域を指す。一方、マウス染色体には、短腕がほとんど存在しない。
「遠位」とは、セントロメアから遠い領域(すなわち、テロメア側)を意味する。反対に、セントロメアに近い領域(すなわち、セントロメア側)は「近位」と称する。長腕遠位は、長腕の特定部位よりもテロメア側に位置する領域を意味し、長腕近位は、長腕の特定部位よりもセントロメア側に位置する領域を意味する。
マウス人工染色体ベクターは、マウス染色体由来の天然型セントロメア、セントロメア近傍のマウス染色体長腕の部位から長腕遠位を削除したマウス染色体由来の長腕断片、及びテロメア配列を含むこと、ならびに、哺乳類の細胞及び個体組織において安定に保持されることを特徴とする。
「マウス染色体由来の天然型セントロメア」という用語は、いずれか1つのマウス染色体のセントロメア全体(完全なセントロメア)を指す。したがって、このようなセントロメアには、マウス染色体のセントロメア配列の一部を用いて偶発的又は人工的に得られたセントロメア機能を有する構造体、及び、他の動物種の染色体のセントロメアは含まれない。
「セントロメア近傍のマウス染色体長腕の部位から長腕遠位を削除したマウス染色体由来の長腕断片」は、本発明のベクターがマウス、ラット等のげっ歯類の細胞又は組織において安定に保持されるように、かつマウスの個体発生と子孫伝達の妨げにならないように、可能な限り内在遺伝子の影響を排除することが望ましく、そのために、マウス染色体の長腕中の内在遺伝子を除去するようにセントロメアに近い長腕部位で削除して得られる長腕断片を指す。これは全内在遺伝子(数)の少なくとも99.5%、好ましくは少なくとも99.7%、より好ましくは少なくとも99.8%、最も好ましくは99.9〜100%が除去されるようにセントロメアに近い長腕部位で削除して得られる長腕断片を指す。
本明細書中で使用する「保持率」とは、マウス、ラット等のげっ歯類などの哺乳動物の培養細胞又は組織細胞中で人工染色体が存在している細胞の割合を指す。
本発明の染色体ベクターが「安定に保持される」とは、細胞分裂の際に該染色体ベクターの脱落を起こし難く、すなわち、分裂後であっても細胞内で安定に保持されること、それゆえに、該染色体ベクターが娘細胞や子孫マウスに効率よく子孫伝達されることを意味する。
例えばマウス11番染色体断片由来の人工染色体ベクターの場合には、前記長腕断片は、非限定的に例えば、該11番染色体の長腕のAL671968、或いはBX572640(AL671968よりセントロメア側に位置する。)、CR954170(AL671968及びBX572640よりセントロメア側に位置する。)又はAL713875(AL671968よりセントロメア側に位置する。)、よりも遠位の領域が削除された長腕断片からなる。その他、例えばマウス15番染色体断片由来の人工染色体ベクターの場合、前記長腕断片は、非限定的に例えば、AC121307、AC161799などの位置よりも遠位の領域が削除された長腕断片からなる。マウス16番染色体断片由来の人工染色体ベクターの場合、前記長腕断片は、非限定的に例えば、AC127687、AC140982などの位置よりも遠位の領域が削除された長腕断片からなる。これらの基本構造には、ヒト抗体遺伝子配列を挿入するためのloxPなどのDNA配列挿入部位をさらに含むことができる。
このベクターは、マウス、ラット、ハムスターなどのげっ歯類を含む哺乳類の細胞又は個体組織において保持率が向上し、これによって細胞内で安定に保持され、したがって目的のヒト抗体遺伝子(群)を長期間安定に保持することができ、げっ歯類の個体間又は組織間において導入遺伝子量にバラつきがなく長期間発現させることができる。ヒト人工染色体(HAC)と比較される興味深い特性として、HACの保持率が20%未満と非常に低い血液系組織を含めて、組織間のばらつきが極端に少なく、保持率は、試験したどの組織(例えば、肝臓、腸、腎臓、脾臓、肺、心臓、骨格筋、脳又は骨髄由来の組織)でも90%以上である。
本明細書中の「DNA配列挿入部位」とは、人工染色体における、目的DNA(遺伝子を含む)配列を挿入できる部位、例えば、部位特異的組換え酵素の認識部位等を意味する。このような認識部位には、非限定的に、例えばloxP(Creリコンビナーゼ認識部位)、FRT(Flpリコンビナーゼ認識部位)、φC31attB及びφC31attP(φC31リコンビナーゼ認識部位)、R4attB及びR4attP(R4リコンビナーゼ認識部位)、TP901-1attB及びTP901-1attP(TP901-1リコンビナーゼ認識部位)、或いはBxb1attB及びBxb1attP(Bxb1リコンビナーゼ認識部位)などが含まれる。
本明細書中の「部位特異的組換え酵素」とは、これら酵素の認識部位で特異的に目的のDNA配列と組換えを起こすための酵素である。その例は、Creインテグレース(Creリコンビナーゼとも称する。)、Flpリコンビナーゼ、φC31インテグレース、R4インテグレース、TP901-1インテグレース、Bxb1インテグレースなどである。
本明細書中の「テロメア配列」は、同種又は異種の天然テロメア配列、或いは、人工テロメア配列である。ここで、同種とは、人工染色体ベクターの染色体断片が由来するマウスと同種の動物を意味し、一方、異種とは、該マウス以外の哺乳動物(これには、ヒトを含む)を意味する。また、人工テロメア配列は、(TTAGGG)n配列(nは、繰り返しを意味する。)などの人工的に作製されたテロメア機能を有する配列を指す。人工染色体へのテロメア配列の導入は、例えば国際公開WO 00/10383に記載されるようなテロメアトランケーション(テロメア配列の置換)によって行うことができる。テロメアトランケーションは、本発明の人工染色体の作製において染色体の短縮のために使用することができる。
本明細書中の「胚性幹細胞」又は「ES細胞」は、哺乳動物由来の受精卵の胚盤胞の内部細胞塊から樹立された分化多能性と半永久的増殖能とを備えた幹細胞である(M.J.Evans and M.H.Kaufman(1981)Nature 292:154-156;J.A.Thomson et al.(1999)Science 282:1145-1147;J.A.Thomson et al.(1995)Proc.Natl.Acad.Sci.USA 92:7844-7848;J.A.Thomson et al.(1996)Biol.Reprod.55:254-259;J.A.Thomson and V.S.Marshall(1998)Curr.Top.Dev.Biol.38:133-165)。この細胞と同等の性質をもつ、体細胞の再プログラミングによって人工的に誘導された細胞が「人工多能性幹細胞」又は「iPS細胞」である(K.Takahashi and S.Yamanaka(2006)Cell 126:663-676;K.Takahashi et al.(2007)Cell 131:861-872;J.Yu et al.(2007)Science 318:1917-1920)。
以下に、マウス人工染色体ベクターの作製及びその用途について説明する。
本発明の人工染色体ベクターは、以下の工程(a)〜(c):
(a)マウス染色体を保持する細胞を得る工程、
(b)内在遺伝子(数)の大部分(99.5%〜100%、好ましくは100%)を含まないようにマウス染色体の長腕遠位を削除する工程、及び
(c)長腕近位に1つ以上のDNA配列挿入部位を挿入する工程
を含む方法によって作製することができる。ここで、工程(b)及び(c)の順序は逆であってもよい。
工程(a):
本発明の人工染色体ベクターを作製するには、まず、マウス染色体を保持する細胞を作製する。例えば、薬剤耐性遺伝子(例えば、blasticidin S registance gene(BSr))で標識されたマウス染色体を保持するマウス線維芽細胞であるmouse embryonic fibroblast(mChr11-BSr)とG418耐性遺伝子であるneo遺伝子を導入したマウスA9細胞(ATCC VA20110-2209)であるmouse A9(neo)と細胞融合し、薬剤耐性遺伝子で標識されたマウス染色体を保持するマウスA9雑種細胞であるmouse A9x mouse embryonic fibroblast(neo;mChr11-BSr)から、その染色体を相同組換え率の高い細胞に移入することにより作製することができる。マウス繊維芽細胞は、文献記載の方法に基づいて入手することが可能であり、例えば、マウス繊維芽細胞は日本クレアより入手可能なC57B6系統のマウスより樹立可能である。相同組換え率の高い細胞としては、例えば、ニワトリDT40細胞(Dieken et al., Nature Genetics,12:174-182,1996)を利用できる。さらにまた、上記移入は、公知の染色体移入法、例えば、微小核細胞融合法(Koi et al., Jpn. J. Cancer Res.,80:413-418,1973)によって行うことができる。
工程(b):
マウス由来の単一の染色体を保持する細胞において、該マウス染色体の長腕遠位を削除する。このとき、重要なことは、長腕上に存在する内在遺伝子の大部分を削除(又は、除去もしくは欠失)し、マウスセントロメアを保持する人工染色体を構築することである。これは長腕上に存在する全内在遺伝子(数)の少なくとも99.5%、好ましくは少なくとも99.7%、より好ましくは少なくとも99.8%、最も好ましくは99.9〜100%を削除(又は、除去もしくは欠失)するように切断位置を決定することである。そうすることによって、人工染色体が導入された、哺乳動物由来の、好ましくはマウス、ラットなどのげっ歯類由来の、細胞、組織又は個体において安定かつ高保持率で保持され、目的遺伝子(群)の正確な解析、物質生産などに用いることができる。上記内在遺伝子の削除は、例えば、テロメアトランケーションにより行うことができる。具体的には、マウス染色体を保持する細胞において、人工テロメア配列を保持するターゲティングベクターを構築し、相同組換えにより染色体上の所望の位置に人工もしくは天然テロメア配列が挿入されたクローンを取得し、これによってテロメアトランケーションにより欠失変異体が得られる。すなわち、所望の位置(又は、部位)が削除すべき長腕遠位の切断位置であり、この位置に人工テロメア配列が相同組換えにより置換、挿入されて長腕遠位が削除される。この位置は、ターゲティングベクターを構築する際の標的配列の設計により、適宜設定できる。例えば、マウス染色体長腕のDNA配列に基づいて標的配列を設計し、その標的配列よりもテロメア側でテロメトランケーションが起こるように設定される。これにより、内在遺伝子の大部分が削除されたマウス11番染色体断片が得られる。他の染色体の場合にも同様にテロメアトランケーションを実施できる。
工程(c):
DNA配列挿入部位として、好ましくは部位特異的組換え酵素の認識部位を挿入することができる。すなわち、ある種の酵素が特定の認識部位を認識して特異的にその認識部位でDNAの組換えを起こす現象が知られており、本発明におけるマウス人工染色体ベクターでは、このような酵素とその酵素の認識部位からなる系を利用して、目的とする遺伝子又はDNA配列を挿入、搭載できる。このような系として、例えば、バクテリオファージP1由来のCre酵素と、その認識部位であるloxP配列の系(Cre/loxP系;B.Sauer in Methods of Enzymology;1993,225:890-900)や、出芽酵母由来のFlp酵素と、その認識部位であるFRT(Flp Recombination Target)配列の系(Flp/FRT系)や、ストレプトミセスファージ由来のφC31インテグレースと、その認識部位であるφC31attB/attP配列の系、R4インテグレースと、その認識部位であるR4attB/attP配列の系、TP901-1インテグレースと、その認識部位であるTP901-1attB/attP配列の系、Bxb1インテグレースと、その認識部位であるBxb1attB/attP配列の系、などを挙げることができるが、DNA配列挿入部位として機能しうるのであれば、上記の系に限定されないものとする。
このような部位特異的組換え酵素の認識部位の挿入のためには、公知の方法、例えば、相同組換え法が利用でき、挿入位置及び数は、長腕近位及び短腕近位内に適宜設定することができる。
マウス人工染色体ベクターには、1つの種類の認識部位又は異なる種類の認識部位を挿入することができる。認識部位の設定により、目的とする遺伝子もしくは遺伝子座又はDNA配列(すなわち、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座)の挿入位置を特定することができるので、挿入位置が一定となり、想定外の位置効果(position effect)を受けることもなくなる。
DNA配列挿入部位を有するウス人工染色体ベクターには、好ましくは、目的とする遺伝子又はDNA配列の挿入部位を残して、レポーター遺伝子をあらかじめ挿入しておいてもよい。レポーター遺伝子としては、特に限定するものではないが、例えば、蛍光タンパク質(例えば、緑色蛍光タンパク質(GFP又はEGFP)、黄色蛍光タンパク質(YFP)、等)遺伝子、タグタンパク質コードDNA、β−ガラクトシダーゼ遺伝子、ルシフェラーゼ遺伝子などが挙げられるが、GFP又はEGFPが好ましい。
マウス人工染色体ベクターにはさらに、選択マーカー遺伝子を含んでもよい。選択マーカーは、該ベクターで形質転換された細胞を選別する際に有効である。選択マーカー遺伝子としては、ポジティブ選択マーカー遺伝子及びネガティブ選択マーカー遺伝子のいずれか、又はその両方が例示される。ポジティブ選択マーカー遺伝子には、薬剤耐性遺伝子、例えばネオマイシン耐性遺伝子、アンピシリン耐性遺伝子、ブラストサイジンS(BS)耐性遺伝子、ピューロマイシン耐性遺伝子、ジェネティシン(G418)耐性遺伝子、ハイグロマイシン耐性遺伝子などが含まれる。また、ネガティブ選択マーカー遺伝子には、例えば単純ヘルペスチミジンキナーゼ(HSV-TK)遺伝子、ジフテリアトキシンA断片(DT-A)遺伝子などが包含される。一般に、HSV-TKは、ガンシクロビル又はアシクロビルと組み合わせて使用される。
マウス人工染色体ベクターに、レポーター遺伝子又は目的の外来遺伝子もしくはDNAを挿入する手法としては、相同組換え法を好ましく使用できる。相同組換えは、マウス染色体上の挿入位置の5’側領域及び3’側領域の塩基配列(各々約1〜4kb、好ましくは約2〜4kb)と相同な両配列(5’arm及び3’arm)の間に、挿入すべきDNAカセットを連結して得られたターゲティングベクターを用いて行うことができる。この目的で使用されるベクターとしては、例えばプラスミド、ファージ、コスミド、ウイルスなどが挙げられ、好ましくはプラスミドである。ターゲティングベクター構築のための基本プラスミドの例は、V907又はV913(Lexicon Genetics)などであるが、これらに限定されない。基本ベクターには、プロモーター、エンハンサー、選択マーカー遺伝子、複製開始点などの、ベクター構築において一般的に挿入される1つ又は2つ以上の配列又はエレメントが含まれていてもよい。
上記の手法で作製されたマウス人工染色体ベクターは、マウス由来の染色体断片(これには、天然型セントロメア、少なくとも99%、好ましくは少なくとも99.5〜100%、の内在遺伝子が削除された長腕断片、及び(存在する場合の)短腕が含まれる。)と、人工テロメア配列とを含む。また、上記セントロメアは、人工染色体の作製のために利用されたマウスの染色体のセントロメア構造の全体である。このベクターのDNA構造中に以下のようなDNA配列挿入部位、選択マーカー遺伝子、外来遺伝子(又は、DNA)などを挿入することができる。
上記マウス人工染色体ベクターには、好ましくは、1つ又は複数のDNA配列挿入部位、例えば部位特異的組換え酵素の認識部位(例えばCre酵素認識部位であるloxP配列)を含む。ここで、部位特異的組換え酵素の認識部位は、例えばGFP-PGKneo-loxP-3’HPRTタイプのloxP配列であるか、或いは、5’HPRT-loxP-hygタイプであるか、或いはPGKneo-loxP-3’HPRTタイプのloxP配列或いはGFP-5’HPRT-loxP-PGKhygタイプのloxP配列であるが、これらに限定されない。ここで、GFPは、緑色蛍光タンパク質遺伝子であり、PGKneoは、ホスホグリセリン酸キナーゼプロモーター/ネオマイシン耐性遺伝子カセットであり、HPRTは、ヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ遺伝子であり、hygはハイグロマイシン耐性遺伝子である。
上記マウス人工染色体ベクターにはさらに、レポーター遺伝子、選択マーカー遺伝子(ポジティブ選択マーカー遺伝子、ネガティブ選択マーカー遺伝子など)を含むことができる。該ベクターにはさらに、目的の外来遺伝子又はDNA配列を含んでもよい。
本発明のマウス人工染色体ベクターの利点としては従来の人工染色体ベクターの利点である、1)宿主染色体に挿入されず独立して維持されることから、宿主遺伝子を破壊しない、2)一定のコピー数(複数(多)コピー可能)で安定に保持され、宿主細胞の生理的発現制御を受けることから、挿入された遺伝子の過剰発現や発現消失が起きない、3)導入可能なDNAサイズに制約がないことから、発現調節領域を含む遺伝子や複数遺伝子/アイソフォームの導入が可能となることに加え、4)げっ歯類細胞或いはげっ歯類個体中における保持率が従来の人工染色体に比べて向上する、5)導入遺伝子の長期間における安定発現を実現し、かつ子孫伝達率が向上することで遺伝子導入マウスの作製効率が向上する、6)ベクター導入後の組織間のばらつきが少なく、すなわち保持率はどの組織でも90%以上であり、HACの場合20%未満の保持率である血液系組織でさえも90%以上の保持率である、などの利点が挙げられる。
上記のマウス人工染色体ベクターは、以下で説明するように、ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及び/又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座とを含むことができる。すなわち、それらは、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)、並びにヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHKL-MAC)のいずれかを含む。
1.2 ヒト抗体遺伝子
本発明のマウス人工染色体ベクターには、ヒト抗体遺伝子を導入することができる。
本明細書中で使用する「ヒト抗体遺伝子もしくは遺伝子座」は、特に断らない限り、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及び/又はヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を指す。具体的には、ヒト抗体遺伝子もしくは遺伝子座は、例えばヒト14番染色体のimmunoglobulin heavy locus (human) NC_000014.9((塩基番号105586437..106879844)あるいは(塩基番号105264221.. 107043718))、ヒト2番染色体のimmunoglobulin kappa locus (human) NC_000002.12((塩基番号88857361..90235368)あるいは(塩基番号88560086..90265666))、及びヒト22番染色体のimmunoglobulin lambda locus (human) NC_000022.11((塩基番号22026076..22922913)あるいは(塩基番号21620362.. 23823654))に記載される塩基配列よって表される。ヒト抗体重鎖遺伝子もしくは遺伝子座は、約1,3Mbの塩基長であり、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座は、約1.4Mbの塩基長であり、ヒト抗体軽鎖λ遺伝子もしくは遺伝子座は、約0.9Mbの塩基長である。
因みに、マウスの抗体重鎖遺伝子もしくは遺伝子座は、マウス第12番染色体上にあり、マウスの抗体軽鎖κ遺伝子もしくは遺伝子座は、マウス第6番染色体上にあり、マウス抗体軽鎖λ遺伝子もしくは遺伝子座は、マウス第16番染色体上にある。具体的には、マウス抗体重鎖遺伝子もしくは遺伝子座は、例えばChromosome 12, NC_000078.6 (113258768..116009954, complement)、マウス抗体軽鎖κ遺伝子もしくは遺伝子座は、 Chromosome 6, NC_000072.6 (67555636..70726754)、マウス抗体軽鎖λ遺伝子もしくは遺伝子座は、 Chromosome 16, NC_000082.6 (19026858..19260844, complement)に記載される塩基配列よって表される。
また、ラットの抗体重鎖遺伝子もしくは遺伝子座は、ラット第6番染色体上にあり、ラットの抗体軽鎖κ遺伝子もしくは遺伝子座は、ラット第4番染色体上にあり、ラット抗体軽鎖λ遺伝子もしくは遺伝子座は、ラット第11番染色体上にある。同様に、これらの遺伝子もしくは遺伝子座の塩基配列は、米国NCBI(GenBank等)、公知文献などから入手可能である。
本発明において上記のヒト抗体遺伝子を含む上記のマウス人工染色体ベクターは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座のすべてを含むマウス人工染色体ベクター(hIGHKL-MAC)である。これらのベクターは、本明細書に記載の染色体工学技術を用いることによって作製可能である。
以下で記載する本発明の非ヒト動物は、上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター及びヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物である。これによって上記の非ヒト動物は、抗原物質を投与されたとき、その物質に対するヒト抗体を産生することが可能になる。
本明細書におけるヒト抗体は、ヒト免疫グロブリン(Ig)のいずれのクラス及びサブクラスでもよい。そのようなクラスには、IgG、IgA、IgM、IgD及びIgEが含まれ、サブクラスには、IgG1、IgG2、IgG3、IgG4、IgA1及びIgA2が含まれる。これらのクラス及びサブクラスは、重鎖の違いによって分けることが可能であり、IgG鎖は、γ鎖と称し、IgG1〜IgG4に対応してγ1、γ2、γ3及びγ4鎖と称し、IgA、IgM、IgD、IgEはそれぞれα鎖(α1及びα2)、μ鎖、δ鎖、ε鎖と称する。いずれの抗体の軽鎖にもκ鎖とλ鎖があり、免疫グロブリン遺伝子の再配列の過程でκ鎖遺伝子の再構成が不成功に終わるとλ鎖遺伝子の再構成が起こることが知られている。また、ヒト抗体重鎖遺伝子座は、5'から3'に向けて、VH1, VH2, ..VHm(ここで、mは、例えば38〜46である。)を含むV(variable)領域遺伝子、DH1,DH2..DHn(ここで、nは、例えば23である。)を含むD(diversity)領域遺伝子、JH1,JH2..JHr(ここで、rは6である。)を含むJ(joining)領域遺伝子、Cμ,Cδ,Cγ3,Cγ1,Cα1,Cγ2,Cγ4,Cε,Cα2を含むC(constant)領域遺伝子を含む。免疫システムにおいて上記のヒト免疫グロブリン遺伝子の再配列を介して産生される抗体が、ヒト抗体である。
ヒト抗体分子は、2本のヒト抗体重鎖と2本のヒト抗体軽鎖からなり、各重鎖と各軽鎖は2つのジスルフィド結合によって結合されており、並びに、2本の重鎖は定常(C)領域で2つのジスルフィド結合によって結合された構造を有する。また、抗体分子の可変(V)領域には、とりわけ変異の大きい部分が3か所あり、相補性決定領域(complementarity-determining region (CDR))と呼ばれており、N末端側からCDR1、CDR2及びCDR3という。このCDR領域の配列の違いにより抗体の抗原に対する結合特性が変化する。免疫グロブリン遺伝子の再構成によって抗体の多様性が生じることが知られている。
1.3 非ヒト動物の作製
本発明の非ヒト動物は、上記のとおり、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクターを保持する動物である。
具体的には、例えば図1に示された手順によって、ヒト抗体を産生可能な本発明の非ヒト動物(マウス及びラット)を作製することができる。
以下において、マウス人工染色体を利用する非ヒト動物の作製例について説明する。
部位特異的組換え酵素の認識部位(例えばloxP及びFRT)を導入して改変された、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を保持する動物細胞(例えばDT40)、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を保持する動物細胞(例えばDT40)(図1のSTEP1,2)のそれぞれを、細胞融合法によりマウス人工染色体(MAC)を保持するげっ歯類細胞(例えばCHO)に移入したのち(図1のSTEP3)、部位特異的組換え酵素(例えばCre)発現を誘導することにより、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、並びにヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞を作製する(図1のSTEP4)。
動物細胞(例えばDT40)に保持されるヒト14番染色体上のヒト抗体重鎖遺伝子もしくは遺伝子座の近傍に部位特異的組換え酵素の認識部位(例えばFRT)を導入したのち(図1のSTEP5)、改変されたヒト抗体重鎖遺伝子もしくは遺伝子座を保持する動物細胞を、細胞融合法によりMACを保持するげっ歯類細胞(例えばCHO)に移入して、ヒト抗体重鎖遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞を作製する(図1のSTEP6)。
上記のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞のそれぞれと、上記のヒト抗体重鎖遺伝子もしくは遺伝子座を保持するげっ歯類細胞とを融合することによって、ヒト抗体重鎖遺伝子もしくは遺伝子座を保持するげっ歯類細胞内に、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMAC、又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを移入したのち(図1のSTEP7)、部位特異的組換え酵素(例えばFLP)発現を誘導することにより、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞のそれぞれを作製する(図1のSTEP8)。
上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持するげっ歯類細胞のそれぞれを、微小核細胞融合法により、非ヒト動物(例えばマウス又はラット)分化多能性幹細胞(例えばES細胞又はiPS細胞)と融合して、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞を作製する(図1のSTEP9)。
上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞、並びにヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物分化多能性幹細胞のそれぞれを、非ヒト動物の初期胚(例えば8細胞期胚又は胚盤胞期胚)に移植して、上記MACのそれぞれを保持するキメラ動物を作製し、さらに子孫動物を作製する(図1のSTEP10)。さらに子孫動物同士の交配により上記MACのそれぞれを保持する子孫動物を作製する。
同様の手法を用いることによって、上記のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHKL-MAC)を含む非ヒト動物を作製することができる。
上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物、又は、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物との間での交配を行い、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物、あるいは、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物を作製する。
あるいは、上記のヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物との間での交配を行い、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつ対応するヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に内在抗体遺伝子もしくは遺伝子座がノックアウトされた非ヒト動物を作製する。
あるいは、上記のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHKL-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHKL-MACを含み、かつ該動物の該内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物を作製する。
上記の手法について、さらに詳細に説明する。
本明細書において「非ヒト動物」は、ヒトを除く哺乳動物、例えばげっ歯類(例えばマウス、ラット、ハムスター等)、有蹄類(例えばウシ、ヤギ等)などであり、好ましくはげっ歯類、さらに好ましくはラットである。
本発明におけるヒト抗体遺伝子を含むマウス人工染色体ベクターは、任意の細胞に移入又は導入することができる。そのための手法には、例えば、微小核細胞融合法、リポフェクション、リン酸カルシウム法、マイクロインジェクション、エレクトロポレーションなどが含まれるが、好ましい手法は微小核細胞融合法である。
微小核細胞融合法は、マウス人工染色体ベクターを含有する微小核形成能を有する供与細胞(例えばマウスA9細胞、CHO細胞)と、所望の受容細胞との微小核融合によって該ベクターを該他の細胞に移入する方法である。微小核形成能を有する細胞は、倍数体誘発剤(例えばコルセミド、コルヒチンなど)で処理して微小核多核細胞を形成し、サイトカラシン処理により微小核体を形成する処理を行ったのちに、所望の受容細胞との細胞融合を行う。
上記のマウス人工染色体ベクターを導入可能な受容細胞は、動物細胞、好ましくはヒト細胞を含む哺乳動物細胞、例えば卵母細胞、精子細胞などの生殖系列細胞、胚性幹(ES)細胞、精子幹(GS)細胞、体性幹細胞などの幹細胞、体細胞、胎児細胞、成体細胞、正常細胞、疾患細胞、初代培養細胞、継代細胞又は株化細胞など、を包含する。幹細胞には、例えばES細胞、胚性生殖(EG)細胞、胚性癌腫(EC)細胞、mGS細胞、ヒト間葉系幹細胞などの多能性幹細胞、人工多能性幹(iPS)細胞、核移植クローン胚由来胚性幹(ntES)細胞などが含まれる。好ましい細胞は、哺乳動物(好ましくは、マウス、ラットを含むげっ歯類)由来の体細胞、非ヒト生殖系列細胞、幹細胞及び前駆細胞からなる群から選択される。細胞がげっ歯類などの哺乳類由来の細胞である場合、本発明のベクターが導入された哺乳類(例えばマウス、ラットなどのげっ歯類)の細胞又は組織において、ベクターがより安定に保持される、すなわち細胞からのベクターの脱落が有意に低下する、又は脱落が起こらない。
細胞は、例えば、肝細胞、腸細胞、腎細胞、脾細胞、肺細胞、心臓細胞、骨格筋細胞、脳細胞、骨髄細胞、リンパ球細胞、巨核球細胞、精子、卵子などである。
組織は、例えば肝臓、腸、腎臓、脾臓、肺、心臓、骨格筋、脳、骨髄、精巣、卵巣などの組織である。
ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、マイトマイシンC処理マウス胎仔線維芽細胞をフィーダーにして樹立し維持することができる(M.J.EvansとM.H.Kaufman(1981)Nature 292:154-156)。
iPS細胞は、体細胞(体性幹細胞を含む)に、ある特定の再プログラム化因子(DNA又はタンパク質)を導入し、適当な培地にて培養、継代培養することによって約3〜5週間でコロニーを生成する。再プログラム化因子は、例えばOct3/4、Sox2、Klf4及びc-Mycからなる組み合わせ;Oct3/4、Sox2及びKlf4からなる組み合わせ;Oct4、Sox2、Nanog及びLin28からなる組み合わせ;あるいは、Oct3/4、Sox2、Klf4、c-Myc、Nanog及びLin28からなる組み合わせなどが知られている(K.Takahashi and S.Yamanaka,Cell 126:663-676(2006);WO 2007/069666;M.Nakagawa et al.,Nat.Biotechnol.26:101-106(2008);K.Takahashi et al.,Cell 131:861-872(2007);J.Yu et al.,Science 318:1917-1920(2007);J.Liao et al.,Cell Res.18,600-603(2008))。培養例は、マイトマイシンC処理したマウス胎仔線維芽細胞株(例えばSTO)をフィーダー細胞とし、このフィーダー細胞層上でES細胞用培地を用いて、ベクター導入体細胞(約104〜105細胞/cm2)を約37℃の温度で培養することを含む。フィーダー細胞は必ずしも必要ではない(Takahashi,K.et al.,Cell 131:861-872(2007))。基本培地は、例えばダルベッコ改変イーグル培地(DMEM)、ハムF-12培地、それらの混合培地などであり、ES細胞用培地は、マウスES細胞用培地、霊長類ES細胞用培地(リプロセル社)などを使用することができる。
ES細胞及びiPS細胞は、生殖系列に寄与することが知られているので、目的のヒト抗体遺伝子もしくは遺伝子座を含む本発明のマウス人工染色体ベクターを導入したこれらの細胞を、該細胞が由来する同種の哺乳動物の胚の胚盤胞に注入し、この胚を仮親の子宮に移植し、出産させることを含む手法によって、非ヒト動物(又は、トランスジェニック動物(ヒトを除く))を作製することができる。さらにまた、得られた雌雄のトランスジェニック動物を交配することによって、ホモ接合性動物、さらにその子孫動物を作出することができる。
本発明のマウス人工染色体ベクターを介してES細胞やiPS細胞などの分化多能性細胞、その他の上記細胞類に、上記のヒト抗体遺伝子もしくは遺伝子座を導入することによって、ヒト抗体を産生可能にする非ヒト動物を作製することができる。
そのような非ヒト動物では、マウス人工染色体ベクターに含まれるヒト抗体遺伝子もしくは遺伝子座に関して、ヒト抗体重鎖及び軽鎖(κ及びλ)遺伝子もしくは遺伝子座に対応する内在遺伝子もしくは遺伝子座がノックアウト(破壊もしくは欠損)されていることが好ましい。ノックアウトの方法には、ジーンターゲティング法、CRISPR/Cas9システムによるゲノム編集法(M. Jinek et al., Science 337:816-821(2012)等)などを使用することができる。内在遺伝子がノックアウトされた、かつヒト抗体遺伝子もしくは遺伝子座を保持する非ヒト動物は、ヒト抗体遺伝子(遺伝子座)を含むマウス人工染色体ベクターを保持するキメラ非ヒト動物若しくはその子孫と、対応する内在遺伝子をクラスターごと欠失させたキメラ動物若しくは子孫とを交配させて得られた該内在遺伝子がヘテロに欠失した動物同士をさらに交配させることによって作製することができる。
上記の手法によって、1)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、2)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、3)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むMACを保持する、並びに、ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座とヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、あるいは4)ヒト14番染色体由来のヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト2番染色体由来のヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト22番染色体由来のヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むMACを保持する、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた、非ヒト動物マウス人工染色体ベクターを保持する細胞及びトランスジェニック非ヒト動物、を作製することができる。具体的な非ヒト動物の例は、マウス人工染色体ベクターを保持する、マウスやラットなどのげっ歯類である。
次に、ヒト抗体が産生可能であるトランスジェニックラットの作製は、上記の方法によって成功しないことがある。以下の(A)、(B)及び(C)に記載する方法は、上記方法の代替法である。
(A)ラットES細胞(雄系統)の作製
ラットのES細胞は、マウスES細胞の場合と同様に(M.J. Evans and M.H. Kaufman, Nature 1981; 292(5819): 154-156)、ラット胚盤胞期胚又は8細胞期胚の内部細胞塊から樹立される、多分化能と自己複製能をもつ細胞株である。例えば、卵透明帯を溶解したラット胚盤胞を、白血病抑制因子(LIF)を含有する培地を用いてマウス胚性線維芽細胞(MEFF)フィーダー上で培養し、7〜10日後に胚盤胞から形成されるアウトグロウス(outgrowth)を分散し、これをMEFフィーダー上に移して培養し、約7日後、ES細胞が出現する。ラットES細胞の作製については、例えばK. Kawaharada et al., World J Stem Cells 2015; 7(7): 1054-1063に記載されている。
ES細胞には雌系統と雄系統があるが、本発明では雄系統のラットES細胞、より好ましくは雑種のラットから作製した雄系統のラットES細胞、を使用することがよく、そのようなES細胞とROSI法及び蛍光選別法とを用いることによって子孫伝達可能なモデルラットを得ることができる。雄系統のES細胞は、作製されたES細胞株についてXY核型をXY染色体プローブ(例えばChromosome Science Labo Inc.などから入手可能)を用いて分析することによって選別することができる。本明細書における「雄系統のES細胞」又は「ES細胞(雄系統)」とは、XY核型を有するES細胞をいう。
ES細胞と類似した幹細胞として上記の人工多能性幹(iPS)細胞が知られており、ES細胞の代替としてラットiPS細胞(W. Li et al., Cell Stem Cell 2009; 4: 16-19; S. Hamanaka et al., PLoS One 2011; 6: e22008)を使用することも可能である。
(B)微小核細胞融合(MMCT)
微小核細胞融合法は、上記のとおり、例えば単一もしくは少数の染色体又はその断片などの約0.9Mb以上の巨大核酸(ここでは、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含む染色体又はその断片)を供与細胞から受容細胞へ移入可能にする技術である。この方法は、供与細胞を微小核化する第1工程、微小核化細胞を脱核する第2工程、ミクロセルを単離する第3工程、ミクロセルと受容細胞を融合する第4工程、及び、生存するミクロセルハイブリッドクローンを選択する第5工程を包含する。
上の説明に加えて、MMCTについてさらに詳しく説明する。
供与細胞の微小核化は、動物細胞を、コルセミドなどの微小核細胞誘導剤を含有する培地中で長時間培養することによって行うことができる。ここで微小核細胞誘導剤は、染色体の脱凝縮と核膜の再形成を誘起する能力をもつ。微小核細胞誘導剤の濃度は、微小核化が起こるならば制限されないが、例えばコルセミドの場合、受容細胞約5×106個あたり約0.01μg/ml〜約1μg/ml、好ましくは0.05〜0.5μg/mlである。微小核化によって、供与細胞から、少量の細胞質と1個又は少数の染色体を含む微小核を含有する細胞、すなわちミクロセルが形成される。培養は、供与細胞の培養条件を使用するものとし、培地として一般に動物細胞用培地が使用される。動物細胞用培地には、例えばイーグル培地(MEM)、イーグル最小必須培地(EMEM)、ダルベッコ変法イーグル培地(DMEM)、ハムF12培地などが含まれる。培地には、牛胎仔血清(FBS)、代替血清(Stem Sure(R) Serum Replacement、等)などを添加してもよい。温度は、室温〜約37℃であり、また培養時間は、約40〜80時間が適当である。
微小核化細胞の脱核は、サイトカラシンBを用いて行う。微小核化した細胞を含む培養液を遠心管に入れ、サイトカラシンBを約10μg/mlの濃度で添加し、34℃で約11,900×gで遠心分離を行う。沈降したミクロセルを無血清培地に懸濁して回収する。ミクロセルの精製は、限外ろ過によって行うことができる。孔径8μm、5μm及び3μmの3種類のメンブレンを用意し、順番にろ過する。
ミクロセルと受容細胞との融合は、完全にコンフルエントになる前で培養を終了した受容細胞に精製ミクロセルを重層して培養する。ミクロセル融合細胞は、薬剤耐性株を選択するなどの手法で行うことができる。
当該融合は、ポリエチレングリコール(PEG)法、レトロ法など(T. Suzuki et al., PLOS ONE, DOI:10.1371/journal.pone.0157187 (2016))の方法、MV法(M. Katoh et al., BMC Biotechnology 2010, 10:37)などを用いて行うことができる。レトロ法は、同種指向性(ecotropic)もしくは両指向性(amphotropic)MLV由来のR-peptide-deleted Env (EnvΔR)を使用してミクロセルと受容細胞の融合を行う方法であり、最もげっ歯類細胞で効率のよい方法である。また、MV法は、はしかウイルス・フソゲン(measles virus fusogen)であるヘマグルチニンタンパク質(MV-H)とフージョンタンパク質(MV-F)を用いてミクロセル融合を促進する方法であり、予めMV-HプラスミドとMV-Fプラスミドによって形質転換された供与細胞から作製されたミクロセルは、細胞膜表面に発現されたフソゲンの存在のために受容細胞との細胞−細胞融合が起こりやすくなる。
好適には、供与細胞に予め外来核酸として上記のヒト染色体もしくはその断片を導入しておく。この場合、該ヒト染色体はミクロセルに移動し、ミクロセル融合によって受容細胞内に導入される。その結果、該受容細胞はヒト染色体によって形質転換される。
(C)卵子内円形精子注入(ROSI)
ROSI(Round Spermatid Injection)法は、上記キメララット(雄)の精巣から取り出した精細管を切り刻み懸濁液を作製した中から円形精子細胞をピペット内に吸引し、ピペット内で核と細胞質をバラバラにしたのち、これをラット卵子に注入し顕微授精する方法である(C. Tsurumaki et al., J. Mamm. Ova Res. 2009; 26: 86-93 (Jp))。さらに、受精した卵子を仮親の子宮に移植し、キメララットを出産させたのち、上記のヒト抗体遺伝子もしくは遺伝子座を保持する雌ラット(もしくは雄ラット)を用いて純系又は雑種、好ましくは雑種の雄ラット(もしくは雌ラット)と交配し、ラットの各種組織内でヒト抗体遺伝子もしくは遺伝子座を保持するラットを得ることができる。
ROSI法に代えて、卵細胞質内精子注入法(ICSI)によって卵子と精子を顕微授精することも可能である。
まとめると、本発明の非ヒト動物は、以下の動物を含む。
1)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含むことを特徴とする非ヒト動物。
2)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含むことを特徴とする非ヒト動物。
3)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)、並びに、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含むことを特徴とする非ヒト動物。
4) ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHKL-MAC)を含むことを特徴とする非ヒト動物。
5)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされていることを特徴とする非ヒト動物。
6)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされていることを特徴とする非ヒト動物。
7)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)、並びに、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む、かつヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされていることを特徴とする非ヒト動物。
8)ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHKL-MAC)、かつヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子がノックアウトされていることを特徴とするラット。
上記の非ヒト動物は、げっ歯類、有蹄類などの哺乳動物、鳥類などである。げっ歯類には、マウス、ラット、ハムスターなどが含まれる。有蹄類には、ウシ、ヤギなどが含まれる。鳥類には、家鶏(例えばニワトリ)などが含まれる。好ましい非ヒト動物は、マウス、ラット及びウシであり、ラットがより好ましい。
ヒト抗体を産生可能である非ヒト動物の作製方法は、以下のものを含む。
1)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MACを含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
2)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
3)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含む非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含む非ヒト動物を作製するステップ、作製された非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされた同種の非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
4)ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHK-MAC)を含み、かつヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物と、ヒト抗体重鎖遺伝子及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHL-MAC)を含み、かつヒト抗体重鎖遺伝子及びヒト抗体軽鎖κ及びλ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体を産生可能である非ヒト動物の作製方法。
5)ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体(hIGHKL-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子がノックアウトされた同種の非ヒト動物を交配し、hIGHKL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座がノックアウトされている非ヒト動物を選択することを含む、ヒト抗体が産生可能である非ヒト動物の作製方法。
2.ヒト抗体の製造
本発明は、上記の非ヒト動物に抗原物質を投与し、該抗原物質と結合する産生されたヒト抗体を回収することを含む、ヒト抗体を製造する方法を提供する。
この方法によって回収される抗体は、該抗体を含む抗血清を、抗原物質を結合した担体(例えばアガロースゲル、シリカゲル、等)を充填したカラムにアプライし、ついで、該担体に結合したヒト抗体を担体から溶出することを含むカラムクロマトグラフィー法によって回収することができる。
本発明はまた、上記の非ヒト動物に抗原物質を投与するステップ、該非ヒト動物から脾臓細胞を取り出すステップ、該脾臓細胞とミエローマとを融合させてハイブリドーマを作製するステップ、該ハイブリドーマから該抗原物質と結合する抗体を回収するステップを含む、ヒトモノクローナル抗体を製造する方法を提供する。
ヒトモノクローナル抗体の精製は、上記のカラムクロマトグラフィー法を使用して行うことができる。
抗原物質は、一般に、細胞、タンパク質、ポリペプチド又はペプチドである。ヒト抗体は、現在、癌、骨粗しょう症、関節リウマチなどの治療薬として使用されているし、また、多くのその他のヒト抗体が、高コレステロール血漿、自己免疫疾患、炎症性疾患、腫瘍、アレルギー性疾患、疼痛、心血管病、代謝障害などの治療薬として臨床試験にかけられている。そのような抗原物質については、上記の非特許文献1に例示されている。また、抗原物質としての上記細胞の例は、腫瘍細胞などである。本発明では、そのような抗原物質を含む多くの抗原物質に適用可能である。
以下の実施例を参照しながら本発明をさらに具体的に説明するが、本発明の範囲はそれらの実施例によって制限されないものとする。ヒト抗体産生マウス、ラット作製の概要を示す(図1)。
[実施例1]ヒト2番染色体の改変
マウス人工染色体ベクター(MAC)にIGK、IGH領域を転座クローニングするため、ヒト2番染色体に組換え配列であるloxP配列、FRT配列を挿入する。(図2)
[A]ヒト2番染色体へのloxP配列挿入
マウス人工染色体ベクターMACにヒト2番染色体上IGK領域をCre/LoxPシステムを用いた相互転座により転座クローニングするため、相同組換え頻度の高いニワトリDT40細胞内において、ヒト2番染色体にloxP配列を挿入する。
[A.1] ヒト2番染色体へのloxP挿入ベクター作製
ヒト2番染色体を保持した細胞DT40 521D4(#2)にloxP配列を挿入するための基本プラスミドにはv901(Lexicon genetics)を用いた。loxP挿入部位であるヒト2番染色体のDNA配列はGenBankデータベース(NC_000002.12)より得た。
DT40(#2)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
cos138-F6B:5’-TCGAGGATCCCACATAGACATTCAACCGCAAAGCAG-3’(配列番号1)
cos138-R6B:5’-TCGAGGATCCAGGCCCTACACATCAAAAAGTGAAGCA-3’(配列番号2)
PCRは、サーマルサイクラーとしてTakara社(京都、日本国)製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。このPCR産物をBamHI(NEB) で消化して、アガロースゲルにより分離し精製後、v901のBamHIサイトにクローニングした。(ベクター名:v901-cos138)。この際、目的の標的配列がクローニングされているか確認するために、EcoRV(NEB)、BglII(NEB)、AvrII(NEB)各制限酵素による消化を行い、電気泳動で確認後、シークエンス解析を行った。
PGKhygroおよびloxP、PGK HPRT exon1-2を含むカセットの基本プラスミドにはv913(Lexicon genetics)を用いた。5’HPRT-loxPはV820(Lexicon genetics)のXbaIサイトにオリゴ合成したloxP配列をクローニングした。5’HPRT-loxPをV907(Lexicon genetics)のClaIとAscIにクローニングし、PGKhygroをClaIとKpnIサイトにクローニングした(ベクター名:pX6.1)。
pX6.1のPGKhygro-loxP-PGK HPRT exon1-2をKpnI(NEB)とAscI(NEB)で消化し、Blunting high kit(TOYOBO)で平滑末端にし、v901-cos138のSpeIサイトをBlunting high kitで平滑末端にした後、ライゲーションした。(ベクター名:v901-cos138 hygloxP5’HPRT)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図3に示した。
[A.2]ニワトリDT40細胞におけるヒト2番染色体へのloxP挿入
ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下FBSで記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40 (#2)の約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターv901-cos138 hygloxP5’HPRTを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。1.5mg/ml Hygromycin(Wako(大阪、日本国))を含む培地に交換し、約2週間の選択培養を行った。5回の反応で191の薬剤耐性株を獲得し、ランダムに選んだ44クローンを以降の解析に用いた。
[A.3]相同組換え体の選別
Hygromycin耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
cos138 sp L:5’-CTGAGAAGAGTCATTGTTTATGGTAGACT-3’ (配列番号3)
cos138 sp R:5’- ATCCCCATGTGTATCACTGGCAAACTGT-3’ (配列番号4)
x6.1cosRa L:5’-GGGGAATAAACACCCTTTCCAAATCCTC-3’(配列番号5)
x6.1cosRa R:5’- ACCAAGTAACCGATCAAACCAACCCTTG-3’ (配列番号6)
cos138 sp L, cos138 sp Rのプライマーについては、Accuprime Taq DNA polymerase(Thermo Fisher Scientific)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は94℃2分の熱変性後、94℃15秒、60℃15秒、68℃5分を35サイクル行った。
x6.1cosRa L, x6.1cosRa Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。
加えて、ヒト2番染色体上のプライマーを用い領域が保持されているかを確認した。そのプライマー配列を以下に示す。
D2S177 F:5’-AGCTCAGAGACACCTCTCCA-3’ (配列番号7)
D2S177 R:5’-CTGTATTAGGATACTTGGCTATTGA-3’ (配列番号8)
FABP1-F:5’-TATCAAGGGGGTGTCGGAAATCGTG-3’ (配列番号9)
FABP1-R:5’-ACTGGGCCTGGGAGAACCTGAGACT-3’ (配列番号10)
EIF2AK3-F:5’-AGGTGCTGCTGGGTGGTCAAGT-3’ (配列番号11)
EIF2AK3-R:5’-GCTCCTGCAAATGTCTCCTGTCA-3’ (配列番号12)
RPIA-F:5’-CTTACCCAGGCTCCAGGCTCTATT-3’ (配列番号13)
RPIA-R:5’-CTCTACCTCCCTACCCCATCATCAC-3’ (配列番号14)
IGKC-F:5’-TGGAAGGTGGATAACGCCCT-3’ (配列番号15)
IGKC-R:5’-TCATTCTCCTCCAACATTAGCA-3’ (配列番号16)
IGKV-F:5’-AGTCAGGGCATTAGCAGTGC-3’ (配列番号17)
IGKV-R:5’-GCTGCTGATGGTGAGAGTGA-3’ (配列番号18)
Vk3-2 F:5’-CTCTCCTGCAGGGCCAGTCA-3’ (配列番号19)
Vk3-2 R:5’-TGCTGATGGTGAGAGTGAACTC-3’ (配列番号20)
D2S159_1 F:5’-CTCTAACTGAATCAAGGGAATGAAC-3’ (配列番号21)
D2S159_1 R:5’-AGCAGTTTGAGTTTAGGATGAAGG-3’ (配列番号22)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
PCRの結果、3クローンが陽性であり、これらについて以降の解析を行った。
[A.4] two-color FISH解析
上記の結果から3クローンにおいて、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行った。Human cot-1 DNAおよびpX6.1をプローブにしてFISH解析を行ったところ、全3クローンにおいて100%でヒト2番染色体が1コピー保持され、さらにPGKhygloxP5’HPRT由来のシグナルが現れ、ネガティブコントロールであるPGKhygloxP5’HPRTを部位特異的挿入する前のヒト2番染色体上にはシグナルが検出されなかったことから、部位特異的にPGKhygloxP5’HPRTが挿入されたことが確かめられた(図4)。3クローンの内、521D4 loxP1-28, 521D4 loxP4-6の2クローンを選択し、以降の実験を行った。
[B]loxPを搭載したヒト2番染色体上へのFRTサイトの挿入
MAC上にloxPでヒト2番染色体上IGK領域を、さらにヒト14番染色体上IGH領域を転座クローニングするために、loxPを挿入したヒト2番染色体へFRTサイトを挿入する。
[B.1] ヒト2番染色体へのFRT挿入ベクター作製
DT40(#2)にFRT配列を挿入するための基本プラスミドにはpMA-RQ(Life technologies)を用いた。このベクターに人工遺伝子合成配列PGK5’HPRTFRT (Life technologies)をクローニングした(ベクター名:pMA-kD9FRT)。まず、pCMV/Bsd(Invitrogen)をXhoIとEcoRIで消化し、泳動後CMVBsd配列をゲル抽出したものを、pMA-kD9FRTをEcoRIとXhoI消化後にできた突出末端にライゲーションした(ベクター名:pMA-kD9FRTBsd)。
FRT挿入部位であるヒト2番染色体のDNA配列はGenBankデータベース(NC_000002.12)より得た。DT40(#2)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
kD-R9La L:5’-TCGAGCGGCCGCAGGATCTTTGGGGGACTGAATGGGGTGTGCT-3’ (配列番号23)
kD-R9La R:5’-TCGAACGCGTTGGAACCCTCATACGTTGCTGGTGGAATGT-3’ (配列番号24)
KD-F9Ra L:5’-CGAGGATCCATTTCTCCACATCCTAGCCAACACTTGACATTTCCT-3’ (配列番号25)
KD-F9Ra R:5’-TCGAGGATCCGCCAGGGAGACAGATGCCAAGTACGGTTTAG-3’ (配列番号26)
kD-R9La LとkD-R9La Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃2.5分を30サイクル行った。得られたPCRプロダクトをNotI(NEB)とMluI(NEB)で消化し、泳動後ゲル抽出を行い、pMA-kD9FRTBsdをNotIとMluIで消化してできた突出末端にライゲーションした。(ベクター名:pMA-kD9FRTL)
KD-F9Ra LとKD-F9Ra Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃2.5分を30サイクル行った。得られたPCRプロダクトをBamHIで消化し、pMA-kD9FRTLのBamHIサイトへクローニングした。(ベクター名:pMA-kD9FRTLR)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図5に示した。
[B.2]ニワトリDT40細胞におけるloxP保持ヒト2番染色体へのFRT挿入
ニワトリDT40細胞の培養は10%FBS、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40 (#2)、521D4 loxP1-28および521D4 loxP4-6約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpMA-kD9FRTLRを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。薬剤選択は15μg/mL Blasticidin(フナコシ)で行い、各3回の反応において、521D4 loxP1-28、521D4 loxP4-6から、86クローン、82クローンの薬剤耐性株を獲得し、それぞれランダムに24クローンを選択し、ゲノムDNAを抽出した。それを鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
kD9 tcLa L:5’-TGAGAACACAGGGGTCTCCATTCTGACT-3’ (配列番号27)
kD9 tcLa R:5’-ACAATCAACAGCATCCCCATCTCTGAAG-3’ (配列番号28)
kD9 tcRa L:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’ (配列番号29)
kD9 tcRa R:5’-TGGTCACTGAAGCTTTCCATCTGCTCTT-3’ (配列番号30)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
加えて、loxP配列およびヒト2番染色体領域確認のPCRも行った。プライマーを以下に示す。
ヒト2番染色体上loxP配列確認プライマー:
cos138 sp L (前出)
cos138 sp R (前出)
x6.1cosRa L (前出)
x6.1cosRa R (前出)
cos138 sp L, cos138 sp Rのプライマーについては、Accuprime Taq DNA polymerase(Thermo Fisher Scientific)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は94℃2分の熱変性後、94℃15秒、60℃15秒、68℃5分を35サイクル行った。
x6.1cosRa L, x6.1cosRa Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。さらに、ヒト2番染色体領域確認のためのPCR解析を行った。そのプライマー配列を以下に示す。
D2S177 F (前出)
D2S177 R (前出)
FABP1-F (前出)
FABP1-R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
D2S159_1 F (前出)
D2S159_1 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
その結果、それぞれ521D4 loxP1-28, 521D4 loxP4-6から7および3クローンの陽性クローンを獲得した。
[B.3] two-color FISH解析
上記の結果から7クローンおよび3クローンにおいて、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社(東京、日本国)、1994)に従い行った。Human cot-1 DNAおよびpMA-kD9FRTBsdをプローブにしてFISH解析を行ったところ、全クローンにおいて87%以上でヒト2番染色体が1コピー保持され、さらにPGK5’HPRTFRTBsd由来のシグナルが現れ、ネガティブコントロールであるPGK5’HPRTFRTBsdを部位特異的挿入する前のヒト2番染色体上にはシグナルが検出されなかったことから、部位特異的にPGK5’HPRTFRTBsdが挿入されたことが確かめられた(図6)。この内、521D4 loxP1-28 FRT1-23と521D4 loxP4-6 FRT1-15の2クローンを選択し、以降の実験を行った。
[実施例2]転座クローニングによるヒト2番染色体IGK領域のマウス人工染色体ベクター(MAC)への搭載
MACを保持するCHO細胞において、ヒト2番染色体上IGK領域をMACへ転座クローニングする。転座クローニングにはCre/loxPシステムを用い、ヒト2番染色体とMACを相互転座させることで、IGK領域をMACに搭載する。(図7)
[A]改変ヒト2番染色体のMAC保持 CHO細胞(CHO MAC)への染色体導入
CHO内でCre/LoxPシステムを用いて、ヒト2番染色体領域をMACに転座クローニングするため、MACを保持するCHO細胞へ改変ヒト2番染色体を移入する。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
ドナー細胞であるDT40 521D4 loxP1-28 FRT1-23と521D4 loxP4-6 FRT1-15を用いて、MACベクターを保持するCHO hprt欠損細胞(ヒューマンサイエンス研究資源バンクより入手、登録番号JCRB0218)であるCHO(HPRT-)に微小核細胞融合法を行った。
ドナー細胞がコンフルエントになった時点で、20%FBS、0.025μg/mlコルセミドを添加した状態で、12時間インキュベートして微小核を形成させた後、細胞を回収し無血清DMEM培地に懸濁した後、Poly-L Lysine(Wako)でコートした遠心用フラスコに注ぎ、30分間インキュベートして、細胞をフラスコへ張り付けた。無血清DMEMを除き、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。ミクロセルを無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製したミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO MAC細胞に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418(Promega)、6μg/mL Blasticidinを添加し、10日選択培養を行った。それぞれ2回の反応を行い、ドナーDT40 521D4 loxP1-28 FRT1-23と521D4 loxP4-6 FRT1-15由来それぞれ26クローン、49クローンの薬剤耐性株を獲得し、その中から21クローン、24クローンをランダムに選択し、以降の解析を行った。MACにはEGFP発現カセットが搭載されており、薬剤選択クローンにおいてMACが保持されていることを蛍光で確認した。
[A.2]PCR解析による薬剤耐性クローンの選別
薬剤耐性クローンのDNAを抽出し、それらを鋳型として、CHO MAC細胞に改変ヒト2番染色体が移入されたかPCRを行った。プライマーを以下に示す。
改変ヒト2番染色体上loxP配列確認プライマー:
cos138 sp L (前出)
cos138 sp R (前出)
x6.1cosRa L (前出)
x6.1cosRa R (前出)
cos138 sp L, cos138 sp Rのプライマーについては、Accuprime Taq DNA polymerase(Thermo Fisher Scientific)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は94℃2分の熱変性後、94℃15秒、60℃15秒、68℃5分を35サイクル行った。
x6.1cosRa L, x6.1cosRa Rのプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃12分を30サイクル行った。
ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
FABP1-F (前出)
FABP1-R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
D2S159_1 F (前出)
D2S159_1 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
改変ヒト2番染色体上FRT配列確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
結果、3クローンおよび4クローンの陽性細胞を獲得した。
[A.3] two-color FISH解析
3クローンおよび4クローンについてHuman cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、MACと改変ヒト2番染色体が独立して保持されている陽性細胞(図8)、CHO(MAC)hChr.2 LF1-15 #9 およびCHO(MAC)hChr.2 LF1-15 #16を獲得した。
[B]ヒト2番染色体領域のMACへの転座クローニング
Cre/LoxPシステムを用いてIGK領域を含むヒト2番染色体断片をMACへ転座させる。
[B.1]Cre発現によるHAT耐性染色体組換え体の取得
MACにはloxPサイトが搭載されており、Cre組換え酵素存在下で改変ヒト2番染色体のloxPサイトと組換えが起こるようになっている。また、組換えが起こると副産物となるMACに載らないヒト2番染色体領域の5’HPRTと副産物となるMAC末端の3’HPRTが連結して、HPRT遺伝子の再構成が起こり、CHO(hprt-/-)はHAT耐性を獲得する。
CHO(MAC)hChr.2 LF1-15 #9 およびCHO(MAC)hChr.2 LF1-15 #16について、10cm細胞培養皿においてコンフルエントになった時に、18μgのCre発現プラスミド(ベクター名:pBS185)をLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加えた。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT (シグマ)、4μg/mL Blasticidinで薬剤選択を行った。
得られたHAT耐性クローン各23、24クローンを以降の解析に用いた。
[B.2]PCR解析による薬剤耐性クローンの選別
HAT耐性株のゲノムDNAを抽出して鋳型として相互転座クローンを選別するため、以下のプライマーを用いてPCRを行い、ヒト2番染色体断片とMAC上で染色体相互転座が起こっているかを確認した。そのプライマー配列を以下に示す。
TRANS L1:5'-TGGAGGCCATAAACAAGAAGAC-3'(配列番号31)
TRANS R1:5'-CCCCTTGACCCAGAAATTCCA-3'(配列番号32)
KJneo:5'-CATCGCCTTCTATCGCCTTCTTGACG-3’(配列番号33)
PGKr-2:5'-ATCTGCACGAGACTAGTGAGACGTGCTA-3’(配列番号34)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
加えて、ヒト2番染色体領域とFRT配列が維持されているかどうかPCRを行った。プライマーを以下に示す。
ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
FABP1-F (前出)
FABP1-R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
D2S159_1 F (前出)
D2S159_1 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
ヒト2番染色体上FRT配列確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
その結果、23クローンおよび24クローンがPCR陽性であった。
[B.3] two-color FISH解析
ランダムに選択した各6クローンについてHuman cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、5クローンと1クローンについてMACと改変ヒト2番染色体が相互転座をおこしかつ、IGK領域がMACに搭載されたIGK-MAC、副産物が独立して保持されていることを確認した(図9)。CHO IGK-MAC #9-3、CHO IGK-MAC #16-1の2クローンを選択して以降の実験を行った。
[実施例3]ヒト14番染色体の改変およびCHO(hprt-/-)細胞への移入
ヒト14番染色体を改変し、IGK-MACにIGH領域を搭載するための宿主細胞であるCHO(hprt-/-)へ改変ヒト14番染色体を移入した(図10)。
[A] ヒト14番染色体の改変
転座クローニングにより、ヒト14番染色体IGH領域をIGK-MACに搭載するために、組換え配列であるFRT配列をヒト14番染色体に挿入した。
[A.1]ヒト14番染色体へのFRT挿入ベクター作製
DT40(#14)にFRT配列を挿入するための基本プラスミドにはpMA-RQ(Life technologies)を用いた。このベクターに人工遺伝子合成配列FRTサイト (Life technologies)をクローニングした(ベクター名:pMA-14SC355)。まず、pX6.1ベクターをKpnIとClaIで消化し、泳動後PGKhyg配列をゲル抽出したものを、pMA-14SC355をKpnIとClaI消化後にできた突出末端にライゲーションした(ベクター名:pMA-14SC355hyg)。さらに、プラスミドv907(Lexicon genetics)にloxP配列および3’HPRTを挿入したプラスミド(ベクター名:pX3.1)をXbaIおよびAscIで消化し得られた3’HPRT配列を、pMA-SC355hygのNheI(NEB)およびMluI(NEB)サイト消化後にできた突出末端にライゲーションした(ベクター名:pMA-SC355hyg3’HPRT)。
FRT挿入部位であるヒト14番染色体のDNA配列はGenBankデータベース(NC_000014.9)より得た。DT40(#14)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
NotISC355-F:5’-TCGAGCGGCCGCGTACAATCTTGGATCACTACAACCTCTGCCTA-3’(配列番号35)
AscISC355-R:5’-TCGAGGCGCGCCAGGATTATAGATGTGAGCCATCACTAAGACTCCT-3’(配列番号36)
SalISC355-F4:5’-TCGAGTCGACAGCACGTTGGGAGGCCAAGGCAGGAGAATA-3’(配列番号37)
BamHISC355-R4:5’-TCGAGGATCCTGGCTGACACAGCCAGTCCCGGATT-3’(配列番号38)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
SalISC355-F4 とBamHISC355-R4のプライマーを用いたPCRで得られたプロダクトをSalIとBamHIで消化し、pMA-SC355hyg3’HPRTをSalIとBamHIで消化してできた突出末端にライゲーションした(pMA-SC355hyg3’HPRTR)。次に、NotISC355-FとAscISC355-Rのプライマーを用いたPCRで得られたプロダクトをNotIとAscIで消化し、pMA-SC355hyg3’HPRTRをNotIとAscIで消化してできた突出末端にライゲーションした(ベクター名:pMA-SC355hyg3’HPRTRL)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図11に示した。
[A.2]ニワトリDT40細胞におけるヒト14番染色体へのFRT挿入
ニワトリDT40細胞の培養は10%FBS、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40(#14)約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpMA-SC355hyg3’HPRTRLを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。薬剤選択は1.5mg/mL Hygromycinで行い、3反応行った結果、73クローンの薬剤耐性株を獲得した。そのうちランダムに23クローンを選択し、ゲノムDNAを抽出した。それを鋳型としてヒト14番染色体上で部位特異的に組換えが起こっているかをPCRで確認した。そのプライマー配列を以下に示す。
14TarC_La F:5’-AGCAATTAGGGCCTGTGCATCTCACTTT-3’(配列番号39)
14TarC_La R:5’-CCAGCTCATTCCTCCCACTCATGATCTA-3’(配列番号40)
14TarC_Ra F:5’-CATCTGGAGTCCTATTGACATCGCCAGT-3’(配列番号41)
14TarC_Ra R:5’-CTTATTCCTCCTTCTGCCCACCCTTCAT-3’(配列番号42)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行った。
加えて14番染色体領域確認のためのPCR解析も行った。そのプライマー配列を以下に示す。
MTA1-F3:5’-AGCACTTTACGCATCCCAGCATGT-3’(配列番号43)
MTA1-R3:5’-CCAAGAGAGTAGTCGTGCCCCTCA-3’(配列番号44)
ELK2P2-F:5’-CCCACTTTACCGTGCTCATT-3’(配列番号45)
ELK2P2-R:5’-ATGAAGGTCCGTGACTTTGG-3’(配列番号46)
g1(g2)-F:5’-ACCCCAAAGGCCAAACTCTCCACTC-3’(配列番号47)
g1(g2)-R:5’-CACTTGTACTCCTTGCCATTCAGC-3’(配列番号48)
VH3-F:5’-AGTGAGATAAGCAGTGGATG-3’(配列番号49)
VH3-R:5’-CTTGTGCTACTCCCATCACT-3’(配列番号50)
CH3F3:5’-AGGCCAGCATCTGCGAGGAT-3’(配列番号51)
CH4R2:5’-GTGGCAGCAAGTAGACATCG-3’(配列番号52)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
PCRの結果、10クローンが陽性であり、これらについて以降の解析を行った。
[A.3] two-color FISH解析
ランダムに選択した6クローンにおいて、Human cot-1 DNAおよびpMA-SC355hyg3’HPRTをプローブにしてFISH解析を行ったところ、全クローンにおいて90%以上でヒト14番染色体が1コピー保持され、さらにPGKhyg3’FRTHPRT由来のシグナルが現れ、ネガティブコントロールであるPGKhyg3’FRTHPRTを部位特異的挿入する前のヒト14番染色体上にはシグナルが検出されなかったことから、部位特異的にPGKhygFRT3’HPRTが挿入されたことが確かめられた(図12)。この内、14DT40#2-4_FRT 3-17と3-19の2クローンを選択し、以降の実験を行った。
[B]CHO(hprt-/-)株への改変ヒト14番染色体移入
CHO(hprt-/-)細胞株において14番染色体のIGH領域をIGK-MACに搭載するため、改変ヒト14番染色体をCHO(hprt-/-)細胞株へ移入した。
[B.1] 微小核細胞融合と薬剤耐性クローンの単離
ドナー細胞である14DT40#2-4_FRT 3-17と3-19を用いて、CHO(HPRT-)に微小核細胞融合法を行った。
ドナー細胞がコンフルエントになった時点で、20%FBS、0.025μg/mlコルセミドを添加した状態で、12時間インキュベートして微小核を形成させた後、細胞を回収し無血清DMEM培地に懸濁した後、Poly-L Lysine(Wako)でコートした遠心用フラスコに注ぎ、30分間インキュベートして、細胞をフラスコへ張り付けた。無血清DMEMを除き、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。ミクロセルを無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製したミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO(hprt-/-)細胞株に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、400μg/mL G418を添加し、10日選択培養を行った。それぞれ2回ずつ反応を行い、得られた薬剤耐性株15クローン、2クローンについて以降の解析を行った。
[B.2] PCR解析による薬剤耐性クローンの選別
改変ヒト14番染色体がCHO(hprt-/-)細胞株に移入されたかを確認するため、PCR解析を行った。プライマーを以下に示す。
改変ヒト14番染色体上FRT配列確認プライマー:
14TarC_La F (前出)
14TarC_La R (前出)
14TarC_Ra F (前出)
14TarC_Ra R (前出)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
結果、14クローンと2クローンのPCR陽性クローンを獲得した。
[B.3] two-color FISH解析
ランダムに選んだ6クローンおよび2クローンについて、Human cot-1 DNAおよびpMA-SC355hyg3’HPRTをプローブにしてFISH解析を行ったところ、PGKhygFRT3’HPRT由来のシグナルを示す14番染色体が1コピー保持されている陽性細胞を確認した(図13)。CHO hprt-/- 14FRT #3-17_8とCHO hprt-/- 14FRT #3-17_14を以降の実験に用いた。
[実施例4]相互転座を用いた、ヒト14番染色体上IGH領域のIGK-MACへの搭載
作製したIGK-MACを、改変ヒト14番染色体を保持するCHO(hprt-/-)細胞株へ移入し、FRT/Flpシステムによる組換えを起こさせIGH領域をIGK-MACに搭載し、IGHK-MACを作製した(図14)。
[A]IGK-MACの改変ヒト14番染色体保持CHO CHO(hprt-/-)細胞株への移入
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
ドナー細胞であるCHO IGK-MAC #9-3を細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させた。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO hprt-/- 14FRT #3-17_8およびCHO hprt-/- 14FRT #3-17_14に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、600μg/mL G418と6μg/mL Blasticidinを添加し、10日選択培養を行った。得られた薬剤耐性株18クローン、15クローンについて以降の解析を行った。
[A.2] PCR解析による薬剤耐性クローンの選別
IGK-MACが改変ヒト14番染色体を保持するCHO(hprt-/-)株に移入されているか、改変ヒト14番染色体は維持されているかを確認するためにPCR解析を行った。以下に用いたプライマーを示す。
IGK-MACの確認プライマー
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
IGK-MAC上のFRT挿入部位確認プライマー:
kD9 tcLa L (前出)
kD9 tcLa R (前出)
kD9 tcRa L (前出)
kD9 tcRa R (前出)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
改変ヒト14番染色体上のFRT挿入部位確認プライマー:
14TarC_La F (前出)
14TarC_La R (前出)
14TarC_Ra F (前出)
14TarC_Ra R (前出)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
その結果、12クローンと15クローンがPCR陽性であった。
[A.3] two-color FISH解析
ランダムに選択した6および5クローンについて、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、IGK-MACと改変ヒト14番染色体が独立して、1コピーずつ維持されているクローンを確認した(図15)。CHO Igk-MAC #9-3 8-5とCHO Igk-MAC #9-3 14-9の2クローンを選択し以降の実験を行った。
[B]FRT/Flp組換えシステムを用いたIGHK-MACの構築
IGK-MACと改変ヒト14番染色体をFRT/Flpシステムで相互転座させることで、IGK-MAC上にヒト14番染色体由来IGH領域を転座クローニングし、IGHK-MACを構築する。
[B.1] FLP発現によるHAT耐性染色体組換え体の取得
IGK-MAC上のFRTサイトと改変ヒト14番染色体上のFRTサイトを用いて、FLP組換え酵素存在下で相互転座を起こさせる。また、組換えが起こるとIGHK-MAC上では、5’HPRTと3’HPRTが連結して、HPRT遺伝子の再構成が起こり、HAT耐性を獲得する。CHO Igk-MAC #9-3 8-5とCHO Igk-MAC #9-3 14-9について、10cm細胞培養皿においてコンフルエントになった時に18μgのFLP発現プラスミドをLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT、6μg/mL Blasticidinで薬剤選択を行った。
得られたHAT耐性クローン各24クローンを以降の解析に用いた。
[B.2]PCR解析による薬剤耐性クローンの選別
FRT/FLPシステムを用いて期待した相互転座が起こり、IGHK-MACが構築されているか確認するため、薬剤耐性クローンのDNAを抽出し、鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
相互転座連結部位の確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1:5’- CCTATTGGCGTTACTATGGGAACATACG-3’(配列番号 53)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
ヒト2番染色体領域確認プライマー:
D2S177 F (前出)
D2S177 R (前出)
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。その結果、各22、24クローンが陽性であった。
[B.3] two-color FISH解析
それぞれ6クローンをランダムに選択し、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、副産物であるMACに載らない14番染色体に、余分な2番染色体領域が転座して染色体が長くなっており、相互転座が起こったことが示唆され、IGHK-MACと考えられる染色体が1コピーで独立して存在していることが確認できた(図16)。結果、CHO IGHK-MAC 8-1とCHO IGHK-MAC 14-7の2クローンを選択し、以降の解析を行った。
この2クローンについて、プローブとしてBACクローンCH17-405H5(IGK領域:CHORI)とCH17-262H11(IGH領域:CHORI)およびCH17-216K2(IGK領域:CHORI)とCH17-212P11(IGH領域:CHORI)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHK-MACが構築されているか詳細に解析した。結果、2クローンともMAC上にそれぞれ、IGK領域とIGH領域の存在を示すシグナルが観察され、IGHK-MACが構築されていることを確認した(図17、図18)。
[実施例5]IGHK-MACのCHO K1細胞株への移入
IGHK-MACおよびIGHK-MAC構築のための相互転座の際に形成された副産物の両方にNeo耐性遺伝子がのっており、微小核細胞融合法で目的の細胞に移入した際、G418で薬剤選択するとIGHK-MACもしくは副産物がそれぞれあるいは両方移入された細胞を取得することになる。MAC上にはEGFPが搭載されているので、目的の細胞にIGHK-MACが移入されているか確認することが可能であるが、染色体導入が効率的に行えるドナー細胞でかつIGHK-MACのみを保持する細胞を作製するため、IGHK-MACをCHO K1細胞株に移入した。
[A] 微小核細胞融合と薬剤耐性クローンの単離
染色体移入により、IGHK-MACのみを保持する細胞株を作製した。
[A.1]IGHK-MACのCHO K1株への移入
ドナー細胞であるCHO IGHK-MAC 8-1とCHO IGHK-MAC 14-7を細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させた。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO K1細胞株に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418を添加し、10日選択培養を行った。得られた薬剤耐性株20クローン、13クローンについて以降の解析を行った。得られたこれらのクローンについては、IGHK-MAC上GFPの蛍光タンパク発現を確認している。
[A.2] PCR解析による薬剤耐性クローンの選別
IGHK-MACがCHO K1細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
その結果、14クローンおよび10クローンの陽性クローンを確認した。
[A.3] two-color FISH解析
それぞれ6クローンをランダムに選択し、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、各2クローンについて期待通りIGHK-MACのみを保持していることが確認できた(図19)。
それら各2クローンを選別し、プローブとしてBACクローンCH17-216K2(IGK領域)とCH17-212P11(IGH領域)および CH17-405H5(IGK領域)とRP11-731F5(IGH領域)の組み合わせを用いてtwo-color FISH解析を行った結果、期待したIGHK-MAC構造を維持しているCHO K1 IGHK-MAC 8-1 #1、CHO K1 IGHK-MAC 14-7 #9を以降の実験に用いることとした(図20、図21)。
[実施例6]マウスES細胞およびラットES細胞へのIGHK-MACの移入
[A]マウスES細胞へのIGHK-MACの移入
ヒト抗体産生マウスを作製するためにはIGHK-MACをマウスES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHK-MACを子孫伝達させることが必要である。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
ドナー細胞は、CHO K1 IGHK-MAC 8-1-1、CHO K1 IGHK-MAC 14-7-9を用いた。ドナー細胞を細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させた。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製後、2000rpm,10分間遠心した。2000rpm,10分間遠心し、無血清DMEM培地5mlに懸濁した。さらに2000rpm,10分間遠心した。レシピエント細胞には、マウスES細胞HKD31 6TG-9(マウスのIghおよびIgk遺伝子が破壊されている。特許:国際公開番号WO98/37757に記載)およびXO ES9(抗体遺伝子は破壊されていない。)を用いた。培養には、DMEM(Dulbecco’s Modified Eagle’s Medium-high glucose:SIGMA)に、10%FCS、LIF(Murine Leukemia Inhibitory Factor)、1×10‐5M 2-ME(2-メルカプトエタノール:SIGMA)、L-グルタミン(3.5g/ml:GIBCO)、Sodium pyruvate溶液(3.5g/ml:GIBCO)、MEM 非必須アミノ酸 (0.125mM:GIBCO)を添加し、5% CO2、37℃にて培養をおこなった。10cm細胞培養皿でコンフルエントになったマウスES細胞をPBS(-)で細胞表面を2回洗浄後にトリプシン処理により細胞を分散させ、DMEM培地に10%FBSを添加した培養液で回収し、1500rpmで遠心し、上清を除去し、無血清培養液5mlに再度懸濁し、ミクロセルの遠心後のペレットを含む無血清培地に静かに添加し、さらに1200rpmで遠心した。上清を除去し、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地に完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を0.5mlで正確に1分30秒間融合した。13mlの無血清培養液(DMEM)を静かに添加し、1200rpmで遠心した。上清を除去し、通常のマウスES細胞の培養液を添加し、マイトマイシン処理したG418耐性マウス胎生線維芽細胞をフィーダー細胞として使用し、直径10cm細胞培養皿2枚に播種し、オーバーナイトでインキュベートした。G418を250μg/mLになるように加え、3〜4週間選択培養した。それぞれ、4、4、6、6反応行った結果、EGFP陽性かつ薬剤耐性株それぞれ、6、4、7、4クローンを取得し、以降の解析を行った。
[A.2]PCR解析による薬剤耐性クローンの選別
IGHK-MACがマウスES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。
その結果、HKD31 6TG-9について、CHO K1 IGHK-MAC 8-1-1由来4クローン、CHO K1 IGHK-MAC 14-7-9由来2クローン、XO ES9について、CHO K1 IGHK-MAC 8-1-1由来4クローン、CHO K1 IGHK-MAC 14-7-9由来2クローンがPCR陽性であり、、これらについて以降の解析を行った。
[A.3] two-color FISH解析
Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、HKD31 6TG-9について、CHO K1 IGHK-MAC 8-1-1由来4クローン、CHO K1 IGHK-MAC 14-7-9由来1クローン、XO ES9について、CHO K1 IGHK-MAC 8-1-1由来3クローン、CHO K1 IGHK-MAC 14-7-9由来1クローンについて期待通りIGHK-MACのみを保持しており、マウスESの正常核型を維持していることが確認できた(図22)。
これらのクローンを用いて以下の実験を行った。
[B] ラットES細胞へのIGHK-MACの移入
ヒト抗体産生ラットを作製するためにはIGHK-MACをラットES細胞に移入し、8細胞期胚にインジェクションし、キメララットを作製し、IGHK-MACを子孫伝達させることが必要である。
[B.1] 微小核細胞融合と薬剤耐性クローンの単離
上記A.1に記載のようにマウスES細胞への微小核細胞融合法と同様の手法を用いてラットES細胞へのIGHK-MACの導入を行った。ドナー細胞は、CHO IGHK-MAC 8-1、CHO IGHK-MAC 14-7、CHO K1 IGHK-MAC 8-1-1、CHO K1 IGHK-MAC 14-7-9を用いた。融合後、オーバーナイトでインキュベーションし、G418を150μg/mLになるように加え、3〜4週間選択培養した。各2反応、K1株については8反応ずつ行った結果、GFP陽性かつ薬剤耐性のクローン、CHO IGHK-MAC 8-1由来9クローン、CHO IGHK-MAC 14-7由来12クローン、CHO K1 IGHK-MAC 8-1 #1由来90クローン、CHO K1 IGHK-MAC 14-7 #9由来34クローンを獲得した。以降の解析についてはCHO IGHK-MAC 8-1由来9クローン、CHO IGHK-MAC 14-7由来12クローンについて行った。
[B.2] PCR解析による薬剤耐性クローンの選別
IGHK-MACがラットES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
ヒト2番染色体領域確認プライマー:
EIF2AK3-F (前出)
EIF2AK3-R (前出)
RPIA-F (前出)
RPIA-R (前出)
IGKC-F (前出)
IGKC-R (前出)
IGKV-F (前出)
IGKV-R (前出)
Vk3-2 F (前出)
Vk3-2 R (前出)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行った。得られた陽性クローン6クローンおよび9クローンについて以降の解析を行った。
[B.3] two-color FISH解析
Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行ったところ、rES14-7 #4, #6およびrES8-1 #3、#8の4クローンについて期待通りIGHK-MACのみを保持しており、ラットESの正常核型(42本)を維持していることが確認できた(図23)。この4クローンを用いて以降の実験を行うこととした。
[実施例7]マウスおよびラットのキメラ作製および子孫伝達
IGHK-MACを保持したES細胞を用いて、キメラマウスおよびキメララットを作製し、子孫伝達させる。
[A]IGHK-MACを保持したマウスの作製
IGHK−MACを保持したマウスの作製および、解析を行った。過程で得られたキメラについても解析を行った。
[A.1]キメラマウスの作製
得られたIGHK-MACを保持するマウスES細胞を用いて(ジーンターゲティング、実験医学、1995)の手法に従い、キメラマウスを作製する。宿主としてはMCH(ICR)(白色、日本クレア社より購入)の雌雄交配により得られる桑実胚及び8細胞期胚を用いた。注入胚を仮親に移植した結果生まれる仔マウスは毛色によりキメラであるかどうかを判定できる。
HKD31 6TG-9およびXO ES9マウスES(IGHK-MAC)雌クローンを注入した胚を仮親に移植することで、キメラマウス(毛色に濃茶色の部分の認められる)が得られる。キメラ作製には、HKD31 6TG-9 IGHK-MAC8-1-1 #1, 3, 5, 6、HKD31 6TG-9 IGHK-MAC 14-7-9 #1、XO ES9 IGHK-MAC 8-1-1 #1, 2のマウスES細胞を用いた。中でも、HKD31 6TG-9 IGHK-MAC 14-7-9 #1についてインジェクションした51の胚を3匹の仮親に移植した結果100%キメラ3匹、90%キメラ1匹(毛色による判定)が得られた。XO ES9 IGHK-MAC 8-1-1 #1については、インジェクションした140の胚を8匹の仮親に移植した結果、100%キメラマウス6匹、80-90%キメラマウス7匹が得られた。
[A.2]キメラマウスのIGHK-MAC保持解析
誕生後3週以上を経たキメラマウスから(勝木元也,発生工学実験マニュアル,講談社サイエンティフィク,1987)に記された方法に従い尻尾を取得し、Puregene DNA Isolation Kit (Qiagen)を用いてゲノムDNAを抽出する。実施例6記載のプライマー及びPCR条件により、PCR解析を行い、IGHK-MAC保持を確認した。
さらに、キメラマウスから採血を行った後、細胞固定を行い標本作製し、Human Cot-1およびMouse minor satellite DNAをプローブとしてFISH解析を行うことで、IGHK-MACを保持した細胞を染色体レベルで確認する。
[A.3]IGHK-MACを保持するES細胞由来キメラマウスにおけるヒトIGM発現評価
HKD31マウスES細胞はマウスIgh, Igk遺伝子が破壊されている。Bリンパ球の発生に必須な抗体μ鎖遺伝子ノックアウトマウスは体液性免疫を担う成熟Bリンパ球が欠損していることにより抗体を産生することができない。したがって、HKD31マウスES細胞は、キメラマウスにおいて成熟B細胞になれない。キメラマウス作製に用いるIGHK-MAC保持HKD31マウス細胞について、IGHK-MACからヒトIGMが発現すれば、この欠損を救済可能で、GFP陽性のB細胞を検出することができる。これにより、IGHK-MAC上のIGM遺伝子の機能的発現が間接的に検証できる。キメラマウスより血液を採取し、マウスCD45R(B220)に対する抗体染色を用い、マウスB細胞をフローサイトメーターにより検出する。CD45RとGFP共陽性の細胞が存在するか解析を行うことで、IGHK-MAC由来IGMの機能的発現を確認することができる。マウスCD45R(B220)に対する抗体を用いて、血液細胞を染色し、ヒトIGM、CD45R、GFP陽性の細胞を確認した。末梢血を採血し、ヘパリンPBSの入ったチューブに血液を移し、転倒混和して氷冷。遠心2000rpm、3分、4℃、の後、上清除去後、各種抗体を添加し、4℃で30分反応させ、5%牛胎仔血清を添加したPBS(5%FBS/PBS)により洗浄した。最後の遠心後、ペレットに1.2%Dextran/生理食塩水を加え、タッピング後、室温で45分静置し、赤血球を自然沈降させた。上清を新しいチューブに移し、2000rpm、3分、4℃で遠心後上清除去し、ペレットに室温の溶血剤(0.17M NH4Cl)を加え、5分静置した。2000rpm、3分、4℃で遠心し、5%FBS/PBSで洗浄した後500μlの5%FBS/PBSで懸濁したものを解析サンプルとし、フローサイトメーターにより解析した。HKD31 6TG-9 IGHK-MAC 14-7-9 #1由来のキメラマウスについて、末梢血リンパ球について上述の手段で解析を行った結果、GFPおよびB220共陽性の細胞が確認され、構築したIGHK-MACの機能性を示唆する結果を得た(図24)。
[A.4]キメラマウス血清中のヒト抗体検出
キメラマウスにおいて、ヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、血清中のヒト抗体濃度をエンザイムリンクドイムノソルベントアッセイ(ELISA)を用いて測定する。ELISAは以下に記載されている方法に従う。富山・安東、単クローン抗体実験マニュアル、講談社、1987;安東・千葉、単クローン抗体実験操作入門、講談社、1991;石川、超高感度酵素免疫測定法、学会出版センター、1993:Ed Harlow and David Lane,Antibodies A Laboratory Manual,Cold Spring Harbor Laboratory,1988;A.Doyle and J.B.Griffiths,Cell & Tissue Culture:Laboratory Procedures,John Wiley & Sons Ltd.,1996。これらの文献に記載の方法を参考にして、測定系によっては反応時間や温度を4℃で終夜行うなどの改良を行う。特定の抗体検出については、kitを用いて実施する。ヒト抗体(hγ、hμ、hκ、hγ1、hγ2、hγ3、hγ4、hα、hε、hδ)の発現および血清中の濃度を測定する。基本的な操作を以下に示す。
測定しようとするヒト免疫グロブリンに対する抗体を希釈し、ELISAプレートを4℃で一晩コーティングする。血清試料の測定では、ブロッキング、試料および標識抗体の希釈に5%牛胎仔血清を添加したPBSを用いる。コーティングしたプレートを洗浄した後、ブロッキングを1時間以上行う。プレートを洗浄後、試料を加えて30分以上インキュベートするプレート洗浄後、希釈した酵素標識抗ヒトおよびマウス免疫グロブリン抗体を加えて、1時間以上インキュベートした後、プレートを洗浄し基質液を加えて発色させる。また測定系によって、基本的には同じ操作で、ビオチン標識した抗体を用い、プレート洗浄後これにアビジン-酵素複合体を加えてインキュベートした後洗浄し基質液を加える。マイクロプレートリーダーで吸光度を測定する。血清中の濃度の測定には濃度既知の標準を段階希釈してELISAをサンプルと同時に行い、検量線を引いて解析することで濃度を特定できる。
[A.5]ヒト抗体の発現解析および配列同定
キメララット脾臓由来RNAからcDNAを合成し、ヒト抗体遺伝子可変領域クローニングと塩基配列決定を行う。方法は特許(国際公開番号WO98/37757)に記されている方法同様実施することで解析、評価できる。
[A.6] 抗原特異的ヒト抗体産生応答の評価
キメラマウスについて、抗原特異的ヒト抗体価の増加が見られるかを評価する。方法は特許(国際公開番号WO98/37757)に記されている方法同様にヒト血清アルブミンで免疫し、抗体力価の上昇を解析する。
[B]IGHK-MACを保持するキメラマウスからのIGHK-MACの子孫伝達
[B.1] IGHK-MAC子孫伝達
上記[A]で作製される雌キメラマウス(キメラ率約100%)をICR雄マウスと交配し、誕生した仔マウスについて、ES細胞由来のIGHK-MACの優性遺伝形質である、GFPの蛍光を観察した。GFPの蛍光が観察されれば、マウス個体においてIGHK-MACが子孫伝達し、安定に保持されていることが確認できる。IGHK-MACが子孫伝達されたマウス系統をmTC(IGHK-MAC)と呼ぶ。
HKD31 6TG-9 IGHK-MAC 14-7-9 #1 由来キメラマウス(毛色判定で90%)1個体をマウスIgh,Igkが破壊されているマウス(HKD)と繰り返し交配した結果、12個体のマウスが得られ、内1個体についてGFPの蛍光が観察され、IGHK-MACの子孫伝達(F1)が確認された。このマウス系統をHKD mTC(IGHK-MAC)と呼ぶ。このF1マウスをHKLD(さらにマウスIgλ低発現の変異をもつ)マウスと交配させた結果、得られた8匹のマウスの内、3匹でIGHK-MACの子孫伝達(F2)が確認された。
XO ES9 IGHK-MAC 8-1-1 #1由来キメラマウスについては、得られた高キメラマウス(毛色判定で>80%)計12匹を交配させた。10匹のキメラマウスとHKDマウスの交配から97匹のマウスが得られ、内32匹でGFPの蛍光が観察され、IGHK-MACの子孫伝達(F1)が確認された。さらに、2匹のキメラマウスとHKLDマウスの交配により、18匹のマウスが得られ、内3匹でGFPの蛍光が観察され、IGHK-MACの子孫伝達(F1)が確認された。F1個体について、3匹をHKDマウスと交配した結果、33匹の内10個体で子孫伝達(F2)が確認された。加えてF1個体4個体をHLKDマウスと交配した結果、40匹中21個体で子孫伝達(F2)が確認された。得られた子孫伝達F2個体の内12匹がHKDの遺伝子型すなわちHKD mTC(IGHK-MAC)であった。
[B.2] IGHK-MACを保持するマウスのIGHK-MAC保持確認
mTC(IGHK-MAC)について(実施例7)[A.2]同様解析を行うことでIGHK-MACの子孫伝達を詳細に確認できる。XO ES9 IGHK-MAC 8-1-1 #1由来の子孫伝達個体について、尻尾のDNAを鋳型としたPCRおよび個体のGFP発現を確認した結果、共に陽性であり、IGHK-MACが子孫伝達し、安定に維持されていることが確認された。
[B.3] IGHK-MACを保持するマウスにおけるヒトIGM発現評価
(実施例7)[A.3]同様に解析を行うことで、HKD mTC(IGHK-MAC)におけるIGHK-MACの保持および機能性を間接的に評価できた。HKD31 6TG-9 IGHK-MAC 14-7-9 #1由来の子孫伝達個体HKD mTC(IGHK-MAC)について、尻尾のDNAを鋳型としたPCR解析で陽性が確認できた個体について、末梢血リンパ球についてGFP陽性およびB220/GFP共陽性細胞の存在を確認した結果、共に陽性であり、子孫伝達したIGHK-MACが安定に維持され、機能していることを示唆する結果を得た。フローサイトメトリー解析により評価した結果、末梢血リンパ球におけるGFP陽性細胞(MAC保持細胞)の割合は、98.45%と高頻度であり、B細胞の割合は7.9%であった。(図25)。また、XO ES9 IGHK-MAC8-1-1 #1由来の子孫伝達個体HKD mTC(IGHK-MAC)についても、尻尾のDNAを鋳型としたPCR解析で陽性が確認できた個体について、末梢血リンパ球についてGFP陽性およびB220/GFP共陽性細胞の存在を確認した。末梢血リンパ球におけるGFP陽性細胞(MAC保持細胞)の割合は、90.14%と高頻度であり、B細胞の割合は22.06%であった(図26)。
[B.4]IGHK-MACを保持するマウスのヒト抗体産生能評価
mTC(IGHK-MAC)について(実施例7)[A.4][A.5][A.6]同様に評価する。
[C]IGHK-MACを保持するラットの作製
IGHK−MACを保持したラットの作製および、解析を行う。過程で得られたキメラについても解析を行う。
[C.1]キメララットの作製
上記実施例6で得られたIGHK-MAC保持ラットES細胞クローンを用いてHirabayashiらの方法(Mol Reprod Dev. 2010 Feb;77(2):94.doi:10. 1002/mrd.21123.)でキメララットを作製した。宿主としてはCrlj:WIラット(白色、日本チャールスリバー社より購入)の雌雄交配により得られる胚盤胞期胚を用いた。注入胚を仮親に移植した結果生まれる仔ラットは毛色によりキメラであるかどうかを判定できる。
IGHK-MAC保持ESクローンRat ES(IGHK-MAC)14-7 #4および8-1#3(上記実施例6で取得したもの)を注入した25及び18個の胚を仮親に移植した結果、8および4匹のキメララット(毛色に濃茶色の部分の認められる)が誕生した(図27)。ES細胞由来のIGHK-MACの優性遺伝形質である、GFPの蛍光も産まれて間もない時期に観察し、ES細胞の寄与を確認できた。
[C.2] IGHK-MACを保持するES細胞由来キメララットのIGHK-MAC保持確認
上記[A.2]同様に解析を行い、IGHK-MAC保持をより詳細に確認する。血液細胞についてHuman Cot-1およびMouse Cot-1 DNAをプローブとして用い、FISH解析を実施する。
[C.3] キメララットのヒト抗体産生能評価
キメララットについて(実施例7) [A.3][A.4][A.5][A.6]同様に評価する。
[D]IGHK-MACを保持するキメララットからのIGHK-MACの子孫伝達
[D.1]IGHK-MACを保持するキメララットからのIGHK-MACの子孫伝達
上記[C]で作製されたキメララット(キメラ率約100%)とCrlj:WIラットを交配し、誕生した仔ラットについてES細胞由来のIGHK-MACの優性遺伝形質である、GFPの蛍光を観察した。GFPの蛍光が観察され、ラット個体においてIGHK-MACが子孫伝達し、安定に保持されていることが確認できた。IGHK-MACが子孫伝達されたラット系統をrTC(IGHK-MAC)と呼ぶ。rES8-1 #3由来、F1ラット3個体の末梢血リンパ球のGFP陽性率を評価した結果、98.23%、96.62%、95.79%と子孫伝達したIGHK-MACが高い保持率で維持されていることが確認された。
[D.2] IGHK-MACを保持するラットのIGHK-MAC保持確認
rTC(IGHK-MAC)について[C.2]同様解析を行うことでIGHK-MACの子孫伝達を詳細に確認できる。
[D.3] IGHK-MACを保持するラットのヒト抗体産生能評価
rTC(IGHK-MAC)について(実施例7)[A.3][A.4][A.5][A.6]同様に評価する。
rTCについてヒト抗体IgMおよびIgGを検出するELISA解析を行った。野生型のラット血清を陰性コントロールにおいて解析を実施した結果、rTCの血清中にヒトIgMおよびIgGが存在していることが確認され、rTCがヒト抗体を産生していることが示された(図28)。
[実施例8]ヒト22番染色体の改変
マウス人工染色体ベクターMACにIGL、IGH領域を転座クローニングするために、ヒト22番染色体にloxPサイト、FRTサイトを挿入する(図29)。
[A]ヒト22番染色体へのloxP配列挿入
[A.1]ヒト22番染色体へのloxP挿入ベクター作製
ヒト22番染色体を保持した細胞DT40 52-18#22 (#22)にloxP配列を挿入するための基本プラスミドにはpX6.1(前出)を用いた。loxP挿入部位であるヒト22番染色体のDNA配列はGenBankデータベース(NC_000022.11)より得た。
DT40(#22)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
HindIII553La L:5’-TGTAGCTGACTTTAGCCACCCACAAGTAC-3’(配列番号 54)
AscI553La R:5’-TCGAGGCGCGCCCTCAAACTCCTGGGTGTAAATGATCCTCCTGC-3’(配列番号 55)
KpnI553Ra L:5’-TGAGGGTACCGTGCAGTAAAGTATGATTGAGC-3’(配列番号 56)
SalI553Ra R:5’-TCGAGTCGACCTTGCTGATTATACCTCATCTCCTTCCCTC-3’(配列番号 57)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を30サイクル行った。HindIII553La L とAscI553La R のPCR産物をHindIII(NEB)とAscI(NEB)で消化して、アガロースゲルにより分離し精製後、pX6.1をHindIIIとAscIで消化してできた突出末端にライゲーションした。(ベクター名:pX6.1553L)。さらに、KpnI553Ra LとSalI553Ra RのPCR産物をKpnI(NEB)とSalI(NEB)で消化して、アガロースゲルにより分離し精製後、pX6.1553LをKpnIとSalIで消化してできた突出末端にライゲーションした(ベクター名:pX6.1553LR)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図30に示した。
[A.2]ニワトリDT40細胞におけるヒト22番染色体へのloxP挿入
ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下FBSで記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。DT40 (#22)の約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpX6.1553LRを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。1.0mg/ml Hygromycin(Wako)を含む培地に交換し、約2週間の選択培養を行い32クローンの薬剤耐性株を得た。
[A.3] 相同組換え体の選別
Hygromycin耐性株のゲノムDNAを抽出して鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト22番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
22CeT La L:5’-CCTGCCTTCTTGTTTCAGCTCTCAACTG-3’(配列番号 58)
22CeT La R:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’(配列番号 59)
22CeT Ra L:5’-ATCCCCATGTGTATCACTGGCAAACTGT-3’(配列番号 60)
22CeT Ra R:5’-ACACTTTAGTCCCTGTCCCCTCAACGAG-3’(配列番号 61)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
加えて、ヒト22番染色体領域も保持されているかどうか、確認のPCRを行った。そのプライマー配列を以下に示す。
553P-F:5’-AGATCTCTTGAGCCCAGCAGTTTGA-3’(配列番号 62)
553P-R:5’-TGAAGTTAGCCGGGGATACAGACG-3’(配列番号 63)
PPM1F L:5’-AACGGCAGCCAAACCAAAGA-3’(配列番号 64)
PPM1F R:5’-ACCAGGACTGGCTGGGCATA-3’(配列番号 65)
IGLVI-70 L:5’-AGTCTGCGCTGACCCAGGAA-3’(配列番号 66)
IGLVI-70 R:5’-TTGAGCCAGAGAAGCGGTCA-3’(配列番号 67)
GNAZ L:5’-TCCACTTGGGGGTCTGCATT-3’(配列番号 68)
GNAZ R:5’-TGGTGCTGAGCAGCTGTGTG-3’(配列番号 69)
LIF L:5’-TGGGACTTAGGTGGGCCAGA-3’(配列番号 70)
LIF R:5’-GCCTCCCCAAGAGCCTGAAT-3’(配列番号 71)
hVpreB1-F:5’-TGTCCTGGGCTCCTGTCCTGCTCAT-3’(配列番号 72)
hVpreB1-Rm:5’-GGCGGCGACTCCACCCTCTT-3’(配列番号 73)
hVpreB3-F:5’-CACTGCCTGCCCGCTGCTGGTA-3’(配列番号 74)
hVpreB3-R:5’-GGGCGGGGAAGTGGGGGAGAG-3’(配列番号 75)
hL5-F:5’-AGCCCCAAGAACCCAGCCGATGTGA-3’(配列番号 76)
hL5-R:5’-GGCAGAGGGAGTGTGGGGTGTTGTG-3’(配列番号 77)
344-F:5’-ATCATCTGCTCGCTCTCTCC-3’(配列番号 78)
344-R:5’-CACATCTGTAGTGGCTGTGG-3’(配列番号 79)
350P-F:5’-ACCAGCGCGTCATCATCAAG-3’(配列番号 80)
350P-R:5’-ATCGCCAGCCTCACCATTTC-3’(配列番号 81)
IgL-F:5’-GGAGACCACCAAACCCTCCAAA-3’(配列番号 82)
IgL-Rm:5’-GAGAGTTGGAGAAGGGGTGACT-3’(配列番号 83)
SERPIND1 L:5’-ACCTAGAGGGTCTCACCTCC-3’(配列番号 84)
SERPIND1 R:5’-CCCTGGACATCAAGAATGG-3’(配列番号 85)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。
その結果、17クローンがPCR陽性であった。
[A.4] two-color FISH解析
上記の結果からランダムに選んだ10クローンにおいて、two-color FISH解析を松原ら(FISH実験プロトコール、秀潤社、1994)に従い行った。Human cot-1 DNAおよびpX6.1をプローブにしてFISH解析を行ったところ、9クローンにおいて70%以上ヒト2番染色体が1コピー保持され、さらにPGKhygloxP5’HPRT由来のシグナルが現れ、ネガティブコントロールであるPGKhygloxP5’HPRTを部位特異的挿入する前のヒト22番染色体上にはシグナルが検出されなかったことから、部位特異的にPGKhygloxP5’HPRTが挿入されたことが確かめられた(図31)。以降の実験には、22DT40 KloxP3 1-5, 2-1の2クローンを用いた。
[B]loxPを搭載したヒト22番染色体上へのFRTサイトの挿入
MAC上にloxPでヒト22番染色体上IGL領域を、そこへさらにヒト14番染色体上IGH領域を転座クローニングするために、loxPを挿入したヒト2番染色体へFRTサイトを挿入する。
[B.1] ヒト22番染色体へのFRT挿入ベクター作製
DT40(#22)にFRT配列を挿入するための基本プラスミドにはpMA-kD9FRTBsdを用いた。FRT挿入部位であるヒト22番染色体のDNA配列はGenBankデータベース(NC_000022.11)より得た。DT40(#22)からゲノムDNAを抽出して鋳型とし、相同組換えの標的配列の増幅に用いたプライマーの配列を以下に示す。
BamHISL350La L:5’-TCGAGGATCCGGCCTCCCAAAGGATTATAGACGTGAGCCACTGT-3’(配列番号 86)
AscISL350La R:5’-TCGAGGCGCGCCGGCACCTCTCCTATTTTCTTCACAGCACTT-3’(配列番号 87)
AscISL350Ra L:5’-TCGAGGCGCGCCAGCATGGTGGCCCGCACGTATAGTCGCAGCTA-3’(配列番号 88)
NotISL350Ra R:5’-TCGAGCGGCCGCAAAGAAGGGGCCCGCCTCTGCCTCTAAATCCTGAC-3’(配列番号 89)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を30サイクル行った。BamHISL350La L とAscISL350La R のPCR産物をBamHI(NEB)とAscI(NEB)で消化して、アガロースゲルにより分離し精製後、pMA-kD9FRTBsdをBamHIとAscIで消化してできた突出末端にライゲーションした。(ベクター名pMA-kD9FRTBsd22L:)。さらに、AscISL350Ra LとNotISL350Ra RのPCR産物をMluI(NEB)とNotI(NEB)で消化して、アガロースゲルにより分離し精製後、pMA-kD9FRTBsd22LをAscIとNotIで消化してできた突出末端にライゲーションした(ベクター名:pMA-kD9FRTBsd22LR)。ターゲティングベクター、標的配列、及び相同組換えにより生じる染色体アレルを図32に示した。
[B.2]ニワトリDT40細胞におけるloxP保持ヒト22番染色体へのFRT挿入
ニワトリDT40細胞の培養は10%ウシ胎仔血清(ギブコ、以下FBSで記す)、1%ニワトリ血清(ギブコ)、10-4M 2-メルカプトエタノール(シグマ)を添加したRPMI1640培地(ギブコ)中で行った。22DT40 KloxP3 1-5,および22DT40 KloxP3 2-1約107個の細胞を無添加RPMI1640培地で一回洗浄し、0.5mlの無添加RPMI1640培地に懸濁し、制限酵素NotI(NEB)で線状化したターゲティングベクターpMA-kD9FRTBsd22LRを25μg加え、エレクトロポレーション用のキュベット(バイオラッド)に移し、室温で10分間静置した。キュベットをジーンパルサー(バイオラッド)にセットし、550V、25μFの条件で電圧印加した。室温で10分間静置後、96穴培養プレート12枚に分注して24時間培養した。
薬剤選択は15μg/mL Blasticidin(フナコシ)で行い、Blasticidin耐性株のゲノムDNAを抽出する。それを鋳型として組換え体を選別するため、以下のプライマーを用いてPCRを行い、ヒト22番染色体上で部位特異的に組換えが起こっているかを確認した。そのプライマー配列を以下に示す。
22TeT La L:5’-TGCAGGTATCTGTTGGTGTCCCTGTTTT-3’(配列番号 90)
22TeT La R:5’-GACGTGCTACTTCCATTTGTCACGTCCT-3’(配列番号 91)
22TeT Ra L:5’-AGCAGAGCTCGTTTAGTGAACCGTCAGA-3’(配列番号 92)
22TeT Ra R:5’-CTGTCCTATCCTTGCAGCTGTCTTCCAG-3’(配列番号 93)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行い、組換えを確認した。
loxP挿入部位が維持されているか確認するためのプライマーを以下に示す。
22CeT La L (前出)
22CeT La R (前出)
22CeT Ra L (前出)
22CeT Ra R (前出)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
加えて、ヒト22番染色体領域も保持されているかどうか、確認のPCRを行った。そのプライマー配列を以下に示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。22DT40 KloxP3 1-5,および22DT40 KloxP3 2-1について薬剤耐性各24クローンのうちPCR陽性クローンは21および、16クローンであった。この結果を受けて各々5クローンを選択し以降の実験を進めた。
[B.3] two-color FISH解析
Human cot-1 DNAおよびpMA-kD9FRTBsdをプローブにしてFISH解析を行う。高い割合で、ヒト22番染色体が1コピー保持され、さらにPGK5’HPRTFRTBsd由来のシグナルが現れ、ネガティブコントロールであるPGK5’HPRTFRTBsdを部位特異的挿入する前のヒト2番染色体上にはシグナルが検出されないことを確認し、部位特異的にPGK5’HPRTFRTBsdが挿入されたことを確認した(図33)。結果、22DT40 KL3F1-5#2-1、22DT40 KL3F2-1#1-2, #1-3の3クローンを以降の実験に用いた。
[実施例9]転座クローニングによるヒト22番染色体領域のマウス人工染色体ベクター
(MAC)への搭載(図34)
[A]改変ヒト22番染色体のMAC保持 CHO細胞(CHO MAC)への染色体導入
CHO内でCre/LoxPシステムを用いて、ヒト22番染色体領域をMACに転座クローニングする
ため、MACを保持するCHO細胞へ改変ヒト22番染色体を移入する。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
ドナー細胞である改変ヒト22番染色体保持DT40を用いて、MACベクターを保持するCHO hprt欠損細胞(ヒューマンサイエンス研究資源バンクより入手、登録番号JCRB0218)であるCHO(HPRT-)に微小核細胞融合法を行った。
ドナー細胞がコンフルエントになった時点で、20%FBS、0.025μg/mlコルセミドを添加した状態で、12時間インキュベートして微小核を形成させた後、細胞を回収し無血清DMEM培地に懸濁した後、Poly-L Lysine(Wako)でコートした遠心用フラスコに注ぎ、30分間インキュベートして、細胞をフラスコへ張り付けた。無血清DMEMを除き、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。ミクロセルを無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製した。精製したミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO MAC細胞に、培養液を除いた後添加した。15分インキュベートして微小核をCHO細胞に張り付けた。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合した。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加した。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418(Promega)、8μg/mL Blasticidinを添加し、10日選択培養を行った。各2反応を行い、ドナー細胞22DT40 KL3F 1-5 #2-1、22DT40 KL3F 2-1 #1-2、#1-3について得られた薬剤耐性細胞は2、10、12クローンであった。MACにはEGFP発現カセットが搭載されており、薬剤選択クローンにおいてMACが保持されていることを蛍光で確認した。
[A.2]PCR解析による薬剤耐性クローンの選別
薬剤耐性クローンのDNAを抽出し、それらを鋳型として、CHO MAC細胞に改変ヒト22番染色体が移入されたかPCRを行った。
loxP挿入部位が維持されているか確認するためのプライマーを以下に示す。
22CeT La L (前出)
22CeT La R (前出)
22CeT Ra L (前出)
22CeT Ra R (前出)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L (前出)
22TeT La R (前出)
22TeT Ra L (前出)
22TeT Ra R (前出)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
加えて、ヒト22番染色体領域も保持されているかどうか、確認のPCRを行った。そのプライマー配列を以下に示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。結果、22DT40 KL3F 1-5 #2-1、22DT40 KL3F 2-1 #1-2、#1-3由来のクローン、2、9、12クローンがPCR陽性であった。この結果を受けて、PCR陽性6クローンを選別し、以降の実験を進めた。
[A.3] two-color FISH解析
PCR解析陽性クローンについて、Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、MACと改変ヒト22番染色体が独立して保持されている陽性細胞を選別した。解析の結果(図35)、CHO(MAC1)KL3F#2-2、CHO(MAC1)KL3F#3-1の2クローンを以降の実験に用いた。
[B]ヒト22番染色体領域のMACへの転座クローニング
Cre/LoxPシステムを用いてIGL領域を含むヒト22番染色体断片をMACへ転座させる。
[B.1]Cre発現によるHAT耐性染色体組換え体の取得
MACにはloxPサイトが搭載されており、Cre組換え酵素存在下で改変ヒト22番染色体のloxPサイトと組換えが起こるようになっている。また、組換えが起こると副産物となるMACに載らないヒト22番染色体領域の5’HPRTと副産物となるMAC末端の3’HPRTが連結して、HPRT遺伝子の再構成が起こり、CHO(hprt-/-)はHAT耐性を獲得する。
改変ヒト22番染色体とMACを保持するCHO(hprt-/-)について、10cm細胞培養皿においてコンフルエントになった時に18μgのCre発現プラスミド(ベクター名:pBS185)をLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加えた。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT (シグマ)、8μg/mL Blasticidinで薬剤選択を行った。
CHO(MAC1)KL3F#2-2、CHO(MAC1)KL3F#3-1について得られたHAT耐性クローン24、22クローンについて以下の解析を行った。
[B.2]PCR解析による薬剤耐性クローンの選別
HAT耐性株のゲノムDNAを抽出して鋳型として相互転座クローンを選別するため、以下のプライマーを用いてPCRを行い、ヒト22番染色体断片とMAC上で染色体相互転座が起こっているかを確認した。そのプライマー配列を以下に示す。
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用る。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L (前出)
22TeT La R (前出)
22TeT Ra L (前出)
22TeT Ra R (前出)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行った。
また、ヒト22番染色体領域についてPCR解析を行った。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行った。CHO(MAC1)KL3F#2-2、CHO(MAC1)KL3F#3-1について17、7クローンが陽性であり、各6、4クローンを選別し、以降の実験に用いた。
[B.3] two-color FISH解析
Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、MACと改変ヒト2番染色体が相互転座をおこしかつ、IGL領域がMACに搭載されたIGL-MAC、副産物が独立して保持されていることを確認した(図36)。結果、選別した2クローンの陽性細胞(CHO IGL-MACと命名する)について、以下の実験を行う。
[実施例10]相互転座を用いた、ヒト14番染色体上IGH領域のIGL-MACへの搭載
作製したIGL-MACを、改変ヒト14番染色体を保持するCHO(hprt-/-)細胞株へ移入し、FRT/Flpシステムによる組換えを起こさせIGH領域をIGL-MACに搭載し、IGHL-MACを作製する(図37)。
[A]IGL-MACの改変ヒト14番染色体保持CHO CHO(hprt-/-)細胞株への移入
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
ドナー細胞であるCHO IGL-MACを細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行う。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO hprt-/- 14FRT #3-17_8およびCHO hprt-/- 14FRT #3-17_14に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418と8μg/mL Blasticidinを添加し、10日選択培養を行い、得られた薬剤耐性株について以降の解析を行う。
[A.2] PCR解析による薬剤耐性クローンの選別
IGL-MACが改変ヒト14番染色体を保持するCHO(hprt-/-)株に移入されているか、改変ヒト14番染色体は維持されているかを確認するためにPCR解析を行う。以下に用いるプライマーを示す。
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用る。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
FRT挿入部位が維持されているか確認するためのプライマーを以下に示す。
22TeT La L (前出)
22TeT La R (前出)
22TeT Ra L (前出)
22TeT Ra R (前出)
PCRは、サーマルサイクラーとしてTakara社製のTP600を、PCR酵素はKOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃5分を35サイクル行う。
また、ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
SERPIND1 L (前出)
SERPIND1 R (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。
改変ヒト14番染色体上FRT挿入部位の確認プライマー:
14TarC_La F (前出)
14TarC_La R (前出)
14TarC_Ra F (前出)
14TarC_Ra R (前出)
これらプライマーについては、KOD FX(TOYOBO) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、98℃15秒、68℃6分を35サイクル行う。
この結果を受けて、PCR陽性のクローンについて以降の実験を進める。
[A.3] two-color FISH解析
Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGL-MACと改変ヒト14番染色体が独立して、1コピーずつ維持されているクローンを確認する。陽性細胞(CHO #14 IGL-MACと命名)を選択し以降の実験を行う。
[B]FRT/Flp組換えシステムを用いたIGHL-MACの構築
IGL-MACと改変ヒト14番染色体をFRT/Flpシステムで相互転座させることで、IGL-MAC上にヒト14番染色体由来IGH領域を転座クローニングし、IGHL-MACを構築する。
[B.1] FLP発現によるHAT耐性染色体組換え体の取得
IGL-MAC上のFRTサイトと改変ヒト14番染色体上のFRTサイトを用いて、FLPo組換え酵素存在下で相互転座を起こさせる。また、組換えが起こるとIGHL-MAC上では、5’HPRTと3’HPRTが連結して、HPRT遺伝子の再構成が起こり、HAT耐性を獲得する。CHO #14 IGL-MACについて、10cm細胞培養皿においてコンフルエントになった時に18μgのFLP発現プラスミドをLipofectamine2000(Thermo Fisher Scientific)を用いてメーカーの手順を参照して加える。添加後6時間経過したら、培養液を交換し、24時間後に、10cm細胞培養皿10枚に播種し、1×HAT、8μg/mL Blasticidinで薬剤選択を行う。
得られたHAT耐性クローンを以降の解析に用いる。
[B.2]PCR解析による薬剤耐性クローンの選別
FRT/FLPシステムを用いて期待した相互転座が起こり、IGHK-MACが構築されているか確認するため、薬剤耐性クローンのDNAを抽出し、鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
相互転座連結部位の確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
GNAZ L (前出)
GNAZ R (前出)
LIF L (前出)
LIF R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。
[B.3] two-color FISH解析
プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHL-MACが構築されているか詳細に解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが観察されたものを陽性とし、IGHL-MACが構築されていることを確認(CHO IGHL-MACと命名)しクローンを選別し以降の実験を行う。
[実施例11]IGHL-MACのCHO K1細胞株への移入
IGHL-MACおよびIGHL-MAC構築のための相互転座の際に形成された副産物の両方にNeo耐性遺伝子がのっており、微小核細胞融合法で目的の細胞に移入した際、G418で薬剤選択するとIGHL-MACもしくは副産物がそれぞれあるいは両方移入された細胞を取得することになる。MAC上にはEGFPが搭載されているので、目的の細胞にIGHL-MACが移入されているか確認することが可能であるが、染色体導入が効率的に行えるドナー細胞でかつIGHL-MACのみを保持する細胞を作製するため。IGHL-MACをCHO K1細胞株に移入する。
[A] 微小核細胞融合と薬剤耐性クローンの単離
染色体移入により、IGHL-MACのみを保持する細胞株を作製する。
[A.1]IGHL-MACのCHO K1株への移入
ドナー細胞であるCHO IGHL-MACを細胞培養皿で培養し、コンフルエントになった時点で20% FBS、0.1μg/mlコルセミドを添加したF12培地に交換し、さらに48時間培養後に20% FBS、0.1μg/mlコルセミドを添加したF12培地で培地交換し、さらにオーバーナイトでインキュベートしてミクロセルを形成させる。培養液を除去し、予め37℃で保温したサイトカラシンB(10μg/ml,シグマ)溶液を遠心用フラスコに満たし、34℃、8000rpm、1時間の遠心を行った。微小核(「ミクロセル」ともいう)を無血清DMEM培地に懸濁し、8μm, 5μm, 3μmフィルターにて精製する。精製後、ミクロセルをDMEMで調製した0.05mg/ml PHA-P(シグマ)溶液2mLに懸濁し、6cm細胞培養皿でコンフルエントになったレシピエントであるCHO K1細胞株に、培養液を除いた後添加する。15分インキュベートして微小核をCHO細胞に張り付ける。その後、PEG1000 (Wako)溶液[5gのPEG1000を無血清DMEM培地6mLに完全に溶解し、ジメチルスルホキシドを1ml添加して濾過滅菌する]を1mlで正確に1分融合する。 5mLの無血清DMEMでPEGを除去するために4回ウオッシュ操作を行った後、CHO培養液を添加する。24時間後、10cm細胞培養皿10枚に細胞を播種し、800μg/mL G418を添加し、10日選択培養を行う。得られた薬剤耐性株について以降の解析を行う。
[A.2] PCR解析による薬剤耐性クローンの選別
IGHL-MACがCHO K1細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行った。用いたプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[A.3] two-color FISH解析
Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-MACを1コピー独立して保持していることを確認する。
さらに、プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、IGHL-MACの構造を詳細に解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが観察されたものを陽性(CHO K1 IGHL-MACと命名)として、以降の実験に用いる。
[実施例12]マウスES細胞およびラットES細胞へのIGHL-MACの移入
[A]マウスES細胞へのIGHL-MACの移入
ヒト抗体産生マウスを作製するためにはIGHL-MACをマウスES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHL-MACを子孫伝達させることが必要である。
[A.1] 微小核細胞融合と薬剤耐性クローンの単離
ドナー細胞は、CHO K1 IGHL-MACを用いる。実施例6[A.1]と同様の手法を用いて微小核細胞融合を行い、EGFP陽性かつ薬剤耐性株を取得し、以降の解析を行う。
[A.2]PCR解析による薬剤耐性クローンの選別
IGHL-MACがマウスES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いるプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
CMVr-1 (前出)
PGKr-2 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行う。
ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域の確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[A.3] two-color FISH解析
Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-MACのみを保持しており、マウスESの正常核型を維持していることを確認する。
プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、実際IGHL-MACが構築されているか詳細に解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが期待した位置に観察されたものを陽性細胞株(HKD31 IGHL-MAC)とし、インジェクションに用いる。
[B] ラットES細胞へのIGHL-MACの移入
ヒト抗体産生ラットを作製するためにはIGHL-MACをラットES細胞に移入し、受精卵8細胞期にインジェクションし、キメラマウスを作製し、IGHL-MACを子孫伝達させることが必要である。
[B.1] 微小核細胞融合と薬剤耐性クローンの単離
実施例6[A.1]に記載のようにマウスES細胞への微小核細胞融合法と同様の手法を用いてラットES細胞へのIGHL-MACの導入を行う。ドナー細胞は、CHO K1 IGHL-MACを用いる。融合後、オーバーナイトでインキュベーションし、G418を150μg/mLになるように加え、3〜4週間選択培養する。結果GFP陽性かつ薬剤耐性のクローンを以降の解析に用いる。
[B.2] PCR解析による薬剤耐性クローンの選別
IGHL-MACがラットES細胞株に移入されていることを確認するため、薬剤耐性クローンのDNAを抽出し、それを鋳型としてPCR解析を行う。用いたプライマーを以下に示す。
相互転座連結部位確認プライマー:
TRANS L1 (前出)
TRANS R1 (前出)
KJneo (前出)
PGKr-2 (前出)
これらプライマーについては、LA taq(Takara) を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は98℃1分の熱変性後、94℃10秒、60℃30秒、72℃3分を30サイクル行った。
ヒト22番染色体領域についてPCR解析を行う。以下に配列を示す。
553P-F (前出)
553P-R (前出)
PPM1F L (前出)
PPM1F R (前出)
IGLVI-70 L (前出)
IGLVI-70 R (前出)
hVpreB1-F (前出)
hVpreB1-Rm (前出)
hVpreB3-F (前出)
hVpreB3-R (前出)
hL5-F (前出)
hL5-R (前出)
344-F (前出)
344-R (前出)
350P-F (前出)
350P-R (前出)
IgL-F (前出)
IgL-Rm (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、63、62、60、56、55、50℃のいずれか30秒、72℃1分を35サイクル行う。
ヒト14番染色体領域確認プライマー:
MTA1-F3 (前出)
MTA1-R3 (前出)
ELK2P2-F (前出)
ELK2P2-R (前出)
g1(g2)-F (前出)
g1(g2)-R (前出)
VH3-F (前出)
VH3-R (前出)
CH3F3 (前出)
CH4R2 (前出)
これらプライマーを用いたPCRについて、TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いる。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒もしくは56℃30秒、72℃1分を35サイクル行う。PCR解析陽性細胞株について以降の解析を行う。
[B.3] two-color FISH解析
Human cot-1 DNAおよびMouse cot-1 DNAをプローブにしてFISH解析を行い、IGHL-MACを1コピー独立して保持しており、ラットESの正常核型(42本)を維持していることを確認する。プローブとしてBACクローンCH17-95F2 (IGL領域)とCH17-262H11(IGH領域)およびCH17-424L4 (IGL領域)とCH17-212P11(IGH領域)の組み合わせを用いてtwo-color FISH解析を行い、IGHL-MACの構造をさらに詳しく解析する。MAC上にそれぞれ、IGL領域とIGH領域の存在を示すシグナルが期待した位置に観察されたものを陽性細胞株(rESIGHL-MACと命名)とし、インジェクションに用いる。
[実施例13]IGHL-MACを保持するマウスおよびラットの作製と子孫伝達個体の作製
IGHL-MACを保持するマウスおよびラットES細胞を用い、(実施例7)同様に操作を行うことで、IGHL-MACを保持した子孫伝達マウスおよび、ラットを作製することができる。子孫伝達マウス、ラットおよび過程で得られたキメラマウスについても、(実施例7)、(実施例12)同様に解析を行い、IGHL-MAC保持および抗体発現(hλも含む)を確認する。作製されたIGHL-MAC保持マウスおよびラット系統をそれぞれmTC(IGHL-MAC)、rTC(IGHL-MAC)と呼ぶ。
[実施例14]ヒト抗体産生マウスの作製
IGHK-MACおよびIGHL-MACを保持するマウスと、マウスIgh,およびIgk遺伝子が破壊されており、かつIgl変異を持つ(Iglの発現が低くなる変異を持つ)マウスを交配させ、ヒト抗体産生マウスを作製する。
[A]IghおよびIgk遺伝子欠損、Igl低発現マウスの作製
ヒト抗体産生マウスを作製するため、マウス抗体遺伝子を欠損または低発現しているマウスを作製する。
[A.1] IghおよびIgk遺伝子欠損、Igl低発現マウスの作製
HKD31(マウスIgh、Igkの遺伝子破壊が破壊されている)マウスESより得られたマウス系統と、マウスIgl低発現の変異を持つCD-1(ICR、チャールズリバーより購入)を交配して、IghおよびIgk遺伝子欠損、Igl低発現マウスを作製する。
CD-1由来のマウスIglc変異はPCR-RFLP解析により確認する。
以下のプライマーを用いてPCRを行った。
mIglc1VnC L:5’-CCTCAGGTTGGGCAGGAAGA-3’(配列番号 94)
J3C1:5’-GACCTAGGAACAGTCAGCACGGG-3’(配列番号 95)
TaqポリメラーゼはAmpli Taq Gold(Applied Biosystems)を用い、バッファーやdNTPs(dATP,dCTP,DGTP,dTTP)は添付のものを推奨される条件に従って用いた。温度、サイクル条件は95℃10分の熱変性後、95℃30秒、60℃30秒、72℃1分を35サイクル行った。
PCRプロダクトをKpnI-HF(NEB)で処理し、電気泳動後、PCRプロダクトの切断が認められないものを変異アレル保持として判定した。結果Igλ変異が両アレルで認められるマウス(LD系統と呼ぶ。)が得られた。
[A.2]マウス抗体遺伝子の発現評価
マウス抗体が発現消失およびほぼ発現していないことをフローサイトメトリー(FCM)解析およびELISAによって、評価する。
実施例7[A.3]で述べたように、Igh遺伝子が破壊されており、Igμの発現がなくなるとB細胞ができず、B細胞の有無を判定することで、Igh遺伝子欠損が評価できる。FCM解析は以前の報告(Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):722-7.)同様行い、B細胞欠失が見られた個体について、マウスIgh欠損と判定した。マウスIgh、Igκが破壊されていると考えられるマウス(HKD系統と呼ぶ。)の末梢血リンパ球についてFCM解析した結果、B細胞のマーカーであるB220陰性を示したため、このマウスはIgh遺伝子が破壊されていることが示された。さらに、Igλ変異マウスとの交配を進めた結果、Igh、Igκが破壊されてかつIgλ変異を両アレルにもつマウス(HKLD系統と呼ぶ。)を得た。
また、得られたマウスについて、マウスIghに加え、Igk, Iglの発現も以前の報告(Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):722-7.)と同様に、ELISAを行い、発現消失および低発現であることを確認した。
[A.3]ヒト抗体産生マウスの作製
IGHK-MAC保持マウスもしくはIGHL-MAC保持マウスとマウスIghKO、IgkKO、Igl変異マウスを交配し、ヒト抗体産生マウスを作製する。
[B]ヒト抗体産生マウスの評価
[B.1] FACS解析
IGHK-MACもしくはIGHL-MACを保持するB細胞の存在確認を目的としてフローサイトメトリー解析を行う。マウスCD45R(B220)に対する抗体を用いて、血液細胞を染色し、ヒトIGM、CD45R、GFP陽性の細胞を確認した。ヘパリンコートキャピラリ―を用いて、眼窩より採血し、ヘパリンPBSの入ったチューブに血液を移し、転倒混和して氷冷した。遠心2000rpm、3分、4℃、の後、上清除去後、各種抗体を添加し、4℃で30分反応させ、5%牛胎仔血清を添加したPBS(5%FBS/PBS)により洗浄した。最後の遠心後、ペレットに1.2%Dextran/生理食塩水を加え、タッピング後、室温で45分静置し、赤血球を自然沈降させた。上清を新しいチューブに移し、2000rpm、3分、4℃で遠心後上清除去し、ペレットに室温の溶血剤(0.17M NH4Cl)を加え、5分静置する。2000rpm、3分、4℃で遠心し、5%FBS/PBSで洗浄した後500μlの5%FBS/PBSで懸濁したものを解析サンプルとし、フローサイトメーターにより解析した。HKD mTC(IGHK-MAC)マウスについて、フローサイトメトリー解析を行った結果、末梢血リンパ球についてB220、GFP共陽性の細胞の存在が確認された。少なくともIGHK-MACが機能してヒトのIGH、特にIgMが発現していることが示唆された。
[B.2] ヒト抗体の発現解析
ヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、ELISAにより測定する。(実施例7)[A.4]に記載した方法同様、マウスの抗体発現の有無確認も含め、マウス抗体(mγ、mμ、mκ、mλ)、ヒト抗体(hγ、hμ、hκ、hλ、hγ1、hγ2、hγ3、hγ4、hα、hε、hδ)の発現および血清中の濃度を測定する。
[B.3] ヒト抗体の発現解析および配列同定
ヒト抗体産生マウス脾臓由来RNAからcDNAを合成し、ヒト抗体遺伝子可変領域クローニングと塩基配列決定を行う。(実施例7)[A.5]と同様に実施することで解析、評価できる。
[B.4]抗原特異的ヒト抗体産生応答の評価
ヒト抗体産生マウスについて、抗原特異的ヒト抗体産生応答が見られるかを評価する。
(実施例7)[A.6]に記載した方法同様にヒト血清アルブミンで免疫し、抗体力価の上昇を解析する。
[B.5]ヒト抗体産生マウスからのヒト抗体産生ハイブリドーマの取得
特許(国際公開番号WO98/37757)に記載されている方法同様にヒト抗体産生ハイブリドーマの取得ができる。
[実施例15]ヒト抗体産生ラットの作製
IGHK-MACおよびIGHL-MACを保持するラットと、ラットIgh, Igk, Iglが破壊されたKOラットを交配させ、ヒト抗体産生ラットを作製する。
[A]ヒト抗体産生ラットの作製および評価
[A.1]ヒト抗体産生ラットの作製
IGHK-MACもしくはIGHL-MACを保持したラット系統とラットIgh、Igκ、Igλ遺伝子が破壊されたラット系統を交配することで、ヒト抗体産生ラットを作製できる。
[A.2]FACS解析
IGHK-MACもしくはIGHL-MACを保持するB細胞の確認を行う。(実施例14)[B.1]と同様の方法で実施し、抗体は抗ラットCD45R(B220)抗体を用い、溶血剤は0.15M NH4Clを用いる。
[A.3] ヒトIgの発現解析
ELISAによるヒト抗体遺伝子軽鎖、重鎖、各種アイソタイプ発現確認を目的として、(実施例7)[A.4]]と同様に解析を行うことでヒト抗体産生を評価することができる。抗ラット免疫グロブリン抗体を用いてラット抗体(rγ、rμ、rκ、rλ)の発現も評価する。
[A.4] ヒト抗体の発現解析および遺伝子配列同定
上記の(実施例7)[A.5]と同様の方法を用いて、抗体遺伝子配列決定、解析、評価を行うことができる。
[A.5]抗原特異的ヒト抗体産生応答の評価
(実施例14)[A.6]の記載と同様に実施し、評価することができる。
[A.6]ヒト抗体産生ラットからのヒト抗体産生ハイブリドーマの取得
(実施例14)[B.5]の記載と同様の方法で実施し、ヒト抗体産生ハイブリドーマの取得ができる。
本発明により、例えばラットなどのげっ歯類を含む非ヒト動物を用いてヒト抗体を作製することができるため、医薬抗体の製造において有用である。
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (14)

  1. ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)を含む非ヒト動物であって、該マウス人工染色体ベクターは、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含み、
    該非ヒト動物はマウス又はラットであり、かつ、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ、非ヒト動物。
  2. ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)を含む非ヒト動物であって、該マウス人工染色体ベクターは、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖λ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含み、
    該非ヒト動物はマウス又はラットであり、かつ、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ、非ヒト動物。
  3. ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)とを含む非ヒト動物であって、該マウス人工染色体ベクターは、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含み、
    非ヒト動物はマウス又はラットであり、かつ、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ、非ヒト動物。
  4. ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)を含む非ヒト動物であって、該マウス人工染色体ベクターは、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含む、マウス又はラットである該非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ同種の非ヒト動物を交配し、hIGHK-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ非ヒト動物を選択することを含む、請求項1に記載の非ヒト動物の作製方法。
  5. ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)を含む非ヒト動物であって、該マウス人工染色体ベクターは、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖λ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含む、マウス又はラットである非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ同種の非ヒト動物を交配し、hIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ非ヒト動物を選択することを含む、請求項2に記載の非ヒト動物の作製方法。
  6. ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHK-MAC)を含む非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座を含むマウス人工染色体ベクター(hIGHL-MAC)を含む非ヒト動物を交配し、hIGHK-MAC及びhIGHL-MACを含む非ヒト動物を作製するステップであって、該マウス人工染色体ベクターは、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座又はヒト抗体軽鎖λ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含むベクターであって、該非ヒト動物はマウス又はラットであるステップ、作製された非ヒト動物と、ヒト抗体重鎖遺伝子もしくは遺伝子座及びヒト抗体軽鎖κ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、及びヒト抗体軽鎖λ遺伝子もしくは遺伝子座に対応する内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ遺伝子型である同種の非ヒト動物を交配するステップ、並びに、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ非ヒト動物を選択するステップを含む、請求項3に記載の非ヒト動物の作製方法。
  7. 請求項1記載の非ヒト動物と請求項2記載の非ヒト動物とを交配し、hIGHK-MAC及びhIGHL-MACを含み、かつ前記内在抗体遺伝子もしくは遺伝子座が破壊もしくは欠損され、又は発現消失もしくは低発現の変異を持つ非ヒト動物を選択することを含む、請求項3に記載の非ヒト動物の作製方法。
  8. 請求項1〜のいずれか1項に記載の非ヒト動物に抗原物質を投与するステップ、該ヒト動物から該抗原物質と結合する産生されたヒト抗体を回収するステップを含む、ヒト抗体を製造する方法。
  9. 抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、請求項に記載の方法。
  10. 請求項1〜のいずれか1項に記載の非ヒト動物に抗原物質を投与するステップ、該非ヒト動物から脾臓細胞を取り出すステップ、該脾臓細胞とミエローマとを融合させてハイブリドーマを作製するステップ、該ハイブリドーマから該抗原物質と結合する抗体を回収するステップを含む、ヒトモノクローナル抗体を製造する方法。
  11. 抗原物質は、細胞、タンパク質、ポリペプチド又はペプチドである、請求項10に記載の方法。
  12. ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座とを含むマウス人工染色体ベクター(hIGHK-MAC)であって、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖κ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含む、マウス人工染色体ベクター。
  13. ヒト抗体重鎖遺伝子もしくは遺伝子座と、ヒト抗体軽鎖λ遺伝子もしくは遺伝子座とを含むマウス人工染色体ベクター(hIGHL-MAC)であって、テロメア、ヒト抗体重鎖遺伝子もしくは遺伝子座、第一のDNA配列挿入部位、ヒト抗体軽鎖λ遺伝子もしくは遺伝子座、第二のDNA配列挿入部位、及びセントロメアをこの順で含む、マウス人工染色体ベクター。
  14. 請求項12及び13に記載のマウス人工染色体ベクターからなる群から選択される少なくとも1つのベクターを含む細胞。
JP2018547235A 2016-10-31 2017-10-31 ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法 Active JP6868250B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016213844 2016-10-31
JP2016213844 2016-10-31
PCT/JP2017/039441 WO2018079857A1 (ja) 2016-10-31 2017-10-31 ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法

Publications (2)

Publication Number Publication Date
JPWO2018079857A1 JPWO2018079857A1 (ja) 2019-09-19
JP6868250B2 true JP6868250B2 (ja) 2021-05-12

Family

ID=62023680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547235A Active JP6868250B2 (ja) 2016-10-31 2017-10-31 ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法

Country Status (7)

Country Link
US (1) US20190254264A1 (ja)
EP (1) EP3533867A4 (ja)
JP (1) JP6868250B2 (ja)
CN (1) CN109906272A (ja)
AU (1) AU2017348743C1 (ja)
CA (1) CA3042171C (ja)
WO (1) WO2018079857A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090361A1 (ja) 2021-11-16 2023-05-25 国立大学法人鳥取大学 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079946B2 (ja) * 2018-10-10 2022-06-03 国立大学法人鳥取大学 外来染色体を含むヒト人工多能性幹細胞の製造方法
BR112021020556A2 (pt) * 2019-04-12 2021-12-14 Humab Co Ltd Cromossomo recombinante artificial e uso do mesmo
JP2023541216A (ja) * 2020-06-25 2023-09-29 ヒューマブ カンパニー リミテッド ヘテロ接合型トランスジェニック動物
JPWO2022059801A1 (ja) 2020-09-16 2022-03-24
EP4248743A1 (en) 2020-10-08 2023-09-27 Humab Co. Ltd. Method for preparing transgenic non-human animal having genome including humanized immunoglobulin gene locus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333516A (zh) * 1995-08-29 2008-12-31 麒麟医药株式会社 嵌合体动物及其制备方法
JP2007312792A (ja) * 1995-08-29 2007-12-06 Kirin Pharma Co Ltd キメラ動物およびその作製法
DE69835145T2 (de) * 1997-02-28 2007-06-14 Kirin Beer K.K. Transgene Mäuse die ein menschliches Antikörper exprimieren
TWI255853B (en) 1998-08-21 2006-06-01 Kirin Brewery Method for modifying chromosomes
GB9823930D0 (en) * 1998-11-03 1998-12-30 Babraham Inst Murine expression of human ig\ locus
US6596541B2 (en) * 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
NZ525664A (en) 2000-11-17 2008-08-29 Kirin Holdings Kk Expression of xenogenous (human) immunoglobulins in cloned, transgenic ungulates
CA3079874C (en) * 2004-10-22 2023-01-03 Revivicor, Inc. Ungulates with genetically modified immune systems
EP2208786B1 (en) 2005-12-13 2018-08-01 Kyoto University Nuclear reprogramming factor
JP5505858B2 (ja) 2009-10-16 2014-05-28 日立工機株式会社 インパクト工具
JP5796846B2 (ja) 2009-11-17 2015-10-21 エスエービー エルエルシー ヒト人工染色体ベクター
KR101485840B1 (ko) * 2010-01-06 2015-01-23 도쿠리츠 다이가쿠 호우진 돗토리 다이가쿠 마우스 인공염색체 벡터
CN104755493B (zh) * 2012-08-03 2020-12-25 Sab有限责任公司 用于在转基因动物中生产人类抗体的复杂的染色体工程
JP5952416B2 (ja) 2012-09-27 2016-07-13 京セラ株式会社 管理方法、制御装置及び通信処理デバイス
BR112017015661A2 (ja) * 2015-01-30 2018-03-20 Saitama Medical University Anti-ALK2 antibody

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090361A1 (ja) 2021-11-16 2023-05-25 国立大学法人鳥取大学 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物

Also Published As

Publication number Publication date
CA3042171A1 (en) 2018-05-03
AU2017348743C1 (en) 2022-03-03
US20190254264A1 (en) 2019-08-22
JPWO2018079857A1 (ja) 2019-09-19
AU2017348743A1 (en) 2019-06-13
CA3042171C (en) 2021-07-20
EP3533867A4 (en) 2020-07-22
CN109906272A (zh) 2019-06-18
EP3533867A1 (en) 2019-09-04
AU2017348743B2 (en) 2021-10-07
WO2018079857A1 (ja) 2018-05-03

Similar Documents

Publication Publication Date Title
JP6868250B2 (ja) ヒト抗体産生非ヒト動物及びそれを用いたヒト抗体作製法
JP6824807B2 (ja) 抗体産生非ヒト哺乳動物
JP5557217B2 (ja) マウス人工染色体ベクター
JP4115281B2 (ja) ヒト抗体λ軽鎖遺伝子を含むヒト人工染色体、および子孫伝達可能な該ヒト人工染色体を含む非ヒト動物
JP4318736B2 (ja) ヒト抗体遺伝子を発現する非ヒト動物とその利用
JP3732407B2 (ja) 染色体の改変方法
JP6641379B2 (ja) トランスジェニックマウス
JP2003501103A (ja) 非同種スイッチ領域を介して、ヒト抗体の特定のアイソタイプを産生するためのトランスジェニック動物
JP4087338B2 (ja) キメラ非ヒト動物
CN114554841A (zh) 转基因哺乳动物及其使用方法
EP3770261A1 (en) Nucleic acid molecule and use thereof in preparing humanized single-domain antibody
JP6775224B2 (ja) マウス人工染色体ベクター及びその使用
WO2023090361A1 (ja) 改変d領域を含むヒト免疫グロブリン重鎖遺伝子座を有する哺乳動物人工染色体ベクター、及びそのベクターを保持する細胞又は非ヒト動物
WO2009111086A1 (en) Transgenic non-human mammals with kappa light chain of xenogenous immunoglobulin
JP2007312792A (ja) キメラ動物およびその作製法
JP2001231403A (ja) 改変された外来染色体あるいはその断片を保持する非ヒト動物
WO2019088257A1 (ja) 哺乳類人工染色体ベクターを利用するタンパク質の高生産方法
JPH11313576A (ja) キメラ動物およびその作製法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6868250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250